WO2016140252A1 - シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 - Google Patents

シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 Download PDF

Info

Publication number
WO2016140252A1
WO2016140252A1 PCT/JP2016/056387 JP2016056387W WO2016140252A1 WO 2016140252 A1 WO2016140252 A1 WO 2016140252A1 JP 2016056387 W JP2016056387 W JP 2016056387W WO 2016140252 A1 WO2016140252 A1 WO 2016140252A1
Authority
WO
WIPO (PCT)
Prior art keywords
silane
rubber
mass
parts
coupling agent
Prior art date
Application number
PCT/JP2016/056387
Other languages
English (en)
French (fr)
Inventor
宏樹 千葉
西口 雅己
有史 松村
晃一 水野
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to JP2017503678A priority Critical patent/JP6738799B2/ja
Publication of WO2016140252A1 publication Critical patent/WO2016140252A1/ja
Priority to US15/686,194 priority patent/US20170349737A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide

Definitions

  • the present invention relates to a silane cross-linkable rubber composition, a silane cross-linked rubber molded product, a production method thereof, and a silane cross-linked rubber molded product.
  • Rubber products such as coating materials for various industrial cables (including electric wires) and rubber molding materials (for example, glass run channels for automobiles, weather strips, rubber hoses, wiper blade rubbers, gaskets and vibration-proof rubbers) have compression set. It is required to be small. The compression set required for these rubber products is desired to be small even at a high temperature of, for example, 100 ° C. or higher, considering the use environment and the like.
  • a crosslinked EP rubber obtained by vulcanizing (crosslinking) ethylene-propylene rubber (EP rubber) has been used for products used for applications requiring a small compression set.
  • the crosslinked EP rubber had to be vulcanized after the EP rubber was molded.
  • thermoplastic rubber cross-linked product refers to a product obtained by finely dispersing into a sea-island shape using polypropylene resin as the sea and dynamically cross-linked ethylene-propylene-diene rubber (EPDM) as an island.
  • EPDM dynamically cross-linked ethylene-propylene-diene rubber
  • the crosslinked thermoplastic rubber contains a polypropylene resin, and is not satisfactory in terms of high temperature characteristics, particularly heat resistance and compression set at high temperatures. Therefore, EP rubber is still used as a raw material for rubber products that are required to have low compression set at high temperatures as described above.
  • Patent Document 1 As a method for obtaining a rubber product made of EP rubber having a small compression set, for example, an injection molding method described in Patent Document 1 can be mentioned.
  • This method is a method of injection molding a rubber composition mainly composed of an ethylene-propylene rubber having a specific propylene content and Mooney viscosity (ML (1 + 4) 100 ° C.).
  • this injection molding method requires, for example, primary vulcanization for 1 to 10 minutes and secondary vulcanization for 30 minutes to 6 hours.
  • Patent Document 2 describes a method for producing a rubber product that simultaneously improves bloomability and compression set. According to Patent Document 2, this manufacturing method requires a heat history of 3 hours or more, preferably 6 hours or more, in order to improve compression set.
  • Patent Document 3 a rubber composition that can be produced by vulcanization in a short time has been proposed (see Patent Document 3), although the vulcanization process is not unnecessary.
  • the rubber composition described in Patent Document 3 contains 100 parts by weight of rubber and 30 to 150 parts by weight of metal hydroxide, and the rubber is ethylene propylene rubber 1 having an ethylene ratio of 60 to 64% and an ethylene ratio of 66.
  • a non-halogen flame retardant rubber composition in which ⁇ 70% ethylene propylene rubber 2 is mixed in a mass ratio of 70:30 to 30:70.
  • JP-A-8-66931 Japanese Patent Laid-Open No. 11-302415 JP 2012-241041 A
  • Patent Documents 1 to 3 all require a step of vulcanizing rubber (a vulcanization facility that can be heated to a temperature at which the rubber is vulcanized), which has a problem in productivity. .
  • An object of the present invention is to overcome the above-described conventional problems, and to provide a silane-crosslinked rubber molded article having a small high-temperature compression set and ozone resistance, and having an excellent appearance, and a method for producing the same.
  • the present invention also provides a silane crosslinkable rubber composition and a method for producing the same, which can produce the silane crosslinked rubber molded product having the above-mentioned characteristics with high productivity without requiring a vulcanization facility. Let it be an issue.
  • this invention makes it a subject to provide the silane crosslinked rubber molded article containing the silane crosslinked rubber molded object which has said outstanding characteristic.
  • the present inventors do not need a vulcanization facility for EP rubber when applying a specific silane crosslinking method to EP rubber with a reduced diene content.
  • the present inventors have found that a silane-crosslinked rubber molded product having a small high-temperature compression set, ozone resistance and an excellent appearance can be produced. Based on this finding, the present inventors have made further studies and have come up with the present invention.
  • the rubber silane cross-linking method refers to a silanol condensation catalyst after a hydrolyzable silane coupling agent having an unsaturated group is grafted to rubber in the presence of an organic peroxide to obtain a silane-grafted rubber.
  • the silane graft rubber is brought into contact with moisture to obtain a crosslinked rubber in which the silane graft rubber is crosslinked through a silane coupling agent.
  • a silane crosslinkable rubber obtained by grafting a silane coupling agent to a base rubber containing 61 to 100% by mass of an ethylene- ⁇ -olefin rubber having a diene content of 5% by mass or less, and 100 parts by mass of the base rubber
  • a silane crosslinkable rubber composition containing 0.3 to 400 parts by mass of an inorganic filler and 0.0001 to 0.5 parts by mass of a silanol condensation catalyst.
  • the silane crosslinkable rubber composition comprises 0.3 to 400 parts by mass of an inorganic filler, 1 to 15 parts by mass of a silane coupling agent, 0.1% by weight of an organic peroxide with respect to 100 parts by mass of the base rubber.
  • the silane crosslinking according to any one of [1] to [3], wherein the inorganic filler is at least one selected from the group consisting of metal hydrate, talc, clay, silica, and carbon black. Rubber composition.
  • step (1) includes the following step (a) and step (c).
  • Step (b) for preparing a silane masterbatch Step (c) for preparing a catalyst masterbatch by melt-mixing the remainder of the base rubber and the silanol condensation catalyst (c): the silane masterbatch and the silanol
  • step (1) 0.3 to 400 parts by mass of an inorganic filler with respect to 100 parts by mass of a base rubber containing 61 to 100% by mass of an ethylene- ⁇ -olefin rubber having a diene content of 5% by mass or less, and silane coupling
  • step (2) Step of obtaining the molded body by molding the silane crosslinkable rubber composition obtained in the step (1)
  • Step (3) Contacting the molded body obtained in the step (2) with water
  • the step (1) includes the following step (a) and step (c).
  • Step (b) for preparing a silane masterbatch Step (c) for preparing a catalyst masterbatch by melt-mixing the remainder of the base rubber and the silanol condensation catalyst (c): the silane masterbatch and the silanol
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • a silane-crosslinked rubber molded article having a small high-temperature compression set and ozone resistance and excellent in appearance and a method for producing the same.
  • a silane cross-linkable rubber composition that can produce a silane cross-linked rubber molded article having such excellent characteristics without vulcanization equipment and with high productivity, and a method for producing the same.
  • a silane cross-linked rubber molded article including the silane cross-linked rubber molded article having such excellent characteristics can be provided.
  • the silane crosslinkable rubber composition of the present invention includes a silane crosslinkable rubber obtained by grafting a silane coupling agent to a base rubber containing 61 to 100% by mass of an ethylene- ⁇ -olefin rubber having a diene content of 5% by mass or less, It contains 0.3 to 400 parts by mass of an inorganic filler and 0.0001 to 0.5 parts by mass of a silanol condensation catalyst with respect to 100 parts by mass of the base rubber.
  • This silane crosslinkable rubber composition is preferably based on 100 parts by weight of the base rubber, 0.3 to 400 parts by weight of an inorganic filler, 1 to 15 parts by weight of a silane coupling agent, and 0.01 to an organic peroxide.
  • silane crosslinkable rubber molded product of the present invention can be obtained by molding the silane cross-linkable rubber composition of the present invention and then bringing it into contact with water. Thereby, as described later, the silane coupling agent of the silane crosslinkable rubber contained in the silane crosslinkable rubber composition undergoes a crosslinking reaction to form a silane crosslinked rubber molded product.
  • the base rubber used in the present invention contains an ethylene- ⁇ olefin rubber having a diene content of 5% by mass or less as a rubber component having a site where the silane coupling agent can be grafted.
  • the base rubber may further contain a polypropylene resin.
  • the base rubber may further contain a rubber component other than the ethylene- ⁇ -olefin rubber and a resin component other than the polypropylene resin.
  • the rubber component other than the ethylene- ⁇ -olefin rubber is not particularly limited. For example, natural rubber (NR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylic rubber (ACM), silicone rubber (Q). Etc.
  • the resin component other than the polypropylene resin is not particularly limited, and examples thereof include high density polyethylene (HDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), and an ethylene copolymer.
  • the base rubber contains these rubber component and resin component, the contents of these rubber component and resin component are not particularly limited, and are appropriately determined.
  • the content of each rubber component and each resin component is appropriately determined so that the total amount of the rubber component and the resin component is 100% by mass, and is preferably selected from the following range.
  • the ethylene- ⁇ olefin rubber used in the present invention is an ethylene- ⁇ olefin rubber having a diene component (referred to as diene content) in the copolymer of 5% by mass or less. If the diene content is too large, sufficient ozone resistance may not be obtained. In the present invention, even when the diene content is as small as 5% by mass or less, the ethylene- ⁇ -olefin rubber can be crosslinked by silane crosslinking.
  • compression set is small even at high temperatures, excellent ozone resistance, and small over a wide temperature range from room temperature (use temperature) to high temperature.
  • Compression set (hereinafter sometimes referred to as excellent compression set) can be imparted to the silane-crosslinked rubber molded article. Moreover, the outstanding oil resistance can be provided.
  • the ethylene- ⁇ -olefin rubber is a rubber made of an ethylene- ⁇ -olefin copolymer, preferably a rubber made of a binary copolymer of ethylene and ⁇ -olefin, and a ternary of ethylene, ⁇ -olefin and diene. Examples thereof include rubber made of a copolymer.
  • the diene of the terpolymer may be a conjugated diene or a non-conjugated diene, and is preferably a non-conjugated diene.
  • examples of the terpolymer include a terpolymer of ethylene, ⁇ -olefin and conjugated diene, and a terpolymer of ethylene, ⁇ -olefin and non-conjugated diene.
  • Preferred are binary copolymers of ethylene and ⁇ -olefins and terpolymers of ethylene, ⁇ -olefins and non-conjugated dienes.
  • Examples of the conjugated diene include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and the like, and butadiene is preferable.
  • Non-conjugated dienes include, for example, dicyclopentadiene (DCPD), ethylidene norbornene (ENB), 1,4-hexadiene, and ethylidene norbornene is preferred.
  • DCPD dicyclopentadiene
  • ENB ethylidene norbornene
  • ethylidene norbornene is preferred.
  • Each component of a conjugated diene and a nonconjugated diene is used individually by 1 type, or can use 2 or more types together.
  • Preferred examples of the ⁇ olefin include ⁇ olefins having 3 to 12 carbon atoms.
  • the ⁇ -olefin is not particularly limited, and examples thereof include propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene and 1-dodecene.
  • Examples of the rubber made of a binary copolymer of ethylene and ⁇ -olefin include ethylene-propylene rubber, ethylene-butene rubber, and ethylene-octene rubber.
  • Examples of the rubber composed of a terpolymer of ethylene, ⁇ -olefin and diene include ethylene-propylene-diene rubber and ethylene-butene-diene rubber.
  • ethylene-propylene rubber, ethylene-butene rubber, ethylene-propylene-diene rubber and ethylene-butene-diene rubber are preferable, ethylene-propylene rubber and ethylene-propylene-diene rubber are more preferable, ethylene-propylene rubber or ethylene-propylene-ethylidene.
  • Norbornene rubber is particularly preferred.
  • the diene content of the ethylene- ⁇ olefin rubber is 5% by mass or less. When there is too much diene content, it cannot combine a small high temperature compression set, the outstanding external appearance, and ozone resistance. Moreover, it may be inferior to oil resistance.
  • the diene content is preferably 0 to 5% by mass, more preferably 0 to 4% by mass, and still more preferably 0 to 3% by mass in terms of ozone resistance and formability based on reactivity.
  • the diene content is particularly preferably 2% by mass or less from the viewpoint that an excellent appearance can be maintained even when the extruder is stopped and restarted as described later. On the other hand, in terms of high temperature compression set, 2 to 5% by mass is preferable.
  • the diene content can be measured by, for example, infrared absorption spectroscopy (FT-IR), proton NMR ( 1 H-NMR) method or the like.
  • the ethylene- ⁇ -olefin rubber has an ethylene component content (referred to as ethylene content) in the copolymer of preferably 45 to 80% by mass, more preferably 50 to 70% by mass, and even more preferably 50 to 65% by mass.
  • ethylene content is a value measured according to the method described in ASTM D3900.
  • the Mooney viscosity of the ethylene- ⁇ -olefin rubber is preferably 20 to 70 (ML (1 + 4) 125 ° C.), more preferably 25 to 65 (ML (1 + 4) 125 ° C.) in terms of tensile strength and moldability. 30 to 60 (ML (1 + 4) 125 ° C.) is more preferable.
  • Mooney viscosity is measured based on a measurement method defined in JIS K 6300-1: 2013. The test is performed as follows. As a test piece to be used, a set of two test samples having a diameter of about 50 mm and a thickness of about 6 mm is prepared by a roll-through method described in JIS K 6300-1 5.3.1.
  • a disk-shaped metal L-shaped rotor is mounted in a cylindrical hollow portion (cavity) composed of two dies, and the rubber test piece obtained therein is filled. Thereafter, the rotor is rotated under constant conditions of a preheating time of 1 minute, a rotor rotation time of 4 minutes, and a test temperature of 125 ° C., and the torque applied to the rotor by the rubber resistance at this time is measured in Mooney units as the Mooney viscosity of the rubber.
  • the content of the ethylene- ⁇ -olefin rubber is 61 to 100 parts by mass in 100 parts by mass of the base rubber.
  • the content of the ethylene- ⁇ -olefin rubber is 61 parts by mass or more, the above excellent characteristics can be imparted to the molded body.
  • the lower limit of the ethylene- ⁇ -olefin rubber content is preferably 70 parts by mass, more preferably 75 parts by mass, and even more preferably 80 parts by mass.
  • the base rubber contains a polypropylene resin
  • the content of the ethylene- ⁇ -olefin rubber is preferably 70 to 99 parts by mass in 100 parts by mass of the base rubber in terms of both ozone resistance and compression set. 95 parts by mass is more preferable, and 80 to 90 parts by mass is even more preferable.
  • One type of ethylene- ⁇ -olefin rubber may be used alone, or two or more types may be used in combination. When two or more types are used in combination, it is preferable that the diene content and the like satisfy each of the ethylene- ⁇ olefin rubbers. However, in the present invention, a blend of two or more types of ethylene- ⁇ olefin rubbers is satisfied as a whole. It may be.
  • Polypropylene resin A polypropylene resin (PP) will not be specifically limited if it is resin which consists of a polymer which contains a propylene component as a structural component.
  • Polypropylene resins include propylene homopolymer (h-PP), random polypropylene (r-PP) which is a copolymer with (preferably a small amount) ethylene and / or 1-butene, ethylene rubber, etc.
  • the melt flow rate (MFR, 230 ° C., 21.18N) of the polypropylene resin is not particularly limited, but is preferably 0.5 to 50 g / 10 minutes, particularly preferably 10 to 30 g / 10 minutes.
  • MFR 190 ° C., 21.18 N
  • Method A manual cut-off method
  • the base rubber contains a polypropylene resin
  • the content of the polypropylene resin is not particularly limited, but is preferably 1 to 30 parts by mass in 100 parts by mass of the base rubber, and 5 to 25 parts by mass. Is more preferably 10 to 20 parts by mass.
  • One type of polypropylene resin may be used alone, or two or more types may be used in combination. When using 2 or more types together, it is preferable that MFR satisfy
  • the inorganic filler used in the present invention can be used without particular limitation as long as it has a site that can be chemically bonded to the reaction site of the silane coupling agent by hydrogen bonding or covalent bonding.
  • a site (group) that can be chemically bonded to the reaction site of the silane coupling agent an OH group (OH group such as hydroxyl group, water-containing or water molecule of crystal water, carboxy group, etc.), amino group, SH group Etc.
  • examples of such inorganic fillers include metal hydrates such as compounds having hydrated water, hydroxyl groups or crystal water.
  • the metal hydrate include metal hydroxides such as aluminum hydroxide, magnesium hydroxide or aluminum oxide hydrate, and further calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, and oxidation.
  • inorganic acid salts or inorganic oxides such as hydrated aluminum silicate, hydrated magnesium silicate, basic magnesium carbonate, hydrotalcite, etc. with hydrated water Thing etc. are mentioned.
  • examples of the inorganic filler include boron nitride, silica (crystalline silica, amorphous silica, etc.), carbon black, clay, zinc oxide, tin oxide, titanium oxide, molybdenum oxide, three Antimony oxide, silicone compound, quartz, talc, zinc borate, white carbon, zinc borate, hydroxy hydroxystannate, zinc stannate.
  • the inorganic filler is preferably at least one selected from the group consisting of metal hydrate, talc, clay, silica, and carbon black.
  • An inorganic filler may be used individually by 1 type, and may use 2 or more types together.
  • the average primary particle size of the inorganic filler is preferably 0.001 to 10 ⁇ m, more preferably 0.005 to 5 ⁇ m, further preferably 0.01 to 2 ⁇ m, and particularly preferably 0.015 to 1 ⁇ m.
  • the average primary particle size is determined by an optical particle size analyzer such as a laser diffraction / scattering particle size distribution measuring device after being dispersed with alcohol or water.
  • a surface-treated inorganic filler surface-treated with a silane coupling agent or the like can be used as the inorganic filler.
  • the silane coupling agent surface treatment inorganic filler include Kisuma 5L and Kisuma 5P (both trade names, magnesium hydroxide, manufactured by Kyowa Chemical Co., Ltd.) and the like.
  • the surface treatment amount of the inorganic filler with the silane coupling agent is not particularly limited, but is, for example, 2% by mass or less.
  • the silane coupling agent used in the present invention is a chemical bond between a grafting reaction site (group or atom) that can be grafted to the base rubber in the presence of radicals generated by the decomposition of an organic peroxide and an inorganic filler. It is sufficient to have at least a reactive site (including a site generated by hydrolysis, such as a silyl ester group) that can be reacted with a reactive site and capable of silanol condensation.
  • a hydrolyzable silane coupling agent having a hydrolyzable group at the terminal is preferable.
  • the silane coupling agent has an amino group, a glycidyl group or an ethylenically unsaturated group-containing group and a hydrolyzable group-containing group at the terminal, and more preferably ethylene at the terminal. It is a silane coupling agent having a group containing a polymerizable unsaturated group and a group containing a hydrolyzable group.
  • the group containing an ethylenically unsaturated group is not particularly limited, and examples thereof include a vinyl group, an allyl group, a (meth) acryloyloxy group, a (meth) acryloyloxyalkylene group, and a p-styryl group. Moreover, you may use together these silane coupling agents and the silane coupling agent which has another terminal group.
  • silane coupling agent for example, a compound represented by the following general formula (1) can be used.
  • R a11 is a group containing an ethylenically unsaturated group
  • R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 .
  • Y 11 , Y 12 and Y 13 are hydrolyzable organic groups. Y 11 , Y 12 and Y 13 may be the same as or different from each other.
  • R a11 of the silane coupling agent represented by the general formula (1) is preferably a group containing an ethylenically unsaturated group, and the group containing an ethylenically unsaturated group is as described above, preferably vinyl. It is a group.
  • R b11 is an aliphatic hydrocarbon group, a hydrogen atom, or Y 13 described later, and the aliphatic hydrocarbon group is a monovalent aliphatic hydrocarbon group having 1 to 8 carbon atoms excluding the aliphatic unsaturated hydrocarbon group. Is mentioned. R b11 is preferably Y 13 described later.
  • Y 11 , Y 12 and Y 13 are hydrolyzable organic groups such as an alkoxy group having 1 to 6 carbon atoms, an aryloxy group having 6 to 10 carbon atoms, and an acyloxy group having 1 to 4 carbon atoms. And an alkoxy group is preferred.
  • Specific examples of the hydrolyzable organic group include methoxy, ethoxy, butoxy, acyloxy and the like. Among these, from the viewpoint of the reactivity of the silane coupling agent, methoxy or ethoxy is more preferable, and methoxy is particularly preferable.
  • the silane coupling agent is preferably a silane coupling agent having a high hydrolysis rate, more preferably R b11 is Y 13 and Y 11 , Y 12 and Y 13 are the same as each other.
  • a hydrolyzable silane coupling agent in which at least one of Y 11 , Y 12 and Y 13 is a methoxy group more preferably R b11 is Y 13 and Y 11 , Y 12 and Y 13 are Silane coupling agents that are the same as each other.
  • Particularly preferred are hydrolyzable silane coupling agents, all of which are methoxy groups.
  • silane coupling agent examples include vinyltrimethoxysilane, vinyltriethoxysilane, vinyltributoxysilane, vinyldimethoxyethoxysilane, vinyldimethoxybutoxysilane, vinyldiethoxybutoxysilane, allyltrimethoxysilane, allyltrimethoxysilane.
  • vinyl silanes such as ethoxysilane and vinyltriacetoxysilane
  • (meth) acryloxysilanes such as methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, and methacryloxypropylmethyldimethoxysilane.
  • Those having a glycidyl group at the end include 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane and the like.
  • silane coupling agents a silane coupling agent having a vinyl group and an alkoxy group at the terminal is more preferable, and vinyltrimethoxysilane and vinyltriethoxysilane are particularly preferable.
  • the silane coupling agent may be used alone or in combination of two or more. Further, it may be used as it is or diluted with a solvent or the like.
  • Organic peroxides generate radicals by thermal decomposition at least, and graft reaction by radical reaction (including hydrogen radical abstraction reaction from the rubber) between the grafting reaction site of the silane coupling agent and the base rubber as a catalyst. It works to give rise to.
  • R 1 to R 6 each independently represents an alkyl group, an aryl group, or an acyl group. Among R 1 to R 6 of each compound, those in which all are alkyl groups or those in which any one is an alkyl group and the remaining is an acyl group are preferable.
  • organic peroxides examples include dicumyl peroxide (DCP), di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, , 5-Dimethyl-2,5-di (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3 , 3,5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butyl peroxide Oxybenzoate, tert-butyl peroxyisopropyl carbonate, dia Chill peroxide, lauroyl peroxide,
  • dicumyl peroxide 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5-dimethyl-2 are preferable in terms of odor, colorability, and scorch stability.
  • 5-Di (tert-butylperoxy) hexyne-3 is preferred.
  • the decomposition temperature of the organic peroxide is preferably from 130 to 195 ° C., particularly preferably from 150 to 185 ° C.
  • the decomposition temperature of an organic peroxide means that when an organic peroxide having a single composition is heated, it is itself half decomposed into two or more compounds at a certain temperature or temperature range for 1 minute. It means the temperature at which the reaction takes place (1 minute half-life temperature). Specifically, it refers to the temperature at which heat absorption or heat generation starts when heated from room temperature in a nitrogen gas atmosphere at a rate of temperature increase of 5 ° C./min by thermal analysis such as DSC method.
