WO2012098865A1 - 成形体 - Google Patents

成形体 Download PDF

Info

Publication number
WO2012098865A1
WO2012098865A1 PCT/JP2012/000260 JP2012000260W WO2012098865A1 WO 2012098865 A1 WO2012098865 A1 WO 2012098865A1 JP 2012000260 W JP2012000260 W JP 2012000260W WO 2012098865 A1 WO2012098865 A1 WO 2012098865A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
containing compound
resin
silicon
Prior art date
Application number
PCT/JP2012/000260
Other languages
English (en)
French (fr)
Inventor
かおり 的石
卓真 矢野
博雅 丸林
直樹 朝重
永井 直
原田 保
邦昭 川辺
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2012553617A priority Critical patent/JP5575929B2/ja
Priority to EP12736829.8A priority patent/EP2666828B1/en
Priority to US13/980,950 priority patent/US9534112B2/en
Priority to CN201280005885.3A priority patent/CN103328581B/zh
Priority to KR1020137018876A priority patent/KR101551553B1/ko
Publication of WO2012098865A1 publication Critical patent/WO2012098865A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/10Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/40Chemical modification of a polymer taking place solely at one end or both ends of the polymer backbone, i.e. not in the side or lateral chains
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1397Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • the present invention relates to a molded body.
  • it is related with the molded object formed from the composition containing predetermined silylated polyolefin and resin.
  • Resins typified by thermoplastic resins and thermosetting resins are used in various situations because they are inexpensive and relatively easy to mold. However, the use of a molded product obtained by molding a resin in applications where scratch resistance and contamination resistance are required may be limited depending on the resin.
  • Patent Document 1 describes modifying a specific low molecular weight ethylene polymer containing a vinyl or vinylidene type unsaturated bond at one end of the polymer. ing. Patent Document 1 describes that an oligomer having a silicon-containing group or a tin-containing group is suitable for a lubricant such as a polyvinyl chloride lubricant or an engineering plastic. As another attempt to modify the properties of the resin, Patent Document 2 describes, for example, an attempt to react a low molecular weight polyethylene oligomer with hydrogen silicone.
  • Patent Document 3 describes an attempt to apply a room temperature solidifying composition containing a silicone-modified olefin wax obtained by hydrosilylation of an olefin wax with a hydrosilicone to cosmetics.
  • Patent Document 4 describes a composition comprising a polyolefin having a specific number of terminal double bonds and a crosslinking agent such as a silicon-containing compound.
  • JP 2003-73412 A Japanese Patent Laid-Open No. 2004-196883 JP 2004-149552 A JP 2004-35813 A
  • Patent Document 1 does not describe improving the scratch resistance of a molded body made of a resin.
  • Patent Documents 2 and 3 also do not describe application to a molded body.
  • Patent Document 4 polyolefin is cross-linked to develop excellent characteristics such as wear resistance, and this is not intended to improve the scratch resistance of any resin.
  • This invention is made
  • a silylated polyolefin obtained by using a compound having two or more SiH groups per molecule and a compound having an average of 2.0 or more vinyl groups per molecule as the vinyl group-containing compound.
  • a molded body formed from a composition containing —Si (R 1 ) HY 1 — (1)
  • R 1 is a hydrogen atom, a halogen atom or a hydrocarbon group
  • Y 1 is O, S or NR 30 (R 30 is a hydrogen atom or a hydrocarbon group).
  • the silicon-containing compound is preferably represented by the following structural formula.
  • R 21 and R 23 are each independently a hydrogen atom, a halogen atom or a hydrocarbon group
  • R 22 and R 24 are each independently a halogen atom or a hydrocarbon group
  • Y 21 and Y 22 are each independently O, S or NR 30 (R 30 is a hydrogen atom or a hydrocarbon group);
  • m is 0 or 1
  • n is 0 or 1;
  • Z is a divalent group represented by the formula (3), —Si (R 41 ) (R 41 ) — (Y 23 —Si (R 41 ) (R 41 )) l ⁇ (3)
  • the silicon-containing compound may contain 3 or more silicon atoms.
  • the vinyl group-containing compound may have a structure represented by the formula (4).
  • A-CH CH 2 (4) (In the formula (4), A is a polymer chain containing a structure derived from an ⁇ -olefin having 2 to 50 carbon atoms.)
  • the molecular weight distribution of the vinyl group-containing compound may be in the range of 1.1 to 3.0.
  • A may be a polymer chain composed only of an ⁇ -olefin having 2 to 50 carbon atoms.
  • A may be an ethylene homopolymer chain.
  • the vinyl group-containing compound may be an olefin / polyene copolymer (Z) satisfying the following (Z1) to (Z6).
  • Z1 a copolymer obtained by copolymerizing ethylene and at least one polyene, or at least one olefin selected from ethylene and an ⁇ -olefin having 3 to 12 carbon atoms and at least one polyene.
  • Z4) Melting point is 70 to 130 ° C.
  • Z5 number average molecular weight (Mn) is 400 to 5,000
  • Z6 The ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is 4.0 or less.
  • the polyene of (Z1) may be vinyl norbornene (5-vinylbicyclo [2.2.1] hept-2-ene).
  • the reaction rate of the double bond of the vinyl group-containing compound may be 90% or more.
  • melt mass flow rate (MFR) of the silylated polyolefin measured at 2.16 kg load and 190 ° C. in accordance with JISK7210 may be 0.01 g / 10 min or more.
  • the thermoplastic resin may be at least one selected from the group consisting of a polyolefin resin, a polycarbonate resin, a thermoplastic polyester resin, a polyamide resin, a polyimide resin, a polyurethane resin, and a polylactic acid resin.
  • the thermosetting resin may be at least one selected from the group consisting of an epoxy resin and a thermally crosslinkable polyolefin resin.
  • the molded body may be a molded body obtained by melt molding the composition.
  • the molded body may be in the form of a film or a sheet.
  • the molded body may be a molded body selected from automobile interior parts, glass run channels, plastic syringes, packaging materials, plastic containers, hollow fiber membranes, gas permeable films, and gas selective films.
  • the silicon-containing compound contains a structural unit represented by the formula (2 ′), the vinyl group-containing compound has a structure represented by the formula (4), and a molecular weight distribution is 1.1.
  • R 22 (Si (R 21 ) H—Y 21 ) m —Z— (Y 22 —Si (R 23 ) H) n —R 24 (2 ′)
  • R 21 and R 23 are each independently a hydrocarbon group
  • R 22 and R 24 are each independently a halogen atom or a hydrocarbon group
  • Y 21 and Y 22 are each independently O, S or NR 30 (R 30 is a hydrogen atom or a hydrocarbon group);
  • m is 1, n is 1,
  • each group may be the same or different
  • Z is a divalent group represented by the formula (3), —Si (R 41 ) (R 41 ) — (Y 23 —Si (R 41 ) (R 41 )) l ⁇ (3)
  • R 41 is a hydrocarbon group
  • each R 41 may be the same or different
  • each Y 23 is independently O, S or
  • the reaction rate of the double bond of the vinyl group-containing compound may be 90% or more.
  • the molded body contains a structural unit in which the silicon-containing compound is represented by the formula (2e), the vinyl group-containing compound has a structure represented by the formula (4 ′), and is a number determined by the GPC method.
  • the average molecular weight is 700 or more and 10,000 or less, and it can be formed from the composition by a melt molding method.
  • the molded body contains a structural unit in which the silicon-containing compound is represented by the formula (2e), the vinyl group-containing compound has a structure represented by the formula (4 ′), and the number obtained by the GPC method.
  • the average molecular weight is 700 or more and 10,000 or less, and may be in the form of a film or a sheet.
  • A—CH ⁇ CH 2 (4 ′) (In the formula (4 ′), A is an ethylene homopolymer chain, and —CH ⁇ CH 2 exists only at the terminal of the polymer main chain.)
  • the molded body contains a structural unit in which the silicon-containing compound is represented by the formula (2e), the vinyl group-containing compound has a structure represented by the formula (4 ′), and is a number determined by the GPC method.
  • the average molecular weight is 700 or more and 10,000 or less, and can be selected from automobile interior parts, glass run channels, plastic syringes, packaging materials, plastic containers, hollow fiber membranes, gas permeable films and gas selective films.
  • a molded article having excellent scratch resistance and stain resistance is provided.
  • the molded body of the present invention includes at least one resin selected from the group consisting of a thermoplastic resin and a thermosetting resin, 100 parts by weight, a silicon-containing compound containing a structural unit represented by the formula (1), Reaction with a vinyl group-containing compound having a number average molecular weight of 100 or more and 500,000 or less determined by GPC method and containing a vinyl group (however, the silicon-containing compound has two or more SiH groups per molecule) And the above-mentioned vinyl group-containing compound is a silylated polyolefin or a derivative thereof, or a mixture thereof, obtained by using a compound having an average of 2.0 or more vinyl groups per molecule), 0.01 And 10,000 parts by weight.
  • a resin selected from the group consisting of a thermoplastic resin and a thermosetting resin, 100 parts by weight, a silicon-containing compound containing a structural unit represented by the formula (1), Reaction with a vinyl group-containing compound having a number average molecular weight of 100 or more and 500,000 or less
  • R 1 is a hydrogen atom, a halogen atom or a hydrocarbon group
  • Y 1 is O, S or NR 30 (R 30 is a hydrogen atom or a hydrocarbon group).
  • R 30 is a hydrogen atom or a hydrocarbon group.
  • the structure of the silylated polyolefin is not clear. For example, —Si—H in a silicon-containing compound containing the structural unit of the formula (1) and —CH ⁇ CH 2 (in a vinyl group-containing compound) It is thought that it contains a —Si—C—C— structure formed by reaction with a vinyl group.
  • a silylated polyolefin is considered to have a high possibility of having a network structure, for example, and the present invention excludes such a case. Since the present invention takes such a configuration, a molded body formed from a composition containing a resin and a silylated polyolefin has an improved surface silicon concentration, suppressed surface free energy of the molded body, and has good scratch resistance. Furthermore, the present inventors presume that they have stain resistance such as water repellency and oil repellency.
  • thermoplastic resin and thermosetting resin examples include polyolefin resin, polycarbonate resin, thermoplastic polyester resin, ABS resin, polyacetal resin, polyamide resin, polyphenylene oxide resin, and polyimide resin. , Polyurethane resin, polylactic acid resin, furan resin, and silicone resin, but are not limited thereto.
  • thermosetting resin used by this invention although an epoxy resin, a thermosetting unsaturated polyester resin, a phenol resin, and a thermosetting polyolefin resin are mentioned, it is not limited to these. These thermoplastic resins and thermosetting resins can be used individually by 1 type, respectively, and can also be used in combination of 2 or more type.
  • thermoplastic resins or thermosetting resins are well known, and are described in publications such as “Practical Plastic Dictionary” (edited by the Practical Plastic Dictionary, Editorial Board, published by the Industrial Research Council, Inc.). Has been.
  • the “resin” here may be either soft or hard, and is not particularly limited.
  • thermoplastic resins will be described in detail.
  • polyolefin resin there is no restriction
  • polyethylene resin such as low density polyethylene and high density polyethylene, polypropylene resin, polyethylene terephthalate resin, vinyl chloride resin (chlorinated polyolefin), ethylene / vinyl acetate copolymer, ethylene / methacrylic acid acrylate copolymer, etc. Is mentioned.
  • low density polyethylene, high density polyethylene, and polypropylene resin are preferably used.
  • polycarbonate resin used in the present invention is typically a resin obtained by reacting an aromatic diol (for example, bisphenol A) and phosgene.
  • Such polycarbonate resins are commercially available, for example, trade names NOVAREX (registered trademark) (manufactured by Mitsubishi Chemical Corporation), Panlite (registered trademark) (manufactured by Teijin Chemicals Ltd.), Lexan (registered trademark) (Nippon GE Plastics Co., Ltd.) Etc.) and can be preferably used in the present invention.
  • thermoplastic polyester resin used in the present invention is typically a resin obtained by polycondensation of a dicarboxylic acid and a diol.
  • polyethylene terephthalate, polybutylene terephthalate, polyethylene 2,6-naphthalenedicarboxylate, polycyclohexane terephthalate and the like are preferably used.
  • ABS resin used in the present invention is typically an impact-resistant resin obtained by graft polymerization of acrylonitrile and styrene to polybutadiene.
  • the polybutadiene component is preferably 5 to 40% by weight and the weight ratio of styrene component to acrylonitrile component (styrene / acrylonitrile) is preferably 70/30 to 80/20.
  • the polyacetal resin used in the present invention is typically a resin obtained by ring-opening polymerization of formalin or trioxane together with ethylene oxide as required in the presence of a cationic catalyst.
  • a copolymer type is preferable.
  • the polyamide resin used in the present invention is typically a resin obtained by polycondensation of diamine and dicarboxylic acid, ring-opening polymerization of caprolactam, or the like.
  • a polycondensation reaction product of an aliphatic diamine and an aliphatic or aromatic dicarboxylic acid is preferable.
  • polyphenylene oxide resin used in the present invention is typically obtained by oxidative coupling of 2,6-dimethylphenol in the presence of a copper catalyst. Further, a modified polyphenylene oxide resin obtained by modifying this can also be used in the present invention.
  • a blend modified product of a polyphenylene oxide resin and a styrene polymer is preferable.
  • the polyimide resin used in the present invention is typically a resin obtained by polycondensation of tetracarboxylic acid and diamine to form an imide bond in the main skeleton.
  • the polyurethane resin used in the present invention is preferably mainly composed of isocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate and hexamethylene diisocyanate and polyols such as polyether polyol, polyester polyol, polycarbonate polyol and polycaprolactone polyol. It is a resin that is made by mixing and reacting both.
  • the polylactic acid resin used in the present invention is preferably a resin in which lactic acid is polymerized by an ester bond.
  • lactic acid is heated under reduced pressure in a solvent such as diphenyl ether, and polymerized while removing water. To obtain polylactic acid.
  • the furan resin used in the present invention includes a resin obtained by polycondensation of a mixture containing furfuryl alcohol as a main component.
  • An example of such a resin is a resin obtained by polycondensation of furfuryl alcohol, urea, and aldehydes.
  • aldehydes conventionally known aldehyde compounds such as formaldehyde, glyoxal, and furfural can be used.
  • silicone resin used in the present invention examples include polymers obtained by hydrolyzing various silanes including dialkyldichlorosilane and dehydrating condensation of the generated silanol.
  • examples of such a polymer include a polymer obtained by a chlorosilane method in which dimethyldichlorosilane, methyltrichlorosilane and tetrachlorosilane are hydrolyzed and dehydrated and condensed, and dimethyldimethoxysilane, trimethoxysilane and tetramethoxysilane are hydrolyzed.
  • a polymer obtained by a sol-gel method in which dehydration condensation is performed.
  • thermosetting resins will be described in detail. In addition, the following description is about the state before thermosetting of each resin.
  • Epoxy Resin The epoxy resin used in the present invention is typically a resin obtained by reacting an aromatic diol (for example, bisphenol A) and epichlorohydrin in the presence of alkali.
  • an aromatic diol for example, bisphenol A
  • epichlorohydrin in the presence of alkali.
  • bisphenol A type epoxy resins, bisphenol F type epoxy resins, and bisphenol S type epoxy resins having an epoxy equivalent of 170 to 5000 are preferable.
  • thermosetting unsaturated polyester resin used in the present invention is typically a resin obtained by esterifying an aliphatic unsaturated dicarboxylic acid and an aliphatic diol. It is.
  • a resin obtained by esterifying an unsaturated dicarboxylic acid such as maleic acid or fumaric acid with a diol such as ethylene glycol or diethylene glycol is preferred.
  • the phenolic resin used in the present invention includes both novolak type and resol type.
  • a novolak type cured with hexamethylenetetramine and a solid resol mainly composed of dimethylene ether bonds are preferred.
  • Thermosetting polyolefin resin The thermosetting polyolefin used in the present invention is not particularly limited, and examples thereof include DCPD (dicyclopentadiene) and polybutadiene resin. Such resins are commercially available. Examples of the DCPD resin include resins selected from the trade names “PENTAM (registered trademark)” and “METTON (registered trademark)” (manufactured by Rimtech).
  • the resin when it is a thermoplastic resin, it is at least one selected from the group consisting of polyolefin resin, polycarbonate resin, thermoplastic polyester resin, polyamide resin, polyimide resin, polyurethane resin, and polylactic acid resin. Is preferred.
  • the resin when it is a thermosetting resin, it is preferably at least one selected from the group consisting of epoxy resins and thermosetting polyolefin resins.
  • the thermoplastic resin is more preferably a polyolefin resin, and particularly preferably at least one selected from a polypropylene resin and a polyethylene resin.
  • the molecular weight of the thermoplastic resin or thermosetting resin in the present invention is not particularly limited as long as it has a molecular weight that can be molded into a molded body and is suitable for various molded bodies.
  • an MFR measured by the method described in JISK7210 is 0.01 to 200 g / 10 min, preferably 0.01 to 100 g / 10 min.
  • the measurement conditions differ depending on the resin, those described in Table 1 in Appendix B can be used.
  • measurement is performed at 190 ° C. and a load of 2.16 kg.
  • the silicon-containing compound used in the present invention is a hydrosilane compound having a structural unit represented by the formula (1).
  • R 1 is a hydrogen atom, a halogen atom or a hydrocarbon group
  • Y 1 is O, S or NR 30 (R 30 is a hydrogen atom or a hydrocarbon group).
  • halogen atom examples include fluorine, chlorine, bromine and iodine.
  • hydrocarbon group examples include an alkyl group, an alkenyl group, and an aryl group.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, hexyl, 2-ethylhexyl, octyl, decyl, octadecyl, etc.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, hexyl, 2-ethylhexyl, octyl, decyl, octadecyl, etc.
  • alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, hexyl, 2-ethylhexyl, octyl, decy
  • alkenyl group examples include a vinyl group, a propenyl group, and a cyclohexenyl group.
  • aryl group examples include phenyl group, tolyl group, dimethylphenyl group, trimethylphenyl group, ethylphenyl group, propylphenyl group, biphenyl group, naphthyl group, methylnaphthyl group, anthryl group, phenanthryl group and the like.
  • the above hydrocarbon group may contain one or more heteroatoms.
  • Specific examples include groups in which at least one hydrogen of these groups is substituted with a group containing a halogen atom, oxygen, nitrogen, silicon, phosphorus, or sulfur.
  • the silicon-containing compound has a structure represented by formula (2).
  • R 21 and R 23 are each independently a hydrogen atom, a halogen atom or a hydrocarbon group
  • R 22 and R 24 are each independently a halogen atom or a hydrocarbon group
  • Y 21 and Y 22 are each independently O, S or NR 30 (R 30 is a hydrogen atom or a hydrocarbon group);
  • m is 0 or 1
  • n is 0 or 1;
  • Z is a divalent group represented by the formula (3): —Si (R 41 ) (R 41 ) — (Y 23 —Si (R 41 ) (R 41 )) l ⁇ (3)
  • Z is a divalent group represented by the formula (3): —Si (R 41 ) (R 41 ) — (Y 23
  • R 30 is a hydrogen atom or a hydrocarbon group
  • l is an integer of 0 to 10,000.
  • R 41 is a hydrogen atom.
  • the definition of the halogen atom and hydrocarbon group in Formula (2) and Formula (3) is the same as the definition in the said Formula (1). It is also a typical embodiment that the hydrocarbon group in the formulas (1), (2), and (3) is composed of only carbon atoms and hydrogen atoms.
  • the silicon-containing compound preferably has 3 or more, more preferably 5 or more, and even more preferably 10 or more silicon atoms.
  • the silicon-containing compound preferably has 10,000 or less, more preferably 1,000 or less, particularly preferably 300 or less, and still more preferably 50 or less silicon atoms.
  • l in the above formula (3) is an integer of 0 to 10,000, and preferred upper and lower limits are the values of m and n in the formula (2), the preferred number of silicon atoms, The number determined from can be mentioned.
  • Examples of the silicon-containing compound used in the present invention include compounds having one SiH group.
  • Examples of the silicon-containing compound having one SiH group include, for example, a compound represented by the formula (2a), in which a part or all of the methyl groups in the formula (2a) are ethyl, propyl, phenyl, trifluoro Examples thereof include compounds substituted with a propyl group or the like.
  • d is an integer greater than or equal to 1, and an upper limit is 1000, for example, Preferably it is 300, More preferably, it is 50.
  • More specific examples of such a compound include, but are not limited to, the following compounds.
  • the silicon-containing compound having one SiH group for example, a dimethylsiloxane-methylhydrogensiloxane copolymer represented by the formula (2b), a part or all of the methyl groups in the formula (2b) And compounds substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, and the like.
  • e is an integer of 0 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.
  • the order in which the —Si (CH 3 ) 2 —O— unit and the —SiH (CH 3 ) —O— unit are arranged is not particularly limited, and is statistically random regardless of whether it is block or disordered. It may be. More specific examples of such a compound include, but are not limited to, the following compounds. Si (CH 3 ) 3 O—SiH (CH 3 ) —O—Si (CH 3 ) 3
  • Examples of the silicon-containing compound of the present invention include compounds having two or more SiH groups.
  • Examples of the silicon-containing compound having two or more SiH groups include, for example, methyl hydrogen polysiloxane represented by the formula (2c), a part or all of the methyl groups in the formula (2c) are ethyl groups, propyl groups, Examples thereof include compounds substituted with a phenyl group, a trifluoropropyl group, and the like.
  • (CH 3 ) 3 SiO — (— SiH (CH 3 ) —O—) f —Si (CH 3 ) 3 (2c) (In formula (2c), f is an integer of 2 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.)
  • the silicon-containing compound having two or more SiH groups for example, a dimethylsiloxane / methylhydrogensiloxane copolymer represented by the formula (2d), a part or all of the methyl groups in the formula (2d) Are compounds substituted with ethyl group, propyl group, phenyl group, trifluoropropyl group or the like.
  • methyl hydrogen polysiloxane represented by the formula (2e) a part or all of the methyl groups in the formula (2e) is an ethyl group, examples thereof include compounds substituted with a propyl group, a phenyl group, a trifluoropropyl group, and the like.
  • i is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.
  • More specific examples of such a compound include, but are not limited to, the following compounds.
  • the silicon-containing compound having two or more SiH groups for example, methyl hydrogen polysiloxane represented by the formula (2f), a part or all of the methyl groups in the formula (2f) is an ethyl group, And compounds substituted with a propyl group, a phenyl group, a trifluoropropyl group, and the like.
  • j is an integer of 1 or more, and the upper limit is, for example, 1000, preferably 300, and more preferably 50.
  • the silicon-containing compound having two or more SiH groups for example, a dimethylsiloxane / methylhydrogensiloxane copolymer represented by the formula (2g), a part of the methyl group in the formula (2g), or Examples thereof include compounds that are all substituted with an ethyl group, a propyl group, a phenyl group, a trifluoropropyl group, and the like.
  • k and l are each an integer of 1 or more, and the upper limit of the sum of k and l is, for example, 1000, preferably 300, and more preferably 50.
  • the order in which —Si (CH 3 ) 2 —O— units and —SiH (CH 3 ) —O— units are arranged is not particularly limited, and is statistically random regardless of whether they are block or disordered. It may be.
  • the number average molecular weight determined by the GPC method of the vinyl group-containing compound of the present invention is 100 or more and 500,000 or less, and more preferably 100 or more and 100,000 or less.
  • the number average molecular weight is lower than the lower limit, the obtained silylated polyolefin may bleed from the resin, and when the number average molecular weight is higher than the upper limit, the dispersibility of the silylated polyolefin in the resin deteriorates. It may be difficult to handle the molded body.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), and Mw / Mn are polyethylene conversion values.
  • the vinyl group-containing compound will be described below.
  • the vinyl group-containing compound is usually obtained by polymerizing or copolymerizing one or more selected from olefins having 2 to 50 carbon atoms.
  • olefins having 2 to 50 carbon atoms include ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene and 3-methyl.
  • the olefin having 2 to 50 carbon atoms may have a functional group containing an atom such as oxygen, nitrogen, sulfur and the like.
  • acrylic acid, fumaric acid, itaconic acid, unsaturated carboxylic acid such as bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid, and sodium, potassium, lithium and zinc salts thereof
  • Unsaturated carboxylic acid metal salts such as magnesium salt and calcium salt
  • unsaturated carboxylic acid such as maleic anhydride, itaconic anhydride, bicyclo [2.2.1] hept-5-ene-2,3-dicarboxylic acid anhydride
  • Acid anhydride methyl acrylate, ethyl acrylate, acrylate-n-propyl, isopropyl acrylate, acrylate-n-butyl, isobutyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, etc.
  • Unsaturated carboxylic acid ester vinyl acetate, vinyl propionate, vinyl caproate, vinyl caprate, laur Unsaturated glycidyl esters such as glycidyl acrylate, glycidyl methacrylate, itaconic acid monoglycidyl ester; Nsan vinyl, vinyl stearate, vinyl esters such as vinyl trifluoroacetate; Halogenated olefins such as vinyl chloride, vinyl fluoride and allyl fluoride; unsaturated cyano compounds such as acrylonitrile and 2-cyano-bicyclo [2.2.1] hept-5-ene; unsaturated compounds such as methyl vinyl ether and ethyl vinyl ether Saturated ether compounds; unsaturated amides such as acrylamide, methacrylamide, N, N-dimethylacrylamide; Functional group-containing styrene derivatives such as methoxystyrene, ethoxystyrene, vinyl be
  • the vinyl group-containing compound is a compound having a structure represented by the formula (4) and having a number average molecular weight of 100 or more and 500,000 or less.
  • A-CH CH 2 (4)
  • A is a polymer chain containing one or more structural units derived from an ⁇ -olefin having 2 to 50 carbon atoms.
  • part A of the vinyl group-containing compound is a copolymer of two or more olefins selected from the group consisting of ethylene polymer chains, propylene polymer chains, or ⁇ -olefins having 2 to 50 carbon atoms. Is a chain.
  • the ⁇ -olefin is preferably an ⁇ -olefin having 2 to 20 carbon atoms.
  • a of the vinyl group-containing compound represented by the formula (4) is a polymer chain composed only of an ⁇ -olefin having 2 to 50 carbon atoms. More preferably, the vinyl group-containing compound A is a polymer chain composed only of an ⁇ -olefin having 2 to 20 carbon atoms. More preferably, A in the vinyl group-containing compound is an ethylene homopolymer chain, a propylene homopolymer chain, or an ethylene / ⁇ -olefin copolymer chain having 3 to 20 carbon atoms.
