WO2012090833A1 - 燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法 - Google Patents

燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法 Download PDF

Info

Publication number
WO2012090833A1
WO2012090833A1 PCT/JP2011/079703 JP2011079703W WO2012090833A1 WO 2012090833 A1 WO2012090833 A1 WO 2012090833A1 JP 2011079703 W JP2011079703 W JP 2011079703W WO 2012090833 A1 WO2012090833 A1 WO 2012090833A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
hydrocarbon
unit
hydrogen
fuel cell
Prior art date
Application number
PCT/JP2011/079703
Other languages
English (en)
French (fr)
Inventor
菅野 秀昭
貴美香 石月
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2012090833A1 publication Critical patent/WO2012090833A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell hydrogen production system, a fuel cell system, a hydrocarbon fuel deionization method, and a hydrogen production method.
  • a gas containing hydrogen as a main component is used, and natural gas, LPG, city gas, naphtha, kerosene and other hydrocarbons are used as the raw material.
  • a pipeline that supplies city gas or the like may be damaged by a crack or the like due to, for example, an earthquake or deterioration.
  • the groundwater resulting in mixed in hydrocarbon fuel in the pipeline When water containing minerals such as groundwater is supplied to the fuel cell system, the minerals poison the reforming catalyst and the electrode catalyst, and the hydrogen production efficiency and the power generation efficiency of the fuel cell are reduced.
  • the present invention provides a fuel cell hydrogen production system and fuel cell system that can efficiently remove ions derived from moisture in hydrocarbon fuel, a hydrocarbon fuel deionization method,
  • An object is to provide a manufacturing method.
  • a hydrogen production system for a fuel cell is a hydrogen production system for a fuel cell, and has an electric conductivity of 0.05 to 500 ⁇ S / cm and water and sulfur compounds.
  • a fuel supply unit that supplies a hydrocarbon-based fuel containing hydrogen to a subsequent stage, a desulfurization unit that includes a desulfurization catalyst that desulfurizes the hydrocarbon-based fuel, and a hydrogen generation unit that generates hydrogen from the hydrocarbon-based fuel.
  • Hydrocarbon fuel supplied from the fuel supply unit or the hydrocarbon fuel passed through the desulfurization unit and the porous ion adsorbent are provided between the desulfurization unit and the desulfurization unit and the hydrogen generation unit.
  • a deionizing part is provided.
  • the electrical conductivity of moisture contained in hydrocarbon fuel can be measured in accordance with JIS K0130: 2008 “General Rules for Electrical Conductivity Measurement”.
  • the deionization unit is provided between the fuel supply unit and the desulfurization unit or between the desulfurization unit and the hydrogen generation unit. Since it is possible to efficiently remove ions in the water of the hydrocarbon fuel containing water having conductivity, it is possible to sufficiently prevent the reforming catalyst from being poisoned by mixing of water containing minerals such as groundwater. .
  • the hydrogen production system can include the deionization unit between the fuel supply unit and the desulfurization unit.
  • the porous ion adsorbent can contain zeolite in terms of deionization performance, long life, and low cost.
  • the hydrocarbon-based fuel can contain a hydrocarbon compound having 4 or less carbon atoms from the viewpoint of availability of the fuel.
  • a fuel cell system according to one aspect of the present invention includes a hydrogen production system according to one aspect of the present invention.
  • a hydrocarbon fuel containing water having an electric conductivity of 0.05 to 500 ⁇ S / cm is brought into contact with a porous ion adsorbent.
  • the hydrocarbon fuel deionization method can efficiently remove ions in moisture. Thereby, even if it is a case where hydrocarbon fuel contains the water
  • the porous ion adsorbent can contain zeolite in terms of deionization performance, long life, and low cost.
  • the hydrocarbon-based fuel may contain a hydrocarbon compound having 4 or less carbon atoms from the viewpoint of availability of the fuel.
  • the hydrogen production method obtains hydrogen by reforming a hydrocarbon fuel deionized by the deionization method according to one aspect of the present invention.
  • the deionized hydrocarbon fuel can be desulfurized and reformed to obtain hydrogen.
  • the hydrogen production system and fuel cell system for fuel cells which can remove efficiently the ion derived from the water
  • FIG. 1 is a conceptual diagram showing an example of a fuel cell system according to an embodiment of the present invention.
  • the fuel cell system 1 includes a fuel supply unit 2, a deionization unit 15, a desulfurization unit 3, a hydrogen generation unit 4, a cell stack 5, an offgas combustion unit 6, a water supply unit 7, and a water vaporization unit 8. And an oxidant supply unit 9, a power conditioner 10, and a control unit 11, and each unit is connected by piping (not shown) in the flow shown in FIG.
  • the fuel supply unit 2 supplies hydrocarbon fuel to the deionization unit 15.
  • the supplied hydrocarbon fuel contains water having an electric conductivity of 0.05 to 500 ⁇ S / cm.
  • the hydrocarbon-based fuel a compound containing carbon and hydrogen (may contain other elements such as oxygen) in the molecule or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthesized from syngas. A fuel-derived one or a biomass-derived one can be used as appropriate.
  • hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil.
  • alcohols include methanol and ethanol.
  • ethers include dimethyl ether.