  • the silanol condensation catalyst functions to cause a condensation reaction of the silane coupling agent grafted on the base rubber in the presence of moisture. Based on the action of the silanol condensation catalyst, the rubbers are cross-linked through a silane coupling agent. As a result, it has excellent tensile strength and small high-temperature compression set without using vulcanization equipment, and can be molded at high temperature or high speed if necessary, and in a shorter time than the conventional production method of crosslinked EP rubber. A molded body is obtained.
  • silanol condensation catalyst used in the present invention examples include organotin compounds, metal soaps, platinum compounds and the like.
  • Common silanol condensation catalysts include, for example, dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctate, dibutyltin diacetate, zinc stearate, lead stearate, barium stearate, calcium stearate, sodium stearate, lead naphthenate, Lead sulfate, zinc sulfate, organic platinum compounds and the like are used.
  • organotin compounds such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctiate, and dibutyltin diacetate.
  • the silanol condensation catalyst is used by mixing with rubber as desired.
  • rubber also referred to as carrier rubber
  • carrier rubber is not particularly limited, and each rubber component or each resin component described as the base rubber can be used.
  • the silane cross-linked rubber molded product and the silane cross-linkable rubber composition may contain various additives generally used in the rubber product as long as the effects of the present invention are not impaired.
  • additives include crosslinking aids, antioxidants, lubricants, metal deactivators, colorants, and fillers (including flame retardant (auxiliary) agents) other than the above inorganic fillers. It is done.
  • silane crosslinkable rubber composition and the method for producing the silane crosslinkable rubber molded product of the present invention will be specifically described.
  • Each of the “method for producing a silane-crosslinked rubber molded product” and the “method for producing a silane-crosslinkable rubber composition” of the present invention performs at least the following step (1). Therefore, the “method for producing a silane-crosslinked rubber molded product” of the present invention and the “method for producing a silane-crosslinkable rubber composition” of the present invention will be described together below (in the description common to both production methods, the present invention May be referred to as a manufacturing method.)
  • Step (1) 0.3 to 400 parts by weight of an inorganic filler, 1 to 15.0 parts by weight of a silane coupling agent, and 0.01 to 0.6 parts by weight of an organic peroxide with respect to 100 parts by weight of the base rubber
  • Step (2) Silane crosslinkability obtained in Step (1) Step of molding a rubber composition to obtain a molded body
  • Step (3) Step of obtaining a silane-crosslinked rubber molded body by bringing the molded body obtained in step (2) into contact with water
  • Step (1) melts and mixes all of the base rubber in step (a), it has steps (a) and (c), and melts and mixes part of the base rubber in the following step (a) When doing, it has a process (a), a process (b), and a process (c).
  • the “base rubber” is a base rubber for forming a silane cross-linked rubber molded article or a silane cross-linkable rubber composition. Therefore, in the production method of the present invention, it is only necessary that the silane crosslinkable rubber composition obtained in step (1) contains 100 parts by mass of the base rubber.
  • the silane crosslinkable rubber composition obtained in step (1) contains 100 parts by mass of the base rubber.
  • the step (a) “a mode in which the total amount (100 parts by mass) of the base rubber is blended” and “a mode in which a part of the base rubber is blended” are included.
  • the remainder of the base rubber may be mixed as a carrier rubber in the step (b).
  • “part of the base rubber” is a rubber used in the step (a) of the base rubber, and a part of the base rubber itself (having the same composition as the base rubber) constitutes the base rubber.
  • the “remaining part of the base rubber” is the remaining rubber excluding a part of the base rubber used in the step (a), specifically, the remaining part of the base rubber itself (the same composition as the base rubber). The remainder of the components constituting the base rubber and the remaining components constituting the base rubber.
  • the content of 100 parts by weight of the base rubber in the step (1) is the total amount of each component mixed in the step (a) and the step (b).
  • the base rubber is preferably compounded in the step (a) in an amount of preferably 80 to 99 parts by mass, more preferably 94 to 98 parts by mass. In b), preferably 1 to 20 parts by mass, more preferably 2 to 6 parts by mass are blended.
  • step (1) the content of the ethylene- ⁇ -olefin rubber and the polypropylene resin in the base rubber is as described above.
  • the content of the organic peroxide is 0.01 to 0.6 parts by weight, preferably 0.1 to 0.5 parts by weight, based on 100 parts by weight of the base rubber.
  • the content of the organic peroxide is less than 0.01 parts by mass, the grafting reaction does not proceed during melt mixing, and the silane coupling agents condense with each other, giving small and excellent compression set and ozone resistance. There are things that cannot be done.
  • the amount exceeds 0.6 parts by mass many of the rubbers are directly cross-linked by side reactions to form bumps, resulting in poor appearance.
  • the grafting reaction can be carried out in an appropriate range, and the above characteristics are excellent without forming gelled blisters.
  • a composition that can be applied to the silane-crosslinked rubber molded product can be obtained.
  • the content of the inorganic filler is 0.3 to 400 parts by mass, preferably 1 to 200 parts by mass, and more preferably 3 to 100 parts by mass with respect to 100 parts by mass of the base rubber.
  • the silane coupling agent is likely to volatilize, and the grafting reaction and crosslinking reaction of the silane coupling agent may not proceed.
  • the amount exceeds 400 parts by mass the interaction between the rubbers becomes small, and the original properties of the rubber are impaired. Therefore, in addition to not being able to obtain excellent compression set and even high tensile strength, sufficient ozone resistance may not be obtained.
  • the burden on the motor of the extruder is increased, and the maximum linear drawing speed during extrusion may be reduced.
  • the content of the silane coupling agent is 1 to 15 parts by weight, preferably 3 to 15 parts by weight, more preferably more than 4 parts by weight and 15 parts by weight or less with respect to 100 parts by weight of the base rubber. More preferably, it is more than 4 parts by mass and 10 parts by mass or less.
  • the content of the silane coupling agent is less than 1 part by mass, the crosslinking reaction does not proceed sufficiently, and an excellent compression set may not be obtained.
  • it exceeds 15 parts by mass the silane coupling agent cannot be completely adsorbed on the surface of the inorganic filler, and the silane coupling agent volatilizes during kneading, which is not economical.
  • the silane coupling agent that does not adsorb may condense, and the molded body may be fuzzy or burnt to deteriorate the appearance.
  • silane coupling agent When the content of the silane coupling agent is 3 to 15 parts by mass, particularly more than 4 parts by mass and 15 parts by mass or less, both the crosslinking reaction between the base rubbers and the condensation reaction between the silane coupling agents are performed. A silane-crosslinked rubber molded article having a beautiful appearance can be produced.
  • the reaction by the decomposition of the organic peroxide causes the cross-linking of the base rubbers when the content of the silane coupling agent exceeds 4 parts by mass.
  • the grafting reaction between the silane coupling agent and the base rubber and the condensation reaction between the silane coupling agents, which are faster than the reaction rate, are dominant. Therefore, the cross-linking reaction between the rubbers which causes rough appearance and bumps is less likely to occur.
  • the cross-linking reaction between the base rubbers can be effectively suppressed according to the content of the silane coupling agent.
  • molding becomes favorable.
  • the said defect by the crosslinking reaction of base rubbers decreases, even if it restarts after stopping an extruder, it becomes difficult to generate
  • the cross-linking reaction between the base rubbers can be suppressed, and a silane cross-linked rubber molded article having a good appearance can be produced.
  • the condensation reaction between silane coupling agents also has a high reaction rate. However, since many silane coupling agents are fixed by being bonded or adsorbed to the inorganic filler, the condensation reaction between the silane coupling agents bonded or adsorbed to the inorganic filler hardly occurs.
  • the condensation reaction between the free silane coupling agents may occur without binding or adsorbing to the inorganic filler, but in the present invention, most of the silane coupling agent is bonded or adsorbed to the inorganic filler, It does not lead to the generation of gel-like spots. As described above, it is considered that a silane-crosslinked rubber molded article having a clean appearance can be produced by using a specific amount of the silane coupling agent.
  • the content of the silanol condensation catalyst is 0.0001 to 0.5 parts by mass, preferably 0.001 to 0.3 parts by mass with respect to 100 parts by mass of the base rubber.
  • the content of the silanol condensation catalyst is 0.0001 to 0.5 parts by mass, the crosslinking reaction by the condensation reaction of the silane coupling agent tends to proceed almost uniformly, and the appearance, tensile strength and compression permanentness of the silane crosslinked rubber molded product Distortion is excellent and productivity is improved. That is, if the content of the silanol condensation catalyst is too small, it may not be possible to obtain excellent compression set. On the other hand, if the amount is too large, the crosslinking reaction due to the condensation reaction of the silane coupling agent becomes uneven, and the appearance and productivity may be inferior.
  • step (a) all or a part of the base rubber, the inorganic filler, the silane coupling agent, and the organic peroxide are charged into the mixer at the above contents, and the decomposition temperature of the organic peroxide
  • a silane master batch is prepared by melting and kneading while heating to the above temperature.
  • the temperature at which the above components are melt-mixed is equal to or higher than the decomposition temperature of the organic peroxide, preferably the decomposition temperature of the organic peroxide + (1 to 80) ° C.
  • the temperature of the melt mixing is preferably 80 to 250 ° C, more preferably 100 to 240 ° C.
  • This mixing temperature is preferably set after the base rubber is melted. When the mixing temperature is within the above range, the above components are melted, the organic peroxide is decomposed, and the necessary grafting reaction proceeds sufficiently in step (a). Other conditions can be set as appropriate.
  • the mixing time may be a time during which the grafting reaction of the silane coupling agent to the polyolefin resin sufficiently proceeds at the melting temperature, and is preferably 5 minutes to 1 hour, for example.
  • the mixing method is not particularly limited as long as it is a method usually used for rubber, plastic and the like.
  • the mixing device is appropriately selected according to, for example, the content of the inorganic filler.
  • a single screw extruder, a twin screw extruder, a roll, a Banbury mixer, various kneaders, or the like is used as the kneading apparatus.
  • a closed mixer such as a Banbury mixer or various kneaders is preferable in terms of rubber dispersibility and crosslinking reaction stability.
  • the inorganic filler is mixed in excess of 100 parts by mass with respect to 100 parts by mass of the base rubber, it is preferable to melt and mix with a continuous kneader, a pressure kneader, or a Banbury mixer.
  • “all or part of the base rubber, the organic peroxide, the inorganic filler, and the silane coupling agent are melt-mixed” does not specify the order of mixing at the time of melt-mixing. It means that they may be mixed in order. That is, the mixing order in the step (a) is not particularly limited. Further, the mixing method of the base rubber is not particularly limited. For example, a base rubber prepared and mixed in advance may be used, and each rubber component or resin component may be mixed separately.
  • each of the above components can be melt-mixed at a time, but preferably, the silane coupling agent is not mixed with the silane masterbatch alone, but is mixed in a premixed state with an inorganic filler. Can also be done.
  • the premixed silane coupling agent is present so as to surround the surface of the inorganic filler, and part or all of the silane coupling agent is adsorbed or bonded to the inorganic filler. Thereby, volatilization of the silane coupling agent can be reduced during subsequent melt mixing. Moreover, it is possible to prevent the silane coupling agent that is not adsorbed or bonded to the inorganic filler from condensing and becoming difficult to melt and mix.
  • the organic peroxide, the inorganic filler, and the silane coupling agent are preferably used at a temperature lower than the decomposition temperature of the organic peroxide, preferably room temperature (25 ° C.), preferably about 1 to 10 minutes. And a method of melt-mixing the obtained mixture and the base rubber after premixing (dispersing).
  • the method of mixing the inorganic filler, the silane coupling agent and the organic peroxide is not particularly limited, and the organic peroxide may be mixed with the inorganic filler or the like, or the inorganic filler and the silane coupling agent. May be mixed in any of the mixing stages.
  • the organic peroxide may be mixed with the inorganic filler after being mixed with the silane coupling agent, or may be separately mixed with the inorganic filler separately from the silane coupling agent. In the present invention, it is better to mix the organic peroxide and the silane coupling agent substantially together.
  • only the silane coupling agent may be mixed with the inorganic filler, and then the organic peroxide may be mixed.
  • an inorganic filler previously mixed with a silane coupling agent can be used.
  • the organic peroxide may be mixed with other components or may be a simple substance.
  • a rubber component or a resin component may be present as long as the temperature below the decomposition temperature is maintained.
  • Examples of the mixing method of the inorganic filler, the silane coupling agent, and the organic peroxide include mixing methods such as wet processing and dry processing. Specifically, a wet process in which a silane coupling agent is added in a state where an inorganic filler is dispersed in a solvent such as alcohol or water, a dry process in which both are added by heating or non-heating, and both are mentioned.
  • dry processing is preferred in which a silane coupling agent is added to an inorganic filler, preferably a dried inorganic filler, with heating or non-heating and mixed. This premixing is preferably performed with a mixer-type kneader such as a Banbury mixer or a kneader.
  • the premixing may be performed using a mixer such as a Henschel mixer, or may be performed manually.
  • a mixer such as a Henschel mixer
  • wet mixing the bonding force between the silane coupling agent and the inorganic filler becomes strong, so that the volatilization of the silane coupling agent can be effectively suppressed, but the grafting reaction to the base rubber may be difficult to proceed.
  • dry mixing the binding force between the inorganic filler and the silane coupling agent becomes relatively weak, so that the grafting reaction efficiently proceeds and the silanol condensation reaction easily proceeds.
  • the mixture obtained and the whole or a part of the base rubber are then melt-kneaded while being heated above the decomposition temperature of the organic peroxide.
  • step (a) it is preferable to knead the above-mentioned components without substantially mixing the silanol condensation catalyst.
  • the condensation reaction of a silane coupling agent can be suppressed, it is easy to melt and mix, and a desired shape can be obtained during extrusion molding.
  • substantially not mixed does not exclude the unavoidably existing silanol condensation catalyst, and is present to such an extent that the above-mentioned problem due to silanol condensation of the silane coupling agent does not occur. Means good.
  • the silanol condensation catalyst may be present as long as it is 0.01 part by mass or less with respect to 100 parts by mass of the base rubber.
  • the above additives may be mixed in any step or in the components, but are preferably mixed in carrier rubber.
  • an antioxidant is added in a large amount (for example, 1 part by mass or more) to the silane master batch, crosslinking inhibition occurs due to a radical scavenging effect and the like, and as a result, the grafting reaction may not proceed sufficiently.
  • the step (a) is performed to prepare a silane master batch (also referred to as silane MB).
  • this silane MB is preferably used together with a silanol condensation catalyst or a catalyst master batch described later in the production of the molten mixture (silane crosslinkable rubber composition) prepared in step (1).
  • Silane MB contains a silane crosslinkable rubber (silane graft rubber) in which a silane coupling agent is grafted onto a base rubber to such an extent that it can be molded by the step (2) described later.
  • Step (b) is prepared. Therefore, when all the base rubber is melt-mixed in the step (a), the step (b) may not be performed, and another resin and a silanol condensation catalyst may be mixed.
  • the mixing ratio of the rubber as the carrier rubber and the silanol condensation catalyst is not particularly limited, but is preferably set so as to satisfy the above content in the step (1).
  • the mixing may be a method capable of uniformly mixing, and includes mixing (melting mixing) performed under melting of rubber.
  • the melt mixing can be performed in the same manner as the melt mixing in the step (a).
  • the mixing temperature can be 80 to 250 ° C., more preferably 100 to 240 ° C. Other conditions such as the mixing time can be set as appropriate.
  • step (b) other rubber components or resin components can be used as the carrier rubber instead of or in addition to the remainder of the base rubber. That is, in the step (b), the remainder of the base rubber when a part of the base rubber is melt-mixed in the step (a), or a rubber component or a resin component other than the base rubber used in the step (a), and silanol
  • the catalyst MB may be prepared by melt mixing with a condensation catalyst.
  • the carrier rubber is another rubber component or resin component, the content of the other rubber component or resin component can be promoted quickly in the step (a), and in addition, it is less likely to cause blistering during molding. Is preferably 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, and even more preferably 4 to 20 parts by weight with respect to 100 parts by weight of the base rubber.
  • an inorganic filler may be used in the step (b).
  • content of an inorganic filler is not specifically limited, 350 mass parts or less are preferable with respect to 100 mass parts of carrier rubber.
  • the silanol condensation catalyst is difficult to disperse and the crosslinking reaction is difficult to proceed.
  • the catalyst MB prepared in this way is a mixture of a silanol condensation catalyst, a carrier rubber, and an inorganic filler that is optionally added.
  • the catalyst MB is used as a master batch set together with the silane MB in the production of the silane crosslinkable rubber composition prepared in the step (1).
  • the step (c) is performed in which the silane MB and the silanol condensation catalyst or the catalyst MB are mixed to obtain a molten mixture.
  • the mixing method may be any mixing method as long as a uniform molten mixture can be obtained as described above.
  • Mixing is basically the same as the melt mixing in step (a). Mixing is carried out at a temperature at which the base rubber and other resin components melt.
  • the mixing temperature is appropriately selected according to the melting temperature of the base rubber or carrier rubber.
  • the mixing temperature is, for example, preferably 100 to 250 ° C., more preferably 120 to 220 ° C. Other conditions such as mixing (kneading) time can be set as appropriate.
  • step (c) in order to avoid the silanol condensation reaction, it is preferable that the silane MB and the silanol condensation catalyst are not mixed and kept at a high temperature for a long time.
  • This step (c) may be any step as long as the silane MB and the silanol condensation catalyst are mixed to obtain a molten mixture, and the silanol condensation catalyst and the catalyst MB containing the carrier rubber and the silane MB are melt mixed. Is preferred.
  • steps (a) to (c) can be performed simultaneously or sequentially.
  • This silane crosslinkable rubber composition includes a silane crosslinkable rubber obtained by grafting a silane coupling agent to a base rubber containing 61 to 100% by mass of an ethylene- ⁇ -olefin rubber having a diene content of 5% by mass or less, and a base rubber. It contains 0.3 to 400 parts by mass of an inorganic filler and 0.0001 to 0.5 parts by mass of a silanol condensation catalyst with respect to 100 parts by mass.
  • the silane crosslinkable rubber contained in the silane crosslinkable rubber composition is a silane crosslinkable rubber in which a silane coupling agent is grafted onto a base rubber.
  • the reaction site of the silane coupling agent may be bonded or adsorbed to the inorganic filler, but is not silanol condensed as described later. Therefore, the silane crosslinkable rubber is a crosslinkable rubber in which a silane coupling agent bonded or adsorbed to an inorganic filler is grafted to the base rubber, and a crosslink in which a silane coupling agent not bonded to or adsorbed to the inorganic filler is grafted to the base rubber. At least.
  • the silane crosslinkable rubber may have a silane coupling agent to which an inorganic filler is bonded or adsorbed and a silane coupling agent to which an inorganic filler is not bonded or adsorbed. Furthermore, a silane coupling agent and an unreacted rubber component may be included.
  • the silane crosslinkable rubber is composed of 100 parts by mass of a base rubber containing 61 to 100% by mass of an ethylene- ⁇ -olefin rubber having a diene content of 5% by mass or less, and 1 to 15 parts by mass of a silane coupling agent is 70 to 100% by mass.
  • a rubber formed by a grafting reaction at a gphratation rate is preferable.
  • the reaction rate of the silane coupling agent when the silane coupling agent is grafted to the base rubber (also referred to as grafting rate) is not particularly limited as long as the effect of the present invention is not impaired. In the present invention, it is difficult to uniquely determine the grafting rate.
  • the grafting rate according to the measurement method described in the examples described later is 70 to 100% by mass (the silane grafting amount is 0.7 to 15 mass parts), preferably 75 to 100 mass% (silane graft amount is 0.75 to 15 mass parts), more preferably 80 to 100 mass% (silane graft amount is 0.8 to 15 mass parts). More preferably, it is part by mass).
  • the grafting ratio is 70 to 100% by mass, the base rubber is sufficiently cross-linked, which is suitable for imparting the above-described excellent characteristics.
  • the grafting rate can be set within a predetermined range depending on the type or content of the organic peroxide, the type of silane coupling agent, the use of a closed mixer, and the like.
  • the silane crosslinkable rubber composition obtained by the step (1) is an uncrosslinked product in which the silane coupling agent is not silanol condensed.
  • the silane coupling agent is not silanol condensed.
  • partial cross-linking partial cross-linking
  • the resulting silane cross-linkable rubber composition can be molded at least in step (2). Is maintained (uncrosslinked or partially crosslinked).
  • step (2) and step (3) are performed.
  • the step (2) of molding the obtained molten mixture to obtain a molded body is performed.
  • This process (2) should just be able to shape
  • the molding method include extrusion molding using an extruder, injection molding using an injection molding machine, press molding using a press molding machine, and molding using other molding machines. Extrusion is preferred when the product of the invention is a wire or fiber optic cable.
  • the molding speed (extrusion speed) of the silane crosslinkable rubber composition of the present invention is not particularly limited, and can be set to 1 to 100 m / min, for example, at a linear speed. Moreover, extrusion molding can also be performed at high temperature. When the molding temperature is set to a high temperature, extrusion molding at the above high extrusion speed becomes easy. In particular, the production method of the present invention can realize an excellent appearance. When the molding temperature is set to a high temperature, it can be set to, for example, 150 ° C. or higher, and preferably 180 to 250 ° C.
  • a process (2) can be performed simultaneously with a process (c) or continuously. That is, as one embodiment of the melt mixing in the step (c), a melt molding material such as silane MB, silanol condensation catalyst or catalyst MB is melt-mixed at the time of melt molding, for example, at the time of extrusion molding, or just before that.
  • a melt molding material such as silane MB, silanol condensation catalyst or catalyst MB is melt-mixed at the time of melt molding, for example, at the time of extrusion molding, or just before that.
  • pellets such as dry blends may be mixed together at room temperature or high temperature and introduced into a molding machine (melt mixing), or mixed and then melt mixed, pelletized again, and then introduced into the molding machine. Also good.
