WO2012090875A1 - 燃料電池システム及び脱硫装置 - Google Patents

燃料電池システム及び脱硫装置 Download PDF

Info

Publication number
WO2012090875A1
WO2012090875A1 PCT/JP2011/079876 JP2011079876W WO2012090875A1 WO 2012090875 A1 WO2012090875 A1 WO 2012090875A1 JP 2011079876 W JP2011079876 W JP 2011079876W WO 2012090875 A1 WO2012090875 A1 WO 2012090875A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
desulfurization
hydrogen
unit
fuel cell
Prior art date
Application number
PCT/JP2011/079876
Other languages
English (en)
French (fr)
Inventor
修平 咲間
Original Assignee
Jx日鉱日石エネルギー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石エネルギー株式会社 filed Critical Jx日鉱日石エネルギー株式会社
Publication of WO2012090875A1 publication Critical patent/WO2012090875A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Various aspects and embodiments of the present invention relate to a fuel cell system and a desulfurization apparatus.
  • a fuel cell system having a desulfurization unit for desulfurizing a hydrogen-containing fuel is known.
  • a desulfurization part what is heated so that it may become the reaction temperature of a desulfurization catalyst is disclosed (for example, refer patent documents 1-3).
  • the desulfurization section described in Patent Document 1 is heated by the heated reformed gas after flowing through the reformer being guided into the desulfurization section.
  • the desulfurization part of patent document 2 is arrange
  • the desulfurization part described in Patent Document 3 is heated using water supplied to the reforming catalyst and received heat.
  • a fuel cell system includes a hydrogen generator and a cell stack.
  • the hydrogen generation unit generates a hydrogen-containing gas using a hydrogen-containing fuel.
  • the cell stack generates power using a hydrogen-containing gas.
  • the fuel cell system includes a desulfurization unit, a heat recovery system, and a desulfurization system heat exchange unit.
  • the desulfurization unit desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit.
  • the heat recovery system recovers exhaust heat from the cell stack using a heat medium.
  • the desulfurization exchange unit exchanges heat between the heat recovery medium and the desulfurization unit.
  • the heat medium that recovers the exhaust heat from the cell stack exchanges heat with the desulfurization heat exchange unit. Since the heat medium is heated by the exhaust heat of the cell stack, the temperature becomes lower than the temperature of the reformed gas, the temperature of the water supplied to the reforming catalyst and receiving heat, and the reaction temperature of the combustion catalyst. For this reason, the desulfurization part which should be kept at a comparatively low temperature can be warmed efficiently.
  • the desulfurization heat exchange unit may apply heat to the desulfurization unit using a heat medium that receives heat from the cell stack or the off-gas of the cell stack.
  • a heat recovery system may have a circulation channel which uses the stored water of a hot water storage tank as a heat medium, and supplies the heat medium heat-exchanged with the desulfurization system heat exchange part to a hot water storage tank.
  • a desulfurization apparatus is used in a fuel cell system that generates power from a cell stack using a hydrogen-containing fuel and collects exhaust heat from the cell stack using a heat medium.
  • the desulfurization apparatus includes a desulfurization unit and a desulfurization system heat exchange unit.
  • the desulfurization unit desulfurizes the hydrogen-containing fuel.
  • the desulfurization heat exchange unit exchanges heat between the heat medium after the exhaust heat of the cell stack is recovered and the desulfurization unit.
  • the heat medium that recovers the exhaust heat of the cell stack exchanges heat with the desulfurization heat exchange unit. Since the heat medium is heated by the exhaust heat of the cell stack, the temperature becomes lower than the temperature of the reformed gas, the temperature of the water supplied to the reforming catalyst and receiving heat, and the reaction temperature of the combustion catalyst. For this reason, the desulfurization apparatus kept warm at a relatively low temperature can be kept warm with energy efficiency.
  • FIG. 1 is a block diagram showing the configuration of the fuel cell system according to the present embodiment.
  • the fuel cell system 1 includes a desulfurization unit 2, a water vaporization unit 3, a hydrogen generation unit 4, a cell stack 5, an off-gas combustion unit 6, a hydrogen-containing fuel supply unit 7, The water supply part 8, the oxidizing agent supply part 9, the power conditioner 10, and the control part 11 are provided.
  • the fuel cell system 1 generates power in the cell stack 5 using a hydrogen-containing fuel and an oxidant.
  • the type of the cell stack 5 in the fuel cell system 1 is not particularly limited, and examples thereof include a polymer electrolyte fuel cell (PEFC), a solid oxide fuel cell (SOFC), and phosphoric acid.
  • PEFC polymer electrolyte fuel cell
  • SOFC solid oxide fuel cell
  • phosphoric acid a fuel cell
  • PAFC Phosphoric Acid Fuel Cell
  • MCFC molten carbonate Fuel Cell
  • 1 may be appropriately omitted depending on the type of cell stack 5, the type of hydrogen-containing fuel, the reforming method, and the like.
  • hydrocarbon fuel a compound containing carbon and hydrogen in the molecule (may contain other elements such as oxygen) or a mixture thereof is used.