  • Biofuels include biogas, bioethanol, biodiesel, and biojet.
  • a gas containing methane as a main component for example, city gas, town gas, natural gas, biogas, etc.
  • LPG supplied through a pipeline
  • the electrical conductivity of moisture in the hydrocarbon fuel is 0.05 to 500 ⁇ S / cm.
  • moisture ions include magnesium ions, calcium ions, vanadium ions, potassium ions, sodium ions, iron ions, and copper ions.
  • the hydrocarbon fuel contains a hydrocarbon compound having 4 or less carbon atoms.
  • the hydrocarbon compound having 4 or less carbon atoms include saturated aliphatic hydrocarbons such as methane, ethane, propane, and butane, and unsaturated aliphatic hydrocarbons such as ethylene, propylene, and butene.
  • the hydrocarbon-based fuel is preferably a gas containing a hydrocarbon compound having 4 or less carbon atoms, that is, a gas containing one or more of methane, ethane, ethylene, propane, propylene, butane and butene.
  • gas containing a C4 or less hydrocarbon compound the gas containing 80 volume% or more of methane is preferable, and the gas containing 85 volume% or more of methane is more preferable.
  • the hydrocarbon fuel generally contains a sulfur compound.
  • the sulfur compound include a sulfur compound originally mixed in hydrocarbons and the like and a compound contained in an odorant for detecting gas leakage.
  • sulfur compounds originally mixed in hydrocarbons include hydrogen sulfide (H 2 S), carbonyl sulfide (COS), carbon disulfide (CS 2 ), and the like.
  • H 2 S hydrogen sulfide
  • COS carbonyl sulfide
  • CS 2 carbon disulfide
  • alkyl sulfide, mercaptan alone or a mixture thereof is used.
  • DES diethyl sulfide
  • DMS dimethyl sulfide
  • EMS ethyl methyl sulfide
  • TBM tert-butyl mercaptan
  • isopropyl mercaptan dimethyl disulfide (DMDS), diethyl disulfide (DEDS) and the like
  • the sulfur compound is contained in an amount of about 0.1 to 10 mass ppm in terms of sulfur atom based on the total amount of hydrocarbon fuel.
  • the hydrocarbon-based fuel may contain components other than the water and sulfur compounds as long as they do not adversely affect the characteristics of the fuel cell system.
  • the hydrocarbon fuel supplied from the fuel supply unit 2 is supplied to the deionization unit 15.
  • the deionization part 15 has a porous ion adsorbent, and the porous ion adsorbent adsorbs moisture-derived ions contained in the hydrocarbon fuel.
  • the temperature of the deionization part is preferably 0 to 100 ° C., more preferably 0 to 70 ° C., and further preferably 0 to 30 ° C.
  • the temperature of the deionization part is particularly preferably room temperature.
  • the porous ion adsorbent it is preferable to include zeolite, styrene-based cation exchange resin, etc. Among them, it is preferable to include zeolite having excellent adsorptivity.
  • ion exchange resin is used as a method for removing ions such as minerals derived from moisture in hydrocarbon fuels, it tends to increase the running cost of the fuel cell system and increase the size of the device. In this case, hydrogen can be stably supplied with a low-cost and compact apparatus.
  • Zeolite includes A-type zeolite, ZSM-5-type zeolite, mordenite-type zeolite, X-type zeolite, Y-type zeolite, VPI-5, MCM-41 and the like. These zeolites preferably do not contain metals.
  • the styrene cation exchange resin is not particularly limited as long as it can capture ions derived from moisture contained in the hydrocarbon fuel, but various commercially available ion exchange resins can be used.
  • the amount of each zeolite or styrene-based cation exchange resin used can be appropriately set according to the type and concentration of water-derived ions contained in the hydrocarbon fuel.
  • the hydrocarbon fuel from which water-derived ions have been removed in the deionization unit 15 is desulfurized in the desulfurization unit 3.
  • the sulfur compound contained in the hydrocarbon-based fuel is removed by the desulfurization catalyst in the desulfurization unit 3 in order to poison the reforming catalyst in the hydrogen generation unit 4 and the electrode catalyst in the cell stack 5.
  • the desulfurization catalyst a commonly used desulfurization catalyst can be used, and it is preferable to use a desulfurization catalyst containing a zeolite carrying a metal such as Ag, Cu or Zn, or a desulfurization catalyst containing an active metal such as Ni, Zn or Cu.
  • the desulfurization part 3 has Ag / X-type zeolite
  • the hydrocarbon-based fuel from which ions have been removed in the deionization part 15 and the Ag / X-type zeolite are brought into contact at 65 to 105 ° C.
  • the desulfurization section 3 has a desulfurization catalyst containing an active metal such as Ni, Zn, or Cu
  • the hydrocarbon-based fuel from which ions are removed in the deionization section 15 and the desulfurization catalyst are subjected to a condition of 200 to 300 ° C. It is preferable to contact with.
  • Desulfurization under such temperature conditions can be performed by, for example, the desulfurization unit 3 having a heating unit.
  • the hydrocarbon fuel desulfurized by the desulfurization unit 3 is supplied to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 constitutes a hydrogen production system 20 together with the fuel supply unit 2, the deionization unit 15, and the desulfurization unit 3.
  • the hydrogen generator 4 includes a reformer that reforms the hydrocarbon fuel after deionization and desulfurization using a reforming catalyst, and generates a hydrogen-rich gas.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the reforming temperature is usually 200 to 800 ° C., preferably 300 to 700 ° C.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required by the cell stack 5.