  • a series of steps in which a molding material of silane MB and silanol condensation catalyst or catalyst MB is melt-kneaded in a coating apparatus, and then extrusion coated on the outer peripheral surface of a conductor or the like and molded into a desired shape. Can be adopted.
  • a molded body of the silane crosslinkable rubber composition is obtained.
  • this molded product is partially crosslinked, but is in a partially crosslinked state that retains the moldability that can be molded in the step (2). Therefore, the silane crosslinked rubber molded product of the present invention is formed into a molded product that has been crosslinked or finally crosslinked by performing the step (3).
  • a step of bringing the molded product obtained in the step (2) into contact with water is performed.
  • the reaction sites of the silane coupling agent are condensed to cause a crosslinking reaction.
  • the reaction site is hydrolyzed to become silanol, and the hydroxyl group of silanol is condensed with the silanol condensation catalyst present in the molded body, thereby causing a crosslinking reaction.
  • a silane-crosslinked rubber molded product in which the silane coupling agent is crosslinked by silanol condensation can be obtained.
  • the process itself in this step (3) can be performed by a normal method.
  • Condensation between silane coupling agents proceeds only by leaving at room temperature. Therefore, in the step (3), it is not necessary to positively contact the molded body with water.
  • the molded body can be positively brought into contact with moisture.
  • a method of positively contacting water such as immersion in warm water, charging into a wet heat tank, exposure to high-temperature steam, and the like. In this case, pressure may be applied to allow moisture to penetrate inside.
  • Such a technique is effective in the case of an electric wire having a large coating thickness or a molded body having a large volume.
  • this silane cross-linked rubber molded article contains a cross-linked rubber obtained by cross-linking a silane cross-linkable rubber through a silane coupling agent.
  • this silane crosslinked rubber molding contains a silane crosslinked rubber and an inorganic filler.
  • the inorganic filler may be bonded to the silane coupling agent of the silane crosslinked rubber.
  • the silane cross-linked rubber includes a cross-linked rubber in which a plurality of cross-linked rubbers are bonded or adsorbed to an inorganic filler by a silane coupling agent, and are bonded (cross-linked) through the inorganic filler and the silane coupling agent.
  • the reaction site of the silane coupling agent hydrolyzes and undergoes silanol condensation reaction with each other, thereby containing at least a crosslinked rubber crosslinked via the silane coupling agent.
  • the bond (crosslinking) via the inorganic filler and the silane coupling agent and the crosslinking via the silane coupling agent may be mixed.
  • a silane coupling agent and an unreacted rubber component and / or a non-crosslinked silane crosslinkable rubber may be included.
  • the reason for grafting in the production method of the present invention is not yet clear, but is considered as follows. That is, when the base rubber is heated and kneaded at a temperature higher than the decomposition temperature of the organic peroxide together with the inorganic filler and the silane coupling agent in the presence of the organic peroxide, the organic peroxide is decomposed to generate radicals. On the other hand, grafting of the silane coupling agent occurs. In addition, due to the heating in the above melt mixing, a chemical bond forming reaction is caused in part by a covalent bond between a silane coupling agent and a group such as a hydroxyl group on the surface of the inorganic filler.
  • the final cross-linking reaction may be performed in step (3), and if a specific amount of the silane coupling agent is blended with the base rubber as described above, extrusion processability (moldability) at the time of molding is impaired. It becomes possible to mix
  • a base rubber containing ethylene- ⁇ -olefin rubber having a diene content in the above range at the above content is mixed, molded and crosslinked by the above silane crosslinking method. Accordingly, it is possible to produce a silane-crosslinked rubber molded article having excellent high-temperature compression set, ozone resistance, and excellent appearance.
  • the method for producing a silane-crosslinked rubber molded body of the present invention forms and cross-links the base rubber by the silane cross-linking method described above, so that no vulcanization facility is required for performing the cross-linking reaction, and EP rubber is added. Productivity can be increased with respect to the sulfur process.
  • the method for producing a silane-crosslinked rubber molded body of the present invention can suppress crosslinking of the base rubber during molding, and if necessary, can set the molding temperature to a high temperature as described above, and further increase the linear velocity. It can also be set.
  • the mechanism of the action of the above process of the present invention is not yet clear, but is estimated as follows. That is, by using an inorganic filler and a silane coupling agent before and / or during kneading with the base rubber, the silane coupling agent is bonded to a group capable of chemically bonding with the inorganic filler at the reaction site. , Retained. Alternatively, it is physically and chemically adsorbed and held in the hole or surface of the inorganic filler without being bonded to the inorganic filler.
  • a silane coupling agent that binds to the inorganic filler with a strong bond (the reason is, for example, formation of a chemical bond with a group that can be chemically bonded on the surface of the inorganic filler) and a weak bond.
  • Bonding silane coupling agents (for example, interactions due to hydrogen bonds, interactions between ions, partial charges or dipoles, and effects due to adsorption can be considered) can be formed.
  • the silane coupling agent is hardly volatilized from the rubber composition (rubber kneaded material) as will be described later, and the other terminal.
  • the base rubber is bonded to the site capable of grafting reaction.
  • a silane crosslinkable rubber having a different bond to the inorganic filler and having a silane coupling agent grafted to the base rubber is formed.
  • the silane coupling agent having a strong bond with the inorganic filler among the silane coupling agents is retained in the bond with the inorganic filler, and the grafting reaction site is a site where the grafting reaction of the base rubber is possible Grafting reaction with (radical site of rubber generated by abstraction of hydrogen radical by radical generated by decomposition of organic peroxide).
  • a plurality of silane coupling agents are bonded to the surface of one inorganic filler particle through a strong bond, a plurality of rubbers are bonded through the inorganic filler particle.
  • the crosslinked network via the inorganic filler is expanded. That is, a silane crosslinkable rubber formed by grafting reaction of the silane coupling agent bonded to the inorganic filler onto the base rubber is formed.
  • silane coupling agent having a strong bond with an inorganic filler In the case of a silane coupling agent having a strong bond with an inorganic filler, the condensation reaction in the presence of water by this silanol condensation catalyst is unlikely to occur, and the bond with the inorganic filler is retained.
  • the reason why the silanol condensation reaction hardly occurs is considered to be that the binding energy between the inorganic filler and the silane coupling agent is very high and the condensation reaction does not occur even under the silanol condensation catalyst.
  • the base rubber and the inorganic filler are bonded, and the rubber is crosslinked through the silane coupling agent.
  • the adhesion between the base rubber and the inorganic filler is strengthened, and a molded article excellent in tensile strength (mechanical strength) and compression set can be obtained.
  • silane coupling agents can be bonded to the surface of one inorganic filler particle, and high mechanical strength can be obtained.
  • the silane coupling agent bonded to the inorganic filler with a strong bond contributes to improvement of tensile strength and suppression of compression set.
  • the silane coupling agent having a weak bond with the inorganic filler is detached from the surface of the inorganic filler, and the grafting reaction site of the silane coupling agent is a site where the grafting reaction of the base rubber is possible. And the grafting reaction takes place. That is, a silane crosslinkable rubber is formed by grafting reaction of the silane coupling agent released from the inorganic filler onto the base rubber. The silane coupling agent in the graft portion thus produced is then mixed with a silanol condensation catalyst and brought into contact with moisture to cause a condensation reaction (crosslinking reaction).
  • the tensile strength of the silane cross-linked rubber molded product obtained by this cross-linking reaction is increased, and it becomes possible to obtain a silane cross-linked rubber molded product having a small compression set, particularly a high temperature compression set, in addition to heat resistance.
  • the silane coupling agent bonded with a weak bond to the inorganic filler contributes to improvement of the degree of crosslinking, that is, improvement of heat resistance and suppression of compression set.
  • the rubber composed of the ternary copolymer may undergo a crosslinking reaction of the diene constituent component in the presence of the organic peroxide.
  • the grafting reaction of the silane coupling agent to the rubber occurs preferentially.
  • the silane coupling agent, the inorganic filler, and the organic peroxide are mixed in advance.
  • the resulting silane crosslinked rubber molded product is compressed while ensuring excellent ozone resistance. Permanent distortion, particularly high temperature compression set can be suppressed. In addition, it exhibits excellent oil resistance.
  • the crosslinking reaction by condensation using a silanol condensation catalyst in the presence of water in the step (3) is performed after forming the molded body.
  • operativity in the process until a molded object formation is excellent.
  • the condensation reaction using the silanol condensation catalyst does not proceed in an extruder having almost no moisture, extrusion at a high temperature is possible in the step (2). Therefore, molding at high temperature and high speed is also possible.
  • the appearance is excellent because the condensation of the silane coupling agents is suppressed as described above.
  • the silane coupling agent of 3 to 15 parts by mass, particularly more than 4 parts by mass and 15 parts by mass or less is mixed with the inorganic filler, as described above, the process (1), particularly the process ( The cross-linking reaction between rubbers during melt kneading in a) can be effectively suppressed.
  • the silane coupling agent is bonded to the inorganic filler, and is not easily evaporated during the melt kneading in the step (1), particularly the step (a), and the reaction between the free silane coupling agents is also effective. Can be suppressed.
  • the ethylene- ⁇ -olefin rubber has a diene content of 5% by mass, and can particularly prevent a crosslinking reaction between diene components. Therefore, even if the extruder is stopped and then restarted, poor appearance hardly occurs, and a silane-crosslinked rubber molded article having a good appearance can be produced.
  • restarting after restarting it depends on the composition of the base rubber, processing conditions, etc., and cannot be uniquely stated. For example, it can be resumed at 190 ° C. for an interval of up to 30 minutes, preferably up to 90 minutes. In addition, at 200 ° C., the interval can be resumed up to 3 minutes, preferably up to 10 minutes.
  • the silane-crosslinked rubber molded article of the present invention has at least the following characteristics (measurement method is the same as in the examples) and is excellent in appearance. That is, the silane crosslinked rubber molded article is excellent in compression set in a wide temperature range.
  • the compression set at 70 ° C. and the compression set at 150 ° C. are both preferably 45% or less, more preferably 40% or less, still more preferably 30% or less, particularly preferably. Is 20% or less.
  • the lower limit is not particularly limited, but the compression set at 70 ° C. and the compression set at 150 ° C. are both 10%, for example. Thus, excellent compression set is exhibited in the temperature range of 70 to 150 ° C.
  • the silane crosslinked rubber molded article is excellent in ozone resistance. For example, even when exposed to an atmosphere having an ozone concentration of 50 ppm and 40 ° C. for 24 hours or more, the decrease in tensile elongation is small and high durability against ozone is exhibited.
  • This silane-crosslinked rubber molded article is preferably excellent in oil resistance as described later.
  • the silane crosslinkable rubber composition of the present invention can produce a silane crosslinkable rubber molded product having the above-mentioned excellent properties with high productivity without requiring a vulcanization facility.
  • the silane cross-linked rubber molded product of the present invention may be a product containing a silane cross-linked rubber molded product or a product consisting only of a silane cross-linked rubber molded product.
  • the product containing the silane cross-linked rubber molded product include a product comprising a silane cross-linked rubber molded product and other members such as a support, a support frame and the like.
  • the term “product” is used to include a semi-finished product, a part, and a member.
  • silane-crosslinked rubber molded article of the present invention various industrial cables (including electric wires) coating materials, rubber molding materials (for example, automotive glass run channels, weather strips, rubber hoses, wiper blade rubbers, gaskets, anti-vibration rubbers), etc. Is mentioned.
  • the silane-crosslinked rubber molded article of the present invention is preferably a product that requires at least one of excellent compression set and high ozone resistance.
  • a product is not particularly limited.
  • a product that requires a compression set of 45% or less in a temperature range of 70 to 150 ° C. a decrease in tensile elongation even when exposed to an ozone concentration of 50 ppm and 40 ° C. for 24 hours, particularly 300 hours.
  • Examples include products that require ozone resistance of 50% or less, or products that require compression set and ozone resistance.
  • it is a product that requires oil resistance.
  • the silane-crosslinked rubber molded product of the present invention among industrial cable covering materials for various industrial cables, among rubber mold materials, automotive rubber mold materials, weather strips, gaskets, etc. Can be mentioned.
  • the production method of the present invention is used for the production of products that require excellent compression set, products that require ozone resistance, products that require oil resistance, components of products such as rubber materials, or members thereof. Can be applied.
  • the production method of the present invention can produce a silane-crosslinked rubber molded article having excellent properties as described above without requiring a vulcanization facility and with good productivity. Therefore, the production method of the present invention can be particularly preferably applied to products that require at least one of excellent compression set and high ozone resistance.
  • the production method of the present invention can be suitably applied to the production of electric wires and optical cables, among these products, and can form these covering materials (insulators and sheaths).
  • the product of the present invention is an extrusion-molded product such as an electric wire or cable
  • the molding material is extruded on the outer periphery of the conductor or the like while being melt-kneaded in the extruder (extrusion coating apparatus), etc.
  • Can be manufactured step (c) and step (2)).
  • a general-purpose extrusion coating device is used for the silane crosslinkable rubber composition to which inorganic filler is added (in large quantities) without using a special machine such as an electron beam crosslinking machine or a rubber vulcanizing facility.
  • the conductor can be molded by extrusion coating around the conductor or around the conductor in which the tensile strength fibers are added or twisted together.
  • a soft copper single wire or a stranded wire can be used as the conductor.
  • a conductor plated with tin or an enameled insulating layer can be used as the conductor.
  • the thickness of the insulating layer formed around the conductor is not particularly limited, but is generally 0.15 to 5 mm. Degree.
  • Example 1 to 7 and Comparative Examples 1 to 9 In Examples 1 to 7 and Comparative Examples 1 to 9, the following components were used and the respective specifications were set to the conditions shown in Table 1.
  • EPM-1 and EPDM-1 to EPDM-5 were prepared by melting and mixing two or more types of EPM or EPDM at 150 ° C. for 10 minutes using a Banbury mixer, and then pelletizing.
  • the Mooney viscosity (ML (1 + 4) 125 ° C.), ethylene content and diene content (measured by infrared absorption spectroscopy) of each of the prepared EPM and EPDM are shown in Table 1.
  • EPM-1 ethylene-propylene rubber
  • EPDM-1 ethylene-propylene-ethylidene norbornene rubber
  • EPDM-2 ethylene-propylene-ethylidene norbornene rubber
  • EPDM-3 ethylene-propylene-ethylidene norbornene rubber
  • EPDM-4 ethylene-propylene-ethylidene norbornene rubber
  • EPDM-5" ethylene-propylene-ethylidene norbornene rubber
  • EPM-2 EPT0045, trade name, manufactured by Mitsui Chemicals, ethylene-propylene rubber
  • EPDM-6 Nodel 3640, trade name, manufactured by Dow Chemical Company, ethylene-propylene-ethylidene norbornene rubber
  • EPDM-7 Nodel 4760P, trade name, manufactured by Dow Chemical Company, ethylene-propylene-ethylidene norbornene rubber
  • EPDM-8 EPT3091
  • ⁇ Silane coupling agent > "KBM1003" (trade name, manufactured by Shin-Etsu Silicone, vinyltrimethoxysilane)
  • Organic peroxide > “Perhexa 25B” (trade name, manufactured by NOF Corporation, 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane, half-life temperature of 179.8 ° C. for 1 minute)
  • Silanol condensation catalyst> “ADK STAB OT-1” trade name, manufactured by ADEKA, dioctyltin dilaurate
  • Examples 1 to 7 and Comparative Examples 1 to 5 a part of the EP rubber was used in the step (a), and the remaining part (5 parts by mass) of the EP rubber was used as the carrier rubber for the catalyst MB in the step (b).
  • the inorganic filler, the silane coupling agent, and the organic peroxide were mixed at a mass ratio shown in Table 1 at room temperature (25 ° C.).
  • the obtained mixture and base rubber containing a part of EP rubber are melt-mixed for 5 minutes at a temperature (185 ° C.) above the decomposition temperature of the organic peroxide using a 2 L Banbury mixer (manufactured by Nippon Roll Co., Ltd.). After that, the material was discharged at a material discharge temperature of 130 ° C. and pelletized to obtain silane MB (step (a)).
  • the obtained silane MB contains a silane crosslinkable EP rubber obtained by grafting a silane coupling agent to an EP rubber.
  • the silane MB obtained in step (a) and the catalyst MB obtained in step (b) have an electric wire coating extruder (L / D (ratio of effective screw length L to diameter D) of 25 and a screw diameter of 25 mm ⁇ ). ) was dry blended at 25 ° C. for about 1 minute to obtain a dry blend.
  • L / D ratio of effective screw length L to diameter D
  • the obtained dry blended product is put into the above-mentioned extrusion molding machine for covering electric wires, and the outer diameter of a 0.8 mm ⁇ conductor (an annealed copper wire) is finished to an outer diameter of 1.2 mm ⁇ under the following extrusion temperature conditions.
  • the wire precursor was manufactured by extrusion coating at a speed of 10 m / min.
  • Extrusion temperature conditions are divided into 3 zones C1, C2, and C3, with the temperature control in the cylinder part of the wire coating extruder from the feeder side to the die side, C1 zone is 150 ° C, C2 zone is 170 ° C, C3 zone Was set to 190 ° C, and the die temperature (molding temperature) was set to 200 ° C.
  • a silane crosslinkable rubber composition was prepared by melt-mixing the dry blend in an electric wire coating extruder prior to extrusion. This silane crosslinkable rubber composition contains the silane crosslinkable EP rubber, the inorganic filler and the silanol condensation catalyst having the contents shown in Table 1.
  • the electric wire precursor thus obtained was left in a 25 ° C., 50% RH environment for 24 hours to be brought into contact with water to produce an electric wire.
  • This electric wire had a silane cross-linked rubber molded article containing a silane cross-linked EP rubber obtained by cross-linking EP rubber with a silane coupling agent and an inorganic filler having a content shown in Table 1.
  • a molten strand having a diameter of about 35 mm was obtained in the same manner as in the production of the electric wire except that a dry blend was extruded without using a conductor.
  • the obtained molten strand was cut into a length of about 15 mm, and was pressed into a cylindrical mold having a size of 29.0 mm ⁇ and a thickness of 12.5 mm while being in a molten state, and press preformed using a press molding machine. Thereafter, using a press molding machine, the cylindrical mold was preheated at 150 ° C.
  • extrusion molding was carried out by setting the C1 to C3 zones of the extruder to 90 ° C. and the die temperature to 100 ° C.
  • the obtained electric wire precursor was cross-linked by passing through a 20 m long chemical cross-linking tube set in a steam environment having a temperature of 200 ° C. and a pressure of 10 MPa to produce an electric wire.
  • ⁇ Appearance test 1> The appearance of each manufactured electric wire was visually observed and evaluated. In the evaluation of the appearance, “A” indicates that the appearance of the electric wire was excellent, and “D” indicates that the appearance was so severe that there was a problem on the product.
  • each electric wire was exposed to an atmosphere having an ozone concentration of 50 ppm and 40 ° C. for 24 hours, 100 hours and 300 hours.
  • the tensile elongation of each electric wire before and after this exposure test was measured by the following method, and the ozone resistance was evaluated according to the following criteria by the rate of decrease in tensile elongation calculated from the following formula.
  • the tensile elongation was measured based on JIS C 3005 using a tubular piece obtained by drawing a conductor from each electric wire at a distance between gauge points of 20 mm and a tensile speed of 200 mm / min.
  • Decrease rate of tensile elongation (%) [tensile elongation after each time exposure / tensile elongation before exposure] ⁇ 100
  • the evaluation criteria are “C” when the rate of decrease in tensile elongation at each exposure time is 50% or more, “C” when the exposure time passes up to 24 hours, “B” when the exposure time passes up to 100 hours, The case where it passed even 300 hours was set to "A”. The case where the exposure time was 24 hours and failed was defined as “D”.
  • evaluation “C” is a pass level of the test of the present invention.
  • the compression set was measured using the cylindrical rubber molded product produced in each example. Using a compression device equipped with two compression plates and spacers (thickness is 75% of the thickness of the cylindrical rubber molded product), the cylindrical rubber molded product is compressed by 25% in the thickness direction. (Compression rate 25%), in that state, heated to 70 ° C. or 150 ° C. and held for 22 hours. Thereafter, the compression was released at 23 ° C., and after cooling for 30 minutes (final temperature was 23 ° C.), the thickness of the cylindrical rubber molded product was measured. The compression set was calculated from the thickness of the cylindrical rubber molded product before and after compression by the following formula and evaluated according to the following evaluation criteria.
  • ⁇ Oil resistance test> The tubular piece from which the conductor was pulled out from each electric wire was immersed in ASTM No. 2 oil heated to 120 ° C. for 18 hours.
  • the tensile elongation of each electric wire before and after the immersion test was measured by the following method, and the oil resistance was evaluated according to the following criteria based on the reduction rate of the tensile elongation calculated from the following formula.
  • the tensile elongation was measured based on JIS C 3005 using a tubular piece at a distance between gauge points of 20 mm and a tensile speed of 200 mm / min.
  • Reduction rate of tensile elongation (%) [Tensile elongation after immersion / Tensile elongation before immersion] ⁇ 100
  • the evaluation standard was determined as “A” when the rate of decrease in tensile elongation was 60% or more. Moreover, the case where the reduction rate was 50% or more and less than 60% was “B”, and the case where the reduction rate was less than 50% was “D”.
  • evaluation “B” is a pass level of the test of the present invention.
  • Comparative Example 1 using EPDM having a diene content exceeding 5% by mass did not have sufficient ozone resistance and oil resistance.
  • Comparative Example 2 with a small content of inorganic filler had a large compression set
  • Comparative Example 3 with a large content of inorganic filler had poor ozone resistance and compression set.
  • Comparative Example 4 with a low content of silane coupling agent had a large compression set
  • Comparative Example 5 with a high content of silane coupling agent had a poor appearance.
  • Comparative Examples 6 to 8 which are rubber crosslinking methods that are not silane crosslinking methods
  • compression set was large, and Comparative Example 6 and oil resistance were not sufficient.
  • Comparative Example 9 which is a rubber crosslinking method which is not a silane crosslinking method and uses an EP rubber having a diene content exceeding 5% by mass was inferior in ozone resistance and oil resistance. Comparative Examples 8 and 9 were also inferior to the appearance test 2.

