WO2012086013A1 - 触媒コンバータ装置 - Google Patents

触媒コンバータ装置 Download PDF

Info

Publication number
WO2012086013A1
WO2012086013A1 PCT/JP2010/073034 JP2010073034W WO2012086013A1 WO 2012086013 A1 WO2012086013 A1 WO 2012086013A1 JP 2010073034 W JP2010073034 W JP 2010073034W WO 2012086013 A1 WO2012086013 A1 WO 2012086013A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst carrier
temperature
insulating layer
insulating member
voltage
Prior art date
Application number
PCT/JP2010/073034
Other languages
English (en)
French (fr)
Inventor
村田 登志朗
秀之 幸光
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2011554305A priority Critical patent/JP5246352B2/ja
Priority to EP10860932.2A priority patent/EP2657477B1/en
Priority to US13/990,195 priority patent/US9017616B2/en
Priority to CN201080070483.2A priority patent/CN103237964B/zh
Priority to KR20137016816A priority patent/KR101495249B1/ko
Priority to PCT/JP2010/073034 priority patent/WO2012086013A1/ja
Publication of WO2012086013A1 publication Critical patent/WO2012086013A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/346Controlling the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/002Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring or estimating temperature or pressure in, or downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1628Moisture amount in exhaust apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a catalytic converter device provided in an exhaust pipe of an internal combustion engine.
  • a catalyst carrier honeycomb supporting a catalyst is used.
  • a high catalytic effect can be obtained even when the engine is cold, for example, when the structure is energized and heated.
  • an insulating coating is applied to the surface of the electrode rod for energizing the honeycomb structure to prevent the deterioration of the insulating property.
  • the present invention takes into account the above facts, and an object thereof is to obtain a catalytic converter device capable of suppressing a decrease in insulation between electrode members due to moisture in exhaust gas.
  • a case cylinder that is attached to an exhaust pipe and in which exhaust flows, and a catalyst that is provided in the case cylinder and carries a catalyst for purifying the exhaust discharged from the engine and is heated by energization
  • a carrier a pair of electrode members that pass through the case cylinder and come into contact with the catalyst carrier and energize the catalyst carrier, and an electrode member disposed between at least one of the electrode members and the case cylinder
  • An insulating member that insulates from the case cylinder and generates heat when voltage is applied; and a control device that controls energization of the catalyst carrier and voltage application to the insulating member.
  • the exhaust gas may contain steam (gas moisture) generated by combustion of the internal combustion engine.
  • the insulating member may have a low temperature particularly immediately after the engine is started, and there is a risk of condensation when this vapor touches the surface of the insulating member.
  • the insulating member has an insulating property that can electrically insulate between the electrode member and the case cylinder, but generates heat when a voltage is applied. Then, by applying a voltage to the insulating member by the control device, the insulating member can be heated to raise the temperature. Thereby, dew condensation on the surface of the insulating member can be suppressed. In addition, evaporation of moisture attached to the surface of the insulating member is promoted. And a short circuit with the electrode member and case cylinder resulting from the adhesion of moisture to the insulating member is prevented. Since a decrease in insulation between the electrode members is also suppressed, a decrease in power supply efficiency to the catalyst carrier can be suppressed.
  • control device may apply a voltage to the insulating member before energizing the catalyst carrier.
  • the catalyst carrier when a voltage is applied to the insulating member after energization to the catalyst carrier, the catalyst carrier is in a state where the electrical resistance of the insulating member is reduced between the energization of the catalyst carrier and the voltage application to the insulating member. May be energized.
  • the time for energizing the catalyst carrier in a state where the electrical resistance of the insulating member is reduced is shortened (preferably this time is eliminated). The decrease in power supply efficiency can be suppressed.
  • the voltage application to the insulating member may be performed simultaneously with the energization to the catalyst carrier, but is preferably performed before the energization to the catalyst carrier.
  • a temperature detection means for detecting the temperature of the catalyst carrier is provided, and the control device applies voltage to the insulating member when the temperature of the catalyst carrier detected by the temperature detection means is equal to or lower than a predetermined temperature, and It is good also as a structure which supplies with electricity to a catalyst support
  • the voltage application to the insulating member and the energization to the catalyst carrier are not performed so that the voltage can be efficiently applied to the insulating member and the efficiency can be improved. It is possible to energize a typical catalyst carrier.
  • the present invention has an electrical resistance detection means for detecting the electrical resistance of the insulating member
  • the control device may be configured to apply a voltage to the insulating member when the electric resistance of the insulating member detected by the electric resistance detecting means is not more than a predetermined value.
  • the electrical resistance of the insulating member is detected by the electrical resistance detecting means, and when the electrical resistance is less than or equal to a predetermined value, the voltage applied to the insulating member causes the electrical resistance of the insulating member to exceed the predetermined value. In this case, since no voltage is applied to the insulating member, it is possible to efficiently apply a voltage to the insulating member.
  • control device may be configured to energize the catalyst carrier when the electrical resistance of the insulating member exceeds a predetermined value.
  • the electrode member is energized to prevent a situation where the catalyst carrier is energized when the electrical resistance of the insulating member is a predetermined value or less.
  • the catalyst carrier can be efficiently heated.
  • the present invention further comprises temperature detecting means for detecting the temperature of the catalyst carrier, and the control device applies voltage to the insulating member when the electric resistance of the insulating member is equal to or lower than a predetermined value. After the resistance exceeds a predetermined value, the catalyst carrier may be energized when the temperature of the catalyst carrier detected by the temperature detecting means is equal to or lower than a predetermined temperature.
  • the present invention has the above configuration, it is possible to suppress a decrease in insulation between the electrode members due to moisture in the exhaust.
  • FIG. 1 shows a catalytic converter device 12 according to a first embodiment of the present invention mounted on an exhaust pipe 10.
  • the catalytic converter device 12 includes both an automobile (hereinafter referred to as an “engine vehicle”) that obtains driving force only by an engine and an automobile (hereinafter referred to as “hybrid vehicle”) that obtains driving force by a combination of an engine and a motor. It is applicable to.
  • the catalytic converter device 12 is made of a material having conductivity and rigidity (a conductive ceramic, a conductive resin, a metal, or the like can be applied, but in this embodiment, a conductive ceramic is used). It has a catalyst carrier 14 formed.
  • the catalyst carrier 14 is formed in a columnar shape or a cylindrical shape in which the surface area of the material is increased by configuring a thin plate having a honeycomb shape or a wavy shape into a spiral shape or a concentric shape, and a catalyst (platinum) is formed on the surface. , Palladium, rhodium, etc.) are attached.
  • the catalyst has an action of purifying harmful substances in the exhaust gas flowing in the exhaust pipe 10 (the flow direction is indicated by an arrow F1). Note that the structure for increasing the surface area of the catalyst carrier 14 is not limited to the honeycomb shape or the wave shape described above.
  • Electrodes 16A and 16B are attached to the catalyst carrier 14, and the electrode plates 16A and 16B are each connected to a terminal 18A via conductive members 20A and 20B made of a conductive material such as metal. , 18B are connected.
  • Each of the terminals 18A and 18B has a structure in which an insulating layer 34 covers the periphery of the central electrode rod 32.
  • the outer end of the electrode rod 32 (the end opposite to the conductor members 20A and 20B) is a connection 32C to which a power supply cable to the catalyst carrier 14 is connected.
  • the electrode rod 32 constitutes the electrode member of the present invention.
  • the conducting wire members 20A and 20B are formed in, for example, a zigzag shape or a spiral shape so as to have flexibility, and when the case cylinder 28 and the catalyst carrier 14 are relatively moved as described later, It is possible to absorb this relative movement.
  • the catalyst carrier 14 can be heated by energizing the catalyst carrier 14 from the terminals 18A and 18B through the conductor members 20A and 20B and the electrode plates 16A and 16B. With this heating, the temperature of the catalyst supported on the surface is raised so that the purification of the catalyst can be exhibited at an early stage even immediately after the engine is started.
  • the insulating layer 34 is formed in a cylindrical shape by a material having electrical insulation, and covers the outer peripheral surface of the electrode rod 32 over the entire circumference, so that the electrode rod 32 is connected to the electrode mounting cover 36 (details will be described later). The flow of electricity is blocked.
