WO2012088681A1 - 一种pt/石墨烯催化剂及其制备方法和应用 - Google Patents

一种pt/石墨烯催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2012088681A1
WO2012088681A1 PCT/CN2010/080457 CN2010080457W WO2012088681A1 WO 2012088681 A1 WO2012088681 A1 WO 2012088681A1 CN 2010080457 W CN2010080457 W CN 2010080457W WO 2012088681 A1 WO2012088681 A1 WO 2012088681A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
preparation
catalyst
add
surfactant
Prior art date
Application number
PCT/CN2010/080457
Other languages
English (en)
French (fr)
Inventor
周明杰
钟玲珑
王要兵
Original Assignee
海洋王照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海洋王照明科技股份有限公司 filed Critical 海洋王照明科技股份有限公司
Priority to JP2013546551A priority Critical patent/JP5841169B2/ja
Priority to CN2010800696785A priority patent/CN103180039A/zh
Priority to EP10861347.2A priority patent/EP2659966B1/en
Priority to US13/990,154 priority patent/US20130252138A1/en
Priority to PCT/CN2010/080457 priority patent/WO2012088681A1/zh
Publication of WO2012088681A1 publication Critical patent/WO2012088681A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to the field of electrochemical energy, in particular to a Pt / graphene catalyst for a proton exchange membrane fuel cell.
  • the invention also relates to a Pt / Preparation method and application of graphene catalyst.
  • Proton exchange membrane fuel cell It is a new generation of hydrogen-fired power generation device. Besides the general advantages of fuel cells (high energy conversion efficiency and environmental friendliness, etc.), it also has higher specific power and specific energy, lower operating temperature and can be quickly opened at room temperature. The outstanding advantages of start-up and long life have become the most promising fuel cell.
  • PEMFC electrocatalyst is one of the key factors restricting its commercialization. Therefore, the research on electrocatalyst becomes PEMFC.
  • the preparation method of the catalyst has a great influence on the particle size and crystal state of Pt in the catalyst, and more Pt/C has been reported so far.
  • the catalyst preparation methods mainly include inorganic colloid method, impregnation method, gel sol method and precipitation method.
  • the catalyst prepared by the original method has the problems of poor particle dispersibility, uneven particle size and relatively harsh reaction conditions. Since the preparation process of the catalyst determines its composition and structure, and thus affects its catalytic performance, it is very important to study the preparation method and process of the catalyst.
  • graphene is a carbon material with a layered structure of less than 10 layers of graphite molecules with a high specific surface area (the theoretical specific surface area of single-layer graphene can reach 2620 m 2 /g). Can provide more proud load points.
  • graphene exhibits a strong quantum effect and good electron conductivity. It is found by the first principle that the platinum group can be stably supported on the graphene, and the adsorption of carbon monoxide or hydrogen on the platinum particles is reduced by the presence of graphene, which is more favorable for the reaction in the fuel cell. Therefore, graphene can be used as a good carbon carrier.
  • the present invention provides a method for preparing a Pt/graphene catalyst comprising the following steps:
  • the preparation of the reverse micelle system at room temperature, the preparation of surfactants (anionic surfactants or cationic surfactants, such as sodium methylbenzene sulfonate, sodium dodecylbenzene sulfonate, aliphatic sulfuric acid Salts, quaternary ammonium salts, etc.), co-surfactants (eg, n-octanol, n-nonanol, n-heptanol, n-hexanol), oil phase (eg, cyclohexane), and molar concentrations of 0.04 mol/L a mixed system composed of an aqueous solution of chloroplatinic acid (H 2 PtCl 6 ) to form a uniform and stable reverse micelle system under the action of ultrasonic waves; and the mass ratio of the surfactant, the cosurfactant and the oil phase is 10:7:1 ;
  • surfactants anionic surfactants or cationic surfactants, such
  • Demulsification Under ultrasonic vibration, a demulsifier (such as acetone or absolute ethanol) is added to the above emulsion, and the amount of the demulsifier added is the volume of cyclohexane. 20-50%), Pt is loaded onto the graphene carrier to prepare a mixed system;
  • a demulsifier such as acetone or absolute ethanol
  • the Pt/graphene catalyst prepared by the present invention can be applied to the field of proton exchange membrane fuel cells.
  • the Pt/graphene catalyst of the invention adopts graphene as a carrier, and utilizes the ion effect of graphene and two-dimensional ductility to improve the stability of the catalyst.
  • the reverse micelle system provides a microenvironment (water-in-oil microemulsion), which is an ideal place for the synthesis of nanoparticles.
  • the particle size prepared by this method is easy to control and the distribution is relatively uniform.
  • FIG. 1 is a flow chart of a process for preparing a Pt/graphene catalyst of the present invention
  • Example 2 is a graph showing the electrocatalytic performance test of the membrane electrode of the Pt/graphene catalyst and the Pt/C catalyst obtained in Example 1.
  • the invention provides a preparation method of a Pt / graphene catalyst for a proton exchange membrane fuel cell, wherein the loading of the platinum metal is 5 to 80 w%
  • This catalyst uses graphene as a carrier, which utilizes the ion effect of graphene and two-dimensional ductility to improve the stability of the catalyst.