Abstract

 ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴムにシランカップリング剤がグラフト化したシラン架橋性ゴムと、ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シラノール縮合触媒0.0001~0.5質量部とを含有するシラン架橋性ゴム組成物、このゴム組成物を成形した後に水と接触させてなるシラン架橋ゴム成形体、及び、このゴム成形体を含むシラン架橋ゴム成形品、並びに、シラン架橋性ゴム組成物及びシラン架橋ゴム成形体の製造方法。

Description

シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
 本発明は、シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品に関する。
 各種産業用ケーブル(電線を含む)の被覆材、ゴムモールド材(例えば、自動車用グラスランチャンネル、ウェザーストリップ、ゴムホース、ワイパーブレードゴム、ガスケット、防振ゴム)等のゴム製品には、圧縮永久歪みが小さいことが要求される。これらのゴム製品に要求される圧縮永久歪みは、その使用環境等を考慮すると、例えば100℃以上の高温においても、小さいことが望まれる。
 従来、小さな圧縮永久歪みが要求される用途に用いられる製品には、エチレン-プロピレンゴム(EPゴム)を加硫(架橋)した架橋EPゴムが用いられてきた。しかし、架橋EPゴムは、EPゴムを成形した後に加硫することが必要であった。
 そこで、EPゴムの代替原料として、加硫工程が不要な熱可塑性ゴム架橋体(Tharmal Plastic Vulcanized、TPV)が検討されている。この熱可塑性ゴム架橋体は、ポリプロピレン系樹脂を海とし、動的架橋されたエチレン-プロピレン-ジエンゴム(EPDM)を島として海島状に微分散させたものをいう。しかし、熱可塑性ゴム架橋体は、ポリプロピレン系樹脂を含んでおり、高温特性、特に耐熱性及び高温での圧縮永久歪みが大きく満足できるものではなかった。したがって、上記のような高温での圧縮永久歪みが小さいことが求められるゴム製品の原料として、依然としてEPゴムが使用されている。
 圧縮永久歪みが小さなEPゴムからなるゴム製品を得る方法として、例えば、特許文献1に記載の射出成形方法が挙げられる。この方法は、特定のプロピレン含有量及びムーニー粘度(ML(1+4)100℃)を有するエチレン-プロピレン系ゴムを主成分とするゴム組成物を射出成形する方法である。この特許文献1によれば、この射出成形方法では、例えば、1~10分の一次加硫と30分ないし6時間の二次加硫を必要とする。
 また、特許文献2には、ブルーム性及び圧縮永久歪みを同時に改善するゴム製品の製造方法が記載されている。特許文献2によれば、この製造方法では、圧縮永久歪みを改善するには、3時間以上、好ましくは6時間以上の熱履歴を必要とする。
 そのため、加硫工程を不要とするものではないが、短時間の加硫で製造可能なゴム組成物が提案されている(特許文献3参照)。特許文献3に記載のゴム組成物は、ゴム100質量部及び金属水酸化物30~150質量部を含有し、前記ゴムが、エチレン比が60~64%のエチレンプロピレンゴム1及びエチレン比が66~70%のエチレンプロピレンゴム2を70:30~30:70の質量比で混合したノンハロゲン難燃性ゴム組成物である。
特開平8-66931号公報 特開平11-302415号公報 特開2012-241041号公報
 特許文献3に記載のノンハロゲン難燃性ゴム組成物においても、実施例によれば、160℃で20分又は40分の加熱加硫工程が必要となる。このように、特許文献1~3においては、いずれも、ゴムを加硫する工程(ゴムが加硫する温度まで加熱可能な加硫設備)が必要であり、生産性に課題を有していた。
 ところで、上記産業用ケーブルのなかでも屋外用産業ケーブルや、ゴムモールド材のなかでも、自動車用ゴムモールド材(自動車用グラスランチャンネル、ゴムホース、ワイパーブレードゴム等)、ウェザーストリップ又はガスケット等には、オゾンによる特性の低下を抑制する耐オゾン性や耐候性、さらには表面に突出したツブ状物(ブツともいう)がなく外観にも優れていることが求められるものもある。しかし、EPDMは、分子内にジエン成分を含有していることから、圧縮永久歪み、特に高温での圧縮永久歪み(高温圧縮永久歪みということがある)の抑制と耐オゾン性とを両立させにくい。したがって、上記の用途に用いられるゴム製品には、小さな圧縮永久歪みと耐オゾン性とを兼備させることが求められていた。
 本発明は、従来の上記課題を克服し、小さな高温圧縮永久歪みと耐オゾン性とを兼ね備え、外観にも優れたシラン架橋ゴム成形体及びその製造方法を提供することを課題とする。
 また、本発明は、上記の特性を有する上記シラン架橋ゴム成形体を、加硫設備を必要とせず、生産性よく製造することができるシラン架橋性ゴム組成物及びその製造方法を提供することを課題とする。
 さらに、本発明は、上記の優れた特性を有するシラン架橋ゴム成形体を含むシラン架橋ゴム成形品を提供することを課題とする。
 本発明者らは、エチレン-αオレフィンゴムを用いた架橋ゴム成形体の製造において、ジエン含有量を低減させたEPゴムに特定のシラン架橋法を適用すると、EPゴムの加硫設備が不要となり、しかも、小さな高温圧縮永久歪み、耐オゾン性及び優れた外観を兼ね備えたシラン架橋ゴム成形体を製造できることを見出した。本発明者らはこの知見に基づきさらに研究を重ね、本発明をなすに至った。
 ここで、ゴムのシラン架橋法とは、有機過酸化物の存在下で不飽和基を有する加水分解性シランカップリング剤をゴムにグラフト化反応させてシラングラフトゴムを得た後に、シラノール縮合触媒の存在下でシラングラフトゴムを水分と接触させることにより、シラングラフトゴムがシランカップリング剤を介して架橋された架橋ゴムを得る方法である。
 すなわち、本発明の課題は以下の手段によって達成された。
〔1〕ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴムにシランカップリング剤がグラフト化したシラン架橋性ゴムと、前記ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シラノール縮合触媒0.0001~0.5質量部とを含有するシラン架橋性ゴム組成物。
〔2〕前記ジエン含有量が、2質量%以下である〔1〕に記載のシラン架橋性ゴム組成物。
〔3〕前記シラン架橋性ゴム組成物が、前記ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを溶融混合してなる〔1〕又は〔2〕に記載のシラン架橋性ゴム組成物。
〔4〕前記無機フィラーが、金属水和物、タルク、クレー、シリカ及びカーボンブラックからなる群より選ばれた少なくとも1種である〔1〕~〔3〕のいずれか1項に記載のシラン架橋性ゴム組成物。
〔5〕前記ベースゴムが、ポリプロピレン系樹脂を1~30質量%含む〔1〕~〔4〕のいずれか1項に記載のシラン架橋性ゴム組成物。
〔6〕前記シランカップリング剤の含有量が、前記ベースゴム100質量部に対し、3~15質量部である〔1〕~〔5〕のいずれか1項に記載のシラン架橋性ゴム組成物。
〔7〕〔1〕~〔6〕のいずれか1項に記載のシラン架橋性ゴム組成物を成形した後に水と接触させてなるシラン架橋ゴム成形体。
〔8〕〔7〕に記載のシラン架橋ゴム成形体を含むシラン架橋ゴム成形品。
〔9〕ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを溶融混合してシラン架橋性ゴム組成物を得る工程(1)を有するシラン架橋性ゴム組成物の製造方法であって、
 前記工程(1)が、下記工程(a)及び工程(c)を有し、ただし、下記工程(a)で前記ベースゴムの一部を溶融混合する場合には下記工程(a)、工程(b)及び工程(c)を有する、
工程(a):前記ベースゴムの全部又は一部と、前記無機フィラーと、前記シランカップリング剤と、前記有機過酸化物とを前記有機過酸化物の分解温度以上の温度で溶融混合して、シランマスターバッチを調製する工程
工程(b):前記ベースゴムの残部と前記シラノール縮合触媒とを溶融混合して、触媒マスターバッチを調製する工程
工程(c):前記シランマスターバッチと、前記シラノール縮合触媒又は前記触媒マスターバッチとを溶融混合する工程
シラン架橋性ゴム組成物の製造方法。
〔10〕下記工程(1)、工程(2)及び工程(3)
工程(1):ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを溶融混合してシラン架橋性ゴム組成物を得る工程
程(2):前記工程(1)で得られたシラン架橋性ゴム組成物を成形して成形体を得る工程
工程(3):前記工程(2)で得られた成形体を水と接触させてシラン架橋ゴム成形体を得る工程
を有するシラン架橋ゴム成形体の製造方法であって、
 前記工程(1)が、下記工程(a)及び工程(c)を有し、ただし、下記工程(a)で前記ベースゴムの一部を溶融混合する場合には下記工程(a)、工程(b)及び工程(c)を有する、
工程(a):前記ベースゴムの全部又は一部と、前記無機フィラーと、前記シランカップリング剤と、前記有機過酸化物とを前記有機過酸化物の分解温度以上の温度で溶融混合して、シランマスターバッチを調製する工程
工程(b):前記ベースゴムの残部と前記シラノール縮合触媒とを溶融混合して、触媒マスターバッチを調製する工程
工程(c):前記シランマスターバッチと、前記シラノール縮合触媒又は前記触媒マスターバッチとを溶融混合する工程
シラン架橋ゴム成形体の製造方法。
 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本発明により、小さな高温圧縮永久歪みと耐オゾン性とを兼ね備え、外観にも優れたシラン架橋ゴム成形体及びその製造方法を提供することができる。また、このような優れた特性を有するシラン架橋ゴム成形体を、加硫設備を必要とせず、生産性よく製造することができるシラン架橋性ゴム組成物及びその製造方法を提供することができる。さらに、このような優れた特性を有するシラン架橋ゴム成形体を含むシラン架橋ゴム成形品を提供することができる。
 本発明の上記及び他の特徴及び利点は、下記の記載からより明らかになるであろう。
 本発明のシラン架橋性ゴム組成物は、ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴムにシランカップリング剤がグラフト化したシラン架橋性ゴムと、ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シラノール縮合触媒0.0001~0.5質量部とを含有する。このシラン架橋性ゴム組成物は、好ましくは、ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを、溶融混合して調製できる。これにより、後述するように、シランカップリング剤がベースゴムにグラフト化反応してシラン架橋性ゴムが形成される。
 また、本発明のシラン架橋ゴム成形体は、本発明のシラン架橋性ゴム組成物を成形した後に水と接触させて得ることができる。これにより、後述するように、シラン架橋性ゴム組成物に含有されるシラン架橋性ゴムのシランカップリング剤が架橋反応してシラン架橋ゴム成形体となる。
 まず、本発明に用いる各成分について説明する。
<ベースゴム>
 本発明に用いられるベースゴムは、シランカップリング剤がグラフト化反応可能な部位を有するゴム成分として、ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを含有する。
 ベースゴムは、さらにポリプロピレン系樹脂を含有していてもよい。
 ベースゴムは、さらにエチレン-αオレフィンゴム以外のゴム成分やポリプロピレン系樹脂以外の樹脂成分を含有してもよい。エチレン-αオレフィンゴム以外のゴム成分としては、特に限定されず、例えば、天然ゴム(NR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリルゴム(ACM)、シリコーンゴム(Q)等が挙げられる。ポリプロピレン系樹脂以外の樹脂成分としては、特に限定されず、例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、直鎖状低密度ポリエチレン(LLDPE)、エチレン系共重合体等が挙げられる。ベースゴムがこれらのゴム成分及び樹脂成分を含有する場合、これらのゴム成分及び樹脂成分それぞれの含有量は、特に限定されず、適宜に決定される。
 このベースゴムは、ゴム成分及び樹脂成分の総計が100質量%となるように、各ゴム成分及び各樹脂成分の含有量が適宜に決定され、好ましくは下記範囲内から選択される。
(エチレン-αオレフィンゴム)
 本発明に用いるエチレン-αオレフィンゴムは、共重合体中のジエン構成成分量(ジエン含有量という)が5質量%以下のエチレン-αオレフィンゴムである。ジエン含有量が大きすぎると十分な耐オゾン性が得られない場合がある。本発明においては、ジエン含有量が5質量%以下と小さくても、エチレン-αオレフィンゴムの架橋をシラン架橋により行うことができる。そのため、圧縮永久歪みの抑制に不利なエチレン-αオレフィンゴムを用いても、高温においても圧縮永久歪みが小さく、優れた耐オゾン性と、常温(使用温度)~高温までの広い温度域にわたり小さな圧縮永久歪(以下、優れた圧縮永久歪ということがある)をシラン架橋ゴム成形体に付与できる。また、優れた耐油性を付与できる。
 エチレン-αオレフィンゴムとしては、エチレン-αオレフィン共重合体からなるゴムであって、好ましくは、エチレンとαオレフィンとの二元共重合体からなるゴム、エチレンとαオレフィンとジエンとの三元共重合体からなるゴムが挙げられる。三元共重合体のジエンは、共役ジエンであっても非共役ジエンであってもよく、非共役ジエンが好ましい。すなわち、三元共重合体は、エチレンとαオレフィンと共役ジエンとの三元共重合体、及び、エチレンとαオレフィンと非共役ジエンとの三元共重合体等が挙げられる。エチレンとαオレフィンとの二元共重合体及びエチレンとαオレフィンと非共役ジエンとの三元共重合体が好ましい。
 共役ジエンとしては、例えば、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられ、ブタジエンが好ましい。非共役ジエンとしては、例えば、ジシクロペンタジエン(DCPD)、エチリデンノルボルネン(ENB)、1,4-ヘキサジエン等が挙げられ、エチリデンノルボルネンが好ましい。共役ジエン及び非共役ジエンの各構成成分は、それぞれ、1種単独で使用され、又は2種以上を併用できる。
 αオレフィンとしては、炭素数3~12のαオレフィンが好適に挙げられる。αオレフィンとしては、特に限定されず、例えば、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン等が挙げられる。
 エチレンとαオレフィンとの二元共重合体からなるゴムとして、例えば、エチレン-プロピレンゴム、エチレン-ブテンゴム、エチレン-オクテンゴム等が挙げられる。エチレンとαオレフィンとジエンとの三元共重合体からなるゴムとしては、例えば、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム等が挙げられる。
 なかでも、エチレン-プロピレンゴム、エチレン-ブテンゴム、エチレン-プロピレン-ジエンゴム及びエチレン-ブテン-ジエンゴムが好ましく、エチレン-プロピレンゴム及びエチレン-プロピレン-ジエンゴムがより好ましく、エチレン-プロピレンゴム又はエチレン-プロピレン-エチリデンノルボルネンゴムが特に好ましい。
 エチレン-αオレフィンゴムのジエン含有量は、5質量%以下である。ジエン含有量が多すぎると、小さな高温圧縮永久歪みと、優れた外観及び耐オゾン性とを兼ね備えることができない。また耐油性に劣ることもある。ジエン含有量は、耐オゾン性、及び、反応性に基づく成形性等の点では、0~5質量%が好ましく、0~4質量%がより好ましく、0~3質量%がさらに好ましい。ジエン含有量は、後述するように押出機を停止後再開しても優れた外観を保持できる点で、2質量%以下が特に好ましい。一方、高温圧縮永久歪みの点では、2~5質量%が好ましい。ジエン含有量は、例えば赤外線吸収分光法(FT-IR)、プロトンNMR(H-NMR)法等で測定できる。
 エチレン-αオレフィンゴムは、共重合体中のエチレン構成成分量(エチレン含有量という)が45~80質量%が好ましく、50~70質量%がより好ましく、50~65質量%がさらに好ましい。エチレン含有量が45~80質量%の範囲であれば、圧縮永久歪みが優れる。エチレン含有量は、ASTM D3900に記載の方法に準拠して、測定される値である。
 エチレン-αオレフィンゴムのムーニー粘度は、引張強度及び成形性の点で、20~70(ML(1+4)125℃)であることが好ましく、25~65(ML(1+4)125℃)がより好ましく、30~60(ML(1+4)125℃)がさらに好ましい。
 ムーニー粘度は、JIS K 6300-1:2013に規定された測定方法に基づいて、測定される。試験は以下のように行う。用いる試験片として、JIS K 6300-1 5.3.1記載のロール通し法で、直径約50mm、厚さ約6mmの試験サンプルを2個1組作製する。二つのダイで構成される円筒状の中空部(キャビティ)の中に円盤状の金属製L型ロータを装着し、その中に得られたゴム試験片を充填する。その後、余熱時間1分、ロータ回転時間4分、試験温度125℃の一定条件でロータを回転させ、このときのゴムの抵抗によりロータが受けるトルクを、ゴムのムーニー粘度としてムーニー単位で測定する。
 エチレン-αオレフィンゴムの含有量は、ベースゴム100質量部中、61~100質量部である。エチレン-αオレフィンゴムの含有量が61質量部以上であると、上記の優れた特性を成形体に付与できる。本発明において、エチレン-αオレフィンゴムの含有量は、下限が、70質量部であることが好ましく、75質量部であることがより好ましく、80質量部であることがさらに好ましい。ベースゴムがポリプロピレン系樹脂を含有する場合、エチレン-αオレフィンゴムの含有量は、耐オゾン性と圧縮永久歪み両立の点で、ベースゴム100質量部中、70~99質量部が好ましく、75~95質量部がより好ましく、80~90質量部がさらに好ましい。
 エチレン-αオレフィンゴムは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。2種以上を併用する場合、ジエン含有量等は、エチレン-αオレフィンゴムそれぞれが満たしているのが好ましいが、本発明においては、2種以上のエチレン-αオレフィンゴムのブレンド物が全体として満たしていてもよい。
(ポリプロピレン系樹脂)
 ポリプロピレン系樹脂(PP)は、構成成分としてプロピレン成分を含む重合体からなる樹脂であれば特に限定されない。ポリプロピレン系樹脂には、プロピレンの単独重合体(h-PP)、(好ましくは少量の)エチレン及び/又は1-ブテンとの共重合体であるランダムポリプロピレン(r-PP)、及び、エチレンゴム等のゴムをh-PPやr-PPに分散したブロックポリプロピレン(b-PP)等を含む。これらのなかでもランダムポリプロピレンが好ましい。
 ポリプロピレン系樹脂のメルトフローレート(MFR、230℃、21.18N)は、特に限定されないが、0.5~50g/10分が好ましく、特に好ましくは、10~30g/10分である。この範囲のMFRのポリプロピレン系樹脂を用いることで、より高い線速で成形でき、また優れた外観の成形体を得られる。MFR(190℃、21.18N)は、JIS K 7210に規定の「A法(手動切り落とし法)」基づき、190℃、21.18Nの条件Dで計測した値とする。
 PPとして、例えば、ノバテック(登録商標)PP(日本ポリプロ社製)、PM940M、PM921V(いずれも、商品名、サンアロマー社製)、住友ノーブレン(登録商標、住友化学社製)、及びプライムポリプロ(登録商標、プライムポリマー社製)等が挙げられる。
 ベースゴムがポリプロピレン系樹脂を含有する場合、ポリプロピレン系樹脂の含有量は、特に限定されないが、ベースゴム100質量部中、1~30質量部であることが好ましく、5~25質量部であることがより好ましく、10~20質量部がさらに好ましい。
 ポリプロピレン系樹脂は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。2種以上を併用する場合、MFRは、ポリプロピレン系樹脂それぞれが満たしているのが好ましいが、本発明においては、2種以上のポリプロピレン系樹脂のブレンド物が全体として満たしていてもよい。
<無機フィラー>