  • the vinyl group-containing compound represented by the formula (4) is an ethylene-containing compound in which the structural unit derived from ethylene is in the range of 81 to 100 mol%, and the structural unit derived from the ⁇ -olefin having 3 to 20 carbon atoms is in the range of 0 to 19 mol%.
  • An ⁇ -olefin copolymer is desirable. More preferably, it is an ethylene / ⁇ -olefin copolymer having a constitutional unit derived from ethylene of 90 to 100 mol% and a constitutional unit derived from ⁇ -olefin having 3 to 20 carbon atoms in the range of 0 to 10 mol%. desirable. In particular, it is preferable that the structural unit derived from ethylene is 100 mol%.
  • the vinyl group-containing compound represented by the formula (4) has a molecular weight distribution (ratio of weight average molecular weight to number average molecular weight, Mw / Mn) measured by gel permeation chromatography (GPC) of 1.1 to 3 Preferably it is in the range of 0.0.
  • the vinyl group-containing compound represented by formula (4) preferably has a number average molecular weight (Mn) in the range of 100 to 500,000, more preferably 500 to 50,000, and more preferably 700 to 10 Is more preferable.
  • the vinyl group-containing compound represented by the formula (4) preferably has a melting point of 70 ° C. or higher and 130 ° C. or lower.
  • the vinyl group of the vinyl group-containing compound represented by the formula (4) is preferably present at the end of the main chain, and more preferably the vinyl group is present only at the end of the main chain.
  • the peak of 1.93 ppm chemical shift with methylene group and proton integral value of 2 is 4.80, 4.86, 5.60-5.72 ppm with methylene group adjacent to the terminal vinyl group and proton integral value of 1, respectively. Is attributed to the terminal vinyl group and no other unidentified peak exists, so that it can be confirmed that A is an ethylene homopolymer and has a structure containing a vinyl group only at the terminal.
  • A is an ethylene homopolymer and has a structure containing a vinyl group only at the terminal.
  • the chemical shift of the side chain vinyl group in 1 HNMR can be determined by utilizing a lower magnetic field shift than the vinyl group present at the terminal.
  • the terminal unsaturation rate (VE described later) calculated by 1 H-NMR is 60 mol%. It is desirable that it is 100 mol% or less.
  • One of the more preferred embodiments is one in which the terminal unsaturation calculated by 1 H-NMR is 80 mol% or more and 99.5 mol% or less, more preferably 90 mol% or more and 99 mol% or less.
  • the vinyl group-containing compound represented by the formula (4) of the present invention includes, for example, a transition metal compound (A) represented by the following formula (I), formula (II), or formula (III), and (B— A catalyst comprising: 1) an organometallic compound, (B-2) an organoaluminum oxy compound, and (B-3) at least one compound selected from compounds that react with the transition metal compound (A) to form an ion pair.
  • a catalyst comprising: 1) an organometallic compound, (B-2) an organoaluminum oxy compound, and (B-3) at least one compound selected from compounds that react with the transition metal compound (A) to form an ion pair.
  • (B) it can be obtained by polymerizing or copolymerizing at least one selected from olefins having 2 to 50 carbon atoms.
  • Transition metal compound represented by formula (I) (In the formula (I), M represents a transition metal atom of groups 4 to 5 in the periodic table. M represents an integer of 1 to 4.
  • R 52 to R 56 may be the same as or different from each other, and may be a hydrogen atom, a halogen atom, a hydrocarbon group or a heterocyclic group.
  • X is a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, A nitrogen-containing group, a boron-containing group, an aluminum-containing group, a phosphorus-containing group, a halogen-containing group, a heterocyclic compound residue, a silicon-containing group, a germanium-containing group, or a tin-containing group.
  • a plurality of groups represented by X may be the same or different from each other, and a plurality of groups represented by X may be bonded to each other to form a ring.
  • Transition metal compound represented by formula (II) (In the formula (II), M represents a transition metal atom of Groups 4 to 5 of the periodic table. M represents an integer of 1 to 4.
  • R 61 has one or more substituents. .R 62 ⁇ R 66 showing an alicyclic hydrocarbon group which may 3-5 membered ring may be the same or different from each other, a hydrogen atom, a halogen atom, a hydrocarbon group, heterocyclic compound residue , An oxygen-containing group, a nitrogen-containing group, a boron-containing group, a sulfur-containing group, a phosphorus-containing group, a silicon-containing group, a germanium-containing group, or a tin-containing group, and two or more of these are linked to each other to form a ring
  • m is 2 or more
  • two of the groups represented by R 62 to R 66 may be linked, and n is a number satisfying the valence of M.
  • X is a hydrogen atom, a halogen atom, a hydrocarbon group, an oxygen-containing group, a sulfur-containing group, or a nitrogen-containing group.
  • a plurality of groups represented by X may be the same as or different from each other, and a plurality of groups represented by X may be bonded to each other to form a ring.
  • Transition metal compound represented by formula (III) (In the formula (III), M represents a transition metal atom of Groups 4 to 5 of the periodic table. M represents an integer of 1 to 4.
  • R 71 has one or more substituents. And represents a bicyclic hydrocarbon group that shares at least one carbon having 4 to 20 carbon atoms, R 72 to R 76 may be the same as or different from each other, and may be a hydrogen atom, a halogen atom, a carbon atom; 2 represents a hydrogen group, heterocyclic compound residue, oxygen-containing group, nitrogen-containing group, boron-containing group, sulfur-containing group, phosphorus-containing group, silicon-containing group, germanium-containing group, or tin-containing group.
  • X is a hydrogen atom, halogen atom, carbonization Hydrogen group, oxygen-containing group, sulfur-containing group, nitrogen-containing group, boron-containing group, aluminum-containing group, phosphorus-containing group, halogen-containing group, heterocyclic compound residue, silicon-containing group, germanium-containing group, or tin-containing group
  • n 2 or more, a plurality of groups represented by X may be the same or different from each other, and a plurality of groups represented by X may be bonded to each other to form a ring.
  • A consists only of the structural unit derived from ethylene
  • propylene it can also be manufactured by the following method.
  • the polyolefin polymer chain having an ethylene homopolymer chain can also be produced, for example, by the following method.
  • a transition metal compound having a salicylaldoimine ligand as shown in JP-A Nos. 2000-239312, 2001-27331, 2003-73412, etc. is used as a polymerization catalyst.
  • D A polymerization method using a Ziegler-type catalyst comprising a metallocene compound such as zirconocene and an organoaluminum oxy compound (aluminoxane).
  • a polyolefin polymer chain having a propylene homopolymer chain can also be produced, for example, by the following method.
  • a method of polymerizing propylene in the presence of a supported titanium-based catalyst such as a magnesium-supported titanium-based catalyst or a metallocene catalyst as disclosed in JP-A-2004-262993.
  • B a compound which reacts with a transition metal in a metal compound as shown in JP 2000-191862 A, JP 2002-097325 A, etc. to form an ionic complex, an organoaluminum compound, an aluminoxane
  • a method of polymerizing propylene in the presence of a metallocene catalyst comprising:
  • Olefin / polyene copolymer A copolymer of (Z) olefin and polyene, which is one of the vinyl group-containing compounds of the present application, will be described.
  • olefins include ethylene and ⁇ -olefins having 3 to 12 carbon atoms.
  • Examples of the ⁇ -olefin having 3 to 12 carbon atoms include propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, and 3-methyl-1.
  • -Pentene, 1-octene, 1-decene, 1-dodecene and the like are preferable, ⁇ -olefins having 3 to 8 carbon atoms are more preferable, and propylene, 1-butene, 1-hexene, 4-methyl-1- are particularly preferable. Penten is preferred.
  • Polyenes include butadiene, isoprene, 4-methyl-1,3-pentadiene, 1,3-pentadiene, 1,4-pentadiene, 1,5-hexadiene, 1,4-hexadiene, 1,3-hexadiene, 1, 3-octadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, ethylidenenorbornene, vinylnorbornene (5-vinylbicyclo [2.2.1] hept-2-ene ), Dicyclopentadiene, 2-methyl-1,4-hexadiene, 2-methyl-1,6-octadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 5,9-dimethyl-1,4,8-decatriene and the like.
  • vinyl norbornene, ethylidene norbornene, dicyclopentadiene, 1,4-hexadiene, butadiene, isoprene, 2-methyl-1,4-hexadiene or 2-methyl-1,6-octadiene are preferable.
  • Vinyl norbornene is particularly preferable because it has a bulky skeleton, so that the wax can be hardened even at a low density and the wax product is hardly blocked.
  • the copolymer of olefin and polyene is preferably the following copolymer (Z1). That is, (Z1) is selected from a copolymer of ethylene and polyene as described above, or a copolymer of at least one ⁇ -olefin selected from ethylene and an ⁇ -olefin having 3 to 12 carbon atoms and a polyene. At least one selected from the above.
  • the (Z) olefin / polyene copolymer used in the present invention contains a constituent unit derived from polyene in a proportion of 0.01 to 6.0 mol%, preferably 0.1 to 4.0 mol%. desirable.
  • the (Z) olefin / polyene copolymer contains a structural unit derived from an ⁇ -olefin having 3 to 12 carbon atoms, the content is 0.01 to 15 mol%, preferably 0.1 ⁇ 12 mol% is desirable.
  • the (Z) olefin / polyene copolymer used in the present invention contains structural units derived from polyene in a proportion within the above range, the polymerization activity is also moderately high.
  • a structural unit derived from an ⁇ -olefin having 3 to 12 carbon atoms is contained in a proportion within the above range, a molded article having less surface tackiness and excellent mechanical properties and impact properties can be obtained.
  • the (Z) olefin / polyene copolymer used in the present invention has an average of 0.5 to 3.0 / molecule, preferably 0.5 to 2.0 / molecule, more preferably 1.0. It is desirable to have an unsaturated group content in the range of ⁇ 2.0 / molecule, particularly preferably 1.0 to 1.9, particularly preferably 1.0 to 1.5.
  • silylated polyolefin is effective because silicone is added to all (Z) olefin / polyene copolymers.
  • the unsaturated group content of the (Z) olefin / polyene copolymer is measured as follows.
  • the number M of unsaturated groups per 1,000 carbons can be obtained by comparing the peak area of the carbon of the unsaturated portion by 13 C-NMR with the peak area of the total carbon.
  • the unsaturated group content per molecule can be calculated by Mn ⁇ M / 14,000 using the number average molecular weight Mn.
  • the number M of unsaturated groups per 1,000 carbon atoms is desirably 1.4 to 105, preferably 1.4 to 70, and more preferably 2.8 to 70.
  • (Z3) used in the present invention (Z) olefin-polyene copolymer, density measured by a density gradient tube method is 870 kg / m 3 or more, preferably 890 kg / m 3 or more, more preferably 910 kg / m 3 or more, And it is desirable that it is 980 kg / m 3 or less, preferably 970 kg / m 3 or less, more preferably 960 kg / m 3 or less. (Z) When the density of the olefin / polyene copolymer is within the above range, there is little tackiness and excellent dispersibility in the resin, so that a molded body having excellent scratch resistance and stain resistance is obtained. Can do.
  • the (Z) olefin / polyene copolymer used in the present invention has a melting point measured by a differential scanning calorimeter (DSC) of 70 ° C. or higher, preferably 80 ° C. or higher, more preferably 90 ° C. or higher, particularly preferably It is desirable that the temperature is 100 ° C. or higher and 130 ° C. or lower, preferably 125 ° C. or lower, more preferably 120 ° C. or lower.
  • DSC differential scanning calorimeter
  • the (Z) olefin / polyene copolymer used in the present invention has a number average molecular weight (Mn) measured by gel permeation chromatography (GPC) of 400 to 5,000, preferably 400 to 4000, more preferably Is preferably in the range of 400 to 3000, particularly preferably in the range of 1,500 to 2,500.
  • Mn number average molecular weight measured by gel permeation chromatography
  • GPC gel permeation chromatography
  • the (Z) olefin / polyene copolymer used in the present invention has a ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight measured by GPC of 4.0 or less, preferably 3.5 or less. More preferably it is 3.0 or less.
  • a weight average molecular weight (Mw) and a number average molecular weight (Mn) are polystyrene conversion values measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the penetration hardness can be measured according to JIS K2207.
  • the (Z) olefin / polyene copolymer according to the present invention comprises the (Z2) unsaturated group content, (Z3) density, (Z4) melting point, (Z5) number average molecular weight (Mn), (Z6) Mw / It is desirable to satisfy one or more of the conditions of Mn (Mw: weight average molecular weight) and (Z7) penetration hardness, more preferably two or more, and still more preferably three or more. It is even more preferable that the above is satisfied, it is particularly preferable that five or more are satisfied, and it is particularly preferable that all six are satisfied.
  • (Z2-1) has an unsaturated group content of 0.5 to 3.0 / molecule
  • (Z3-1) has a density of 870 to 980 kg / m 3
  • (Z4-1 ) Melting point is 70 to 130 ° C.
  • (Z5-1) number average molecular weight (Mn) is 400 to 5,000
  • (Z6-1) Mw / Mn (Mw: weight average molecular weight) is 4.0 or less
  • (Z7-1) those having a penetration hardness of 15 dmm or less are more preferable.
  • the (Z) olefin / polyene copolymer according to the present invention is a copolymer obtained by using vinyl norbornene (5-vinylbicyclo [2.2.1] hept-2-ene) as a polyene.
  • the (Z) olefin / polyene copolymer has the above (Z2) unsaturated group content, (Z3) density, (Z4) melting point, (Z5) number average molecular weight (Mn), (Z6) Mw / Mn.
  • (Z2-2) unsaturated group content is 0.5-2.0 groups / molecule, (Z3-2) density of 890 ⁇ 980kg / m 3, ( Z4-2 ) Melting point is 80 to 130 ° C., (Z5-2) number average molecular weight (Mn) is 400 to 5,000, (Z6-2) Mw / Mn (Mw: weight average molecular weight) is 4.0 or less More preferably, in addition to these five, (Z7-2) those having a penetration hardness of 15 dmm or less are included.
  • the (Z) olefin / polyene copolymer as described above is composed of, for example, a metallocene compound of a transition metal selected from Group 4 of the periodic table and an organoaluminum oxy compound and / or an ionized ionic compound as shown below. It can manufacture using a system catalyst. Suitable metallocene catalysts in the present invention include Japanese Patent Application Laid-Open No.
  • WO / 2007/114102 for example, (A) metallocene compounds of transition metals selected from Group 4 of the periodic table, and (B) (b-1) organoaluminum oxy compounds, (b-2) metallocene compounds (A) And an olefin polymerization catalyst comprising at least one compound selected from (b-3) an organoaluminum compound and an ion pair that reacts with the compound.
  • (A) metallocene compounds of transition metals selected from Group 4 of the periodic table used in the present invention include bis (cyclopentadienyl) zirconium monochloride monohydride, bis (cyclopentadienyl) zirconium dichloride, bis (1-Methyl-3-butylcyclopentadienyl) zirconium bis (trifluoromethanesulfonate), bis (1,3-dimethylcyclopentadienyl) zirconium dichloride, dimethyl ((t-butylamide) (tetramethyl- ⁇ 5 -Cyclopentadienyl) silane) titanium dichloride and the like.
  • (B) (b-1) an organoaluminum oxy compound, (b-2) a compound which forms an ion pair by reacting with a metallocene compound (A) and (b-3) an organoaluminum compound used in the present invention.
  • At least one selected compound include N, N-dimethylanilinium tetraphenylborate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium tetrakis (3 , 5-ditrifluoromethylphenyl) borate, N, N-diethylanilinium tetraphenylborate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, trimethylaluminum, triisobutylaluminum and the like.
  • the case where the vinyl group-containing compound is represented by the formula (4) is particularly preferable because it is excellent in wear resistance and stain resistance and has little bleeding from the surface of the molded body.
  • the silylated polyolefin used in the present invention can be produced by any method, but preferably the silylated polyolefin obtained by sequentially performing the following [Step 1] and [Step 2] or A derivative thereof, or a mixture thereof.
  • Step 1 A step of mixing and stirring the silicon-containing compound and the transition metal halide, filtering the obtained suspension solution to obtain a transition metal catalyst composition (C) as a filtrate,
  • Step 2 A vinyl group-containing compound and a silicon-containing compound are reacted in the presence of the transition metal catalyst composition (C) obtained in [Step 1] above (however, two or more per molecule as the silicon-containing compound).
  • Step 1 Step of obtaining a transition metal catalyst composition (C)
  • a silicon-containing compound and a transition metal halide are mixed and stirred, and the resulting suspension solution is filtered to obtain a transition metal as a filtrate.
  • a catalyst composition (C) is obtained.
  • the halogenated transition metal is a halide of a transition metal of Group 3 to Group 12 of the periodic table of elements, and is preferably a transition metal of Groups 8 to 10 of the periodic table of elements from the viewpoint of availability and economy. More preferred are halides of platinum, rhodium, iridium, ruthenium, osmium, nickel and palladium. More preferred is a platinum halide. A mixture of two or more transition metal halides may also be used. Examples of the halogen of the halogenated transition metal include fluorine, chlorine, bromine, and iodine. Among these, chlorine is preferable from the viewpoint of ease of handling.
  • transition metal halide used in [Step 1] include platinum dichloride, platinum tetrachloride, platinum dibromide, platinum diiodide, rhodium trichloride, rhodium tribromide, rhodium triiodide, three Iridium chloride, iridium tetrachloride, iridium tribromide, iridium triiodide, ruthenium trichloride, ruthenium tribromide, ruthenium triiodide, osmium trichloride, osmium tribromide, osmium triiodide, nickel dichloride, two Examples thereof include nickel fluoride, nickel dibromide, nickel diiodide, palladium dichloride, palladium dibromide, and palladium diiodide. Of these, platinum dichloride, palladium dichloride, ruthenium trichloride, rh
  • the halogenated transition metal used in [Step 1] is usually a powdered solid, and the particle size is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less. As the particle size increases, the preparation time of the transition metal catalyst composition (C) becomes longer.
  • the amount of the silicon-containing compound and the transition metal halide used in [Step 1] is not particularly limited as long as the amount of the silicon-containing compound is 1 equivalent or more with respect to the halogenated transition metal, but is preferably 2 equivalents or more. When the amount of the silicon-containing compound is small, stirring necessary for preparing the transition metal catalyst composition (C) becomes difficult.
  • the mixing and stirring of the silicon-containing compound and the transition metal halide in [Step 1] is not limited as long as this is possible, but an appropriate amount of the transition metal halide is charged into a reaction vessel equipped with a stirrer under a nitrogen stream. Then, a silicon-containing compound is added thereto and stirred. In the case of a small amount, a stirrer chip may be put in a sample tube and charged in the same manner and stirred.
  • the mixing and stirring time of the silicon-containing compound and the transition metal halide is usually 10 hours or more, preferably 20 hours or more, more preferably 60 hours or more, and further preferably 80 hours or more. If the reaction time is short, the production rate of the isomeric vinylene derivative which is an impurity in the silylated polyolefin obtained in the next [Step 2] increases, which is not preferable. Although there is no particular upper limit for the mixing and stirring time, it is generally within one month from an economical viewpoint.
  • the temperature of mixing and stirring the silicon-containing compound and the transition metal halide is not particularly limited as long as it is not higher than the boiling point of the silicon-containing compound, but is usually in the range of 0 to 50 ° C., preferably in the range of 10 to 30 ° C.
  • the pressure can be usually performed at normal pressure, but can be performed under pressure or under reduced pressure as necessary.
  • a solvent may be used as necessary.
  • the solvent to be used those inert to the silicon-containing compound and the transition metal halide can be used.
  • Specific examples of the solvent that can be used include aliphatic hydrocarbons such as n-hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, acetone, Examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, and methyl propyl ketone; ethers such as tetrahydrofuran and 1,4-dioxane; halogenated hydrocarbons such as chloroform, dichloroethane, trichloroethane, tetrachloroethane, and perchloroethane. .
  • aromatic hydrocarbons such as toluen
  • the amount of solvent used affects the solubility of the raw material, but is preferably 100 times by mass or less, more preferably 20 times by mass or less with respect to the raw material. In the present invention, it is most preferable to carry out without solvent.
  • a transition metal catalyst composition (C) is obtained as a filtrate.
  • a filtration method General methods, such as natural filtration, pressure filtration, and reduced pressure filtration, can be used.
  • a filter used by filtration The membrane filter made from a cellulose filter paper, a glass fiber filter, a fluororesin, or a cellulose acetate etc. can be used suitably. Among these, it is preferable to use a fluororesin membrane filter in view of uniformity of pore diameter, low hygroscopicity, chemical stability, and the like.
  • the filter used for filtration is preferably an eye filter smaller than 10 ⁇ m, and more preferably an eye filter of 1 ⁇ m or less. If a larger filter than this is used, the solid content of the unreacted transition metal halide is mixed in the catalyst and the catalyst becomes heterogeneous, which increases the amount of vinylene derivative that is an impurity of the synthesis target. Cause. Further, during filtration, the solid content can be washed using the above-mentioned solvent.
  • the solid content removed by filtration that is, the amount of the unreacted transition metal halide is usually 50% by weight or less, preferably 10% by weight or less based on the amount of the transition metal halide used.
  • the reaction rate of the transition metal halide can be adjusted mainly by changing the preparation time.
  • the transition metal catalyst composition (C) thus prepared contains a nano colloidal transition metal compound, a silicon-containing compound, and a solvent used as necessary.
  • This transition metal catalyst composition (C) can be used as it is in the next [Step 2], but is used in [Step 2] after removing the solvent, concentrating and diluting as necessary. You can also Further, the catalyst concentration can be adjusted by further diluting the silicon-containing compound.
  • a commercially available transition metal catalyst for example, platinum alone (platinum black), chloroplatinic acid, platinum-olefin complex, platinum-alcohol complex, or a platinum carrier on a carrier such as alumina or silica.
  • platinum alone platinum black
  • chloroplatinic acid platinum-olefin complex
  • platinum-alcohol complex platinum carrier on a carrier such as alumina or silica.
  • Step 2 A step of reacting a vinyl group-containing compound with a silicon-containing compound In [Step 2], in the transition metal catalyst composition (C) obtained in [Step 1] above, a vinyl group-containing compound and silicon Reaction with a containing compound (however, the silicon-containing compound having two or more SiH groups per molecule and the vinyl group-containing compound having an average of 2.0 or more vinyl groups per molecule) Excluding the case of using one), a silylated polyolefin is obtained.
  • the silicon-containing compound used in [Step 2] can be different from the silicon-containing compound used in [Step 1], but preferably the same one as used in [Step 1] is used.
  • the amount ratio when the vinyl group-containing compound and the silicon-containing compound are reacted varies depending on the purpose, but the equivalent ratio of the vinyl group in the vinyl group-containing compound to the Si—H bond in the silicon-containing compound is 0.01 to The range is 10 equivalents, and preferably 0.1 to 2 equivalents.
  • the amount of the silicon-containing compound is the total amount of the portion used in [Step 1] and included in the transition metal catalyst composition (C) and the portion newly added in [Step 2].
  • the [Step 2] can be carried out without adding a silicon-containing compound.
  • the reaction between the vinyl group-containing compound and the silicon-containing compound is performed in the presence of the transition metal catalyst composition (C) prepared in [Step 1].
  • the amount ratio of the transition metal catalyst composition (C) to the vinyl group-containing compound is 10 ⁇ 10 as the equivalent ratio of the vinyl group in the vinyl group-containing compound to the transition metal content in the transition metal catalyst composition (C). It is in the range of ⁇ 10 ⁇ 1 equivalent times, preferably in the range of 10 ⁇ 7 to 10 ⁇ 3 equivalent times.
  • reaction is performed as follows.
  • a vinyl group-containing compound is charged into a reaction vessel, and a silicon-containing compound and a transition metal catalyst composition (C) are charged under a nitrogen atmosphere.
  • the reactor is set and stirred in an oil bath whose internal temperature has been raised to the melting point of the vinyl group-containing compound in advance.
  • the oil bath is removed and the mixture is cooled to room temperature, and the resulting reaction mixture is taken out in a poor solvent such as methanol or acetone and stirred for 2 hours. Thereafter, the obtained solid is collected by filtration, washed with the above poor solvent, and dried under reduced pressure at 60 ° C. and 2 hPa or less to obtain the desired product.
  • the reaction between the vinyl group-containing compound and the silicon-containing compound in [Step 2] is preferably performed at a reaction temperature in the range of 100 to 200 ° C., more preferably at a temperature higher than the melting point of the vinyl group-containing compound to be reacted. .
  • a reaction temperature lower than 100 ° C. is not preferable because the reaction efficiency may be lowered.
  • the pressure can be usually performed at normal pressure, but can be performed under pressure or under reduced pressure as necessary.
  • a solvent may be used as necessary.
  • the solvent to be used those inert to the silicon-containing compound and the vinyl group-containing compound as raw materials can be used. When making it react under a normal pressure, it is preferable to use what has a boiling point more than melting
  • the solvent that can be used include aliphatic hydrocarbons such as n-hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, acetone, Examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, and methyl propyl ketone; ethers such as tetrahydrofuran and 1,4-dioxane; halogenated hydrocarbons such as chloroform, dichloroethane, trichloroethane, tetrachloroethane, and perchloroethane. . Of these, aromatic hydrocarbons such as toluene and xylene are particularly preferable.
  • the amount of the solvent used affects the solubility of the raw material, but is preferably 100 times by weight or less, more preferably 20 times by weight or less with respect to the raw material. In the present invention, it is most preferable to carry out without solvent.
  • the reaction mixture containing the silylated polyolefin after the reaction contains, in addition to the silylated polyolefin, an unreacted vinyl group-containing compound and a vinylene derivative as a by-product. In some cases, an unreacted silicon-containing compound may be contained.