  • the hydrogen generator 4 is in a hydrogen rich gas.
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the reforming catalyst is not particularly limited, and a general reforming catalyst can be used.
  • a reforming catalyst in which a porous inorganic oxide selected from alumina, silica and the like is loaded with a metal selected from Group VIII metals such as nickel, cobalt, iron, ruthenium, rhodium, iridium and platinum is listed. be able to.
  • water vapor is supplied from the water vaporization unit 8 in order to reform the hydrocarbon fuel.
  • the water vapor is preferably generated by heating the water supplied from the water supply unit 7 in the water vaporization unit 8 and vaporizing it. Heating of water in the water vaporization unit 8 may use heat generated in the fuel cell system 1 such as recovering heat of the hydrogen generation unit 4, heat of the off-gas combustion unit 6, or exhaust gas. Moreover, you may heat water using other heat sources, such as a heater and a burner separately.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • Hydrogen rich gas is supplied from the hydrogen production system 20 to the fuel cell system 1 through a pipe (not shown) connecting the hydrogen production system 20 and the cell stack 5. Electric power is generated in the cell stack 5 using this hydrogen-rich gas and an oxidizing agent.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited.
  • the polymer electrolyte fuel cell (PEFC), the solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell), the phosphoric acid fuel cell (PAFC). ), Molten carbonate fuel cell (MCFC: Molten Carbonate Fuel Cell), and other types can be employed. It should be noted that the components shown in FIG. 1 may be omitted as appropriate according to the type of cell stack 5, the reforming method, and the like.
  • the oxidant is supplied from the oxidant supply unit 9 through a pipe connecting the oxidant supply unit 9 and the fuel cell system 1.
  • the oxidizing agent for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the fuel supply unit 2, the water supply unit 7, and the oxidant supply unit 9 are configured by, for example, a pump and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 includes, for example, a device that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface.
  • the control unit 11 is electrically connected to the fuel supply unit 2, the water supply unit 7, the oxidant supply unit 9, the power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • hydrogen can be stably supplied and power can be generated even when a hydrocarbon fuel containing water containing minerals such as groundwater is used.
  • the hydrogen production system and the fuel cell system according to the present embodiment can sufficiently suppress the increase in the size of the apparatus and the increase in running cost while having the above deionization function.
  • hydrocarbon fuel deionization method and hydrogen production method of this embodiment will be described.
  • a hydrocarbon fuel containing water having an electric conductivity of 0.05 to 500 ⁇ S / cm is brought into contact with a porous ion adsorbent.
  • hydrocarbon fuel containing water having an electric conductivity of 0.05 to 500 ⁇ S / cm examples include the hydrocarbon fuels described above.
  • Specific means for bringing the hydrocarbon-based fuel into contact with the porous ion adsorbent includes the fuel supply unit 2, the deionization unit 15, and the desulfurization unit 3 described above. That is, hydrocarbon fuel is supplied to the deionization unit 15 by the fuel supply unit 2, and ions derived from moisture contained in the hydrocarbon fuel are adsorbed and removed by the porous ion adsorbent. Thereafter, the hydrocarbon-based fuel from which ions are removed is supplied to the desulfurization unit 3, and the supplied hydrocarbon-based fuel is brought into contact with the desulfurization catalyst in the desulfurization unit 3 for desulfurization.
  • the hydrocarbon fuel deionized by the deionization method is reformed to generate hydrogen (hydrogen rich gas).
  • the reforming method is not particularly limited as described above, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the reforming temperature is usually 200 to 800 ° C., preferably 300 to 700 ° C.
  • a general reforming catalyst can be used as the reforming catalyst.
  • nickel, cobalt, iron, ruthenium, rhodium, iridium, a porous inorganic oxide selected from alumina, silica and the like can be used.
  • a reforming catalyst supporting a metal selected from Group VIII metals of the periodic table such as platinum is preferable.
  • the steam is supplied from the water vaporization unit 8 to the hydrogen generation unit 4.
  • the water vapor is preferably generated by heating the water supplied from the water supply unit 7 in the water vaporization unit 8 and vaporizing it.
  • moisture-derived ions contained in the hydrocarbon fuel can be efficiently removed. Thereby, even if it is a case where hydrocarbon fuel contains the water
  • the deionization unit 15 may be provided between the desulfurization unit 3 and the hydrogen generation unit 4. In this case, sulfur poisoning of the deionized part can be avoided.
  • a hydrogen production system and fuel cell system for a fuel cell including a deionization section that can efficiently remove ions derived from moisture in a hydrocarbon fuel, and desorption of a hydrocarbon fuel.
  • An ion method and a method for producing hydrogen can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 本発明の燃料電池用水素製造システムは、電気伝導度が0.05~500μS/cmの水分及び硫黄化合物を含む炭化水素系燃料を後段に供給する燃料供給部と、炭化水素系燃料を脱硫する脱硫触媒を有する脱硫部と、炭化水素系燃料から水素を発生させる水素発生部と、を有し、燃料供給部と脱硫部との間又は脱硫部と水素発生部との間に設けられ、燃料供給部から供給された炭化水素系燃料又は脱硫部を経た炭化水素系燃料と多孔性イオン吸着剤とを接触させる脱イオン部を備える。