 本発明に用いられる無機フィラーは、その表面に、シランカップリング剤の反応部位と水素結合又は共有結合等により、化学結合しうる部位を有するものであれば特に制限なく用いることができる。この無機フィラーにおける、シランカップリング剤の反応部位と化学結合しうる部位(基)としては、OH基(水酸基、含水若しくは結晶水の水分子、カルボキシ基等のOH基)、アミノ基、SH基等が挙げられる。
 このような無機フィラーとしては、例えば、水和水、水酸基あるいは結晶水を有する化合物のような金属水和物等が挙げられる。金属水和物としては、例えば、水酸化アルミニウム、水酸化マグネシウム又は酸化アルミニウム水和物等の金属水酸化物、さらには、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ほう酸アルミニウムウイスカ等のほか、水和水等を有する、水和ケイ酸アルミニウム、水和ケイ酸マグネシウム、塩基性炭酸マグネシウム、ハイドロタルサイト等の無機酸塩又は無機酸化物等が挙げられる。
 無機フィラーとしては、金属水和物以外にも、例えば、窒化ほう素、シリカ(結晶質シリカ、非晶質シリカ等)、カーボンブラック、クレー、酸化亜鉛、酸化錫、酸化チタン、酸化モリブデン、三酸化アンチモン、シリコーン化合物、石英、タルク、ほう酸亜鉛、ホワイトカーボン、硼酸亜鉛、ヒドロキシスズ酸亜鉛、スズ酸亜鉛が挙げられる。
 無機フィラーは、これらのなかでも、金属水和物、タルク、クレー、シリカ、カーボンブラックからなる群から選ばれる少なくとも1種が好ましい。
 無機フィラーは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
 無機フィラーの平均1次粒径は、0.001~10μmが好ましく、0.005~5μmがより好ましく、0.01~2μmがさらに好ましく、0.015~1μmが特に好ましい。平均1次粒径が上記範囲内にあると、シランカップリング剤の保持効果が高く、引張強度や圧縮永久歪みに優れたものとなる。また、シランカップリング剤との混合時に無機フィラーが2次凝集しにくく、外観に優れたものとなる。平均1次粒径は、アルコールや水で分散させて、レーザ回折/散乱式粒子径分布測定装置等の光学式粒径測定器によって求められる。
 無機フィラーは、シランカップリング剤等で表面処理した表面処理無機フィラーを使用することができる。例えば、シランカップリング剤表面処理無機フィラーとして、キスマ5L、キスマ5P(いずれも商品名、水酸化マグネシウム、協和化学社製等)等が挙げられる。シランカップリング剤による無機フィラーの表面処理量は、特に限定されないが、例えば、2質量%以下である。
<シランカップリング剤>
 本発明に用いられるシランカップリング剤は、有機過酸化物の分解により生じたラジカルの存在下でベースゴムにグラフト化反応しうるグラフト化反応部位(基又は原子)と、無機フィラーの化学結合しうる部位と反応し、シラノール縮合可能な反応部位(加水分解して生成する部位を含む。例えばシリルエステル基等)とを、少なくとも有するものであればよい。このようなシランカップリング剤として、末端に加水分解性基を有する加水分解性シランカップリング剤が好ましい。シランカップリング剤は、末端に、アミノ基、グリシジル基又はエチレン性不飽和基を含有する基と加水分解性基を含有する基とを有しているものがより好ましく、さらに好ましくは末端にエチレン性不飽和基を含有する基と加水分解性基を含有する基とを有しているシランカップリング剤である。エチレン性不飽和基を含有する基としては、特に限定されないが、例えば、ビニル基、アリル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキレン基、p-スチリル基等が挙げられる。またこれらのシランカップリング剤とその他の末端基を有するシランカップリング剤を併用してもよい。
 このようなシランカップリング剤としては、例えば下記の一般式(1)で表される化合物を用いることができる。
Figure JPOXMLDOC01-appb-C000001
 一般式(1)中、Ra11はエチレン性不飽和基を含有する基、Rb11は脂肪族炭化水素基、水素原子又はY13である。Y11、Y12及びY13は加水分解しうる有機基である。Y11、Y12及びY13は互いに同じでも異なっていてもよい。
 一般式(1)で表されるシランカップリング剤のRa11は、エチレン性不飽和基を含有する基が好ましく、エチレン性不飽和基を含有する基は、上述した通りであり、好ましくはビニル基である。
 Rb11は脂肪族炭化水素基、水素原子又は後述のY13であり、脂肪族炭化水素基としては、脂肪族不飽和炭化水素基を除く炭素数1~8の1価の脂肪族炭化水素基が挙げられる。Rb11は、好ましくは後述のY13である。
 Y11、Y12及びY13は、加水分解しうる有機基であり、例えば、炭素数1~6のアルコキシ基、炭素数6~10のアリールオキシ基、炭素数1~4のアシルオキシ基が挙げられ、アルコキシ基が好ましい。加水分解しうる有機基としては、具体的には例えば、メトキシ、エトキシ、ブトキシ、アシルオキシ等を挙げることができる。このなかでも、シランカップリング剤の反応性の点から、メトキシ又はエトキシがさらに好ましく、メトキシが特に好ましい。
 シランカップリング剤としては、好ましくは加水分解速度の速いシランカップリング剤であり、より好ましくはRb11がY13であり、かつY11、Y12及びY13が互いに同じであるシランカップリング剤、又は、Y11、Y12及びY13の少なくとも1つがメトキシ基である加水分解性シランカップリング剤であり、さらに好ましくはRb11がY13であり、かつY11、Y12及びY13が互いに同じであるシランカップリング剤である。特に好ましくは、全てがメトキシ基である加水分解性シランカップリング剤である。
 シランカップリング剤としては、具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリブトキシシラン、ビニルジメトキシエトキシシラン、ビニルジメトキシブトキシシラン、ビニルジエトキシブトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリアセトキシシラン等のビニルシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、メタクリロキシプロピルメチルジメトキシシラン等の(メタ)アクリロキシシランを挙げることができる。
 末端にグリシジル基を有するものとしては、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。
 上記シランカップリング剤のなかでも、末端にビニル基とアルコキシ基を有するシランカップリング剤がさらに好ましく、ビニルトリメトキシシラン、ビニルトリエトキシシランが特に好ましい。
 シランカップリング剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。また、そのままで用いても、溶媒等で希釈して用いてもよい。
<有機過酸化物>
 有機過酸化物は、少なくとも熱分解によりラジカルを発生して、触媒としてシランカップリング剤のグラフト化反応部位とベースゴムとのラジカル反応(ゴムからの水素ラジカルの引き抜き反応を含む)によるグラフト化反応を生起させる働きをする。
 有機過酸化物としては、ラジカルを発生させるものであれば、特に制限はなく、例えば、一般式:R-OO-R、R-OO-C(=O)R、RC(=O)-OO(C=O)Rで表される化合物が好ましい。ここで、R~Rは各々独立にアルキル基、アリール基又はアシル基を表す。各化合物のR~Rのうち、いずれもアルキル基であるもの、又は、いずれかがアルキル基で残りがアシル基であるものが好ましい。
 このような有機過酸化物としては、例えば、ジクミルパーオキサイド(DCP)、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルクミルパーオキサイド等を挙げることができる。これらのうち、臭気性、着色性、スコーチ安定性の点で、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキシン-3が好ましい。
 有機過酸化物の分解温度は、130~195℃であるのが好ましく、150~185℃であるのが特に好ましい。
 本発明において、有機過酸化物の分解温度とは、単一組成の有機過酸化物を加熱したとき、1分間のうちある一定の温度又は温度域でそれ自身が2種類以上の化合物に半分分解反応を起こす温度(1分間半減期温度)を意味する。具体的には、DSC法等の熱分析により、窒素ガス雰囲気下で5℃/分の昇温速度で、室温から加熱したとき、吸熱又は発熱を開始する温度をいう。
<シラノール縮合触媒>
 シラノール縮合触媒は、ベースゴムにグラフトしたシランカップリング剤を水分の存在下で縮合反応させる働きがある。このシラノール縮合触媒の働きに基づき、シランカップリング剤を介して、ゴム同士が架橋される。その結果、加硫設備を用いなくとも優れた引張強度や小さな高温圧縮永久歪みを有し、必要により高温又は高速でも成形可能となり、従来の架橋EPゴムの製造方法よりも短時間でシラン架橋ゴム成形体が得られる。
 本発明に用いられるシラノール縮合触媒としては、有機スズ化合物、金属石けん、白金化合物等が挙げられる。一般的なシラノール縮合触媒としては、例えば、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート、ステアリン酸亜鉛、ステアリン酸鉛、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸ナトリウム、ナフテン酸鉛、硫酸鉛、硫酸亜鉛、有機白金化合物等が用いられる。これらのなかでも、特に好ましくは、ジブチルスズジラウレート、ジオクチルスズジラウレート、ジブチルスズジオクチエート、ジブチルスズジアセテート等の有機スズ化合物である。
<キャリアゴム>
 シラノール縮合触媒は、所望によりゴムに混合されて、用いられる。このようなゴム(キャリアゴムともいう)としては、特に限定されないが、ベースゴムとして説明した各ゴム成分又は各樹脂成分を用いることができる。
<添加剤>
 シラン架橋ゴム成形体及びシラン架橋性ゴム組成物は、上記ゴム製品に一般的に使用される各種添加剤を本発明の効果を損なわない範囲で含有してもよい。このような添加剤として、例えば、架橋助剤、酸化防止剤、滑剤、金属不活性剤、着色剤、又は、上記無機フィラー以外の充填剤(難燃(助)剤を含む。)等が挙げられる。
 次に、本発明のシラン架橋性ゴム組成物及びシラン架橋ゴム成形体の製造方法を具体的に説明する。
 本発明の「シラン架橋ゴム成形体の製造方法」及び本発明の「シラン架橋性ゴム組成物の製造方法」は、いずれも、少なくとも下記工程(1)を行う。したがって、本発明の「シラン架橋ゴム成形体の製造方法」及び本発明の「シラン架橋性ゴム組成物の製造方法」を併せて以下に説明する(両製造方法に共通する説明においては、本発明の製造方法ということがある。)。
 工程(1):ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15.0質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを溶融混合して、溶融混合物としてシラン架橋性ゴム組成物を得る工程
 工程(2):工程(1)で得られたシラン架橋性ゴム組成物を成形して成形体を得る工程
 工程(3):工程(2)で得られた成形体を水と接触させてシラン架橋ゴム成形体を得る工程
 この工程(1)が、工程(a)でベースゴムの全部を溶融混合する場合には工程(a)及び工程(c)を有し、下記工程(a)でベースゴムの一部を溶融混合する場合には工程(a)、工程(b)及び工程(c)を有する。
 工程(a):ベースゴムの全部又は一部と、無機フィラーと、シランカップリング剤と、有機過酸化物とを有機過酸化物の分解温度以上の温度で溶融混合して、シランマスターバッチを調製する工程
 工程(b):ベースゴムの残部とシラノール縮合触媒とを溶融混合して、触媒マスターバッチを調製する工程
 工程(c):シランマスターバッチと、シラノール縮合触媒又は前記触媒マスターバッチとを溶融混合する工程
 ここで、混合するとは、均一な混合物を得ることをいう。
 本発明の製造方法において、「ベースゴム」とは、シラン架橋ゴム成形体又はシラン架橋性ゴム組成物を形成するためのベースゴムである。したがって、本発明の製造方法においては、工程(1)で得られるシラン架橋性ゴム組成物に100質量部のベースゴムが含有されていればよい。例えば、工程(a)において、「ベースゴムの全量(100質量部)が配合される態様」と、「ベースゴムの一部が配合される態様」とを含む。「ベースゴムの一部が配合される態様」においては、ベースゴムの残部が工程(b)でキャリアゴムとして混合されてもよい。
 本発明において、「ベースゴムの一部」とは、ベースゴムのうち工程(a)で使用するゴムであって、ベースゴムそのものの一部(ベースゴムと同一組成を有する)、ベースゴムを構成する成分(ゴム成分又は樹脂成分)の一部、ベースゴムを構成する一部の成分(例えば、複数の成分のうちの特定の成分全量)をいう。
 また、「ベースゴムの残部」とは、ベースゴムのうち工程(a)で使用する一部を除いた残りのゴムであって、具体的には、ベースゴムそのものの残部(ベースゴムと同一組成を有する)、ベースゴムを構成する成分の残部、ベースゴムを構成する残りの成分をいう。
 工程(a)でベースゴムの一部を配合する場合、工程(1)におけるベースゴムの含有量100質量部は、工程(a)及び工程(b)で混合される各成分の合計量である。
 ここで、工程(b)でベースゴムの残部が配合される場合、ベースゴムは、工程(a)において、好ましくは80~99質量部、より好ましくは94~98質量部が配合され、工程(b)において、好ましくは1~20質量部、より好ましくは2~6質量部が配合される。
 工程(1)において、エチレン-αオレフィンゴム及びポリプロピレン系樹脂の、ベースゴム中の含有量は、上記した通りである。ポリプロピレン系樹脂を添加することにより、優れた圧縮永久歪み及び耐オゾン性を保持しつつ、より高い線速で成形できる。
 工程(1)において、有機過酸化物の含有量は、ベースゴム100質量部に対して、0.01~0.6質量部であり、0.1~0.5質量部が好ましい。有機過酸化物の含有量が0.01質量部未満では、溶融混合時にグラフト化反応が進行せず、またシランカップリング剤同士が縮合して、小さく優れた圧縮永久歪み及び耐オゾン性を付与できないことがある。一方、0.6質量部を超えると、副反応によってゴムの多くが直接的に架橋してブツを形成し、外観不良が生じる場合がある。このように、有機過酸化物の含有量をこの範囲内にすることにより、適切な範囲でグラフト化反応を行うことができ、ゲル状のブツも発生することなく成形性に優れ、上記特性をシラン架橋ゴム成形体に付与できる組成物を得ることができる。
 無機フィラーの含有量は、ベースゴム100質量部に対して、0.3~400質量部であり、1~200質量部が好ましく、3~100質量部がより好ましい。無機フィラーの含有量が0.3質量部未満では、シランカップリング剤が揮発しやすく、シランカップリング剤のグラフト化反応及び架橋反応が進行しないことがある。その結果、シラン架橋ゴム成形体とした際に優れた圧縮永久歪み、さらには高い引張強度が得られないことがある。一方、400質量部を超えると、ゴム同士の相互作用が小さくなり、ゴム本来の特性が損なわれる。そのため、優れた圧縮永久歪み、さらには高い引張強度が得られないことに加えて、十分な耐オゾン性も得られないことがある。しかも、押出機のモーター等への負担が大きくなって、押出成形時の最大押出線速が遅くなることがある。
 シランカップリング剤の含有量は、ベースゴム100質量部に対して、1~15質量部であり、好ましくは3~15質量部であり、より好ましくは4質量部を超え15質量部以下であり、さらに好ましくは4質量部を超え10質量部以下である。
 シランカップリング剤の含有量が1質量部未満では、架橋反応が十分に進行せず、優れた圧縮永久歪みが得られないことがある。一方、15質量部を超えると、無機フィラーの表面にシランカップリング剤が吸着しきれず、シランカップリング剤が混練中に揮発してしまい、経済的でない。また、吸着しないシランカップリング剤が縮合して、成形体にブツや焼けが生じて外観が悪化するおそれがある。
 シランカップリング剤の含有量が3~15質量部、特に4質量部を超えて15質量部以下であると、ベースゴム同士の架橋反応、及び、シランカップリング剤同士の縮合反応のいずれをも抑えることができ、外観のきれいなシラン架橋ゴム成形体を製造することができる。
 その機構の詳細についてはまだ定かではないが次のように考えられる。
 すなわち、工程(a)において、シランカップリング剤がベースゴムにグラフト化する際の有機過酸化物分解による反応は、シランカップリング剤の含有量が4質量部を超えると、ベースゴム同士の架橋反応よりも反応速度が速い、シランカップリング剤とベースゴムとのグラフト化反応、シランカップリング剤同士の縮合反応が支配的になる。したがって、外観荒れやブツの原因となるゴム同士の架橋反応は起こりにくくなる。このように、ベースゴム同士の架橋反応がシランカップリング剤の含有量に応じて効果的に抑えられる。これにより、成形時の外観は良好になる。また、ベースゴム同士の架橋反応による上記欠陥が少なくなるため、押出機を停止後再開しても外観不良が発生しにくくなる。このように、ベースゴム同士の架橋反応を抑えて、外観の良好なシラン架橋ゴム成形体を製造することができる。
 一方で、工程(a)において、シランカップリング剤同士の縮合反応も反応速度が速い。しかし、多くのシランカップリング剤が無機フィラーに結合又は吸着して固定化されているため、無機フィラーに結合又は吸着しているシランカップリング剤同士の縮合反応は起こりにくくなる。無機フィラーに結合又は吸着せず、遊離しているシランカップリング剤同士の縮合反応が生じることがあるが、本発明においてシランカップリング剤は大部分が無機フィラーに結合又は吸着しているので、ゲル状のブツの発生に繋がることはない。
 このように、特定量のシランカップリング剤を用いることにより、外観のきれいなシラン架橋ゴム成形体を製造することができると、考えられる。
 シラノール縮合触媒の含有量は、ベースゴム100質量部に対して、0.0001~0.5質量部であり、好ましくは0.001~0.3質量部である。シラノール縮合触媒の含有量が0.0001~0.5質量部であると、シランカップリング剤の縮合反応による架橋反応がほぼ均一に進みやすく、シラン架橋ゴム成形体の外観、引張強度及び圧縮永久歪みが優れ、また生産性も向上する。すなわち、シラノール縮合触媒の含有量が少なすぎると、優れた圧縮永久歪みを得ることができないことがある。一方、多すぎると、シランカップリング剤の縮合反応による架橋反応が不均一になり、外観及び生産性が劣る場合がある。
 工程(a)において、ベースゴムの全部又は一部と、無機フィラーと、シランカップリング剤と、有機過酸化物とを、上記含有量で、混合機に投入し、有機過酸化物の分解温度以上の温度に加熱しながら溶融混練して、シランマスターバッチを調製する。
 上記成分を溶融混合(溶融混練、混練りともいう)する温度は、有機過酸化物の分解温度以上、好ましくは有機過酸化物の分解温度+(1~80)℃の温度である。溶融混合の温度は、一義的に定めることは難しいが、一例を挙げると、80~250℃が好ましく、100~240℃がより好ましい。この混合温度はベースゴムが溶融してから設定することが好ましい。上記範囲の混合温度であれば、上記成分が溶融し、有機過酸化物が分解し、作用して必要なグラフト化反応が工程(a)において十分に進行する。その他の条件は適宜設定することができる。例えば、混合時間は、上記溶融温度でシランカップリング剤のポリオレフィン系樹脂へのグラフト化反応が十分に進行する時間であればよく、例えば、5分~1時間が好ましい。
 混合方法としては、ゴム、プラスチック等で通常用いられる方法であれば、特に限定されない。混合装置は、例えば無機フィラーの含有量に応じて適宜に選択される。混練装置として、一軸押出機、二軸押出機、ロール、バンバリーミキサー又は各種のニーダー等が用いられる。ゴムの分散性及び架橋反応の安定性の面で、バンバリーミキサー又は各種のニーダー等の密閉型ミキサーが好ましい。
 また、無機フィラーがベースゴム100質量部に対して100質量部を超えて混合される場合、連続混練機、加圧式ニーダー、バンバリーミキサーで溶融混合するのがよい。
 本発明において、「ベースゴムの全部又は一部、有機過酸化物、無機フィラー及びシランカップリング剤を溶融混合する」とは、溶融混合する際の混合順を特定するものではなく、どのような順で混合してもよいことを意味する。すなわち、工程(a)における混合順は特に限定されない。
 また、ベースゴムの混合方法も特に限定されない。例えば、予め混合調製されたベースゴムを用いてもよく、各ゴム成分又は樹脂成分それぞれを別々に混合してもよい。