  • hydrocarbon fuels include hydrocarbons, alcohols, ethers, and biofuels. These hydrocarbon fuels are derived from conventional fossil fuels such as petroleum and coal, and synthetic systems such as synthesis gas. Those derived from fuel and those derived from biomass can be used as appropriate. Specific examples of hydrocarbons include methane, ethane, propane, butane, natural gas, LPG (liquefied petroleum gas), city gas, town gas, gasoline, naphtha, kerosene, and light oil. Examples of alcohols include methanol and ethanol. Examples of ethers include dimethyl ether. Examples of biofuels include biogas, bioethanol, biodiesel, and biojet.
  • oxygen-enriched air for example, air, pure oxygen gas (which may contain impurities that are difficult to remove by a normal removal method), or oxygen-enriched air is used.
  • the desulfurization unit 2 desulfurizes the hydrogen-containing fuel supplied to the hydrogen generation unit 4.
  • the desulfurization part 2 has a desulfurization catalyst for removing sulfur compounds contained in the hydrogen-containing fuel.
  • a desulfurization method of the desulfurization unit 2 for example, an adsorptive desulfurization method that adsorbs and removes sulfur compounds and a hydrodesulfurization method that removes sulfur compounds by reacting with hydrogen are employed.
  • the desulfurization unit 2 supplies the desulfurized hydrogen-containing fuel to the hydrogen generation unit 4.
  • the water vaporization unit 3 generates water vapor supplied to the hydrogen generation unit 4 by heating and vaporizing water.
  • heat generated in the fuel cell system 1 such as recovering the heat of the hydrogen generation unit 4, the heat of the off-gas combustion unit 6, or the heat of the exhaust gas may be used.
  • FIG. 1 only heat supplied from the off-gas combustion unit 6 to the hydrogen generation unit 4 is described as an example, but the present invention is not limited to this.
  • the water vaporization unit 3 supplies the generated water vapor to the hydrogen generation unit 4.
  • the hydrogen generation unit 4 generates a hydrogen rich gas (hydrogen-containing gas) using the hydrogen-containing fuel from the desulfurization unit 2.
  • the hydrogen generator 4 has a reformer that reforms the hydrogen-containing fuel with a reforming catalyst.
  • the reforming method in the hydrogen generating unit 4 is not particularly limited, and for example, steam reforming, partial oxidation reforming, autothermal reforming, and other reforming methods can be employed.
  • the hydrogen generator 4 may have a configuration for adjusting the properties in addition to the reformer reformed by the reforming catalyst depending on the properties of the hydrogen rich gas required for the cell stack 5.
  • the hydrogen generation unit 4 is configured to remove carbon monoxide in the hydrogen-rich gas. (For example, a shift reaction part and a selective oxidation reaction part).
  • the hydrogen generation unit 4 supplies a hydrogen rich gas to the anode 12 of the cell stack 5.
  • the cell stack 5 generates power using the hydrogen rich gas from the hydrogen generation unit 4 and the oxidant from the oxidant supply unit 9.
  • the cell stack 5 includes an anode 12 to which a hydrogen-rich gas is supplied, a cathode 13 to which an oxidant is supplied, and an electrolyte 14 disposed between the anode 12 and the cathode 13.
  • the cell stack 5 supplies power to the outside via the power conditioner 10.
  • the cell stack 5 supplies the hydrogen rich gas and the oxidant, which have not been used for power generation, to the off gas combustion unit 6 as off gas.
  • a combustion section for example, a combustor that heats the reformer
  • the hydrogen generation section 4 may be shared with the off-gas combustion section 6.
  • the off gas combustion unit 6 burns off gas supplied from the cell stack 5.
  • the heat generated by the off-gas combustion unit 6 is supplied to the hydrogen generation unit 4 and used for generation of a hydrogen rich gas in the hydrogen generation unit 4.
  • the hydrogen-containing fuel supply unit 7 supplies hydrogen-containing fuel to the desulfurization unit 2.
  • the water supply unit 8 supplies water to the water vaporization unit 3.
  • the oxidant supply unit 9 supplies an oxidant to the cathode 13 of the cell stack 5.
  • the hydrogen-containing fuel supply unit 7, the water supply unit 8, and the oxidant supply unit 9 are configured by a pump, for example, and are driven based on a control signal from the control unit 11.
  • the power conditioner 10 adjusts the power from the cell stack 5 according to the external power usage state. For example, the power conditioner 10 performs a process of converting a voltage and a process of converting DC power into AC power.
  • the control unit 11 performs control processing for the entire fuel cell system 1.
  • the control unit 11 is configured by a device including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and an input / output interface, for example.
  • the control unit 11 is electrically connected to a hydrogen-containing fuel supply unit 7, a water supply unit 8, an oxidant supply unit 9, a power conditioner 10, and other sensors and auxiliary equipment not shown.
  • the control unit 11 acquires various signals generated in the fuel cell system 1 and outputs a control signal to each device in the fuel cell system 1.
  • the fuel cell system 1 is provided with a heat recovery system that uses the heat generated by the cell stack 5 to change the water into hot water and stores the hot water in a hot water tank. That is, the fuel cell system 1 includes a so-called cogeneration system.