  • An electrode mounting cover 36 covers the periphery of the insulating layer 34.
  • the electrode mounting cover 36 is made of metal and is formed in a cylindrical shape having a predetermined rigidity.
  • a female screw 38 is formed on the inner peripheral surface of the electrode mounting cover 36.
  • a holding member 26 formed in a substantially cylindrical shape with an insulating material is disposed on the outer periphery of the catalyst carrier 14. Further, a case cylinder 28 formed in a substantially cylindrical shape with a metal such as stainless steel is disposed on the outer periphery of the holding member 26.
  • the catalyst carrier 14 is accommodated inside the substantially cylindrical case cylinder 28, and the catalyst carrier 14 is cased by the holding member 26 disposed between the case cylinder 28 and the catalyst carrier 14.
  • the cylinder 28 is held concentrically (center line CL). Since the insulating holding member 26 is disposed between the catalyst carrier 14 and the case cylinder 28, the flow of electricity from the catalyst carrier 14 to the case cylinder 28 is prevented.
  • the holding member 26 also has a predetermined elasticity. Since the case expansion body 28 made of metal and the catalyst carrier 14 made of conductive ceramic have different linear expansion coefficients, the amount of expansion due to the heat of the exhaust gas passing through the exhaust pipe 10 and the current heating to the catalyst carrier 14 is different. However, the difference in expansion amount is absorbed by the elasticity of the holding member 26. Further, even when vibration is input through the exhaust pipe 10, the holding member 26 absorbs a positional deviation between the case cylinder 28 and the catalyst carrier 14 while exhibiting a buffering action.
  • the material of the holding member 26 is not limited as long as it has the above-described insulating properties and elasticity. However, as an example of the material, a fiber mat is preferable, and an interlam mat, mullite, or the like is also applicable. .
  • the catalyst carrier 14 and the holding member 26 are formed to have substantially the same length in the axial direction, and the upstream end surface 14A of the catalyst carrier 14 and The upstream end surface 26A of the holding member 26 is substantially flush. Similarly, the downstream end surface 14B of the catalyst carrier 14 and the downstream end surface 26B of the holding member 26 are substantially flush with each other.
  • the holding member 26 is formed with two electrode chambers 40 at predetermined positions in the center in the axial direction.
  • the electrode chamber 40 accommodates the leading end portions of the conductor members 20A and 20B and the terminals 18A and 18B.
  • a mounting hole 42 is formed in the case cylinder 28 at a position corresponding to the electrode chamber 40.
  • An electrode mounting boss 44 is fixed to the case cylinder 28 corresponding to the mounting hole 42.
  • the electrode mounting boss 44 is formed with an insertion hole through which the tip portions of the terminals 18A and 18B are inserted, a lid plate portion 44F covering the mounting hole 42, and a cylindrical shape standing from the center of the lid plate portion 44F. And a cylindrical portion 44C.
  • a male screw 46 into which the female screw 38 is screwed is formed on the inner peripheral surface of the cylindrical portion 44C.
  • the terminals 18A and 18B are connected to the electrode mounting boss by screwing the female screw 38 of the electrode mounting cover 36 to the male screw 46 of the cylindrical portion 44C. 44.
  • a lead wire 50 for applying a voltage from a power supply 48 is connected to the insulating layer 34.
  • the insulating layer 34 has sufficient insulation (electric resistance) to insulate the electrode rod 32 from the case cylinder 28 as described above, but a sufficiently high voltage is applied.
  • the insulating layer 34 is made of a material that generates Joule heat and rises in temperature. Examples of such a material include alumina and silicon nitride. In forming these materials, it is possible to satisfy the required insulating properties and heat generation during voltage application by forming them in a porous shape having a predetermined porosity.
  • the power supply 48 is controlled by the control device 52.
  • the power supply 48 may be newly provided for applying a voltage to the insulating layer 34.
  • an in-vehicle battery may be used.
  • a temperature sensor 54 for detecting the temperature is attached to the catalyst carrier 14. Data on the temperature of the catalyst carrier 14 detected by the temperature sensor 54 is sent to the control device 52.
  • the exhaust from the engine first passes through the catalytic converter device 12 in the exhaust pipe 10, thereby purifying the harmful substances in the exhaust.
  • the catalyst carrier 14 is energized from the terminals 18A and 18B (electrode rod 32) through the electrode plates 16A and 16B, and the catalyst carrier 14 is heated, so that the catalyst carrier 14 carries the catalyst carrier 14.
  • the temperature of the catalyst main body can be raised and the purification action can be exerted more quickly. For example, when the temperature of the exhaust gas is low, such as immediately after starting the engine, it is possible to ensure high purification performance of the catalyst body at the initial stage of engine starting by positively heating the catalyst carrier 14 in advance.
  • the catalyst carrier 14 is heated by the heat from the exhaust, so there is no need to energize the catalyst carrier 14.
  • the exhaust gas containing moisture may pass through the holding member 26 and the catalyst carrier 14 and enter the electrode chamber 40. Further, the moisture may be condensed and liquefied on the surface of the insulating layer 34 in the electrode chamber 40. In particular, immediately after the engine is started, the temperature of the insulating layer 34 is low, so that moisture in the exhaust gas tends to condense when it touches the insulating layer 34. Further, since the insulating layer 34 is separated from the catalyst carrier 14, even if the temperature of the catalyst carrier 14 is increased, the heat is not easily transmitted to the insulating layer 34, and the temperature of the insulating layer 34 is difficult to increase.
  • the catalytic converter device 12 of this embodiment heat is generated by applying a high voltage from the power source 48 to the insulating layer 34, and the temperature rises. For this reason, dew condensation on the surface of the insulating layer 34, that is, adhesion of liquid moisture can be suppressed. Further, even if liquid moisture adheres to the insulating layer 34, it is possible to promote and remove the moisture evaporation. Thereby, in the catalytic converter device 12 of the present embodiment, it is possible to suppress a decrease in insulation between the electrode bars 32 due to moisture in the exhaust gas. And it becomes possible to maintain the power feeding efficiency to the catalyst carrier 14 high.
  • FIG. 2 shows an example of a flow (first control flow) when a voltage is applied from the power supply 48 to the insulating layer 34.
  • the engine is started in the case of a gasoline vehicle, and in the case of a hybrid vehicle, the “Ready on” state, which is the state in which the vehicle can run, is hereinafter collectively referred to as the “runnable state”)) It is started by becoming.
  • the control device 52 applies a voltage to the insulating layer 34 in step S102.
  • This voltage application is performed for a predetermined time set in advance, for example.
  • the insulating layer 34 generates heat and the temperature rises. For this reason, when liquid moisture adheres to the surface of the insulating layer 34, the liquid moisture is evaporated. Further, new condensation on the surface of the insulating layer 34 is also suppressed.
  • step S104 it is determined whether or not heating by energization of the catalyst carrier 14 is necessary. Since the catalytic converter device 12 of the present embodiment has the temperature sensor 54, this determination can be made based on the temperature data detected by the temperature sensor 54. Of course, this determination may be made based on the temperature of the exhaust instead of (or in combination with) the temperature data from the temperature sensor 54.
  • control device 52 shifts to the normal travel mode in step S108 without energizing the catalyst carrier 14, and returns to step S102. In the normal travel mode, energization to the catalyst carrier 14 and voltage application to the insulating layer 34 are stopped.
  • step S104 If it is determined in step S104 that heating of the catalyst carrier 14 is necessary, the controller 52 energizes the catalyst carrier 14 in step S106. This energization is also performed, for example, for a predetermined time.
  • step S102 voltage can be continuously applied to the insulating layer 34 while the vehicle is traveling.
  • the temperature of the catalyst carrier 14 decreases during traveling of the vehicle, it is possible to re-energize the catalyst carrier 14.
  • FIG. 3 shows an example (second control flow) of a control flow different from that in FIG. 2 in the catalytic converter device 12 of the first embodiment.
  • the control device 52 determines whether or not heating by energization of the catalyst carrier 14 is necessary in step S202. Similar to the first control flow, this determination can be made based on the temperature data detected by the temperature sensor 54 or based on the temperature of the exhaust.
  • control device 52 shifts to the normal travel mode in step S208 without energizing the catalyst carrier 14, and returns to step S102.
  • step S204 the controller 52 applies a voltage to the insulating layer 34 in step S204.
  • This voltage application is performed for a predetermined time set in advance, for example. Thereby, the insulating layer 34 generates heat and the temperature rises. For this reason, the liquid water
  • step S206 where the catalyst carrier 14 is energized. Thereafter, in step S208, the process proceeds to the normal travel mode.
  • step S202 the process returns to step S202. Therefore, when the temperature of the catalyst carrier 14 decreases during traveling of the vehicle, it is possible to re-energize the catalyst carrier 14 after applying a voltage to the insulating layer 34.