 工程(a)においては、上記各成分を一度に溶融混合することができるが、好ましくは、シランカップリング剤は、シランマスターバッチに単独で混合されず、無機フィラーと前混合等した状態で混合されることもできる。前混合されたシランカップリング剤は、無機フィラーの表面を取り囲むように存在し、その一部又は全部が無機フィラーに吸着又は結合する。これにより、後の溶融混合の際にシランカップリング剤の揮発を低減できる。また、無機フィラーに吸着又は結合しないシランカップリング剤が縮合して溶融混合が困難になることも防止できる。さらに、押出成形の際に所望の形状を得ることもできる。
 このような混合方法として、好ましくは、有機過酸化物の分解温度未満の温度、好ましくは室温(25℃)で有機過酸化物と無機フィラーとシランカップリング剤を、好ましくは1~10分程度、前混合(分散)した後に、得られた混合物とベースゴムとを溶融混合させる方法が挙げられる。
 また、無機フィラーとシランカップリング剤と有機過酸化物とを混合する方法としては、特に限定されず、有機過酸化物は無機フィラー等と同時に混合されても、また無機フィラーとシランカップリング剤との混合段階のいずれにおいて混合されてもよい。
 例えば、有機過酸化物は、シランカップリング剤と混合した後に無機フィラーと混合されてもよいし、シランカップリング剤と分けて別々に無機フィラーに混合されてもよい。本発明においては、有機過酸化物とシランカップリング剤とは実質的に一緒に混合した方がよい。一方、生産条件によっては、シランカップリング剤のみを無機フィラーに混合し、次いで有機過酸化物を混合してもよい。すなわち、工程(1)において、無機フィラーはシランカップリング剤と予め混合したものを用いることができる。
 有機過酸化物は、他の成分と混合させたものでもよいし、単体でもよい。
 有機過酸化物と無機フィラーとシランカップリング剤の混合方法においては、上記分解温度未満の温度が保持されている限り、ゴム成分又は樹脂成分が存在していてもよい。
 無機フィラーとシランカップリング剤と有機過酸化物との混合方法として、湿式処理、乾式処理等の混合方法が挙げられる。具体的には、アルコールや水等の溶媒に無機フィラーを分散させた状態でシランカップリング剤を加える湿式処理、加熱又は非加熱で両者を加え混合する乾式処理、及び、その両方が挙げられる。本発明においては、無機フィラー、好ましくは乾燥させた無機フィラー中にシランカップリング剤を、加熱又は非加熱で加え混合する乾式処理が好ましい。
 この前混合は、好ましくは、バンバリーミキサーやニーダー等のミキサー型混練機で行われる。このようにすると、ベースゴム同士の過剰な架橋反応を防止することができ、外観が優れたものとなる。なお、前混合は、ヘンシェルミキサー等の混合機を用いてもよく、また人手により混合してもよい。
 湿式混合では、シランカップリング剤と無機フィラーとの結合力が強くなるため、シランカップリング剤の揮発を効果的に抑えることができるが、ベースゴムへのグラフト化反応が進みにくくなることがある。一方、乾式混合では、無機フィラーとシランカップリング剤の結合力が比較的弱くなるため、効率的にグラフト化反応が進み、シラノール縮合反応が進みやすくなる。
 上記前混合する混合方法においては、次いで、得られた混合物とベースゴムの全部又は一部とを、有機過酸化物の分解温度以上に加熱しながら、溶融混練する。
 工程(a)においては、シラノール縮合触媒を実質的に混合せずに上述の各成分を混練することが好ましい。これにより、シランカップリング剤の縮合反応を抑えることができ、溶融混合しやすく、また押出成形の際に所望の形状を得ることができる。ここで、「実質的に混合せず」とは、不可避的に存在するシラノール縮合触媒をも排除するものではなく、シランカップリング剤のシラノール縮合による上述の問題が生じない程度に存在していてもよいことを意味する。例えば、工程(a)において、シラノール縮合触媒は、ベースゴム100質量部に対して0.01質量部以下であれば存在していてもよい。
 工程(1)において、上記添加剤、特に酸化防止剤や金属不活性剤は、いずれの工程で又は成分に混合されてもよいが、キャリアゴムに混合されるのがよい。例えば、酸化防止剤をシランマスターバッチに多量(例えば1質量部以上)に添加するとラジカル捕捉効果等により架橋阻害を生じ、結果グラフト化反応が十分に進行しないことがある。
 このようにして、工程(a)を行い、シランマスターバッチ(シランMBともいう)が調製される。このシランMBは、後述するように、工程(1)で調製される溶融混合物(シラン架橋性ゴム組成物)の製造に、好ましくは、シラノール縮合触媒又は後述する触媒マスターバッチとともに、用いられる。シランMBは、後述の工程(2)により成形可能な程度にシランカップリング剤がベースゴムにグラフトしたシラン架橋性ゴム(シラングラフトゴム)を含有している。
 本発明の製造方法において、次いで、工程(a)でベースゴムの一部を溶融混合する場合には、ベースゴムの残部とシラノール縮合触媒とを溶融混合して、触媒マスターバッチ(触媒MBともいう)を調製する工程(b)を行う。したがって、工程(a)でベースゴムの全部を溶融混合する場合は、工程(b)を行わなくてもよく、また他の樹脂とシラノール縮合触媒とを混合してもよい。
 キャリアゴムとしてのゴムとシラノール縮合触媒との混合割合は、特に限定されないが、好ましくは、工程(1)における上記含有量を満たすように、設定される。
 混合は、均一に混合できる方法であればよく、ゴムの溶融下で行う混合(溶融混合)が挙げられる。溶融混合は上記行程(a)の溶融混合と同様に行うことができる。例えば、混合温度は、80~250℃、より好ましくは100~240℃で行うことができる。その他の条件、例えば混合時間は適宜設定することができる。
 工程(b)において、ベースゴムの残部に代えて、又は、加えて他のゴム成分若しくは樹脂成分をキャリアゴムとして用いることができる。すなわち、工程(b)は、工程(a)でベースゴムの一部を溶融混合する場合のベースゴムの残部、又は、工程(a)で用いたベースゴム以外のゴム成分若しくは樹脂成分と、シラノール縮合触媒とを溶融混合して、触媒MBを調製してもよい。キャリアゴムが他のゴム成分又は樹脂成分である場合、工程(a)においてシラン架橋を早く促進させることができるうえ、成形中にブツが生じにくい点で、他のゴム成分又は樹脂成分の含有量は、ベースゴム100質量部に対して、好ましくは1~50質量部、より好ましくは2~30質量部、さらに好ましくは4~20質量部である。
 また、工程(b)において、無機フィラーを用いてもよい。この場合、無機フィラーの含有量は、特には限定されないが、キャリアゴム100質量部に対して、350質量部以下が好ましい。無機フィラーの含有量が多いとシラノール縮合触媒が分散しにくく、架橋反応が進行しにくくなる。
 このようにして調製される触媒MBは、シラノール縮合触媒及びキャリアゴム、所望により添加される無機フィラーの混合物である。
 この触媒MBは、シランMBとともに、工程(1)で調製されるシラン架橋性ゴム組成物の製造に、マスターバッチセットとして、用いられる。
 本発明の製造方法において、次いで、シランMBと、シラノール縮合触媒又は触媒MBとを混合して、溶融混合物を得る工程(c)を行う。
 混合方法は、上述のように均一な溶融混合物を得ることができれば、どのような混合方法でもよい。
 混合は、工程(a)の溶融混合と基本的に同様である。混合は、ベースゴムやその他樹脂成分が溶融する温度で混練する。混合温度は、ベースゴム又はキャリアゴムの溶融温度に応じて適宜に選択される。工程(c)において、混合温度は、例えば、好ましくは100~250℃、より好ましくは120~220℃である。その他の条件、例えば混合(混練)時間は適宜設定することができる。
 工程(c)においては、シラノール縮合反応を避けるため、シランMBとシラノール縮合触媒が混合された状態で高温状態に長時間保持されないことが好ましい。
 この工程(c)は、シランMBとシラノール縮合触媒とを混合して溶融混合物を得る工程であればよく、シラノール縮合触媒及びキャリアゴムを含有する触媒MBとシランMBとを溶融混合する工程であるのが好ましい。
 工程(1)において、工程(a)~(c)は、同時又は連続して行うことができる。
 このようにして、工程(a)~(c)(工程(1))、すなわち本発明のシラン架橋性ゴム組成物の製造方法を行い、溶融混合物として、本発明のシラン架橋性ゴム組成物が製造される。このシラン架橋性ゴム組成物は、ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴムにシランカップリング剤がグラフト化したシラン架橋性ゴムと、ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シラノール縮合触媒0.0001~0.5質量部とを含有する。
 このシラン架橋性ゴム組成物中に含有されるシラン架橋性ゴムは、シランカップリング剤がベースゴムにグラフトしたシラン架橋性ゴムである。このシラン架橋性ゴムにおいて、シランカップリング剤の反応部位は、無機フィラーと結合又は吸着していてもよいが、後述するようにシラノール縮合していない。したがって、シラン架橋性ゴムは、無機フィラーと結合又は吸着したシランカップリング剤がベースゴムにグラフトした架橋性ゴムと、無機フィラーと結合又は吸着していないシランカップリング剤がベースゴムにグラフトした架橋性ゴムとを少なくとも含む。また、シラン架橋性ゴムは、無機フィラーが結合又は吸着したシランカップリング剤と、無機フィラーが結合又は吸着していないシランカップリング剤とを有していてもよい。さらに、シランカップリング剤と未反応のゴム成分を含んでいてもよい。
 シラン架橋性ゴムは、ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴム100質量部にシランカップリング剤1~15質量部が70~100質量%のグフラト化率でグラフト化反応してなるゴムであることが好ましい。
 シランカップリング剤がベースゴムにグラフト化反応するときのシランカップリング剤の反応割合(グラフト化率ともいう)は、本発明の効果を損なわない範囲であれば特に限定されない。本発明において、グラフト化率は、一義的に定めることは難しいが、例えば、後述する実施例に記載の測定方法によるグラフト化率としては、70~100質量%(シラングラフト量は0.7~15質量部)であることが好ましく、75~100質量%(シラングラフト量は0.75~15質量部)であることがより好ましく、80~100質量%(シラングラフト量は0.8~15質量部)であることがさらに好ましい。グラフト化率が70~100質量%であると、ベースゴムの架橋が十分になり、上記の優れた特性を付与するのに好適である。
 本発明において、グラフト化率は、有機過酸化物の種類又は含有量、シランカップリング剤の種類、密閉型ミキサーの使用等によって、所定の範囲に設定できる。
 工程(1)により得られるシラン架橋性ゴム組成物は、シランカップリング剤がシラノール縮合していない未架橋体である。実際的には、工程(c)で溶融混合されると、一部架橋(部分架橋)は避けられないが、得られるシラン架橋性ゴム組成物について、少なくとも工程(2)で成形可能な成形性が保持されたもの(未架橋状態又は部分架橋状態)とする。
 本発明のシラン架橋ゴム成形体の製造方法は、次いで、工程(2)及び工程(3)を行う。
 本発明のシラン架橋ゴム成形体の製造方法において、得られた溶融混合物を成形して成形体を得る工程(2)を行う。この工程(2)は、溶融混合物を成形できればよく、本発明の製品の形態に応じて、適宜に成形方法及び成形条件が選択される。成形方法は、押出機を用いた押出成形、射出成形機を用いた射出成形、プレス成形機を用いたプレス成形、その他の成形機を用いた成形が挙げられる。押出成形は、本発明の製品が電線又は光ファイバケーブルである場合に、好ましい。
 成形工程(2)を押出成形により行う場合、本発明のシラン架橋性ゴム組成物の成形速度(押出速度)は、特に限定されず、例えば、線速で1~100m/分に設定できる。
 また、押出成形は、高温で行うこともできる。成形温度を高温に設定すると、上記の高速な押出速度での押出成形が容易になる。特に、本発明の製造方法では、優れた外観をも実現できる。成形温度として、高温に設定する場合、例えば、150℃以上に設定でき、好ましくは180~250℃に設定することもできる。
 また、工程(2)は、工程(c)と同時に又は連続して、行うことができる。すなわち、工程(c)の溶融混合の一実施態様として、溶融成形の際、例えば押出成形の際に、又は、その直前に、シランMBやシラノール縮合触媒又は触媒MB等の成形原料を溶融混合する態様が挙げられる。例えば、ドライブレンド等のペレット同士を常温又は高温で混ぜ合わせて成形機に導入(溶融混合)してもよいし、混ぜ合わせた後に溶融混合し、再度ペレット化をして成形機に導入してもよい。より具体的には、シランMBとシラノール縮合触媒又は触媒MBとの成形材料を被覆装置内で溶融混練し、次いで、導体等の外周面に押出被覆して、所望の形状に成形する一連の工程を採用できる。
 このようにして、シラン架橋性ゴム組成物の成形体が得られる。この成形体はシラン架橋性ゴム組成物と同様に、一部架橋は避けられないが、工程(2)で成形可能な成形性を保持する部分架橋状態にある。したがって、この発明のシラン架橋ゴム成形体は、工程(3)を実施することによって、架橋又は最終架橋された成形体とされる。
 本発明のシラン架橋ゴム成形体の製造方法においては、工程(2)で得られた成形体を水と接触させる工程を行う。これにより、シランカップリング剤の反応部位が縮合して架橋反応が起こる。具体的には、反応部位が加水分解されてシラノールとなり、成形体中に存在するシラノール縮合触媒によりシラノールの水酸基同士が縮合して架橋反応が起こる。こうして、シランカップリング剤がシラノール縮合して架橋したシラン架橋ゴム成形体を得ることができる。
 この工程(3)の処理自体は、通常の方法によって行うことができる。シランカップリング剤同士の縮合は、常温で放置するだけで進行する。したがって、工程(3)において、成形体を水に積極的に接触させる必要はない。この架橋反応を促進させるために、成形体を水分と積極的に接触させることもできる。例えば、温水への浸水、湿熱槽への投入、高温の水蒸気への暴露等の積極的に水に接触させる方法を採用できる。また、その際に水分を内部に浸透させるために圧力をかけてもよい。このような手法は、被覆厚さの大きい電線やその他体積の大きい成形体の場合、有効である。
 このようにして、本発明のシラン架橋ゴム成形体の製造方法が実施され、本発明のシラン架橋性ゴム組成物からシラン架橋ゴム成形体が製造される。このシラン架橋ゴム成形体は、後述するように、シラン架橋性ゴムがシランカップリング剤を介して架橋した架橋ゴムを含んでいる。このシラン架橋ゴム成形体の一形態は、シラン架橋ゴムと、無機フィラーとを含有する。ここで、無機フィラーはシラン架橋ゴムのシランカップリング剤に結合していてもよい。したがって、このシラン架橋ゴムは、複数の架橋ゴムがシランカップリング剤により無機フィラーに結合又は吸着して、無機フィラー及びシランカップリング剤を介して結合(架橋)した架橋ゴムと、上記架橋性ゴムのシランカップリング剤の反応部位が加水分解して互いにシラノール縮合反応することにより、シランカップリング剤を介して架橋した架橋ゴムとを少なくとも含む。また、シラン架橋ゴムは、無機フィラー及びシランカップリング剤を介した結合(架橋)と、シランカップリング剤を介した架橋とが混在していてもよい。さらに、シランカップリング剤と未反応のゴム成分及び/又は架橋していないシラン架橋性ゴムを含んでいてもよい。
 本発明の製造方法におけるグラフト化の理由についてはまだ定かではないが、以下のように考えられる。すなわち、ベースゴムを有機過酸化物の存在下、無機フィラー及びシランカップリング剤とともに有機過酸化物の分解温度以上で加熱混練すると、有機過酸化物が分解してラジカルを発生し、ベースゴムに対してシランカップリング剤のグラフト化が起こる。
 また、上記溶融混合での加熱により、部分的には、シランカップリング剤と無機フィラーの表面での水酸基等の基との共有結合による化学結合の形成反応も起きる。
 本発明では、工程(3)で、最終的な架橋反応を行うこともあり、ベースゴムにシランカップリング剤を上述のように特定量配合すると、成形時の押し出し加工性(成形性)を損なうことなく無機フィラーを多量に配合することが可能になる。これにより、優れた成形性を確保しながらも、優れた成形体の外観、さらには機械特性等を併せ持つことができる。
 本発明のシラン架橋ゴム成形体の製造方法は、上記範囲のジエン量を有するエチレン-αオレフィンゴムを上記含有率で含有するベースゴムを上記のシラン架橋法により、混合、成形及び架橋する。したがって、優れた高温圧縮永久歪、耐オゾン性及び優れた外観を兼ね備えたシラン架橋ゴム成形体を製造することができる。
 また、本発明シラン架橋ゴム成形体の製造方法は、上記ベースゴムを上記のシラン架橋法により、成形及び架橋するものであるから、架橋反応を行うに当たり加硫設備を不要とし、EPゴムの加硫法に対して、生産性を高めることができる。
 さらに、本発明のシラン架橋ゴム成形体の製造方法は、成形時にベースゴムの架橋を抑えることができ、必要により、成形温度を上記のように高温に設定することができ、さらに線速を高く設定することもできる。
 本発明の上記プロセスの作用のメカニズムはまだ定かではないが次のように推定される。すなわち、ベースゴムとの混練り前及び/又は混練り時に、無機フィラー及びシランカップリング剤を用いることにより、シランカップリング剤は、その反応部位で無機フィラーの化学結合しうる基と結合して、保持される。又は、無機フィラーと結合することなく、無機フィラーの穴や表面に物理的又は化学的に吸着して、保持される。このように、無機フィラーに対して、強い結合で結びつくシランカップリング剤(その理由は、例えば、無機フィラー表面の化学結合しうる基等との化学結合の形成が考えられる)と、弱い結合で結びつくシランカップリング剤(その理由は、例えば、水素結合による相互作用、イオン、部分電荷若しくは双極子間での相互作用、吸着による作用等が考えられる)を形成できる。この状態で、有機過酸化物の存在下で、ベースゴムと混練りを行うと、後述するようにシランカップリング剤がゴム組成物(ゴム混練物)からほとんど揮発することなく、もう一方の末端に存在するグラフト化反応部位でベースゴムのグラフト化反応可能な部位と結合する。こうして、無機フィラーとの結合が異なる、シランカップリング剤がベースゴムにグラフト化反応したシラン架橋性ゴムが形成される。
 上述の混練りにより、シランカップリング剤のうち無機フィラーと強い結合を有するシランカップリング剤は、無機フィラーとの結合が保持され、かつ、グラフト化反応部位がベースゴムのグラフト化反応可能な部位(有機過酸化物の分解で生じたラジカルによる水素ラジカルの引き抜きで生じたゴムのラジカル化部位)とグラフト化反応する。特に、1つの無機フィラー粒子の表面に複数のシランカップリング剤が強い結合を介して結合した場合、この無機フィラー粒子を介してゴムが複数結合する。これらの反応又は結合により、この無機フィラーを介した架橋ネットワークが広がる。すなわち、無機フィラーに結合しているシランカップリング剤がベースゴムにグラフト化反応してなるシラン架橋性ゴムが形成される。
 無機フィラーと強い結合を有するシランカップリング剤の場合は、このシラノール縮合触媒による水存在下での縮合反応が生じにくく、無機フィラーとの結合が保持される。シラノール縮合反応が生じにくい理由は無機フィラーとシランカップリング剤の結合エネルギーが非常に高く、シラノール縮合触媒下にあっても、縮合反応が起こらないからであると考えられる。このように、ベースゴムと無機フィラーの結合が生じ、シランカップリング剤を介したゴムの架橋が生じる。これによりベースゴムと無機フィラーの密着性が強固になり、引張強度(機械強さ)及び圧縮永久歪みにも優れた成形体が得られる。
 また、1つの無機フィラー粒子表面に複数のシランカップリング剤を複数結合でき、高い機械強さを得ることができる。
 このように、無機フィラーに対して強い結合で結合したシランカップリング剤は、引張強度の向上、圧縮永久歪みの抑制に寄与すると考えられる。
 一方、シランカップリング剤のうち無機フィラーと弱い結合を有するシランカップリング剤は、無機フィラーの表面から離脱して、シランカップリング剤のグラフト化反応部位が、ベースゴムのグラフト化反応可能な部位と反応してグラフト化反応が起こる。すなわち、無機フィラーから離脱したシランカップリング剤がベースゴムにグラフト化反応したシラン架橋性ゴムが形成される。このようにして生じたグラフト部分のシランカップリング剤は、その後シラノール縮合触媒と混合され、水分と接触することにより、縮合反応(架橋反応)が生じる。この架橋反応により得られたシラン架橋ゴム成形体の引張強度は高くなり、耐熱性に加えて、圧縮永久歪み、特に高温圧縮永久歪みの小さいシラン架橋ゴム成形体を得ることが可能となる。このように、無機フィラーに対して弱い結合で結合したシランカップリング剤は、架橋度の向上、すなわち耐熱性の向上と、圧縮永久歪みの抑制に寄与すると考えられる。