Description

燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法
 本発明は、燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素の製造方法に関する。
 一般的に燃料電池用の燃料ガスとしては水素を主成分とするガスが用いられるが、その原料には天然ガス、LPG、都市ガス、ナフサ、灯油等の炭化水素などが用いられる。これら炭化水素を含む燃料を水蒸気とともに触媒上で高温処理する、酸素含有気体で部分酸化する、或いは水蒸気と酸素含有気体が共存する系において自己熱回収型の改質反応を行うことにより得られる水素が、燃料電池用の燃料水素として利用される(例えば、下記特許文献1を参照)。
 都市ガスを利用する場合、通常は、既設のパイプラインを通じて燃料電池が備える燃料製造装置にガスが供給される(例えば、下記特許文献2を参照)。
特開2008-115309号公報 特開平6-44998号公報
 ところで、都市ガスなどを供給するパイプラインは、例えば地震や劣化などにより亀裂などのダメージを受けることがある。このような場合、地下水などがパイプライン中の炭化水素燃料に混入してしまう可能性がある。地下水などのミネラル分を含有する水分が燃料電池システムに供給されると、ミネラル分が改質触媒や電極触媒を被毒してしまい、水素製造効率や燃料電池の発電効率が低下してしまう。
 そこで、本発明は、炭化水素系燃料中の水分由来のイオンを効率的に除去することが可能な燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の一側面に係る燃料電池用水素製造システムは、燃料電池用の水素製造システムであって、電気伝導度が0.05~500μS/cmの水分及び硫黄化合物を含む炭化水素系燃料を後段に供給する燃料供給部と、炭化水素系燃料を脱硫する脱硫触媒を有する脱硫部と、炭化水素系燃料から水素を発生させる水素発生部とを有し、燃料供給部と脱硫部との間又は脱硫部と水素発生部との間に設けられ、燃料供給部から供給された炭化水素系燃料又は脱硫部を経た炭化水素系燃料と多孔性イオン吸着剤とを接触させる脱イオン部を備える。
 炭化水素系燃料に含まれる水分の電気伝導度は、JIS K0130:2008「電気伝導率測定方法通則」に準拠して測定できる。
 本発明の一側面に係る水素製造システムによれば、上記脱イオン部が燃料供給部と脱硫部との間又は脱硫部と水素発生部との間に設けられていることにより、上記特定の電気伝導度を有する水分が含まれる炭化水素系燃料の水分中のイオンを効率よく除去することができることから、地下水などのミネラルを含む水の混入によって改質触媒が被毒されることを十分防止できる。
 本発明の一側面に係る水素製造システムは、燃料供給部と脱硫部との間に上記脱イオン部を備えることができる。
 上記多孔性イオン吸着剤は、脱イオン性能、長寿命、低コストの点で、ゼオライトを含むことができる。
 本発明の一側面に係る燃料電池用水素製造システムにおいて、燃料の入手容易性などの観点から、炭化水素系燃料が炭素数4以下の炭化水素化合物を含有することができる。
 本発明の一側面に係る燃料電池システムは、本発明の一側面に係る水素製造システムを備える。
 本発明の一側面に係る炭化水素系燃料の脱イオン方法は、電気伝導度が0.05~500μS/cmの水分が含まれる炭化水素系燃料と、多孔性イオン吸着剤と、を接触させる。
 本発明の一側面に係る炭化水素系燃料の脱イオン方法によれば、水分中のイオンを効率よく除去することができる。これにより、炭化水素系燃料が地下水などのミネラルを含む水分を含有する場合であっても、燃料電池システムの改質触媒や電極触媒が被毒されることを防止できる。
 上記多孔性イオン吸着剤は、脱イオン性能、長寿命、低コストの点で、ゼオライトを含むことができる。
 本発明の一側面に係る炭化水素系燃料の脱イオン方法において、燃料の入手容易性などの観点から、炭化水素系燃料が炭素数4以下の炭化水素化合物を含有してもよい。
 本発明の一側面に係る水素製造方法は、本発明の一側面に係る脱イオン方法により脱イオンされた炭化水素系燃料を改質して水素を得る。
 上記炭化水素系燃料が硫黄化合物を含む場合、脱イオンされた炭化水素系燃料を脱硫し、改質して水素を得ることができる。
 本発明によれば、炭化水素系燃料中の水分由来のイオンを効率的に除去することが可能な燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素の製造方法を提供することができる。
本発明の実施形態に係る燃料電池システムの一例を示す概念図である。
 以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 図1は、本発明の実施形態に係る燃料電池システムの一例を示す概念図である。燃料電池システム1は、燃料供給部2と、脱イオン部15と、脱硫部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水供給部7と、水気化部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えており、図1に示す流れで各部が配管(図示せず)で接続されている。