  • the ratio of the structure derived from the structural unit represented by the formula (1) in the silylated polyolefin is not particularly limited as long as the target function of the silylated polyolefin is expressed, but is usually 5 to 99% by weight. It is preferably 10 to 95% by weight. If the constitutional unit is within this range, the scratch-resistant and stain-resistant functions can be exhibited, and the oil is less likely to bleed out.
  • the transition metal catalyst composition (C) having a very high activity and selectivity obtained in [Step 1] since the transition metal catalyst composition (C) having a very high activity and selectivity obtained in [Step 1] is used, the vinyl group-containing compound and the silicon-containing compound in [Step 2] are used. The reaction proceeds efficiently. For this reason, the reaction rate of the double bond of the vinyl group-containing compound is usually 90% or more, preferably 95% or more, and the amount of vinylene derivative produced as a by-product is usually 10 wt. % Or less, preferably 5% by weight or less.
  • Silylated polyolefin can be removed from the reaction mixture by reprecipitation in a poor solvent or by sludge.
  • the poor solvent is not particularly limited as long as the solubility of the silylated polyolefin is low, and can be selected as appropriate.
  • Specific examples of the poor solvent include acetone, methanol, ethanol, n-propanol, isopropanol, acetonitrile, ethyl acetate, n-hexane, and n-heptane. Of these, acetone and methanol are preferable.
  • the resulting silylated polyolefin has a melt mass flow rate (MFR) measured at 190 ° C. and a load of 2.16 kg according to the method of JIS K7210, 0.01 g / 10 min or more, preferably 0.1 g / 10 min or more. More preferably, it is 1.0 g / 10 min or more. There is no upper limit.
  • MFR melt mass flow rate
  • This index is an index indicating that the silylated polyolefin has not undergone crosslinking or the like that impairs the fluidity of the resin.
  • vinyl group-containing compound used in the present invention include a compound represented by the formula (4) or (Z) an olefin / polyene copolymer.
  • A-CH CH 2 (4) (In the formula (4), A is a polymer chain containing one or more structural units derived from an ⁇ -olefin having 2 to 50 carbon atoms.)
  • the vinyl group-containing compound is a compound represented by the formula (4)
  • a structure in which A is composed only of an ⁇ -olefin having 2 to 20 carbon atoms (structure 4-1) is preferable.
  • the vinyl group-containing compound has a structure (Structure 4-2) in which —CH ⁇ CH 2 is present at the terminal of the polymer main chain.
  • the vinyl group-containing compound has a structure (structure 4-3) in which —CH ⁇ CH 2 is present only at the terminal of the polymer main chain.
  • the vinyl group-containing compound has a structure (structure 4-4) in which A is composed only of an ⁇ -olefin having 2 to 20 carbon atoms, and —CH ⁇ CH 2 is present at the terminal of the polymer main chain (structure 4-4). -1 and structure 4-2). Still more preferably, the vinyl group-containing compound has a structure (structure 4-5) in which A is composed only of an ⁇ -olefin having 2 to 20 carbon atoms, and -CH ⁇ CH 2 is present only at the terminal of the polymer main chain. A combination of Structure 4-1 and Structure 4-3).
  • the vinyl group-containing compound is (Z)
  • a structure using vinyl norbornene as the polyene is more preferable.
  • the silicon-containing compound of the present invention preferably has the structure of the formula (2).
  • preferable silicon-containing compounds in the case where the vinyl group-containing compound is represented by the formula (4) and the case of the structure of (Z) are as follows.
  • the silicon-containing compound includes one SiH group such as the above structures 2-3 and 2-4 per molecule.
  • the compound having one it is also possible to use a compound having two or more Si—H bonds per molecule.
  • the above-described structures 2-1 and 2-2 may be adopted.
  • the silylated polyolefin is presumed to have a structure represented by, for example, formulas (5) to (8).
  • the combination of the silicon-containing compound and the vinyl group-containing compound is not limited to these examples.
  • the part derived from the vinyl group-containing compound may be referred to as “polyolefin chain”, and the part derived from the silicon-containing compound may be referred to as “silicon-containing compound chain”.
  • the vinyl group-containing compound has the structure represented by the formula (4), particularly the structure (4-5) and the silicon-containing compound has the structure (2-2)
  • the silylated polyolefin has (polyolefin chain)-( It is considered to have a structure like a block copolymer in which silicon-containing compound chain)-(polyolefin chain) are bonded in this order.
  • the compound which has a presumed structure like above-mentioned Formula (5) can be illustrated.
  • silylated polyolefin In the block structure in which (polyolefin chain)-(silicon-containing compound chain)-(polyolefin chain) are bonded in this order, a structure in which a polyolefin chain is further graft-bonded from the silicon-containing compound chain may be included. it is conceivable that.
  • the silylated polyolefin can be represented by the above formula. (6) It is thought that it has taken the structure like Formula (8).
  • the silylated polyolefin is obtained by grafting (silicon-containing compound chain) to (polyolefin chain). It is thought that the structure like
  • the silylated polyolefin obtained from the combination of the containing compound and the silicon-containing compound has a silylated polyolefin presumed to have a polyolefin chain as a graft chain from the silicon-containing compound chain, and the polyolefin chain has a silicon-containing compound chain as a graft chain.
  • silylated polyolefin is more likely to collect on the surface of the molded body by, for example, melt molding.
  • polyolefin chains are present at both ends of the silicon-containing compound chain, so it is thought that there is little bleed out from the surface of the molded body.
  • Flame retardants such as brominated bisphenols, brominated epoxy resins, brominated polystyrenes, brominated polycarbonates, triphenyl phosphates, phosphonic acid amides and red phosphorus etc., as long as they do not impair the purpose and effect of the present invention
  • Flame retardant aids such as antimony trioxide and sodium antimonate, heat stabilizers such as phosphates and phosphites, antioxidants such as hindered phenols, heat resistance agents, weathering agents, light stability Agents, mold release agents, flow modifiers, colorants, pigments, lubricants, antistatic agents, crystal nucleating agents, plasticizers, foaming agents, and the like may be blended in effective expression amounts as necessary.
  • composition of the present invention containing a resin and a silylated olefin can be produced using any method.
  • it can be obtained by melting and kneading a thermoplastic resin or thermosetting resin, a silylated polyolefin, and other additives.
  • it can be obtained by melt-mixing with a tumbler, V-type blender, Nauter mixer, Banbury mixer, kneading roll, single-screw or twin-screw extruder, etc. simultaneously or in any order.
  • the silylated polyolefin is preferably contained in an amount of 0.01 to 10,000 parts by weight, more preferably 0.1 to 1,000 parts by weight, still more preferably 0.1 to 100 parts by weight, especially 100 parts by weight of the resin. Preferably it is 0.5 to 50 parts by weight, most preferably 1 to 20 parts by weight.
  • the molded article of the present invention is industrially advantageous in that it can improve the scratch resistance and stain resistance of the molded article with a small amount of silylated polyolefin.
  • a compound represented by the above formula (4) as the vinyl group-containing compound and having a vinyl group only at the terminal of the main chain is preferably used.
  • the silicon-containing compound may have the structure (2-1) It is more preferable to use a material having a structure (2-2).
  • solvents may be appropriately used as necessary.
  • the solvent to be used it is preferable to use a solvent in which the silylated polyolefin is dissolved.
  • the solvent that can be used include aliphatic hydrocarbons such as n-hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene, esters such as ethyl acetate, acetone, Examples include ketones such as methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, and methyl propyl ketone; ethers such as tetrahydrofuran and 1,4-dioxane; halogenated hydrocarbons such as chloroform, dichloroethane, trichloroethane, tetrachloroethane, and perchloroethane.
  • aromatic hydrocarbons such as toluene and xylene are particularly preferred from the viewpoints of solubility of silylated polyolefin and reactivity with inorganic materials.
  • the amount of the organic solvent used affects the solubility of the raw material, but is preferably 100 times by weight or less, more preferably 20 times by weight or less, relative to the amount of silylated polyolefin.
  • the kneading apparatus is not particularly limited as long as the silylated polyolefin and the resin can be uniformly mixed and kneaded.
  • Examples include ordinary jacketed reactors, kneaders, mixers, homogenizers, short screw extruders, twin screw extruders, and the like.
  • the composition can be taken out.
  • the poor solvent used in this case one or more kinds can be appropriately selected from methanol, ethanol, 2-propanol, acetone, acetonitrile, hexane, heptane, octane, decane, and the like. If necessary, the obtained composition can be further purified by a method such as washing with an appropriate solvent.
  • a method of obtaining a composition by mixing the resin and silylated polyolefin in one step Is common.
  • both components may not be sufficiently dispersed when the difference in molecular weight between the resin and the silylated polyolefin or the melt viscosity at the molding temperature is large, or when the amount of silylated polyolefin is small.
  • pellet-shaped raw material resin such as pellets may be pumped or sucked and transported through the piping and supplied to the mixer, extruder hopper, etc. May not be retained, and there may be a problem that a low molecular weight component is fused, adhered and adhered to the inner wall portion of the transport piping member.
  • a first resin having a high ratio of silylated polyolefin as compared with the composition a so-called master batch is prepared in advance, and then the second resin and the master batch are mixed.
  • the method of obtaining a composition is mentioned.
  • the amount of the second resin is preferably 1 part by weight or more and 900 parts by weight or less with respect to 100 parts by weight of the master batch.
  • a preferable lower limit of the amount of the second resin is 2 parts by weight, more preferably 5 parts by weight, and particularly preferably 10 parts by weight.
  • a preferable upper limit is 300 parts by weight, more preferably 100 parts by weight, and particularly preferably 50 parts by weight.
  • the masterbatch of the present invention may contain components such as the above-mentioned known additives.
  • a known mixing method using the above tumbler, mixer, blender, roll, extruder or the like can be used.
  • the same method can be used also when preparing a composition using resin and the said masterbatch.
  • melt molding method it is usually performed by heating to a temperature that is higher than the melting point of the resin and having fluidity suitable for molding, and then melting and molding.
  • heat treatment such as annealing
  • those obtained by melt molding are preferred in terms of scratch resistance and stain resistance.
  • a shape of the molded object of this invention it is a sheet
  • it is also a sheet, film, pipe, tube, particularly preferably a molded body obtained by further processing a molded body obtained by primary molding using the above molding method by a method such as blow molding or stretching.
  • a method such as blow molding or stretching.
  • the molded body is in the form of a film or a sheet
  • the molded body obtained by molding into a sheet by, for example, a T-die extrusion molding method is obtained by further uniaxially stretching or biaxially stretching. It is also preferable.
  • the molded body of the present invention is effective is that the silylated polyolefin used in the present invention moves to the surface of the molded body in the process of molding the resin, particularly the process of molding by heating, and the entire molded body required by calculation It is presumed that the concentration is higher than the average value at. For this reason, it is considered that the scratch resistance and stain resistance of the surface of the molded body can be improved with a small addition amount.
  • the composition of the present invention even when a thermosetting resin is used as the resin, it is considered that the silylated polyolefin collects on the surface of the molded body in the process of thermosetting, so that an effect is expected.
  • the thermosetting resin contains a cross-linked structure, the effect of the present invention is considered to be remarkable particularly when a thermoplastic resin is used in consideration of the ease of movement of the silylated polyolefin.
  • the molded article of the present invention has stain resistance such as water repellency and oil repellency. As described above, this is considered to be related to the fact that silylated polyolefin is gathered on the surface of the molded body. Therefore, for example, it can be used as a material for articles such as anti-fingerprint films where oil stains are a problem. In addition, when used as a container or packaging material for an oily article, it is possible to prevent the article from adhering to the container or packaging material. Examples of the contamination resistance index include a surface free energy value. This is because the lower the surface free energy value of the molded body, the higher the water repellency and oil repellency when water or oil is adhered to the surface, and the dirt due to these becomes less likely to adhere.
  • a differential refractometer was used as a detector.
  • a calibration curve was prepared using standard polystyrene, and converted into a value in terms of polyethylene according to a conventional method. In the following synthesis examples, the number of moles of the raw material polymer is expressed as a value based on Mn.
  • Yield is the ratio of the number of moles of silylated polyolefin obtained relative to the number of moles of the vinyl group-containing compound of the raw material
  • conversion is the ratio of the same number of moles consumed relative to the number of moles of the vinyl group-containing compound of the raw material
  • isomerization rate Is the ratio of the number of moles of vinylene produced relative to the number of moles of the vinyl group-containing compound of the raw material
  • the terminal unsaturation ratio is the main chain with respect to the sum of the main chain terminal vinyl group and terminal methyl group of the vinyl group-containing compound as the raw material
  • the ratio of terminal vinyl groups, the number of vinyl groups per thousand carbons is defined as the ratio of the number of vinyl groups to the number of carbons derived from the number of protons corrected to the number of vinyl groups per thousand carbons.
  • the terminal unsaturation rate and the number of vinyl groups per thousand carbons are generally applied to the vinyl group-containing compound as a raw material, but in cases where hydrosilylation is not sufficient, etc., an indicator of the remaining amount of unreacted raw material May also be applied to silylated polyolefins.
  • the main chain methylene (G) for two protons is observed at 1.0 to 1.5 ppm, and the one having no vinyl group at the end of the main chain is terminal methyl (H ) Is observed at 0.8 ppm. Furthermore, a peak (I) of two protons on carbon adjacent to the double bond is observed at 1.9 ppm. If the peak areas of the peaks (C), (D), (E), (F), (G), (H) and (I) are SC, SD, SE, SF, SG, SH and SI, respectively. , Yield (YLD (%)), conversion (CVS (%)), isomerization (ISO (%)), terminal unsaturation (VE (%)), number of double bonds per thousand carbons ( VN (pieces / 1000 C)) is calculated by the following formula.
  • melt mass flow rate (MFR) of polyethylene as a vinyl group-containing compound was measured at 190 ° C. under a load of 2.16 kg using a melt indexer T-111 manufactured by Tokyo Seiki Co., Ltd. did.
  • the MFR of polypropylene as a thermoplastic resin was measured using a melt indexer T-111 manufactured by Tokyo Seiki Co., Ltd. at 230 ° C. and a load of 2.16 kg.
  • the surface tension (X axis) corresponding to the intersection of the straight line obtained by the square method and cos ⁇ 1 was defined as the surface free energy (mN / m).
  • the measurement of surface free energy measured the surface free energy about the chill roll surface side at the time of film forming, using the film produced by each Example and the comparative example as a test sample.
  • the average Si concentration in the composition (silicon atom abundance ratio per carbon atom (Si / C)) is determined by the molecular formula of the silylated polyolefin, the concentration in the composition, and the thermoplasticity of the substrate It can be calculated from the molecular formula of the resin or thermosetting resin and the concentration in the composition.
  • a calculation method when the vinyl group-containing compound which is a raw material compound of the silylated polyolefin is a main chain terminal vinyl group-containing polymer composed only of ethylene-derived constitutional units and dimethylsiloxane, and the base material is homopolypropylene is given. .
  • Oxygen and Carbon Dioxide Permeation Coefficient Measurement Method Oxygen and carbon dioxide permeability coefficients were measured at a test temperature of 23 ° C., a test humidity of 0% RH, and a measurement area of 5 cm 2 using a differential pressure method gas permeability measurement device manufactured by Tokyo Seiki Co., Ltd. It was measured.
  • the content of the structural unit derived from the diene or ⁇ -olefin in the olefin / polyene copolymer (Z) is determined by 13 C-NMR: the peak area of the unsaturated portion and the peak area of the total carbon, or 13 C—
  • the number M of unsaturated groups per 1,000 carbons can be obtained by comparing the peak area of carbon of the ⁇ -olefin part by NMR and the peak area of all carbons.
  • the unsaturated group content per molecule can be calculated by Mn ⁇ M / 14,000 using the number average molecular weight Mn and the number of unsaturated groups M per 1,000 carbons determined above. Measurement method) It was measured by the density gradient tube method of JISK7112.
  • a stainless steel autoclave with an internal volume of 2000 ml sufficiently purged with nitrogen was charged with 1000 ml of heptane at room temperature, and the temperature was raised to 150 ° C. Subsequently, the inside of the autoclave was pressurized to 30 kg / cm 2 G with ethylene to maintain the temperature.
  • a hexane solution of MMAO (manufactured by Tosoh Finechem) (0.5 mmol (0.5 mmol) in terms of aluminum atom) was injected, and then 0.5 ml of a toluene solution of compound B-1 (0.0002 mmol / ml) (0.0001 mmol) was injected to initiate the polymerization. Polymerization was carried out at 150 ° C.
  • the reactor was set in an oil bath that had been heated to an internal temperature of 130 ° C. in advance, and stirred. After about 3 minutes the polymer melted. Then, after 6 hours, the mixture was cooled, about 200 ml of methanol was added, and the contents were taken out into a 300 ml beaker and stirred for 2 hours. Thereafter, the solid was collected by filtration, washed with methanol, and dried under reduced pressure at 60 ° C. and 2 hPa or less to obtain 18.5 g of a white solid silylated polyolefin (A-1).
  • A-1 white solid silylated polyolefin
  • the obtained silylated polyolefin (A-1) had a yield of 99%, an olefin conversion rate of 100%, and an isomerization rate of 1%.
  • the MFR was not less than the upper limit of measurement (MFR> 100 g / 10 min), and the polyorganosiloxane content in (A-1) calculated from the molecular formula was 46% by weight.
  • a vinyl group-containing compound (P-3) was prepared in 80 g of hydrosilane B (HS (B), manufactured by Gerest, product number: MCR-H07) represented by the following average structural formula, 2 L of xylene and Synthesis Example 4
  • HS hydrosilane B
  • C-2 platinum catalyst composition
  • A-3 silicone-modified wax
  • the MFR of the silicone-modified wax (A-3) was not less than the upper limit of measurement (MFR> 100 g / 10 min), and the polyorganosiloxane content in (A-3) calculated from the molecular formula was 32% by weight.
  • the surface free energy of this film is 24.8 mN / m
  • the abrasion resistance test result is good ( ⁇ , no damage)
  • the oxygen transmission coefficient is 110 cm 3 ⁇ mm / (m 2 ⁇ 24 h ⁇ atm)
  • dioxide dioxide The carbon permeability coefficient was 385 cm 3 ⁇ mm / (m 2 ⁇ 24 h ⁇ atm)
  • the water vapor permeability coefficient was 0.421 g ⁇ mm / (m 2 ⁇ 24 h).
  • the surface Si concentration of the obtained single-layer film as measured by ESCA was 0.063 (Si / C), which greatly exceeded the average value of 0.005 for the entire composition.
  • silylated polyolefin (A-2) It was clear that the solution migrated to the surface and was concentrated.
  • the surface free energy of this film is 24.7 mN / m
  • the abrasion resistance test result is good ( ⁇ , no damage)
  • the oxygen transmission coefficient is 106 cm 3 ⁇ mm / (m 2 ⁇ 24 h ⁇ atm)
  • dioxide dioxide The carbon permeability coefficient was 379 cm 3 ⁇ mm / (m 2 ⁇ 24 h ⁇ atm)
  • the water vapor permeability coefficient was 0.411 g ⁇ mm / (m 2 ⁇ 24 h).
  • Example 4 70 parts by weight of polypropylene (Polypropylene Polypropylene F107, MFR 6.6 g / 10 min) and 30 parts by weight of the above-mentioned silylated polyolefin (A-1) are added to a micro compounder (manufactured by DSM; DSM-Xplore) and kneaded.
  • the resin composition was obtained by kneading for 5 minutes at a temperature of 230 ° C. and a rotation speed of 100 rpm. This resin composition was hot press molded. Molding was performed by a method of pressing for 5 minutes while heating to 230 ° C.
  • Example 5 A hot press sheet having a thickness of about 200 ⁇ m was obtained in the same manner as in Example 4 except that silylated polyolefin (A-1) was replaced with silylated polyolefin (A-2).
  • the oxygen permeability coefficient, carbon dioxide permeability coefficient, water vapor permeability coefficient, and scratch resistance of this sheet were evaluated. The results are shown in Table 2.
  • seat were measured using Nippon Denshoku Industries Co., Ltd. haze meter NDH2000, haze was 62% and total light transmittance was 93%.
  • Example 3 A hot press sheet having a thickness of about 200 ⁇ m was obtained in the same manner as in Example 4 except that silylated polyolefin (A-1) was not used. The oxygen permeability coefficient, carbon dioxide permeability coefficient, water vapor permeability coefficient, and scratch resistance of this sheet were evaluated. The results are shown in Table 2. Moreover, when the haze and total light transmittance of this sheet
  • Example 6 Dry blend of 5.0 parts by weight of the above-mentioned silylated polyolefin (A-1) to 95.0 parts by weight of polypropylene (Polypropylene F107, FFR 6.6 g / 10 min), and TEM-26SS biaxial from Toshiba Machine Co.
  • Example 7 9.2 parts by weight of the above-mentioned silylated polyolefin (A-1) was dry blended with 97.2 parts by weight of polypropylene (polypropylene F107 made by Prime Polymer, MFR 6.6 g / 10 min), and TEM-26SS biaxial from Toshiba Machine Co., Ltd.
  • This resin composition was injection molded using an injection molding machine NEX30-3E manufactured by Nissei Plastic Industry Co., Ltd. under the conditions of a cylinder temperature of 200 ° C. and a mold temperature of 40 ° C.
  • This resin composition was injection molded using an injection molding machine NEX30-3E manufactured by Nissei Plastic Industry Co., Ltd. under the conditions of a cylinder temperature of 200 ° C. and a mold temperature of 40 ° C.
  • the obtained injection-molded plate was measured for wear amount and friction coefficient by JIS K7218A method (load: 75 N, speed: 0.1 m / s, distance: 3 km). The wear amount was 0.003 g, and the friction coefficient was 0.00. 22 The counterpart material used for the measurement is S45C. Further, the total light transmittance of the molded plate was measured by using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and found to be 84%. The results are summarized in Table 3.
  • Example 8 Except that no silylated polyolefin (A-2) was used in Example 10, an injection molded plate having a size of 70 mm ⁇ 70 mm ⁇ 2 mm was obtained. The obtained injection molded plate was measured for wear amount and friction coefficient by JIS K7218A method (load: 75 N, speed: 0.1 m / s, distance: 0.5 km). The wear amount was 1.021 g, and the friction coefficient was It was 0.61. The counterpart material used for the measurement is S45C. As a result, it was found that the amount of wear and the friction coefficient were increased as compared with the case of using the silylated polyolefin (A-2) (Example 10). Further, the total light transmittance of the molded plate was measured by using a haze meter NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. and found to be 84%. The results are summarized in Table 3.
  • Comparative Example 11 After sticking the adhesive tape, it was carried out in the same manner as in Comparative Example 10 except that it was allowed to stand at 60 ° C. for 24 hours. When the ESCA measurement was performed on the adhesive surface, the surface Si concentration was 0.043 (Si / C). It was. The results are summarized in Table 4.
  • the reactor was set in an oil bath that had been heated to an internal temperature of 130 ° C. in advance, and stirred. After about 3 minutes the polymer melted. Then, after 6 hours, the mixture was cooled, about 200 ml of methanol was added, and the contents were taken out into a 300 ml beaker and stirred for 2 hours. Thereafter, the solid was collected by filtration, washed with methanol, and dried under reduced pressure at 60 ° C. for 2 hPa or less to obtain 34.1 g of a white solid silylated polyolefin (A-5).
  • the obtained silylated polyolefin (A-5) had a yield of 99%, an olefin conversion rate of 100%, and an isomerization rate of 2%.
  • MFR was not less than the upper limit of measurement (MFR> 100 g / 10 min), and the polyorganosiloxane content in (A-5) calculated from the molecular formula was 26% by weight.
  • Example 16 5.7 parts by weight of the above silylated polyolefin (A-4) was dry blended with 94.3 parts by weight of polypropylene (Prime Polymer Polypropylene F107, MFR 6.6 g / 10 min), and TEM-26SS biaxial from Toshiba Machine.
  • This resin composition was injection molded using an injection molding machine NEX30-3E manufactured by Nissei Plastic Industry Co., Ltd. under the conditions of a cylinder temperature of 200 ° C. and a mold temperature of 40 ° C.
  • Example 17 After sticking the adhesive tape, it was performed in the same manner as in Example 16 except that it was allowed to stand at 60 ° C. for 24 hours. When the ESCA measurement was performed on the adhesive surface, the surface Si concentration was 0.017 (Si / C). It was. The results are summarized in Table 5.
  • Example 18 Dry blend of 10.0 parts by weight of the above-mentioned silylated polyolefin (A-5) to 90.0 parts by weight of polypropylene (Polypropylene Polypropylene F107, MFR 6.6 g / 10 min), and TEM-26SS biaxial from Toshiba Machine Co., Ltd.
  • This resin composition was injection molded using an injection molding machine NEX30-3E manufactured by Nissei Plastic Industry Co., Ltd. under the conditions of a cylinder temperature of 200 ° C. and a mold temperature of 40 ° C.
  • Example 19 After sticking the adhesive tape, it was performed in the same manner as in Example 18 except that it was allowed to stand at 60 ° C. for 24 hours. When the ESCA measurement was performed on the adhesive surface, the surface Si concentration was 0.005 (Si / C). It was. The results are summarized in Table 5.
  • the molded product of the present invention is excellent in scratch resistance and stain resistance, is difficult to bleed out from the surface of the molded product, and has good gas permeability in addition to the above performance. Therefore, it is industrially important.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Silicon Polymers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 本発明の成形体は、熱可塑性樹脂および熱硬化性樹脂からなる群から選択される少なくとも1つの樹脂、100重量部と、 式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下であるビニル基含有化合物との反応(ただし、前記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ前記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)によって得られる、シリル化ポリオレフィンもしくはその誘導体、またはこれらの混合物、0.01~10,000重量部と、 を含有する組成物から形成される成形体である。 -Si(R)H-Y- (1) (式(1)中、Rは、水素原子、ハロゲン原子または炭化水素基であり、 YはO、SまたはNR30(R30は、水素原子または炭化水素基である)である。)

