WO2012093679A1 - 電動パワーステアリング装置 - Google Patents

電動パワーステアリング装置 Download PDF

Info

Publication number
WO2012093679A1
WO2012093679A1 PCT/JP2012/050045 JP2012050045W WO2012093679A1 WO 2012093679 A1 WO2012093679 A1 WO 2012093679A1 JP 2012050045 W JP2012050045 W JP 2012050045W WO 2012093679 A1 WO2012093679 A1 WO 2012093679A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
steering
detection unit
current
rotation angle
Prior art date
Application number
PCT/JP2012/050045
Other languages
English (en)
French (fr)
Inventor
森下文寛
浜本恭司
堀井宏明
和田卓士
相模宏樹
廣中慎司
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011002563A external-priority patent/JP5427796B2/ja
Priority claimed from JP2011002565A external-priority patent/JP5416722B2/ja
Priority claimed from JP2011002564A external-priority patent/JP5427797B2/ja
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to US13/977,982 priority Critical patent/US9266559B2/en
Priority to CN201280004702.6A priority patent/CN103298686B/zh
Priority to EP12732494.5A priority patent/EP2662266B1/en
Priority to BR112013017312A priority patent/BR112013017312A2/pt
Publication of WO2012093679A1 publication Critical patent/WO2012093679A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/0484Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures for reaction to failures, e.g. limp home
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • B62D5/049Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures detecting sensor failures