  • the heat recovery system in the fuel cell system 1 will be outlined.
  • FIG. 2 is a block diagram showing the configuration of the fuel cell system according to the present embodiment. In FIG. 2, parts not related to the heat recovery system are partially omitted.
  • the heat recovery system of the fuel cell system 1 recovers the exhaust heat of the cell stack 5, and includes a hot water storage tank 81, a heat exchanger 80, a desulfurization system heat exchange unit 82, and a circulating flow.
  • a path 83 is provided.
  • the hot water storage tank 81, the heat exchanger 80, and the desulfurization system heat exchange unit 82 are sequentially connected by a circulation channel 83.
  • the desulfurization unit 2 includes the desulfurization unit 2 and the desulfurization system heat exchange unit 82.
  • the hot water tank 81 is a unit that stores water or hot water.
  • water is water that is in a liquid state regardless of its temperature, and warm water is obtained by adding heat to “water”.
  • the stored water in the hot water storage tank 81 is supplied to the heat exchanger 80 as a heat medium.
  • the heat medium may be cooled by a radiator or the like before being supplied to the heat exchanger 80.
  • the heat exchanger 80 is connected to the hot water storage tank 81 via the circulation channel 83 and is connected to the output side of the cell stack 5.
  • the heat exchanger 80 exchanges heat between the off gas (exhaust gas) of the cell stack 5 and the heat medium. That is, the heat medium is heated by the heat exchanger 80 using off-gas as a heating source. The heat medium is heated to about 60 ° C. to 80 ° C.
  • the heat medium after the heat exchange is supplied to the desulfurization system heat exchange unit 82 of the desulfurization unit 2 through the circulation flow path 83.
  • the desulfurization heat exchange unit 82 is connected to the heat exchanger 80 via the circulation channel 83 and is in thermal contact with the desulfurization unit 2.
  • the desulfurization heat exchange unit 82 exchanges heat between the heat medium and the desulfurization unit 2. That is, the desulfurization unit 2 is heated by the desulfurization heat exchange unit 82 using the heat medium as a heating source.
  • the heat medium after the heat exchange is returned to the hot water storage tank 81 through the circulation flow path 83.
  • the low-temperature heat medium is supplied from the hot water storage tank 81 to the heat exchanger 80 and heated, and the heated heat medium is supplied to the desulfurization system heat exchange unit 82 of the desulfurization apparatus.
  • the desulfurization part 2 is heated.
  • the reformed gas of the fuel cell system 1 is generated by the hydrogen generator 4 and is said to have a temperature of about 600 ° C. to 700 ° C.
  • the reforming water supplied to the reforming catalyst is also superheated and is in a steam state, and therefore has a considerably high temperature.
  • the catalytic combustion temperature of a normal combustion catalyst is about 600 ° C.
  • the reformed gas, the reformed water, or the combustion catalyst has a very high temperature, so that an energy loss is large even if the temperature of the desulfurization section 2 that should be kept at a relatively low temperature is kept.
  • An example of such a low-temperature desulfurization section 2 is a zeolite-based adsorptive desulfurization section (heat retention temperature 60 ° C. to 80 ° C.).
  • the heat medium is heated by the exhaust heat of the cell stack 5, so that the temperature of the reformed gas and the reforming catalyst are supplied.
  • the temperature is lower than the temperature of the received water and the reaction temperature of the combustion catalyst.
  • the desulfurization part 2 which should be heat-retained at a comparatively low temperature can be heat-retained efficiently.
  • a heater or the like for heating the desulfurizer 2 is not necessary, the cost is excellent.
  • the desulfurization section 2 can be kept warm with a simple configuration by using the circulation channel 83 of the existing cogeneration system.
  • the embodiment described above shows an example of the fuel cell system and the desulfurization apparatus according to the present invention.
  • the fuel cell system and the desulfurization apparatus according to the present invention are not limited to the fuel cell system 1 and the desulfurization apparatus according to the embodiment, and the fuel cell system according to the embodiment is within a range not changing the gist described in each claim. 1 and the desulfurization apparatus may be modified or applied to others.
  • the example in which the exhaust heat is recovered from the off gas of the cell stack 5 has been described.
  • the heat generated from the cell stack 5 may be directly recovered.
  • SYMBOLS 1 Fuel cell system, 2 ... Desulfurization part (desulfurization apparatus), 4 ... Hydrogen generation part, 5 ... Cell stack, 6 ... Off-gas combustion part, 11 ... Control part, 80 ... Heat exchanger (heat exchange system), 81 ... Hot water storage tank (heat exchange system), 82 ... desulfurization system heat exchange section (desulfurization apparatus, heat exchange system), 83 ... circulation channel (heat exchange system).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 水素含有燃料を用いて水素含有ガスを発生させる水素発生部と、水素含有ガスを用いて発電を行うセルスタックと、を備える燃料電池システムであって、水素発生部に供給される水素含有燃料を脱硫する脱硫部と、熱媒体を用いてセルスタックの排熱を回収する熱回収系と、熱回収後の熱媒体と脱硫部とを熱交換させる脱硫系熱交換部と有して構成することで、熱媒体を用いて脱硫部を加熱し保温することができる。