Description

成形体
 本発明は、成形体に関する。より詳細には、所定のシリル化ポリオレフィンと樹脂とを含む組成物から形成される成形体に関する。
 熱可塑性樹脂や熱硬化性樹脂に代表される樹脂は、安価であることや成形が比較的容易であることから、さまざまな場面で使用されている。しかし樹脂を成形して得られる成形品の、耐傷つき性や耐汚染性が要求される用途への使用は、樹脂によっては制限される場合があった。
 樹脂の特性を改質しようとする試みとして、特許文献1には、重合体の片側末端に、ビニルまたはビニリデン型の不飽和結合を含む特定の低分子量エチレン系重合体を変性することが記載されている。また特許文献1には、ケイ素含有基やスズ含有基などを有するオリゴマーは、ポリ塩化ビニル滑剤やエンジニアリングプラスチックなどの滑剤などに適することが記載されている。樹脂の特性を改質するための別の試みとして、特許文献2には、例えば、低分子量ポリエチレンオリゴマーとハイドロジェンシリコーンとを反応させる試みが記載されている。また、特許文献3には、オレフィン系ワックスをヒドロシリコーンでヒドロシリル化して得た、シリコーン変性オレフィンワックスを含有する室温固化性組成物を、化粧品に応用する試みが記載されている。また、特許文献4には、特定の数の末端二重結合を有するポリオレフィンと、ケイ素含有化合物などの架橋剤とからなる組成物が記載されている。
特開2003-73412号公報 特開2004-196883号公報 特開2004-149552号公報 特開2004-35813号公報
 しかし、特許文献1には、樹脂からなる成形体の耐傷つき性を向上させることについては記載されていない。特許文献2,3についても、成形体に適用することについては記載されていない。特許文献4については、ポリオレフィンを架橋して、耐摩耗性などの優れた特性を発現させようとしており、これを用いて任意の樹脂の耐傷つき性を向上させようとするものではない。
 本発明は、かかる事情に鑑みてなされたものであり、耐傷つき性、耐汚染性に優れた成形体を提供するものである。
 本発明によれば、熱可塑性樹脂および熱硬化性樹脂からなる群から選択される少なくとも1つの樹脂、100重量部と、
 式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下であるビニル基含有化合物との反応(ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)によって得られる、シリル化ポリオレフィンもしくはその誘導体、またはこれらの混合物、0.01~10,000重量部と、
を含有する組成物から形成される成形体が提供される。
-Si(R)H-Y-   (1)
 (式(1)中、Rは、水素原子、ハロゲン原子または炭化水素基であり、
  YはO、SまたはNR30(R30は、水素原子または炭化水素基である)である。)
 上記成形体において、上記ケイ素含有化合物は、以下の構造式で表されるのが好ましい。
22-(Si(R21)H-Y21-Z-(Y22-Si(R23)H)-R24  (2)
 (式(2)中、R21およびR23はそれぞれ独立して、水素原子、ハロゲン原子または炭化水素基であり、
 R22およびR24はそれぞれ独立して、ハロゲン原子または炭化水素基であり、
 Y21およびY22はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
 mは0または1であり、
 nは0または1であり、
 R21、R23、Y21およびY22が複数存在する場合、各基は同一であっても異なっていてもよく、
 Zは、式(3)で表される2価の基であり、
-Si(R41)(R41)-(Y23-Si(R41)(R41))-   (3)
(式(3)中、R41は水素原子、ハロゲン原子または炭化水素基であり、各R41はそれぞれ同一であっても異なっていてもよく、Y23はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
lは0~10000の整数である。)
ただし、上記式(2)において、m=n=0の場合、上記式(3)において、少なくとも1つのR41は水素原子である。)
 上記成形体において、上記ケイ素含有化合物は、ケイ素原子を3個以上含有し得る。
 上記式(2)において、m=n=1であり、R21、R23およびR41は全て炭化水素基であり得る。
 上記式(2)において、m=1、n=0であり、R21およびR41は全て炭化水素基であり得る。
 上記成形体において、上記ビニル基含有化合物は、式(4)で表される構造を有し得る。
A-CH=CH   (4)
(式(4)中、Aは炭素数2~50のα-オレフィン由来の構造を含む重合鎖である。)
 上記成形体において、上記ビニル基含有化合物の分子量分布が1.1~3.0の範囲であり得る。
 上記成形体において、上記Aは、炭素数2~50のα-オレフィンのみから構成される重合鎖であり得る。
 上記成形体において、上記Aは、エチレン単独重合鎖であり得る。
 上記成形体において、上記ビニル基含有化合物は、下記(Z1)~(Z6)を満たすオレフィン・ポリエン共重合体(Z)であり得る。
(Z1)エチレンと少なくとも1種のポリエンとを共重合して得られる共重合体、またはエチレンおよび炭素数3~12のα-オレフィンから選ばれる少なくとも1種のオレフィンと少なくとも1種のポリエンとを共重合して得られる共重合体、
(Z2)1分子あたりの不飽和基含有量が0.5~3.0個、
(Z3)密度が870~980kg/m
(Z4)融点が70~130℃、
(Z5)数平均分子量(Mn)が400~5,000、
(Z6)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0以下。
 上記成形体において、上記(Z1)のポリエンはビニルノルボルネン(5-ビニルビシクロ[2.2.1]ヘプト-2-エン)であり得る。
 上記成形体において、上記ビニル基含有化合物の二重結合の反応率が90%以上であり得る。
 上記成形体において、上記シリル化ポリオレフィンの、JISK7210に準拠して、2.16kg荷重、190℃で測定したメルトマスフローレイト(MFR)は0.01g/10分以上であり得る。
 上記成形体において、上記熱可塑性樹脂は、ポリオレフィン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂およびポリ乳酸樹脂からなる群より選択される少なくとも1つであり得る。
 上記成形体において、上記熱硬化性樹脂は、エポキシ樹脂および熱架橋性ポリオレフィン樹脂からなる群より選択される少なくとも1つであり得る。
 上記成形体は、上記組成物を溶融成形して得られる成形体であり得る。
 上記成形体は、フィルムもしくはシートの形態であり得る。
 上記成形体は、自動車内装部品、グラスランチャネル、プラスチックシリンジ、包材、プラスチック容器、中空糸膜、ガス透過性フィルムおよびガス選択性フィルムから選ばれる成形体であり得る。
 上記成形体において、上記ケイ素含有化合物が式(2')で表される構造単位を含有し、上記ビニル基含有化合物が式(4)で表される構造を有し、分子量分布が1.1~3.0の範囲であり得る(ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)。
22-(Si(R21)H-Y21-Z-(Y22-Si(R23)H)-R24  (2')
 (式(2')中、R21およびR23はそれぞれ独立して、炭化水素基であり、
 R22およびR24はそれぞれ独立して、ハロゲン原子または炭化水素基であり、
 Y21およびY22はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
 mは1であり、
 nは1であり、
 R21、R23、Y21およびY22が複数存在する場合、各基は同一であっても異なっていてもよく、
 Zは、式(3)で表される2価の基であり、
-Si(R41)(R41)-(Y23-Si(R41)(R41))-   (3)
(式(3)中、R41は炭化水素基であり、各R41はそれぞれ同一であっても異なっていてもよく、Y23はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、lは0~10000の整数である。))
A-CH=CH   (4)
(式(4)中、Aは炭素数2~50のα-オレフィン由来の構造を含む重合鎖である。)
 上記成形体において、上記ビニル基含有化合物の二重結合の反応率が90%以上であり得る。
 上記成形体は、上記ケイ素含有化合物が式(2e)で表される構造単位を含有し、上記ビニル基含有化合物が式(4')で表される構造を有し、GPC法で求めた数平均分子量が700以上10,000以下であり、上記組成物から溶融成形法により形成され得る。
HSi(CHO-(-Si(CH-O-)-Si(CHH  (2e)
(式(2e)中、iは1以上50以下の整数である。)
A-CH=CH   (4')
(式(4')中、Aはエチレン単独重合鎖であり、-CH=CHはポリマー主鎖の末端のみに存在する。)
 上記成形体は、上記ケイ素含有化合物が式(2e)で表される構造単位を含有し、上記ビニル基含有化合物が式(4')で表される構造を有し、GPC法で求めた数平均分子量が700以上10,000以下であり、フィルムもしくはシートの形態であり得る。
HSi(CHO-(-Si(CH-O-)-Si(CHH  (2e)
(式(2e)中、iは1以上50以下の整数である。)
A-CH=CH   (4')
(式(4')中、Aはエチレン単独重合鎖であり、-CH=CHはポリマー主鎖の末端のみに存在する。)
 上記成形体は、上記ケイ素含有化合物が式(2e)で表される構造単位を含有し、上記ビニル基含有化合物が式(4')で表される構造を有し、GPC法で求めた数平均分子量が700以上10,000以下であり、自動車内装部品、グラスランチャネル、プラスチックシリンジ、包材、プラスチック容器、中空糸膜、ガス透過性フィルムおよびガス選択性フィルムから選ばれ得る。
HSi(CHO-(-Si(CH-O-)-Si(CHH  (2e)
(式(2e)中、iは1以上50以下の整数である。)
A-CH=CH   (4')
(式(4')中、Aはエチレン単独重合鎖であり、-CH=CHはポリマー主鎖の末端のみに存在する。)
 本発明によれば、耐傷つき性、耐汚染性に優れた成形体が提供される。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態によってさらに明らかになる。
 以下、本発明による成形体の好適な実施形態について詳細に説明する。なお、「~」はとくに断りがなければ、以上から以下を表す。
 本発明の成形体は、熱可塑性樹脂および熱硬化性樹脂からなる群から選択される少なくとも1つの樹脂、100重量部と、式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下でありかつビニル基を含有するビニル基含有化合物との反応(ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)によって得られる、シリル化ポリオレフィンもしくはその誘導体、またはこれらの混合物、0.01~10,000重量部と、を含有する組成物から形成される。
-Si(R)H-Y-   (1)
 式(1)中、Rは、水素原子、ハロゲン原子または炭化水素基であり、
 YはO、SまたはNR30(R30は、水素原子または炭化水素基である)である。
 上記成形体において、シリル化ポリオレフィンの構造は定かではないが、例えば式(1)の構造単位を含有するケイ素含有化合物中の-Si-Hと、ビニル基含有化合物中の-CH=CH(ビニル基)とが反応して生成する、-Si-C-C-構造を含むのではないかと考えられる。ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は、得られるシリル化ポリオレフィンは、例えば網目構造を有する可能性が高いと考えられ、本発明ではこのような場合を除いている。本発明はかかる構成をとるため、樹脂とシリル化ポリオレフィンとを含む組成物から形成される成形体は、表面ケイ素濃度が向上し、成形体の表面自由エネルギーが抑制され、良好な耐傷付き性、さらには撥水性および撥油性等の耐汚染性も有すると本発明者らは推察している。
(I)熱可塑性樹脂および熱硬化性樹脂
 本発明で用いられる熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ABS樹脂、ポリアセタール樹脂、ポリアミド樹脂、ポリフェニレンオキシド樹脂、ポリイミド樹脂、ポリウレタン樹脂、ポリ乳酸樹脂、フラン樹脂、シリコーン樹脂が挙げられるが、これらに限定されない。また、本発明で用いられる熱硬化性樹脂としては、エポキシ樹脂、熱硬化性不飽和ポリエステル樹脂、フェノール樹脂、熱硬化性ポリオレフィン樹脂が挙げられるが、これらに限定されない。これらの熱可塑性樹脂および熱硬化性樹脂は、それぞれ1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。
 これらの熱可塑性樹脂または熱硬化性樹脂についての定義、製法については、周知であり、たとえば「実用プラスチック事典」(実用プラスチック事典 編集委員会編、株式会社産業調査会発行)等の刊行物に記載されている。なおここでいう「樹脂」とは軟質、硬質いずれであってもよく、特に制限はない。
 上記の各熱可塑性樹脂について詳述する。
(Ia)ポリオレフィン樹脂
 本発明で用いられるポリオレフィン樹脂は特に制限はなく、従来公知のポリオレフィン樹脂を使用することができる。具体的には、低密度ポリエチレン、高密度ポリエチレン等のポリエチレン樹脂、ポリプロピレン樹脂、ポリエチレンテレフタレート樹脂、塩化ビニル樹脂(塩素化ポリオレフィン)、エチレン・酢酸ビニル共重合体、エチレン・メタクリル酸アクリレート共重合体などが挙げられる。中でも、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン樹脂が好ましく用いられる。
(Ib)ポリカーボネート樹脂
 本発明で用いられるポリカーボネート樹脂は、典型的には、芳香族ジオール(例えばビスフェノールA)とホスゲンとを反応することにより得られる樹脂である。
 このようなポリカーボネート樹脂は市販されており、例えば商品名NOVAREX(登録商標)(三菱化学社製)、パンライト(登録商標)(帝人化成社製)、レキサン(登録商標)(日本ジーイープラスチックス社製)等をあげることができ、本発明において好ましく用いることができる。
(Ic)熱可塑性ポリエステル樹脂
 本発明で用いられる熱可塑性ポリエステル樹脂は、典型的には、ジカルボン酸とジオールとを重縮合させて得られる樹脂である。本発明においては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン2,6-ナフタレンジカルボキシレート、ポリシクロヘキサンテレフタレート等が好ましく用いられる。
(Id)ABS樹脂
 本発明で用いられるABS樹脂は、典型的には、ポリブタジエンにアクリロニトリルおよびスチレンをグラフト重合させて得られる耐衝撃性樹脂である。本発明においては、ポリブタジエン成分が5~40重量%であって、スチレン成分とアクリロニトリル成分の重量比(スチレン/アクリロニトリル)が70/30~80/20であるものが好ましい。
(Ie)ポリアセタール樹脂
 本発明で用いられるポリアセタール樹脂は、典型的には、ホルマリンあるいはトリオキサンを、所望に応じてエチレンオキサイドと共に、カチオン触媒の存在下に開環重合して得られる樹脂であり、ポリオキシメチレン鎖を主骨格とする樹脂である。本発明においては、コポリマータイプのものが好ましい。
(If)ポリアミド樹脂
 本発明で用いられるポリアミド樹脂は、典型的には、ジアミンとジカルボン酸との重縮合、あるいはカプロラクタムの開環重合等により得られる樹脂である。本発明においては、脂肪族ジアミンと脂肪族または芳香族ジカルボン酸の重縮合反応物が好ましい。
(Ig)ポリフェニレンオキシド樹脂
 本発明で用いられるポリフェニレンオキシド樹脂は、典型的には、2,6-ジメチルフェノールを銅触媒の存在下に酸化カップリングさせて得られる。さらにこれを変性した変性ポリフェニレンオキシド樹脂も、本発明において用いることができる。
 本発明においては、ポリフェニレンオキシド樹脂とスチレン系ポリマーのブレンド変性物が好ましい。
(Ih)ポリイミド樹脂
 本発明で用いられるポリイミド樹脂は、典型的には、テトラカルボン酸とジアミンとを重縮合させ、主骨格にイミド結合を生成させて得られる樹脂である。
(Ii)ポリウレタン樹脂
 本発明で用いられるポリウレタン樹脂は、好ましくは、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート等のイソシアネートとポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール等のポリオールとを主原料とし、両者を混合、反応させた樹脂である。
(Ij)ポリ乳酸樹脂
 本発明で用いられるポリ乳酸樹脂は、好ましくは、乳酸がエステル結合によって重合した樹脂であり、例えば、ジフェニルエーテルなどの溶媒中で乳酸を減圧下加熱し、水を取り除きながら重合させることによってポリ乳酸が得られる。
(Ik)フラン樹脂
 本発明で用いられるフラン樹脂としては、フルフリルアルコールを主成分として含む混合物を重縮合して得られる樹脂が挙げられる。このような樹脂としては、例えば、フルフリルアルコールと尿素とアルデヒド類とを重縮合して得られる樹脂がある。アルデヒド類としては、ホルムアルデヒド、グリオキザール、フルフラール等の従来公知のアルデヒド化合物を使用することができる。
(Il)シリコーン樹脂
 本発明で用いられるシリコーン樹脂としては、ジアルキルジクロロシランをはじめとする各種のシラン類を加水分解させ、生成したシラノールを脱水縮合して得られる重合体などが挙げられる。このような重合体としては、例えば、ジメチルジクロロシラン、メチルトリクロロシランやテトラクロロシランを加水分解し、脱水縮合するクロロシラン法により得られる重合体、ジメチルジメトキシシラン、トリメトキシシランやテトラメトキシシランを加水分解し、脱水縮合するゾル-ゲル法により得られる重合体が挙げられる。
 上記の各熱硬化性樹脂について詳述する。なお、以下の説明は、各樹脂の熱硬化前の状態についてのものである。
(Im)エポキシ樹脂
 本発明で用いられるエポキシ樹脂は、典型的には、芳香族ジオール(例えば、ビスフェノールA)とエピクロルヒドリンとをアルカリの存在下に反応させることにより得られる樹脂である。本発明においては、エポキシ当量170~5000のビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂が好ましい。
(In)熱硬化性不飽和ポリエステル樹脂
 本発明で用いられる熱硬化性不飽和ポリエステル樹脂は、典型的には、脂肪族不飽和ジカルボン酸と脂肪族ジオールとをエステル化反応させることにより得られる樹脂である。本発明においては、マレイン酸やフマル酸等の不飽和ジカルボン酸と、エチレングリコールやジエチレングリコール等のジオールとをエステル化反応して得られる樹脂が好ましい。
(Io)フェノール樹脂
 本発明で用いられるフェノール樹脂は、ノボラック型およびレゾール型のいずれをも包含する。本発明において、ヘキサメチレンテトラミンで硬化させるノボラック型やジメチレンエーテル結合を主体とする固形レゾールが好ましい。
(Ip)熱硬化性ポリオレフィン樹脂
 本発明で用いられる熱硬化性ポリオレフィンとしては、特に制限はないが、例えば、DCPD(ジシクロペンタジエン)、ポリブタジエン樹脂などを挙げることができる。このような樹脂は市販されており、例えばDCPD樹脂としては、商品名「PENTAM(登録商標)」、「METTON(登録商標)」(リムテック社製)から選ばれる樹脂が挙げられる。
 中でも、上記樹脂が熱可塑性樹脂である場合には、ポリオレフィン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂およびポリ乳酸樹脂からなる群より選ばれる少なくとも1種以上であることが好ましい。また上記樹脂が熱硬化性樹脂である場合には、エポキシ樹脂および熱硬化性ポリオレフィン樹脂からなる群より選ばれる少なくとも1種以上であることが好ましい。熱可塑性樹脂は、ポリオレフィン樹脂であることがさらに好ましく、特にポリプロピレン樹脂およびポリエチレン樹脂から選ばれる少なくとも1種以上であることが好ましい。
 本発明における熱可塑性樹脂や熱硬化性樹脂の分子量は、成形体を成形可能な程度であって各種成形体において好適とされる分子量のものであれば特に制限なく用いることができる。例えばJISK7210記載の方法で測定したMFRが0.01~200g/10分、好ましくは0.01~100g/10分のものを挙げることができる。測定条件は樹脂により異なるが、付属書B表1に記載のものを使用することができる。例えばポリオレフィンの場合であって、ポリエチレン樹脂(低密度ポリエチレン、高密度ポリエチレンなど)、ポリブテン樹脂の場合、190℃、2.16kg荷重で測定する。ポリプロピレン樹脂の場合、230℃、2.16kg荷重で測定する。エチレン・酢酸ビニル共重合体の場合190℃、2.16kg荷重で測定する。
 本発明で用いられるケイ素含有化合物は、式(1)で表される構造単位を有するヒドロシラン化合物である。
 -Si(R)H-Y-   (1)
式(1)中、Rは、水素原子、ハロゲン原子または炭化水素基であり、
はO、SまたはNR30(R30は、水素原子または炭化水素基である)である。
 ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
 炭化水素基としては、アルキル基、アルケニル基、アリール基が挙げられる。
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、ヘキシル基、2-エチルヘキシル基、オクチル基、デシル基、オクタデシル基等の直鎖状または分岐状アルキル基;シクロペンチル基、シクロヘキシル基、ノルボルニル基等のシクロアルキル基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアリールアルキル基が挙げられる。
 アルケニル基としては、ビニル基、プロペニル基、シクロヘキセニル基等が挙げられる。
 アリール基としては、フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基等が挙げられる。
 また上記の炭化水素基は、1つ以上のヘテロ原子を含んでいてもよい。具体的には、これらの基の少なくとも一つの水素が、ハロゲン原子、酸素、窒素、ケイ素、リン、イオウを含む基で置換された基が挙げられる。
 一実施形態において、ケイ素含有化合物は、式(2)で表される構造を有する。
22-(Si(R21)H-Y21-Z-(Y22-Si(R23)H)-R24  (2)
 式(2)中、R21およびR23はそれぞれ独立して、水素原子、ハロゲン原子または炭化水素基であり、
 R22およびR24はそれぞれ独立して、ハロゲン原子、または炭化水素基であり、
 Y21およびY22はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
 mは0または1であり、
 nは0または1であり、
 R21、R23、Y21およびY22が複数存在する場合、各基は同一であっても異なっていてもよく、
 Zは、式(3)で表される2価の基である:
-Si(R41)(R41)-(Y23-Si(R41)(R41))-   (3)
 式(3)中、R41は水素原子、ハロゲン原子または炭化水素基であり、各R41はそれぞれ同一であっても異なっていてもよく、Y23はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
lは0~10,000の整数である。
ただし、上記式(2)において、m=n=0の場合、式(3)において、少なくとも1つのR41は水素原子である。
 なお、式(2)および式(3)におけるハロゲン原子および炭化水素基の定義は、上記式(1)における定義と同様である。
 また、式(1)、(2)、(3)における炭化水素基として、炭素原子と水素原子とのみからなるものであることも1つの典型的な実施態様である。
 一実施形態において、ケイ素含有化合物は、好ましくは、3個以上、より好ましくは5個以上、さらに好ましくは10個以上のケイ素原子を有する。またケイ素含有化合物は好ましくは10,000個以下、より好ましくは1,000個以下、特に好ましくは300個以下、さらに好ましくは50個以下のケイ素原子を有することが好ましい。このようなケイ素含有化合物を用いたシリル化ポリオレフィンを用いることにより、得られた成形体は、良好な耐傷つき性、耐汚染性を発現する。なお、ここで言う耐傷つき性とは、耐摩耗性、耐摩擦性、摺動性を含む。
 一実施形態において、上記式(3)におけるlは、0~10,000の整数であるが、好ましい上限および下限としては、式(2)のmとnの値と上記好ましいケイ素原子の個数とから定まる数を挙げることができる。
 一実施形態において、上記式(2)においてm=n=1、すなわち両末端にSiH基を有するケイ素含有化合物が好ましく用いられる。
 一実施形態において、上記式(2)においてm=1であり、n=0、すなわち片末端にSiH基を有するケイ素含有化合物が好ましく用いられる。
 特に好ましいケイ素含有化合物としては、上記式(2)および式(3)において、m=n=1であり、R21、R23およびR41は全て炭化水素基である化合物が挙げられる。特に好ましい別のケイ素含有化合物としては、上記式(2)および式(3)において、m=1、n=0であり、R21およびR41は全て炭化水素基である化合物が挙げられる。
 本発明で用いられるケイ素含有化合物の具体例を以下に示す。本発明のケイ素含有化合物としては、SiH基を1個有する化合物が挙げられる。
 SiH基を1個有するケイ素含有化合物の例としては、例えば、式(2a)で表される化合物、式(2a)においてメチル基の一部または全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 HSi(CHO-(-Si(CH-O-)-Si(CH  (2a)
(式(2a)中、dは1以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 このような化合物として、より具体的には、以下に示す化合物が挙げられるが、これらに限定されない。
 C-((CHSiO)-(CHSiH
 C-((CHSiO)65-(CHSiH
 SiH基を1個有するケイ素含有化合物の別の例としては、例えば、式(2b)で表されるジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、式(2b)においてメチル基の一部または全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 Si(CHO-(-Si(CH-O-)-(-SiH(CH)-O-)-Si(CH  (2b)
(式(2b)中、eは、0以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 なお、-Si(CH-O-単位と-SiH(CH)-O-単位とが並ぶ順序には特に制限はなく、ブロック的であっても無秩序であっても統計的ランダム的であっても良い。
 このような化合物として、より具体的には、以下に示す化合物が挙げられるが、これに限定されない。
 Si(CHO-SiH(CH)-O-Si(CH
 本発明のケイ素含有化合物としてはまた、SiH基を2個以上有する化合物が挙げられる。
 SiH基を2個以上有するケイ素含有化合物の例としては、例えば、式(2c)で表されるメチルハイドロジェンポリシロキサン、式(2c)においてメチル基の一部または全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
(CHSiO-(-SiH(CH)-O-)-Si(CH  (2c)
(式(2c)中、fは2以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 SiH基を2個以上有するケイ素含有化合物の別の例としては、例えば、式(2d)で表されるジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、式(2d)においてメチル基の一部または全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
(CHSiO-(-Si(CH-O-)-(-SiH(CH)-O-)-Si(CH  (2d)
(式(2d)中、gは1以上の整数であり、hは2以上の整数であり、gとhとの合計の上限は、例えば1000、好ましくは300、さらに好ましくは50である。)
 また、式(2d)において、-Si(CH-O-単位と-SiH(CH)-O-単位とが並ぶ順序には特に制限はなく、ブロック的であっても無秩序であっても統計的ランダム的であっても良い。
 このような化合物として、より具体的には、以下に示す化合物が挙げられるが、これに限定されない。
Figure JPOXMLDOC01-appb-C000001
 SiH基を2個以上有するケイ素含有化合物のさらに別の例としては、例えば、式(2e)で表されるメチルハイドロジェンポリシロキサン、式(2e)においてメチル基の一部または全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 HSi(CHO-(-Si(CH-O-)-Si(CHH  (2e)
(式(2e)中、iは1以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 このような化合物として、より具体的には、以下に示す化合物が挙げられるが、これらに限定されない。
 HSi(CHO-(-Si(CH-O-)-Si(CH
 HSi(CHO-(-Si(CH-O-)-Si(CH
 HSi(CHO-(-Si(CH-O-)18-Si(CH
 HSi(CHO-(-Si(CH-O-)80-Si(CH
 HSi(CHO-(-Si(CH-O-)230-Si(CH
 SiH基を2個以上有するケイ素含有化合物のさらに別の例としては、例えば、式(2f)で表されるメチルハイドロジェンポリシロキサン、式(2f)においてメチル基の一部または全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 HSi(CHO-(-SiH(CH)-O-)-Si(CHH  (2f)
(式(2f)中、jは1以上の整数であり、上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 SiH基を2個以上有するケイ素含有化合物のさらに別の例としては、例えば、式(2g)で表されるジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、式(2g)においてメチル基の一部または全部がエチル基、プロピル基、フェニル基、トリフロロプロピル基等で置換された化合物などが挙げられる。
 HSi(CHO-(-Si(CH-O-)-(-SiH(CH)-O-)-Si(CHH  (2g)
(式(2g)中、kおよびlは、それぞれ1以上の整数であり、kとlとの合計の上限は例えば1000、好ましくは300、さらに好ましくは50である。)
 また、-Si(CH-O-単位と-SiH(CH)-O-単位とが並ぶ順序には特に制限はなく、ブロック的であっても無秩序であっても統計的ランダム的であっても良い。
 本発明のビニル基含有化合物のGPC法により求めた数平均分子量は、100以上500,000以下であり、100以上100,000以下であることがより好ましい。数平均分子量が上記下限値より低い場合、得られたシリル化ポリオレフィンが樹脂中よりブリードしてくる場合があり、上記上限値より高い場合、樹脂中におけるシリル化ポリオレフィンの分散性が悪くなり、得られた成形体の取り扱いが困難となる場合がある。なお本発明では後述するように数平均分子量(Mn)、重量平均分子量(Mw)およびMw/Mnはポリエチレン換算の値とした。
 以下にビニル基含有化合物について説明する。
 ビニル基含有化合物は、通常炭素数2~50のオレフィンから選ばれる1種以上を重合又は共重合して得られるものである。
 炭素数2~50のオレフィンとしては、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、3,4-ジメチル-1-ペンテン、4-メチル-1-ヘキセン、3-エチル-1-ペンテン、3-エチル-4-メチル-1-ペンテン、3,4-ジメチル-1-ヘキセン、4-メチル-1-ヘプテン、3,4-ジメチル-1-ヘプテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセン、ビニルシクロヘキサンなどのα-オレフィン;シス-2-ブテン、トランス-2-ブテン、などの内部二重結合を含むオレフィン;イソブテン、2-メチル-1-ペンテン、2,4-ジメチル-1-ペンテン、2,4-ジメチル-1-ヘキセン、2,4,4-トリメチル-1-ペンテン、2,4-ジメチル-1-ヘプテン、2-メチル-1-ブテン、2-メチル-1-ヘキセン、2-メチル-1-ヘプテン、2-メチル-1-オクテン、2,3-ジメチル-1-ブテン、2,3-ジメチル-1-ペンテン、2,3-ジメチル-1-ヘキセン、2,3-ジメチル-1-オクテン、2,3,3-トリメチル-1-ブテン、2,3,3-トリメチル-1-ペンテン、2,3,3-トリメチル-1-ヘキセン、2,3,3-トリメチル-1-オクテン、2,3,4-トリメチル-1-ペンテン、2,3,4-トリメチル-1-ヘキセン、2,3,4-トリメチル-1-オクテン、2,4,4-トリメチル-1-ヘキセン、2,4,4-トリメチル-1-オクテン、2-メチル-3-シクロヘキシル-1-プロピレン、ビニリデンシクロペンタン、ビニリデンシクロヘキサン、ビニリデンシクロオクタン、2-メチルビニリデンシクロペンタン、3-メチルビニリデンシクロペンタン、4-メチルビニリデンシクロペンタンなどのビニリデン化合物;スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレンなどのアリールビニル化合物;α-メチルスチレン、α-エチルスチレン、2-メチル-3-フェニルプロピレンなどのアリールビニリデン化合物;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸-n-プロピル、メタクリル酸イソプロピル、メタクリル酸-n-ブチル、メタクリル酸イソブチル、メタクリル酸-tert-ブチル、2-シアノプロピレン、2-アミノプロピレン、2-ヒドロキシメチルプロピレン、2-フルオロプロピレン、2-クロロプロピレンなどの官能基置換ビニリデン化合物;シクロブテン、シクロペンテン、1-メチル-1-シクロペンテン、3-メチル-1-シクロペンテン、2-メチル-1-シクロペンテン、シクロヘキセン、1-メチル-1-シクロヘキセン、3-メチル-1-シクロヘキセン、2-メチル-1-シクロヘキセン、シクロヘプテン、シクロオクテン、ノルボルネン、5-メチル-2-ノルボルネン、テトラシクロドデセン、5,6-ジヒドロジシクロペンタジエン、3a,4,5,6,7,7a-ヘキサヒドロ-1Hインデン、トリシクロ[6.2.1.02,7]ウンデカ-4-エン、シクロペンタジエン、ジシクロペンタジエンなどの内部二重結合を含む脂肪族環状オレフィン;シクロペンタ-2-エニルベンゼン、シクロペンタ-3-エニルベンゼン、シクロヘキサ-2-エニルベンゼン、シクロヘキサ-3-エニルベンゼン、インデン、1,2-ジヒドロナフタレン、1,4-ジヒドロナフタレン、1,4-メチノ1,4,4a,9aテトラヒドロフルオレンなどの芳香環を含有する環状オレフィン;ブタジエン、イソプレン、4-メチル-1,3-ペンタジエン、4-メチル-1,4-ペンタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、1,4-ヘキサジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、エチリデンノルボルネン、ビニルノルボルネン、ジシクロペンタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、5,9-ジメチル-1,4,8-デカトリエンなどの、二個以上の二重結合を有する環状ポリエンおよび二個以上の二重結合を有する鎖状ポリエンなどが挙げられる。
 また、炭素数2~50のオレフィンは、酸素、窒素、硫黄等の原子を含んだ官能基を有していてもよい。例えばアクリル酸、フマル酸、イタコン酸、ビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸などの不飽和カルボン酸およびこれらのナトリウム塩、カリウム塩、リチウム塩、亜鉛塩、マグネシウム塩、カルシウム塩などの不飽和カルボン酸金属塩;無水マレイン酸、無水イタコン酸、ビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物などの不飽和カルボン酸無水物;アクリル酸メチル、アクリル酸エチル、アクリル酸-n-プロピル、アクリル酸イソプロピル、アクリル酸-n-ブチル、アクリル酸イソブチル、アクリル酸-tert-ブチル、アクリル酸-2-エチルヘキシル、などの不飽和カルボン酸エステル;酢酸ビニル、プロピオン酸ビニル、カプロン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、トリフルオロ酢酸ビニルなどのビニルエステル類;アクリル酸グリシジル、メタクリル酸グリシジル、イタコン酸モノグリシジルエステルなどの不飽和グリシジルエステル;
 塩化ビニル、フッ化ビニル、フッ化アリルなどのハロゲン化オレフィン;アクリロニトリル、2-シアノ-ビシクロ[2.2.1]ヘプタ-5-エンなどの不飽和シアノ化合物;メチルビニルエーテル、エチルビニルエーテルなどの不飽和エーテル化合物;アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミド等の不飽和アミド;
 メトキシスチレン、エトキシスチレン、ビニル安息香酸、ビニル安息香酸メチル、ビニルベンジルアセテート、ヒドロキシスチレン、o-クロロスチレン、p-クロロスチレン、ジビニルベンゼンなどの官能基含有スチレン誘導体;N-ビニルピロリドンなどが挙げられる。
 好ましい実施形態において、ビニル基含有化合物は、式(4)で表される構造を有し、数平均分子量が100以上500,000以下の化合物である。
 A-CH=CH   (4)
 ここで、式(4)中、Aは1種以上の炭素数2~50のαオレフィン由来の構成単位を含む重合鎖である。
 式(4)において、好ましくは、ビニル基含有化合物のA部は、エチレン重合鎖、プロピレン重合鎖または炭素数2~50のα-オレフィンからなる群から選択される2種以上のオレフィンの共重合鎖である。また上記α-オレフィンは、炭素数が2~20のα-オレフィンであることが好ましい。
 好ましい実施形態において、式(4)で表されるビニル基含有化合物のAは、炭素数2~50のα-オレフィンのみから構成される重合鎖である。さらに好ましくはビニル基含有化合物のAは炭素数2~20のα-オレフィンのみから構成される重合鎖である。さらに好ましくは、ビニル基含有化合物のAは、エチレン単独重合鎖、プロピレン単独重合鎖、またはエチレン・炭素数3~20のα-オレフィン共重合鎖である。
 式(4)で表されるビニル基含有化合物は、エチレン由来の構成単位が81~100mol%、炭素原子数3~20のα-オレフィン由来の構成単位が0~19mol%の範囲にあるエチレン・α-オレフィン共重合体であることが望ましい。より好ましくは、エチレン由来の構成単位が90~100mol%、炭素原子数3~20のα-オレフィン由来の構成単位が0~10mol%の範囲にあるエチレン・α-オレフィン共重合体であることが望ましい。とりわけエチレン由来の構成単位が100モル%であることが好ましい。
 また、式(4)で表されるビニル基含有化合物は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した分子量分布(重量平均分子量と数平均分子量の比、Mw/Mn)が1.1~3.0の範囲にあることが好ましい。
 また、式(4)で表されるビニル基含有化合物は、数平均分子量(Mn)が100以上500,000以下の範囲にあることが望ましく、500以上50,000以下がより好ましく、700以上10,000以下がさらに好ましい。
 また、式(4)で表されるビニル基含有化合物は、融点が70℃以上130℃以下であることが好ましい。
 さらに好ましくは、式(4)で表されるビニル基含有化合物のビニル基は、主鎖の末端に存在することが好ましく、ビニル基が主鎖の末端のみに存在することがより好ましい。
 なお、ビニル基が主鎖の末端に存在することの確認は、例えば13CNMR、HNMRを利用することで可能である。例えばAがエチレン単独重合体である場合、13CNMRにより3級炭素が検出されず、かつHNMRでビニル基の水素が検出されることで確認する方法が挙げられる。HNMRのみにおいても、検出された各プロトンのピークを帰属することにより、構造の確認が可能である。例えば、合成例1で合成した化合物においては、プロトン積分値が3であるケミカルシフト0.81ppmのピークが片末端のメチル基であり、ケミカルシフト1.10-1.45ppmのピークは主鎖のメチレン基、プロトン積分値が2であるケミカルシフト1.93ppmのピークは末端ビニル基に隣接するメチレン基、プロトン積分値がそれぞれ1である4.80、4.86、5.60-5.72ppmのピークが末端ビニル基と帰属され、他に帰属不明のピークが存在しないことから、Aがエチレン単独重合体であり末端のみにビニル基を含有する構造であることを確認することができる。また、別の方法として、主鎖末端に存在するビニル基の水素の方が、側鎖に存在するビニル基の水素よりもHNMR測定における緩和時間が短いことを利用して、例えば側鎖にビニル基を有するポリマーの当該ビニル基の水素と緩和時間を比較する方法で決めることも可能である。
 側鎖のビニル基のHNMRにおけるケミカルシフトが、末端に存在するビニル基よりも低磁場シフトすることを利用して判別することができる場合もある。
 また、式(4)で表されるビニル基含有化合物が、主鎖の末端のみにビニル基を含有する場合、H-NMRにより計算される末端不飽和率(後述するVE)が60モル%以上100モル%以下であることが望ましい。さらに好ましい態様の一つは、H-NMRにより計算される末端不飽和率が80モル%以上99.5モル%以下、より好ましくは90モル%以上99モル%以下であるものである。
 本発明の式(4)で表されるビニル基含有化合物は、例えば以下の式(I)、式(II)、または式(III)で表される遷移金属化合物(A)と、(B-1)有機金属化合物、(B-2)有機アルミニウムオキシ化合物、および(B-3)遷移金属化合物(A)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とからなる触媒(B)により、炭素数2~50のオレフィンから選ばれる少なくとも1種以上を重合または共重合することにより得ることができる。
 式(I)で表される遷移金属化合物
Figure JPOXMLDOC01-appb-C000002
(式(I)中、Mは周期律表4~5族の遷移金属原子を示す。mは、1~4の整数を示す。R51は、炭素数1~5の直鎖炭化水素基(Cn'2n'+1,n'=1~5)または水素原子を示す。R52~R56は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよい。また、mが2以上の場合にはR52~R56で示される基のうち2個の基が連結されていてもよい。nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)
 式(II)で表される遷移金属化合物
Figure JPOXMLDOC01-appb-C000003
(式(II)中、Mは周期律表第4~5族の遷移金属原子を示す。mは、1~4の整数を示す。R61は、1つまたは複数の置換基を有していてもよい3~5員環の脂環式炭化水素基を示す。R62~R66は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよい。また、mが2以上の場合にはR62~R66で示される基のうち2個の基が連結されていてもよい。nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)
 式(III)で表される遷移金属化合物
Figure JPOXMLDOC01-appb-C000004
(式(III)中、Mは周期律表第4~5族の遷移金属原子を示す。mは、1~4の整数を示す。R71は、1つまたは複数の置換基を有していてもよい炭素数4~20の少なくとも1つ以上の炭素を共有する2環性炭化水素基を示す。R72~R76は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよい。また、mが2以上の場合にはR72~R76で示される基のうち2個の基が連結されていてもよい。nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)
 また、Aがエチレン由来の構成単位のみからなる場合、およびプロピレン由来の構成単位のみからなる場合は、以下の方法で製造することもできる。
 (エチレン単独重合鎖を有するポリオレフィン)
(E1)エチレン単独重合鎖を有するポリオレフィン重合鎖は、たとえば、以下の方法によって製造することも可能である。
(a)特開2000-239312号公報、特開2001-2731号公報、特開2003-73412号公報などに示されているようなサリチルアルドイミン配位子を有する遷移金属化合物を重合触媒として用いる重合方法。
(b)チタン化合物と有機アルミニウム化合物とからなるチタン系触媒を用いる重合方法。
(c)バナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒を用いる重合方法。
(d)ジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノキサン)とからなるチーグラー型触媒を用いる重合方法。
(プロピレン単独重合鎖を有するポリオレフィン)
(E2)プロピレン単独重合鎖を有するポリオレフィン重合鎖は、たとえば、以下の方法によって製造することも可能である。
(a)特開2004-262993号公報などに示されているような担持型チタン系触媒、例えばマグネシウム担持型チタン系触媒または、メタロセン触媒の存在下、プロピレンを重合する方法。
(b)特開2000-191862号公報、特開2002-097325号公報などに示されているような金属化合物中の遷移金属と反応してイオン性の錯体を形成する化合物、有機アルミニウム化合物、アルミノキサンとからなるメタロセン系触媒の存在下、プロピレンを重合する方法。
 (オレフィン・ポリエン共重合体)
 本願のビニル基含有化合物の1つである、(Z)オレフィンとポリエンの共重合体について説明する。
オレフィンとしては、エチレンおよび炭素原子数3~12のα-オレフィンが挙げられる。
 炭素原子数3~12のα-オレフィンとしては、たとえば、プロピレン、1-ブテン、1-ペンテン、3-メチル-1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセンなどが挙げられる。これらのうち、好ましくは炭素原子数3~10のα-オレフィン、より好ましくは炭素原子数3~8のα-オレフィン、特に好ましくはプロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンが望ましい。
 ポリエンとしては、ブタジエン、イソプレン、4-メチル-1,3-ペンタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、1,4-ヘキサジエン、1,3-ヘキサジエン、1,3-オクタジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、エチリデンノルボルネン、ビニルノルボルネン(5-ビニルビシクロ[2.2.1]ヘプト-2-エン)、ジシクロペンタジエン、2-メチル-1,4-ヘキサジエン、2-メチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、5,9-ジメチル-1,4,8-デカトリエンなどが挙げられる。これらのなかでは、ビニルノルボルネン、エチリデンノルボルネン、ジシクロペンタジエン、1,4-ヘキサジエン、ブタジエン、イソプレン、2-メチル-1,4-ヘキサジエンまたは2-メチル-1,6-オクタジエンが好ましい。ビニルノルボルネンは、嵩高い骨格を有するために、低密度であってもワックスを硬くでき、ワックス製品のブロッキングを起こしにくいため、特に好ましい。
 (i)オレフィンとポリエンの共重合体は、以下の共重合体(Z1)であることが好ましい。すなわち(Z1)は上記のようなエチレンとポリエンとの共重合体、またはエチレンと炭素原子数3~12のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとポリエンとの共重合体から選ばれる少なくとも1種以上である。
 本発明で用いる(Z)オレフィン・ポリエン共重合体は、ポリエンから導かれる構成単位を0.01~6.0モル%、好ましくは0.1~4.0モル%の割合で含有することが望ましい。また、(Z)オレフィン・ポリエン共重合体が炭素原子数3~12のα-オレフィンから導かれる構成単位を含有する場合は、その含有率は0.01~15モル%、好ましくは0.1~12モル%が望ましい。
 本発明で用いる(Z)オレフィン・ポリエン共重合体が、ポリエンから導かれる構成単位を上記の範囲の割合で含有すると、重合活性も適度に高い。
 また、炭素原子数3~12のα-オレフィンから導かれる構成単位を上記の範囲の割合で含有すると、表面のタック感が少なく、機械的特性、衝撃性に優れる成形体を得ることができる。
 (Z2)本発明で用いる(Z)オレフィン・ポリエン共重合体は、平均で0.5~3.0個/分子、好ましくは0.5~2.0個/分子、より好ましくは1.0~2.0個/分子、特に好ましくは1.0~1.9個、とりわけ好ましくは1.0~1.5個の範囲にある不飽和基含有量を有することが望ましい。(Z)オレフィン・ポリエン共重合体中の不飽和基含有量が上記範囲内にあると、すべての(Z)オレフィン・ポリエン共重合体にシリコーンが付加しているため、シリル化ポリオレフィンが効果的に無機強化材に作用し、機械的特性、衝撃性に優れる成形体を得ることができる。
 なお、(Z)オレフィン・ポリエン共重合体の不飽和基含有量は、以下のようにして測定される。13C-NMRによる不飽和部分の炭素のピーク面積と全炭素のピーク面積とを比較することにより、1,000炭素あたりの不飽和基数Mを得ることができる。1分子あたりの不飽和基含有量は、数平均分子量Mnを用いて、Mn×M/14,000により算出することができる。
 なお本発明において、1,000炭素あたりの不飽和基数Mは、1.4~105個、好ましくは1.4~70個、より好ましくは2.8~70個が望ましい。
 (Z3)本発明で用いる(Z)オレフィン・ポリエン共重合体は、密度勾配管法で測定した密度が870kg/m以上、好ましくは890kg/m以上、より好ましくは910kg/m以上、かつ、980kg/m以下、好ましくは970kg/m以下、より好ましくは960kg/m以下であることが望ましい。(Z)オレフィン・ポリエン共重合体の密度が上記範囲内にあると、タック感が少なく、かつ樹脂中への分散性にも優れるため、耐傷つき性、耐汚染性に優れる成形体を得ることができる。
 (Z4)本発明で用いる(Z)オレフィン・ポリエン共重合体は、示差走査熱量計(DSC)で測定した融点が70℃以上、好ましくは80℃以上、より好ましくは90℃以上、特に好ましくは100℃以上、かつ、130℃以下、好ましくは125℃以下、より好ましくは120℃以下であることが望ましい。(Z)オレフィン・ポリエン共重合体の融点が上記範囲内にあると、タック感が少なく、かつ樹脂中への分散性にも優れるため、耐傷つき性、耐汚染性に優れる成形体を得ることができる。
 (Z5)本発明で用いる(Z)オレフィン・ポリエン共重合体は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した数平均分子量(Mn)が400~5,000、好ましくは400~4000、より好ましくは400~3000、特に好ましくは1,500~2,500の範囲にあることが望ましい。(Z)オレフィン・ポリエン共重合体のMnが上記範囲内にあると、タック感が少なく、かつ樹脂中への分散性にも優れるため、耐傷つき性、耐汚染性に優れる成形体を得ることができる。
 (Z6)本発明で用いる(Z)オレフィン・ポリエン共重合体は、GPCで測定した重量平均分子量と数平均分子量との比(Mw/Mn)が4.0以下、好ましくは3.5以下、より好ましくは3.0以下であることが望ましい。
 なお、重量平均分子量(Mw)、数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により測定される、ポリスチレン換算値である。ここで、GPCによる測定は、温度:140℃、溶媒:オルトジクロロベンゼンの条件下で行う。
 (Z7)本発明で用いる(Z)オレフィン・ポリエン共重合体は、針入硬度が15dmm(1dmm=0.1mm)以下、好ましくは10dmm以下、より好ましくは3dmm以下、特に好ましくは1dmm以下であることが望ましい。なお、針入硬度はJIS K2207に準拠して測定することができる。(Z)オレフィン・ポリエン共重合体の針入硬度が上記範囲内にあると、耐傷つき性、耐汚染性に優れた成形体を得ることができる。
 本発明に係る(Z)オレフィン・ポリエン共重合体は、上記(Z2)不飽和基含有量、(Z3)密度、(Z4)融点、(Z5)数平均分子量(Mn)、(Z6)Mw/Mn(Mw:重量平均分子量)、(Z7)針入硬度の条件のうち1つ以上を満たすことが望ましく、2つ以上を満たすことがより好ましく、3つ以上を満たすことがさらに好ましく、4つ以上を満たすことがさらにより好ましく、5つ以上を満たすことがとりわけ好ましく、6つ全てを満たすことが特に好ましい。例えば特に好ましい態様としては(Z2-1)不飽和基含有量が0.5~3.0個/分子であり、(Z3-1)密度が870~980kg/mであり、(Z4-1)融点が70~130℃であり、(Z5-1)数平均分子量(Mn)が400~5,000であり、(Z6-1)Mw/Mn(Mw:重量平均分子量)が4.0以下である態様が挙げられ、さらに好ましくはこれら5つに加えて(Z7-1)針入硬度が15dmm以下を満たすものが挙げられる。
 また、本発明に係る(Z)オレフィン・ポリエン共重合体がポリエンとしてビニルノルボルンネン(5-ビニルビシクロ[2.2.1]ヘプト-2-エン)を用いて共重合されたものである場合、この(Z)オレフィン・ポリエン共重合体は、上記(Z2)不飽和基含有量、(Z3)密度、(Z4)融点、(Z5)数平均分子量(Mn)、(Z6)Mw/Mn(Mw:重量平均分子量)、(Z7)針入硬度の条件のうち1つ以上を満たすことが望ましく、2つ以上を満たすことがより好ましく、3つ以上を満たすことがさらに好ましく、4つ以上を満たすことがさらにより好ましく、5つ以上を満たすことがとりわけ好ましく、6つ全てを満たすことが特に好ましい。例えば特に好ましい態様としては(Z2-2)不飽和基含有量が0.5~2.0個/分子であり、(Z3―2)密度が890~980kg/mであり、(Z4-2)融点が80~130℃であり、(Z5-2)数平均分子量(Mn)が400~5,000であり、(Z6-2)Mw/Mn(Mw:重量平均分子量)が4.0以下である態様が挙げられ、さらに好ましくはこれら5つに加えて、(Z7-2)針入硬度が15dmm以下を満たすものが挙げられる。
 上述したような(Z)オレフィン・ポリエン共重合体は、たとえば周期表第4族から選ばれる遷移金属のメタロセン化合物と有機アルミニウムオキシ化合物および/またはイオン化イオン性化合物とからなる、以下のようなメタロセン系触媒を用いて製造することができる。本発明において好適なメタロセン系触媒としては、特開2001―002731号公報、あるいは既に国際公開されたPCT出願、WO/2007/114102、WO/2007/105483、WO/2007/114009、WO/2007/122906等に記載された、例えば、(A)周期表第4族から選ばれる遷移金属のメタロセン化合物、並びに(B)(b-1)有機アルミニウムオキシ化合物、(b-2)メタロセン化合物(A)と反応してイオン対を形成する化合物および(b-3)有機アルミニウム化合物とから選ばれる少なくとも1種以上の化合物とからなるオレフィン重合用触媒を挙げることができる。
 本発明に用いる(A)周期表第4族から選ばれる遷移金属のメタロセン化合物の具体例としては、ビス(シクロペンタジエニル)ジルコニウムモノクロリドモノハイドライド、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(1-メチル-3-ブチルシクロペンタジエニル)ジルコニウムビス(トリフルオロメタンスルホナト)、ビス(1,3-ジメチルシクロペンタジエニル)ジルコニウムジクロリド、ジメチル((t-ブチルアミド)(テトラメチル-η-シクロペンタジエニル)シラン)チタンジクロリド等が挙げられる。
 また、本発明に用いる(B)(b-1)有機アルミニウムオキシ化合物、(b-2)メタロセン化合物(A)と反応してイオン対を形成する化合物および(b-3)有機アルミニウム化合物とから選ばれる少なくとも1種以上の化合物の具体例としては、N,N-ジメチルアニリニウムテトラフェニルボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ジトリフルオロメチルフェニル)ボレート、N,N-ジエチルアニリニウムテトラフェニルボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリメチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。
 本発明では特に、ビニル基含有化合物が式(4)で表される場合が、耐摩耗性、耐汚染性が優れ、また成形体表面からのブリードも少ないため好ましい。
 本発明で用いられるシリル化ポリオレフィンは、どのような方法によって製造されたものでも使用できるが、好ましくは下記の[工程1]および[工程2]を順次実施することにより得られたシリル化ポリオレフィンもしくはその誘導体、またはこれらの混合物である。
[工程1]ケイ素含有化合物とハロゲン化遷移金属とを混合攪拌し、得られた懸濁溶液を濾過して濾液として遷移金属触媒組成物(C)を得る工程、
[工程2]上記[工程1]で得られた遷移金属触媒組成物(C)の存在下、ビニル基含有化合物とケイ素含有化合物とを反応(ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)させる工程。
 以下で、シリル化ポリオレフィンの製造方法について詳述する。
[工程1]:遷移金属触媒組成物(C)を得る工程
 [工程1]では、ケイ素含有化合物とハロゲン化遷移金属とを混合攪拌し、得られた懸濁溶液を濾過して濾液として遷移金属触媒組成物(C)を得る。
 ハロゲン化遷移金属としては、元素周期表第3族~第12族の遷移金属のハロゲン化物であり、入手の容易さや経済性の点から好ましくは元素周期表第8族~第10族の遷移金属のハロゲン化物であり、より好ましくは白金、ロジウム、イリジウム、ルテニウム、オスミウム、ニッケル、パラジウムのハロゲン化物である。さらに好ましくは白金のハロゲン化物である。また、二種以上のハロゲン化遷移金属の混合物であっても構わない。
 ハロゲン化遷移金属のハロゲンとしては、フッ素、塩素、臭素、ヨウ素が挙げられるが、これらのうちでは取扱いの容易さの点で塩素が好ましい。
 [工程1]に使用するハロゲン化遷移金属の具体例としては、二塩化白金、四塩化白金、二臭化白金、二ヨウ化白金、三塩化ロジウム、三臭化ロジウム、三ヨウ化ロジウム、三塩化イリジウム、四塩化イリジウム、三臭化イリジウム、三ヨウ化イリジウム、三塩化ルテニウム、三臭化ルテニウム、三ヨウ化ルテニウム、三塩化オスミウム、三臭化オスミウム、三ヨウ化オスミウム、二塩化ニッケル、二フッ化ニッケル、二臭化ニッケル、二ヨウ化ニッケル、二塩化パラジウム、二臭化パラジウム、二ヨウ化パラジウムが挙げられる。これらのうちでは二塩化白金、二塩化パラジウム、三塩化ルテニウム、三塩化ロジウム、三塩化イリジウムが好ましく、二塩化白金が最も好ましい。
 [工程1]で用いるハロゲン化遷移金属は、通常、粉末状の固体であり、粒径は1000μm以下が好ましく、更には500μm以下が好ましい。粒径が大きくなると、遷移金属触媒組成物(C)の調製時間が長くなる。
 [工程1]におけるケイ素含有化合物とハロゲン化遷移金属の使用量は、ケイ素含有化合物の量がハロゲン化遷移金属に対し1当量以上であれば特に制限されないが、好ましくは2当量以上である。ケイ素含有化合物の量が少ないと、遷移金属触媒組成物(C)の調製上必要な攪拌が困難になる。
 [工程1]におけるケイ素含有化合物とハロゲン化遷移金属との混合攪拌は、これが可能であれば手段は問わないが、窒素気流下、攪拌機を備えた反応容器中にハロゲン化遷移金属を適当量仕込み、これにケイ素含有化合物を添加して攪拌を行う。少量の場合はサンプル管にスターラーチップを入れ、同様に仕込んで攪拌しても良い。
 ケイ素含有化合物とハロゲン化遷移金属との混合攪拌時間は、通常10時間以上であり、好ましくは20時間以上であり、より好ましくは60時間以上であり、更に好ましくは80時間以上である。反応時間が短いと、次の[工程2]で得られるシリル化ポリオレフィン中の不純物である異性体のビニレン誘導体の生成割合が増大するため好ましくない。混合攪拌時間の上限は特に無いが、経済的な観点から概ね1ヶ月以内である。
 ケイ素含有化合物とハロゲン化遷移金属との混合攪拌の温度は、ケイ素含有化合物の沸点以下であれば特に制限は無いが、通常0~50℃の範囲、好ましくは10~30℃の範囲である。また圧力は、通常は常圧で行うことができるが、必要に応じて加圧下または減圧下で行うこともできる。
 [工程1]においては、必要に応じて溶媒を使用することもできる。使用する溶媒は、原料のケイ素含有化合物およびハロゲン化遷移金属に対して不活性なものが使用できる。使用できる溶媒の具体例は、例えばn-ヘキサン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルプロピルケトン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、クロロホルム、ジクロロエタン、トリクロロエタン、テトラクロロエタン、パークロロエタン等のハロゲン化炭化水素などが挙げられる。これらのうち、特にトルエン、キシレン等の芳香族炭化水素が好ましい。
 溶媒を使用する場合は溶媒の使用量は原料の溶解性に作用するが、原料に対し100質量倍以下が好ましく、より好ましくは20質量倍以下である。本発明では、無溶媒で実施することが最も好ましい。
 次に、反応で得られた懸濁溶液を濾過して固形分を除去し、濾液として遷移金属触媒組成物(C)を得る。濾過の方法としては特に制限はなく、自然濾過、加圧濾過、減圧濾過などの一般的な方法を用いることができる。濾過で使用するフィルターとしては特に制限はなく、セルロース製ろ紙、ガラス繊維フィルター、フッ素樹脂製やセルロースアセテート製のメンブランフィルターなどを適宜使用できる。これらの中でも、孔径の均一性、低吸湿性、化学的安定性などの点から、フッ素樹脂製メンブランフィルターを用いることが好ましい。また、濾過で使用するフィルターは10μmより小さな目のフィルターを使用することが好ましく、1μm以下の目のフィルターを使用することが更に好ましい。これより大きな目のフィルターを使用すると、未反応のハロゲン化遷移金属の固形分が触媒中に混入し、触媒が不均一化するため、合成目的物の不純物であるビニレン誘導体の生成量が増大する原因となる。また濾過の際、上記の溶媒を使用して固形分を洗浄することもできる。
 濾過で除去される固形分、すなわち未反応のハロゲン化遷移金属の量は、使用したハロゲン化遷移金属の量に対して通常50重量%以下、好ましくは10重量%以下である。ハロゲン化遷移金属の反応率は、主に調製時間を変更することによって調節することができる。
 このようにして調製した遷移金属触媒組成物(C)には、ナノコロイド状になった遷移金属化合物、ケイ素含有化合物、および必要に応じて使用した溶媒が含まれる。この遷移金属触媒組成物(C)は、そのままで次の[工程2]に用いることができるが、必要に応じて、溶媒の除去や、濃縮、希釈を行ってから、[工程2]に用いることもできる。また、ケイ素含有化合物をさらに追加して希釈し、触媒濃度を調整することもできる。
 [工程1]を実施する代わりに市販の遷移金属触媒、例えば白金の単体(白金黒)、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、あるいはアルミナ、シリカ等の担体に白金の担体を担持させたものなどが挙げられるが、これを[工程2]に使用しても構わない。
[工程2]:ビニル基含有化合物とケイ素含有化合物とを反応させる工程
 [工程2]では、上記[工程1]で得られた遷移金属触媒組成物(C)中で、ビニル基含有化合物とケイ素含有化合物とを反応させ(ただし、上記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ上記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)、シリル化ポリオレフィンを得る。
 また、[工程2]で用いるケイ素含有化合物は、[工程1]で用いたケイ素含有化合物と異なるものを用いることもできるが、好ましくは[工程1]で用いたものと同一のものを用いる。
 ビニル基含有化合物とケイ素含有化合物とを反応させる際の量比は、目的によって異なるが、ビニル基含有化合物中のビニル基とケイ素含有化合物中のSi-H結合との当量比として0.01~10当量倍の範囲であり、好ましくは0.1~2当量倍の範囲である。ここでケイ素含有化合物の量は、[工程1]で用い、遷移金属触媒組成物(C)中に含まれる部分と、[工程2]で新たに追加する部分との合算量である。[工程1]において必要なケイ素含有化合物の全量を用いた場合には、[工程2]ではケイ素含有化合物を追加することなく実施することもできる。
 ビニル基含有化合物とケイ素含有化合物との反応は、[工程1]で調製した遷移金属触媒組成物(C)の存在下で行う。遷移金属触媒組成物(C)とビニル基含有化合物との量比は、ビニル基含有化合物中のビニル基と遷移金属触媒組成物(C)中の遷移金属分との当量比として、10-10~10-1当量倍の範囲であり、好ましくは10-7~10-3当量倍の範囲である。
 ビニル基含有化合物とケイ素含有化合物との反応における反応方法としては、最終的に反応すればよく、その方法は限定されるものではないが、例えば以下のように行う。反応容器中にビニル基含有化合物を装入し、窒素雰囲気下、ケイ素含有化合物と遷移金属触媒組成物(C)を装入する。予め内温をビニル基含有化合物の融点以上に昇温しておいた油浴中に、上記反応器をセットし攪拌する。反応後油浴を除いて室温に冷却し、得られた反応混合物をメタノールまたはアセトンなどの貧溶媒中に取り出し2時間攪拌する。その後、得られた固体をろ取し、上記貧溶媒で洗浄し、60℃、2hPa以下の減圧下で乾燥させ、目的物を得ることができる。
 [工程2]におけるビニル基含有化合物とケイ素含有化合物との反応は、反応温度を100~200℃の範囲とすることが好ましく、反応させるビニル基含有化合物の融点より高い温度で行うことがより好ましい。反応温度が100℃より低いと、反応効率が低下することがあるので好ましくない。また圧力は、通常は常圧で行うことができるが、必要に応じて加圧下または減圧下で行うこともできる。
 [工程2]においては、必要に応じて溶媒を使用することもできる。使用する溶媒は、原料のケイ素含有化合物およびビニル基含有化合物に対して不活性なものが使用できる。常圧下で反応させる場合、反応させるビニル基含有化合物の融点以上の沸点を有するものを使用するのが好ましい。使用できる溶媒の具体例は、例えばn-ヘキサン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルプロピルケトン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、クロロホルム、ジクロロエタン、トリクロロエタン、テトラクロロエタン、パークロロエタン等のハロゲン化炭化水素などが挙げられる。これらのうち、特にトルエン、キシレン等の芳香族炭化水素が好ましい。
 溶媒を使用する場合は溶媒の使用量は原料の溶解性に作用するが、原料に対し100重量倍以下が好ましく、より好ましくは20重量倍以下である。本発明では、無溶媒で実施することが最も好ましい。
 以上のように、遷移金属触媒組成物(C)の存在下、ビニル基含有化合物とケイ素含有化合物とを反応させることにより、式(1)で表される構造単位を含むシリル化ポリオレフィンを含む反応混合物が得られる。
 上記反応後のシリル化ポリオレフィンを含む反応混合物には、シリル化ポリオレフィンの他に、未反応のビニル基含有化合物、副生物であるビニレン誘導体が含まれている。また場合によって、未反応のケイ素含有化合物が含まれていることもある。
 シリル化ポリオレフィン中における、式(1)で表される構造単位に由来する構造の割合は、シリル化ポリオレフィンの目的機能が発現されれば良く、特に限定されないが、通常5~99重量%であり、好ましくは10~95重量%である。構成単位がこの範囲であれば耐傷つき性、耐汚染性の機能が発現でき、またオイル状となってブリードアウトすることも少ない。
 上記の方法においては、[工程1]で得られた非常に高活性で高選択性の遷移金属触媒組成物(C)を用いるため、[工程2]のビニル基含有化合物とケイ素含有化合物との反応が効率よく進行する。このため、ビニル基含有化合物の二重結合の反応率は、通常90%以上、好ましくは95%以上であり、副生物であるビニレン誘導体の生成量は、シリル化ポリオレフィンに対して、通常10重量%以下、好ましくは5重量%以下である。
 シリル化ポリオレフィンは、上記反応混合物から、貧溶媒への再沈殿、またはスラッジングにより取り出すことができる。貧溶媒はシリル化ポリオレフィンの溶解度が小さいものであればよく、適宜選択することができ、好ましくは上記不純物が除けるものが良い。貧溶媒として具体的には、アセトン、メタノール、エタノール、n-プロパノール、イソプロパノール、アセトニトリル、酢酸エチル、n-ヘキサン、n-ヘプタン等が挙げられ、これらのうちではアセトン、メタノールが好ましい。
 得られたシリル化ポリオレフィンの、JISK7210の方法に従い、190℃、2.16kg荷重で測定したメルトマスフローレイト(MFR)は、0.01g/10分以上、好ましくは0.1g/10分以上であり、より好ましくは1.0g/10分以上である。上限は特にない。本指標は、シリル化ポリオレフィンが、樹脂の流動性を損なうほどの架橋等をしていないことを示す指標である。
 本発明で用いられるビニル基含有化合物としては、前述したように具体的には、式(4)で表される化合物、または、(Z)オレフィン・ポリエン共重合体が挙げられる。
 A-CH=CH (4)
 (式(4)中、Aは1種以上の炭素数2~50のαオレフィン由来の構成単位を含む重合鎖である。)
 ビニル基含有化合物が式(4)で表される化合物である場合、Aが炭素数2~20のα-オレフィンのみからなる構造(構造4-1)が好ましい。
 さらに好ましくは、ビニル基含有化合物は、-CH=CHがポリマー主鎖の末端に存在する構造(構造4-2)を有する。
 なおさらに好ましくは、ビニル基含有化合物は、-CH=CHがポリマー主鎖の末端のみに存在する構造(構造4-3)を有する。
 なおさらに好ましくは、ビニル基含有化合物は、Aが炭素数2~20のα-オレフィンのみからなり、-CH=CHがポリマー主鎖の末端に存在する構造(構造4-4)(構造4-1と構造4-2との組み合わせ)を有する。
 なおさらに好ましくは、ビニル基含有化合物は、Aが炭素数2~20のα-オレフィンのみからなり、さらに-CH=CHがポリマー主鎖の末端のみに存在する構造(構造4-5)(構造4-1と構造4-3との組み合わせ)を有する。
 ビニル基含有化合物が(Z)である場合、ポリエンとしてビニルノルボルネンを用いた構造がより好ましい。
 本発明のケイ素含有化合物は、前述したように、具体的には式(2)の構造を有するものが望ましい。そのうちでもビニル基含有化合物が式(4)で表される場合と、(Z)の構造である場合とにおける好ましいケイ素含有化合物はそれぞれ以下の通りである。
 ビニル基含有化合物が式(4)で表される場合、ケイ素含有化合物としては、式(2)においてm=n=1である構造(構造2-1)が好ましく、さらには式(2)中のZにおけるR41が全て炭化水素基およびハロゲンから選ばれるものである構造(構造2-2)がより好ましい(すなわちR41はいずれも水素原子ではないことが望ましい。)
 また、ビニル基含有化合物が(Z)である場合であって、例えばビニル基が1分子に平均して2個以上ある場合は、ケイ素含有化合物としては、式(2)においてm=1、n=0であり、かつ式(2)中のZにおけるR41が全て炭化水素基およびハロゲンから選ばれる構造(構造2-3)であるか、または、式(4)においてm=0,n=0であり、かつ式(2)中のZにおけるR41のうち1つだけが水素原子である構造(構造2-4)である化合物が好ましい。
 また、ビニル基含有化合物が1分子に平均して2個未満のビニル基を有する場合は、ケイ素含有化合物としては、上記構造2-3、構造2-4のようなSiH基を1分子に1個有する化合物に加えて、Si-H結合が1分子に2個以上有する化合物を使用することも可能であり、例えば前述の構造2-1、構造2-2をとっても良い。
 シリル化ポリオレフィンは、たとえば、式(5)~(8)で表されるような構造を有していると推定される。もちろんそのケイ素含有化合物やビニル基含有化合物の組合せは、これらの例示になんら限定されるものではない。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
(上記各式中のm,n,o,p,qは1以上の整数を表す。)
 以下に、特に好ましい態様とその推定理由とを述べる。以下ではビニル基含有化合物由来の部分のことを、「ポリオレフィン鎖」、ケイ素含有化合物由来の部分のことを、「ケイ素含有化合物鎖」ということがある。ビニル基含有化合物が式(4)で表される構造、中でも構造(4-5)をとり、ケイ素含有化合物が構造(2-2)をとる場合、シリル化ポリオレフィンは、(ポリオレフィン鎖)-(ケイ素含有化合物鎖)-(ポリオレフィン鎖)の順に結合したブロック共重合体のような構造をとると考えられる。具体的には上記した式(5)のような推定構造を有する化合物が例示できる。
 ビニル基含有化合物が構造(4-5)をとり、ケイ素含有化合物が構造(2-1)をとった場合であって、ケイ素含有化合物がSiH基を3個以上有する場合には、シリル化ポリオレフィンには、(ポリオレフィン鎖)-(ケイ素含有化合物鎖)-(ポリオレフィン鎖)の順に結合しているブロック構造において、さらにケイ素含有化合物鎖からポリオレフィン鎖がグラフト的に結合したような構造が含まれ得ると考えられる。
 またビニル基含有化合物が構造(4-5)をとり、ケイ素含有化合物が構造(2-3)、構造(2-4)である場合、シリル化ポリオレフィンは、具体的に例示すれば、上記式(6)、式(8)のような構造をとっているのではないかと考えられる。
 またビニル基含有化合物が構造(4-5)をとり、ケイ素含有化合物が、式(2)においてm=0、n=0、Zが(-SiH(CH)O-)-Si(CHO-Si(C-である場合、式(7)のような形をとるのではないか考えられる。
 またビニル基含有化合物が(Z)であり、ケイ素含有化合物が構造(2-3)をとる場合、シリル化ポリオレフィンは、(ポリオレフィン鎖)に(ケイ素含有化合物鎖)がグラフトした、式(9)のような構造をとるのではないかと考えられる。
 (ポリオレフィン鎖)-(ケイ素含有化合物鎖)-(ポリオレフィン鎖)のブロック共重合体の構造をとると推定されるような、たとえば式(5)の推定構造をとると推定されるようなビニル基含有化合物とケイ素含有化合物との組み合わせから得たシリル化ポリオレフィンが、ケイ素含有化合物鎖からグラフト鎖としてポリオレフィン鎖を有すると推測されるシリル化ポリオレフィンや、ポリオレフィン鎖がグラフト鎖としてケイ素含有化合物鎖を有すると推測されるシリル化ポリオレフィンよりも分子運動をしやすいと考えられ、そのため例えば溶融成形により当該シリル化ポリオレフィンが成形体表面に、より集まりやすいのではないかと考えられる。また、上記構造であれば、ケイ素含有化合物鎖の両末端にポリオレフィン鎖が存在するため、成形体表面からブリードアウトすることが少ないのではないかと考えられる。
 (添加剤)
 本発明の目的および効果を損なわない範囲で任意の添加剤、たとえば臭素化ビスフェノール、臭素化エポキシ樹脂、臭素化ポリスチレン、臭素化ポリカーボネート、トリフェニルホスフェート、ホスホン酸アミドおよび赤燐等のような難燃剤、三酸化アンチモンおよびアンチモン酸ナトリウム等のような難燃助剤、燐酸エステルおよび亜燐酸エステル等のような熱安定剤、ヒンダードフェノール等のような酸化防止剤、耐熱剤、耐候剤、光安定剤、離型剤、流動改質剤、着色剤、顔料、滑剤、帯電防止剤、結晶核剤、可塑剤および発泡剤等を必要に応じてその有効発現量配合してもよい。
 (組成物の調製)
 樹脂とシリル化オレフィンとを含有する本発明の組成物は、任意の方法を用い製造することができる。例えば熱可塑性樹脂または熱硬化性樹脂、シリル化ポリオレフィン、およびその他の添加剤を融解混練させて得ることができる。あるいは同時にまたは任意の順序で、タンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、単軸或いは二軸の押出機などで溶融混合させて得ることができる。シリル化ポリオレフィンは樹脂100重量部に対し0.01~10,000重量部含有することが好ましく、より好ましくは0.1~1,000重量部、更に好ましくは0.1~100重量部、特に好ましくは0.5~50重量部、もっとも好ましくは1~20重量部である。本発明の成形体は、少量のシリル化ポリオレフィンで、成形体の耐傷つき性や耐汚染性を向上させることができる点で、工業的に有利である。特にビニル基含有化合物として前述した式(4)で表され、かつビニル基を主鎖の末端にのみ有する化合物を用いることが好ましく、さらに加えて、ケイ素含有化合物として、上記構造(2-1)をとるもの、とりわけ構造(2-2)をとるものを用いた場合がより望ましい。
 融解混練させる場合は、必要に応じて各種溶媒を適宜使用しても良い。使用する溶媒としては、シリル化ポリオレフィンが溶解するものを使用するのが好ましい。使用できる溶媒の具体例は、例えばn-ヘキサン等の脂肪族炭化水素類、シクロヘキサン等の脂環式炭化水素類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、メチルプロピルケトン等のケトン類、テトラヒドロフラン、1,4-ジオキサン等のエーテル類、クロロホルム、ジクロロエタン、トリクロロエタン、テトラクロロエタン、パークロロエタン等のハロゲン化炭化水素などが挙げられる。これらのうち、シリル化ポリオレフィンの溶解性や無機材料との反応性の観点から、トルエン、キシレン等の芳香族炭化水素が特に好ましい。また、有機溶媒の使用量は、原料の溶解性に作用するが、シリル化ポリオレフィンの量に対して、100重量倍以下が好ましく、より好ましくは20重量倍以下の範囲である。
 組成物を調製する際の反応温度は、シリル化ポリオレフィンと樹脂とが融解または溶解すればよく、特に制限はないが、80~245℃の範囲が好ましく、更に融解または溶解の時間や混練度の観点から100~200℃であることが好ましい。また、選択したシリル化ポリオレフィンの融点以上乃至溶媒の沸点以下の温度であることがより好ましい。また混練時間は、混練温度や溶媒量などの条件にもよるが、通常1分~100時間、好ましくは5分から50時間の範囲である。
 混練する装置としては、シリル化ポリオレフィンと樹脂が、均一に混合混練出来ればよく、その形態は問わない。例としては、通常のジャケット式反応器、ニーダー、ミキサー、ホモジナイザー、短軸押出機、二軸押出機等が挙げられる。
 溶媒を使用した場合、混練終了後、溶媒を除くことが必要であるが、脱溶媒ができればよく、その形態は問わない。例としては、加熱蒸発、真空脱溶媒、不活性ガスによるストリッピング、或いはそれらの組み合わせ、または、貧溶媒に排出して粉体を沈殿させ、組成物を取り出すことができる。この場合に使用する貧溶媒としては、メタノール、エタノール、2-プロパノール、アセトン、アセトニトリル、ヘキサン、ヘプタン、オクタン、デカン等の中から、1種以上を適宜選択して用いることができる。また必要に応じて、得られた組成物を適当な溶媒によって洗浄する等の方法により更に精製することもできる。
 以上述べた方法により、本発明の組成物は、シリル化ポリオレフィンと樹脂とから形成される。組成物中には必要に応じ他の成分が入っても構わない。例としては、イルガノックス(登録商標)(チバスペシャルティケミカルズ社製)やラスミット(登録商標)(第一工業製薬社製)等の安定剤、クレイ(コープケミカル社製)、タルク(浅田製粉社製)等の物性改善剤等が挙げられる。
 タンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、単軸或いは二軸の押出機などで溶融混合させる場合は、樹脂とシリル化ポリオレフィンとを1段階で混合して組成物を得る方法が一般的ではある。しかし、樹脂とシリル化ポリオレフィンとの分子量や成形温度での溶融粘度の差が大きい場合や、シリル化ポリオレフィンの量が少ない場合等に、両成分が十分に分散しない場合がある。さらに、上記のように、樹脂とシリル化ポリオレフィンとを1段階で混合し離型性を有する組成物を得ようとした場合、成形機の吐出量が安定せず、生産性にも問題が生じる場合がある。また、上記の方法ではペレットなどの良形状の原料樹脂が圧送または吸引して配管内を輸送され、混合機、押出機ホッパー等に供給されることがあるが、低分子量成分を用いるとその形状が保持できず、輸送配管部材の内壁部に低分子量成分が融着、固着・付着するという問題が発生することがあった。
 このような場合の好ましい製造方法として、組成物に比してシリル化ポリオレフィンの割合が高い第一の樹脂、所謂マスターバッチを予め調製し、その後、第二の樹脂と上記マスターバッチを混合して組成物を得る方法が挙げられる。上記マスターバッチ100重量部に対して、第二の樹脂は1重量部以上900重量部以下の量であることが好ましい。第二の樹脂の量の好ましい下限値は、2重量部、より好ましくは5重量部、特に好ましくは10重量部である。一方、好ましい上限値は300重量部、より好ましくは100重量部、特に好ましくは50重量部である。
 本発明のマスターバッチには、勿論、前述した公知の添加剤等の成分が含まれていても良い。
 このようなマスターバッチの製法としては上記のタンブラー、ミキサー、ブレンダー、ロール、押出機などを用いた公知の混合法を用いることが出来る。また、樹脂と上記マスターバッチとを用いて組成物を調製する場合も同様の方法を用いることが出来る。
 また、組成物、またはマスターバッチの形態は使用される用途等によって適宜設計することができ、フィルム状、粉状、粒子状、ペレット状、プレート状等が挙げられる。
 (成形体)
 本発明の成形体は、上述の組成物を、押出成形法、射出成形法、溶液流延法、インフレーション成形法、圧縮成形法、トランスファー成形法、注型成形法等といった公知の成形方法により成形することにより得られる。特に加熱する過程を有する成形法が好ましく、溶融成形法(押出成形法、射出成形法、インフレーション成形法、圧縮成形法、トランスファー成形法など)により成形することが特に好ましい。また加熱せずに成形したのち、成形体をアニール等しても良い。溶融成形法の場合、通常は樹脂の融点以上であって成形に適した流動性を持つ程度の温度まで加熱して溶融させて成形することが通常である。アニール等の熱処理の場合は、成形体が溶融しない程度の温度まで加熱することが通常である。特に溶融成形法により得られるものが耐傷つき性、耐汚染性の点で好ましい。
 また、本発明の成形体の形状としては、通常、シート、フィルム、パイプ、チューブ、窓枠・住宅部材等の異形品、ラミネート等である。好ましくはシート、フィルム、パイプ、チューブ、特に好ましくは上記成形法を用いる一次成形で得た成形体を、さらにブロー成形、延伸などの方法で加工した成形体であることも好ましい。たとえば、成形体がフィルム状またはシート状である場合には、たとえばTダイ押出成形法などによりシート状に成形して得た成形体を、さらに一軸延伸あるいは二軸延伸して得たものであることも好ましい。
 本発明の成形体が効果を奏する理由として、樹脂を成形する過程、特に加熱して成形する過程で、本発明に使用するシリル化ポリオレフィンが成形体表面に移行し、計算で求められる成形体全体での平均的な値よりも濃度が高くなることが推察される。このため、少ない添加量で成形体表面の耐傷つき性や耐汚染性を向上させることができると考えられる。本発明の組成物において、樹脂として熱硬化性樹脂を用いた場合も、熱硬化する過程で、シリル化ポリオレフィンが成形体表面に集まるのではないかと考えられるため、効果を奏することが期待されるが、熱硬化性樹脂には架橋構造が含まれるため、シリル化ポリオレフィンの移動しやすさを考えると、特に熱可塑性樹脂を用いた場合に、本発明の効果は顕著であると考えられる。
 本発明の成形体は、摩擦、摩耗等による耐傷つき性、摺動性を有する。そのため、本発明の成形体は、例えば、ドアトリムなどの自動車内装部品、グランスランチャネル、プラスチックシリンジ、包材、プラスチック容器のような、摩擦による傷が問題となる物品の材料として使用することができる。
 本発明の成形体は、撥水性および撥油性等の耐汚染性を有する。これは上記したように、シリル化ポリオレフィンが成形体表面に集まっていることに関係すると考えられる。そのため、例えば、耐指紋フィルムのような油汚れが問題となる物品の材料として用いることができる。また、油性の強い物品の容器や包材として用いた場合、該物品の容器・包材への付着を防ぐことができる。耐汚染性の指標としては、例えば表面自由エネルギー値が挙げられる。成形体の表面自由エネルギー値が下がるほど、この表面に水や油を付着させた際の撥水性および撥油性が高まり、これらによる汚れが付着しにくくなるからである。
 さらに本発明の成形体は、ガス透過性を有する。シリル化ポリオレフィンが、基材である熱可塑性樹脂・熱硬化性樹脂よりも、酸素や二酸化炭素、水蒸気等のガスを通しやすい性質を持つからである。そのため、本発明の成形体は、例えば、輸液パック、中空糸膜、農業用フィルム、食品包材等に用いられるフィルムまたはシートとして使用することができる。また、例えば酸素よりも二酸化炭素をより透過するなどの特徴を有するため、ガス選択性の必要な用途にも用いることができる。これにより、耐傷つき性、耐汚染性の高いガス透過性・ガス選択性フィルムおよびシートを製造できるが、本発明の成形体は、そのガス透過性を利用する目的で、耐傷つき性が必要でない部分に使用することも可能である。例えば、積層体の中間層としても用いることが可能である。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
 (測定および計算方法)
 分子量、融点(Tm)、収率、転化率および異性化率、メルトマスフローレイト(MFR)、表面自由エネルギー解析、耐傷つき性試験、表面Si濃度、平均Si濃度、酸素、二酸化炭素、水蒸気透過係数は以下に記載の方法で測定・計算した。
[m1]分子量の測定方法
 数平均分子量Mn、重量平均分子量(Mw)および分子量分布(Mw/Mn)は、ミリポア社製GPC-150を用い以下のようにして測定した。すなわち、分離カラムは、TSK GNH HTであり、カラムサイズは直径7.5mm、長さ300mmのものを使用した。カラム温度は140℃とし、移動相にはオルトジクロロベンゼン(和光純薬)および酸化防止剤としてBHT(武田薬品)0.025質量%を用い、1.0ml/分で移動させた。試料濃度は0.1質量%とし、試料注入量は500マイクロリットルとした。検出器として示差屈折計を用いた。標準ポリスチレンを用いて検量線を作成し、常法に従ってポリエチレン換算の値に換算した。 
 なお、以下の合成例にて、原料ポリマーのモル数はすべてMnに基づいた値で表している。
[m2]融点の測定方法
 融点(Tm)はDSCを用い測定して得られたピークトップ温度を採用した。装置は島津製作所製DSC-60Aを使用した。対照セルはアルミナを使用し、窒素流量は50ml/分の設定で行った。また10℃/分で30℃から300℃までの昇温条件で測定した。この昇温測定の前に、一旦、樹脂を200℃程度まで昇温し、5分間保持した後、20℃/分で常温(25℃)まで降温する操作を行い、樹脂の熱履歴を統一することが望ましい。
[m3]NMR解析による収率、転化率、異性化率、末端不飽和率、炭素千個あたりの二重結合数の測定・計算方法
 シリル化ポリオレフィンの収率、転化率、異性化率、末端不飽和率、炭素千個あたりの二重結合数はH-NMRによって決定される。収率は原料のビニル基含有化合物のモル数に対して得られたシリル化ポリオレフィンのモル数の割合、転化率は原料のビニル基含有化合物のモル数に対する同消費モル数の割合、異性化率は原料のビニル基含有化合物のモル数に対して生成したビニレン体のモル数の割合、末端不飽和率は原料であるビニル基含有化合物の主鎖末端ビニル基と末端メチル基の合計に対する主鎖末端ビニル基の割合、炭素千個あたりのビニル基数はプロトン数から導き出される炭素数に対するビニル基数の割合を炭素千個あたりのビニル基数に補正したものと定義される。なお、末端不飽和率および炭素千個あたりのビニル基数は一般的には原料であるビニル基含有化合物に対して適用するが、ヒドロシリル化が十分でない場合などには未反応原料の残存量の指標としてシリル化ポリオレフィンにも適用することがある。
 例えば、エチレンのみからなる主鎖末端ビニル基含有化合物をトリエトキシシランでヒドロシリル化して得られたシリル化ポリオレフィンのエトキシ基メチレンの6プロトン分のピーク(C)が3.8ppm、異性化したビニレン基の2プロトン分のピーク(D)が5.4ppmに観測される。ヒドロシリル化が十分でない場合は、未反応ビニル基の2プロトン分のピーク(E)が4.8~5.1ppmに、1プロトン分のピーク(F)が5.6~5.8ppmに観測される。原料のビニル基含有化合物については、2プロトン分の主鎖メチレン(G)が1.0~1.5ppmに観測され、主鎖末端にビニル基を持たないものは3プロトン分の末端メチル(H)が0.8ppmに観測される。さらに二重結合に隣接した炭素上の2プロトン分のピーク(I)が1.9ppmに観測される。
 各ピーク(C)、(D)、(E)、(F)、(G)、(H)および(I)のピーク面積を各々SC、SD、SE、SF、SG、SHおよびSIとすれば、収率(YLD(%))、転化率(CVS(%))、異性化率(ISO(%))、末端不飽和率(VE(%))、炭素千個あたりの二重結合数(VN(個/1000C))は下記式にて算出される。
 YLD(%)=(SC/3)/(SC/3+SD+SE)×100
 CVS(%)={1-SE/(SC/3+SD+SE)}×100
 ISO(%)=SD/(SC/3+SD+SE)×100
 VE(%)=SE/(SE/2+SH/3)×100
 VN(個/1000C)=(SE+SF)/3×1000/{(SD+SE+SF+SG+SH+SI)/2}
[m4]メルトマスフローレイト(MFR)の測定方法
 ビニル基含有化合物としてのポリエチレンのメルトマスフローレイト(MFR)は、東京精機社製メルトインデキサー T-111を用い、190℃、2.16kg荷重で測定した。また、熱可塑性樹脂としてのポリプロピレンのMFRは、東京精機社製メルトインデキサー T-111を用い、230℃、2.16kg荷重で測定した。
 [m5]表面自由エネルギー解析方法
 画像処理式・固液界面解析システム(協和界面科学社製Dropmaster500)を用いて、23℃、50%RHの雰囲気下で、試験サンプル表面に表面張力の判明している3種類のぬれ張力試験用測定液(水、ジヨードメタン、ブロモナフタレン)を滴下し、接触角を測定した。測定は5枚の試験サンプルについて行い、その平均値を求めた。この接触角θから算出されるcosθ(Y軸)と、試験用混合液の表面張力(X軸)とから得られる点(5個以上)をX-Y座標にプロットし、これらの点の最小二乗法より得られる直線と、cosθ=1との交点に対応する表面張力(X軸)を表面自由エネルギー(mN/m)とした。測定条件を以下にまとめた。
試験機;DropMaster500画像処理式固液界面解析システム
試験数;各 n=5
試験液;ぬれ張力試験用測定液(水、ジヨードメタン、ブロモナフタレン:和光純薬工業製)
測定温湿度;23℃/50%RH
 なお、表面自由エネルギーの測定は、各実施例、比較例で作製したフィルムを試験サンプルとし、フィルム成形時のチルロール面側について表面自由エネルギーを測定した。
 [m6]耐傷つき性試験
 往復磨耗試験機(新東科学社製、30S型)を用い、曲面に固定した試料表面を綿布(白綿布、カナキン3号)で覆った摩擦子(SUS製20×20mm、先端45R)で荷重500g、ストローク100mm、30回/分で1000往復摩擦を行った後、試料表面の傷の有無を目視で確認した。傷なしを○、基材ポリプロピレンのみのフィルムの傷つき具合を×、その中間の傷つき具合を△と判定した。
 [m7]表面Si濃度測定
 X線電子分光(ESCA)測定器(VG社製 ESCALAB220iXL)を用い、X線源 ALKα 150W、分析領域 φ150μmでワイドスペクトルを測定した。このワイドスペクトルより検出された元素のピーク面積より、各元素の組成率(atm%)を算出し、ここで得られたケイ素組成率を炭素組成率で割ることにより炭素一原子に対するケイ素原子の表面存在比(Si/C)を計算した。
 [m8]平均Si濃度計算
 組成物中の平均Si濃度(炭素一原子あたりのケイ素原子存在比(Si/C))は、シリル化ポリオレフィンの分子式および組成物中の濃度と基材である熱可塑性樹脂あるいは熱硬化性樹脂の分子式および組成物中の濃度より算出することができる。ここでは例としてシリル化ポリオレフィンの原料化合物であるビニル基含有化合物がエチレン由来の構成単位のみからなる主鎖末端ビニル基含有重合体およびジメチルシロキサン、基材がホモポリプロピレンである際の算出方法を挙げる。シリル化ポリオレフィン合成時に用いる原料の分子式から、シリル化ポリオレフィン中のジメチルシロキサン濃度が計算できるが、仮にこの濃度を26重量%とすると、基材ポリプロピレン90重量部にこのシリル化ポリオレフィン10重量部を加えた組成物の平均ポリジメチルシロキサン濃度は2.6重量%となる。ジメチルシロキサンの1単位あたりの分子式は(CSiO) (単位分子量74.15)、シリル化ポリオレフィンのポリオレフィン1単位あたりの分子式は(Cn (単位分子量28.05)、基材となるポリプロピレン1単位あたりの分子式は(Cn (単位分子量42.08)であることから、組成物1kgあたりのジメチルシロキサンは 1000×2.6/100/74.15=0.35単位、シリル化ポリオレフィンのポリオレフィンは1000×(10-2.6)/100/28.25=2.6単位、基材ポリプロピレンは1000×90/100/42.08=21.4単位となる。よって、組成物1kgあたり、Si(ケイ素)は0.35mol、C(炭素)は0.35×2+2.6×2+21.4×3=70.1 molとなり、組成物中の平均Si濃度(炭素一原子あたりのケイ素原子存在比(Si/C))は0.35/70.1=0.005と算出される。
 [m9]酸素、二酸化炭素透過係数測定方法
 酸素および二酸化炭素の透過係数は、東京精機社製 差圧法ガス透過率測定装置にて、試験温度23℃、試験湿度 0%RH、測定面積 5cmで測定した。
 [m10]水蒸気透過係数測定方法
 水蒸気の透過係数は、日立ハイテックス社製 水蒸気透過率測定装置にて、試験温度40℃、試験湿度 90%RH、測定面積 50cmで測定した。
 シリル化ポリオレフィンが原料化合物であるオレフィンとポリエンとを共重合することにより得られるものである場合、シリル化ポリオレフィンの原料化合物(F1)と(F2)の性状については、以下の方法により測定した。
 (ポリエンまたはα-オレフィンから導かれる構成単位の含有量の測定方法)
 オレフィン・ポリエン共重合体(Z)中のジエンまたはα-オレフィンから導かれる構成単位の含有量は、13C-NMRによる不飽和部分の炭素のピーク面積と全炭素のピーク面積、または13C-NMRによるαオレフィン部分の炭素のピーク面積と全炭素のピーク面積とを比較することにより、1,000炭素あたりの不飽和基数Mを得ることができる。
 (1分子あたりの不飽和基数の測定方法)
 1分子あたりの不飽和基含有量は、数平均分子量Mnと、上述で求めた1,000炭素あたりの不飽和基数Mを用いて、Mn×M/14,000により算出することができる
 (密度の測定方法)
 JISK7112の密度勾配管法で測定した。
 [合成例1]
(片末端にビニル基を有するポリエチレンの合成)
 充分に乾燥、窒素置換した100mlの反応器に、3-クミル-5-メチルサリチルアルデヒド3.89g(15.0mmol)、トルエン30ml、メチルアミン1.75g(40%水溶液、22.5mmol)を仕込み、室温で5時間攪拌した。この反応溶液を減圧濃縮して、シリカゲルカラムクロマトグラフィーで精製することにより、黄色のオイル状の化合物(L-1)3.87g(収率97%)を得た。
 H-NMR(CDCl):1.69(s,6H),2.34(s,3H),3.33(s,3H),6.93-7.29(m,7H),8.21(s,1H),13.5(s,1H)
 充分に乾燥、アルゴン置換した100mlの反応器に、上で得た化合物(L-1)1.12g(4.00mmol)とジエチルエーテル25mlを仕込み、-78℃に冷却し攪拌した。これにn-ブチルリチウム2.58ml(n-ヘキサン溶液、1.55M、4.00mmol)を5分かけて滴下し、そのままの温度で2時間攪拌した後、ゆっくりと室温まで昇温し、室温でさらに3時間攪拌してリチウム塩を調整した。この溶液を、-78℃に冷却したZrCl(THF)錯体0.76g(2.00mol)を含むテトラヒドロフラン溶液25mlに滴下した。滴下終了後、ゆっくりと室温まで昇温しながら攪拌を続けた。さらに室温で12時間攪拌した後、反応液を溶媒留去した。得られた固体を塩化メチレン50mlに溶解し、不溶物をガラスフィルターで除去した。ろ液を減圧濃縮し、析出した固体をn-ヘキサンで再沈し、減圧乾燥することにより黄色粉末の化合物(B-1)を1.10g(収率79%)を得た。
 H-NMR(CDCl):0.86-1.91(m,18H),2.35(s,6H),6.92-7.52(m,14H),7.78(s,2H)
 充分に窒素置換した内容積2000mlのステンレス製オートクレーブに、室温でヘプタン1000mlを装入し、150℃に昇温した。続いてオートクレーブ内をエチレンで30kg/cmGに加圧し、温度を維持した。MMAO(東ソーファインケム社製)のヘキサン溶液(アルミニウム原子換算1.00mmol/ml)0.5ml(0.5mmol)を圧入し、次いで化合物B-1のトルエン溶液(0.0002mmol/ml)0.5ml(0.0001mmol)を圧入し、重合を開始した。エチレンガス雰囲気下、150℃で30分間重合を行った後、少量のメタノールを圧入することにより重合を停止した。得られたポリマー溶液を、少量の塩酸を含む3リットルのメタノール中に加えてポリマーを析出させた。メタノールで洗浄後、80℃にて10時間減圧乾燥した。
 H-NMR測定により、得られた重合物はホモポリエチレンで、なおかつ片末端のみ二重結合を含有することが明らかであり、不純物である両末端飽和ポリエチレンを含む末端メチル基の積分値SH=3.00、ビニル基の積分値SE=1.92から末端不飽和率(VE)は98%であった。この片末端二重結合含有エチレン系重合体(P-1)(単体)のH-NMR の測定結果および物性は以下の通りであった。
 H-NMR:δ(C):0.81(t,3H,J=6.9Hz),1.10-1.45(m),1.93(m,2H),4.80(dd,1H,J=9.2,1.6Hz),4.86(dd,1H,J=17.2,1.6Hz),5.60-5.72(m,1H)
 融点(Tm)123℃
 Mw=1900、Mw/Mn=2.24(GPC)
 末端不飽和率 98%
 [合成例2]
 合成例1で用いたメチルアミンを同じモル量のエチルアミンに変え、合成例1と同様に片末端ビニル基含有エチレン系重合体(P-2)を合成した。この片末端ビニル基含有エチレン系重合体(P-2)(単体)の物性は以下の通りであった。
 融点(Tm)123℃
 Mw=4770、Mw/Mn=2.25(GPC)
 末端不飽和率 97%
 [合成例3]
 (白金触媒組成物(C-1)の調製)
 マグネットスターラーチップを入れた50mlサンプル管中、塩化白金(II)0.50gを、下記構造のヒドロシランA(HS(A)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、品番:XF40-C2195)(10ml)中に懸濁し、窒素気流下、室温で攪拌した。190時間攪拌した後、シリンジにて反応液を約0.4ml採取し、0.45μmPTFEフィルターを用いて濾過して10mlサンプル管中に濾液を採取し、白金濃度が3.8重量%の白金触媒組成物(C-1)を得た。
 ヒドロシランA(HS(A)):HSi(CHO-(-Si(CH-O-)18-Si(CH
 [合成例4] 
(白金触媒組成物(C-2)の調製)
 マグネットスターラーチップを入れた50mlサンプル管中、塩化白金(IV)酸0.50gをイソプロピルアルコールで希釈し、全量16.7gとし、白金濃度が1.1重量%の白金触媒組成物(C-2)を得た。
 [合成例5]
 (末端ビニル基を有するポリエチレンのヒドロシランへの導入-1)
 300mlの2ツ口フラスコに、[合成例1]で得た片末端ビニル基含有エチレン重合体(P-1)10.0g(11.8mmol)を装入し、窒素雰囲気下、ヒドロシランA(HS(A))8.7g(5.9mmol;Si-H基として11.8mmol相当)と、[合成例3]で調製した白金触媒組成物(C-1)をヒドロシランA(HS(A))で200倍希釈したもの(C-1a)150μl(Pt換算で1.4×10-6mmol)を装入した。予め内温130℃に昇温しておいた油浴中に、上記反応器をセットし、攪拌した。約3分後ポリマーは融解した。次いで6時間後に冷却し、メタノール約200mlを加え、300mlビーカーに内容物を取り出し2時間攪拌した。その後、固体をろ取しメタノールで洗浄し、60℃、2hPa以下の減圧下で乾燥させることにより、白色固体のシリル化ポリオレフィン(A-1)18.5gを得た。NMR解析の結果、得られたシリル化ポリオレフィン(A-1)は収率99%、オレフィン転化率100%、異性化率1%であった。MFRは測定上限値以上(MFR>100g/10min)であり、分子式より計算される(A-1)中のポリオルガノシロキサン含量は46重量%であった。
 [合成例6]
 (末端ビニルを有するポリエチレンのヒドロシランへの導入-2)
 合成例5において、片末端ビニル基含有エチレン重合体(P-1)10.0gを[合成例2]の片末端ビニル基含有エチレン系重合体(P-2)25.1g(11.8mmol)に替えた他は同様にして、白色固体のシリル化ポリオレフィン(A-2)33.1gを得た。NMR解析の結果、得られたシリル化ポリオレフィン(A-2)は収率98%、オレフィン転化率100%、異性化率2%であった。MFRは測定上限値以上(MFR>100g/10min)であり、分子式より計算される(A-2)中のポリオルガノシロキサン含量は26重量%であった。
 [合成例7]
 (末端ビニルを有するポリエチレン共重合体のヒドロシランへの導入-1)
 充分に窒素置換した内容積2リットルのステンレス製オートクレーブにヘキサン958mlおよびプロピレン5ml、ビニルノルボルネン(5-ビニルビシクロ[2.2.1]ヘプト-2-エン)37mlを装入し、水素を0.26MPa(ゲージ圧)となるまで導入した。次いで、系内の温度を150℃に昇温した後、トリイソブチルアルミニウム0.3ミリモル、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート0.004ミリモル、ジメチル(t-ブチルアミド)(テトラメチル-η-シクロペンタジエニル)シランチタンジクロライド(シグマアルドリッチ社製)0.02ミリモルをエチレンで圧入することにより重合を開始した。その後、エチレンのみを連続的に供給することにより全圧を2.9MPa(ゲージ圧)に保ち、150℃で20分間重合を行った。少量のエタノールを系内に添加することにより重合を停止した後、未反応のエチレンおよびビニルノルボルネンをパージした。得られたポリマー溶液を、100℃、減圧下で一晩乾燥した。
 以上のようにして1,000炭素あたりの不飽和基数が8.8個、1,000炭素あたりのプロピレン数が1.5個、不飽和基含有量(平均)=1.0個/分子であり、密度が959kg/mであり、融点が119℃であり、Mnが1,600であり、Mwが4,300であり、Mw/Mnが2.7であるビニル基含有化合物(P-3)を得た。
 ビニル基含有化合物(P-3)160gを、下記の平均構造式で表されるヒドロシランB(HS(B)、ゲレスト社製、品番:MCR-H07)80g、キシレン2Lおよび合成例4で調製した白金触媒組成物(C-2)0.5gとともにキシレン還流下で5時間反応させた。減圧、加熱下で溶剤を留去してシリル化ポリオレフィンであるシリコーン変性ワックス(A-3)を得た。このシリコーン変性ワックス(A-3)のMFRは測定上限値以上(MFR>100g/10min)であり、分子式より計算される(A-3)中のポリオルガノシロキサン含量は32重量%であった。
 ヒドロシランB(HS(B)):C-((CHSiO)-(CHSiH
 [合成例8]
 特開平4-57844の実施例1の方法に準拠し、以下のような手法にてポリオルガノシロキサンがポリエチレン鎖にグラフトされたシリコーン変性ポリエチレンを合成した。
 線状低密度ポリエチレン(日本ポリエチレン社製、品番:UF840)20gと、23℃における粘度が300000csでメチルビニルシリコーン含量が1.0%のシリコーンガムストック30g、2,5-ジメチル2,5-ジ(t-ブチルペルオキシ)ヘキシン-3(日本油脂社製)0.26g、1,6-ヘキサンジオールメタクリレート0.26g、分子量約1000の1,2-ポリブタジエン 1.3gおよび酸化防止剤(BASF社製、商品名イルガノックス1010)を混練押出機により180℃で10分間混練し、シリコーン変性ポリエチレン(G-1)を得た。得られたシリコーン変性ポリエチレン(G-1)のMFRは0.7g/10minであり、仕込み量より計算される(G-1)中のポリオルガノシロキサン含量は60重量%であった。
 [実施例1]
 ポリプロピレン(プライムポリマー社製ポリプロピレン F107、MFR6.6g/10分)94.4重量部に上記のシリル化ポリオレフィン(A-1)5.6重量部をドライブレンドし、東芝機械製TEM-26SS 2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物(D-1)を得た。得られた樹脂組成物(D-1)についてサーモ・プラスティックス工業社製3種3層フィルム成形装置を用いてTダイ温度210℃でD-1の単層フィルムを成形した。厚みは50(μm)である。得られた単層フィルムのESCA測定による表面Si濃度は0.060(Si/C)であり、組成物全体での平均値0.005を大きく上回ったことから、シリル化ポリオレフィン(A-1)が表面に移行し濃縮されていることが明らかであった。また、このフィルムの表面自由エネルギーは24.8mN/mであり、耐磨耗試験結果は良好(○、傷つきなし)、酸素透過係数は110cm・mm/(m・24h・atm)、二酸化炭素透過係数は385cm・mm/(m・24h・atm)、水蒸気透過係数は0.421 g・mm/(m・24h)であった。結果は表1にまとめて示す。
 [実施例2]
 ポリプロピレン(プライムポリマー社製ポリプロピレン F107)90重量部に上記のシリル化ポリオレフィン(A-2)10重量部をドライブレンドし、東芝機械製TEM-26SS 2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物(D-2)を得た。得られた樹脂組成物(D-2)についてサーモ・プラスティックス工業社製3種3層フィルム成形装置を用いてTダイ温度210℃でD-2の単層フィルムを成形した。厚みは50(μm)である。得られた単層フィルムのESCA測定による表面Si濃度は0.063(Si/C)であり、組成物全体での平均値0.005を大きく上回ったことから、シリル化ポリオレフィン(A-2)が表面に移行し濃縮されていることが明らかであった。また、このフィルムの表面自由エネルギーは24.7mN/mであり、耐磨耗試験結果は良好(○、傷つきなし)、酸素透過係数は106cm・mm/(m・24h・atm)、二酸化炭素透過係数は379cm・mm/(m・24h・atm)、水蒸気透過係数は0.411g・mm/(m・24h)であった。結果は表1にまとめて示す。
 [実施例3]
 ポリプロピレン(プライムポリマー社製ポリプロピレン F107)91.8重量部に上記のシリル化ポリオレフィン(A-3)8.2重量部をドライブレンドし、東芝機械製TEM-26SS 2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物(D-3)を得た。得られた樹脂組成物(D-3)についてサーモ・プラスティックス工業社製3種3層フィルム成形装置を用いてTダイ温度210℃でD-3の単層フィルムを成形した。厚みは50(μm)である。得られた単層フィルムのESCA測定による表面Si濃度は0.015(Si/C)であり、組成物全体での平均値0.005を上回ったことから、シリル化ポリオレフィン(A-3)が表面に移行していることが明らかであった。結果は表1にまとめて示す。
 [比較例1]
 ポリプロピレン(プライムポリマー社製ポリプロピレン F107)95.7重量部に上記のシリコーン変性ポリエチレン(G-1)4.3重量部をドライブレンドし、東芝機械製TEM-26SS 2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物(D-4)を得た。得られた樹脂組成物(D-4)についてサーモ・プラスティックス工業社製3種3層フィルム成形装置を用いてTダイ温度210℃でD-4の単層フィルムを成形した。厚みは50(μm)である。得られた単層フィルムのESCA測定による表面Si濃度は0.009(Si/C)であり、実施例1~3と組成物全体での平均Si濃度が同じにも関わらず表面Si濃度が下回ったことから、本願範囲外のシリル化ポリオレフィンは表面に移行しにくいことが判明した。結果は表1にまとめて示す。
 [比較例2]
 ポリプロピレン(プライムポリマー社製ポリプロピレン F107)についてサーモ・プラスティックス工業社製3種3層フィルム成形装置を用いてTダイ温度210℃で単層フィルムを成形した。厚みは50(μm)である。得られた単層フィルムのESCA測定による表面Si濃度は0.000(Si/C)であった。結果は表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 [実施例4]
 ポリプロピレン(プライムポリマー社製ポリプロピレン F107、MFR6.6g/10分)70重量部と上記のシリル化ポリオレフィン(A-1)30重量部をマイクロコンパウンダー(DSM社製;DSM-Xplore)に加え、混練温度230℃、回転数100rpmで5分間混練し、樹脂組成物を得た。
 この樹脂組成物を熱プレス成型した。成形は、真空熱プレス機で230℃に加熱しながら5分間加圧し、その後取り出して室温まで急冷する方法で行い、厚さ約200μmの熱プレスシートを得た。
 このシートの酸素透過係数、二酸化炭素透過係数、水蒸気透過係数、耐傷つき性を評価した。その結果を表2に示す。
 また、このシートのヘイズと全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ、ヘイズが39%、全光線透過率が92%であった。
 [実施例5]
 実施例4においてシリル化ポリオレフィン(A-1)をシリル化ポリオレフィン(A-2)に代えた以外は同様に行い、厚さ約200μmの熱プレスシートを得た。
このシートの酸素透過係数、二酸化炭素透過係数、水蒸気透過係数、耐傷つき性を評価した。その結果を表2に示す。
また、このシートのヘイズと全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ、ヘイズが62%、全光線透過率が93%であった。
 [比較例3]
 実施例4においてシリル化ポリオレフィン(A-1)を用いなかったこと以外は同様に行い、厚さ約200μmの熱プレスシートを得た。
このシートの酸素透過係数、二酸化炭素透過係数、水蒸気透過係数、耐傷つき性を評価した。その結果を表2に示す。
 また、このシートのヘイズと全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ、ヘイズが25%、全光線透過率が92%であった。
Figure JPOXMLDOC01-appb-T000002
 [実施例6]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)95.0重量部に上記のシリル化ポリオレフィン(A-1)5.0重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いて、シリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.001g、摩擦係数は0.22であった。なお、測定に用いた相手材はS45Cである。
また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ85%であった。結果は表3にまとめて示す。
 [実施例7]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)97.2重量部に上記のシリル化ポリオレフィン(A-1)2.8重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.001g、摩擦係数は0.31であった。なお、測定に用いた相手材はS45Cである。
また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ85%であった。結果は表3にまとめて示す。
 [実施例8]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)95.0重量部に上記のシリル化ポリオレフィン(A-2)5.0重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.003g、摩擦係数は0.22であった。なお、測定に用いた相手材はS45Cである。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ84%であった。結果は表3にまとめて示す。
 [実施例9]
 直鎖上低密度ポリエチレン(プライムポリマー社製直鎖上低密度ポリエチレンSP0540、MFR3.8g/10分)95.0重量部に上記のシリル化ポリオレフィン(A-2)5.0重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.076g、摩擦係数は0.53であった。なお、測定に用いた相手材はS45Cである。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ77%であった。結果は表3にまとめて示す。
 [実施例10]
 エチレン-酢酸ビニル共重合体(三井・デュポンポリケミカル社製エチレン-酢酸ビニル共重合体EV460、MFR2.5g/10分)95.0重量部に上記のシリル化ポリオレフィン(A-2)5.0重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:0.5km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.300g、摩擦係数は0.55であった。なお、測定に用いた相手材はS45Cである。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ76%であった。結果は表3にまとめて示す。
 [実施例11]
 エチレン-メタクリル酸共重合体(三井・デュポンポリケミカル社製エチレン-メタクリル酸共重合体N1108C、MFR8.0g/10分)95.0重量部に上記のシリル化ポリオレフィン(A-2)5.0重量部をドライブレンドし、東芝機械製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:1.5km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.009g、摩擦係数は0.47であった。なお、測定に用いた相手材はS45Cである。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ74%であった。結果は表3にまとめて示す。
 [比較例4]
 実施例6においてシリル化ポリオレフィン(A-1)を用いなかったこと以外は同様に行い、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.195g、摩擦係数は0.55であった。なお、測定に用いた相手材はS45Cである。これにより、シリル化ポリオレフィン(A-1、A-2)を用いた場合(実施例6-8)に比べて磨耗量および摩擦係数が増加することが判明した。
また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ86%であった。結果は表3にまとめて示す。
 [比較例5]
ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)97.8重量部に上記のシリコーン変性ポリエチレン(G-1)2.2重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いて、シリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.001g、摩擦係数は0.21であった。なお、測定に用いた相手材はS45Cである。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ75%であり、シリル化ポリオレフィン(A-1、A-2)を用いた場合(実施例6-8)に比べて全光線透過率が悪化することが判明した。結果は表3にまとめて示す。
 [比較例6]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)97.4重量部に超高分子量シリコーンとポリプロピレンのマスターバッチ(東レ・ダウコーニング社製シリコーンコンセントレートBY27-001、MFR15g/10分)(G-2)2.6重量部をドライブレンドし、東芝機械製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。
 得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.004g、摩擦係数は0.55であった。なお、測定に用いた相手材はS45Cである。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ51%であり、シリル化ポリオレフィン(A-1、A-2)を用いた場合(実施例6-8)に比べて全光線透過率が悪化することが判明した。結果は表3にまとめて示す。
 [比較例7]
 実施例9においてシリル化ポリオレフィン(A-2)を用いなかったこと以外は同様に行い、70mm×70mm×2mmの大きさの射出成形板を得た。
得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:3km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.371g、摩擦係数は0.63であった。なお、測定に用いた相手材はS45Cである。これにより、シリル化ポリオレフィン(A-2)を用いた場合(実施例9)に比べて磨耗量および摩擦係数が増加することが判明した。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ80%であった。結果は表3にまとめて示す。
 [比較例8]
 実施例10においてシリル化ポリオレフィン(A-2)を用いなかったこと以外は同様に行い、70mm×70mm×2mmの大きさの射出成形板を得た。
得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:0.5km)により磨耗量および摩擦係数を測定したところ、磨耗量は1.021g、摩擦係数は0.61であった。なお、測定に用いた相手材はS45Cである。これにより、シリル化ポリオレフィン(A-2)を用いた場合(実施例10)に比べて磨耗量および摩擦係数が増加することが判明した。
 また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ84%であった。結果は表3にまとめて示す。
 [比較例9]
 実施例11においてシリル化ポリオレフィン(A-2)を用いなかったこと以外は同様に行い、70mm×70mm×2mmの大きさの射出成形板を得た。
得られた射出成形板についてJIS K7218A法(荷重:75N、速度:0.1m/s、距離:1.5km)により磨耗量および摩擦係数を測定したところ、磨耗量は0.389g、摩擦係数は0.68であった。なお、測定に用いた相手材はS45Cである。これにより、シリル化ポリオレフィン(A-2)を用いた場合(実施例11)に比べて磨耗量および摩擦係数が増加することが判明した。
また、この成形板の全光線透過率を日本電色工業社製のヘイズメータNDH2000を用いて測定したところ85%であった。結果は表3にまとめて示す。
Figure JPOXMLDOC01-appb-T000003
 [実施例12]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)94.3重量部に上記のシリル化ポリオレフィン(A-1)5.7重量部をドライブレンドし、東芝機械社製TEM-26SS 2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。得られた射出成形板のESCA測定による表面Si濃度は0.035(Si/C)であった。
 得られた射出成形板の表面に、50mm×50mmに切り出した粘着テープ(三井化学東セロ社製イクロステープ SB-185HRB-KW40)を貼り付け、25℃で24時間静置した。この粘着テープを射出成形板から剥がした後、粘着面についてESCA測定を行ったところ、表面Si濃度は0.001(Si/C)であった。結果は表4にまとめて示す。
 [実施例13]
 粘着テープを貼り付けたあと、60℃で24時間静置する以外は実施例12と同様に行い、粘着面についてESCA測定を行ったところ、表面Si濃度は0.003(Si/C)であった。結果は表4にまとめて示す。
 [実施例14]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)90.0重量部に上記のシリル化ポリオレフィン(A-2)10.0重量部をドライブレンドし、東芝機械社製TEM-26SS 2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。得られた射出成形板のESCA測定による表面Si濃度は0.037(Si/C)であった。
 得られた射出成形板の表面に、50mm×50mmに切り出した粘着テープ(三井化学東セロ社製イクロステープ SB-185HRB-KW40)を貼り付け、25℃で24時間静置した。この粘着テープを射出成形板から剥がした後、粘着面についてESCA測定を行ったところ、表面Si濃度は検出限界以下であった。結果は表4にまとめて示す。
 [実施例15]
 粘着テープを貼り付けたあと、60℃で24時間静置する以外は実施例14と同様に行い、粘着面についてESCA測定を行ったところ、表面Si濃度は検出限界以下であった。結果は表4にまとめて示す。
 [比較例10]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)94.8重量部に超高分子量シリコーンとポリプロピレンのマスターバッチ(東レ・ダウコーニング社製シリコーンコンセントレートBY27-001、MFR15g/10分)(G-2)5.2重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。得られた射出成形板のESCA測定による表面Si濃度は0.043(Si/C)であった。
 得られた射出成形板の表面に、50mm×50mmに切り出した粘着テープ(三井化学東セロ社製イクロステープ SB-185HRB-KW40)を貼り付け、25℃で24時間静置した。この粘着テープを射出成形板から剥がした後、粘着面についてESCA測定を行ったところ、表面Si濃度は0.017(Si/C)であった。結果は表4にまとめて示す。
 [比較例11]
 粘着テープを貼り付けたあと、60℃で24時間静置する以外は比較例10と同様に行い、粘着面についてESCA測定を行ったところ、表面Si濃度は0.043(Si/C)であった。結果は表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
  [合成例9]
(白金触媒組成物(C-3)の調製)
 マグネットスターラーチップを入れた50mlサンプル管中、塩化白金(II)0.50gを、ヒドロシランB(HS(B)、ゲレスト社製、品番:MCR-H07)(10ml)中に懸濁し、窒素気流下、室温で攪拌した。190時間攪拌した後、シリンジにて反応液を約0.4ml採取し、0.45μmPTFEフィルターを用いて濾過して10mlサンプル管中に濾液を採取し、白金濃度が3.8重量%の白金触媒組成物(C-3)を得た。
 [合成例10]
(末端ビニル基を有するポリエチレンのヒドロシランへの導入-3)
 300mlの2ツ口フラスコに、[合成例1]で得た片末端ビニル基含有エチレン重合体(P-1)10.0g(11.8mmol)を装入し、窒素雰囲気下、ヒドロシランB(HS(B))9.6g(Si-H基として11.8mmol相当)と、[合成例9]で調製した白金触媒組成物(C-3)をヒドロシランB(HS(B))で200倍希釈したもの(C-3a)150μl(Pt換算で1.4×10-6mmol)を装入した。予め内温130℃に昇温しておいた油浴中に、上記反応器をセットし、攪拌した。約3分後ポリマーは融解した。次いで6時間後に冷却し、メタノール約200mlを加え、300mlビーカーに内容物を取り出し2時間攪拌した。その後、固体をろ取しメタノールで洗浄し、60℃、2hPa以下の減圧下で乾燥させることにより、白色固体のシリル化ポリオレフィン(A-4)19.2gを得た。NMR解析の結果、得られたシリル化ポリオレフィン(A-4)は収率99%、オレフィン転化率100%、異性化率1%であった。MFRは測定上限値以上(MFR>100g/10min)であり、分子式より計算される(A-4)中のポリオルガノシロキサン含量は46重量%であった。
 [合成例11]
(末端ビニル基を有するポリエチレンのヒドロシランへの導入-4)
 300mlの2ツ口フラスコに、[合成例2]で得た片末端ビニル基含有エチレン重合体(P-2)25.1g(11.8mmol)を装入し、窒素雰囲気下、ヒドロシランB(HS(B))9.4g(Si-H基として11.8mmol相当)と、[合成例9]で調製した白金触媒組成物(C-3)をヒドロシランB(HS(B))で200倍希釈したもの(C-3a)150μl(Pt換算で1.4×10-6mmol)を装入した。予め内温130℃に昇温しておいた油浴中に、上記反応器をセットし、攪拌した。約3分後ポリマーは融解した。次いで6時間後に冷却し、メタノール約200mlを加え、300mlビーカーに内容物を取り出し2時間攪拌した。その後、固体をろ取しメタノールで洗浄し、60℃、2hPa以下の減圧下で乾燥させることにより、白色固体のシリル化ポリオレフィン(A-5)34.1gを得た。NMR解析の結果、得られたシリル化ポリオレフィン(A-5)は収率99%、オレフィン転化率100%、異性化率2%であった。MFRは測定上限値以上(MFR>100g/10min)であり、分子式より計算される(A-5)中のポリオルガノシロキサン含量は26重量%であった。
 [実施例16]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)94.3重量部に上記のシリル化ポリオレフィン(A-4)5.7重量部をドライブレンドし、東芝機械製TEM-26SS 2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。得られた射出成形板のESCA測定による表面Si濃度は0.044(Si/C)であった。
 得られた射出成形板の表面に、50mm×50mmに切り出した粘着テープ(三井化学東セロ社製イクロステープ SB-185HRB-KW40)を貼り付け、25℃で24時間静置した。この粘着テープを射出成形板から剥がした後、粘着面についてESCA測定を行ったところ、表面Si濃度は0.012(Si/C)であった。結果は表5にまとめて示す。
 [実施例17]
 粘着テープを貼り付けたあと、60℃で24時間静置する以外は実施例16と同様に行い、粘着面についてESCA測定を行ったところ、表面Si濃度は0.017(Si/C)であった。結果は表5にまとめて示す。
 [実施例18]
 ポリプロピレン(プライムポリマー社製ポリプロピレンF107、MFR6.6g/10分)90.0重量部に上記のシリル化ポリオレフィン(A-5)10.0重量部をドライブレンドし、東芝機械社製TEM-26SS2軸押出機(L/D=60)にてシリンダー温度200℃で溶融混合し、樹脂組成物を得た。
 この樹脂組成物を日精樹脂工業社製射出成形機NEX30-3Eを用いてシリンダー温度200℃、金型温度40℃の条件で射出成形し、70mm×70mm×2mmの大きさの射出成形板を得た。得られた射出成形板のESCA測定による表面Si濃度は0.037(Si/C)であった。
 得られた射出成形板の表面に、50mm×50mmに切り出した粘着テープ(三井化学東セロ社製イクロステープ SB-185HRB-KW40)を貼り付け、25℃で24時間静置した。この粘着テープを射出成形板から剥がした後、粘着面についてESCA測定を行ったところ、表面Si濃度は0.005(Si/C)であった。結果は表5にまとめて示す。
 [実施例19]
 粘着テープを貼り付けたあと、60℃で24時間静置する以外は実施例18と同様に行い、粘着面についてESCA測定を行ったところ、表面Si濃度は0.005(Si/C)であった。結果は表5にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
 実施例と比較例から明らかなように、本発明の成形体は耐傷つき性および耐汚染性に優れ、成形体表面からのブリードアウトもしにくく、また、上記の性能に加えてガス透過性も良好であるため、工業的に重要である。
 この出願は、2011年1月21日に出願された日本特許出願特願2011-011172を基礎とする優先権を主張し、その開示のすべてをここに取り込む。

Claims (23)

  1.  熱可塑性樹脂および熱硬化性樹脂からなる群から選択される少なくとも1つの樹脂、100重量部と、
     式(1)で表される構造単位を含有するケイ素含有化合物と、GPC法で求めた数平均分子量が100以上500,000以下であるビニル基含有化合物との反応(ただし、前記ケイ素含有化合物として1分子に2個以上のSiH基を有するものを用い、かつ前記ビニル基含有化合物として1分子あたり平均2.0個以上のビニル基を有するものを用いる場合は除く)によって得られる、シリル化ポリオレフィンもしくはその誘導体、またはこれらの混合物、0.01~10,000重量部と、
    を含有する組成物から形成される成形体。
    -Si(R)H-Y-   (1)
     (式(1)中、Rは、水素原子、ハロゲン原子または炭化水素基であり、
      YはO、SまたはNR30(R30は、水素原子または炭化水素基である)である。)
  2.  前記ケイ素含有化合物が、式(2)の構造式で表される、請求項1に記載の成形体。
    22-(Si(R21)H-Y21-Z-(Y22-Si(R23)H)-R24  (2)
     (式(2)中、R21およびR23はそれぞれ独立して、水素原子、ハロゲン原子または炭化水素基であり、
     R22およびR24はそれぞれ独立して、ハロゲン原子または炭化水素基であり、
     Y21およびY22はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
     mは0または1であり、
     nは0または1であり、
     R21、R23、Y21およびY22が複数存在する場合、各基は同一であっても異なっていてもよく、
     Zは、式(3)で表される2価の基であり、
    -Si(R41)(R41)-(Y23-Si(R41)(R41))-   (3)
    (式(3)中、R41は水素原子、ハロゲン原子または炭化水素基であり、各R41はそれぞれ同一であっても異なっていてもよく、Y23はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
    lは0~10000の整数である。
    ただし、前記式(2)において、m=n=0の場合、前記式(3)において、少なくとも1つのR41は水素原子である。)
  3.  前記ケイ素含有化合物が、ケイ素原子を3個以上含有する、請求項2に記載の成形体。
  4.  前記式(2)において、m=n=1であり、R21、R23およびR41は全て前記炭化水素基である、請求項3に記載の成形体。
  5.  前記式(2)において、m=1、n=0であり、R21およびR41は全て前記炭化水素基である、請求項3に記載の成形体。
  6.  前記ビニル基含有化合物が、式(4)で表される構造を有する、請求項1~5のいずれか1項に記載の成形体。
    A-CH=CH   (4)
    (式(4)中、Aは炭素数2~50のα-オレフィン由来の構造を含む重合鎖である。)
  7.  前記ビニル基含有化合物の分子量分布が1.1~3.0の範囲にある、請求項1~6のいずれか1項に記載の成形体。
  8.  前記Aが、前記炭素数2~50のα-オレフィンのみから構成される重合鎖である、請求項6に記載の成形体。
  9.  前記Aが、エチレン単独重合鎖である、請求項6に記載の成形体。
  10.  前記ビニル基含有化合物が、下記(Z1)~(Z6)を満たすオレフィン・ジエン共重合体(Z)である、請求項1~9のいずれか1項に記載の成形体:
    (Z1)エチレンと少なくとも1種のポリエンとを共重合して得られる共重合体、またはエチレンおよび炭素数3~12のα-オレフィンから選ばれる少なくとも1種のオレフィンと少なくとも1種のポリエンとを共重合して得られる共重合体、
    (Z2)1分子あたりの不飽和基含有量が0.5~3.0個、
    (Z3)密度が870~980kg/m
    (Z4)融点が70~130℃、
    (Z5)数平均分子量(Mn)が400~5,000、
    (Z6)重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0以下。
  11.  前記(Z1)のポリエンが5-ビニルビシクロ[2.2.1]ヘプト-2-エンである、請求項10に記載の成形体。
  12.  前記ビニル基含有化合物の二重結合の反応率が90%以上であることを特徴とする、請求項1~11のいずれか1項に記載の成形体。
  13.  前記シリル化ポリオレフィンの、JISK7210に準拠して、2.16kg荷重、190℃で測定したメルトマスフローレイト(MFR)が0.01g/10分以上である、請求項1~12のいずれか1項に記載の成形体。
  14.  前記熱可塑性樹脂が、ポリオレフィン樹脂、ポリカーボネート樹脂、熱可塑性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリウレタン樹脂およびポリ乳酸樹脂からなる群より選択される少なくとも1つである、請求項1~13のいずれか1項に記載の成形体。
  15.  前記熱硬化性樹脂が、エポキシ樹脂および熱架橋性ポリオレフィン樹脂からなる群より選択される少なくとも1つである、請求項1~14のいずれか1項に記載の成形体。
  16.  前記組成物を溶融成形して得られる、請求項1~15のいずれか1項に記載の成形体。
  17.  フィルムもしくはシートの形態である、請求項1~16のいずれか1項に記載の成形体。
  18.  前記成形体が、自動車内装部品、グラスランチャネル、プラスチックシリンジ、包材、プラスチック容器、中空糸膜、ガス透過性フィルムおよびガス選択性フィルムから選ばれる成形体である、請求項1~17のいずれか1項に記載の成形体。
  19.  前記ケイ素含有化合物が式(2')で表される構造単位を含有し、
     前記ビニル基含有化合物が式(4)で表される構造を有し、分子量分布が1.1~3.0の範囲にある、請求項1に記載の成形体。
    22-(Si(R21)H-Y21-Z-(Y22-Si(R23)H)-R24  (2')
     (式(2')中、R21およびR23はそれぞれ独立して、炭化水素基であり、
     R22およびR24はそれぞれ独立して、ハロゲン原子または炭化水素基であり、
     Y21およびY22はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、
     mは1であり、
     nは1であり、
     R21、R23、Y21およびY22が複数存在する場合、各基は同一であっても異なっていてもよく、
     Zは、式(3)で表される2価の基であり、
    -Si(R41)(R41)-(Y23-Si(R41)(R41))-   (3)
    (式(3)中、R41は炭化水素基であり、各R41はそれぞれ同一であっても異なっていてもよく、Y23はそれぞれ独立して、O、SまたはNR30(R30は、水素原子または炭化水素基である)であり、lは0~10000の整数である。))
    A-CH=CH   (4)
    (式(4)中、Aは炭素数2~50のα-オレフィン由来の構造を含む重合鎖である。)
  20.  前記ビニル基含有化合物の二重結合の反応率が90%以上である、請求項19に記載の成形体。
  21.  前記ケイ素含有化合物が式(2e)で表される構造単位を含有し、
     前記ビニル基含有化合物が式(4')で表される構造を有し、GPC法で求めた数平均分子量が700以上10,000以下であり、
     前記組成物から溶融成形法により形成される、請求項20に記載の成形体。
    HSi(CHO-(-Si(CH-O-)-Si(CHH  (2e)
    (式(2e)中、iは1以上50以下の整数である。)
    A-CH=CH   (4')
    (式(4')中、Aはエチレン単独重合鎖であり、-CH=CHはポリマー主鎖の末端のみに存在する。)
  22.  前記ケイ素含有化合物が式(2e)で表される構造単位を含有し、
     前記ビニル基含有化合物が式(4')で表される構造を有し、GPC法で求めた数平均分子量が700以上10,000以下であり、
     当該成形体がフィルムもしくはシートの形態である、請求項20に記載の成形体。
    HSi(CHO-(-Si(CH-O-)-Si(CHH  (2e)
    (式(2e)中、iは1以上50以下の整数である。)
    A-CH=CH   (4')
    (式(4')中、Aはエチレン単独重合鎖であり、-CH=CHはポリマー主鎖の末端のみに存在する。)
  23.  前記ケイ素含有化合物が式(2e)で表される構造単位を含有し、
     前記ビニル基含有化合物が式(4')で表される構造を有し、GPC法で求めた数平均分子量が700以上10,000以下であり、
     当該成形体が自動車内装部品、グラスランチャネル、プラスチックシリンジ、包材、プラスチック容器、中空糸膜、ガス透過性フィルムおよびガス選択性フィルムから選ばれる、請求項20に記載の成形体。
    HSi(CHO-(-Si(CH-O-)-Si(CHH  (2e)
    (式(2e)中、iは1以上50以下の整数である。)
    A-CH=CH   (4')
    (式(4')中、Aはエチレン単独重合鎖であり、-CH=CHはポリマー主鎖の末端のみに存在する。)
PCT/JP2012/000260 2011-01-21 2012-01-18 成形体 WO2012098865A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012553617A JP5575929B2 (ja) 2011-01-21 2012-01-18 成形体
EP12736829.8A EP2666828B1 (en) 2011-01-21 2012-01-18 Molded body
US13/980,950 US9534112B2 (en) 2011-01-21 2012-01-18 Molded article
CN201280005885.3A CN103328581B (zh) 2011-01-21 2012-01-18 成型体
KR1020137018876A KR101551553B1 (ko) 2011-01-21 2012-01-18 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011011172 2011-01-21
JP2011-011172 2011-01-21

Publications (1)

Publication Number Publication Date
WO2012098865A1 true WO2012098865A1 (ja) 2012-07-26

Family

ID=46515501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000260 WO2012098865A1 (ja) 2011-01-21 2012-01-18 成形体

Country Status (7)

Country Link
US (1) US9534112B2 (ja)
EP (1) EP2666828B1 (ja)
JP (1) JP5575929B2 (ja)
KR (1) KR101551553B1 (ja)
CN (1) CN103328581B (ja)
TW (1) TWI516536B (ja)
WO (1) WO2012098865A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177541A (ja) * 2013-03-14 2014-09-25 Mitsui Chemicals Inc 包装材および包装体
JP2014200949A (ja) * 2013-04-02 2014-10-27 三井化学東セロ株式会社 拡張性フィルム、それを用いた半導体装置の製造方法
JP2015048384A (ja) * 2013-08-30 2015-03-16 三井化学株式会社 ポリオレフィン樹脂組成物およびその用途
JP2015105355A (ja) * 2013-12-02 2015-06-08 三井化学株式会社 樹脂組成物およびその成形体
JP2015189088A (ja) * 2014-03-28 2015-11-02 三井化学株式会社 接着体、樹脂組成物、成形体およびガラスランチャンネル
JP2017179344A (ja) * 2016-03-25 2017-10-05 三菱ケミカル株式会社 シリル化ポリプロピレンの製造方法、その製造方法から得られるシリル化ポリプロピレン、及びシリル化ポリプロピレンと熱可塑性樹脂とを含む樹脂組成物
JP2018095799A (ja) * 2016-12-16 2018-06-21 三井化学株式会社 成形体
JP2019206680A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 重合体組成物、及び重合体組成物からなる成形体
JP2021031819A (ja) * 2019-08-29 2021-03-01 三井化学株式会社 不織布及びフィルタ
JP2021091769A (ja) * 2019-12-09 2021-06-17 三井化学株式会社 オレフィン系樹脂組成物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117304644A (zh) * 2015-09-30 2023-12-29 塞拉尼斯销售德国有限公司 低摩擦无刺耳音的组合件
KR102055833B1 (ko) * 2018-06-08 2019-12-13 에스케이씨 주식회사 폴리부틸렌테레프탈레이트 수지 조성물 및 이로부터 제조된 성형품
WO2023108586A1 (en) * 2021-12-17 2023-06-22 Dow Global Technologies Llc Olefin/silane interpolymer compositions with excellent thermal oxidation resistance

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457844A (ja) 1990-06-28 1992-02-25 Nippon Unicar Co Ltd シリコーン変性プロピレン系ポリマーおよびその製造方法
JP2000191862A (ja) 1998-10-20 2000-07-11 Mitsui Chemicals Inc 軟質ポリプロピレン系重合体組成物およびその成形体
JP2000239312A (ja) 1998-12-25 2000-09-05 Mitsui Chemicals Inc オレフィン重合用触媒および該オレフィン重合用触媒を用いたオレフィンの重合方法
JP2001002731A (ja) 1999-04-23 2001-01-09 Mitsui Chemicals Inc 低分子量エチレン系重合体
JP2002097325A (ja) 2000-09-20 2002-04-02 Mitsui Chemicals Inc シンジオタクティックポリプロピレン系共重合体組成物および成形体
JP2002522604A (ja) * 1998-08-14 2002-07-23 ユニヴァーシティー オブ ウォータールー ポリプロピレンの溶融相ヒドロシリル化
JP2003073412A (ja) 2001-06-20 2003-03-12 Mitsui Chemicals Inc オレフィン重合用触媒、オレフィンの重合方法、該方法によって得られるエチレン系重合体およびその用途
JP2004035813A (ja) 2002-07-05 2004-02-05 Mitsui Chemicals Inc ポリオレフィン組成物、架橋体、架橋用材料、架橋体の製造方法
JP2004149552A (ja) 2002-10-16 2004-05-27 Mitsui Chemicals Inc シリコーン系室温固化組成物
JP2004196883A (ja) 2002-12-17 2004-07-15 Shin Etsu Chem Co Ltd シリコーンポリエチレンワックス
JP2004262993A (ja) 2003-02-28 2004-09-24 Mitsui Chemicals Inc ポリプロピレン共重合体の製造方法
WO2007105483A1 (ja) 2006-03-10 2007-09-20 Mitsui Chemicals, Inc. インフレーション成形による成形体の製造方法
WO2007114009A1 (ja) 2006-03-30 2007-10-11 Mitsui Chemicals, Inc. 射出成形による成形体の製造方法
WO2007114102A1 (ja) 2006-03-30 2007-10-11 Mitsui Chemicals, Inc. 延伸フィルムの製造方法
WO2007122906A1 (ja) 2006-03-29 2007-11-01 Mitsui Chemicals, Inc. ブロー成形による成形体の製造方法
WO2008004514A1 (fr) * 2006-07-04 2008-01-10 Mitsui Chemicals, Inc. Composé de silicium contenant une chaîne polyoléfine et polymère d'oléfine
JP2008133320A (ja) * 2006-11-27 2008-06-12 Idemitsu Kosan Co Ltd 末端変性ポリα−オレフィン、その製造方法及びそれを含む組成物
JP2010037555A (ja) * 2008-07-11 2010-02-18 Mitsui Chemicals Inc シリル化ポリオレフィンの製造方法および該シリル化ポリオレフィンを含む添加剤
JP2011026448A (ja) * 2009-07-24 2011-02-10 Mitsui Chemicals Inc 離型性を有する組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2991358B2 (ja) 1992-07-23 1999-12-20 五洋紙工株式会社 剥離剤組成物及び該組成物を用いた剥離シートの製造方法
US5728469A (en) 1995-06-06 1998-03-17 Avery Dennison Corporation Block copolymer release surface for pressure sensitive adhesives
US7247385B1 (en) 1998-08-14 2007-07-24 University Of Waterloo Melt phase hydrosilylation of polypropylene
US6083313A (en) * 1999-07-27 2000-07-04 Advanced Refractory Technologies, Inc. Hardcoats for flat panel display substrates
JP2006206844A (ja) 2005-01-31 2006-08-10 Mitsubishi Chemicals Corp 離型性樹脂組成物、離型性シート及び離型性フィルム、並びに粘着シート又は粘着フィルム
JP5116716B2 (ja) * 2008-03-25 2013-01-09 三井化学株式会社 無機強化材配合成形用樹脂組成物

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0457844A (ja) 1990-06-28 1992-02-25 Nippon Unicar Co Ltd シリコーン変性プロピレン系ポリマーおよびその製造方法
JP2002522604A (ja) * 1998-08-14 2002-07-23 ユニヴァーシティー オブ ウォータールー ポリプロピレンの溶融相ヒドロシリル化
JP2000191862A (ja) 1998-10-20 2000-07-11 Mitsui Chemicals Inc 軟質ポリプロピレン系重合体組成物およびその成形体
JP2000239312A (ja) 1998-12-25 2000-09-05 Mitsui Chemicals Inc オレフィン重合用触媒および該オレフィン重合用触媒を用いたオレフィンの重合方法
JP2001002731A (ja) 1999-04-23 2001-01-09 Mitsui Chemicals Inc 低分子量エチレン系重合体
JP2002097325A (ja) 2000-09-20 2002-04-02 Mitsui Chemicals Inc シンジオタクティックポリプロピレン系共重合体組成物および成形体
JP2003073412A (ja) 2001-06-20 2003-03-12 Mitsui Chemicals Inc オレフィン重合用触媒、オレフィンの重合方法、該方法によって得られるエチレン系重合体およびその用途
JP2004035813A (ja) 2002-07-05 2004-02-05 Mitsui Chemicals Inc ポリオレフィン組成物、架橋体、架橋用材料、架橋体の製造方法
JP2004149552A (ja) 2002-10-16 2004-05-27 Mitsui Chemicals Inc シリコーン系室温固化組成物
JP2004196883A (ja) 2002-12-17 2004-07-15 Shin Etsu Chem Co Ltd シリコーンポリエチレンワックス
JP2004262993A (ja) 2003-02-28 2004-09-24 Mitsui Chemicals Inc ポリプロピレン共重合体の製造方法
WO2007105483A1 (ja) 2006-03-10 2007-09-20 Mitsui Chemicals, Inc. インフレーション成形による成形体の製造方法
WO2007122906A1 (ja) 2006-03-29 2007-11-01 Mitsui Chemicals, Inc. ブロー成形による成形体の製造方法
WO2007114009A1 (ja) 2006-03-30 2007-10-11 Mitsui Chemicals, Inc. 射出成形による成形体の製造方法
WO2007114102A1 (ja) 2006-03-30 2007-10-11 Mitsui Chemicals, Inc. 延伸フィルムの製造方法
WO2008004514A1 (fr) * 2006-07-04 2008-01-10 Mitsui Chemicals, Inc. Composé de silicium contenant une chaîne polyoléfine et polymère d'oléfine
JP2008133320A (ja) * 2006-11-27 2008-06-12 Idemitsu Kosan Co Ltd 末端変性ポリα−オレフィン、その製造方法及びそれを含む組成物
JP2010037555A (ja) * 2008-07-11 2010-02-18 Mitsui Chemicals Inc シリル化ポリオレフィンの製造方法および該シリル化ポリオレフィンを含む添加剤
JP2011026448A (ja) * 2009-07-24 2011-02-10 Mitsui Chemicals Inc 離型性を有する組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2666828A4

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014177541A (ja) * 2013-03-14 2014-09-25 Mitsui Chemicals Inc 包装材および包装体
JP2014200949A (ja) * 2013-04-02 2014-10-27 三井化学東セロ株式会社 拡張性フィルム、それを用いた半導体装置の製造方法
JP2015048384A (ja) * 2013-08-30 2015-03-16 三井化学株式会社 ポリオレフィン樹脂組成物およびその用途
JP2015105355A (ja) * 2013-12-02 2015-06-08 三井化学株式会社 樹脂組成物およびその成形体
JP2015189088A (ja) * 2014-03-28 2015-11-02 三井化学株式会社 接着体、樹脂組成物、成形体およびガラスランチャンネル
JP2017179344A (ja) * 2016-03-25 2017-10-05 三菱ケミカル株式会社 シリル化ポリプロピレンの製造方法、その製造方法から得られるシリル化ポリプロピレン、及びシリル化ポリプロピレンと熱可塑性樹脂とを含む樹脂組成物
JP2018095799A (ja) * 2016-12-16 2018-06-21 三井化学株式会社 成形体
JP2019206680A (ja) * 2018-05-30 2019-12-05 三井化学株式会社 重合体組成物、及び重合体組成物からなる成形体
JP7100498B2 (ja) 2018-05-30 2022-07-13 三井化学株式会社 重合体組成物、及び重合体組成物からなる成形体
JP2021031819A (ja) * 2019-08-29 2021-03-01 三井化学株式会社 不織布及びフィルタ
JP2021091769A (ja) * 2019-12-09 2021-06-17 三井化学株式会社 オレフィン系樹脂組成物
JP7365215B2 (ja) 2019-12-09 2023-10-19 三井化学株式会社 オレフィン系樹脂組成物

Also Published As

Publication number Publication date
US20130344273A1 (en) 2013-12-26
EP2666828B1 (en) 2018-11-21
EP2666828A1 (en) 2013-11-27
CN103328581A (zh) 2013-09-25
TWI516536B (zh) 2016-01-11
KR20130093169A (ko) 2013-08-21
EP2666828A4 (en) 2015-06-03
JP5575929B2 (ja) 2014-08-20
KR101551553B1 (ko) 2015-09-08
US9534112B2 (en) 2017-01-03
JPWO2012098865A1 (ja) 2014-06-09
TW201233722A (en) 2012-08-16
CN103328581B (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
JP5575929B2 (ja) 成形体
JP2011026448A (ja) 離型性を有する組成物
TWI324615B (ja)
KR101312155B1 (ko) 4-메틸-1-펜텐계 중합체 및 4-메틸-1-펜텐계 중합체 함유 수지 조성물, 및 그의 마스터배치 및 그들의 성형품
JP2015024548A (ja) 撥水性フィルム
JP6310297B2 (ja) 接着体およびガラスランチャンネル
JP2014177541A (ja) 包装材および包装体
JP2015025051A (ja) 撥水性フィルム
JP4723289B2 (ja) SiH基含有化合物、その製造方法、並びに、SiH基含有化合物を用いた硬化性組成物、その硬化物
CN114096571B (zh) 膜状成型体用树脂以及由该树脂构成的成型品
JP2018095799A (ja) 成形体
JP2007197604A (ja) 環状オレフィン系樹脂組成物、該樹脂組成物からなる樹脂成形品の製造方法、ならびに該樹脂組成物からなるフィルム
JP5367962B2 (ja) 硬化性組成物
KR101642592B1 (ko) 봉지재 필름
JP6011106B2 (ja) 繊維状無機充填剤含有樹脂組成物
KR101723708B1 (ko) 수지 조성물
JP2015048384A (ja) ポリオレフィン樹脂組成物およびその用途
JP5946684B2 (ja) 熱硬化性樹脂組成物、タブレット、発光ダイオード用パッケージ、それらの製造方法
JP7334739B2 (ja) 積層体
JP2018123175A (ja) 樹脂組成物およびその成形体
JP2007106931A (ja) 光学用フィルムおよびその製造方法
JP2021091769A (ja) オレフィン系樹脂組成物
JP7392088B2 (ja) エチレン系樹脂組成物及び成形体
KR101618980B1 (ko) 올레핀 수지
CN113557258B (zh) 开环聚合物氢化物、树脂组合物以及成型体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012553617

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137018876

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13980950

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012736829

Country of ref document: EP