 ところで、工程(a)での溶融混合において、三元共重合体からなるゴムは、有機過酸化物の存在下でジエン構成成分の架橋反応も起こりうる。しかし、ジエン含有量が上記範囲内にある場合、シランカップリング剤のゴム(ジエン構成成分以外)へのグラフト化反応が優位に起こる。特に工程(a)における上記の好ましい前混合法では、シランカップリング剤、無機フィラー及び有機過酸化物を予め混合する。したがって、上記シラン架橋法に基づく特性の改善に加えて、ジエン含有量の少ないエチレン-αオレフィンゴムを用いても、得られるシラン架橋ゴム成形体において、優れた耐オゾン性を確保しつつ、圧縮永久歪み、特に高温圧縮永久歪みを抑制することができる。また、優れた耐油性を発揮する。
 特に、本発明では、工程(3)における、水存在下でのシラノール縮合触媒を使用した縮合による架橋反応を、成形体を形成した後に行う。これにより、例えば特許文献1に記載の方法のように押出成形と架橋反応を同時に行う方法と比較して、成形体形成までの工程での作業性が優れる。また、シラノール縮合触媒を使用した縮合反応は、水分のほとんど存在しない押出機内では進行しないため、工程(2)において高温での押出成形が可能になる。したがって、高温及び高速での成形も可能となる。
 さらに、本発明の製造方法によりシランカップリング剤を無機フィラーに混合すると、上記のように、シランカップリング剤同士の縮合が抑えられる等により、外観に優れたものとなる。しかも、本発明において、3~15質量部、特に4質量部を超え15質量部以下のシランカップリング剤を無機フィラーに混合する場合には、上述したように、工程(1)、特に工程(a)での溶融混練時におけるゴム同士の架橋反応を効果的に抑えることができる。また、シランカップリング剤は無機フィラーに結合しており、工程(1)、特に工程(a)での溶融混練中にも揮発しにくく、遊離しているシランカップリング剤同士の反応も効果的に抑えることができる。さらに、エチレン-αオレフィンゴムはジエン含有量が5質量%であり、特にジエン成分同士の架橋反応を防止できる。
 したがって、押出機を停止した後に再開しても外観不良が発生しにくく、外観の良好なシラン架橋ゴム成形体を製造できる。ここで、一旦停止後、再開するとは、ベースゴムの組成、加工条件等に左右され一義的に述べることはできない。例えば、190℃で、間隔30分間まで、好ましくは90分間まで再開できることをいう。また、200℃では、間隔3分間まで、好ましくは10分間まで再開できることをいう。
 本発明のシラン架橋ゴム成形体は、少なくとも下記の特性(測定方法は実施例と同じ。)を有し、外観にも優れる。
 すなわち、シラン架橋ゴム成形体は、広い温度範囲での圧縮永久歪みに優れる。
 例えば、70℃での圧縮永久歪み及び150℃での圧縮永久歪みは、いずれも、好ましくは45%以下であり、より好ましくは40%以下であり、さらに好ましくは30%以下であり、特に好ましくは20%以下である。下限は特に限定されないが、70℃での圧縮永久歪み及び150℃での圧縮永久歪みは、いずれも、例えば10%である。このように、70~150℃での温度範囲において優れた圧縮永久歪みを発揮する。
 シラン架橋ゴム成形体は、耐オゾン性に優れる。例えば、オゾン濃度50ppm、40℃の雰囲気下に24時間以上暴露しても、引張伸びの低下が小さく、オゾンに対する高い耐久性を発揮する。
 このシラン架橋ゴム成形体は、好ましくは後述するように耐油性にも優れる。
 本発明のシラン架橋性ゴム組成物は、上記優れた特性を有するシラン架橋ゴム成形体を、加硫設備を必要とせず、生産性よく、製造できる。
 本発明のシラン架橋ゴム成形品は、シラン架橋ゴム成形体を含む製品でもよく、シラン架橋ゴム成形体のみからなる製品でもよい。シラン架橋ゴム成形体を含む製品としては、シラン架橋ゴム成形体と、他の部材、例えば支持体、支持枠等とからなる製品が挙げられる。本発明において、製品には、半製品、部品、部材も含む意味で用いる。
 本発明のシラン架橋ゴム成形品として、各種産業用ケーブル(電線を含む)の被覆材、ゴムモールド材(例えば、自動車用グラスランチャンネル、ウェザーストリップ、ゴムホース、ワイパーブレードゴム、ガスケット、防振ゴム)等が挙げられる。
 本発明のシラン架橋ゴム成形品は、好ましくは、優れた圧縮永久歪み及び高い耐オゾン性の少なくとも一方の特性が要求される製品とされる。このような製品としては、特に限定されない。例えば、70~150℃での温度範囲において45%以下の圧縮永久歪みが求められる製品、オゾン濃度50ppm、40℃の雰囲気下に、24時間、特に300時間暴露しても、引張伸びの低下が50%以下の耐オゾン性が求められる製品、又は、上記圧縮永久歪み及び上記耐オゾン性が求められる製品が挙げられる。さらには耐油性が要求される製品とされる。具体的には、本発明のシラン架橋ゴム成形品として、各種産業用ケーブルの被覆材のなかでも屋外用産業ケーブルや、ゴムモールド材のなかでも、自動車用ゴムモールド材、ウェザーストリップ又はガスケット等が挙げられる。
 本発明の製造方法は、優れた圧縮永久歪みが要求される製品、耐オゾン性が求められる製品、さらには耐油性が要求される製品、ゴム材料等の製品の構成部品又はその部材の製造に適用することができる。
 上記のように、本発明の製造方法は、優れた上記特性を有するシラン架橋ゴム成形体を、加硫設備を必要とせず、さらには生産性よく製造することができる。したがって、本発明の製造方法は、優れた圧縮永久歪み及び高い耐オゾン性の少なくとも一方の特性が要求される製品等に特に好ましく適用することができる。
 本発明の製造方法は、上記製品のなかでも、特に電線及び光ケーブルの製造に好適に適用され、これらの被覆材(絶縁体、シース)を形成することができる。
 本発明の製品が電線、ケーブル等の押出成形品である場合、好ましくは、成形材料を押出機(押出被覆装置)内で溶融混練しながら、導体等の外周に押し出して導体等を被覆する等により、製造できる(工程(c)及び工程(2))。このような製品は、無機フィラーを(大量に)加えたシラン架橋性ゴム組成物を電子線架橋機等の特殊な機械も、ゴムの加硫設備も使用することなく汎用の押出被覆装置を用いて、導体の周囲に、又は抗張力繊維を縦添え若しくは撚り合わせた導体の周囲に押出被覆することにより、成形することができる。例えば、導体としては軟銅の単線又は撚り線等を用いることができる。また、導体としては裸線の他に、錫メッキしたものやエナメル被覆絶縁層を有するものを用いることもできる。導体の周りに形成される絶縁層(本発明のシラン架橋性ゴム組成物又はシラン架橋ゴム成形体からなる被覆層)の肉厚は、特に限定されないが、一般的には、0.15~5mm程度である。
 以下、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれらに限定されない。
 表1において、各例の含有量に関する数値は特に断らない限り質量部を表す。
(実施例1~7及び比較例1~9)
 実施例1~7及び比較例1~9は、下記成分を用いて、それぞれの諸元を表1に示す条件に設定して、実施した。
 表1中に示す各化合物(成分)の詳細を以下に示す。
<ゴム成分>
(EPゴム)
 EPM-1及びEPDM-1~EPDM-5を、バンバリーミキサーを用いて、2種以上のEPM又はEPDMを150℃で10分間にわたって溶融混合した後、ペレット化して、調製した。調製したEPM及びEPDMそれぞれの、ムーニー粘度(ML(1+4)125℃)、エチレン含有量及びジエン含有量(測定は赤外線吸収分光法による)を表1に示す。
 「EPM-1」(エチレン-プロピレンゴム)
 「EPDM-1」(エチレン-プロピレン-エチリデンノルボルネンゴム)
 「EPDM-2」(エチレン-プロピレン-エチリデンノルボルネンゴム)
 「EPDM-3」(エチレン-プロピレン-エチリデンノルボルネンゴム)
 「EPDM-4」(エチレン-プロピレン-エチリデンノルボルネンゴム)
 「EPDM-5」(エチレン-プロピレン-エチリデンノルボルネンゴム)
 「EPM-2」(EPT0045、商品名、三井化学社製、エチレン-プロピレンゴム)
 「EPDM-6」(ノーデル3640、商品名、ダウ・ケミカル社製、エチレン-プロピレン-エチリデンノルボルネンゴム)
 「EPDM-7」(ノーデル4760P、商品名、ダウ・ケミカル社製、エチレン-プロピレン-エチリデンノルボルネンゴム)
 「EPDM-8」(EPT3091、商品名、三井化学社製、エチレン-プロピレン-エチリデンノルボルネンゴム)
<樹脂成分>
(ポリプロピレン系樹脂)
 「PM940M」(商品名、サンアロマー社製、r-PP、MFR(230℃、21.18N)30g/10分)
<無機フィラー>
 「アエロジル200」(アエロジル(登録商標)、日本アエロジル社製、親水性フュームドシリカ、平均1次粒径12nm)
 「クリスタライト5X」(商品名、龍森社製、結晶質シリカ、平均1次粒径1.4μm)
 「キスマ5L」(キスマ(登録商標)、水酸化マグネシウム、協和化学社製、平均1次粒径0.8μm)
<シランカップリング剤>
 「KBM1003」(商品名、信越シリコーン社製、ビニルトリメトキシシラン)
<有機過酸化物>
 「パーヘキサ25B」(商品名、日本油脂社製、2,5-ジメチル-2,5-ジ(tert-ブチルパーオキシ)ヘキサン、1分間の半減期温度179.8℃)
<シラノール縮合触媒>
 「アデカスタブOT-1」(商品名、ADEKA社製、ジオクチルスズジラウレート)
 実施例1~7及び比較例1~5において、EPゴムの一部を工程(a)で用い、EPゴムの残部(5質量部)を工程(b)で触媒MBのキャリアゴムとして用いた。
 無機フィラーとシランカップリング剤と有機過酸化物とを表1に示す質量比で、室温(25℃)下で、混合した。得られた混合物とEPゴムの一部を含むベースゴムとを、2Lバンバリーミキサー(日本ロール社製)を用いて、有機過酸化物の分解温度以上の温度(185℃)において5分間にわたり溶融混合した後、材料排出温度130℃で排出し、ペレット化してシランMBを得た(工程(a))。得られたシランMBは、EPゴムにシランカップリング剤がグラフト化反応したシラン架橋性EPゴムを含有している。
 また、EPゴムの残部とシラノール縮合触媒0.1質量部とを150℃でバンバリーミキサー(日本ロール社製)にて溶融混合し、材料排出温度130℃で排出して、触媒MBを得た(工程(b))。
 工程(a)で得たシランMBと工程(b)で得た触媒MBを電線被覆用押出成形機(L/D(スクリュー有効長Lと直径Dとの比)が25で、スクリュー直径が25mmφ)の直上で、25℃で約1分間にわたり、ドライブレンドして、ドライブレンド物を得た。
-電線の製造-
 得られたドライブレンド物を、上記電線被覆用押出成形機に投入して、下記押出温度条件により、0.8mmφの導体(軟銅線)の外周に仕上がり外径1.2mmφとなるように、線速10m/分で、押出被覆して、電線前駆体を製造した。
 押出温度条件は、電線被覆用押出成形機のシリンダー部分における温度制御をフィーダー側からダイス側に向けて3ゾーンC1、C2、C3に分け、C1ゾーンを150℃、C2ゾーンを170℃、C3ゾーンを190℃に設定し、さらにダイス温度(成形温度)を200℃に設定した。
 上記ドライブレンド物を電線被覆用押出成形機内で押出成形前に溶融混合することにより、シラン架橋性ゴム組成物を調製した。このシラン架橋性ゴム組成物は、上記シラン架橋性EPゴムと、表1に示す含有量の無機フィラー及びシラノール縮合触媒を、含有している。
 このようにして得られた電線前駆体を、25℃、50%RH環境に24時間放置することにより、水と接触させて、電線を製造した。この電線は、EPゴムがシランカップリング剤により架橋したシラン架橋EPゴムと表1に示す含有量の無機フィラーとを含有するシラン架橋ゴム成形体を被覆材として有していた。
-円柱状ゴム成形品の製造-
 上記電線の製造において、導体を用いることなく、ドライブレンド物を押出成形したこと以外は上記電線の製造と同様にして、直径約35mmの溶融ストランドを得た。得られた溶融ストランドを約15mmの長さに切り分け、溶融状態のまま、29.0mmφ、厚さ12.5mmの円柱状金型に押し込み、プレス成形機を用いて、プレス予備成形した。
 その後、プレス成形機を用いて、円柱状金型を150℃で10分予熱した後、プレス予備成形したストランドを予熱した円柱状金型に入れ、150℃で3分、圧力4MPaでプレス成形した。これにより、29.0mmφ、12.5mm厚の円柱状ゴム成形品を得た。
 このようにして得られた円柱状ゴム成形品を、25℃、50%RH環境に24時間放置することにより、水と接触させて、円柱状ゴム成形品を製造した。この円柱状ゴム成形品は、EPゴムがシランカップリング剤により架橋したシラン架橋EPゴムと表1に示す含有量の無機フィラーとを含有するシラン架橋ゴム成形体であった。
(比較例6~9)
-電線の製造-
 表1に示す割合の有機過酸化物を、8インチオープンロールを用いて、表1に示すEPゴム100質量部に100℃で練り込み、ペレット化した。得られたペレットを、上記電線被覆用押出成形機を用いて、実施例1の電線の製造と同様にして上記導体上に押出被覆して、電線前駆体を製造した。
 ここで、比較例6~9については、実施例1と同様の押出温度条件で成形すると押出成形機内で、架橋反応が生じて、押出成形ができず、押出成形できたものであっても電線前駆体の外観を損なった。そこで、押出成形機のC1~C3ゾーンを90℃、ダイス温度を100℃に設定して、押出成形した。
 得られた電線前駆体を、温度200℃、圧力10MPaの水蒸気環境に設定された、長さ20mの化学架橋管内を通過させることで、架橋し、電線を製造した。
-円柱状ゴム成形品の製造-
 上記電線の製造において、導体を用いることなく、下記押出温度条件でペレットを押出成形したこと以外は上記電線の製造と同様にして、直径35mmの溶融ストランドを得た。次いで、得られた溶融ストランドを用いて、実施例1の「円柱状ゴム成形品の製造」と同様(加熱温度及びプレス圧力も同じ)にして、プレス予備成形を行った。
 その後、プレス成形機を用いて、金型を170℃で10分予熱した後、プレス予備成形したストランドを予熱した金型に入れ、170℃で60分、圧力4MPaでプレス成形した。これにより、29.0mmφ、12.5mm厚の円柱状ゴム成形品を製造した。
 得られた各電線について、下記のようにしてグラフト化率を確認し、その結果を表1に示した。
 本発明において、シランカップリング剤のゴムへのグラフト化反応のグラフト化率は、次のようにして、測定した。まず、得られた各電線から任意の箇所の被覆をサンプリングした試験片を、80℃の真空環境下で24時間乾燥させた後、赤外線吸収分光法によって、3750cm-1付近に見られる吸収ピークから孤立シラノール(未反応のシランカップリング剤)の質量を定量した。次いで、得られた値と、実際に用いたシランカップリング剤の質量(含有量)から、下記計算式によって、グラフト化率を算出した。
 グラフト化率(質量%)={(実際に用いた質量-赤外線吸収分光法による孤立シラノールの質量)/実際に用いた質量)×100
 また、得られた各電線又は円柱状ゴム成形品について、下記試験をし、その結果を表1に示した。
<外観試験1>
 製造した各電線の外観を目視で観察して評価した。外観の評価は、電線の外観が優れていたものを「A」、外観に製品上問題があるほどブツが発生していたものを「D」とした。
<外観試験2(ゲルブツ促進試験)>
 上記「電線の製造」において、電線前駆体の製造中に押出被覆を停止後再開して製造した各電線の外観を目視で観察して評価した。
 外観の評価は、電線前駆体の製造中、上記成形温度下で押出機のスクリューを停止させ、シリンダー内に成形材料を10分以上滞留させた後、押出成形を再開しても、押出再開後5分経過後に製造された電線の外観にブツが確認されなかったものを「A」、シリンダー内に3分以上10分未満滞留させても、製造された電線の外観にブツが確認されなかったものを「B」、3分以上滞留させると、製造された電線外観に製品上問題があるほどブツが発生していたものを「D」とした。
 本発明において、外観試験2は、評価「B」が本発明の試験の合格レベルである。
<耐オゾン性>
 JIS K 6259に基づき、オゾン濃度50ppm、40℃の雰囲気下に各電線を、24時間、100時間及び300時間曝露した。この暴露試験前後の各電線の引張伸びを下記方法により測定し、下記式から算出した引張伸びの低下率により、下記基準で耐オゾン性を評価した。
 引張伸びの測定は、JIS C 3005に基づき、各電線から導体を引き抜いた管状片を用いて、標点間距離20mm、引張速度200mm/分で、行った。
 引張伸びの低下率(%)=[各時間曝露後の引張伸び/曝露前の引張伸び]×100
 評価基準は、各暴露時間において引張伸びの低下率が50%以上であれば合格と判断し、暴露時間が24時間まで合格した場合を「C」、100時間まで合格した場合を「B」、300時間でも合格した場合を「A」とした。暴露時間が24時間で不合格であった場合を「D」とした。
 本発明において、耐オゾン性は、評価「C」が本発明の試験の合格レベルである。
<圧縮永久歪み>
 JIS K 6262 A法に基づき、各例で製造した円柱状ゴム成形品を用いて、その圧縮永久歪を測定した。2枚の圧縮板とスペーサ(厚さは円柱状ゴム成形品の厚さの75%)を備えた圧縮装置を利用して、円柱状ゴム成形品を厚さ方向に25%分の圧縮を加え(圧縮率25%)、その状態で70℃又は150℃に加熱して22時間保持した。その後、23℃にて圧縮を開放し、30分間の冷却後(最終的な温度は23℃)、円柱状ゴム成形品の厚さを測定した。
 円柱状ゴム成形品の、圧縮前後の厚さから、以下の式によって、圧縮永久歪みを算出して、下記評価基準にて、評価した。
   式:CS=[(t-t)/(t-t)]×100
     式中、CS:圧縮永久歪み(%)
 t:円柱状ゴム成形品の圧縮前の厚さ(元の厚さ)(mm)
 t:スペーサの厚さ(mm)
 t:円柱状ゴム成形品の圧縮後の厚さ(圧縮装置から取り外して、30分後の厚さ)(mm)
 70℃での圧縮永久歪み及び150℃での圧縮永久歪みが、それぞれ、20%以下であった場合を「A」、20%を超え30%以下であった場合を「B」、30%を超え45%以下であった場合を「C」、45%を超えた場合を「D」とした。
 本発明において、圧縮永久歪は、評価「C」が本発明の試験の合格レベルである。
<耐油性試験>
 各電線から導体を引き抜いた管状片を、120℃に熱したASTM2号油中に18時間浸漬させた。この浸漬試験前後の各電線の引張伸びを下記方法により測定し、下記式から算出した引張伸びの低下率により、下記基準で耐油性を評価した。
 引張伸びの測定は、JIS C 3005に基づき、管状片を用いて、標点間距離20mm、引張速度200mm/分で、行った。
 引張伸びの低下率(%)=[浸漬後の引張伸び/浸漬前の引張伸び]×100
 評価基準は、引張伸びの低下率が60%以上であれば「A」と判断した。また、低下率が50%以上60%未満の場合を「B」、50%未満の場合を「D」とし、不合格とした。
 本発明において、耐油性は、評価「B」が本発明の試験の合格レベルである。
Figure JPOXMLDOC01-appb-T000002
 表1に示す結果から明らかなように、実施例1~7で製造されたシラン架橋ゴム成形品(電線又は円柱状ゴム成形品)は、いずれも、外観、耐オゾン性及び圧縮永久歪みに優れ、さらに好ましくは優れた耐油性を有していた。また、各実施例においては、いずれも、200℃の高温で、押出成形が可能であった。しかも、押出機を一旦停止後再開しても、外観に優れた電線を製造できた。
 これに対して、ジエン含有量が5質量%を超えるEPDMを用いた比較例1は、十分な耐オゾン性及び耐油性を有していなかった。押出機を一旦停止後再開すると外観が低下した。
 また、無機フィラーの含有量が少ない比較例2は圧縮永久歪みが大きく、無機フィラーの含有量が多い比較例3は耐オゾン性及び圧縮永久歪みの双方が劣っていた。
 さらに、シランカップリング剤の含有量が少ない比較例4は圧縮永久歪みが大きく、シランカップリング剤の含有量が多い比較例5は外観が悪かった。
 シラン架橋法ではないゴム架橋法である比較例6~8は、いずれも、圧縮永久歪みが大きく、比較例6は及び耐油性も十分ではなかった。一方、シラン架橋法ではないゴム架橋法であって、ジエン含有量が5質量%を超えるEPゴムを使用した比較例9は耐オゾン性及び耐油性に劣った。また、比較例8及び9は外観試験2にも劣った。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2015年3月3日に日本国で特許出願された特願2015-041471、及び、2015年11月27日に日本国で特許出願された特願2015-232032に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。