Definitions

  • the present invention relates to an electric power steering apparatus that enables a vehicle to turn with a light steering force of the steering wheel when transmitting a steering force by the operator to the steering wheel to a wheel through a steering system.
  • the steering force applied from the operator to the steering wheel is detected by a torque sensor provided on a steering shaft connected to the steering wheel.
  • the control device drives an electric motor (also simply referred to as a motor) based on the steering force (steering torque) detected by the torque sensor, and assist torque (assist torque) generated by this motor Is transmitted to the steering shaft (steering system) via a worm gear reduction mechanism or the like to reduce the steering force of the steering wheel by the operator.
  • the input shaft and the output shaft are connected by a torsion bar, and the input shaft and the output A core is provided which engages with a shaft, and when a torque is applied between the input and output shafts, the core is displaced, and the displacement of the core is electrically detected by a detection coil, or Japanese Patent No. 3964414 As shown in (JP 3964414 B2) and Japanese Patent No.
  • the steering shaft is covered with a magnetostrictive film to have a detection coil for detecting a change in magnetic characteristics of the magnetostrictive film, and the torque applied to the steering shaft is detected.
  • a detection coil for detecting a change in magnetic characteristics of the magnetostrictive film
  • JPH 06-96389 B2 when the torque sensor breaks down, when the vehicle speed is equal to or higher than the predetermined speed, the assist of the steering force by the motor is released to make manual steering.
  • a technology has been proposed in which the motor is controlled according to the steering angular velocity calculated from the output of the steering angle sensor when the speed is lower than a predetermined speed.
  • the present invention has been made in consideration of such problems, and provides an appropriate assist force by the motor even when the torque sensor is broken and the steering torque can not be detected by the torque sensor. It is an object of the present invention to provide an electric power steering device that makes it possible.
  • An electric power steering apparatus includes an operation element operated by a driver to steer a vehicle, a torque detection unit for detecting a torque generated in a steering system of the vehicle, and a vehicle speed for detecting the vehicle speed of the vehicle.
  • a detection unit a motor for applying assist torque to a rotation shaft of the steering system, a rotation angle detection unit for detecting a rotation angle of the steering system, and the motor based on the torque detected by the torque detection unit
  • An electric power steering apparatus comprising: a motor control unit controlling an electric current to be driven; an abnormality detection unit detecting whether or not an abnormality has occurred in the torque detection unit; and the rotation detected by the rotation angle detection unit And a storage unit storing, as a characteristic, a relationship between an angle and the current for driving the motor.
  • the motor control unit drives the motor based on the rotation angle detected by the rotation angle detection unit and the characteristic when the abnormality detection unit detects an abnormality in the torque detection unit.
  • the absolute value of the rotational angular velocity calculated based on the rotational angle becomes equal to or less than a predetermined value
  • processing for reducing the current for driving the motor is started, and the absolute value of the rotational angular velocity is equal to or less than the predetermined value If the current condition continues for a predetermined time, the process of reducing the current is interrupted.
  • the motor when the abnormality detection unit detects an abnormality in the torque detection unit, the motor is driven based on the characteristics of the current for driving the motor with respect to the rotation angle detected by the rotation angle detection unit.
  • the absolute value of the rotational angular velocity calculated based on the rotational angle becomes equal to or less than a predetermined value
  • processing for reducing the current for driving the motor is started, and the absolute value of the rotational angular velocity is equal to or less than the predetermined value Since the process of reducing the current is interrupted when the situation of (1) continues for a predetermined time, an appropriate assist force can be applied at the time of so-called steering.
  • the motor control unit resumes interrupting of the process of reducing the current when the absolute value of the rotation angle at the time of interrupting is reduced by a predetermined angle or more.
  • the assist force can be reduced when the need for steering is eliminated.
  • the motor when the abnormality detection unit detects an abnormality in the torque detection unit, the motor is driven based on the characteristics of the current for driving the motor with respect to the rotation angle detected by the rotation angle detection unit.
  • the steering assist force can be applied.
  • the motor control unit drives the motor based on the rotation angle and the characteristic detected by the rotation angle detection unit when the abnormality detection unit detects an abnormality in the torque detection unit.
  • control is performed such that the current for driving the motor is reduced as the rotational angular velocity calculated based on the rotational angle increases.
  • the motor when an abnormality in the torque detection unit is detected by the abnormality detection unit, the motor is driven based on the rotation angle and the characteristic detected by the rotation angle detection unit, and the rotation angle is detected when the motor is driven. Control is performed to reduce the current for driving the motor as the rotational angular velocity calculated based on the above becomes larger, so that when the torque detection unit is abnormal, appropriate assist force is applied while preventing overcutting in the cutting direction. be able to.
  • the motor control unit corrects the rotational angular velocity detected by the rotational angle detection unit so as to decrease as the vehicle speed becomes smaller than a predetermined vehicle speed, and based on the corrected rotational angular velocity and the characteristic. , And drive the motor.
  • the motor is driven by using the corrected rotational angular velocity as the rotational angular velocity as the argument of the current for driving the motor becomes smaller as the vehicle speed becomes smaller than the predetermined vehicle speed. It is possible to secure an assist force at a required vehicle speed or less, which is required.
  • the steering assist force by the motor based on the rotation angle detected by the rotation angle detection unit can be applied in both the cutting direction and the turning back direction.
  • the assist force is controlled so as to decrease as the rotational angular velocity increases. Can be granted.
  • the motor control unit changes the steering angle (also referred to as an operation angle) of the operation element in the direction approaching the neutral position.
  • the switchback rotation angle is detected with the rotation angle detected by the rotation angle detection unit as a reference angle, The motor is driven based on the turning back rotation angle and the characteristic.
  • the switchback rotation angle is detected using the rotation angle detected by the rotation angle detection unit as a reference angle. Since the motor is driven based on the turning back rotation angle and the characteristic, assistance can be made in the direction in which the operation angle of the operating element approaches the neutral position, and the operating element by the driver on the turning back side The steering force can be reduced to make it easy for the operator to return near the neutral position.
  • the driving of the motor at the time of the switching back may be effective when the vehicle speed is equal to or less than a predetermined vehicle speed.
  • this weak since the assisting force is also applied occasionally, the driver's steering force on the return side can be reduced.
  • the drive current of the motor at the time of the switchback is multiplied by a predetermined coefficient according to the steering performance of the vehicle.
  • the steering current of the vehicle can be obtained by multiplying the driving current of the motor by a coefficient according to the steering performance of the vehicle.
  • Optimal assistance can be made according to the nature.
  • the assist current has a substantially zero value at the neutral position by reducing the current of the motor as the steering angle of the operation element corresponding to the switchback angle approaches the neutral position, and over-assist is avoided. Can.
  • the motor when the abnormality detection unit detects an abnormality in the torque detection unit, the motor is driven based on the characteristics of the current for driving the motor with respect to the rotation angle detected by the rotation angle detection unit.
  • the steering assist force can be applied.
  • the switchback rotation angle is detected using the rotation angle detected by the rotation angle detection unit as a reference angle, and the cutting is performed.
  • the motor is driven based on the return rotation angle and the characteristic, assist is possible in the direction in which the operation angle of the operation element approaches the neutral position, and the steering force of the operation element by the driver on the return side Can be reduced to make it easy to return the operating element to near the neutral position.
  • FIG. 1 is an overall schematic configuration diagram of an electric power steering apparatus according to an embodiment and first to third examples.
  • FIG. 2 is a connection diagram inside an ECU in the electric power steering apparatus of FIG. 1 example.
  • 5 is a flowchart provided to explain steering angle estimation processing and current fade processing.
  • FIG. 4A is an explanatory view of a base assist current characteristic referenced in the normal assist processing
  • FIG. 4B is an explanatory view of the base assist current characteristic referenced in the abnormal assist processing. It is explanatory drawing of a current fade characteristic. It is explanatory drawing of a continuous steering time reduction characteristic.
  • FIG. 7 is a flowchart provided for describing an interruption process of the holdback time switching current fade process according to the first embodiment.
  • FIG. 7 is a flowchart provided for describing restart processing of interruption processing of the holdback switching current fade processing according to the first embodiment;
  • FIG. FIG. 7 is an explanatory view of a steering assist characteristic according to the first embodiment. It is explanatory drawing of the motor rotational speed reduction ratio characteristic which concerns on 2nd Example. It is explanatory drawing of the vehicle speed ratio characteristic which concerns on 2nd Example. It is explanatory drawing of the overcutting control function of the cutting direction which concerns on 2nd Example. It is a flow chart provided for explanation of steering power reduction processing at the time of extremely slow run range turnback concerning a 3rd example. It is explanatory drawing of the steering force reduction characteristic at the time of extremely low speed driving
  • FIG. 1 is an overall schematic configuration diagram of an electric power steering apparatus 10 according to this embodiment mounted on a vehicle.
  • FIG. 2 is a functional block diagram of an electronic control unit (ECU) 22 in the electric power steering apparatus 10 of FIG.
  • ECU electronice control unit
  • the electric power steering apparatus 10 basically steers from the steering wheel 12 (an operating element operated by the driver to steer the vehicle) to the steered wheels 16 via the steering shaft 14 System (steering system) 18 and a torque sensor (torque sensor and steering angle sensor provided on the rotary shaft of the steering system 18 and internally provided with a steering angle sensor 19 for detecting the torque Tr of the rotary shaft and the steering angle ⁇ s
  • the ECU 22 determines the assist torque Ta based on the output from the torque sensor 20, and the like, and an electric motor (hereinafter also referred to as a motor) 24 which is a brushless motor driven by the ECU 22.
  • a reduction transmission mechanism 2 for decelerating the output of the motor 24 and transmitting it as the assist torque Ta to the rotation shaft of the steering system 18 And, equipped with a.
  • the motor 24 may be a brushed motor.
  • an input shaft 41 and an output shaft 42 are internally connected by a torsion bar, and two detection coils (not shown) supported by a housing (not shown) are inserted. It has a known configuration disposed so as to surround a cylindrical core (not shown) engaged with the output shafts 41 and 42 (see, for example, JP3055752 B2 and JP 2830992 B2).
  • the steering angle sensor 19 has a known configuration for detecting the rotation angle of the input shaft 41 as the steering angle ⁇ s (see, for example, JP3055752 B2).
  • the torque sensor 20 may have a known configuration using a magnetostrictive film sensor that does not use a torsion bar or a cylindrical core (see, for example, JP3964414B2 or JP4057552B2).
  • the present invention can be applied using this separately provided steering angle sensor.
  • the torque Tr which is an output signal from the torque sensor 20 and the steering angle sensor 19, is supplied to the torque detection circuit 72 of the ECU 22 through the harness 91, and the steering angle ⁇ s is calculated as the steering angular velocity. It is supplied to the part 74.
  • the steering shaft 14 includes a main steering shaft 15 integrally coupled to the steering wheel 12, each of which is a rotation shaft, an input shaft 41 coupled to the main steering shaft 15 via a universal joint 46, and a rack & An output shaft 42 provided with the pinion 30 of the pinion mechanism 28 is connected.
  • the input shaft 41 and the output shaft 42 are supported by bearings 48 a, 48 b and 48 c, and a pinion 30 is provided at the lower end of the output shaft 42.
  • the pinion 30 meshes with the rack teeth 50 a of the rack shaft 50 capable of reciprocating in the vehicle width direction.
  • steered wheels 16 which are front wheels on the left and right are connected via tie rods 52.
  • the steering system 18 described above is a rack having a steering shaft 14 (a main steering shaft 15, a universal joint 46, an input shaft 41, an output shaft 42 provided with a pinion 30), and rack teeth 50a.
  • a shaft 50, tie rods 52, and steered wheels 16 are included.
  • the steering wheel 12 can be operated to steer the steered wheels 16 to change the direction of the vehicle.
  • the rack shaft 50, the rack teeth 50a, and the tie rods 52 constitute a steering mechanism in the steering system 18.
  • the electric power steering apparatus 10 includes the motor 24 that supplies a steering assist force (a steering assist force, also referred to simply as an assist force) for reducing the steering force by the steering wheel 12.
  • a steering assist force also referred to simply as an assist force
  • the worm gear 54 fixed to the rotation shaft 25 of the motor 24 meshes with a worm wheel gear 56 provided below the bearing 48 b in the middle of the output shaft 42.
  • the worm gear 54 and the worm wheel gear 56 constitute a reduction transmission mechanism 26.
  • the rotation angle ⁇ rm (also referred to as a motor mechanical angle) of the rotor 23 of the motor 24 that rotates integrally with the rotation shaft 25 is converted by the resolver 58 as a rotation angle detection unit. And is supplied to a rotor rotation angle detection circuit (functioning as a motor mechanical angle calculation circuit for calculating a motor mechanical angle ⁇ rm described later) 76 of the ECU 22 through the harness 92.
  • the resolver 58 is a relative angle detection sensor, it may replace with the resolver 58 and employ
  • the ECU 22 is a computer including a microcomputer and is CPU (central processing unit), ROM (including EEPROM) as a memory, RAM (random access memory), others, A / D converter, D / A converter, etc. And a timer (clocking unit) as a clocking unit, and the CPU reads and executes a program stored in the ROM to implement various function realizing units (function realizing unit), for example, a control unit, It functions as an arithmetic unit, a processing unit, and the like.
  • CPU central processing unit
  • ROM including EEPROM
  • RAM random access memory
  • a / D converter random access memory
  • a timer clocking unit
  • the CPU reads and executes a program stored in the ROM to implement various function realizing units (function realizing unit), for example, a control unit, It functions as an arithmetic unit, a processing unit, and the like.
  • the ECU 22 has a storage unit 78 as a memory for storing various characteristics (including a map) to be described later, programs and the like, and the torque detection circuit 72, the steering angular velocity calculation unit 74, the rotor Besides functioning as a rotation angle detection circuit 76, it also functions as an abnormality detection unit 80, a vehicle stop state detection unit 82, a motor control unit 84, a time counting unit 85, and the like.
  • Torque detection circuit 72 is a signal corresponding to torque Tr from a differential signal of a signal related to torque Tr output from two detection coils (not shown) of torque sensor 20 through harness 91 (for ease of understanding, The torque Tr is generated and supplied to the motor control unit 84.
  • the rotor rotation angle detection circuit 76 calculates (detects) a rotation angle (motor mechanical angle) ⁇ rm corresponding to the rotation of the rotor 23 of the motor 24 from the rotation angle ⁇ r (motor electric angle) supplied from the resolver 58. While supplying to the motor control unit 84, it supplies to the steering angular velocity calculation unit 74.
  • the steering angle sensor 19 (also referred to as a steering angle of the steering shaft 14, a steering angle, or a steering wheel angle) ⁇ s is supplied from the steering angle sensor 19 operating normally, the steering angular velocity calculation unit 74
  • the steering angular velocity calculation unit 74 calculates by the rotor rotation angle detection circuit 76 based on the rotation angle ⁇ r of the resolver 58
  • the abnormality detection unit 80 monitors the torque Tr, which is an output of the torque detection circuit 72, and the steering angle ⁇ s, which is an output of the steering angle sensor 19, to thereby detect a fusing failure between the terminal of the torque sensor 20 and the harness 91. Opening of the harness 91 (breaking of the harness 91) or short circuit between the harnesses 91, abnormality of the differential amplifier in the torque detection circuit 72, for example, the output is fixed at 0 volts or a voltage other than 0-5 volts Is detected, the abnormality detection signal Sab is supplied to the motor control unit 84 and the steering angular velocity calculation unit 74.
  • an output of a vehicle speed sensor 86 for detecting the vehicle speed Vs from the rotational speeds of the front and rear wheels or the transmission, that is, the vehicle speed Vs is supplied to the motor control unit 84 and the vehicle stop state detection unit 82 of the ECU 22 through a harness 94.
  • the brake operation signal Sb of the parking brake 88 is supplied to the vehicle stop state detection unit 82 and the motor control unit 84 of the ECU 22 through the harness 95.
  • signals such as the vehicle speed Vs and the brake actuation signal Sb are supplied to the ECU 22 through an in-vehicle network such as a CAN (controller area network). It may be connected not by the in-vehicle network but by a so-called point-to-point wiring system.
  • a CAN controller area network
  • the vehicle stop state detection unit 82 supplies the motor control unit 84 with the vehicle stop detection signal Sstop. Do.
  • the motor control unit 84 determines the assist current Ia of the motor 24 corresponding to the assist torque Ta, in addition to the torque Tr and the steering angular velocity ⁇ s ′, the rotational angle (motor mechanical angle) ⁇ rm of the rotor 23 and the estimated steering angle ⁇ sc Referring to characteristics (described later) stored in the storage unit 78 (characteristic storage unit) based on the estimated steering angular velocity ⁇ sc ', the abnormality detection signal Sab, the vehicle speed Vs, the brake operation signal Sb, etc.
  • the assist current Ia determined by execution is determined and supplied to the coils of the stators of each phase of the motor 24 through the harness 93.
  • the motor 24 generates assist torque Ta corresponding to the supplied assist current Ia, and applies the output to the output shaft 42 through the reduction transmission mechanism 26 to generate a steering assist force on the steering shaft 14.
  • FIG. 3 is a flowchart provided to explain the operation of the electric power steering apparatus 10 according to this embodiment. The process according to this flowchart is repeatedly performed at predetermined time intervals.
  • the ECU 22 performs steering angle estimation processing (estimated steering angle calculation processing) in steps S1 to S3 regardless of whether the torque sensor 20 or the steering angle sensor 19 is abnormal or normal.
  • step S1 the rotor rotation angle detection circuit 76 integrates the rotation angle ⁇ r (electrical angle of the rotor 23) detected by the resolver 58 to calculate the motor electrical angle ⁇ re.
  • step S2 the rotor rotation angle detection circuit 76 multiplies the calculated motor electrical angle ⁇ re by the pole pair number of the resolver 58 as shown in the following equation (1) to obtain the rotor 23 (rotation shaft 25
  • the motor mechanical angle ⁇ rm which is the rotation angle of) is calculated (converted to the motor mechanical angle ⁇ rm), and is supplied to the motor control unit 84 and the steering angular velocity calculation unit 74.
  • step S3 the motor control unit 84 and / or the rotor rotation angle detection circuit 76 calculates the calculated motor mechanical angle ⁇ rm at the steering angle of the steering shaft 14 (estimated steering (step S3). Angle) Convert to ⁇ sc.
  • the motor rotation speed N and the estimated steering rotation speed Nsc are calculated by the motor control unit 84.
  • the driver First after turning the steering wheel 12 to the right and cutting it, turning it to the left and turning it back, it returns to the straight state. Therefore, basically, when turning right from the straight movement state and returning to the straight movement state, the right rotation is the cutting direction, and the left rotation is the turning back direction.
  • the steering angle ⁇ s (estimated steering angle ⁇ sc) when the steering wheel 12 is rotated in the right direction from the straight traveling state (the neutral state of the steering wheel 12) becomes a positive value, and the straight traveling state (steering wheel 12
  • the steering angle ⁇ s (estimated steering angle ⁇ sc) when the steering wheel 12 is rotated leftward from the neutral state) has a negative value, and when considering the magnitude of the angle, it is complicated if there is a positive or negative sign. Therefore, in the following description, in the case where no note is made, a case where the vehicle travels from the straight traveling state to the right and returns to the straight traveling state will be described as an example (in the coordinates of the steering assist characteristic, the first quadrant). In this case, both the steering angle ⁇ s and the estimated steering angle ⁇ sc take positive values.
  • the rotor rotation can be performed based on the rotation angle ⁇ r detected by the resolver 58.
  • An estimated steering angle ⁇ sc [deg] and an estimated steering angular velocity ⁇ sc '[deg / s] can be obtained by which the steering angle ⁇ s [deg] is estimated by the angle detection circuit 76, the steering angular velocity calculation unit 74, and the motor control unit 84. .
  • the steering assist force to be applied to the steering wheel 12 by rotating the motor 24 may be applied in the direction in which the steering angle ⁇ s or the estimated steering angle ⁇ sc changes.
  • step S4 it is detected whether the abnormality detection signal Sab has been supplied from the abnormality detection unit 80 or not.
  • step S4 when the motor control unit 84 detects the abnormality detection signal Sab related to the torque sensor 20 and the steering angle sensor 19, the motor control unit 84 executes the processing of step S5 and subsequent steps.
  • the supply of power is stopped by opening or shorting the harness 91, and the outputs of the steering angle sensor 19 and the torque sensor 20 simultaneously become abnormal. There are many cases.
  • step S21 When the motor control unit 84 does not detect the abnormality detection signal Sab in step S4, the normal process (normal-time assist process) is performed in step S21. In this normal processing, since the torque sensor 20 and the steering angle sensor 19 are normal, the conventional operation for applying a steering assist force is performed.
  • the motor control unit 84 has a characteristic (base assist current characteristic) of the base assist current Ia [A] with respect to the steering torque Tr [kgfcm] using the vehicle speed Vs as a parameter shown in FIG. (Also referred to as a base assist characteristic) (refers to (search)) 101.
  • a base assist current characteristic of the base assist current Ia [A] with respect to the steering torque Tr [kgfcm] using the vehicle speed Vs as a parameter shown in FIG.
  • step S4 when the motor control unit 84 detects the abnormality detection signal Sab in which the torque sensor 20 or the like has become abnormal in step S4, the abnormality assist processing in step S5 is executed.
  • step S5 the motor control unit 84 determines the characteristics of the base assist current Ia [A] with respect to the estimated steering angle ⁇ sc shown in FIG. 4B stored in advance in the storage unit 78 (also referred to as base assist current characteristics or base assist characteristics).
  • the base assist current Ia is calculated with reference to 102 (search), and the motor 24 is driven based on the base assist current Ia.
  • the base assist current characteristic 102 may be stored in the storage unit 78 as a map, or may be stored in the storage unit 78 by a calculation formula. In the case of storing discretely in the storage unit 78 as a map, it is preferable to obtain the value in between by interpolation.
  • the estimated steering angle ⁇ sc [deg] is set to a value from 0 [deg] to a dead zone corresponding steering angle ⁇ d [deg] (0 to 10 [deg]).