Description

燃料電池システム及び脱硫装置
 本発明の種々の側面及び実施形態は、燃料電池システム及び脱硫装置に関する。
 従来、燃料電池システムとして、水素含有燃料の脱硫を行う脱硫部を備えているものが知られている。このような脱硫部として、脱硫触媒の反応温度となるように加熱されるものが開示されている(例えば、特許文献1~3参照。)。特許文献1記載の脱硫部は、改質器を流通した後の加熱された改質ガスが脱硫部内部へ導かれることで加熱される。特許文献2記載の脱硫部は、外容器内部に配置されており、外容器に収容された燃焼触媒の反応熱を用いて加熱される。特許文献3記載の脱硫部は、改質触媒に供給されて受熱された水を用いて加熱される。
特開2007-55868号公報 特開2010-24402号公報 特開2009-234837号公報
 しかしながら、特許文献1~3記載の燃料電池システムにあっては、脱硫部を加熱させる加熱媒体の温度が高温となる。このため、脱硫部の保温温度によっては加熱媒体の温度と脱硫部の保温温度との差が著しく大きくなり、効率的な保温ができないおそれがある。本技術分野では、脱硫部をエネルギー効率良く保温することができる燃料電池システム及び当該燃料電池システムに用いられる脱硫装置が望まれている。
 本発明の一側面に係る燃料電池システムは、水素発生部及びセルスタックを備える。水素発生部は、水素含有燃料を用いて水素含有ガスを発生させる。セルスタックは、水素含有ガスを用いて発電を行う。ここで該燃料電池システムは、脱硫部、熱回収系及び脱硫系熱交換部を有する。脱硫部は、水素発生部に供給される水素含有燃料を脱硫する。熱回収系は、熱媒体を用いてセルスタックの排熱を回収する。脱硫交換部は、熱回収後の熱媒体と脱硫部とを熱交換させる。
 本発明の一側面に係る燃料電池システムでは、セルスタックの排熱を回収した熱媒体が脱硫系熱交換部と熱交換する。熱媒体は、セルスタックの排熱によって加熱されるため、改質ガスの温度、改質触媒に供給されて受熱された水の温度、及び燃焼触媒の反応温度に比べて、低い温度となる。このため、比較的低い温度で保温されるべき脱硫部をエネルギー効率良く保温することができる。
 一実施形態では、脱硫系熱交換部は、セルスタック又はセルスタックのオフガスから受熱した熱媒体を用いて脱硫部に熱を与えてもよい。また、一実施形態では、熱回収系は、貯湯槽の貯留水を熱媒体とし、脱硫系熱交換部と熱交換した熱媒体を貯湯槽へ供給する循環流路を有してもよい。このように構成することで、既存のコジェネレーションシステムの循環流路を利用して、簡易な構成で脱硫部を保温することができる。
 また、本発明の他の側面に係る脱硫装置は、水素含有燃料を用いてセルスタックを発電させるとともに熱媒体を用いてセルスタックの排熱を回収する燃料電池システムに用いられる。この脱硫装置は、脱硫部及び脱硫系熱交換部を備える。脱硫部は、水素含有燃料を脱硫する。脱硫系熱交換部は、セルスタックの排熱を回収した後の熱媒体と脱硫部とを熱交換させる。
 本発明の他の側面に係る脱硫装置では、セルスタックの排熱を回収した熱媒体が脱硫系熱交換部と熱交換する。熱媒体は、セルスタックの排熱によって加熱されるため、改質ガスの温度、改質触媒に供給されて受熱された水の温度、及び燃焼触媒の反応温度に比べて、低い温度となる。このため、比較的低い温度で保温される脱硫装置をエネルギー効率良く保温することができる。
 本発明の種々の側面及び実施形態によれば、エネルギー効率良く脱硫部を保温することができる。
実施形態に係る燃料電池システムの構成を示すブロック図である。 図1の燃料電池システムの熱回収系を説明するブロック図である。
 以下、一実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 最初に燃料電池の基本構成について概説する。図1は、本実施形態に係る燃料電池システムの構成を示すブロック図である。図1に示されるように、燃料電池システム1は、脱硫部2と、水気化部3と、水素発生部4と、セルスタック5と、オフガス燃焼部6と、水素含有燃料供給部7と、水供給部8と、酸化剤供給部9と、パワーコンディショナー10と、制御部11と、を備えている。燃料電池システム1は、水素含有燃料及び酸化剤を用いて、セルスタック5にて発電を行う。燃料電池システム1におけるセルスタック5の種類は特に限定されず、例えば、固体高分子形燃料電池(PEFC:Polymer Electrolyte Fuel Cell)、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)、リン酸形燃料電池(PAFC:Phosphoric Acid Fuel Cell)、溶融炭酸塩形燃料電池(MCFC:Molten Carbonate Fuel Cell)、及び、その他の種類を採用することができる。なお、セルスタック5の種類、水素含有燃料の種類、及び改質方式等に応じて、図1に示す構成要素を適宜省略してもよい。