  • FIG. 4 shows a catalytic converter device 72 according to a second embodiment of the present invention.
  • the same components, members and the like as those of the catalytic converter device 12 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the catalytic converter device 72 of the second embodiment is further provided with a resistance meter 74 for detecting the electric resistance of the insulating layer 34 with respect to the catalytic converter device 12 of the first embodiment.
  • the electrical resistance data of the insulating layer 34 detected by the resistance meter 74 is sent to the control device 52.
  • the electrical resistance of the insulating layer 34 may be estimated from the moisture content, oxygen concentration, etc. of the insulating layer 34, for example.
  • FIG. 5 shows an example of a flow (third control flow) when a voltage is applied from the power source 48 to the insulating layer 34 in the catalytic converter device 72 of the second embodiment.
  • the control device 52 determines whether or not heating by energization of the catalyst carrier 14 is necessary in step S302. Similar to the first control flow, this determination can be made based on the temperature data detected by the temperature sensor 54, and the temperature of the exhaust gas may be used instead (or in combination).
  • control device 52 shifts to the normal travel mode in step S310 without energizing the catalyst carrier 14, and returns to step S202. Up to this point, it is the same as the second control flow shown in FIG.
  • step S302 If it is determined in step S302 that the catalyst carrier 14 needs to be heated, the process proceeds to step S304.
  • step S304 it is determined whether voltage application to the insulating layer 34 is necessary. This determination can be made based on the electrical resistance data of the insulating layer 34 detected by the resistance meter 74.
  • step S304 If it is determined in step S304 that it is not necessary to apply a voltage to the insulating layer 34, the insulating layer 34 has insulating properties, and the process proceeds to step S308.
  • step S308 the catalyst carrier 14 is energized. As a result, the temperature of the catalyst main body supported on the catalyst carrier 14 can be raised and the purification action can be exerted more quickly.
  • step S304 If it is determined in step S304 that voltage application to the insulating layer 34 is necessary, the control device 52 applies voltage to the insulating layer 34 in step S306.
  • This voltage application is performed for a predetermined time set in advance, for example. Thereby, the insulating layer 34 generates heat and the temperature rises. For this reason, the liquid moisture adhering to the surface of the insulating layer 34 is evaporated.
  • step S308 where the catalyst carrier 14 is energized. Thereafter, in step S310, the mode is shifted to the normal travel mode.
  • the third control flow it is determined whether or not voltage application to the insulating layer 34 is necessary in a state in which current heating to the catalyst carrier 14 is required, and the voltage to the insulating layer 34 is determined. Since voltage application is not performed when application is unnecessary, excessive voltage application can be suppressed.
  • FIG. 6 shows an example of the flow (fourth control flow) different from the third control flow in the case where a voltage is applied from the power source 48 to the insulating layer 34 in the catalytic converter device 72 of the second embodiment. ing.
  • the control device 52 determines whether or not voltage application to the insulating layer 34 is necessary in step S402. This determination can be made based on the electrical resistance data of the insulating layer 34 detected by the resistance meter 74. This determination can be made based on the electrical resistance data of the insulating layer 34 detected by the ohmmeter 74, as in the third control flow.
  • step S402 If it is determined in step S402 that it is not necessary to apply a voltage to the insulating layer 34, the insulating layer 34 has insulating properties, and the process proceeds to step S406.
  • step S406 it is determined whether or not heating by energization of the catalyst carrier 14 is necessary. Similar to the third control flow, this determination can be made based on the temperature data detected by the temperature sensor 54, and the temperature of the exhaust gas may be used instead (or in combination).
  • step S406 If it is determined in step S406 that voltage application to the insulating layer 34 is unnecessary, the process proceeds to step S410, the normal travel mode is performed, and the process returns to step S202. If it is determined in step S406 that voltage application to the insulating layer 34 is necessary, the process proceeds to step S408, and the catalyst carrier 14 is energized.
  • step S402. Therefore, when the temperature of the catalyst carrier 14 decreases during traveling of the vehicle, it is possible to re-energize the catalyst carrier 14 after applying a voltage to the insulating layer 34 as necessary.
  • FIG. 7 shows an example of a flow different from the third control flow and the fourth control flow in the case where a voltage is applied from the power source 48 to the insulating layer 34 in the catalytic converter device 72 of the second embodiment (fifth). Control flow) is shown.
  • step S412 it is determined in step S412 whether or not the electrical resistance of the insulating layer 34 has exceeded a predetermined value in the fifth control flow. This determination can be made based on the electrical resistance data of the insulating layer 34 detected by the resistance meter 74.
  • the process returns to step S404 and continues.
  • a voltage is applied to the insulating layer 34.
  • the process proceeds to step S406. That is, in the fifth control flow, the end of voltage application to the insulating layer 34 is not based on time but based on the actual electrical resistance of the insulating layer 34. For this reason, it is possible to energize the catalyst carrier 14 in a state where the electric resistance of the insulating layer 34 surely exceeds a predetermined value.
  • control for ending the voltage application to the insulating layer 34 based on not the time but the electrical resistance of the insulating layer 34 exceeding a predetermined value is added to the fourth control flow. May be.
  • the example in which the electrical resistance of the insulating layer 34 is directly detected by the resistance meter 74 has been described above.
  • the moisture content of the insulating layer 34 is detected and based on this moisture content (indirect It is also possible to know the electrical resistance of the insulating layer 34) and to control the voltage application to the insulating layer 34.
  • each flow of the second embodiment it may be determined whether or not voltage application to the insulating layer 34 is necessary, and the subsequent voltage application is performed regardless of the travelable state. Thereby, the dew condensation of the insulating layer 34 is always suppressed, and the state where the electric resistance is high can be maintained. For this reason, it is possible to efficiently energize the catalyst carrier 14 immediately after the vehicle is ready to run.
  • a voltage is applied to the insulating layer 34 before the catalyst carrier 14 is energized.
  • the liquid moisture adhering to the insulating layer 34 is evaporated, that is, the electric resistance of the insulating layer 34 is reduced.
  • the catalyst carrier 14 may be energized.
  • the catalyst carrier 14 is energized in a state in which the liquid moisture adhering to the insulating layer 34 is reduced (preferably completely evaporated) and the electric resistance is increased. Therefore, it is possible to suppress a decrease in power supply efficiency to the catalyst carrier 14.
  • the power supply efficiency to the catalyst carrier 14 is higher than the configuration in which the voltage is applied to the insulating layer 34 after the current is applied to the catalyst carrier 14. Is likely to be high. However, it is preferable to apply a voltage to the insulating layer 34 before energizing the catalyst carrier 14 from the viewpoint of more reliably suppressing a reduction in power supply efficiency to the catalyst carrier 14.
  • the temperature sensor 54 may be omitted, and the temperature of the catalyst carrier 14 may be estimated from the exhaust temperature, for example. Alternatively, immediately after starting the engine, it is generally considered that the temperature of the exhaust gas is low and the temperature of the catalyst carrier 14 is also low. Therefore, control may be performed so that the catalyst carrier 14 is energized for a certain period of time after the engine is started.
  • the power source 48 it is possible to use a battery (for example, a voltage of about 12V) generally mounted on the vehicle. However, particularly in the case of a hybrid vehicle, it is possible to apply a higher voltage to the insulating layer 34 by using a driving battery (for example, a voltage of about 500 V) that supplies electric power for driving the vehicle.
  • a battery for example, a voltage of about 12V
  • a driving battery for example, a voltage of about 500 V
  • the insulating layer 34 disposed around the electrode rod 32 has been described above.
  • the electrode rod 32 can be electrically insulated from the case cylinder 28.
  • An insulating member may be provided between the electrode mounting boss 44 and the case cylinder 28.
  • the insulating member does not need to be provided corresponding to both of the two electrode rods 32, and even if the insulating member is provided corresponding to only one electrode rod 32, the electrode rods 32 are connected to the case cylinder 28. It can suppress that it is electrically short-circuited via. If an insulating member is arrange
  • the electrode members of the present invention may include electrode plates 16A and 16B and conductor members 20A and 20B.
  • the insulating member according to the present invention may be disposed between the electrode plates 16A and 16B or the conductor members 20A and 20B and the case cylinder 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

 排気中の水分に起因する電極部材間の絶縁性の低下を抑制可能な触媒コンバータ装置を得る。 触媒担体(14)を通電するための電極棒(32)の周囲に絶縁層(34)が備えられ、電極棒(32)がケース筒体(28)と絶縁される。触媒担体(14)は、電圧印加により温度上昇する材料で構成される。電源(48)から触媒担体(14)へ電圧印加することで、絶縁層(34)の温度を上げる。

Description

触媒コンバータ装置
 本発明は、内燃機関の排気管に設けられる触媒コンバータ装置に関する。
 内燃機関で生じた排気を浄化するために排気管に設けられる触媒コンバータ装置では、たとえば特開平11-257058号公報(特許文献1)に記載されているように、触媒を担持する触媒担体(ハニカム構造体)に通電して昇温させ、エンジン冷間時等であっても高い触媒効果が得られるようにしたものがある。
 ところで、特許文献1に記載の構造では、ハニカム構造体に通電するための電極棒の表面に絶縁コーティングを施して、絶縁性の劣化を防止している。
 しかし、排気中の水分(水蒸気)等が絶縁体の表面で結露すると、この水分(液体)によって電極とケースたが短絡されるため、電極間の絶縁性が低下し、触媒担体への給電効率も低下するおそれがある。
 本発明は上記事実を考慮し、排気中の水分に起因する電極部材間の絶縁性の低下を抑制可能な触媒コンバータ装置を得ることを課題とする。
 本発明では、排気管に取り付けられて内部を排気が流れるケース筒体と、前記ケース筒体に設けられ、エンジンから排出される排気を浄化するための触媒を担持すると共に通電によって加熱される触媒担体と、前記ケース筒体を貫通して前記触媒担体に接触され前記触媒担体に通電するための一対の電極部材と、前記電極部材の少なくとも一方と前記ケース筒体の間に配置され電極部材をケース筒体から絶縁すると共に電圧印加によって発熱する絶縁部材と、前記触媒担体への通電及び前記絶縁部材への電圧印加を制御する制御装置と、を有する。
 この触媒コンバータ装置では、触媒担体が電極部材を通じて通電され加熱昇温されると、触媒担体に担持された触媒の浄化効果をより早く発揮させることができる。また、電極部材の少なくとも一方とケース筒体の間には絶縁部材が配置されており、この絶縁部材によって、電極部材がケース筒体から絶縁されている。このため、2つの電極部材がケース筒体を介して短絡されることが防止され、触媒担体への効率的な給電が可能となる。
 排気中には、内燃機関の燃焼で生じた蒸気(気体の水分)が含まれることがある。絶縁部材は、特にエンジンの始動直後等において温度が低い場合があり、この蒸気が絶縁部材の表面に触れると結露するおそれがある。
 絶縁部材は、電極部材とケース筒体との間を電気的に絶縁できる程度の絶縁性を有しているが、電圧が印加されると発熱するようになっている。そして、制御装置により、絶縁部材に電圧が印加されることで、絶縁部材を発熱させて昇温させることができる。これにより、絶縁部材の表面における結露を抑制できる。また、絶縁部材の表面に付着した水分の蒸発が促進される。そして、絶縁部材への水分の付着に起因する電極部材とケース筒体と短絡が防止される。電極部材間の絶縁性の低下も抑制されるので、触媒担体への給電効率の低下を抑制できる。
 本発明において、 前記制御装置が、前記触媒担体への通電以前に前記絶縁部材に電圧印加する構成としてもよい。
 すなわち、触媒担体への通電よりも後に絶縁部材に電圧印加した場合には、触媒担体への通電から、絶縁部材への電圧印加までの間で、絶縁部材の電気抵抗が低下した状態で触媒担体に通電してしまうことがある。しかし、触媒担体への通電以前に絶縁部材に電圧印加することで、絶縁部材の電気抵抗が低下した状態で触媒担体に通電する時間が短くなる(好ましくはこの時間が無くなる)ので、触媒担体への給電効率の低下を抑制できる。
 なお、絶縁部材への電圧印加は、触媒担体への通電と同時であってもよいが、触媒担体への通電よりも前に行うことが好ましい。
 本発明において、前記触媒担体の温度を検出する温度検出手段を備え、前記制御装置が、前記温度検出手段で検出された前記触媒担体の温度が所定温度以下の場合に絶縁部材への電圧印加及び触媒担体への通電を行う構成としてもよい。
 したがって、触媒担体の温度が所定温度を超えている場合には、絶縁部材への電圧印加及び触媒担体への通電を行わないようにすることで、効率的な絶縁部材への電圧印加と、効率的な触媒担体への通電が可能となる。
 本発明において、前記絶縁部材の電気抵抗を検出する電気抵抗検出手段を有し、
 前記制御装置が、前記電気抵抗検出手段で検出された前記絶縁部材の電気抵抗が所定値以下の場合に絶縁部材に電圧印加する構成としてもよい。
 このように、絶縁部材の電気抵抗を電気抵抗検出手段で検出し、この電気抵抗が所定値以下の場合に、絶縁部材に電圧印加することで、絶縁部材の電気抵抗が所定値を超えている場合には絶縁部材に電圧印加しないので、絶縁部材への効率的な電圧印加が可能になる。
 本発明において、さらに、前記制御装置が、前記絶縁部材の前記電気抵抗が所定値を超えている場合に触媒担体への通電を行う構成としてもよい。
 このように、絶縁部材の電気抵抗が所定値を超えている場合に電極部材への通電を行うことで、絶縁部材の電気抵抗が所定値以下の場合に触媒担体に通電してしまう事態を防止し、効率的に触媒担体を加熱できる。
 本発明において、さらに、前記触媒担体の温度を検出する温度検出手段を備え、前記制御装置が、前記絶縁部材の前記電気抵抗が所定値以下の場合に、絶縁部材への電圧印加を行って電気抵抗が所定値を越えた後、前記温度検出手段で検出された前記触媒担体の温度が所定温度以下の場合に触媒担体への通電を行う構成としてもよい。
 すなわち、絶縁部材の電気抵抗が所定値以下の場合には、まず、絶縁部材への電圧印加を行う。そして、絶縁部材の電気抵抗が所定値を超えた後、触媒担体の温度が所定温度以下となった場合に、触媒担体への通電を行う。これにより、さらに効率的に触媒担体を加熱できる。
 本発明は上記構成としたので、排気中の水分に起因する電極部材間の絶縁性の低下を抑制できる。
本発明の第1実施形態の車両用排気装置の概略構成を排気管への取付状態で中心線を含む断面で示す断面図である。 本発明の第1実施形態の車両用排気装置における触媒担体への通電及び絶縁層への電圧印加のフローの一例を示すフローチャートである。 本発明の第1実施形態の車両用排気装置における触媒担体への通電及び絶縁層への電圧印加のフローの一例を示すフローチャートである。 本発明の第2実施形態の車両用排気装置の概略構成を排気管への取付状態で中心線を含む断面で示す断面図である。 本発明の第2実施形態の車両用排気装置における触媒担体への通電及び絶縁層への電圧印加のフローの一例を示すフローチャートである。 本発明の第2実施形態の車両用排気装置における触媒担体への通電及び絶縁層への電圧印加のフローの一例を示すフローチャートである。 本発明の第2実施形態の車両用排気装置における触媒担体への通電及び絶縁層への電圧印加のフローの一例を示すフローチャートである。
 図1には、本発明の第1実施形態の触媒コンバータ装置12が排気管10への装着状態で示されている。この触媒コンバータ装置12は、エンジンのみで駆動力を得る自動車(以下、「エンジン車」と称する)及び、エンジンとモーターの組み合わせにより駆動力を得る自動車(以下、「ハイブリッド車」と称する)の双方に適用可能である。
 図1に示すように、触媒コンバータ装置12は、導電性及び剛性を有する材料(導電性セラミック、導電性樹脂や金属等を適用可能であるが、本実施形態では特に導電性セラミックとしている)によって形成された触媒担体14を有している。触媒担体14は、ハニカム状または波状等とした薄板を渦巻状あるは同心円状等に構成することで材料の表面積が増大された円柱状あるいは円筒状に形成されており、表面には触媒(白金、パラジウム、ロジウム等)が付着された状態で担持されている。触媒は、排気管10内を流れる排気(流れ方向を矢印F1で示す)中の有害物質を浄化する作用を有している。なお、触媒担体14の表面積を増大させる構造は、上記したハニカム状や波状に限定されるものではない。
 触媒担体14には2枚の電極板16A、16Bが貼着され、さらに電極板16A、16Bにはそれぞれ、金属等の導電性を有する材料で構成された導線部材20A、20Bを介して端子18A、18Bが接続されている。端子18A、18Bはいずれも、中心の電極棒32の周囲を絶縁層34が覆う構造とされている。電極棒32の外側端部(導線部材20A、20Bと反対側の端部)は、触媒担体14への給電用のケーブルが接続される接続部32Cとされている。電極棒32は、本発明の電極部材を構成している。
 導線部材20A、20Bは、たとえばジグザグ状に、あるいは螺旋状に形成されて可撓性を有するようになっており、後述するようにケース筒体28と触媒担体14とが相対移動した場合に、この相対移動を吸収することが可能とされている。そして、端子18A、18Bから導線部材20A、20B及び電極板16A、16Bを通じて触媒担体14に通電することで、触媒担体14を加熱できる。この加熱により、表面に担持された触媒を昇温させることで、触媒の浄化作用をエンジン始動直後等であっても早期に発揮させることができるようになっている。
 絶縁層34は電気絶縁性を有する材料によって円筒状に形成されておいり、電極棒32の外周面を全周にわたって覆うことで、電極棒32から電極取付カバー36(詳細は後述する)への電気の流れが阻止されている。
 絶縁層34の周囲は、電極取付カバー36が覆っている。電極取付カバー36は、金属製とされることで所定の剛性を有する円筒状に形成されている。電極取付カバー36の内周面には雌ネジ38が形成されている。
 触媒担体14の外周には、絶縁性材料によって略円筒状に形成された保持部材26が配置されている。さらに、保持部材26の外周には、ステンレス等の金属で略円筒状に成形されたケース筒体28が配置されている。換言すれば、略円筒状のケース筒体28の内部に、触媒担体14が収容されると共に、ケース筒体28と触媒担体14との間に配置された保持部材26により、触媒担体14がケース筒体28の内部に、同心(中心線CL)で保持されている。そして、絶縁性を有する保持部材26が触媒担体14とケース筒体28との間に配置されているので、触媒担体14からケース筒体28への電気の流れが阻止されている。
 また、保持部材26は所定の弾性も有している。金属製のケース筒体28と導電性セラミック製の触媒担体14とでは線膨張係数が異なっているため、排気管10内を通過する排気の熱や触媒担体14への通電加熱による膨張量が異なることとなるが、この膨張量の違いが、保持部材26の弾性により吸収される。さらに、排気管10を通じた振動の入力に対しても、保持部材26が緩衝作用を発揮しつつケース筒体28と触媒担体14との位置ズレを吸収する。なお、保持部材26は、上記した絶縁性及び弾性を有すれば、材質は限定されないがが、材料の例としては、繊維マットが好ましく、この他にインタラムマットやムライト等も適用可能である。
 また、図1から分かるように、保持部材26を全体で見たとき、触媒担体14と保持部材26とは軸方向で概ね同じ長さに形成されており、触媒担体14の上流側端面14Aと保持部材26の上流側端面26Aとは略面一になっている。同様に、触媒担体14の下流側端面14Bと保持部材26の下流側端面26Bとは略面一になっている。
 保持部材26には、軸方向中央の所定位置に、2箇所の電極室40が形成されている。この電極室40に、導線部材20A、20Bや端子18A、18Bの先端部分が収容されている。
 ケース筒体28には、電極室40に対応する位置に取付孔42が形成されている。ケース筒体28には、この取付孔42に対応して電極取付ボス44が固定されている。電極取付ボス44は、端子18A、18Bの先端部分が挿通される挿通孔が形成されると共に、取付孔42を覆う蓋板部44Fと、この蓋板部44Fの中央から立設された円筒状の円筒部44Cとを有している。
 円筒部44Cの内周面には、雌ネジ38が螺合される雄ネジ46が形成されている。ケース筒体28に電極取付ボス44が固定された状態で、円筒部44Cの雄ネジ46に電極取付カバー36の雌ネジ38を螺合させていくことで、端子18A、18Bが、電極取付ボス44に取り付けられる。
 絶縁層34には、電源48から電圧を印加するためのリード線50が接続されている。絶縁層34は、通常状態では、上記したように電極棒32をケース筒体28に対し絶縁するために十分な絶縁性(電気抵抗)を有しているが、十分な高電圧が印加されることによりジュール熱が発生して温度上昇する材料で構成されている。このような材料としては、たとえば、アルミナや窒化珪素等を挙げることができる。これらの材料を成形するにあたり、所定の空隙率を有する多孔質状に形成することで、求められる絶縁性と、電圧印加時の発熱性を満たすことが可能になる。
 電源48は、制御装置52によって制御されるようになっている。なお、電源48としては、絶縁層34への電圧印加のためにあらたに設けてもよいが、たとえば車載のバッテリを用いることも可能である。
 触媒担体14には、その温度を検出する温度センサ54が取り付けられている。温度センサ54で検出された触媒担体14の温度のデータは、制御装置52に送られる。
 次に、本実施形態の触媒コンバータ装置12の作用を説明する。
 図1から分かるように、エンジンからの排気は、排気管10内において、まず、触媒コンバータ装置12を通過し、これによって排気中の排気中の有害物質が浄化される。特に、本実施形態の触媒コンバータ装置12では、端子18A、18B(電極棒32)から電極板16A、16Bを通じて触媒担体14に通電し、触媒担体14を加熱することで、触媒担体14に担持された触媒本体を昇温させ、浄化作用をより早く発揮させることができる。たとえば、エンジンの始動直後等、排気の温度が低い場合には、あらかじめ触媒担体14への通電加熱を積極的に行うことで、エンジン始動初期における触媒本体の浄化性能を高く確保できる。なお、排気の温度が充分に高い場合は、触媒担体14が排気からの熱で昇温されるので、触媒担体14に通電する必要はない。
 排気中には水分が含まれているため、この水分を含んだ排気が保持部材26や触媒担体14を通過し電極室40に入ることがある。さらにこの水分は、電極室40内において絶縁層34の表面で結露して液化するおそれがある。特に、エンジンの始動直後は、絶縁層34の温度も低いため、排気中の水分が絶縁層34に触れると結露しやすい。また、絶縁層34は触媒担体14から離れているので、たとえ触媒担体14が昇温されても、その熱は絶縁層34に伝わりにくく、絶縁層34の温度は上がり難い。
 このように絶縁層34の表面に結露が発生すると、絶縁層34の絶縁性が低下するため、電極棒32とケース筒体28とが、絶縁層34、電極取付カバー36及び電極取付ボス44を介して短絡されてしまうおそれがある。結果的に、2つの電極棒32が短絡されてしまうと、触媒担体14への給電効率が低下する。
 これに対し、本実施形態の触媒コンバータ装置12では、絶縁層34に対し電源48から高電圧を印加することで発熱し、温度が上昇する。このため、絶縁層34の表面での結露すなわち液体水分の付着を抑制することができる。また、たとえ絶縁層34に液体水分が付着していても、この水分の蒸発を促進して除去することが可能になる。これにより、本実施形態の触媒コンバータ装置12では、排気中の水分に起因する電極棒32の間の絶縁性の低下を抑制できる。そして、触媒担体14への給電効率を高く維持することが可能になる。
 図2には、絶縁層34に電源48から電圧を印加する場合のフローの一例(第一の制御フロー)が示されている。
 なお、このフローでは、ガソリン車の場合はエンジンが始動されたことにより、ハイブリッド車の場合は、走行可能状態である「Ready on」状態、以下、これらを総称して「走行可能状態」という)となったことにより開始される。
 制御装置52は、ステップS102において、絶縁層34へ電圧を印加する。この電圧印加は、たとえば、あらかじめ設定された所定時間行う。これにより、絶縁層34が発熱して、温度が上昇する。このため、絶縁層34の表面に液体水分が付着していた場合には、この液体水分が蒸発される。また、絶縁層34の表面におけるあらたな結露も抑制される。
 次いで、ステップS104に移行し、触媒担体14への通電による加熱が必要か否かを判断する。本実施形態の触媒コンバータ装置12は温度センサ54を有しているので、この判断を、温度センサ54で検出された温度データに基づいて行うことが可能である。もちろん、温度センサ54からの温度データに代えて(あるいは併用して)排気の温度に基づいてこの判断を行ってもよい。
 触媒担体14への加熱が不要と判断された場合には、制御装置52は、触媒担体14へ通電することなく、ステップS108において通常走行モードに移行し、ステップS102に戻る。通常走行モードでは、触媒担体14への通電及び絶縁層34への電圧印加は停止される。
 ステップS104において触媒担体14への加熱が必要と判断された場合には、制御装置52は、ステップS106において、触媒担体14への通電を行う。この通電も、たとえば、あらかじめ決められた所定時間行う。
 その後、ステップS102に戻る。したがって、車両走行中に絶縁層34に電圧印加を継続的に行うことができる。また、車両走行中に触媒担体14の温度が低下した場合には、触媒担体14への再通電を行うことが可能である。
 このように、第一の制御フローでは、走行可能状態では、必ず絶縁層34への電圧印加を行うので、制御が容易になる。また、触媒担体14に通電するときに、絶縁層34の電気抵抗を高く確保できる可能性が高くなるので、触媒担体14への通電に関しては、効率的な通電が可能となる。
 図3には、第1実施形態の触媒コンバータ装置12における、図2とは異なる制御フローの一例(第二の制御フロー)が示されている。
 第二の制御フローでは、制御装置52は、ステップS202において、触媒担体14への通電による加熱が必要か否かを判断する。第一の制御フローと同様に、この判断を、温度センサ54で検出された温度データに基づいて、あるいは排気の温度に基づいて行うことが可能である。
 触媒担体14への加熱が不要と判断された場合には、制御装置52は、触媒担体14へ通電することなく、ステップS208において通常走行モードに移行し、ステップS102に戻る。
 ステップS202において、触媒担体14への加熱が必要と判断された場合には、制御装置52は、ステップS204において、絶縁層34へ電圧を印加する。この電圧印加は、たとえば、あらかじめ設定された所定時間行う。これにより、絶縁層34が発熱して、温度が上昇する。このため、絶縁層34の表面に付着していた液体水分が蒸発される(あらたな結露も抑制される)。
 次いで、ステップS206に移行し、触媒担体14への通電を行う。その後、ステップS208において通常走行モードに移行する。
 その後、ステップS202に戻る。したがって、車両走行中に触媒担体14の温度が低下した場合には、絶縁層34に電圧印加を行った後に、触媒担体14への再通電を行うことが可能である。
 このように、第二の制御フローでは、触媒担体14への通電加熱が必要と判断された場合に、それに先立って必ず絶縁層34への電圧印加を行うので、制御が容易になる。また、絶縁層34の液体水分を蒸発させた後は、電極棒32どうしが短絡されなくなるので、触媒担体14への効率的な通電が可能となる。
 しかも、触媒担体14への通電加熱が不要の場合には、触媒担体14への通電だけでなく絶縁層34への電圧印加も行わないので、効率的な絶縁部材34への電圧印加及び触媒担体14への通電が可能となる。
 図4には、本発明の第2実施形態の触媒コンバータ装置72が示されている。第2実施形態の触媒コンバータ装置72において、第1実施形態の触媒コンバータ装置12と同様の構成要素、部材等については同一符号を付して詳細な説明を省略する。
 第2実施形態の触媒コンバータ装置72は、第1実施形態の触媒コンバータ装置12に対し、さらに、絶縁層34の電気抵抗を検出する抵抗計74を備えている。抵抗計74で検出された絶縁層34の電気抵抗のデータは、制御装置52に送られる。なお、絶縁層34の電気抵抗を抵抗計74で直接的に計測する代わりに、たとえば、絶縁層34の含水率や酸素濃度等から、絶縁層34の電気抵抗を推測してもよい。
 図5には、第二実施形態の触媒コンバータ装置72において、絶縁層34に電源48から電圧を印加する場合のフローの例(第三の制御フロー)が示されている。
 このフローでは、走行可能状態にあるとき、制御装置52は、ステップS302において、触媒担体14への通電による加熱が必要か否かの判断を行う。第一の制御フローと同様に、温度センサ54で検出された温度データに基づいてこの判断を行うことが可能であり、これに代えて(あるいは併用して)排気の温度を用いてもよい。
 触媒担体14への加熱が不要と判断された場合には、制御装置52は、触媒担体14へ通電することなく、ステップS310において通常走行モードに移行し、ステップS202に戻る。ここまでは、図3に示した第二の制御フローと同様である。
 ステップS302において、触媒担体14への加熱が必要と判断された場合には、ステップS304に移行する。ステップS304では、絶縁層34への電圧印加が必要か否かを判断する。この判断は、抵抗計74によって検出された絶縁層34の電気抵抗のデータに基づいて行うことが可能である。
 ステップS304において絶縁層34への電圧印加が不要と判断された場合には、絶縁層34は絶縁性を有しているので、ステップS308に移行する。ステップS308では、触媒担体14への通電を行う。これにより、触媒担体14に担持された触媒本体を昇温させ、浄化作用をより早く発揮させることができる。
 ステップS304において絶縁層34への電圧印加が必要と判断された場合には、制御装置52は、ステップS306で絶縁層34へ電圧を印加する。この電圧印加は、たとえば、あらかじめ設定された所定時間行う。これにより、絶縁層34が発熱して、温度が上昇する。このため、絶縁層34の表面に付着していた液体水分が蒸発される。
 次いで、ステップS308に移行し、触媒担体14への通電を行う。その後、ステップS310において通常走行モードに移行する。
 その後、ステップS302に戻る。したがって、車両走行中に触媒担体14の温度が低下した場合には、必要に応じて絶縁層34に電圧印加を行った後に、触媒担体14への再通電を行うことが可能である。
 このように、第三の制御フローでは、触媒担体14への通電加熱が必要とされた状態で、絶縁層34への電圧印加が必要か否かを判断しており、絶縁層34への電圧印加が不要な場合には電圧印加しないので、過分な電圧印加を抑制できる。
 また、絶縁層34への電圧印加が必要な場合には、触媒担体14への通電より先に確実に電圧印加するので、電極棒32どうしの短絡を抑制し、触媒担体14への効率的な通電が可能となる。
 図6には、第二実施形態の触媒コンバータ装置72において、絶縁層34に電源48から電圧を印加する場合の第三の制御フローとは異なるフローの例(第四の制御フロー)が示されている。
 このフローでは、走行可能状態にあるとき、制御装置52は、ステップS402において、絶縁層34への電圧印加が必要か否かを判断する。この判断は、抵抗計74によって検出された絶縁層34の電気抵抗のデータに基づいて行うことが可能である。この判断は、第三の制御フローと同様に、抵抗計74によって検出された絶縁層34の電気抵抗のデータに基づいて行うことが可能である。
 ステップS402において絶縁層34への電圧印加が不要と判断された場合には、絶縁層34は絶縁性を有しているので、ステップS406に移行する。ステップS406では、触媒担体14への通電による加熱が必要か否かの判断を行う。第三の制御フローと同様に、温度センサ54で検出された温度データに基づいてこの判断を行うことが可能であり、これに代えて(あるいは併用して)排気の温度を用いてもよい。
 ステップS406において絶縁層34への電圧印加が不要と判断された場合には、ステップS410に移行し、通常走行モードに移行し、ステップS202に戻る。ステップS406において絶縁層34への電圧印加が必要と判断された場合には、ステップS408に移行し、触媒担体14への通電を行う。
 その後、ステップS402に戻る。したがって、車両走行中に触媒担体14の温度が低下した場合には、必要に応じて絶縁層34に電圧印加を行った後に、触媒担体14への再通電を行うことが可能である。
 このように、第四の制御フローにおいても、触媒担体14への通電より先に確実に電圧印加するので、電極棒32どうしの短絡を抑制し、触媒担体14への効率的な通電が可能となる。
 図7には、第二実施形態の触媒コンバータ装置72において、絶縁層34に電源48から電圧を印加する場合の第三の制御フロー及び第四の制御フローとは異なるフローの例(第五の制御フロー)が示されている。
 このフローにおいて、第四の制御フローと同一のステップには同一の符号を付している。
 第五の制御フローでは、第四の制御フローに対し、ステップS404における絶縁層34への電圧印加の後、ステップS412において、絶縁層34の電気抵抗が所定値を超えたか否かを判断する。この判断は、抵抗計74によって検出された絶縁層34の電気抵抗のデータに基づいて行うことが可能である。
 そして、絶縁層34の電気抵抗が所定値(電極棒32からケース筒体28への短絡を抑制することが可能な程度の高い抵抗値)を超えていない場合には、ステップS404に戻り、引き続き絶縁層34への電圧印加を行う。これに対し、絶縁層34の電気抵抗が所定値を超えている場合には、ステップS406に移行する。すなわち、第五の制御フローでは、絶縁層34への電圧印加の終了は、時間に基づくものではなく、実際の絶縁層34の電気抵抗に基づいている。このため、絶縁層34の電気抵抗が確実に所定値を超えた状態で、触媒担体14に通電することができる。
 なお、このように、絶縁層34への電圧印加の終了を、時間ではなく、絶縁層34の電気抵抗が所定値を超えていることを基準に行う制御を、第四の制御フローに追加してもよい。
 第二実施形態において、上記では絶縁層34の電気抵抗を抵抗計74で直接的に検出する例を挙げたが、たとえば、絶縁層34の含水率を検出し、この含水率に基づいて(間接的に絶縁層34の電気抵抗を知ることができる)、絶縁層34への電圧印加を制御することも可能である。
 また、第二実施形態の各フローにおいて、絶縁層34への電圧印加が必要であるか否かの判断と、その後の電圧印加を、走行可能状態に関わらず行うようにしてもよい。これにより、常に絶縁層34の結露を抑制して、電気抵抗が高い状態を維持できる。このため、走行可能状態になった直後から、触媒担体14への効率的な通電が可能となる。
 いずれの構成においても、触媒担体14への通電の前に、絶縁層34に電圧印加している。これとは逆に、触媒担体14への通電よりも後で絶縁層34に電圧印加すると、絶縁層34に付着した液体水分が蒸発される前、すなわち、絶縁層34の電気抵抗が低下した状態で触媒担体14に通電してしまうおそれがある。これに対し、各制御フローの方法では、絶縁層34に付着した液体水分を少なくして(好ましくは完全に蒸発させて)電気抵抗を大きくした状態で触媒担体14に通電する。したがって、触媒担体14への給電効率の低下を抑制できる。
 なお、触媒担体14への通電と同時に、絶縁層34に電圧印加する構成であっても、触媒担体14への通電後に絶縁層34に電圧印加する構成と比較すると、触媒担体14への給電効率は高くなる可能性が高い。しかしながら、触媒担体14への通電前に絶縁層34に電圧印加することが、触媒担体14への給電効率低下をより確実に抑制する観点からは好ましい。
 上記した各制御フローは、任意のステップにおいて、たとえば、エンジンの停止や、イグニッションキーのオフなど、車両走行の可能性がなくなった時点で終了される。
 上記各実施形態において、温度センサ54を省略し、触媒担体14の温度を、たとえば排気の温度から推定するようにしてもよい。あるいは、エンジンの始動直後は、一般に排気の温度が低く、触媒担体14の温度も低いと考えられるので、エンジン始動後の一定時間は触媒担体14に通電するような制御を行ってもよい。
 電源48としては、一般的に車両に搭載されているバッテリ(たとえば電圧12V程度)を用いることが可能である。ただし、特にハイブリッド車の場合は、車両の駆動用の電力を供給する駆動用バッテリ(たとえば電圧500V程度)を用いて、より高い電圧を絶縁層34に印加できるようにすることも可能である。
 本発明の絶縁部材としても、上記では電極棒32(電極部材)の周囲に配置された絶縁層34を挙げたが、要するに、電極棒32をケース筒体28から電気的に絶縁できればよく、たとえば、電極取付ボス44とケース筒体28との間に絶縁部材が設けられていてもよい。さらに、絶縁部材は、2つの電極棒32の双方に対応して設けられている必要はなく、一方の電極棒32にのみ対応して設けられていても、電極棒32どうしがケース筒体28を介して電気的に短絡されることを抑制できる。2つの電極棒32の双方に対応して絶縁部材を配置すると、絶縁効果をより確実に維持できる。
 さらに、本発明の電極部材としては、電極棒32に加えて、電極板16A、16Bや導線部材20A、20Bを含めることも可能である。この場合、電極板16A、16Bや導線部材20A、20Bとケース筒体28の間に、本発明に係る絶縁部材を配置すればよい。

Claims (6)

  1.  排気管に取り付けられて内部を排気が流れるケース筒体と、
     前記ケース筒体に設けられ、エンジンから排出される排気を浄化するための触媒を担持すると共に通電によって加熱される触媒担体と、
     前記ケース筒体を貫通して前記触媒担体に接触され前記触媒担体に通電するための一対の電極部材と、
     前記電極部材の少なくとも一方と前記ケース筒体の間に配置され電極部材をケース筒体から絶縁すると共に電圧印加によって発熱する絶縁部材と、
     前記触媒担体への通電及び前記絶縁部材への電圧印加を制御する制御装置と、
     を有する触媒コンバータ装置。
  2.  前記制御装置が、前記触媒担体への通電以前に前記絶縁部材に電圧印加する請求項1に記載の触媒コンバータ装置。
  3.  前記触媒担体の温度を検出する温度検出手段を備え、
     前記制御装置が、前記温度検出手段で検出された前記触媒担体の温度が所定温度以下の場合に絶縁部材への電圧印加及び触媒担体への通電を行う請求項1または請求項2に記載の触媒コンバータ装置。
  4.  前記絶縁部材の電気抵抗を検出する電気抵抗検出手段を有し、
     前記制御装置が、前記電気抵抗検出手段で検出された前記絶縁部材の電気抵抗が所定値以下の場合に絶縁部材に電圧印加する請求項1または請求項2に記載の触媒コンバータ装置。
  5.  前記制御装置が、前記絶縁部材の前記電気抵抗が所定値を超えている場合に触媒担体への通電を行う請求項3に記載の触媒コンバータ装置。
  6.  前記触媒担体の温度を検出する温度検出手段を備え、
     前記制御装置が、前記絶縁部材の前記電気抵抗が所定値以下の場合に、絶縁部材への電圧印加を行って電気抵抗が所定値を越えた後、前記温度検出手段で検出された前記触媒担体の温度が所定温度以下の場合に触媒担体への通電を行う請求項3または請求項4に記載の触媒コンバータ装置。
PCT/JP2010/073034 2010-12-21 2010-12-21 触媒コンバータ装置 WO2012086013A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011554305A JP5246352B2 (ja) 2010-12-21 2010-12-21 触媒コンバータ装置
EP10860932.2A EP2657477B1 (en) 2010-12-21 2010-12-21 Catalytic converter
US13/990,195 US9017616B2 (en) 2010-12-21 2010-12-21 Catalytic converter
CN201080070483.2A CN103237964B (zh) 2010-12-21 2010-12-21 催化转化装置
KR20137016816A KR101495249B1 (ko) 2010-12-21 2010-12-21 촉매 컨버터 장치
PCT/JP2010/073034 WO2012086013A1 (ja) 2010-12-21 2010-12-21 触媒コンバータ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073034 WO2012086013A1 (ja) 2010-12-21 2010-12-21 触媒コンバータ装置

Publications (1)

Publication Number Publication Date
WO2012086013A1 true WO2012086013A1 (ja) 2012-06-28

Family

ID=46313317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073034 WO2012086013A1 (ja) 2010-12-21 2010-12-21 触媒コンバータ装置

Country Status (6)

Country Link
US (1) US9017616B2 (ja)
EP (1) EP2657477B1 (ja)
JP (1) JP5246352B2 (ja)
KR (1) KR101495249B1 (ja)
CN (1) CN103237964B (ja)
WO (1) WO2012086013A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064758A1 (ja) * 2012-10-23 2014-05-01 トヨタ自動車株式会社 車両および車両用制御方法
JP2020190236A (ja) * 2019-05-23 2020-11-26 株式会社三五 電気加熱式触媒装置
WO2021176927A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563846B2 (ja) * 2010-02-19 2014-07-30 日本碍子株式会社 電極接続構造
JP5910620B2 (ja) 2013-12-04 2016-04-27 トヨタ自動車株式会社 通電加熱式触媒装置及びその製造方法
JP6131980B2 (ja) * 2015-03-27 2017-05-24 トヨタ自動車株式会社 電気加熱式触媒コンバーター
JP2019074033A (ja) * 2017-10-17 2019-05-16 トヨタ自動車株式会社 電気加熱式触媒
DE102019119294A1 (de) * 2019-07-16 2021-01-21 Elringklinger Ag Abschirmteil
JP6884176B2 (ja) * 2019-07-18 2021-06-09 株式会社三五 電気加熱式触媒装置及び電気加熱式触媒装置の製造方法
JP2022131298A (ja) * 2021-02-26 2022-09-07 日本碍子株式会社 排ガス処理装置用筒状部材および該筒状部材を用いた排ガス処理装置、ならびに該筒状部材に用いられる絶縁層
FR3133949A1 (fr) * 2022-03-22 2023-09-29 Faurecia Systemes D'echappement Connecteur électrique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241716A (ja) * 1991-01-16 1992-08-28 Ngk Insulators Ltd ハニカムヒーターの電極部構造
JPH0617639A (ja) * 1991-02-18 1994-01-25 Nagao Kogyo:Kk 車両用ディ−ゼル機関の排気ガス浄化装置
JPH07259543A (ja) * 1993-03-22 1995-10-09 Ngk Insulators Ltd ヒーターユニット
JPH0992442A (ja) * 1995-09-26 1997-04-04 Ngk Insulators Ltd 電極構造および通電発熱式ヒーター
JPH11257058A (ja) 1998-03-12 1999-09-21 Honda Motor Co Ltd 排気ガス浄化触媒コンバータ加熱装置
JP2010229977A (ja) * 2009-03-30 2010-10-14 Ngk Insulators Ltd 排ガス浄化処理装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5525309A (en) * 1991-01-31 1996-06-11 Emitec Gesellschaft Fuer Emissionstechnologie Mbh Honeycomb body with a plurality of disks braced against one another
US5170624A (en) * 1991-04-05 1992-12-15 W. R. Grace & Co.-Conn. Composite catalytic converter
JP2570930B2 (ja) * 1991-10-11 1997-01-16 トヨタ自動車株式会社 内燃機関の触媒劣化判別装置
CA2083742A1 (en) * 1992-02-19 1993-08-20 David T. Sheller Core element for catalytic converter
JPH05240030A (ja) * 1992-02-29 1993-09-17 Suzuki Motor Corp 触媒コンバータ
JPH0647625U (ja) * 1992-12-07 1994-06-28 カルソニック株式会社 電熱式触媒コンバータ
JP3562004B2 (ja) * 1995-02-02 2004-09-08 日産自動車株式会社 内燃機関の触媒浄化装置
JPH10184345A (ja) * 1996-12-24 1998-07-14 Nissan Motor Co Ltd エンジンの排気浄化装置
CN2430302Y (zh) * 2000-07-18 2001-05-16 杨文平 内燃机尽燃催化装置
EP1184556A3 (en) * 2000-09-04 2004-01-02 Nissan Motor Co., Ltd. Engine exhaust emission purifier
KR100475802B1 (ko) * 2001-10-10 2005-03-10 현대자동차주식회사 엔진 냉간시동시 촉매의 조기 활성화를 위한 담체 가열식촉매컨버터장치
JP3855818B2 (ja) * 2002-03-28 2006-12-13 日産自動車株式会社 ディーゼルエンジンの排気浄化装置
JP4900410B2 (ja) * 2009-03-25 2012-03-21 トヨタ自動車株式会社 車両の制御装置
WO2011114451A1 (ja) * 2010-03-17 2011-09-22 トヨタ自動車株式会社 車両の制御装置
JP5120500B2 (ja) * 2010-07-15 2013-01-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2012112302A (ja) 2010-11-24 2012-06-14 Toyota Motor Corp 触媒コンバータ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04241716A (ja) * 1991-01-16 1992-08-28 Ngk Insulators Ltd ハニカムヒーターの電極部構造
JPH0617639A (ja) * 1991-02-18 1994-01-25 Nagao Kogyo:Kk 車両用ディ−ゼル機関の排気ガス浄化装置
JPH07259543A (ja) * 1993-03-22 1995-10-09 Ngk Insulators Ltd ヒーターユニット
JPH0992442A (ja) * 1995-09-26 1997-04-04 Ngk Insulators Ltd 電極構造および通電発熱式ヒーター
JPH11257058A (ja) 1998-03-12 1999-09-21 Honda Motor Co Ltd 排気ガス浄化触媒コンバータ加熱装置
JP2010229977A (ja) * 2009-03-30 2010-10-14 Ngk Insulators Ltd 排ガス浄化処理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2657477A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014064758A1 (ja) * 2012-10-23 2014-05-01 トヨタ自動車株式会社 車両および車両用制御方法
CN104395574A (zh) * 2012-10-23 2015-03-04 丰田自动车株式会社 车辆和车辆用控制方法
JP5930059B2 (ja) * 2012-10-23 2016-06-08 トヨタ自動車株式会社 車両および車両用制御方法
US9771848B2 (en) 2012-10-23 2017-09-26 Toyota Jidosha Kabushiki Kaisha Vehicle and vehicular control method
JP2020190236A (ja) * 2019-05-23 2020-11-26 株式会社三五 電気加熱式触媒装置
WO2021176927A1 (ja) * 2020-03-05 2021-09-10 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法
JP7445742B2 (ja) 2020-03-05 2024-03-07 日本碍子株式会社 電気加熱式コンバータ及び電気加熱式コンバータの製造方法

Also Published As

Publication number Publication date
US20130259754A1 (en) 2013-10-03
EP2657477A1 (en) 2013-10-30
CN103237964A (zh) 2013-08-07
EP2657477B1 (en) 2016-09-14
KR101495249B1 (ko) 2015-02-24
EP2657477A4 (en) 2015-09-02
KR20130091354A (ko) 2013-08-16
US9017616B2 (en) 2015-04-28
JPWO2012086013A1 (ja) 2014-05-22
CN103237964B (zh) 2015-06-03
JP5246352B2 (ja) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5246352B2 (ja) 触媒コンバータ装置
US9200552B2 (en) Apparatus for controlling supply power to conductive carrier of catalyst converter
WO2013094021A1 (ja) 電気加熱式触媒の故障検出装置
EP2754491B1 (en) Electric heating catalyst
JP2015132256A (ja) 内燃機関の触媒装置
JP2012112302A (ja) 触媒コンバータ装置
WO2012025993A1 (ja) 電気加熱式触媒
US20130199165A1 (en) Electrically heated catalyst device
JP5353674B2 (ja) 触媒コンバータ装置
JP3626197B2 (ja) 内燃機関の排気系統
JP6506600B2 (ja) 微粒子検知システム
JP5601240B2 (ja) 触媒コンバータ装置
CN109667646B (zh) 内燃机的排气净化装置
WO2012111071A1 (ja) 電気加熱式触媒
JP2012193726A (ja) 触媒コンバータ装置
US8911674B2 (en) Electrically heated catalyst
WO2012032625A1 (ja) 電気加熱式触媒
JP5655857B2 (ja) 電気加熱式触媒
JP5472468B2 (ja) 電気加熱式触媒
CN114600554A (zh) 电加热装置、特别是用于移动应用的电加热装置
JP2012062832A (ja) 触媒コンバータ装置
JPWO2012111107A1 (ja) 電気加熱式触媒
JP2005344577A (ja) 排ガス浄化装置およびプラグキャップ
JP2016200069A (ja) 内燃機関

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011554305

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860932

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010860932

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13990195

Country of ref document: US

Ref document number: 2010860932

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137016816

Country of ref document: KR

Kind code of ref document: A