 燃料供給部2は、脱イオン部15へ炭化水素系燃料を供給する。供給される炭化水素系燃料は、電気伝導度が0.05~500μS/cmの水分を含む。ここで、炭化水素系燃料は、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料としては、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類としては、メタノール、エタノールが挙げられる。エーテル類としては、ジメチルエーテルが挙げられる。バイオ燃料としては、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。本実施形態においては、パイプラインで供給されメタンを主成分として含むガス(例えば、都市ガス(City gas)、タウンガス(Town gas)、天然ガス(Natural gas)、バイオガス等)又はLPGを好適に使用することができる。
 炭化水素系燃料における水分の電気伝導度は、0.05~500μS/cmである。また、水分のイオンとは、例えばマグネシウムイオン、カルシウムイオン、バナジウムイオン、カリウムイオン、ナトリウムイオン、鉄イオン、銅イオンなどが挙げられる。
 本実施形態においては、炭化水素系燃料が、炭素数4以下の炭化水素化合物を含むことが好ましい。炭素数4以下の炭化水素化合物としては、具体的には、メタン、エタン、プロパン、ブタンなどの飽和脂肪族炭化水素、エチレン、プロピレン、ブテンなどの不飽和脂肪族炭化水素が挙げられる。炭化水素系燃料は、炭素数4以下の炭化水素化合物を含むガス、すなわち、メタン、エタン、エチレン、プロパン、プロピレン、ブタン及びブテンのうちの1種以上を含むガスであることが好ましい。また、炭素数4以下の炭化水素化合物を含むガスとしては、メタンを80体積%以上含むガスが好ましく、メタンを85体積%以上含むガスがより好ましい。
 炭化水素系燃料には一般的に、硫黄化合物が含まれている。硫黄化合物としては、炭化水素類等にもともと混在している硫黄化合物や、ガス漏れ検知のための付臭剤に含まれている化合物が挙げられる。炭化水素類等にもともと混在している硫黄化合物としては、硫化水素(HS)、硫化カルボニル(COS)、二硫化炭素(CS)等が挙げられる。付臭剤としては、アルキルスルフィド、メルカプタンの単独又は混合物が用いられ、例えば、ジエチルスルフィド(DES)、ジメチルスルフィド(DMS)、エチルメチルスルフィド(EMS)、テトラヒドロチオフェン(THT)、tert-ブチルメルカプタン(TBM)、イソプロピルメルカプタン、ジメチルジスルフィド(DMDS)、ジエチルジスルフィド(DEDS)などが用いられる。硫黄化合物は、炭化水素系燃料の全量を基準とした硫黄原子換算濃度で0.1~10質量ppm程度含まれる。
 炭化水素系燃料には、上記水分、硫黄化合物以外の成分が、燃料電池システムの特性に悪影響を与えない範囲で含まれてもよい。
 燃料供給部2から供給された炭化水素系燃料は、脱イオン部15へ供給される。脱イオン部15は多孔性イオン吸着剤を有し、多孔性イオン吸着剤は炭化水素系燃料中に含まれる水分由来のイオンを吸着する。ここで、脱イオン部の温度は、0~100℃が好ましく、0~70℃がより好ましく、0~30℃がさらに好ましい。脱イオン部の温度は、特に好ましくは常温である。多孔性イオン吸着剤としては、ゼオライト、スチレン系陽イオン交換樹脂などを含むことが好ましく、この中でも吸着性に優れたゼオライトを含むことが好ましい。
 炭化水素系燃料中の水分由来のミネラルなどのイオンを除去する方法としてイオン交換樹脂を使用すると、燃料電池システムのランニングコストの増大や装置の大型化を招いてしまう傾向にあるが、ゼオライトを使用する場合、低コストかつコンパクトな装置で安定的に水素を供給することも可能となる。
 ゼオライトとしては、A型ゼオライト、ZSM-5型ゼオライト、モルデナイト型ゼオライト、X型ゼオライト、Y型ゼオライト、VPI-5、MCM-41等が挙げられる。これらのゼオライトは、金属を含まないものが好ましい。
 スチレン系陽イオン交換樹脂としては、炭化水素系燃料に含まれる水分由来のイオンを捕捉さえできれば特に制限されないが、市販のイオン交換樹脂を各種使用することができる。各ゼオライトまたはスチレン系陽イオン交換樹脂の使用量は炭化水素系燃料中に含まれる水分由来のイオンの種類及び濃度に応じて適宜設定することができる。
 脱イオン部15において水分由来のイオンが除去された炭化水素系燃料は、脱硫部3において脱硫される。炭化水素系燃料に含まれる硫黄化合物は、水素発生部4における改質触媒やセルスタック5における電極触媒を被毒するため、脱硫部3における脱硫触媒によって除去される。脱硫触媒は、通常用いられる脱硫触媒を使用でき、Ag、Cu、Zn等の金属を担持したゼオライトを含む脱硫触媒、Ni、Zn、Cuなどの活性金属を含む脱硫触媒が用いられることが好ましい。脱硫部3がAg/X型ゼオライトを有する場合には、脱イオン部15においてイオン除去された炭化水素系燃料と、Ag/X型ゼオライトとを65~105℃の条件で接触させることが好ましい。また、脱硫部3がNi、Zn又はCuなどの活性金属を含む脱硫触媒を有する場合には、脱イオン部15においてイオン除去された炭化水素系燃料と、脱硫触媒とを200~300℃の条件で接触させることが好ましい。このような温度条件での脱硫は、例えば加熱部を有する脱硫部3によって行うことができる。
 脱硫部3により脱硫された炭化水素系燃料は、水素発生部4へ供給される。水素発生部4は、燃料供給部2、脱イオン部15、脱硫部3とともに水素製造システム20を構成する。水素発生部4は、脱イオン及び脱硫後の炭化水素系燃料を改質触媒によって改質する改質器を有し、水素リッチガスを発生させる。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。また、改質温度は通常200~800℃、好ましくは300~700℃である。なお、水素発生部4は、セルスタック5が要求する水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)やリン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。