 水素含有燃料として、例えば、炭化水素系燃料が用いられる。炭化水素系燃料として、分子中に炭素と水素とを含む化合物(酸素等、他の元素を含んでいてもよい)若しくはそれらの混合物が用いられる。炭化水素系燃料として、例えば、炭化水素類、アルコール類、エーテル類、バイオ燃料が挙げられ、これらの炭化水素系燃料は従来の石油・石炭等の化石燃料由来のもの、合成ガス等の合成系燃料由来のもの、バイオマス由来のものを適宜用いることができる。具体的には、炭化水素類として、メタン、エタン、プロパン、ブタン、天然ガス、LPG(液化石油ガス)、都市ガス、タウンガス、ガソリン、ナフサ、灯油、軽油が挙げられる。アルコール類として、メタノール、エタノールが挙げられる。エーテル類として、ジメチルエーテルが挙げられる。バイオ燃料として、バイオガス、バイオエタノール、バイオディーゼル、バイオジェットが挙げられる。
 酸化剤として、例えば、空気、純酸素ガス(通常の除去手法で除去が困難な不純物を含んでもよい)、酸素富化空気が用いられる。
 脱硫部2は、水素発生部4に供給される水素含有燃料の脱硫を行う。脱硫部2は、水素含有燃料に含有される硫黄化合物を除去するための脱硫触媒を有している。脱硫部2の脱硫方式として、例えば、硫黄化合物を吸着して除去する吸着脱硫方式や、硫黄化合物を水素と反応させて除去する水素化脱硫方式が採用される。脱硫部2は、脱硫した水素含有燃料を水素発生部4へ供給する。
 水気化部3は、水を加熱し気化させることによって、水素発生部4に供給される水蒸気を生成する。水気化部3における水の加熱は、例えば、水素発生部4の熱、オフガス燃焼部6の熱、あるいは排ガスの熱を回収する等、燃料電池システム1内で発生した熱を用いてもよい。また、別途ヒータ、バーナ等の他熱源を用いて水を加熱してもよい。なお、図1では、一例としてオフガス燃焼部6から水素発生部4へ供給される熱のみ記載されているが、これに限定されない。水気化部3は、生成した水蒸気を水素発生部4へ供給する。
 水素発生部4は、脱硫部2からの水素含有燃料を用いて水素リッチガス(水素含有ガス)を発生させる。水素発生部4は、水素含有燃料を改質触媒によって改質する改質器を有している。水素発生部4での改質方式は、特に限定されず、例えば、水蒸気改質、部分酸化改質、自己熱改質、その他の改質方式を採用できる。なお、水素発生部4は、セルスタック5に要求される水素リッチガスの性状によって、改質触媒により改質する改質器の他に性状を調整するための構成を有する場合もある。例えば、セルスタック5のタイプが固体高分子形燃料電池(PEFC)やリン酸形燃料電池(PAFC)であった場合、水素発生部4は、水素リッチガス中の一酸化炭素を除去するための構成(例えば、シフト反応部、選択酸化反応部)を有する。水素発生部4は、水素リッチガスをセルスタック5のアノード12へ供給する。
 セルスタック5は、水素発生部4からの水素リッチガス及び酸化剤供給部9からの酸化剤を用いて発電を行う。セルスタック5は、水素リッチガスが供給されるアノード12と、酸化剤が供給されるカソード13と、アノード12とカソード13との間に配置される電解質14と、を備えている。セルスタック5は、パワーコンディショナー10を介して、電力を外部へ供給する。セルスタック5は、発電に用いられなかった水素リッチガス及び酸化剤をオフガスとして、オフガス燃焼部6へ供給する。なお、水素発生部4が備えている燃焼部(例えば、改質器を加熱する燃焼器など)をオフガス燃焼部6と共用してもよい。
 オフガス燃焼部6は、セルスタック5から供給されるオフガスを燃焼させる。オフガス燃焼部6によって発生する熱は、水素発生部4へ供給され、水素発生部4での水素リッチガスの発生に用いられる。
 水素含有燃料供給部7は、脱硫部2へ水素含有燃料を供給する。水供給部8は、水気化部3へ水を供給する。酸化剤供給部9は、セルスタック5のカソード13へ酸化剤を供給する。水素含有燃料供給部7、水供給部8、及び酸化剤供給部9は、例えばポンプによって構成されており、制御部11からの制御信号に基づいて駆動する。
 パワーコンディショナー10は、セルスタック5からの電力を、外部での電力使用状態に合わせて調整する。パワーコンディショナー10は、例えば、電圧を変換する処理や、直流電力を交流電力へ変換する処理を行う。