Claims (10)

  1.  ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴムにシランカップリング剤がグラフト化したシラン架橋性ゴムと、前記ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シラノール縮合触媒0.0001~0.5質量部とを含有するシラン架橋性ゴム組成物。
  2.  前記ジエン含有量が、2質量%以下である請求項1に記載のシラン架橋性ゴム組成物。
  3.  前記シラン架橋性ゴム組成物が、前記ベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを溶融混合してなる請求項1又は2に記載のシラン架橋性ゴム組成物。
  4.  前記無機フィラーが、金属水和物、タルク、クレー、シリカ及びカーボンブラックからなる群より選ばれた少なくとも1種である請求項1~3のいずれか1項に記載のシラン架橋性ゴム組成物。
  5.  前記ベースゴムが、ポリプロピレン系樹脂を1~30質量%含む請求項1~4のいずれか1項に記載のシラン架橋性ゴム組成物。
  6.  前記シランカップリング剤の含有量が、前記ベースゴム100質量部に対して、3~15質量部である請求項1~5のいずれか1項に記載のシラン架橋性ゴム組成物。
  7.  請求項1~6のいずれか1項に記載のシラン架橋性ゴム組成物を成形した後に水と接触させてなるシラン架橋ゴム成形体。
  8.  請求項7に記載のシラン架橋ゴム成形体を含むシラン架橋ゴム成形品。
  9.  ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを溶融混合してシラン架橋性ゴム組成物を得る工程(1)を有するシラン架橋性ゴム組成物の製造方法であって、
     前記工程(1)が、下記工程(a)及び工程(c)を有し、ただし、下記工程(a)で前記ベースゴムの一部を溶融混合する場合には下記工程(a)、工程(b)及び工程(c)を有する、
    工程(a):前記ベースゴムの全部又は一部と、前記無機フィラーと、前記シランカップリング剤と、前記有機過酸化物とを前記有機過酸化物の分解温度以上の温度で溶融混合して、シランマスターバッチを調製する工程
    工程(b):前記ベースゴムの残部と前記シラノール縮合触媒とを溶融混合して、触媒マスターバッチを調製する工程
    工程(c):前記シランマスターバッチと、前記シラノール縮合触媒又は前記触媒マスターバッチとを溶融混合する工程
    シラン架橋性ゴム組成物の製造方法。
  10.  下記工程(1)、工程(2)及び工程(3)
    工程(1):ジエン含有量が5質量%以下であるエチレン-αオレフィンゴムを61~100質量%含むベースゴム100質量部に対して、無機フィラー0.3~400質量部と、シランカップリング剤1~15質量部と、有機過酸化物0.01~0.6質量部と、シラノール縮合触媒0.0001~0.5質量部とを溶融混合してシラン架橋性ゴム組成物を得る工程
    工程(2):前記工程(1)で得られたシラン架橋性ゴム組成物を成形して成形体を得る工程
    工程(3):前記工程(2)で得られた成形体を水と接触させてシラン架橋ゴム成形体を得る工程
    を有するシラン架橋ゴム成形体の製造方法であって、
     前記工程(1)が、下記工程(a)及び工程(c)を有し、ただし、下記工程(a)で前記ベースゴムの一部を溶融混合する場合には下記工程(a)、工程(b)及び工程(c)を有する、
    工程(a):前記ベースゴムの全部又は一部と、前記無機フィラーと、前記シランカップリング剤と、前記有機過酸化物とを前記有機過酸化物の分解温度以上の温度で溶融混合して、シランマスターバッチを調製する工程
    工程(b):前記ベースゴムの残部と前記シラノール縮合触媒とを溶融混合して、触媒マスターバッチを調製する工程
    工程(c):前記シランマスターバッチと、前記シラノール縮合触媒又は前記触媒マスターバッチとを溶融混合する工程
    シラン架橋ゴム成形体の製造方法。
PCT/JP2016/056387 2015-03-03 2016-03-02 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品 WO2016140252A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017503678A JP6738799B2 (ja) 2015-03-03 2016-03-02 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体の製造方法
US15/686,194 US20170349737A1 (en) 2015-03-03 2017-08-25 Silane crosslinkable rubber composition and silane crosslinked rubber molded body, method of producing the same, and silane crosslinked rubber molded article

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015041471 2015-03-03
JP2015-041471 2015-03-03
JP2015232032 2015-11-27
JP2015-232032 2015-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/686,194 Continuation US20170349737A1 (en) 2015-03-03 2017-08-25 Silane crosslinkable rubber composition and silane crosslinked rubber molded body, method of producing the same, and silane crosslinked rubber molded article

Publications (1)

Publication Number Publication Date
WO2016140252A1 true WO2016140252A1 (ja) 2016-09-09

Family

ID=56848932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056387 WO2016140252A1 (ja) 2015-03-03 2016-03-02 シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品

Country Status (3)

Country Link
US (1) US20170349737A1 (ja)
JP (1) JP6738799B2 (ja)
WO (1) WO2016140252A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018131144A1 (de) 2017-12-12 2019-06-13 Nishikawa Rubber Co., Ltd. Glasscheibenführung
WO2021200928A1 (ja) * 2020-03-31 2021-10-07 三井化学株式会社 熱可塑性エラストマー組成物およびその成形体

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111655783B (zh) * 2018-01-31 2023-02-28 Mcpp创新有限公司 改性弹性体组合物、交联弹性体组合物和它们的成形体

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257255A (ja) * 2002-02-27 2003-09-12 Fujikura Ltd 難燃性絶縁電線
JP2006131720A (ja) * 2004-11-04 2006-05-25 Riken Technos Corp シラン架橋性ポリオレフィンとの混合用難燃性樹脂組成物及びその成形体
WO2014084047A1 (ja) * 2012-11-30 2014-06-05 古河電気工業株式会社 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
WO2014156529A1 (ja) * 2013-03-29 2014-10-02 古河電気工業株式会社 シラン架橋性エチレン-プロピレン共重合体およびその架橋体
WO2014188925A1 (ja) * 2013-05-20 2014-11-27 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体、耐熱性シラン架橋性樹脂組成物及びそれらの製造方法、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品、並びにシランカップリング剤予備混合フィラー及びそれを含むフィラー
WO2015002263A1 (ja) * 2013-07-03 2015-01-08 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2015030055A1 (ja) * 2013-08-27 2015-03-05 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2015046478A1 (ja) * 2013-09-27 2015-04-02 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798864A (en) * 1986-06-16 1989-01-17 Union Carbide Corporation Elastomer polyolefin blends
US4764304A (en) * 1986-09-25 1988-08-16 Texaco Inc. Hydrocarbon compositions containing polyolefin graft polymers
US5272236A (en) * 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US5278272A (en) * 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
EP0756607B1 (en) * 1994-04-20 1998-06-03 The Dow Chemical Company Silane-crosslinkable, substantially linear ethylene polymers and their uses
US5824718A (en) * 1995-04-20 1998-10-20 The Dow Chemical Company Silane-crosslinkable, substantially linear ethylene polymers and their uses
JP3762492B2 (ja) * 1996-10-14 2006-04-05 日立電線株式会社 架橋成形体の製造方法
JP3778403B2 (ja) * 1998-09-29 2006-05-24 矢崎総業株式会社 柔軟ノンハロゲン電線ケーブル
JP3457560B2 (ja) * 1999-01-28 2003-10-20 矢崎総業株式会社 ノンハロゲン難燃シラン架橋ポリオレフィン組成物の製造方法
US20120065319A1 (en) * 2009-04-30 2012-03-15 Michael Backer Elastomer Compositions Modified By Silanes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003257255A (ja) * 2002-02-27 2003-09-12 Fujikura Ltd 難燃性絶縁電線
JP2006131720A (ja) * 2004-11-04 2006-05-25 Riken Technos Corp シラン架橋性ポリオレフィンとの混合用難燃性樹脂組成物及びその成形体
WO2014084047A1 (ja) * 2012-11-30 2014-06-05 古河電気工業株式会社 耐熱性シラン架橋性樹脂組成物を用いた成形体の製造方法
WO2014156529A1 (ja) * 2013-03-29 2014-10-02 古河電気工業株式会社 シラン架橋性エチレン-プロピレン共重合体およびその架橋体
WO2014188925A1 (ja) * 2013-05-20 2014-11-27 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体、耐熱性シラン架橋性樹脂組成物及びそれらの製造方法、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品、並びにシランカップリング剤予備混合フィラー及びそれを含むフィラー
WO2015002263A1 (ja) * 2013-07-03 2015-01-08 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、並びに、耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2015030055A1 (ja) * 2013-08-27 2015-03-05 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
WO2015046478A1 (ja) * 2013-09-27 2015-04-02 古河電気工業株式会社 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018131144A1 (de) 2017-12-12 2019-06-13 Nishikawa Rubber Co., Ltd. Glasscheibenführung
JP2019104387A (ja) * 2017-12-12 2019-06-27 西川ゴム工業株式会社 グラスラン
US10857867B2 (en) 2017-12-12 2020-12-08 Nishikawa Rubber Co., Ltd. Glass run
WO2021200928A1 (ja) * 2020-03-31 2021-10-07 三井化学株式会社 熱可塑性エラストマー組成物およびその成形体

Also Published As

Publication number Publication date
JP6738799B2 (ja) 2020-08-12
JPWO2016140252A1 (ja) 2017-12-14
US20170349737A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6858115B2 (ja) シラン架橋性ゴム組成物及びシラン架橋ゴム成形体の製造方法
JP6623260B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6391580B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6265875B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JP6265876B2 (ja) 耐熱性シラン架橋樹脂成形体及びその製造方法、耐熱性シラン架橋性樹脂組成物及びその製造方法、シランマスターバッチ、並びに耐熱性シラン架橋樹脂成形体を用いた耐熱性製品
JPWO2016056635A1 (ja) 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP6706870B2 (ja) シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP6395745B2 (ja) シラン架橋樹脂成形体及びシラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP2019019327A (ja) シランカップリング剤予備混合フィラー及びそれを含むフィラー
JP6667474B2 (ja) シラン架橋樹脂成形体及びその製造方法、シランマスターバッチ、マスターバッチ混合物及びその成形体、並びに、耐熱性製品
JP6738799B2 (ja) シラン架橋性ゴム組成物及びシラン架橋ゴム成形体の製造方法
JPWO2016056634A1 (ja) 難燃性架橋樹脂成形体及び難燃性架橋性樹脂組成物とそれらの製造方法、難燃性シランマスターバッチ、並びに、成形品
JP6688634B2 (ja) シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP6598474B2 (ja) シラン架橋性ゴム組成物及びシラン架橋ゴム成形体とそれらの製造方法、並びに、シラン架橋ゴム成形品
JP6462606B2 (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
JP7097318B2 (ja) シラン架橋樹脂成形体の製造方法
JP6559996B2 (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
WO2020196049A1 (ja) 複合ケーブル及びその製造方法
JP6782222B2 (ja) シラン架橋アクリルゴム成形体及びその製造方法、シラン架橋性アクリルゴム組成物、並びに耐油性製品
JP6523513B2 (ja) 架橋樹脂成形体及び架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、成形品
JP6916106B2 (ja) シラン架橋用触媒組成物、シラン架橋性樹脂組成物及び配線材
JP6567311B2 (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品
JP6523012B2 (ja) 耐熱性シラン架橋樹脂成形体及び耐熱性シラン架橋性樹脂組成物とそれらの製造方法、シランマスターバッチ、並びに、耐熱性製品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16758945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017503678

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16758945

Country of ref document: EP

Kind code of ref document: A1