  • the preparation process of the above Pt / graphene catalyst includes the steps:
  • the preparation of the reverse micelle system at room temperature, the preparation of surfactants (anionic surfactants or cationic surfactants, such as sodium methylbenzene sulfonate, sodium dodecylbenzene sulfonate, aliphatic sulfuric acid Salts, quaternary ammonium salts, etc.), co-surfactants (eg, n-octanol, n-nonanol, n-heptanol, n-hexanol), oil phase (eg, cyclohexane), and molar concentration of 0.04 mol/L a mixed system composed of an aqueous solution of chloroplatinic acid (H 2 PtCl 6 ) to form a uniform and stable reverse micelle system under the action of ultrasonic waves; and the mass ratio of the surfactant, the cosurfactant and the oil phase is 10:7:1 ;
  • surfactants anionic surfactants or cationic surfactants, such as
  • Demulsification Under the ultrasonic vibration, a demulsifier (such as acetone or absolute ethanol) is added to the above emulsion, and the amount of the demulsifier added is the volume of cyclohexane. 20-50%), Pt is loaded onto the graphene carrier to obtain a mixed system;
  • a demulsifier such as acetone or absolute ethanol
  • the method further comprises the following steps:
  • the Pt/graphene catalyst produced by the present invention can be applied to the field of proton exchange membrane fuel cells.
  • the graphene catalyst uses graphene as a carrier to improve the stability of the catalyst by utilizing the ion effect and two-dimensional ductility of graphene.
  • the reverse micelle system provides a microenvironment (water-in-oil microemulsion), which is an ideal place for the synthesis of nanoparticles.
  • the particle size prepared by this method is easy to control and the distribution is relatively uniform.
  • Graphite oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 Add graphite powder, 10 g potassium persulfate and 10 g phosphorus pentoxide to concentrated sulfuric acid at 80 °C, stir evenly, cool for more than 6 h, wash until neutral and dry. Add the dried sample to 0 °C In 230 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C for 30 minutes, and then keep it in the oil bath at 35 °C for 2 h. Afterwards, slowly add 920 mL of deionized water.
  • the preparation of graphene oxide solution the prepared 0.5g graphite oxide is added to 200 mL The water was ultrasonically dispersed to form a graphene oxide solution uniformly dispersed in a single sheet.
  • the preparation of the reverse micelle system at room temperature, sodium dodecylbenzene sulfonate, n-octanol and cyclohexane by mass ratio 100:70:10 The ratio is mixed, then the water is added in a ratio of 1:7 molar ratio of sodium dodecylbenzenesulfonate to water, ultrasonically shaken for 30 min, and finally 0.04 mol/L is prepared. The chloroplatinic acid solution was slowly added dropwise to the mixed solution, and ultrasonic vibration was controlled for 30 min to form a transparent reverse micelle system.
  • the formation of the precursor slowly add the prepared graphene oxide solution to the reverse micelle system, ultrasonic vibration for 30min . Control the mass ratio of platinum to graphene 1:10.
  • Example 2 is a film electrode electrocatalytic performance test of the Pt/graphene catalyst and the Pt/C catalyst obtained in Example 1.
  • Preparation of Membrane Electrode The Pt/graphene catalyst obtained in Example 1 was uniformly applied onto carbon paper to obtain an electrode, and then the two electrodes were combined with a Nafion proton exchange membrane (manufactured by DuPont, USA) at 140 ° C, 0.3 MPa. The film-forming electrode is pressed under pressure.
  • Membrane Electrocatalytic Performance Test Conditions The membrane electrode was placed in a single proton exchange membrane cell and connected to a fuel cell tester. The effective area of the membrane electrode was 4 cm 2 , and pure hydrogen and pure oxygen were introduced during the test.
  • Pt/C catalysts were also prepared by the same method for film formation electrodes and tests. It can be seen that the Pt/graphene catalysts have better catalytic performance at higher current densities.
  • Graphite oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 Add graphite powder, 10 g potassium persulfate and 10 g phosphorus pentoxide to concentrated sulfuric acid at 80 °C, stir evenly, cool for more than 6 h, wash until neutral and dry. Add the dried sample to 0 °C Add 200 g of potassium permanganate to 200 mL of concentrated sulfuric acid. Keep the temperature of the mixture below 20 °C for 5 minutes, then keep it in the oil bath at 35 °C for 1 h. Afterwards, slowly add 920 mL of deionized water.
  • the preparation of graphene oxide solution the prepared 0.5g graphite oxide is added to 200 mL The water was ultrasonically dispersed to form a graphene oxide solution uniformly dispersed in a single sheet.
  • the preparation of the reverse micelle system at room temperature, sodium toluene sulfonate, n-octanol and cyclohexane by mass ratio 100:70:10 The ratio is mixed, then the water is added in a ratio of 1:7 molar ratio of sodium toluenesulfonate to water, ultrasonically shaken for 30 min, and finally 0.04 mol/L is prepared.
  • the chloroplatinic acid solution was slowly added dropwise to the mixed solution, and ultrasonic vibration was controlled for 30 min to form a transparent reverse micelle system.
  • Demulsification Under ultrasonic vibration, add 20 mL of demulsifier acetone to the above system and let it stand until the system is layered.
  • Graphite oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 Add graphite powder, 10 g potassium persulfate and 10 g phosphorus pentoxide to concentrated sulfuric acid at 80 °C, stir evenly, cool for more than 6 h, wash until neutral and dry. Add the dried sample to 0 °C In 250 mL of concentrated sulfuric acid, add 60 g of potassium permanganate, keep the temperature of the mixture below 20 °C for 60 minutes, and then keep it in the oil bath at 35 °C for 2 h. Afterwards, slowly add 920 mL of deionized water.
  • the preparation of graphene oxide solution the prepared 0.5g graphite oxide is added to 200 mL The water was ultrasonically dispersed to form a graphene oxide solution uniformly dispersed in a single sheet.
  • the preparation of the reverse micelle system at room temperature, sodium toluene sulfonate, n-octanol and cyclohexane by mass ratio 100:70:10 The ratio is mixed, then the water is added in a ratio of 1:7 molar ratio of sodium toluenesulfonate to water, ultrasonically shaken for 30 min, and finally 0.04 mol/L is prepared.
  • the chloroplatinic acid solution was slowly added dropwise to the mixed solution, and ultrasonic vibration was controlled for 30 min to form a transparent reverse micelle system.