 制御部11は、燃料電池システム1全体の制御処理を行う。制御部11は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、及び入出力インターフェイスを含んで構成されたデバイスによって構成される。制御部11は、水素含有燃料供給部7、水供給部8、酸化剤供給部9、パワーコンディショナー10、その他、図示されないセンサや補機と電気的に接続されている。制御部11は、燃料電池システム1内で発生する各種信号を取得すると共に、燃料電池システム1内の各機器へ制御信号を出力する。
 ここで、燃料電池システム1は、セルスタック5が発生する熱を用いて水を温水に変え、その温水を貯湯槽に貯えて利用する熱回収系を備えている。すなわち、燃料電池システム1は、いわゆるコジェネレーションシステムを備えている。以下、燃料電池システム1における熱回収系を概説する。図2は、本実施形態に係る燃料電池システムの構成を示すブロック図である。図2では、熱回収系に関係のない部分は一部省略している。図2に示されるように、燃料電池システム1の熱回収系は、セルスタック5の排熱を回収するものであって、貯湯槽81、熱交換器80、脱硫系熱交換部82及び循環流路83を備えている。貯湯槽81、熱交換器80及び脱硫系熱交換部82は、循環流路83によって順に接続されている。また、脱硫部2及び脱硫系熱交換部82を備えて脱硫装置が構成されている。
 貯湯槽81は、水又は温水を貯留するユニットである。なお、「水」とは、その温度に関係なく液体状態である水のことであって、温水とは「水」に熱を加えたものである。貯湯槽81の貯留水は、熱媒体として熱交換器80へ供給される。なお、熱交換器80への供給前にラジエータ等によって熱媒体が冷やされてもよい。
 熱交換器80は、循環流路83を介して貯湯槽81に接続されるとともに、セルスタック5の出力側に接続されている。熱交換器80は、セルスタック5のオフガス(排ガス)と熱媒体とを熱交換させる。すなわち、熱交換器80によってオフガスを加熱源として熱媒体が加熱される。熱媒体は、60℃~80℃程度に加熱される。熱交換後の熱媒体は、循環流路83を巡って脱硫部2の脱硫系熱交換部82へ供給される。
 脱硫系熱交換部82は、循環流路83を介して熱交換器80に接続されるとともに、脱硫部2と熱的に接触されている。脱硫系熱交換部82は、熱媒体と脱硫部2とを熱交換させる。すなわち、脱硫系熱交換部82によって熱媒体を加熱源として脱硫部2が加熱される。熱交換後の熱媒体は、循環流路83を巡って貯湯槽81へ戻される。
 以上、燃料電池システム1の熱回収系では、貯湯槽81から低温の熱媒体が熱交換器80へ供給されて加熱され、加熱された熱媒体が脱硫装置の脱硫系熱交換部82へ供給されて脱硫部2を加熱する。
 ところで、燃料電池システム1の改質ガスは、水素発生部4で生成されるものであり、600℃~700℃程度の温度を有しているとされている。改質触媒に供給される改質水もまたスーパーヒートされ、水蒸気の状態であるため、かなり高温となっている。さらに、通常の燃焼触媒の触媒燃焼温度は600℃程度である。このため、改質ガス、改質水又は燃焼触媒は、極めて高温であるため、比較的低温に保温すべき脱硫部2を保温しようとしてもエネルギーロスが大きいこととなる。このような低温の脱硫部2の一例としては、ゼオライト系の吸着脱硫部(保温温度60℃~80℃)がある。
 これに対して、本実施形態に係る燃料電池システム1又は脱硫装置によれば、熱媒体が、セルスタック5の排熱によって加熱されるため、改質ガスの温度、改質触媒に供給されて受熱された水の温度、及び燃焼触媒の反応温度に比べて、低い温度となる。このため、比較的低い温度で保温されるべき脱硫部2をエネルギー効率良く保温することができる。また、脱硫器2を加熱するためのヒータ等が不要となるので、コストも優れている。
 また、本実施形態に係る燃料電池システム1又は脱硫装置によれば、既存のコジェネレーションシステムの循環流路83を利用して、簡易な構成で脱硫部2を保温することができる。
 なお、上述した実施形態は本発明に係る燃料電池システム及び脱硫装置の一例を示すものである。本発明に係る燃料電池システム及び脱硫装置は、実施形態に係る燃料電池システム1及び脱硫装置に限られるものではなく、各請求項に記載した要旨を変更しない範囲で、実施形態に係る燃料電池システム1及び脱硫装置を変形し、又は他のものに適用したものであってもよい。
 例えば、上述した実施形態では、セルスタック5のオフガスから排熱を回収する例を説明したが、セルスタック5から発生する熱を直接回収してもよい。
 1…燃料電池システム、2…脱硫部(脱硫装置)、4…水素発生部、5…セルスタック、6…オフガス燃焼部、11…制御部、80…熱交換器(熱交換系)、81…貯湯槽(熱交換系)、82…脱硫系熱交換部(脱硫装置、熱交換系)、83…循環流路(熱交換系)。

Claims (4)

  1.  水素含有燃料を用いて水素含有ガスを発生させる水素発生部と、前記水素含有ガスを用いて発電を行うセルスタックと、を備える燃料電池システムであって、
     前記水素発生部に供給される前記水素含有燃料を脱硫する脱硫部と、
     熱媒体を用いて前記セルスタックの排熱を回収する熱回収系と、
     熱回収後の前記熱媒体と前記脱硫部とを熱交換させる脱硫系熱交換部と、を有する燃料電池システム。
  2.  前記脱硫系熱交換部は、前記セルスタック又は前記セルスタックのオフガスから受熱した前記熱媒体を用いて前記脱硫部に熱を与える請求項1に記載の燃料電池システム。
  3.  前記熱回収系は、貯湯槽の貯留水を前記熱媒体とし、前記脱硫系熱交換部と熱交換した前記熱媒体を前記貯湯槽へ供給する循環流路を有する請求項1または2に記載の燃料電池システム。
  4.  水素含有燃料を用いてセルスタックを発電させるとともに熱媒体を用いて前記セルスタックの排熱を回収する燃料電池システムに用いられる脱硫装置であって、
     前記水素含有燃料を脱硫する脱硫部と、
     前記セルスタックの排熱を回収した後の前記熱媒体と前記脱硫部とを熱交換させる脱硫系熱交換部と、を備える脱硫装置。
PCT/JP2011/079876 2010-12-27 2011-12-22 燃料電池システム及び脱硫装置 WO2012090875A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010289951A JP2012138265A (ja) 2010-12-27 2010-12-27 燃料電池システム及び脱硫装置
JP2010-289951 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090875A1 true WO2012090875A1 (ja) 2012-07-05

Family

ID=46382981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079876 WO2012090875A1 (ja) 2010-12-27 2011-12-22 燃料電池システム及び脱硫装置

Country Status (3)