  • Ia 0 [A] (a region where the assist current Ia does not flow) and the steering angle corresponding to the dead zone ⁇ d [ [deg] or more, increase (substantially increase proportionally) according to the increase of the estimated steering angle ⁇ sc, and decrease the rate of increase at the estimated steering angle ⁇ sc or more, and the estimated steering angle ⁇ sc of 180 [sc]
  • the characteristic is set to a constant value (the value of the base assist current Ia is saturated).
  • the assist current Ia based on the base assist current characteristic 102 is supplied to perform predetermined steering assist control.
  • the steering assist control at the time of abnormality is a temporary assist processing, and various limitations are imposed as described later.
  • the torque sensor 20 as a torque detection unit that detects the torque Tr generated in the steering system 18 and the output shaft 42 that is the rotation shaft of the steering system 18 Based on the motor 24 for applying the assist torque Ta, the resolver 58 as a rotation angle detection unit for detecting the rotation angle ⁇ r of the rotor 23 of the motor 24, and the torque Tr detected by the torque sensor 20,
  • the electric power steering apparatus 10 includes a motor control unit 84 that controls a current to be driven, and includes an abnormality detection unit 80 that detects whether an abnormality has occurred in the torque sensor 20 or the torque detection circuit 72.
  • the unit 84 The estimated steering angle ⁇ sc is calculated by calculating the motor mechanical angle ⁇ rm based on the motor electrical angle ⁇ re, which is an integrated value of the rotation angle ⁇ r detected by the step 8 ⁇ see above equation (2) ⁇ , and this estimated steering angle
  • the base assist current Ia [A] is calculated with reference to the base assist current characteristic 102 with respect to ⁇ sc, and the motor 24 is controlled to be driven based on the base assist current Ia.
  • the motor 24 can The steering assist force can be applied to the steering wheel 12 by the assist torque Ta.
  • the output of the torque sensor 20 is a substantially zero value, and the detected value of the vehicle speed Vs by the vehicle speed sensor 86 continues at a substantially constant speed for a predetermined time, the resolver
  • An estimated steering angle ⁇ sc corresponding to the rotation angle ⁇ r, which is an output of 58, is set to a zero value ( ⁇ sc 0 [deg]), and a middle point (neutral state) correction process of updating stored contents is appropriately performed.
  • the application of the steering assist force using the rotor rotation angle detection circuit 76 is a provisional process, when the abnormality detection unit 80 detects an abnormality in the torque sensor 20 or the like, the abnormality is detected by voice or display. It is transmitted to the operator (driver) that the steering force assist processing for abnormality is being performed. As a result, the operator (driver) can drive the vehicle to a safe place by using the assist force by the temporary electric power steering using the rotation angle ⁇ r of the rotor 23 of the motor 24.
  • the assist force by the temporary electric power steering imposes various limitations on the normal assist processing in step S21 in which the torque sensor 20 or the like is in a normal state.
  • FIG. 5 is a cut current fade characteristic (also referred to as cut current fade characteristic) 103 provided for current fade processing stored in the storage unit 78 and a cutback current fade characteristic (also referred to as cutback current fade characteristic). And a portion of the base assist current characteristic 102 of FIG. 4B is shown.
  • the characteristic of the first quadrant in FIG. 5 (the cutting direction to the right toward the large value in the positive direction from 0 [deg] on the horizontal axis, 0 from the positive direction This will be described in terms of the characteristics related to the return direction toward a small value in the [deg] direction.
  • step S6 it is determined from the estimated steering angular velocity ⁇ sc 'which is a differential value of the above-described estimated steering angle ⁇ sc whether or not the assist current Ia is conducting and the steering wheel 12 is in the process of turning.
  • the estimated steering angular velocity ⁇ sc ′ is calculated by the steering angular velocity calculation unit 74 or the motor control unit 84.
  • the assist current Ia is determined along the cutting current fade characteristic 103 to drive and control the motor 24.
  • the reason why the assist amount (assist current Ia) is smaller than that of the base assist current characteristic 102 indicated by the solid line with the notch current fade characteristic 103 indicated by the one-dot chain line is It is to prevent past.
  • the motor control unit 84 calls the time from the start of turning ⁇ the continuous steering time tr (in the same direction).
  • ⁇ Is timed by the clock unit 85, and the ratio (continuous steering reduction ratio or continuous steering reduction ratio) is referred to with reference to the continuous steering time reduction characteristic 105 shown in FIG. Take values up to (set the assist current Ia to a zero value). Calculate ⁇ .
  • the continuous steering reduction ratio Rc corresponding to the continuous steering time tr is multiplied by the assist current Ia calculated by the estimated steering angle ⁇ sc on the base assist current characteristic 102, and the next operation is performed. As shown in equation (3), the faded assist current Ia is obtained.
  • Ia on the right side of the equation indicates the base assist current on the base assist current characteristic 102
  • Ia on the left side indicates the faded (reduced) base assist current on the notch current fade characteristic 103.
  • the continuous steering reduction ratio Rc of the continuous steering time reduction characteristic 105 is set to be 10% or more in this example because the assist current Ia is reduced by 10% in 1 second (1 [s]). If it is detected that the cutting in the same direction is continued, the assist current Ia is set to a zero value.
  • the assist is performed as the cutting current fade characteristic 103 for reducing the assist amount (assist current Ia) than the base assist current characteristic 102. I am trying to do it.
  • assist current Ia is limited to allowable maximum assist current Iamax ⁇ coordinate point 106 in FIG. (See ⁇ scth, Iamax) ⁇ .
  • the assist current Ia is determined along the switchback current fade characteristic 104 of FIG. 5 to drive and control the motor 24.
  • the steering angular velocity calculation unit 74 or the motor control unit 84 for calculating the estimated steering angular velocity ⁇ sc ′ of the output shaft 42 which is the rotation shaft of the steering system 18 is provided.
  • the current fade characteristic 104 the slope of this characteristic 104 varies according to the load of each vehicle (the front axle load of the vehicle), the vehicle speed Vs, the road surface condition, and the like. By fading along ⁇ , over-assist current can be prevented.
  • the steering angle ⁇ s which is the output of the steering angle sensor 19 etc.
  • the steering angular velocity ⁇ s ′ can be calculated by differentiating the current to perform current fade processing.
  • the motor control unit 84 can prevent the steering assist force from being unnecessarily applied by setting the assist current Ia to a zero value.
  • the torque sensor 20 fails and the torque sensor 20 can not detect the steering torque Tr, it is detected by the resolver 58 or the like of the motor 24.
  • the steering angle ⁇ s of the rotor 23 of the motor 24 is used to estimate the steering angle ⁇ s and the steering angular velocity ⁇ s ′.
  • the estimated steering angle ⁇ sc and the estimated steering angular velocity ⁇ sc ′ are used to apply a predetermined steering assist force by the motor 24. can do.
  • the assist current Ia is reduced by the switchback current fade characteristic 104 illustrated as an example in FIG. 5, and the return of the steering wheel 12 is promoted.
  • the switching back current fade shown in the above-described switching back current fade characteristic 104 of FIG. When the process is performed, the assist time during steering becomes short.
  • the driver desires to hold the steering wheel and the SAT is large, when performing the switchback current fade process, the driver needs to further increase the steering holding force applied to the steering wheel 12, so the assistance is continued. It is preferable to reduce the steering power by the driver at the time of steering.
  • the flowchart of FIG. 7 shows the detailed processing of the “switchback current fade process” of step S9 in the flowchart of FIG. 3, and the flowchart of FIG. 8 shows the “holding cancellation process of step S9a of the flowchart of FIG. "Shows the detailed processing of”.
  • the characteristic diagram of FIG. 9 is an enlarged view of a portion of the first quadrant in the characteristic diagram of FIG. 5 for the convenience of understanding.
  • the time from the start of the switchback current fade process at step S9a (the hold duration time) tk (which is measured by the time measuring unit 85) is a predetermined value.
  • Time Tkth (a threshold time shorter than about 1 second which is a predetermined time of the above-mentioned return current fade processing and also referred to as a threshold holding duration). ( ⁇ sc ′ ⁇ ⁇ sc′tha) continues for a predetermined time Tkth or more ⁇ .
  • the assist current Ia at this time (when the determination in step S9b becomes affirmative and the process in step S9c is interrupted) during the switching back current fade process is maintained at coordinate point 108 ( ⁇ sc2, Iak) shown in FIG.
  • the steering assist current Iak is used.
  • the assist electric current Ia is hold
  • the interrupting process based on the holding continuation determination of the switchback current fade process is executed at the position of the coordinate point 108 on the switchback current fade characteristic 104 shown in FIG.
  • the steering assist current Iak at the coordinate point 108 is basically supplied to the motor 24 until the steering cancellation cancellation condition described in the process of the next step S9 d is satisfied, and assists the driver's steering state. By assisting in this manner, it is possible to reduce the holding power when holding the steering wheel 12 by the driver (when the vehicle turns with a constant radius of curvature).
  • step S9d the cancellation process of the suspension process, in other words, the steering hold cancellation process is executed in step S9d.
  • FIG. 8 shows a detailed flowchart of the hold releasing process in step S9d.
  • step S9d1 it is determined whether or not the switchback current fade process is being interrupted due to the establishment of the steering holding determination condition.
  • step S9d1 since the interruption processing of the switchback current fade processing in step S9c is executed, the determination in step S9d1 becomes affirmative, and next, in step S9d2, whether or not the steering hold cancellation condition is satisfied Is determined.
  • the steering hold cancellation condition satisfaction determination condition is that the estimated steering angle ⁇ sc gradually decreases from the estimated steering angle ⁇ sc2 at the coordinate point 108 (the steering wheel 12 is returned to the neutral position), and the return determination steering angle ⁇ sc is For example, when the value becomes 10 [deg] or more ( ⁇ sc ⁇ ⁇ sc2 ⁇ sc), it is determined that the steering holding state of the steering wheel 12 by the driver is released.
  • step S9d3 If this determination is satisfied at the position of the coordinate point 110 in FIG. 9, the switchback current fade process is resumed in step S9d3, so that the assist current is automatically generated as indicated by the one-dot chain line in FIG. Ia is reduced.
  • the rotation angle detection is performed.
  • the motor 24 is driven by the base assist current Ia calculated from the base assist current characteristic 102 by the estimated steering angle ⁇ sc based on the rotation angle ⁇ r of the rotor 23 of the motor 24 detected by the resolver 58 as
  • the estimated steering angle ⁇ sc becomes gradually smaller (the steering wheel 12 is returned to the neutral position), and the return amount of the estimated steering angle ⁇ sc is returned
  • the steering wheel angle ⁇ sc [deg] (predetermined value) or more is obtained (see the coordinate point 110)
  • the steering steering state by the driver is It is determined that the current is released, and the interruption of the process of reducing the current is resumed, so that the assist force can be reduced when the steering is no longer necessary.
  • the absolute value of the estimated steering angular velocity (estimated rotational angular velocity) ⁇ sc ' is a value equal to or higher than the steering holding release determination threshold steering angular velocity ⁇ sc'th1 which is a predetermined value.
  • the assist amount (assist characteristic) is determined, and the fade is adjusted by the current fade processing at turning, the current fade processing at turning back, the steering determination processing, etc.
  • the steering operation is performed on the low ⁇ road where the balance of the required assist amount with respect to the estimated steering angle ⁇ sc is different. It may cut too much.
  • the balance between the estimated steering angle ⁇ sc and the required assist amount is closely related to the magnitude of the friction coefficient ⁇ of the road surface.
  • the motor control unit is considered based on the consideration that it is sufficient to limit the assist amount in the excessive state when the cutting in the low ⁇ road is excessive.
  • 84 calculates a ratio (referred to as a motor rotation speed reduction ratio or a motor rotation speed reduction ratio) Rm according to the motor rotation speed N [rps] of the motor 24 with respect to the assist current Ia.
  • FIG. 10 shows a characteristic (motor rotational speed reduction characteristic) 112 of the motor rotational speed reduction ratio Rm according to the second embodiment.
  • the value of the motor rotational speed reduction ratio Rm is proportionally reduced from 1 to 0. It is a characteristic.
  • the motor rotational speed reduction ratio Rm is a coefficient for detecting the estimated steering angular velocity of the driver's steering wheel 12 and reducing and correcting the assist current Ia to suppress over-cutting when the estimated steering angular velocity is large. .
  • the vehicle speed is set to the motor rotational speed N [rps].
  • the motor rotational speed reduction ratio Rm is obtained by referring to the motor rotational speed reduction characteristic 112 of FIG. 10 with the motor rotational speed Ns [rps] after correction by multiplying the ratio Rv by the multiplier 111 (hereinafter referred to as corrected motor rotational speed). decide.
  • Such a control makes it possible to achieve both suppression of excessive turning at high vehicle speeds and securing of assist force at low vehicle speeds. This makes it possible to perform assist control that is compatible with the high ⁇ road and the low ⁇ road.
  • the steering wheel 12 as an operating element operated by the driver to steer the vehicle and the torque Tr generated in the steering system 18 of the vehicle are detected.
  • a torque sensor 20 as a torque detection unit
  • a vehicle speed sensor 86 as a vehicle speed detection unit for detecting the vehicle speed Vs of the vehicle
  • a motor 24 for applying assist torque to an output shaft 42 as a rotation shaft of the steering system 18
  • a resolver 58 as a rotation angle detection unit that detects a rotation angle of the system 18, a motor control unit 84 that controls a current (assist current) Ia that drives the motor 24 based on the torque Tr detected by the torque sensor 20;
  • an abnormality detection unit 80 for detecting whether or not an abnormality has occurred in the torque sensor 20 or the like.
  • the memory control unit 78 stores, as the characteristic 102, the relationship between the rotation angle ⁇ r detected by the solver 58 and the current Ia for driving the motor 24.
  • the motor control unit 84 controls the abnormality detection unit 80 to detect an abnormality such as the torque sensor 20
  • the motor 24 is detected based on the rotational angle ⁇ r detected by the resolver 58 and the characteristic 102, the estimated steering angular velocity (rotational angular velocity) ⁇ sc ′ calculated based on the rotational angle ⁇ r
  • the motor rotational speed reduction ratio Rm (see FIG. 10) is introduced and controlled so as to reduce the current Ia for driving the motor 24 as the motor rotational speed N corresponding to the above becomes larger.
  • the motor 24 is driven based on the rotation angle ⁇ r detected by the resolver 58 and the characteristic 102 to drive the motor 24. Since the current Ia for driving the motor 24 is controlled to be smaller as the motor rotation speed N ⁇ estimated steering angular velocity (rotational angular velocity) ⁇ sc ' ⁇ calculated based on the rotation angle ⁇ r increases, torque sensor 20 is abnormal At the same time, it is possible to apply an appropriate assist force while preventing excessive cutting in the cutting direction.
  • the motor control unit 84 decreases the motor rotational speed N detected by the resolver 58 as the vehicle speed Vs becomes smaller than a predetermined vehicle speed (approximately 80 [km / h] in the example of FIG. 11).
  • the motor 24 is driven to be corrected by the ratio Rv and based on the corrected motor rotational speed Ns (see FIG. 12) and the characteristic 102, in other words, as the vehicle speed Vs becomes smaller than a predetermined vehicle speed
  • the motor 24 is driven using the correction motor rotation speed Ns (correction rotation angular velocity) that reduces the motor rotation speed N ⁇ estimated steering angular velocity (rotation angular velocity) ⁇ sc ′ ⁇ as an argument of the current Ia to be driven. It is possible to secure the assist force at a predetermined vehicle speed or less at which the steering force is required more.
  • the motor rotation speed N of the motor 24 ⁇ estimated steering angular velocity (rotational angular velocity) ⁇ sc ' ⁇
  • the steering assist force by the motor 24 can be applied based on the both directions of the cutting direction and the turning back direction, and in particular, the assist is performed as the motor rotational speed N ⁇ estimated steering angular velocity (rotational angular velocity) ⁇ sc ′ ⁇ increases in the cutting direction. Since control is performed so that the force is reduced, it is possible to apply an appropriate assist force while preventing overcutting.
  • the steering wheel 12 (steering system 18) can be provided with an assist force on the return side.
  • step S10 of FIG. 13 after the processing of step S9 of FIG. 3, whether or not the switching back current fade processing based on the switching back current fade characteristic 104 is finished by the motor control unit 84 depends on the value of assist current Ia. It is judged.
  • step S11 the vehicle speed Vs is lower than the extremely low vehicle speed Vs1 (Vs1 ⁇ 20 [km / h]) by the motor control unit 84 (Vs ⁇ Vs1 ) Is determined.
  • the extremely low vehicle speed Vs1 may be set to a value within 5 to 20 [km / h] depending on the vehicle type.
  • step S11 If it does not fall below (step S11: NO), since SAT works, the process returns to step S1 again. At this time, after steps S1, S2, S3 and S4 (YES), steps S5 and S6 (NO), the process returns to the determination of step S10 again.
  • step S13 the steering angle estimated steering angle (also referred to as a steering angle) is calculated in the steering direction as in the processes of steps S1 to S3.
  • step S14 with reference to the base assist current characteristic 102, the switchback-side assist current Ia corresponding to the switchback estimated steering angle ⁇ sc is calculated.
  • step S15 it is compared and determined whether the absolute value
  • the threshold estimated steering angle ⁇ sc4 is set to ⁇ sc4 ⁇ 30 [deg], for example.
  • step S15 In the range where the determination in step S15 is negative (step S15: NO), assist current Ia (calculated in step S14) in the switching back direction along the characteristic 120 shown by the one-dot chain line in FIG. Is driven.
  • step S16 the assist before correction, which is the center ratio (ratio for neutral position return) Rn shown in FIG.
  • a corrected assist current Ia Ia ⁇ Ia ⁇ Rn is calculated by multiplying the current Ia by the correction.
  • the center ratio Rn is switched from the threshold estimated steering angle ⁇ sc4 to the return steering estimated steering angle ⁇ sc so as not to apply the assist force over the neutral position (center).
  • the absolute value becomes smaller, it is a ratio (characteristic) that can be applied to the assist current Ia before correction in order to gradually reduce the assist current Ia.
  • step S17 the motor 24 is driven by the assist current Ia (characteristic 120) calculated in step S14 described above or the assist current Ia (Ia ⁇ Ia ⁇ Rn) (characteristic 123) corrected in step S16.
  • the torque for detecting the torque Tr generated in the steering system 18 of the vehicle and the steering wheel 18 as the operation element operated by the driver in order to steer the vehicle A torque sensor 20 as a detection unit, a vehicle speed sensor 86 as a vehicle speed detection unit for detecting the vehicle speed Vs of the vehicle, a motor 24 for applying assist torque to an output shaft 42 as a rotation shaft of the steering system 18, Electric power steering provided with a resolver 58 as a rotation angle detection unit that detects the rotation angle ⁇ r of the motor, and a motor control unit 84 that controls the current Ia that drives the motor 24 based on the torque Tr detected by the torque sensor 20
  • an abnormality detection unit 80 that detects whether or not an abnormality has occurred in the torque sensor 20 or the like, and the resolver 58 detect And a storage unit 78 storing the relationship between the rotation angle ⁇ r and the current Ia for driving the motor 24 as the characteristic 102.
  • the motor control unit 84 detects the abnormality of the torque sensor 20 or the like by the abnormality detection unit 80.
  • the turning angle ⁇ r detected by the resolver 58 is set as the reference angle ⁇ f to detect the turning back turning angle ⁇ sc, and the cut is made based on the turning back turning angle ⁇ sc and the characteristic 102.
  • the motor 24 is driven in the reverse direction opposite to the direction (in this case, current fade processing may be performed).
  • the estimated steering angle ⁇ sc detected by the resolver 58 when the assist current Ia in the cutting direction becomes close to the zero value with the remaining switch return angle ⁇ sc3 remaining is used as the reference angle ⁇ f to switch back the rotation angle ⁇ sc. Is detected, and the motor 24 is driven in the reverse direction opposite to the cutting direction based on the reverse rotation angle ⁇ sc and the characteristic 102, so that the operating angle of the steering wheel 12 approaches the neutral position. Assisting becomes possible, and the steering force of the steering wheel 12 by the driver on the return side can be reduced to make it easy to return the steering wheel 12 to near the neutral position.
  • the switchback since the drive of the motor 24 at the time of the switchback is effective when the vehicle speed Vs is equal to or lower than the extremely low vehicle speed Vs1 which is the predetermined vehicle speed, the switchback is performed even in the state where the SAT (self aligning torque) is weak. The driver's steering power on the side can be reduced.
  • the drive current Ia of the motor 24 at the time of switching back is multiplied by a predetermined coefficient according to the steering performance of the vehicle. Since the steering performance of the vehicle varies depending on the magnitude of the load (front axle load of the vehicle) of each vehicle, the steering performance of the vehicle can be obtained by multiplying the drive current Ia of the motor 24 by a coefficient corresponding to the steering performance of the vehicle.
  • the optimal assistance according to can be performed.
  • the front axle weight of the vehicle is larger than the standard front axle weight, it is preferable to make the coefficient larger than one, and to be smaller than one.
  • the multiplication process of the coefficient may be performed as the correction process at the time of calculation of the current Ia in step S14.
  • the current Ia of the motor 24 decreases as the steering angle of the steering wheel 12 corresponding to the switchback rotation angle (switchback angle) ⁇ sc approaches the neutral position.
  • the assist current Ia has a substantially zero value near the neutral position, and over-assist can be avoided.
  • the increase in the turning back rotation angle ⁇ sc is increased to assist the subsequent cutting direction with the base assist shown in FIG. This can be properly performed by the characteristic 102.
  • the steering force of the driver according to the embodiment and the first to third examples, the steering force of the driver when the torque sensor 20 is normal, and the steering force without assist control (the steering force by manual steering) Schematic comparison of]
  • the torque sensor 20 of the electric power steering apparatus 10 is normal (step S21 In the normal control)
  • the steering force (steering torque) of the driver with respect to the steering angle .theta.s [deg] of the steering wheel 12 is a steering torque characteristic (steering force characteristic) 132 shown by the lowest level in FIG. As shown in.
  • the torque sensor 20 becomes abnormal and provisional assist control is not performed, that is, in the case of manual steering, as shown by the steering torque characteristic 130 shown by the broken line in FIG.
  • the steering torque needs to be about four times as large as that of the normal steering torque characteristic 132 (when the estimated steering angle ⁇ sc is about 150 [deg]).
  • the temporary assist control (also referred to as resolver assist control) using the resolver 58 according to the above-described embodiment and Examples 1 to 3 (the steering angle sensor 19 if the steering angle sensor 19 is normal).
  • the steering torque characteristic 134 can be limited to the increase of the steering force (steering torque) about 2.5 times the steering torque characteristic 132 in the normal case.
  • the steering torque characteristic 134 by the resolver assist control is most of the range of the estimated steering angle ⁇ sc exceeding the dead zone handling steering angle ⁇ d as compared with the steering torque characteristic 130 of the manual steering when the steering assist control is not performed.
  • the assist force can be reduced by about 30%.
  • the present invention is not limited to the above-described embodiment and the first to third embodiments, and it goes without saying that various configurations can be adopted based on the contents described in this specification.