  • Graphite oxide was prepared by a modified Hummers method. The specific step is to put 20g 50 Add graphite powder, 10 g potassium persulfate and 10 g phosphorus pentoxide to concentrated sulfuric acid at 80 °C, stir evenly, cool for more than 6 h, wash until neutral and dry. Add the dried sample to 0 °C In 240 mL of concentrated sulfuric acid, add 60 g of potassium permanganate. The temperature of the mixture is kept below 20 °C for 40 minutes, then kept in an oil bath at 35 °C for 2 h. Afterwards, slowly add 920 mL of deionized water.
  • the preparation of graphene oxide solution the prepared 0.5g graphite oxide is added to 200 mL The water was ultrasonically dispersed to form a graphene oxide solution uniformly dispersed in a single sheet.
  • the preparation of the reverse micelle system at room temperature, sodium dodecylbenzene sulfonate, n-octanol and cyclohexane by mass ratio 100:80:10 The ratio is mixed, then the water is added in a ratio of 1:8 molar ratio of sodium dodecylbenzenesulfonate to water, ultrasonically shaken for 30 min, and finally 0.04 mol/L is prepared. The chloroplatinic acid solution was slowly added dropwise to the mixed solution, and ultrasonic vibration was controlled for 30 min to form a transparent reverse micelle system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

一种 Pt/ 石墨烯催化剂及其制备方法和应用
技术领域
本发明涉及电化学能源领域,尤其涉及一种质子交换膜燃料电池用 Pt / 石墨烯催化剂 。本发明还涉及一种 Pt / 石墨烯催化剂的制备方法和应用。
背景技术
质子交换膜燃料电池( proton exchange membrane fuel cell , PEMFC )是新一代以氢气为燃料的发电装置,它除具有燃料电池的一般优点(能量转换效率高和环境友好等)外,还具有比功率与比能量高、工作温度低、可在室温下快速启动和寿命长等突出优点,成为最有发展前途的一种燃料电池。
PEMFC 电催化剂是制约其实现商业化的关键因素之一,因而 , 对电催化剂的研究成为 PEMFC 研究的主要内容。正如麻省理工学院化学系主任 Lippard 在评论 20 世纪化学学科发展时所指出的那样: '20 世纪化学的最大遗憾是未能研制出优良的燃料电池催化剂 ' 。
催化剂的制备方法对催化剂中 Pt 的粒径及晶态都有很大的影响,目前报道较多的 Pt/C 催化剂制备方法主要有无机胶体法、浸渍法、凝胶溶胶法和沉淀法等,这些原有的方法制备的催化剂存在颗粒分散性差,粒径不均匀和反应条件比较苛刻的问题。由于催化剂的制备工艺决定其组成和结构,进而影响其催化性能,研究催化剂的制备方法和工艺显得非常重要。
石墨烯的理论研究已有 60 多年的历史,被广泛用来研究不同结构的碳质材料的性能。 Science 杂志 2009 年 324 卷 1530 页中 Geim 指出,石墨烯是具有少于 10 层石墨分子层状结构的碳材料,比表面积较高(单层石墨烯的理论比表面积可达到 2620m2 /g ) , 可以提供骄傲多的命属负载位。同时,石墨烯表现出很强的量子效应,具有良好的电子传导能力。通过第一原理计算发现,铂族可以稳定的负载于石墨烯上,而一氧化碳或氢在命属铂颗粒上的吸附会因为石墨烯的存在而降低,更有利于燃料电池中的反应。因此,石墨烯可以作为一个很好的碳载体。
发明内容
基于上述问题,本发明提供一种 Pt/ 石墨烯催化剂的制备方法,包括如下步骤:
1 、氧化石墨的制备:利用石墨粉,通过改进的 Hummers 法,制备氧化石墨;
2 、氧化石墨烯溶液的制备:将制备出来的氧化石墨加入到水中超声分散,形成以单片层均匀分散的氧化石墨烯溶液;
3 、反胶束体系的配制:在室温下,配制表面活性剂(阴离子型表面活性剂或阳离子型表面活性剂,如甲基苯磺酸钠、十二烷基苯磺酸钠、脂肪族硫酸盐、季铵盐类等),助表面活性剂(如,正辛醇、正壬醇、正庚醇、正己醇),油相(如,环己烷)以及摩尔浓度为 0.04mol/L 的氯铂酸( H2PtCl6 )水溶液组成的混合体系,在超声波作用下形成均匀稳定的反胶束体系;且所述表面活性剂、助表面活性剂以及油相的质量比 10:7:1 ;
4 、前躯体的形成:将配好的氧化石墨烯溶液缓慢的滴加到反胶束体系中;
5 、前躯体的还原:在 80℃ 水浴中,向上述反胶束体系中加入过量的还原剂(如,水合肼或硼氢化钠,且还原剂的摩尔用量为氯铂酸摩尔用量的 3-10 倍),使氯铂酸和氧化石墨烯分别还原成 Pt 和石墨烯,制得 Pt 和石墨烯的乳液;现以 H2PtCl6 为例,以 KBH4 为还原剂,反应如下所示:
H2PtCl6+KBH4→Pt+H 2↑+2HCl+KCl+BCl 3
6 、破乳:在超声波震荡下,向上述乳液中加入破乳剂(如,丙酮或无水乙醇,且破乳剂加入的量为环己烷体积的 20-50% ),使 Pt 负载到石墨烯载体上,制得混合体系;
7、过滤、洗涤和干燥:真空抽滤上述破乳后的混合体系,依次采用乙醇和去离子水洗涤滤多次,将过滤所得的负载Pt的石墨烯在70℃下真空干燥2 h后,得到Pt/石墨烯催化剂。
上述方法制得的 Pt/ 石墨烯催化剂 , 石墨烯为载体, Pt 负载在所述石墨烯上。