Country Link
JP (1) JP2012138265A (ja)
TW (1) TW201234704A (ja)
WO (1) WO2012090875A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637091A (zh) * 2013-08-12 2016-06-01 巴斯夫农业公司 对除草剂具有增强的耐受性的植物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5372980B2 (ja) 2011-02-10 2013-12-18 アイシン精機株式会社 燃料電池システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234611A (ja) * 1992-02-24 1993-09-10 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電システム
JP2001185196A (ja) * 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2005147045A (ja) * 2003-11-18 2005-06-09 Fuji Electric Holdings Co Ltd バイオガス発電装置
JP2005166283A (ja) * 2003-11-28 2005-06-23 Sanyo Electric Co Ltd 燃料電池用水素製造装置
JP2006137649A (ja) * 2004-11-15 2006-06-01 Nippon Oil Corp 水素製造装置および燃料電池システムの起動停止方法
JP2006309982A (ja) * 2005-04-26 2006-11-09 Idemitsu Kosan Co Ltd 固体酸化物形燃料電池システム
JP2007311143A (ja) * 2006-05-17 2007-11-29 Japan Energy Corp 燃料電池コージェネレーションシステム用液体原燃料及び燃料電池コージェネレーションシステム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4927324B2 (ja) * 2004-09-03 2012-05-09 関西電力株式会社 燃料電池システム
JP2007040593A (ja) * 2005-08-02 2007-02-15 Kansai Electric Power Co Inc:The ハイブリッドシステム
JP5381238B2 (ja) * 2009-03-31 2014-01-08 アイシン精機株式会社 燃料電池システム
JP5576151B2 (ja) * 2010-03-10 2014-08-20 大阪瓦斯株式会社 脱硫方法および脱硫装置および燃料電池発電システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234611A (ja) * 1992-02-24 1993-09-10 Nippon Telegr & Teleph Corp <Ntt> 燃料電池発電システム
JP2001185196A (ja) * 1999-12-28 2001-07-06 Daikin Ind Ltd 燃料電池システム
JP2005147045A (ja) * 2003-11-18 2005-06-09 Fuji Electric Holdings Co Ltd バイオガス発電装置
JP2005166283A (ja) * 2003-11-28 2005-06-23 Sanyo Electric Co Ltd 燃料電池用水素製造装置
JP2006137649A (ja) * 2004-11-15 2006-06-01 Nippon Oil Corp 水素製造装置および燃料電池システムの起動停止方法
JP2006309982A (ja) * 2005-04-26 2006-11-09 Idemitsu Kosan Co Ltd 固体酸化物形燃料電池システム
JP2007311143A (ja) * 2006-05-17 2007-11-29 Japan Energy Corp 燃料電池コージェネレーションシステム用液体原燃料及び燃料電池コージェネレーションシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637091A (zh) * 2013-08-12 2016-06-01 巴斯夫农业公司 对除草剂具有增强的耐受性的植物
CN105637091B (zh) * 2013-08-12 2021-11-16 巴斯夫农业公司 对除草剂具有增强的耐受性的植物

Also Published As

Publication number Publication date
TW201234704A (en) 2012-08-16
JP2012138265A (ja) 2012-07-19

Similar Documents

Publication Publication Date Title
JP5852011B2 (ja) 燃料電池システム
JP6114197B2 (ja) 燃料電池システム
JP5000412B2 (ja) 固体酸化物形燃料電池システムの運転温度制御法
WO2012091029A1 (ja) 燃料電池システム
WO2012091121A1 (ja) 燃料電池システム
WO2012090875A1 (ja) 燃料電池システム及び脱硫装置
JP5939858B2 (ja) 燃料電池モジュール
JP5782458B2 (ja) 燃料電池システム
JP5738318B2 (ja) 脱硫装置及び燃料電池システム
JP5291915B2 (ja) 間接内部改質型固体酸化物形燃料電池とその運転方法
JP5463006B2 (ja) 固体酸化物形燃料電池システムの運転方法
JP5738319B2 (ja) 燃料電池システム
WO2012091131A1 (ja) 燃料電池システム
WO2012091132A1 (ja) 燃料電池システム
JP5738317B2 (ja) 脱硫装置及び燃料電池システム
JP5400425B2 (ja) 水素製造装置及び燃料電池システム
US20080171247A1 (en) Reformer of fuel cell system
JP5557260B2 (ja) 固体酸化物形燃料電池システムの運転温度制御法
JP5390887B2 (ja) 水素製造装置及び燃料電池システム
WO2012091094A1 (ja) 燃料電池システム
JP5728497B2 (ja) 燃料電池システム
JP2015191785A (ja) 改質器
JP2012160467A (ja) 固体酸化物形燃料電池システムの運転温度制御法
JPWO2012090964A1 (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852557

Country of ref document: EP

Kind code of ref document: A1