 改質触媒は、特に限定されるものではなく、一般的な改質触媒を使用することができる。例えば、アルミナ、シリカなどから選ばれる多孔質無機酸化物に、ニッケル、コバルト、鉄、ルテニウム、ロジウム、イリジウム、白金などの周期律表第VIII族金属から選ばれる金属を担持した改質触媒を挙げることができる。
 また、水素発生部4においては、炭化水素系燃料を改質するために水蒸気を水気化部8から供給されることが好ましい。水蒸気は、水供給部7から供給される水を水気化部8において加熱し、気化させることによって生成されることが好ましい。水気化部8における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。
 燃料電池システム1には、水素製造システム20とセルスタック5をつなぐ配管(図示せず)を通じて、水素製造システム20から水素リッチガスが供給される。この水素リッチガスと酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類や改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。
 酸化剤は、酸化剤供給部9と燃料電池システム1をつなぐ配管を通じて、酸化剤供給部9から供給される。酸化剤としては、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。また、燃料供給部2、水供給部7、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、燃料供給部2、水供給部7、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。
 以上、本実施形態の水素製造システム及び燃料電池システムによれば、地下水などのミネラルを含む水分を含有する炭化水素系燃料を使用しても水素の安定供給及び発電をすることができる。また、本実施形態の水素製造システム及び燃料電池システムは上記の脱イオン機能を有しながらも、装置の大型化、ランニングコストの増大が十分抑制されたものになり得る。
 次に、本実施形態の炭化水素系燃料の脱イオン方法及び水素の製造方法について説明する。本実施形態の炭化水素系燃料の脱イオン方法は、電気伝導度が0.05~500μS/cmの水分を含む炭化水素系燃料と、多孔性イオン吸着剤と、を接触させる。
 電気伝導度が0.05~500μS/cmの水分を含む炭化水素系燃料としては、上述した炭化水素系燃料が挙げられる。
 炭化水素系燃料を、多孔性イオン吸着剤に接触させる具体的な手段としては、上述した燃料供給部2、脱イオン部15及び脱硫部3が挙げられる。すなわち、燃料供給部2によって炭化水素系燃料を脱イオン部15に供給し、炭化水素系燃料中に含まれる水分由来のイオンを多孔性イオン吸着剤に吸着させて除去する。その後、イオンが除去された炭化水素系燃料を脱硫部3に供給し、供給された炭化水素系燃料を脱硫部3における脱硫触媒と接触させ脱硫する。
 本実施形態の水素の製造方法は、上記脱イオン方法により脱イオンされた炭化水素系燃料を改質し、水素(水素リッチガス)を発生させる。改質方式は、上述のように特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。改質温度は通常200~800℃、好ましくは300~700℃である。
 改質触媒は、上述のとおり、一般的な改質触媒を使用することができ、例えば、アルミナ、シリカなどから選ばれる多孔質無機酸化物に、ニッケル、コバルト、鉄、ルテニウム、ロジウム、イリジウム、白金などの周期律表第VIII族金属から選ばれる金属を担持した改質触媒であることが好ましい。
 また、改質においては、燃料を改質するために水蒸気が必要であることから、水気化部8から水素発生部4に水蒸気が供給されることが好ましい。水蒸気は、水供給部7から供給される水を水気化部8において加熱し、気化させることによって生成されることが好ましい。
 以上、本実施形態の炭化水素系燃料の脱イオン方法によれば、炭化水素系燃料中に含まれる水分由来のイオンを効率よく除去することができる。これにより、炭化水素系燃料が地下水などのミネラルを含む水分を含有する場合であっても、燃料電池システムの改質触媒や電極触媒が被毒されることを防止できる。また、本実施形態の水素の製造方法によれば、上記脱イオン方法により脱イオンされた炭化水素系燃料を改質し、低コストかつコンパクトな装置で安定的に水素を供給することも可能となる。
 なお、以上の説明は、本発明の一実施形態についての説明であり、本発明を限定するものではない。例えば、脱イオン部15が、脱硫部3と水素発生部4の間に設けられていてもよい。この場合、脱イオン部の硫黄被毒を回避することができる。
 本発明によれば、炭化水素系燃料中の水分由来のイオンを効率的に除去することが可能な脱イオン部を備える燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素の製造方法を提供することができる。
 1…燃料電池システム、2…燃料供給部、3…脱硫部、4…水素発生部、5…セルスタック、15…脱イオン部、20…水素製造システム。
 