本发明制得的Pt/石墨烯催化剂可以应用于质子交换膜燃料电池领域中。
本发明的Pt/石墨烯催化剂,采用石墨烯做载体,利用石墨烯的离子效应和二维延展性,提高催化剂的稳定性。采用的反胶束体系提供了一种微环境(油包水微乳液),是纳米粒子合成的理想场所,采用该法制备的纳米粒子粒径容易控制且分布比较均匀。
附图说明
图 1 是本发明 Pt/ 石墨烯催化剂制备工艺流程图;
图 2 为实施例1中得到的Pt/石墨烯催化剂和Pt/C催化剂的膜电极电催化性能测试图。
具体实施方式
本发明提供的一种质子交换膜燃料电池用 Pt / 石墨烯催化剂的制备方法,其中铂金属的载量为 5~80w% ,这种催化剂采用石墨烯做载体,利用是石墨烯的离子效应和二维延展性,提高催化剂的稳定性。
上述 Pt / 石墨烯催化剂的制备工艺,如图 1 所示,包括步骤:
1 、氧化石墨的制备:利用石墨粉,通过 Hummers 法,制备氧化石墨;
2 、氧化石墨烯溶液的制备:将制备出来的氧化石墨加入到水中超声分散,形成以单片层均匀分散的氧化石墨烯溶液;
3 、反胶束体系的配制:在室温下,配制表面活性剂(阴离子型表面活性剂或阳离子型表面活性剂,如甲基苯磺酸钠、十二烷基苯磺酸钠、脂肪族硫酸盐、季铵盐类等),助表面活性剂(如,正辛醇、正壬醇、正庚醇、正己醇),油相(如,环己烷)以及摩尔浓度为0.04mol/L的氯铂酸(H2PtCl6 )水溶液组成的混合体系,在超声波作用下形成均匀稳定的反胶束体系;且所述表面活性剂、助表面活性剂以及油相的质量比10:7:1;
4 、前躯体的形成:将配好的氧化石墨烯溶液缓慢的滴加到反胶束体系中;
5 、前躯体的还原:在 80℃ 水浴中,向上述反胶束体系中加入过量的还原剂(如,水合肼或硼氢化钠,且还原剂的摩尔用量为氯铂酸摩尔用量的 3-10 倍),使氯铂酸和氧化石墨烯分别还原成 Pt 和石墨烯,制得 Pt 和石墨烯的乳液,且 Pt 与石墨烯的质量比 1:10 ;现以 H2PtCl6 为例,以 KBH4 为还原剂,反应如下所示:
H2PtCl6+KBH4→Pt+H 2↑+2HCl+KCl+BCl 3
6 、破乳:在超声波震荡下,向上述乳液中加入破乳剂(如,丙酮或无水乙醇,破乳剂加入的量为环己烷体积的 20-50% ),使 Pt 负载到石墨烯载体上,得到混合体系;
7 、过滤、洗涤和干燥:真空抽滤上述破乳后的混合体系,依次采用乙醇和去离子水洗涤滤多次,并将过滤所得的负载 Pt 的石墨烯在 70℃ 下真空干燥 2 h 后,得到 Pt/ 石墨烯催化剂。
其中,所述氧化石墨制备步骤中,还包括如下步骤:
① 、将石墨粉、过硫酸钾和五氧化二磷分别加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥,得到样品;
② 、将干燥后的样品加入 0 ℃ 的 200-250 mL 浓硫酸中,再加入高锰酸钾,并在 0-20 ℃ 保温 5-60 分钟,然后在 35 ℃ 的油浴中保持 1-2 h 后,缓慢加入含双氧水的去离子水,得到混合物;
③ 、待上述混合物颜色变为亮黄色,趁热抽滤,再用盐酸进行洗涤、抽滤、在60℃真空干燥48h,即得到氧化石墨。
上述方法制得的Pt/石墨烯催化剂,石墨烯为载体,Pt负载在所述石墨烯上。
本发明制得的 Pt/ 石墨烯催化剂可以应用于质子交换膜燃料电池领域中。
本发明的 Pt/ 石墨烯催化剂,采用石墨烯做载体,利用石墨烯的离子效应和二维延展性,提高催化剂的稳定性。采用的反胶束体系提供了一种微环境(油包水微乳液),是纳米粒子合成的理想场所,采用该法制备的纳米粒子粒径容易控制且分布比较均匀。
下面结合附图,对本发明的较佳实施例作进一步详细说明。
实施例 1
1 、氧化石墨的制备:通过改进的 Hummers 法制备氧化石墨。其具体步骤为将 20g 50 目石墨粉、 10 g 过硫酸钾和 10 g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 230 mL 的浓硫酸中,再加入 60 g 高锰酸钾,混合物的温度保持在 20 ℃ 以下保持 30 分钟,然后在 35 ℃ 的油浴中保持 2 h 后,缓慢加入 920 mL 去离子水。 15 min 后,再加入 2.8 L 去离子水 ( 其中含有 50 mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5 L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60℃ 真空干燥 48h 即得到氧化石墨。
2 、氧化石墨烯溶液的制备:将制备出来的 0.5g 氧化石墨加入到 200 mL 水中超声分散,形成以单片层均匀分散的氧化石墨烯溶液。
3 、反胶束体系的配制:在室温下,将十二烷基苯磺酸钠、正辛醇和环己烷按质量比 100:70:10 的比例混合,然后按十二烷基苯磺酸钠与水的摩尔比 1:7 的比例加入水,超声振荡 30min ,最后再将配好的 0.04mol/L 氯铂酸溶液缓慢的滴加到混合溶液中,控制超声振荡 30min ,形成透明的反胶束体系。
4 、前躯体的形成:将配好的氧化石墨烯溶液缓慢的滴加到反胶束体系中,超声振荡 30min 。控制铂与石墨烯的质量比 1:10 。
5 、前躯体的还原:在 80℃ 水浴中,向反胶束体系中加入过量的硼氢化钠,然后超声振荡 2 小时,使氧化石墨烯和氯铂酸分别得到还原。
6 、 破乳:在超声波震荡下,向上述体系中加入破乳剂丙酮 30mL ,静置至体系分层。
7 、过滤、洗涤和干燥:过滤溶液,然后采用乙醇溶液和去离子水洗涤滤饼多次,将所得催化剂在 70℃ 下真空干燥 2 h 后,得到 Pt/ 石墨烯催化剂。
图 2 为实施例 1 中得到的 Pt/ 石墨烯催化剂和 Pt/C 催化剂的膜电极电催化性能测试。膜电极的制备:将实施例 1 中得到的 Pt/ 石墨烯催化剂均匀的涂抹到碳纸上得到电极,然后再将两片电极与 Nafion 质子交换膜(美国杜邦公司生产)在 140 ℃ 、 0.3MPa 的压力下压成膜电极。膜电极电催化性能测试条件:将膜电极装入质子交换膜单体电池内,接入燃料电池测试仪,膜电极的有效面积为 4cm 2 ,测试时通入的纯氢和纯氧。 Pt/C 催化剂也采用相同的方法制备成膜电极和测试,可以看出在较高的电流密度下 Pt/ 石墨烯催化剂催化性能更好。
实施例 2
1 、氧化石墨的制备:通过改进的 Hummers 法制备氧化石墨。其具体步骤为将 20g 50 目石墨粉、 10 g 过硫酸钾和 10 g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 200 mL 的浓硫酸中,再加入 60 g 高锰酸钾,混合物的温度保持在 20 ℃ 以下保持 5 分钟,然后在 35 ℃ 的油浴中保持 1 h 后,缓慢加入 920 mL 去离子水。 15 min 后,再加入 2.8 L 去离子水 ( 其中含有 50 mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5 L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60℃ 真空干燥 48h 即得到氧化石墨。