Abstract

 トルクセンサが故障して操舵トルクを検出することができなくなった場合においても、モータによる適切なアシスト力を付与する電動パワーステアリング装置を提供する。トルクセンサ(20)の異常が検出されたとき、モータ(24)のレゾルバ(58)により検出されている回転子回転角とアシスト特性(102)に基づき前記モータ(24)を駆動し、前記回転子回転角に基づき算出される回転子回転角速度の絶対値が所定値以下になったときに、前記モータ(24)を駆動する電流(Ia)を低減する処理を開始し、回転子回転角速度の絶対値が所定値以下の状況が所定時間継続する場合には、電流(Ia)を低減する処理を中断し、中断時点のアシスト電流(Iak)を流すようにしたので、保舵時において適切なアシスト力を付与することができる。

Description

電動パワーステアリング装置
 この発明は、操作者によるステアリングホイールへの操舵力を、操舵系を通じて車輪に伝達する際に、前記ステアリングホイールの軽い操舵力で車両が旋回できるようにする電動パワーステアリング装置に関する。
 操作者からステアリングホイールに加えられる操舵力は、前記ステアリングホイールに連結されたステアリングシャフトに設けられたトルクセンサにより検出される。前記トルクセンサにより検出された操舵力(操舵トルク)に基づいて、電動パワーステアリング装置では、制御装置が電動モータ(単に、モータともいう。)を駆動し、このモータの発生するアシストトルク(補助トルク)を、ウォームギア減速機構等を介して前記ステアリングシャフト(操舵系)に伝達することで前記操作者による前記ステアリングホイールの前記操舵力を低減させる。
 この場合、前記トルクセンサとしては、特許第3055752号公報(JP3055752B2)及び特許第2830992号公報(JP2830992B2)に示すように、入力軸と出力軸間をトーションバーで連結するとともに、前記入力軸及び出力軸に係合するコアを設け、前記入出力軸間にトルクが作用すると前記コアが変位し、前記コアの変位を検出コイルにて電気的に検出するようにしたもの、あるいは特許第3964414号公報(JP3964414B2)及び特許第4057552号公報(JP4057552B2)に示すように、ステアリングシャフトに磁歪膜を被覆し前記磁歪膜の磁気特性変化を検出する検出コイルを備え前記ステアリングシャフトに加えられたトルクを前記検出コイルにて電気的に検出するようにしたものが公知である。
 特公平6-96389号公報(JPH06-96389B2)には、トルクセンサが故障した場合に、車速が所定速度以上であるときには、前記モータによる操舵力のアシストを解除して手動操舵とし、前記車速が所定速度以下であるときには、操舵角センサの出力から計算した操舵角速度に応じてモータを制御するようにした技術が提案されている。
 従来、操舵トルクを検出するトルクセンサが故障した場合には、JPH06-96389B2に記載されているように、操舵角センサの出力から計算した操舵角速度に応じて電動モータ(以下、単にモータともいう。)を制御するようにしている。
 しかしながら、前記操舵角センサが付加されていない車両では、前記トルクセンサが故障して操舵トルクを検出できなくなった場合には、前記モータによる操舵力のアシストを解除せざるを得ない。
 この発明はこのような課題を考慮してなされたものであり、トルクセンサが故障して前記トルクセンサにより操舵トルクを検出することができなくなった場合においても、モータによる適切なアシスト力を付与することを可能とする電動パワーステアリング装置を提供することを目的とする。
 この発明に係る電動パワーステアリング装置は、運転者が車両を操縦するために操作する操作子と、前記車両の操舵系に発生するトルクを検出するトルク検出部と、前記車両の車速を検出する車速検出部と、前記操舵系の回転軸にアシストトルクを付与するモータと、前記操舵系の回転角を検出する回転角検出部と、前記トルク検出部により検出された前記トルクに基づいて前記モータを駆動する電流を制御するモータ制御部と、を備える電動パワーステアリング装置であって、前記トルク検出部に異常が発生したかどうかを検出する異常検出部と、前記回転角検出部が検出した前記回転角と前記モータを駆動する前記電流との関係を特性として記憶した記憶部と、を備える。
 前記モータ制御部は、前記異常検出部により前記トルク検出部の異常が検出されたとき、前記回転角検出部により検出されている前記回転角と前記特性とに基づいて前記モータを駆動し、駆動する際、前記回転角に基づき算出される回転角速度の絶対値が所定値以下になったときに、前記モータを駆動する電流を低減する処理を開始し、前記回転角速度の絶対値が所定値以下の状況が所定時間継続する場合には、前記電流を低減する処理を中断することを特徴とする。
 この発明によれば、異常検出部によりトルク検出部の異常が検出されたとき、回転角検出部により検出されている回転角に対するモータを駆動する電流の特性に基づいて前記モータを駆動し、駆動する際、前記回転角に基づき算出される回転角速度の絶対値が所定値以下になったときに、前記モータを駆動する電流を低減する処理を開始し、前記回転角速度の絶対値が所定値以下の状況が所定時間継続する場合には、前記電流を低減する処理を中断するようにしたので、いわゆる保舵時において適切なアシスト力を付与することができる。
 この場合、前記モータ制御部は、前記電流を低減する処理を中断した後、前記中断したときの前記回転角の絶対値が所定角度以上小さくなったときには、電流を低減する処理の中断を再開するようにすることで、保舵が必要でなくなったときに、アシスト力を低減することができる。
 この発明によれば、異常検出部によりトルク検出部の異常が検出されたとき、回転角検出部により検出されている回転角に対するモータを駆動する電流の特性に基づいて前記モータを駆動するようにしたので、例えば、トルクセンサが故障してトルクセンサにより操舵トルクを検出することができなくなった場合においても、操舵アシスト力を付与することができる。そして、モータを駆動する際、前記回転角に基づき算出される回転角速度の絶対値が所定値以下になったときに、前記モータを駆動する電流を低減する処理を開始し、前記回転角速度の絶対値が所定値以下の状況が所定時間継続する場合には、前記電流を低減する処理を中断するようにしたので、いわゆる保舵時において適切なアシスト力を付与することができる。
 また、前記モータ制御部は、前記異常検出部により前記トルク検出部の異常が検出されたとき、前記回転角検出部により検出されている前記回転角と前記特性とに基づいて前記モータを駆動し、駆動する際、前記回転角に基づき算出される回転角速度が大きくなるに従い前記モータを駆動する電流を小さくするよう制御することを特徴とする。
 この発明によれば、異常検出部によりトルク検出部の異常が検出されたとき、回転角検出部により検出されている回転角と特性とに基づいてモータを駆動し、駆動する際、前記回転角に基づき算出される回転角速度が大きくなるに従い前記モータを駆動する電流を小さくするよう制御したので、トルク検出部が異常のときに、切り込み方向において切り込み過ぎを防止しつつ適切なアシスト力が付与することができる。
 この場合、前記モータ制御部は、前記回転角検出部により検出されている前記回転角速度を、前記車速が所定車速より小さくなるに従い小さくなるように補正し、補正回転角速度と前記特性とに基づいて、前記モータを駆動するようにしている。
 この発明によれば、車速が所定車速より小さくなるに従い、モータを駆動する電流の引数としての回転角速度が小さくなる補正回転角速度を用いて、前記モータを駆動するようにしたので、操舵力がより必要となる所定車速以下でのアシスト力を確保することができる。
 この発明によれば、トルク検出部が故障して前記トルク検出部により操舵トルクを検出することができなくなった場合においても、回転角検出部により検出されている回転角に基づきモータによる操舵アシスト力を切り込み方向及び切り戻し方向の両方向に付与することができ、特に、切り込み方向において、回転角速度が大きくなるに従いアシスト力が小さくなるように制御しているので切り込み過ぎを防止しつつ適切なアシスト力を付与することができる。
 さらに、前記モータ制御部は、前記異常検出部により前記トルク検出部の異常が検出されたとき、前記操作子の操舵角(操作角ともいう。)が中立位置に近づく方向に変化する切り戻し時において、切り戻し角度が残った状態で切り込み方向のアシスト電流がゼロ値近傍となったときに前記回転角検出部により検出されている前記回転角を基準角度として切り戻し回転角を検出し、前記切り戻し回転角と前記特性とに基づき、前記モータを駆動することを特徴とする。
 この発明によれば、切り戻し角度が残った状態で切り込み方向のアシスト電流がゼロ値近傍となったときに回転角検出部により検出されている回転角を基準角度として切り戻し回転角を検出し、前記切り戻し回転角と前記特性とに基づき、前記モータを駆動するようにしたので、操作子の操作角が中立位置に近づく方向にアシストが可能となり、切り戻し側での運転者による操作子の操舵力を低減して、操作子を中立位置付近に戻し易くすることができる。
 この場合、前記切り戻し時における前記モータの駆動は、前記車速が所定車速以下のときに有効としてもよい。
 この発明によれば、車速が所定車速以下のときに切り戻し角度が残った状態で操作子を切り戻し方向に操作する場合には、SAT(セルフアライニングトルク)が弱いことに鑑み、この弱いときにもアシスト力がかかるようにしているので、切り戻し側での運転者の操舵力を低減することができる。
 なお、前記切り戻し時における前記モータの駆動電流に、前記車両の操舵性に応じた所定の係数を乗ずることが好ましい。
 すなわち、車両の操舵性は、個々の車両毎の負荷(車両の前軸荷重)の大きさによって変わるので、車両の操舵性に応じた係数を前記モータの駆動電流に乗じることで、車両の操舵性に応じた最適なアシストが可能となる。
 なお、切り戻し角度に対応する前記操作子の操舵角が中立位置に近づくにつれて前記モータの電流を小さくするようにすることで、中立位置においてアシスト電流が略ゼロ値となり、過アシストを回避することができる。
 また、前記切り戻し時において、前記操作子の操舵角が中立位置に達した場合には、前記切り戻し回転角をリセットすることで、以降の切り込み方向へのアシストを適切に行うことができる。
 この発明によれば、異常検出部によりトルク検出部の異常が検出されたとき、回転角検出部により検出されている回転角に対するモータを駆動する電流の特性に基づいて前記モータを駆動するようにしたので、例えば、トルクセンサが故障してトルクセンサにより操舵トルクを検出することができなくなった場合においても、操舵アシスト力を付与することができる。そして、切り戻し角度が残った状態で切り込み方向のアシスト電流がゼロ値近傍となったときに前記回転角検出部により検出されている回転角を基準角度として切り戻し回転角を検出し、前記切り戻し回転角と前記特性とに基づき、前記モータを駆動するようにしたので、操作子の操作角が中立位置に近づく方向にアシストが可能となり、切り戻し側での運転者による操作子の操舵力を低減して、操作子を中立位置付近に戻し易くすることができる。
実施形態及び第1~第3実施例に係る電動パワーステアリング装置の全体概略構成図である。 図1例の電動パワーステアリング装置中、ECU内の接続図である。 操舵角推定処理及び電流フェード処理の説明に供されるフローチャートである。 図4Aは、通常時アシスト処理で参照されるベースアシスト電流特性の説明図、図4Bは、異常時アシスト処理で参照されるベースアシスト電流特性の説明図である。 電流フェード特性の説明図である。 連続操舵時間低減特性の説明図である。 第1実施例に係る保舵時切り戻し電流フェード処理の中断処理の説明に供されるフローチャートである。 第1実施例に係る保舵時切り戻し電流フェード処理の中断処理の再開処理の説明に供されるフローチャートである。 第1実施例に係る保舵時アシスト特性の説明図である。 第2実施例に係るモータ回転速度低減レシオ特性の説明図である。 第2実施例に係る車速レシオ特性の説明図である。 第2実施例に係る切り込み方向の切りすぎ抑制機能の説明図である。 第3実施例に係る極低速走行域切り戻し時操舵力低減処理の説明に供されるフローチャートである。 第3実施例に係る極低速走行域切り戻し時操舵力低減特性の説明図である。 第3実施例に係るセンタレシオ特性の説明図である。 従来のアシスト制御での運転者が必要な操舵力、この発明に係るアシスト制御での運転者が必要な操舵力、及びアシスト制御がない場合の運転者が必要な操舵力を比較する概略特性図である。
 以下、この発明の実施形態について図面を参照して説明する。
 図1は、車両に搭載されるこの実施形態に係る電動パワーステアリング装置10の全体概略構成図である。
 図2は、図1の電動パワーステアリング装置10中、ECU(Electronic Control Unit:制御装置)22内の機能ブロック図である。
 図1に示すように、電動パワーステアリング装置10は、基本的には、ステアリングホイール12(運転者が車両を操縦するために操作する操作子)からステアリングシャフト14を介して転舵輪16に至る操舵系(ステアリング系)18と、この操舵系18の回転軸に設けられて内部に操舵角センサ19を備え前記回転軸のトルクTrと操舵角θsとを検出するトルクセンサ(トルクセンサ及び操舵角センサともいう。)20と、トルクセンサ20からの出力等に基づいてアシストトルクTaを決定するECU22と、このECU22によって駆動されるブラシレスモータである電動モータ(以下、モータともいう。)24と、このモータ24の出力を減速し前記操舵系18の回転軸にアシストトルクTaとして伝達する減速伝達機構26と、を備える。なお、モータ24は、ブラシ付きモータであってもよい。
 トルクセンサ20は、それぞれが操舵系18の回転軸である入力軸41と出力軸42が内部でトーションバーにより連結され、図示しないハウジングに支持された2個の検出コイル(不図示)が、入出力軸41、42に係合している円筒状のコア(不図示)を囲むように配設された公知の構成を備える(例えば、JP3055752B2、JP2830992B2参照)。
 操舵角センサ19は、入力軸41の回転角を操舵角θsとして検出する公知の構成を備える(例えば、JP3055752B2参照)。
 トルクセンサ20は、トーションバーや円筒状のコアを利用しない磁歪膜センサを用いた公知の構成を備えるようにしてもよい(例えば、JP3964414B2、又はJP4057552B2参照)。
 なお、操舵角センサ19を含まないトルクセンサであっても、操舵系18の回転角を検出する操舵角センサが別途設けられている場合、例えば、車両の旋回時の横滑り抑制制御等が行われる車両では、この別途設けられた操舵角センサを利用して、この発明を適用することができる。
 トルクセンサ20及び操舵角センサ19の出力信号であるトルクTr及び操舵角θsの各信号は、ハーネス91を通じて、前記トルクTrがECU22のトルク検出回路72に供給され、前記操舵角θsが操舵角速度算出部74に供給される。
 ステアリングシャフト14は、それぞれが回転軸である、ステアリングホイール12に一体結合されたメインステアリングシャフト15と、このメインステアリングシャフト15に対してユニバーサルジョイント46を介して結合された入力軸41と、ラック&ピニオン機構28のピニオン30が設けられた出力軸42と、が連結された構成とされている。
 入力軸41と出力軸42が軸受48a、48b、48cによって支持されており、出力軸42の下端部にピニオン30が設けられている。ピニオン30は、車幅方向に往復動可能なラック軸50のラック歯50aに噛合する。ラック軸50の両端には、タイロッド52を介して左右の前輪である転舵輪16が連結されている。
 上述した操舵系18は、より詳細には、ステアリングホイール12からステアリングシャフト14(メインステアリングシャフト15、ユニバーサルジョイント46、入力軸41、ピニオン30が設けられた出力軸42)、ラック歯50aを有するラック軸50、タイロッド52、及び転舵輪16を含む構成とされている。
 この構成により、ステアリングホイール12の操舵時に通常のラック&ピニオン式の転舵操作が可能であり、ステアリングホイール12を操作して転舵輪16を転舵させ車両の向きを変えることができる。ここで、ラック軸50、ラック歯50a、タイロッド52は、操舵系18中の転舵機構を構成する。
 上述したように、電動パワーステアリング装置10は、ステアリングホイール12による操舵力を軽減するための操舵アシスト力(操舵補助力であって、単にアシスト力ともいう。)を供給するモータ24を備えており、このモータ24の回転軸25に固着されたウォームギア54が、出力軸42の中間部の軸受48bの下側に設けられたウォームホィールギア56に噛合している。ウォームギア54とウォームホィールギア56とにより減速伝達機構26が構成される。
 回転軸25と一体的に回転するモータ24の回転子23の回転角θrm(モータ機械角ともいう。)が、回転角検出部としてのレゾルバ58により回転子23の回転角θr(モータ電気角ともいう。)として検出されハーネス92を通じてECU22の回転子回転角検出回路(後述するモータ機械角θrmを算出するモータ機械角算出回路として機能する。)76に供給される。なお、レゾルバ58は、相対角検出センサであるが、レゾルバ58に代えて絶対角検出センサのロータリエンコーダを採用することもできる。回転角θrm(モータ機械角)と回転角θr(モータ電気角)との違いについては後述する。
 ECU22は、マイクロコンピュータを含む計算機であり、CPU(中央処理装置)、メモリであるROM(EEPROMも含む。)及びRAM(ランダムアクセスメモリ)、その他、A/D変換器、D/A変換器等の入出力装置、計時手段としてのタイマ(計時部)等を有しており、CPUがROMに記録されているプログラムを読み出し実行することで各種機能実現部(機能実現手段)、たとえば制御部、演算部、処理部等として機能する。
 この実施形態において、ECU22は、後述する各種の特性(マップを含む)、プログラム等が記憶されるメモリとしての記憶部78を有し、前記のトルク検出回路72、操舵角速度算出部74、回転子回転角検出回路76として機能する他、異常検出部80、車両停止状態検出部82、モータ制御部84、及び計時部85等として機能する。
 トルク検出回路72は、トルクセンサ20の2つの検出コイル(不図示)からハーネス91を通じて出力されるトルクTrに関連する信号の差動信号からトルクTrに対応する信号(理解の便宜のために、トルクTrという。)を生成して、モータ制御部84に供給する。
 回転子回転角検出回路76は、レゾルバ58から供給された回転角θr(モータ電気角)からモータ24の回転子23の回転に対応する回転角(モータ機械角)θrmを算出(検出)してモータ制御部84に供給するとともに、操舵角速度算出部74に供給する。
 操舵角速度算出部74は、正常動作している操舵角センサ19から操舵角(ステアリングシャフト14の舵角、ステアリング角又はハンドル角ともいう。)θsが供給されている場合には、その操舵角センサ19からハーネス91を通じて出力される操舵角θsを微分して操舵角速度θs´(θs´=dθs/dt:dは微分演算子、tは時間。)を生成してモータ制御部84に供給する。
 一方、操舵角センサ19に異常が発生したときあるいは元々操舵角センサ19が設けられていない車両において、操舵角速度算出部74は、レゾルバ58の回転角θrに基づき回転子回転角検出回路76により算出されるモータ機械角θrmから算出した推定操舵角θscを時間微分して推定操舵角速度θsc´(θsc´=dθsc/dt:dは微分演算子、tは時間。)を算出する。
 異常検出部80は、トルク検出回路72の出力であるトルクTr及び操舵角センサ19の出力である操舵角θsを監視することで、トルクセンサ20の端子とハーネス91との間のヒュージング不良、ハーネス91の開放(ハーネス91の断線)あるいはハーネス91間内での短絡、トルク検出回路72内の差動増幅器等の異常、例えば、出力が0ボルトに固定されるあるいは0~5ボルト以外の電圧が出力される等の異常を検出したとき、異常検出信号Sabをモータ制御部84及び操舵角速度算出部74に供給する。
 ECU22のモータ制御部84及び車両停止状態検出部82には、さらに、前後輪若しくはトランスミッションの回転数から車速Vsを検出する車速センサ86の出力、すなわち車速Vsがハーネス94を通じて供給される。
 さらにまた、ECU22の車両停止状態検出部82及びモータ制御部84には、パーキングブレーキ88のブレーキ作動信号Sbがハーネス95を通じて供給される。
 実際上、車速Vs並びにブレーキ作動信号Sb等の信号は、CAN(コントローラエリアネットワーク)等の車内ネットワークを通じてECU22に供給される。車内ネットワークではなく、いわゆるポイントツーポイント配線システムにより接続してもよい。
 パーキングブレーキ88のブレーキ作動信号Sbを検出したとき、あるいは車速Vsがゼロ値となったことを検出したとき、車両停止状態検出部82は、モータ制御部84に対して車両停止検出信号Sstopを供給する。
 モータ制御部84は、アシストトルクTaに対応するモータ24のアシスト電流Iaを決定する際、トルクTr及び操舵角速度θs´の他、回転子23の回転角(モータ機械角)θrm、推定操舵角θsc、推定操舵角速度θsc´、異常検出信号Sab、車速Vs、及びブレーキ作動信号Sb等に基づき、記憶部78(特性記憶部)に記憶されている特性(後述する。)を参照し、かつプログラムを実行して決定し、決定したアシスト電流Iaをハーネス93を通じてモータ24の各相の固定子のコイルに供給する。