Claims (10)

  1.  燃料電池用の水素製造システムであって、
     電気伝導度が0.05~500μS/cmの水分及び硫黄化合物を含む炭化水素系燃料を後段に供給する燃料供給部と、
     炭化水素系燃料を脱硫する脱硫触媒を有する脱硫部と、
     炭化水素系燃料から水素を発生させる水素発生部と、を有し、
     前記燃料供給部と前記脱硫部との間又は前記脱硫部と前記水素発生部との間に設けられ、前記燃料供給部から供給された前記炭化水素系燃料又は前記脱硫部を経た前記炭化水素系燃料と多孔性イオン吸着剤とを接触させる脱イオン部、を備える、燃料電池用水素製造システム。
  2.  前記燃料供給部と前記脱硫部との間に前記脱イオン部を備える、請求項1に記載の燃料電池用水素製造システム。
  3.  前記多孔性イオン吸着剤がゼオライトを含む、請求項1又は2に記載の燃料電池用水素製造システム。
  4.  前記炭化水素系燃料が炭素数4以下の炭化水素化合物を含む、請求項1~3のいずれか一項に記載の燃料電池用水素製造システム。
  5.  請求項1~4のいずれか一項に記載の水素製造システムを備える、燃料電池システム。
  6.  電気伝導度が0.05~500μS/cmの水分を含む炭化水素系燃料と、多孔性イオン吸着剤と、を接触させる、炭化水素系燃料の脱イオン方法。
  7.  前記多孔性イオン吸着剤がゼオライトを含む、請求項6に記載の炭化水素系燃料の脱イオン方法。
  8.  前記炭化水素系燃料が炭素数4以下の炭化水素化合物を含む、請求項6又は7に記載の炭化水素系燃料の脱イオン方法。
  9.  請求項6~8のいずれか一項に記載の脱イオン方法により脱イオンされた前記炭化水素系燃料を改質して水素を得る、水素製造方法。
  10.  前記炭化水素系燃料が硫黄化合物を含み、脱イオンされた前記炭化水素系燃料を脱硫し、改質して水素を得る、請求項9に記載の水素製造方法。
PCT/JP2011/079703 2010-12-28 2011-12-21 燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法 WO2012090833A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-293670 2010-12-28
JP2010293670A JP2012142174A (ja) 2010-12-28 2010-12-28 燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法

Publications (1)

Publication Number Publication Date
WO2012090833A1 true WO2012090833A1 (ja) 2012-07-05

Family

ID=46382941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079703 WO2012090833A1 (ja) 2010-12-28 2011-12-21 燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法

Country Status (3)