2 、氧化石墨烯溶液的制备:将制备出来的 0.5g 氧化石墨加入到 200 mL 水中超声分散,形成以单片层均匀分散的氧化石墨烯溶液。
3 、反胶束体系的配制:在室温下,将甲基苯磺酸钠、正辛醇和环己烷按质量比 100:70:10 的比例混合,然后按甲基苯磺酸钠与水的摩尔比 1:7 的比例加入水,超声振荡 30min ,最后再将配好的 0.04mol/L 氯铂酸溶液缓慢的滴加到混合溶液中,控制超声振荡 30min ,形成透明的反胶束体系。
4 、前躯体的形成: 10%-60% ,将配好的氧化石墨烯溶液缓慢的滴加到反胶束体系中,超声振荡 30min 。控制铂与石墨烯的质量比 1:10 。
5 、前躯体的还原:在 80℃ 水浴中,向反胶束体系中加入过量的硼氢化钠,然后超声振荡 2 小时,使氧化石墨烯和氯铂酸分别得到还原。
6 、 破乳:在超声波震荡下,向上述体系中加入破乳剂丙酮 20mL ,静置至体系分层。
7 、过滤、洗涤和干燥:过滤溶液,然后采用乙醇溶液和去离子水洗涤滤饼多次,将所得催化剂在 70℃ 下真空干燥 2 h 后,得到 Pt/ 石墨烯催化剂。
实施例 3
1 、氧化石墨的制备:通过改进的 Hummers 法制备氧化石墨。其具体步骤为将 20g 50 目石墨粉、 10 g 过硫酸钾和 10 g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 250 mL 的浓硫酸中,再加入 60 g 高锰酸钾,混合物的温度保持在 20 ℃ 以下保持 60 分钟,然后在 35 ℃ 的油浴中保持 2 h 后,缓慢加入 920 mL 去离子水。 15 min 后,再加入 2.8 L 去离子水 ( 其中含有 50 mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5 L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60℃ 真空干燥 48h 即得到氧化石墨。
2 、氧化石墨烯溶液的制备:将制备出来的 0.5g 氧化石墨加入到 200 mL 水中超声分散,形成以单片层均匀分散的氧化石墨烯溶液。
3 、反胶束体系的配制:在室温下,将甲基苯磺酸钠、正辛醇和环己烷按质量比 100:70:10 的比例混合,然后按甲基苯磺酸钠与水的摩尔比 1:7 的比例加入水,超声振荡 30min ,最后再将配好的 0.04mol/L 氯铂酸溶液缓慢的滴加到混合溶液中,控制超声振荡 30min ,形成透明的反胶束体系。
4 、前躯体的形成: 10%-60% ,将配好的氧化石墨烯溶液缓慢的滴加到反胶束体系中,超声振荡 30min 。控制铂与石墨烯的质量比 1:10 。
5 、前躯体的还原:在 80℃ 水浴中,向反胶束体系中加入过量的水合肼溶液,然后超声振荡 2 小时,使氧化石墨烯和氯铂酸分别得到还原。
6 、 破乳:在超声波震荡下,向上述体系中加入破乳剂丙酮 50mL ,静置至体系分层。
7 、过滤、洗涤和干燥:过滤溶液,然后采用乙醇溶液和去离子水洗涤滤饼多次,将所得催化剂在70℃下真空干燥2 h后,得到Pt/石墨烯催化剂。
实施例 4
1 、氧化石墨的制备:通过改进的 Hummers 法制备氧化石墨。其具体步骤为将 20g 50 目石墨粉、 10 g 过硫酸钾和 10 g 五氧化二磷加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥。将干燥后的样品加入 0 ℃ 、 240 mL 的浓硫酸中,再加入 60 g 高锰酸钾,混合物的温度保持在 20 ℃ 以下保持 40 分钟,然后在 35 ℃ 的油浴中保持 2 h 后,缓慢加入 920 mL 去离子水。 15 min 后,再加入 2.8 L 去离子水 ( 其中含有 50 mL 浓度为 30% 的双氧水 ) ,之后混合物颜色变为亮黄色,趁热抽滤,再用 5 L 浓度为 10% 的盐酸进行洗涤、抽滤、在 60℃ 真空干燥 48h 即得到氧化石墨。
2 、氧化石墨烯溶液的制备:将制备出来的 0.5g 氧化石墨加入到 200 mL 水中超声分散,形成以单片层均匀分散的氧化石墨烯溶液。
3 、反胶束体系的配制:在室温下,将十二烷基苯磺酸钠、正辛醇和环己烷按质量比 100:80:10 的比例混合,然后按十二烷基苯磺酸钠与水的摩尔比 1:8 的比例加入水,超声振荡 30min ,最后再将配好的 0.04mol/L 氯铂酸溶液缓慢的滴加到混合溶液中,控制超声振荡 30min ,形成透明的反胶束体系。
4 、前躯体的形成: 10%-60% ,将配好的氧化石墨烯溶液缓慢的滴加到反胶束体系中,超声振荡 30min 。控制铂与石墨烯的质量比 1:10 。
5 、前躯体的还原:在 80℃ 水浴中,向反胶束体系中加入过量的硼氢化钠,然后超声振荡 2 小时,使氧化石墨烯和氯铂酸分别得到还原。
6 、 破乳:在超声波震荡下,向上述体系中加入破乳剂丙酮 30mL ,静置至体系分层。
7 、过滤、洗涤和干燥:过滤溶液,然后采用乙醇溶液和去离子水洗涤滤饼多次,将所得催化剂在70℃下真空干燥2 h后,得到Pt/石墨烯催化剂。
应当理解的是,上述针对本发明较佳实施例的表述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本发明的专利保护范围应以所附权利要求为准。

Claims (10)

  1. 一种 Pt/ 石墨烯催化剂的制备方法,其特征在于,包括如下步骤:
    根据 Hummers 法,将石墨粉体进行氧化反应,制得氧化石墨;
    将上述制得的氧化石墨加入水中,超声分散后,形成以单片层均匀分散的氧化石墨烯溶液;
    室温下,配制包括表面活性剂、助表面活性剂、油相以及氯铂酸水溶液的反胶束体系;
    将所述氧化石墨烯溶液滴加到所述反胶束体系中,并在水浴加热状态下,滴加还原剂,进行还原反应,制得 Pt 和石墨烯的乳液;
    往所述乳液中滴加破乳剂,并使 Pt 负载到石墨烯载体上;
    过滤、清洗、干燥负载Pt的石墨烯,得到所述Pt/石墨烯催化剂。
  2. 根据权利要求 1 所述的制备方法,其特征在于,所述氧化石墨制备步骤中,还包括如下步骤:
    将石墨粉、过硫酸钾和五氧化二磷分别加入 80 ℃ 的浓硫酸中,搅拌均匀,冷却 6 h 以上,洗涤至中性,干燥,得到样品;