 モータ24は、供給されたアシスト電流Iaに応じたアシストトルクTaを発生し、減速伝達機構26を通じて出力軸42に付与することでステアリングシャフト14に操舵アシスト力を発生させる。
 基本的には以上のように構成されかつ動作するこの実施形態の電動パワーステアリング装置10の特徴的な動作についてフローチャート等を参照して以下に説明する。
 図3は、この実施形態に係る電動パワーステアリング装置10の動作説明に供されるフローチャートである。このフローチャートによる処理は、所定時間毎に繰り返し実行される。
 ECU22は、トルクセンサ20や操舵角センサ19の異常・正常に係わらず、ステップS1~S3において、操舵角推定処理(推定操舵角算出処理)を行う。
 ステップS1において、回転子回転角検出回路76は、レゾルバ58により検出されている回転角θr(回転子23の電気角)を積算し、モータ電気角θreを算出する。
 次いで、回転子回転角検出回路76は、ステップS2において、次の(1)式に示すように、算出したモータ電気角θreにレゾルバ58の極対数を乗算して、回転子23(回転軸25)の回転角であるモータ機械角θrmを算出し(モータ機械角θrmに換算し)、モータ制御部84及び操舵角速度算出部74に供給する。
 モータ機械角=モータ電気角×レゾルバ極対数
 θrm=θre×レゾルバ極対数       …(1)
 次に、モータ制御部84及び/又は回転子回転角検出回路76は、ステップS3において、次の(2)式に示すように、算出したモータ機械角θrmをステアリングシャフト14の操舵角(推定操舵角)θscに換算する。
 推定操舵角=モータ機械角×(モータ24の回転軸と操舵系18の回転軸の比率)=モータ機械角×減速伝達機構26の減速比
 θsc=θrm×減速伝達機構26の減速比  …(2)
 減速伝達機構26の減速比は、この実施形態では、値1/20に設定している。すなわち、この実施形態では、モータ機械角θrmの360[deg]が、ステアリングホイール12(出力軸42)の回転を推定する推定操舵角θscでは、18(=360/20)[deg]に換算される。同様に、1秒間当たりのモータ24の回転子23の回転数であるモータ回転速度N、例えば、N=2[rps]は、ステアリングホイール12(出力軸42)の回転速度(推定操舵回転速度)Nscでは、Nsc=0.1(=2/20)[rps]に対応する。
 そして、ステアリングホイール12(出力軸42)の推定操舵回転速度Nsc=0.1[rps]は、推定操舵角速度θsc´では、θsc´=36(0.1[rps]×360[deg])[deg/s]に対応する。したがって、モータ回転速度Nと、推定操舵角速度(回転角速度)θsc´とは一意に対応する。例えば、モータ回転速度NがN=2[rps]は、推定操舵角速度θsc´のθsc´=36[deg/s]に対応する。
 なお、モータ回転速度N及び推定操舵回転速度Nscは、モータ制御部84により算出される。
 図1に示すように、ステアリングホイール12に固定されたステアリングシャフト14と一体的に回転する出力軸42の回転により、出力軸42に軸が固着されたウォームホィールギア56が一体的に回転するとウォームギア54が回転し、ウォームギア54が回転すると、ウォームギア54に固着されているモータ24の回転軸25(回転子23)が一体的に回転し、回転子23の回転がレゾルバ58により検出されるので、結果として、レゾルバ58による回転角θrに基づき、ステアリングホイール12の回転角である操舵角θsを推定した推定操舵角θscを算出(検出)することができる。
 なお、操舵角θs及び推定操舵角θscは、ステアリングホイール12の右回転が正で左回転が負とされ、直進状態(θs=θsc=0[deg])から右折する場合には、運転者は、まず、ステアリングホイール12を右回転させて切り込んだ後、左回転させて切り戻して、直進状態に戻る。従って、基本的には、直進状態から右折して直進状態に戻る場合には、右回転が切り込み方向、左回転が切り戻し方向となる。
 一方、直進状態(θs=θsc=0[deg])から左折する場合には、まず、左回転で切り込んだ後、右回転で切り戻して、直進状態に戻る。従って、基本的には、直進状態から左折して直進状態に戻る場合には、左回転が切り込み方向、右回転が切り戻し方向となる。
 このように、直進状態(ステアリングホイール12の中立状態)から右方向にステアリングホイール12が回転される場合の操舵角θs(推定操舵角θsc)は、正の値となり、直進状態(ステアリングホイール12の中立状態)から左方向にステアリングホイール12が回転される場合の操舵角θs(推定操舵角θsc)は、負の値となり、角度の大小を考察する場合に、正負の符号があると、煩雑となるので、以下の説明においては、注記しない場合には、直進状態から右折して直進状態に戻る場合を例(操舵アシスト特性の座標上では、第1象限を対象)として説明する。この場合、操舵角θs及び推定操舵角θscともに正の値を採る。
 上述したステップS1~S3の手順により、操舵角センサ19及びトルクセンサ20が、仮に異常状態となったときにおいても、この実施形態では、レゾルバ58により検出される回転角θrに基づき、回転子回転角検出回路76、操舵角速度算出部74、及びモータ制御部84により操舵角θs[deg]が推定された推定操舵角θsc[deg]及び推定操舵角速度θsc´[deg/s]を求めることができる。
 なお、モータ24を回転させてステアリングホイール12に付与する操舵アシスト力は、基本的には、操舵角θs又は推定操舵角θscの変化している方向に付与すればよいこととなる。
 次に、ステップS4において、異常検出部80から異常検出信号Sabが供給されたかどうかが検出される。このステップS4において、モータ制御部84は、トルクセンサ20及び操舵角センサ19に係る異常検出信号Sabを検出したとき、ステップS5以降の処理を実行する。なお、図1に示す操舵角センサ19内蔵型のトルクセンサ20では、ハーネス91の開放あるいは短絡等により電源の供給が停止され、操舵角センサ19とトルクセンサ20の出力が、同時に異常状態になる場合が多い。
 ステップS4において、モータ制御部84が異常検出信号Sabを検出しなかった場合には、ステップS21において通常処理(通常時アシスト処理)を行う。この通常処理では、トルクセンサ20及び操舵角センサ19が正常であるので、従来通りの操舵アシスト力の付与動作を行う。
 この場合、モータ制御部84は、記憶部78に予め記憶されている図4Aに示す、車速Vsをパラメータとした操舵トルクTr[kgfcm]に対するベースアシスト電流Ia[A]の特性(ベースアシスト電流特性又はベースアシスト特性ともいう。)101を参照(検索)し、基本的には、車速が低くなるほど大きくなるベースアシスト電流Iaを算出してモータ24を駆動する。
 一方、ステップS4において、モータ制御部84が、トルクセンサ20等が異常になった異常検出信号Sabを検出したとき、ステップS5での異常時アシスト処理が実行される。
 ステップS5において、モータ制御部84は、記憶部78に予め記憶されている図4Bに示す推定操舵角θscに対するベースアシスト電流Ia[A]の特性(ベースアシスト電流特性又はベースアシスト特性ともいう。)102を参照(検索)して、ベースアシスト電流Iaを算出し、このベースアシスト電流Iaに基づきモータ24を駆動する。
 ベースアシスト電流特性102は、マップとして記憶部78に記憶しておいてもよく、算出式で記憶部78に記憶しておいてもよい。マップとして記憶部78に離散的に記憶しておく場合、間の値は、補間により求めることが好ましい。
 図4Bから分かるように、ベースアシスト電流特性102は、推定操舵角θsc[deg]が、0[deg]から不感帯対応操舵角θd[deg](0~10[deg]程度の値とされるが、この実施形態では、10[deg]に設定している。)までの中立位置近傍では、Ia=0[A]とされ(アシスト電流Iaを流さない領域とされ)、不感帯対応操舵角θd[deg]以上では、推定操舵角θscの増加に応じて増加させ(略比例して増加させ)、それ以上の推定操舵角θscでは、増加の割合を減少させて、推定操舵角θscが、180[deg]近傍以上では、一定の値を採る(ベースアシスト電流Iaの値が飽和する)特性に設定している。
 このように、この実施形態では、異常検出信号Sabを検出したときの異常時においても、ベースアシスト電流特性102に基づくアシスト電流Iaを流して所定の操舵アシスト制御が行えるようにしている。ただし、異常時における操舵アシスト制御は暫定的なアシスト処理であり、後述するように種々の制限を課すようにしている。
 以上のように、この実施形態に係る電動パワーステアリング装置10は、操舵系18に発生するトルクTrを検出するトルク検出部としてのトルクセンサ20と、操舵系18の回転軸である出力軸42にアシストトルクTaを付与するモータ24と、モータ24の回転子23の回転角θrを検出する回転角検出部としてのレゾルバ58と、トルクセンサ20にて検出されたトルクTrに基づいて、モータ24を駆動する電流を制御するモータ制御部84と、を備える電動パワーステアリング装置10であって、トルクセンサ20やトルク検出回路72に異常が発生したかどうかを検出する異常検出部80を備え、モータ制御部84は、異常検出部80によりトルクセンサ20あるいはトルク検出回路72の異常が検出されたとき、レゾルバ58により検出された回転角θrの積算値であるモータ電気角θreに基づいてモータ機械角θrmを算出することで、推定操舵角θscを算出し{上記(2)式参照}、この推定操舵角θscに対してベースアシスト電流特性102を参照して、ベースアシスト電流Ia[A]を算出し、このベースアシスト電流Iaに基づきモータ24を駆動するように制御している。
 このようにモータ24を駆動制御することで、たとえトルクセンサ20又はトルク検出回路72の異常が検出され、トルクセンサ20により操舵トルクTrを検出することができなくなった異常時においても、モータ24のアシストトルクTaによりステアリングホイール12に操舵アシスト力を付与することができる。
 なお、トルクセンサ20が正常状態であるときには、トルクセンサ20の出力が略ゼロ値であって、車速センサ86での車速Vsの検出値が略等速度である状態が所定時間継続したとき、レゾルバ58の出力である回転角θrに対応する推定操舵角θscをゼロ値(θsc=0[deg])として記憶内容を更新する中点(中立状態)補正処理を適宜行うように構成されている。
 また、回転子回転角検出回路76を利用した操舵アシスト力の付与は、暫定的な処理であるので、異常検出部80がトルクセンサ20等の異常を検出したときには、音声あるいは表示等により、当該異常対応の操舵力アシスト処理を行っていることを操作者(運転手)に伝達する。これにより操作者(運転者)は、モータ24の回転子23の回転角θrを用いて暫定的な電動パワーステアリングによるアシスト力を利用して、当該車両を安全な場所まで運転することができる。
 この暫定的な電動パワーステアリングによるアシスト力は、トルクセンサ20等が正常状態のステップS21の通常アシスト処理に対して種々の制限を課している。
 この制限の一つとして、まず、ステップS6~S9の電流フェード処理について説明する。
 図5は、記憶部78に記憶されている電流フェード処理に供される切り込み電流フェード特性(切り込み時電流フェード特性ともいう。)103と、切り戻し電流フェード特性(切り戻し時電流フェード特性ともいう。)104の例を示すとともに、図4Bのベースアシスト電流特性102の一部を再掲している。なお、以下、理解の便宜のために、図5中の第1象限の特性(横軸の0[deg]から正の方向の大きい値に向かう右方向への切り込み方向と、正の方向から0[deg]方向の小さい値に向かう切り戻し方向とに係る特性)により説明する。
 ステップS6において、アシスト電流Iaが通電中であってステアリングホイール12が切り込み時中であるかどうかが、上記した推定操舵角θscの微分値である推定操舵角速度θsc´から判定される。なお、推定操舵角速度θsc´は、操舵角速度算出部74又はモータ制御部84により算出される。
 切り込み中である場合には、切り込み電流フェード特性103に沿ってアシスト電流Iaを決定してモータ24を駆動制御する。
 図5において、同一の推定操舵角θscにおいて、一点鎖線で示した切り込み電流フェード特性103が実線で示しているベースアシスト電流特性102よりアシスト量(アシスト電流Ia)を少なくしている理由は、切り込み過ぎを防止するためである。ステアリングホイール12を同一方向に切り続けている場合には、モータ制御部84は、切り始めからの時間{(同一方向の)連続操舵時間trという。}を計時部85により計時し、図6に示す連続操舵時間低減特性105を参照してレシオ(連続操舵低減レシオ、又は連続操舵低減比率という。)Rc{Rcは、1(低減なし)~0(アシスト電流Iaをゼロ値にする。)までの値を採る。}を算出する。
 連続操舵中が検出された場合には、ベースアシスト電流特性102上で推定操舵角θscにより算出されるアシスト電流Iaに対し、連続操舵時間trに対応する連続操舵低減レシオRcが掛け合わされて、次の(3)式に示すように、フェード(低減)されたアシスト電流Iaとされる。
 Ia←Ia×Rc              …(3)
 (3)式の右辺のIaがベースアシスト電流特性102上でのベースアシスト電流、左辺のIaが切り込み電流フェード特性103上でのフェード(低減)されたベースアシスト電流を意味する。
 連続操舵時間低減特性105の連続操舵低減レシオRcは、この例では、1秒(1[s])で、アシスト電流Iaが10%ずつ低減される特性にしているので、10[s]以上、同一方向に切り続けられることが検出されるとアシスト電流Iaは、ゼロ値にされる。
 このように、ステップS7の切り込み電流フェード処理において、同一方向に連続切り込み操舵している場合には、ベースアシスト電流特性102よりもアシスト量(アシスト電流Ia)を少なくする切り込み電流フェード特性103としてアシストするようにしている。
 さらに、切り込み時の過アシスト電流を防止するため、推定操舵角θscが閾値操舵角θscth以上の値となったときには、アシスト電流Iaを許容最大アシスト電流Iamaxに制限する{図5中の座標点106(θscth,Iamax)参照}。
 次いで、ステップS8において、推定操舵角速度θsc´(θsc´=dθsc/dt)が略ゼロ値(θsc´≒0[deg/s])、この実施形態では、閾値操舵角速度θsc´th(絶対値)が、例えば、θsc´th=7.2[deg/s](推定操舵回転速度Nsc=0.02[rps]換算、モータ回転速度N=0.4[rps]換算)以下の値になったかどうかを判定し(θsc´≦θsc´th=7.2)、このステップS8の判定が肯定的となった場合には、切り戻し時のステアリングホイール12の戻りを促進するため、ステップS9の切り戻し電流フェード処理を実行する。
 ステップS9の切り戻し電流フェード処理実行中には、図5の切り戻し電流フェード特性104に沿ってアシスト電流Iaを決定してモータ24を駆動制御する。
 この切り戻し電流フェード特性104は、推定操舵角速度θsc´が閾値操舵角速度θsc´th以下の値になったときの推定操舵角θsc=θsc1でのアシスト電流Ia=Ia1{座標点107(θsc1,Ia1)}から、計時部85により計時される1秒程度の時間でアシスト電流Ia(図5例では、Ia=Ia1)をゼロ値まで徐々に、例えば比例的かつ自動的に減衰させる特性である。このとき、切り戻し電流フェード特性104において、推定操舵角θscが左方向に切り戻されているのは、走行中の車両に働く、ステアリングホイール12(操舵系18)を直進方向(中立位置)に戻そうとする力、いわゆるSAT(Self Aligning Torque)による。
 このように、操舵系18の回転軸である出力軸42の推定操舵角速度θsc´を算出する操舵角速度算出部74又はモータ制御部84を備え、モータ制御部84は、ステアリングの切り込み時に、操舵角速度算出部74により算出される推定操舵角速度θsc´の絶対値がゼロ値近傍(一例としては、上述したように、閾値操舵角速度θsc´th=7.2[deg/s])になったとき、モータ24を駆動するアシスト電流Iaを切り戻し電流フェード特性104{この特性104の勾配は、個々の車両毎の負荷(車両の前軸荷重)、車速Vs、路面状態等に応じて変化する。}に沿ってフェードすることで、過アシスト電流を防止することができる。
 もちろん、トルクセンサ20に付設される操舵角センサ19あるいはトルクセンサ20とは単独に設けられている操舵角センサが正常状態である場合には、それら操舵角センサ19等の出力である操舵角θsを微分することで操舵角速度θs´を算出して電流フェード処理を行うことができる。
 なお、車両停止状態検出部82は、車速センサ86により検出されている車速Vs[km/h]がVs=0、あるいはパーキングブレーキ88の作動によるブレーキ作動信号Sbの少なくともいずれか一方を検出したときには、モータ制御部84に対して車両停止検出信号Sstopを供給する。このとき、モータ制御部84は、アシスト電流Iaをゼロ値とすることで、不必要に操舵アシスト力を付与しないようにすることができる。
 パーキングブレーキ88が解除されていて、駆動輪がエンジン等によって回転している状態、例えば、サービス工場等で車両をリフトアップして、駆動輪が空転している状態においては、いわゆるセルフステアとならないように、車速センサ86により検出される車速VsがVs=0のとき、アシスト電流Iaを供給しないようにすることも、この発明に含まれる。
 以上説明したように、上述した実施形態によれば、トルクセンサ20が故障してトルクセンサ20により操舵トルクTrを検出することができなくなった場合においても、モータ24のレゾルバ58等により検出されるモータ24の回転子23の回転角θrを利用して操舵角θs及び操舵角速度θs´を推定した、推定操舵角θsc及び推定操舵角速度θsc´を用いて、モータ24による所定の操舵アシスト力を付与することができる。
[第1実施例](保舵時アシスト機能)
 上述した実施形態によれば、図5に例として示した切り戻し電流フェード特性104によりアシスト電流Iaが減少し、ステアリングホイール12の戻りが促進されるようになる。しかし、推定操舵角速度θsc´が略ゼロ値である状態を継続しているステアリングホイール12の保舵時(保舵中)において、上述した図5の切り戻し電流フェード特性104に示す切り戻し電流フェード処理を実行すると、保舵中のアシスト時間が短くなってしまう。
 運転者が保舵を望み、かつSATが大きい場合には、切り戻し電流フェード処理を実行すると、運転者はステアリングホイール12にかけている操舵保舵力をさらに大きくする必要があるため、アシストを継続して、保舵時の運転者による保舵力を低減させることが好ましい。
 そこで、この第1実施例では、保舵時の運転者の保舵力を低減させる、換言すれば、保舵時に適切なアシスト力を継続するような機能を実現している。
 次に、図7、図8のフローチャート及び図9の特性図を参照して第1実施例に係る保舵時アシスト機能について説明する。
 なお、図7のフローチャートは、図3のフローチャート中のステップS9の「切り戻し電流フェード処理」の詳細処理を示し、図8のフローチャートは、図7のフローチャート中のステップS9aの「保舵解除処理」の詳細処理を示している。また、図9の特性図は、理解の便宜のために、図5の特性図中、第1象限の部分を拡大して表示している。
 上述したステップS8の判定において、推定操舵角速度θsc´が閾値操舵角速度θsc´th=7.2[deg/s]以下の値になったときに、ステップS9において切り戻し電流フェード処理が開始される。そこで、図7のステップS9aでは切り戻し電流フェード処理中であるか否かが判定され、処理中であれば、図5を参照して説明した切り戻し電流フェード処理(計時部85により計時される1秒程度の時間でアシスト電流Iaをゼロ値まで徐々に自動的に減衰させる処理)を継続する。
 この第1実施例では、切り戻し電流フェード処理の継続中に、ステップS9bにおいて、保舵継続判定条件が成立しているか否かが監視される。ここで、保舵継続判定条件とは、操舵角速度θsc´が保舵継続中とみなされる比較的小さな値である閾値操舵角速度θsc´tha(例として、θsc´tha=3.6[deg/s])以下の値になっている状態であって、かつステップS9aでの切り戻し電流フェード処理が開始されてからの時間(保舵継続時間)tk(計時部85により計時される。)が所定時間Tkth(上記切り戻し電流フェード処理の所定時間である1秒程度より短い閾値時間で閾値保舵継続時間ともいう。)、例えばTkth=500[ms]を継続したか否かにより判定される{(θsc´≦θsc´tha)が所定時間Tkth以上継続}。
 ステップS9bの判定が肯定的となったとき、すなわち、図9中、座標点107において、切り戻し電流フェード特性104に基づく切り戻し電流フェード処理が開始されてからTkth=500[ms]経った時点において、かつ、推定操舵角速度θsc´が保舵とみなす閾値操舵角速度θsc´tha=3.6[deg/s]以下の値になっていたとき(図9中、座標点108参照)、ステップS9cにおいて、保舵継続中であると判定し、切り戻し電流フェード処理を中断する。
 このとき、計時部85での切り戻し電流フェード処理に定められた1秒間の計時が、上記の閾値保舵継続時間Tkth=500[ms]計時した時点(座標点108)で中断される(図9参照)。
 切り戻し電流フェード処理中の、この時点(ステップS9bの判定が肯定的となり、ステップS9cの処理を中断した時点)でのアシスト電流Iaを、図9に示す座標点108(θsc2,Iak)における保舵アシスト電流Iakとしている。
 切り戻し電流フェード処理の保舵継続判定に基づく中断により、そのステップS9cにおいて、アシスト電流Iaが保舵アシスト電流Iakとして記憶部78に保持される。また、このときの推定操舵角θscが推定操舵角θsc2として記憶部78に保持される。
 この第1実施例では、切り戻し電流フェード処理の保舵継続判定に基づく中断処理は、図9に示す切り戻し電流フェード特性104上の座標点108の位置で実行される。
 座標点108での保舵アシスト電流Iakは、基本的には、次のステップS9dの処理で説明する保舵解除条件が成立するまでモータ24に供給され、運転者の保舵状態をアシストする。このようにアシストすることにより、運転者によるステアリングホイール12の保舵時(一定曲率半径での車両の旋回時)の保舵力を低減させることができる。
 次に、この中断処理の解除処理、換言すれば、保舵解除処理がステップS9dで実行される。
 図8は、ステップS9dの保舵解除処理の詳細フローチャートを示している。
 ステップS9d1において、保舵継続判定条件成立による切り戻し電流フェード処理の中断中であるか否かが判定される。
 最初の判定では、ステップS9cの切り戻し電流フェード処理の中断処理が実行されているので、ステップS9d1の判定は肯定的となり、次に、ステップS9d2において、保舵解除条件が成立しているか否かが判定される。
 保舵解除条件成立判定条件は、座標点108での推定操舵角θsc2から推定操舵角θscが徐々に小さくなって(ステアリングホイール12が中立位置に戻されて)、かつ戻し判定操舵角Δθscが、例えば、10[deg]以上の値となったときに(θsc≦θsc2-Δθsc)、運転者によるステアリングホイール12の保舵状態が解除されたと判定する。
 この判定が、図9の座標点110の位置で成立した場合には、ステップS9d3において、切り戻し電流フェード処理を再開するので、図9の一点鎖線で示す特性のように、自動的にアシスト電流Iaが低減される。
 以上説明したように、上述した第1実施例によれば、異常検出部80によりトルク検出部(トルクセンサ20やトルク検出回路72及びその間のハーネス91)の異常が検出されたとき、回転角検出部としてのレゾルバ58により検出されているモータ24の回転子23の回転角θrに基づく推定操舵角θscによりベースアシスト電流特性102から算出されるベースアシスト電流Iaによりモータ24を駆動しようとし、駆動した際、回転子23の回転角θrに基づき算出される推定操舵角速度(回転子回転角速度)θsc´の絶対値|θsc´|が所定値である閾値操舵角速度θsc´th(=7.2[deg/s])以下になったときに(図5、図9の座標点107参照)、モータ24を駆動するベースアシスト電流Iaを低減する処理である切り戻し時電流フェード処理を開始し、切り戻し時電流フェード処理を開始した後、推定回転角速度θsc´の絶対値|θsc´|が所定値である閾値操舵角速度θsc´tha以下の状況が所定時間(上記の例では、閾値保舵継続時間Tkth=500[ms])継続する場合には、座標点108に示すように、アシスト電流Iaを低減する処理である切り戻し時電流フェード処理を中断するようにしたので、いわゆる保舵時において適切なアシスト力を付与することができる。
 そして、アシスト電流Iaの低減を停止した保舵アシスト時において、推定操舵角θscが、徐々に小さくなって(ステアリングホイール12が中立位置に戻されて)、推定操舵角θscの戻り量が、戻し判定操舵角Δθsc[deg](所定値)以上の値となったとき(座標点110参照)、すなわち、第1の保舵解除条件成立条件が成立した場合には、運転者による保舵状態が解除されたと判定し、電流を低減する処理の中断を再開するようにしたので、保舵が必要でなくなったときに、アシスト力を低減することができる。
 また、アシスト電流Iaの低減を停止した保舵アシスト時において、推定操舵角速度(推定回転角速度)θsc´の絶対値が所定値である保舵解除判定閾値操舵角速度θsc´th1以上の値になった場合、すなわち第2の保舵解除条件成立条件が成立した場合にも、切り戻し時電流フェード処理の中断を再開するようにしたので、保舵が必要でなくなったときに、アシスト力を小さくすることができる。
[第2実施例](切り込みすぎ抑制機能)
 上述したように、推定操舵角θscに応じて、アシスト量(アシスト特性)を決定し、切り込み時電流フェード処理、切り戻し時電流フェード処理、並びに保舵判定処理等によりフェードを調整しているが、例えば、高μ路(μは摩擦係数)でアシスト量(アシスト特性)を決定した後に、推定操舵角θscに対する必要アシスト量のバランス(均衡)の異なる低μ路で操舵操作を行うと、逆に切り込みすぎてしまう場合がある。このように推定操舵角θscと必要なアシスト量のバランスは路面の摩擦係数μの大小と密接に関係している。
 そこで、この第2実施例では、ステップS7の切り込み電流フェード処理時において、低μ路での切り込みすぎは、過多状態となったアシスト量を制限すればよいとの考察のもと、モータ制御部84は、アシスト電流Iaに対して、モータ24のモータ回転速度N[rps]に応じたレシオ(モータ回転速度低減レシオ、又はモータ回転速度低減比率という。)Rmを算出する。
 図10は、この第2実施例に係るモータ回転速度低減レシオRmの特性(モータ回転速度低減特性)112を示している。
 モータ回転速度NがN=0~2[rps](推定操舵角速度θsc´では、θsc´=0~36[deg/s])までは、モータ回転速度低減レシオRmの値は、1(低減なし。)とし、モータ回転速度NがN=2~7[rps](θsc´=36~126[deg/s])では、モータ回転速度低減レシオRmの値が1から0まで比例的に低減する特性となっている。
 モータ回転速度低減レシオRmは、運転者のステアリングホイール12の推定操舵角速度を検出し、推定操舵角速度が大きい場合には、切り込み過ぎを抑制するためにアシスト電流Iaを低減補正するための係数である。
 なお、モータ回転速度低減レシオRmは、図10のモータ回転速度低減特性112で減少させる場合には、アシストが必要な低速走行時において、所望のアシスト力を確保できなくなる可能性があるため、車速Vsが低速になるほど、モータ回転速度低減特性112の横軸の引数、すなわちモータ回転速度Nの増加を防止することを目的として、横軸の引数となるモータ回転速度Nに、図11に示す、車速レシオRvをかけるように制御する。車速レシオRvは、例えば、停止状態から車速VsがVs=10[km/h]程度までは、0.25程度の値とし、車速Vs=10~50[km/h]程度までは、値0.9程度まで略直線的に増加する値とし、車速Vs=50~80[km/h]までで値を0.9程度から1(低減なし)にする特性(車速特性)114に設定している。
 すなわち、図12に模式的に示すように、モータ制御部84は、車速Vsに対し、図11の車速特性114を参照して車速レシオRvを決定した後、モータ回転速度N[rps]に車速レシオRvを乗算器111でかけた補正後のモータ回転速度(以下、補正モータ回転速度という。)Ns[rps]で、図10のモータ回転速度低減特性112を参照してモータ回転速度低減レシオRmを決定する。
 ベースアシスト電流特性102で得られるベースアシスト電流Iaに、このモータ回転速度低減レシオRmをかけた値の補正後のベースアシスト電流Ia(Ia←Ia×Rm)に対し、上述した切り込み電流フェード処理を行う。
 このように制御すれば、高車速時の切り込みすぎの抑制と、低車速時のアシスト力の確保を両立することができる。これにより高μ路と低μ路を両立できるアシスト制御が可能となる。
 なお、転舵輪16等の車輪からの外乱の入力等によりステアリングホイール12の操舵角θsが切り込みすぎてしまう場合にも、モータ回転速度低減レシオRmを用いることで、切り込みすぎを抑制することが可能となり、いわゆる外乱耐性(外乱タフネス)を確保することもできる。
 以上説明したように、上述した第2実施例によれば、運転者が車両を操縦するために操作する操作子としてのステアリングホイール12と、前記車両の操舵系18に発生するトルクTrを検出するトルク検出部としてのトルクセンサ20と、前記車両の車速Vsを検出する車速検出部としての車速センサ86と、操舵系18の回転軸としての出力軸42にアシストトルクを付与するモータ24と、操舵系18の回転角を検出する回転角検出部としてのレゾルバ58と、トルクセンサ20により検出されたトルクTrに基づいてモータ24を駆動する電流(アシスト電流)Iaを制御するモータ制御部84と、を備える電動パワーステアリング装置10であって、トルクセンサ20等に異常が発生したかどうかを検出する異常検出部80と、レゾルバ58が検出した回転角θrとモータ24を駆動する電流Iaとの関係を特性102として記憶した記憶部78と、を備え、モータ制御部84は、異常検出部80によりトルクセンサ20等の異常が検出されたとき、レゾルバ58により検出されている回転角θrと特性102とに基づいてモータ24を駆動し、駆動する際、回転角θrに基づき算出される推定操舵角速度(回転角速度)θsc´に対応するモータ回転速度Nが大きくなるに従いモータ24を駆動する電流Iaを小さくするようにモータ回転速度低減レシオRm(図10参照)を導入して制御している。
 この第2実施例によれば、異常検出部80によりトルクセンサ20等の異常が検出されたとき、レゾルバ58により検出されている回転角θrと特性102とに基づいてモータ24を駆動し、駆動する際、回転角θrに基づき算出されるモータ回転速度N{推定操舵角速度(回転角速度)θsc´}が大きくなるに従いモータ24を駆動する電流Iaを小さくするよう制御したので、トルクセンサ20が異常のときに、切り込み方向において切り込み過ぎを防止しつつ適切なアシスト力を付与することができる。
 この場合、モータ制御部84は、レゾルバ58により検出されているモータ回転速度Nを、車速Vsが所定車速(図11例では、略80[km/h])より小さくなるに従い小さくなるように車速レシオRvにより補正し、補正モータ回転速度Ns(図12参照)と特性102とに基づいて、モータ24を駆動するようにする、換言すれば、車速Vsが所定車速より小さくなるに従い、モータ24を駆動する電流Iaの引数としてのモータ回転速度N{推定操舵角速度(回転角速度)θsc´}が小さくなる補正モータ回転速度Ns(補正回転角速度)を用いて、モータ24を駆動するようにしたので、操舵力がより必要となる所定車速以下でのアシスト力を確保することができる。
 この第2実施例によれば、トルクセンサ20等が故障して操舵トルクTrを検出することができなくなった場合においても、モータ24のモータ回転速度N{推定操舵角速度(回転角速度)θsc´}に基づきモータ24による操舵アシスト力を切り込み方向及び切り戻し方向の両方向に付与することができ、特に、切り込み方向において、モータ回転速度N{推定操舵角速度(回転角速度)θsc´}が大きくなるに従いアシスト力が小さくなるように制御しているので切り込み過ぎを防止しつつ適切なアシスト力を付与することができる。
[第3実施例](極低速走行域切り戻し時操舵力低減機能)
 図5又は図9を参照して説明した切り戻し電流フェード特性104に基づく切り戻し電流フェード処理によりアシスト電流Iaがゼロ値となったときに、未だ推定操舵角θscがゼロ値とならずに、右方向の推定操舵角θscが残っていた場合(図5と図9例では、値の異なる残留推定操舵角θscrが残っている。)、換言すれば、左方向への切り戻し角度が残った状態で右方向(切り込み方向)のアシスト電流Iaがゼロ値又はゼロ値近傍となったときに、車速VsがVs=Vs1=20[km/h]程度以下の極低速走行時には、SATによるステアリングホイール12(操舵系18)を直進方向(中立位置)に戻そうとする力が弱く、運転者による切り戻しの操舵力(操舵トルク)が多く必要になる。
 そこで、この第3実施例では、切り戻し電流フェード特性104に基づく電流フェード処理によりアシスト電流Iaがゼロ値となったときに、未だ推定操舵角θscがゼロ値とならずに、右方向の推定操舵角θscが残っていた場合(残留推定操舵角θscrともいう。)においても、ステアリングホイール12(操舵系18)に対して切り戻し側のアシスト力を付与できるようにする。
 次に、図13のフローチャート及び図14、図15の特性図を参照して第3実施例に係る極低速走行域切り戻し時操舵力低減機能について説明する。
 そこで、図3のステップS9の処理後の図13のステップS10において、モータ制御部84により切り戻し電流フェード特性104に基づく切り戻し電流フェード処理が終了したか否かが、アシスト電流Iaの値により判定される。
 すなわち、アシスト電流Iaが略ゼロ値(Ia≒0)になってステップS10の判定が肯定的となり、推定操舵角θscが、不感帯対応操舵角θd以上残っていた場合には(図5例、図9例では、残留推定操舵角θscrが残っている。)、ステップS11において、モータ制御部84により車速Vsが極低車速Vs1(Vs1≒20[km/h])を下回っている(Vs<Vs1)か否かが判定される。なお、極低車速Vs1は、車種により5~20[km/h]内の値に設定してもよい。
 下回っていない場合には(ステップS11:NO)、SATが働くので、再びステップS1に戻る。このとき、ステップS1、S2、S3、S4(YES)、ステップS5、ステップS6(NO)の後、再びステップS10の判定に戻る。
 一方、車速Vsが極低車速Vs1を下回っていて、ステップS11の判定が肯定的となったとき、ステップS12において、推定操舵角θsc=θsc3(残留切り戻し角という。)を基準角度θf[deg]にリセットする(図14参照)。
 次いで、ステップS13において、ステップS1~ステップS3の処理と同様にして、切り戻し方向の切り戻し推定操舵角(切り戻し回転角ともいう。)θscを算出する。
 次に、ステップS14において、ベースアシスト電流特性102を参照し、切り戻し推定操舵角θscに対応する切り戻し側のアシスト電流Iaを算出する。
 次いで、ステップS15において、推定操舵角θscの絶対値|θsc|が閾値推定操舵角θsc4(図15参照)を通過する値になっているか否かを比較判定する。閾値推定操舵角θsc4は、一例として、θsc4≒30[deg]に設定される。
 ステップS15の判定が否定的である範囲では(ステップS15:NO)、図14に一点鎖線で示す特性120に沿う切り戻し方向のアシスト電流Ia(ステップS14で算出)が付与されステップS17においてモータ24が駆動される。
 その一方、ステップS15の判定が肯定的である場合には、次に、ステップS16において、図15に特性118で示すセンタレシオ(中立位置戻し用比率)RnをステップS14で算出した補正前のアシスト電流Iaに乗算した補正後のアシスト電流Ia(Ia←Ia×Rn)を算出する。
 すなわち、センタレシオRnは、中立位置(センタ)を乗り超えてアシスト力を付与しないようにするために、図14の特性123に示すように、閾値推定操舵角θsc4より切り戻し推定操舵角θscの絶対値が小さくなった場合には、アシスト電流Iaを徐々にゼロ値とするために補正前のアシスト電流Iaにかけられる比率(特性)である。
 次いで、ステップS17において、上述したステップS14で算出されたアシスト電流Ia(特性120)又はステップS16で補正されたアシスト電流Ia(Ia←Ia×Rn)(特性123)によりモータ24を駆動する。
 この切り戻し時において、ステアリングホイール12の操舵角が中立位置に達した場合、切り戻し回転角θscをリセットすることで、以降の切り込み方向及び切り戻し方向へのアシストをベースアシスト特性102により適切に行うことができる。
 図13のフローチャートのように制御すれば、切り戻し角度が残った状態(残留切り戻し角θsc3)で切り込み方向のアシスト電流Iaがゼロ値近傍となったときであっても、切り戻し側へのアシストが可能となり、かつ切り戻し側に過剰にアシストされることが防止される。
 以上説明したように、上述した第3実施例によれば、運転者が車両を操縦するために操作する操作子としてのステアリングホイール12と、車両の操舵系18に発生するトルクTrを検出するトルク検出部としてのトルクセンサ20と、車両の車速Vsを検出する車速検出部としての車速センサ86と、操舵系18の回転軸としての出力軸42にアシストトルクを付与するモータ24と、操舵系18の回転角θrを検出する回転角検出部としてのレゾルバ58と、トルクセンサ20により検出されたトルクTrに基づいてモータ24を駆動する電流Iaを制御するモータ制御部84と、を備える電動パワーステアリング装置10であって、トルクセンサ20等に異常が発生したかどうかを検出する異常検出部80と、レゾルバ58が検出した回転角θrとモータ24を駆動する電流Iaとの関係を特性102として記憶した記憶部78と、を備え、モータ制御部84は、異常検出部80によりトルクセンサ20等の異常が検出されたとき、ステアリングホイール12の操舵角が中立位置に近づく方向に変化する切り戻し時において、切り戻し角度が残った状態(残留推定操舵角θscr=残留切り戻し角θsc3)で切り込み方向のアシスト電流Iaがゼロ値近傍となったとき(ステップS10:YES)にレゾルバ58により検出されている回転角θrを基準角度θfとして切り戻し回転角θscを検出し、切り戻し回転角θscと特性102とに基づき、切り込み方向とは逆方向の切り戻し方向にモータ24を駆動する(このとき電流フェード処理を行ってもよい。)。
 このように、残留切り戻し角θsc3が残った状態で切り込み方向のアシスト電流Iaがゼロ値近傍となったときにレゾルバ58により検出されている推定操舵角θscを基準角度θfとして切り戻し回転角θscを検出し、切り戻し回転角θscと特性102とに基づき、切り込み方向とは逆方向の切り戻し方向にモータ24を駆動するようにしたので、ステアリングホイール12の操作角が中立位置に近づく方向にアシストが可能となり、切り戻し側での運転者によるステアリングホイール12の操舵力を低減して、ステアリングホイール12を中立位置付近に戻し易くすることができる。
 この場合、前記切り戻し時におけるモータ24の駆動は、車速Vsが所定車速である極低車速Vs1以下のときに有効にしているので、SAT(セルフアライニングトルク)が弱い状態においても、切り戻し側での運転者の操舵力を低減することができる。
 なお、切り戻し時におけるモータ24の駆動電流Iaに、前記車両の操舵性に応じた所定の係数を乗ずることが好ましい。車両の操舵性は、個々の車両毎の負荷(車両の前軸荷重)の大きさによって変わるので、車両の操舵性に応じた係数をモータ24の駆動電流Iaに乗じることで、車両の操舵性に応じた最適なアシストが可能となる。車両の前軸加重が標準の前軸加重より大きい場合には、1より大きい係数とし、小さい場合には、1より小さい係数とすることが好ましい。この係数の乗算処理は、ステップS14の電流Iaの算出時に補正処理として行えばよい。
 なお、図15のセンタレシオRnを用いて説明したように、切り戻し回転角(切り戻し角度)θscに対応するステアリングホイール12の操舵角が中立位置に近づくにつれて、モータ24の電流Iaが小さくなるように制御することで、中立位置近傍においてアシスト電流Iaが略ゼロ値となり、過アシストを回避することができる。
 また、切り戻し時において、ステアリングホイール12の操舵角が中立位置に達した場合には、増加してきた切り戻し回転角θscをリセットすることで、以降の切り込み方向へのアシストを図5のベースアシスト特性102により適切に行うことができる。
[実施形態及び第1~第3実施例による運転者の操舵力と、トルクセンサ20が正常な場合の運転者の操舵力と、アシスト制御がない場合の操舵力(手動操舵による操舵力)との概略的な比較]
 例えば、車速VsがVs=30[km/h]程度の速度で交差点を右折するようなステアリングホイール12の操舵操作をしたときに、電動パワーステアリング装置10のトルクセンサ20が正常な場合(ステップS21の通常制御)には、ステアリングホイール12の操舵角θs[deg]に対する運転者の操舵力(操舵トルク)は、図16中、最も低レベルの一点鎖線で示す操舵トルク特性(操舵力特性)132に示すようになる。
 一方、トルクセンサ20が異常となって暫定的なアシスト制御をしなかった場合、すなわち手動操舵の場合には、図16の破線で示す操舵トルク特性130に示すように、運転者の操舵力(操舵トルク)が、正常な場合の操舵トルク特性132の4倍程度(推定操舵角θscが150[deg]程度時)の大きさが必要になってしまう。
 これに対して、上述した実施形態、実施例1~3によるレゾルバ58等(操舵角センサ19が正常であれば操舵角センサ19)を利用した暫定的なアシスト制御(レゾルバアシスト制御ともいう。)によれば、正常な場合の操舵トルク特性132の2.5倍程度の操舵力(操舵トルク)の増加にとどめることができる操舵トルク特性134とされる。換言すれば、レゾルバアシスト制御による操舵トルク特性134は、操舵アシスト制御を行わない場合の手動操舵の操舵トルク特性130に比較して、不感帯対応操舵角θdを上回る推定操舵角θscの大部分の範囲で、概ね、30[%]程度、アシスト力を低減することができる。
 なお、この発明は、上述した実施形態、第1実施例~第3実施例に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。

Claims (9)

  1.  運転者が車両を操縦するために操作する操作子(12)と、
     前記車両の操舵系(18)に発生するトルクを検出するトルク検出部(20)と、
     前記車両の車速を検出する車速検出部(86)と、
     前記操舵系(18)の回転軸(42)にアシストトルク(Ta)を付与するモータ(24)と、
     前記操舵系(18)の回転角を検出する回転角検出部(58)と、
     前記トルク検出部(20)により検出された前記トルクに基づいて前記モータ(24)を駆動する電流を制御するモータ制御部(84)と、
     を備える電動パワーステアリング装置(10)であって、
     前記トルク検出部(20)に異常が発生したかどうかを検出する異常検出部(80)と、
     前記回転角検出部(58)が検出した前記回転角と前記モータ(24)を駆動する前記電流との関係を特性(102)として記憶した記憶部(78)と、を備え
     前記モータ制御部(84)は、
     前記異常検出部(80)により前記トルク検出部(20)の異常が検出されたとき、前記回転角検出部(58)により検出されている前記回転角と前記特性(102)とに基づいて前記モータ(24)を駆動し、駆動する際、前記回転角に基づき算出される回転角速度の絶対値(|θsc´|)が所定値(θsc´tha)以下になったときに、前記モータ(24)を駆動する電流を低減する処理を開始し、前記回転角速度の絶対値(|θsc´|)が所定値以下の状況が所定時間(Tkth)継続する場合には、前記電流を低減する処理を中断する
     ことを特徴とする電動パワーステアリング装置。
  2.  請求項1記載の電動パワーステアリング装置において、
     前記モータ制御部(84)は、
     前記電流を低減する処理を中断した後、前記中断したときの前記回転角の絶対値が所定角度以上小さくなったときには、電流を低減する処理の中断を再開する
     ことを特徴とする電動パワーステアリング装置。
  3.  運転者が車両を操縦するために操作する操作子(12)と、
     前記車両の操舵系(18)に発生するトルクを検出するトルク検出部(20)と、
     前記車両の車速を検出する車速検出部(86)と、
     前記操舵系(18)の回転軸(42)にアシストトルク(Ta)を付与するモータ(24)と、
     前記操舵系(18)の回転角を検出する回転角検出部(58)と、
     前記トルク検出部(20)により検出された前記トルクに基づいて前記モータ(24)を駆動する電流を制御するモータ制御部(84)と、
     を備える電動パワーステアリング装置(10)であって、
     前記トルク検出部(20)に異常が発生したかどうかを検出する異常検出部(80)と、
     前記回転角検出部(58)が検出した前記回転角と前記モータ(24)を駆動する前記電流との関係を特性(102)として記憶した記憶部(78)と、を備え
     前記モータ制御部(84)は、
     前記異常検出部(80)により前記トルク検出部(20)の異常が検出されたとき、前記回転角検出部(58)により検出されている前記回転角と前記特性(102)とに基づいて前記モータ(24)を駆動し、駆動する際、前記回転角に基づき算出される回転角速度が大きくなるに従い前記モータ(24)を駆動する電流を小さくするよう制御する
     ことを特徴とする電動パワーステアリング装置。
  4.  請求項3記載の電動パワーステアリング装置において、
     前記モータ制御部(84)は、
     前記回転角検出部(58)により検出されている前記回転角速度を、前記車速が所定車速より小さくなるに従い小さくなるように補正し、補正回転角速度と前記特性(102)とに基づいて、前記モータ(24)を駆動するようにした
     ことを特徴とする電動パワーステアリング装置。
  5.  運転者が車両を操縦するために操作する操作子(12)と、
     前記車両の操舵系(18)に発生するトルクを検出するトルク検出部(20)と、
     前記車両の車速を検出する車速検出部(86)と、
     前記操舵系(18)の回転軸(42)にアシストトルク(Ta)を付与するモータ(24)と、
     前記操舵系(18)の回転角を検出する回転角検出部(58)と、
     前記トルク検出部(20)により検出された前記トルクに基づいて前記モータ(24)を駆動する電流を制御するモータ制御部(84)と、
     を備える電動パワーステアリング装置(10)であって、
     前記トルク検出部(20)に異常が発生したかどうかを検出する異常検出部(80)と、
     前記回転角検出部(58)が検出した前記回転角と前記モータ(24)を駆動する前記電流との関係を特性(102)として記憶した記憶部(78)と、を備え
     前記モータ制御部(84)は、
     前記異常検出部(80)により前記トルク検出部(20)の異常が検出されたとき、前記操作子(12)の操舵角が中立位置に近づく方向に変化する切り戻し時において、切り戻し角度が残った状態で切り込み方向のアシスト電流がゼロ値近傍となったときに前記回転角検出部(58)により検出されている前記回転角を基準角度として切り戻し回転角を検出し、
     前記切り戻し回転角と前記特性(102)とに基づき、前記モータ(24)を駆動する
     ことを特徴とする電動パワーステアリング装置。
  6.  請求項5記載の電動パワーステアリング装置において、
     前記切り戻し時における前記モータ(24)の駆動は、前記車速が所定車速以下のときに有効とする
     ことを特徴とする電動パワーステアリング装置。
  7.  請求項5記載の電動パワーステアリング装置において、
     前記切り戻し時における前記モータ(24)の駆動電流に、前記車両の操舵性に応じた所定の係数を乗ずる
     ことを特徴とする電動パワーステアリング装置。
  8.  請求項5記載の電動パワーステアリング装置において、
     前記切り戻し時において、前記操作子(12)の操舵角が中立位置に近づくにつれて前記モータ(24)の電流を小さくする
     ことを特徴とする電動パワーステアリング装置。
  9.  請求項5記載の電動パワーステアリング装置において、
     前記切り戻し時において、前記操作子(12)の操舵角が中立位置に達した場合には、前記切り戻し回転角をリセットする
     ことを特徴とする電動パワーステアリング装置。
PCT/JP2012/050045 2011-01-07 2012-01-05 電動パワーステアリング装置 WO2012093679A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/977,982 US9266559B2 (en) 2011-01-07 2012-01-05 Electric power steering device
CN201280004702.6A CN103298686B (zh) 2011-01-07 2012-01-05 电动助力转向装置
EP12732494.5A EP2662266B1 (en) 2011-01-07 2012-01-05 Electric power steering device
BR112013017312A BR112013017312A2 (pt) 2011-01-07 2012-01-05 dispositivo de direcionamento de energia elétrica