Country Link
JP (1) JP2012142174A (ja)
TW (1) TW201231387A (ja)
WO (1) WO2012090833A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263608A (ja) * 1985-05-10 1986-11-21 エルフ・フランス 炭化水素とアルコールとの混合物から成る燃料物質処理方法と水分選択吸着剤
JPS62254835A (ja) * 1986-04-30 1987-11-06 Taguchi Kenkyusho:Kk 金属イオンの吸着剤用添加剤
JPH01242692A (ja) * 1988-03-18 1989-09-27 Separation Dynamics Inc 炭化水素からの腐食性汚染質を除去する方法及び装置
JP2003536208A (ja) * 2000-05-30 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー 燃料電池電力設備用の改質油燃料処理装置
JP2005520869A (ja) * 2001-11-08 2005-07-14 ソルベント イノベーション ゲーエムベーハー 炭化水素及び炭化水素混合物からの極性不純物除去方法
JP2007090243A (ja) * 2005-09-29 2007-04-12 Toray Ind Inc 水処理用金属イオン吸着剤およびその製造方法、ならびにそれを用いた水処理方法
JP2008045021A (ja) * 2006-08-15 2008-02-28 Toyo Seikan Kaisha Ltd 液体燃料精製方法及び液体燃料精製システム
JP2010209125A (ja) * 2009-03-06 2010-09-24 Japan Energy Corp 炭化水素油の脱硫方法及び燃料電池システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0515418Y2 (ja) * 1987-08-31 1993-04-22
JPH08326129A (ja) * 1995-05-29 1996-12-10 Micro Jienitsukusu Kk 温水洗浄器付便座用の洗浄水貯溜タンク
JP2000266583A (ja) * 1999-03-19 2000-09-29 Osaka Gas Co Ltd 携帯型液位判定装置および較正用標準部材ならびに対象物内部空間内の液位判定方法
JP2001221428A (ja) * 2000-02-03 2001-08-17 Keiyo Gas Kk ガス中水分監視装置
JP4332290B2 (ja) * 2000-10-04 2009-09-16 川崎地質株式会社 地中または海中の物理的または化学的特性を計測する方法およびシステム
JP2002319427A (ja) * 2001-04-19 2002-10-31 Toshiba Corp 燃料電池発電システム及び燃料電池発電方法
JP2004277747A (ja) * 2004-05-11 2004-10-07 Tokyo Gas Co Ltd 燃料ガス中の硫黄化合物の除去方法
KR101264330B1 (ko) * 2006-02-18 2013-05-14 삼성에스디아이 주식회사 연료전지용 연료가스의 탈황 장치 및 이를 이용한 탈황방법
JP4494391B2 (ja) * 2006-11-13 2010-06-30 アイシン精機株式会社 燃料改質装置
JP5368869B2 (ja) * 2009-05-08 2013-12-18 大阪瓦斯株式会社 燃料改質装置及び燃料電池システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263608A (ja) * 1985-05-10 1986-11-21 エルフ・フランス 炭化水素とアルコールとの混合物から成る燃料物質処理方法と水分選択吸着剤
JPS62254835A (ja) * 1986-04-30 1987-11-06 Taguchi Kenkyusho:Kk 金属イオンの吸着剤用添加剤
JPH01242692A (ja) * 1988-03-18 1989-09-27 Separation Dynamics Inc 炭化水素からの腐食性汚染質を除去する方法及び装置
JP2003536208A (ja) * 2000-05-30 2003-12-02 ユーティーシー フューエル セルズ,エルエルシー 燃料電池電力設備用の改質油燃料処理装置
JP2005520869A (ja) * 2001-11-08 2005-07-14 ソルベント イノベーション ゲーエムベーハー 炭化水素及び炭化水素混合物からの極性不純物除去方法
JP2007090243A (ja) * 2005-09-29 2007-04-12 Toray Ind Inc 水処理用金属イオン吸着剤およびその製造方法、ならびにそれを用いた水処理方法
JP2008045021A (ja) * 2006-08-15 2008-02-28 Toyo Seikan Kaisha Ltd 液体燃料精製方法及び液体燃料精製システム
JP2010209125A (ja) * 2009-03-06 2010-09-24 Japan Energy Corp 炭化水素油の脱硫方法及び燃料電池システム

Also Published As

Publication number Publication date
JP2012142174A (ja) 2012-07-26
TW201231387A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
KR101264330B1 (ko) 연료전지용 연료가스의 탈황 장치 및 이를 이용한 탈황방법
JP2006318721A (ja) Lpガス型燃料電池用液化石油ガス、その脱硫方法及び燃料電池システム
JP2008218308A (ja) 炭化水素系燃料の脱硫方法
JP5214076B1 (ja) 水素生成装置および燃料電池システム
JP2004284875A (ja) 水素製造システムおよび燃料電池システム
JP2010103084A (ja) 固体酸化物燃料電池システムの燃料改質方法
WO2012090832A1 (ja) 燃料電池用脱硫システム、燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱硫方法及び水素の製造方法
JP2003272691A (ja) 燃料電池発電装置および燃料電池発電装置の運転方法
JP5547994B2 (ja) 脱硫方法および脱硫装置および燃料電池発電システム
JP5143663B2 (ja) 燃料電池の燃料水素製造用原燃料の前処理システム
JP5687147B2 (ja) 燃料電池システム
JP5098073B2 (ja) エネルギーステーション
WO2013178430A1 (en) Pre-reforming of sulfur-containing fuels to produce syngas for use in fuel cell systems
WO2012090833A1 (ja) 燃料電池用水素製造システム及び燃料電池システム、並びに、炭化水素系燃料の脱イオン方法及び水素製造方法
JP2013201054A (ja) 燃料電池モジュール
WO2012090875A1 (ja) 燃料電池システム及び脱硫装置
JP2007146050A (ja) 炭化水素系燃料の脱硫方法
JP2013137865A (ja) 燃料電池用水蒸気改質触媒の使用方法及び水素製造システム
JP2011253705A (ja) 燃料電池システム
JP2009227479A (ja) 水素製造装置および燃料電池システムの停止方法
JP2016197536A (ja) 脱硫システム、改質システム、燃料電池システム及び脱硫済原料の製造方法
JP6442708B2 (ja) 水素生成装置、および燃料電池システム
JP2004171866A (ja) 燃料電池システム
JP5400425B2 (ja) 水素製造装置及び燃料電池システム
JP2005093214A (ja) 燃料電池用水素製造システムへの液化石油ガス供給方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854043

Country of ref document: EP

Kind code of ref document: A1