    将干燥后的样品加入 200-250 mL 浓硫酸中,再加入高锰酸钾,并在 0-20 ℃ 保温 5-60 分钟,然后在 35 ℃ 的油浴中保持 1-2 h 后,缓慢加入含双氧水的去离子水,得到混合物;
    待上述混合物颜色变为亮黄色,趁热抽滤,再用盐酸进行洗涤、抽滤、在60℃真空干燥48h,即得到氧化石墨。
  3. 根据权利要求2所述的制备方法,其特征在于,所述石墨粉、过硫酸钾和五氧化二磷的质量比为2:1:1。
  4. 根据权利要求2所述的制备方法,其特征在于,所述高锰酸钾的加入量为石墨粉质量的3倍;所述双氧水的质量百分比浓度为30%。
  5. 根据权利要求1所述的制备方法,其特征在于,所述表面活性剂为甲基苯磺酸钠、十二烷基苯磺酸钠、脂肪族硫酸盐或季铵盐类中任一种;所述助表面活性剂为正辛醇、正壬醇、正庚醇或正己醇中的任一种;所述油相为环己烷;氯铂酸水溶液的摩尔浓度为0.04mol/L;所述表面活性剂、助表面活性剂以及油相的质量比10:7:1。
  6. 根据权利要求1所述的制备方法,其特征在于,所述Pt和石墨烯的乳液中,Pt与石墨烯的质量比1:10。
  7. 根据权利要求1所述的制备方法,其特征在于,所述还原剂为水合肼或硼氢化钠,所述还原剂的用量为氯铂酸用量的3-10倍。
  8. 根据权利要求1所述的制备方法,其特征在于,所述破乳剂为丙酮或无水乙醇。
  9. 一种Pt/石墨烯催化剂,其特征在于,该Pt/石墨烯催化剂由权利要求1至8任一所述制备方法制得,且石墨烯为载体,Pt负载在所述石墨烯上。
  10. 一种权利要求9所述的Pt/石墨烯催化剂在质子交换膜燃料电池中的应用。
PCT/CN2010/080457 2010-12-29 2010-12-29 一种pt/石墨烯催化剂及其制备方法和应用 WO2012088681A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013546551A JP5841169B2 (ja) 2010-12-29 2010-12-29 白金/グラフェン触媒の作製法
CN2010800696785A CN103180039A (zh) 2010-12-29 2010-12-29 一种Pt/石墨烯催化剂及其制备方法和应用
EP10861347.2A EP2659966B1 (en) 2010-12-29 2010-12-29 Pt/graphene catalyst, preparation method and use thereof
US13/990,154 US20130252138A1 (en) 2010-12-29 2010-12-29 Pt/graphene catalyst, preparation method and use thereof
PCT/CN2010/080457 WO2012088681A1 (zh) 2010-12-29 2010-12-29 一种pt/石墨烯催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/080457 WO2012088681A1 (zh) 2010-12-29 2010-12-29 一种pt/石墨烯催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2012088681A1 true WO2012088681A1 (zh) 2012-07-05

Family

ID=46382198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/080457 WO2012088681A1 (zh) 2010-12-29 2010-12-29 一种pt/石墨烯催化剂及其制备方法和应用

Country Status (5)

Country Link
US (1) US20130252138A1 (zh)
EP (1) EP2659966B1 (zh)
JP (1) JP5841169B2 (zh)
CN (1) CN103180039A (zh)
WO (1) WO2012088681A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895966A (zh) * 2012-10-19 2013-01-30 深圳大学 一种PbO/氧化石墨烯复合粉体及其制备方法
CN103266329A (zh) * 2013-05-14 2013-08-28 北京化工大学 一种采用负载催化剂离子膜合成2,2’-二氯氢化偶氮苯的电化学方法
CN106784877A (zh) * 2017-01-03 2017-05-31 华南理工大学 一种微生物燃料电池阴极复合材料的制备方法与微生物燃料电池反应器
CN112657553A (zh) * 2020-12-16 2021-04-16 常州大学 一种可自分离的Pickering乳液催化剂制备方法
CN113769760A (zh) * 2021-09-27 2021-12-10 安徽工业技术创新研究院六安院 一种铂镍合金纳米颗粒/石墨烯复合催化剂的制备方法
CN114405501A (zh) * 2021-03-30 2022-04-29 南昌大学 磁驱动自搅拌微型催化剂的批量制备方法及其应用
CN114804090A (zh) * 2022-04-11 2022-07-29 东风汽车集团股份有限公司 一种三维载体、催化剂及其制备方法
CN115786933A (zh) * 2022-12-31 2023-03-14 福州大学 一种Pt@CS/石墨烯电催化析氢催化剂及其制备方法和应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103730668B (zh) * 2013-12-21 2016-08-31 南京大学昆山创新研究院 一种燃料电池用Pt/C催化剂及其制备工艺
CN109216716B (zh) * 2018-08-06 2023-09-05 浙江高成绿能科技有限公司 一种高Pt载量的燃料电池用Pt/C催化剂的制备方法
CN109103467B (zh) * 2018-08-17 2021-09-28 北京师范大学 一种电化学剥离石墨烯基金属催化剂的制备方法及应用
US11145875B2 (en) * 2019-08-19 2021-10-12 Robert Bosch Gmbh Fuel cell electrode catalyst layer coating
US11670790B2 (en) 2019-11-25 2023-06-06 Robert Bosch Gmbh Fuel cell membrane electrode assemblies
CN110993966A (zh) * 2020-01-02 2020-04-10 南京工业大学 一种燃料电池电催化剂及其制备方法