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011002563A JP5427796B2 (ja) 2011-01-07 2011-01-07 電動パワーステアリング装置
JP2011002565A JP5416722B2 (ja) 2011-01-07 2011-01-07 電動パワーステアリング装置
JP2011-002563 2011-01-07
JP2011-002564 2011-01-07
JP2011002564A JP5427797B2 (ja) 2011-01-07 2011-01-07 電動パワーステアリング装置
JP2011-002565 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093679A1 true WO2012093679A1 (ja) 2012-07-12

Family

ID=46457530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050045 WO2012093679A1 (ja) 2011-01-07 2012-01-05 電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US9266559B2 (ja)
EP (1) EP2662266B1 (ja)
CN (1) CN103298686B (ja)
BR (1) BR112013017312A2 (ja)
WO (1) WO2012093679A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5617455B2 (ja) * 2010-09-06 2014-11-05 株式会社ジェイテクト 電動パワーステアリング装置
WO2013052540A2 (en) * 2011-10-04 2013-04-11 Parker-Hannifin Corporation Method and system for controlling electric actuators
JP5880574B2 (ja) * 2011-12-12 2016-03-09 トヨタ自動車株式会社 操舵装置
JP2014075868A (ja) * 2012-10-03 2014-04-24 Ntn Corp 電気自動車のモータ異常検出装置
US9731752B2 (en) * 2013-07-26 2017-08-15 Nissan Motor Co., Ltd. Steering control device for vehicle and steering control method for vehicle
JP6220688B2 (ja) * 2014-02-04 2017-10-25 Kyb株式会社 電動パワーステアリング装置
US9199667B2 (en) * 2014-03-14 2015-12-01 Mitsubishi Electric Research Laboratories, Inc. System and method for semi-autonomous driving of vehicles
CN106458253B (zh) * 2014-03-19 2018-11-30 日立汽车系统株式会社 电动动力转向装置以及电动动力转向装置的控制装置
JP6098764B2 (ja) * 2014-11-07 2017-03-29 日本精工株式会社 電動パワーステアリング装置
US11292512B2 (en) * 2014-12-22 2022-04-05 Trw Limited Electrical power assisted steering system
WO2016132878A1 (ja) * 2015-02-19 2016-08-25 日本精工株式会社 車両用舵角検出装置及びそれを搭載した電動パワーステアリング装置
JP6369399B2 (ja) * 2015-06-26 2018-08-08 株式会社デンソー センサ出力補正装置
CN104960570B (zh) * 2015-07-13 2017-09-29 厦门理工学院 一种基于gmm的转向控制器及叉车主动后轮转向系统
WO2017045729A1 (en) * 2015-09-18 2017-03-23 Thyssenkrupp Presta Ag Limp aside steering assist with estimated motor current
KR102376065B1 (ko) * 2015-10-12 2022-03-18 현대모비스 주식회사 전동식 조향 장치의 제어 방법
JP6467670B2 (ja) * 2015-11-04 2019-02-13 日立オートモティブシステムズ株式会社 パワーステアリング装置、およびパワーステアリング装置の制御装置
JP6222621B2 (ja) * 2015-11-06 2017-11-01 マツダ株式会社 車両用挙動制御装置
KR20170127209A (ko) * 2016-05-11 2017-11-21 주식회사 만도 운전 지원 장치 및 그의 조향 제어 방법
KR20180042907A (ko) 2016-10-19 2018-04-27 현대자동차주식회사 전동식 조향 시스템의 제어 방법
JP6528786B2 (ja) * 2017-01-13 2019-06-12 トヨタ自動車株式会社 車両の運転支援装置
JP6489135B2 (ja) 2017-01-13 2019-03-27 トヨタ自動車株式会社 車両の運転支援装置
US10807636B2 (en) * 2017-02-20 2020-10-20 Nsk Ltd. Electric power steering apparatus
US11273864B2 (en) * 2017-11-02 2022-03-15 Jtekt Corporation Steering control device
JP7131345B2 (ja) * 2017-12-14 2022-09-06 トヨタ自動車株式会社 転舵システム
CN108860294B (zh) * 2018-06-19 2021-04-06 中国第一汽车股份有限公司 一种电动助力转向系统主动回正控制方法及其系统
JP7051611B2 (ja) * 2018-06-28 2022-04-11 本田技研工業株式会社 車両制御装置
WO2021213618A1 (en) * 2020-04-20 2021-10-28 Thyssenkrupp Presta Ag Degradation concept for a steer-by-wire steering system
CN114162215B (zh) * 2021-12-30 2023-03-14 联创汽车电子有限公司 Eps死区力矩补偿方法和模块

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696389B2 (ja) 1986-10-29 1994-11-30 株式会社日立製作所 電動式パワ−ステアリング制御装置
JP2830992B2 (ja) 1995-09-01 1998-12-02 本田技研工業株式会社 電動パワーステアリング装置
JP3055752B2 (ja) 1994-06-13 2000-06-26 本田技研工業株式会社 操舵トルクセンサ
JP2001163237A (ja) * 1999-12-06 2001-06-19 Mitsubishi Agricult Mach Co Ltd 作業車輛におけるパワーステアリング装置
JP2004009857A (ja) * 2002-06-05 2004-01-15 Mitsubishi Motors Corp 車両用操舵制御装置
JP2004114755A (ja) * 2002-09-24 2004-04-15 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004338562A (ja) * 2003-05-15 2004-12-02 Toyoda Mach Works Ltd 電動パワーステアリング制御装置
JP3964414B2 (ja) 2004-08-25 2007-08-22 本田技研工業株式会社 磁歪式トルクセンサと電動ステアリング装置
JP4057552B2 (ja) 2004-05-10 2008-03-05 本田技研工業株式会社 トルクセンサとそのトルクセンサを用いた電動パワーステアリング装置
JP2008132836A (ja) * 2006-11-28 2008-06-12 Jtekt Corp 電動パワーステアリング装置
JP2010162954A (ja) * 2009-01-13 2010-07-29 Jtekt Corp 電動パワーステアリング装置
JP2010274842A (ja) * 2009-05-29 2010-12-09 Jtekt Corp 電動パワーステアリング装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128719B2 (ja) * 2000-02-25 2008-07-30 三菱電機株式会社 電動式パワーステアリング制御装置及びその制御方法
JP3560024B2 (ja) 2000-03-13 2004-09-02 本田技研工業株式会社 電動パワーステアリング装置
JP2001341658A (ja) * 2000-03-29 2001-12-11 Toyoda Mach Works Ltd 電動パワーステアリング装置の制御装置
JP4019873B2 (ja) * 2001-10-12 2007-12-12 日産自動車株式会社 舵角比制御装置
WO2004106143A1 (ja) * 2003-05-30 2004-12-09 Nsk Ltd. 電動パワーステアリング装置の制御装置
JP2006143151A (ja) * 2004-11-24 2006-06-08 Honda Motor Co Ltd 電動パワーステアリング装置
WO2007139030A1 (ja) * 2006-05-31 2007-12-06 Nsk Ltd. 電動式パワーステアリング装置
EP1892172B1 (en) * 2006-08-21 2009-09-16 JTEKT Corporation Steering apparatus
JP4419997B2 (ja) * 2006-08-28 2010-02-24 トヨタ自動車株式会社 電動パワーステアリング装置
JP2009269540A (ja) * 2008-05-09 2009-11-19 Jtekt Corp 電動パワーステアリング装置
CN102762435B (zh) * 2010-02-25 2015-09-30 本田技研工业株式会社 电动动力转向装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696389B2 (ja) 1986-10-29 1994-11-30 株式会社日立製作所 電動式パワ−ステアリング制御装置
JP3055752B2 (ja) 1994-06-13 2000-06-26 本田技研工業株式会社 操舵トルクセンサ
JP2830992B2 (ja) 1995-09-01 1998-12-02 本田技研工業株式会社 電動パワーステアリング装置
JP2001163237A (ja) * 1999-12-06 2001-06-19 Mitsubishi Agricult Mach Co Ltd 作業車輛におけるパワーステアリング装置
JP2004009857A (ja) * 2002-06-05 2004-01-15 Mitsubishi Motors Corp 車両用操舵制御装置
JP2004114755A (ja) * 2002-09-24 2004-04-15 Koyo Seiko Co Ltd 電動パワーステアリング装置
JP2004338562A (ja) * 2003-05-15 2004-12-02 Toyoda Mach Works Ltd 電動パワーステアリング制御装置
JP4057552B2 (ja) 2004-05-10 2008-03-05 本田技研工業株式会社 トルクセンサとそのトルクセンサを用いた電動パワーステアリング装置
JP3964414B2 (ja) 2004-08-25 2007-08-22 本田技研工業株式会社 磁歪式トルクセンサと電動ステアリング装置
JP2008132836A (ja) * 2006-11-28 2008-06-12 Jtekt Corp 電動パワーステアリング装置
JP2010162954A (ja) * 2009-01-13 2010-07-29 Jtekt Corp 電動パワーステアリング装置
JP2010274842A (ja) * 2009-05-29 2010-12-09 Jtekt Corp 電動パワーステアリング装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662266A4 *

Also Published As

Publication number Publication date
CN103298686A (zh) 2013-09-11
EP2662266B1 (en) 2015-11-25
EP2662266A4 (en) 2014-08-27
US20130304327A1 (en) 2013-11-14
BR112013017312A2 (pt) 2016-10-04
US9266559B2 (en) 2016-02-23
CN103298686B (zh) 2016-02-17
EP2662266A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2012093679A1 (ja) 電動パワーステアリング装置
JP5635071B2 (ja) 電動パワーステアリング装置
JP5327331B2 (ja) 車両の電動パワーステアリング装置
US7628247B2 (en) Electric power steering device equipped with automatic steering function
CN111661143B (zh) 转向控制装置和用于控制转向系统的方法
JP2003175850A (ja) 電動パワーステアリング装置の制御装置
JP5416722B2 (ja) 電動パワーステアリング装置
CN107176201B (zh) 转向操纵控制装置
JP4959217B2 (ja) 電動パワーステアリング装置
JP4959212B2 (ja) 電動パワーステアリング装置
JP2004338562A (ja) 電動パワーステアリング制御装置
EP3854663B1 (en) Steering control device
EP3812243A1 (en) Steering control device
JP2008074269A (ja) 車両のロールオーバ制御装置
JP2010202062A (ja) 電動パワーステアリング装置
JP2010184547A (ja) 電動パワーステアリング装置
JP5427796B2 (ja) 電動パワーステアリング装置
JP5427797B2 (ja) 電動パワーステアリング装置
JP5050402B2 (ja) 車両用操舵制御装置
JP3884238B2 (ja) 電動パワーステアリング装置
CN114312983A (zh) 转向控制装置
JP2008062686A (ja) 電動パワーステアリング制御装置及びその制御方法
JP2015047878A (ja) 電動パワーステアリング装置
JP4635648B2 (ja) 車両用操舵装置
JP2009046008A (ja) 車両用操舵装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280004702.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012732494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13977982

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1301003793

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013017312

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013017312

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130704