US11631863B2 (en) 2020-03-27 2023-04-18 Robert Bosch Gmbh Fuel cell catalyst material with defective, carbon-based coating
US11870081B2 (en) * 2020-04-23 2024-01-09 Thu Ha Thi Vu Method of preparing catalyst containing platinum dispersed on graphene quantum dot containing carrier for direct alcohol fuel cell and catalyst obtained by this method
CN111455184B (zh) * 2020-06-02 2022-04-29 河南省岩石矿物测试中心 硼氢化钾-氯化铵还原回收实验室废旧贵金属材料中铂的方法
CN112169791B (zh) * 2020-10-22 2022-09-02 西安理工大学 一种片层状三相复合光催化材料的制备方法
CN112397730B (zh) * 2020-11-08 2023-07-21 上海弘枫实业有限公司 一种石墨复合材料的制备方法
CN112687901A (zh) * 2020-12-21 2021-04-20 松山湖材料实验室 一种三维石墨烯载铂催化剂及其制备方法和应用
CN113403629A (zh) * 2021-06-07 2021-09-17 嘉寓氢能源科技(辽宁)有限公司 一种电解水制氢系统用催化剂及其制备方法
CN113611887B (zh) * 2021-08-04 2023-03-31 北京航空航天大学 一种低铂载量耐碳腐蚀燃料电池催化剂的制备方法
CN113713806B (zh) * 2021-08-30 2022-05-20 广东工业大学 纳米金刚石/石墨烯负载Pt单原子催化剂的制备方法
CN114588887A (zh) * 2022-03-07 2022-06-07 厦门理工学院 一种z型复合光催化剂及其制备方法
CN115254157A (zh) * 2022-07-29 2022-11-01 桂林电子科技大学 一种氧化石墨烯负载RuO2-CoP4及其制备方法和应用
US12021245B2 (en) 2022-08-24 2024-06-25 Robert Bosch Gmbh Fuel cell electrode catalyst protective layer forming method
DE102022209933A1 (de) 2022-09-21 2024-03-21 Robert Bosch Gesellschaft mit beschränkter Haftung Stoffgemisch, Verwendung eines Stoffgemisches, Verfahren für die Herstellung eines Funktionskörpers für einen elektrochemischen Energiewandler sowie elektrochemischer Energiewandler
CN115739199B (zh) * 2022-11-14 2024-07-26 上海云松化学有限公司 油溶性石墨烯改性苯乙烯-二乙烯基苯共聚物疏水催化剂载体的制备方法
CN115646544A (zh) * 2022-11-21 2023-01-31 广东工业大学 一种负载型铂催化剂、制备方法和双子型季铵盐的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161501A1 (en) * 2006-01-10 2007-07-12 Atomic Energy Council - Institute Of Nuclear Energy Research Method for making carbon nanotube-supported platinum alloy electrocatalysts
CN101214437A (zh) * 2007-12-26 2008-07-09 天津大学 制备铂钌/碳催化剂的反胶束方法
CN101714463A (zh) * 2009-12-14 2010-05-26 浙江大学 一种超级电容器用石墨烯/Ru纳米复合材料及其制备方法
CN101814607A (zh) * 2010-04-17 2010-08-25 上海交通大学 一种质子交换膜燃料电池用铂/石墨烯催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011082064A1 (en) * 2009-12-29 2011-07-07 Montclair State University Chelating agent modified graphene oxides, methods of preparation and use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161501A1 (en) * 2006-01-10 2007-07-12 Atomic Energy Council - Institute Of Nuclear Energy Research Method for making carbon nanotube-supported platinum alloy electrocatalysts
CN101214437A (zh) * 2007-12-26 2008-07-09 天津大学 制备铂钌/碳催化剂的反胶束方法
CN101714463A (zh) * 2009-12-14 2010-05-26 浙江大学 一种超级电容器用石墨烯/Ru纳米复合材料及其制备方法
CN101814607A (zh) * 2010-04-17 2010-08-25 上海交通大学 一种质子交换膜燃料电池用铂/石墨烯催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SCIENCE, vol. 324, 2009, pages 1530
See also references of EP2659966A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102895966A (zh) * 2012-10-19 2013-01-30 深圳大学 一种PbO/氧化石墨烯复合粉体及其制备方法
CN103266329A (zh) * 2013-05-14 2013-08-28 北京化工大学 一种采用负载催化剂离子膜合成2,2’-二氯氢化偶氮苯的电化学方法
CN106784877A (zh) * 2017-01-03 2017-05-31 华南理工大学 一种微生物燃料电池阴极复合材料的制备方法与微生物燃料电池反应器
CN106784877B (zh) * 2017-01-03 2023-05-02 华南理工大学 一种微生物燃料电池阴极复合材料的制备方法与微生物燃料电池反应器
CN112657553A (zh) * 2020-12-16 2021-04-16 常州大学 一种可自分离的Pickering乳液催化剂制备方法
CN112657553B (zh) * 2020-12-16 2023-08-29 常州大学 一种可自分离的Pickering乳液催化剂制备方法
CN114405501A (zh) * 2021-03-30 2022-04-29 南昌大学 磁驱动自搅拌微型催化剂的批量制备方法及其应用
CN113769760A (zh) * 2021-09-27 2021-12-10 安徽工业技术创新研究院六安院 一种铂镍合金纳米颗粒/石墨烯复合催化剂的制备方法
CN114804090A (zh) * 2022-04-11 2022-07-29 东风汽车集团股份有限公司 一种三维载体、催化剂及其制备方法
CN114804090B (zh) * 2022-04-11 2023-09-12 东风汽车集团股份有限公司 一种三维载体、催化剂及其制备方法
CN115786933A (zh) * 2022-12-31 2023-03-14 福州大学 一种Pt@CS/石墨烯电催化析氢催化剂及其制备方法和应用

Also Published As

Publication number Publication date
JP5841169B2 (ja) 2016-01-13
CN103180039A (zh) 2013-06-26
EP2659966A4 (en) 2014-06-25
EP2659966B1 (en) 2015-10-14
EP2659966A1 (en) 2013-11-06
JP2014507260A (ja) 2014-03-27
US20130252138A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
WO2012088681A1 (zh) 一种pt/石墨烯催化剂及其制备方法和应用
WO2012088678A1 (zh) 一种pt-ru纳米合金/石墨烯催化剂及其制备方法和应用
Hur et al. Graphene and its application in fuel cell catalysis: a review
JP5495387B2 (ja) 高分子電解質燃料電池用電極及びこれを利用した膜・電極接合体の製造方法
ITTO970758A1 (it) Elettrodi a diffusione di gas a base di miscele di poli (vinilidenfluoruro) e carbonio e procedimento per la loro preparazione
CN101740785B (zh) 一种钯/石墨烯纳米电催化剂及其制备方法
KR102044875B1 (ko) 라디칼스케빈져를 포함하는 고분자연료전지용 전극
CN109482214A (zh) 一种石墨烯负载钌金属的催化剂及制备方法与应用
JPH10302807A (ja) コーティング及びローリングの混合法による燃料電池の電極製造方法
ITTO970759A1 (it) Elettrodi a diffusione di gas a base di miscele di polieteresolfone e carbonio
Matos et al. Nafion–titanate nanotubes composites prepared by in situ crystallization and casting for direct ethanol fuel cells
CN108043437B (zh) 一种空心SiC载体型Ir-Ru催化剂的制备方法
CN109876833A (zh) 氧化镍负载硫磷掺杂石墨烯复合电催化剂及其制备方法
JPWO2005083818A1 (ja) 燃料電池用電極触媒,これを用いた燃料電池
Glebova et al. Thermally expanded graphite as functional material in the technology of electrode material with mixed conductivity
CN113937310A (zh) 一种铂基催化剂及其制备方法和应用
CN108336375A (zh) 一种锯齿状金属纳米线-碳基燃料电池催化剂及制备方法
JP2019169289A (ja) 燃料電池用空気極触媒及びその製造方法並びに燃料電池用空気極触媒を用いた燃料電池
US20210280874A1 (en) Fuel cell
CN112234218B (zh) 氧还原催化剂、其制备工艺、电池正极、其制备工艺及电池
Tan et al. Direct synthesis of few-layer graphene supported platinum nanocatalyst for methanol oxidation
Tan et al. A Green Approach to the Synthesis of Pd‐Ni/Graphene via Electrochemical Exfoliation of Graphite from Used Battery for the Electrocatalysis of Ethanol
CN110054174A (zh) 氮掺杂碳基复合材料及其制备方法与应用
JP2007184204A (ja) 燃料電池用膜電極接合体およびその製造方法
Karthika et al. Functionalized 2D graphene sheets as catalyst support for proton exchange membrane fuel cell electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13990154

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010861347

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013546551

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE