WO2012085251A2 - Verfahren zum erzeugen gehärteter bauteile - Google Patents

Verfahren zum erzeugen gehärteter bauteile Download PDF

Info

Publication number
WO2012085251A2
WO2012085251A2 PCT/EP2011/073887 EP2011073887W WO2012085251A2 WO 2012085251 A2 WO2012085251 A2 WO 2012085251A2 EP 2011073887 W EP2011073887 W EP 2011073887W WO 2012085251 A2 WO2012085251 A2 WO 2012085251A2
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
temperature
heated
steel material
steel
Prior art date
Application number
PCT/EP2011/073887
Other languages
English (en)
French (fr)
Other versions
WO2012085251A3 (de
Inventor
Harald Schwinghammer
Thomas Kurz
Siegfried Kolnberger
Martin Rosner
Original Assignee
Voestalpine Stahl Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/de
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/de
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/de
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/de
Application filed by Voestalpine Stahl Gmbh filed Critical Voestalpine Stahl Gmbh
Priority to CN201180068534.2A priority Critical patent/CN103547687A/zh
Priority to ES11808211T priority patent/ES2853207T3/es
Priority to EP11808211.4A priority patent/EP2655673B1/de
Publication of WO2012085251A2 publication Critical patent/WO2012085251A2/de
Publication of WO2012085251A3 publication Critical patent/WO2012085251A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for producing hardened corrosion-protected components with the features of claim 1.
  • press-hardened components made of sheet steel are used.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components of the bodywork sector.
  • the use of these high-strength steel components makes it possible to reduce the material thickness compared to a normal-strength steel and thus to achieve low body weights.
  • a sheet steel plate is heated above the so-called austenitizing temperature and, if appropriate, kept at this temperature until a desired degree of austenitization is achieved. Subsequently, this heated board is transferred into a mold and formed in this mold in a one-step forming step to the finished component and thereby by the cooled Mold simultaneously with a speed that is above the critical hardness, cooled. Thus, the hardened component is produced.
  • the component is first, if necessary, in a multi-stage forming process, the component formed almost completely finished. This formed component is then also heated to a temperature above the Austenitmaschinestempe- temperature and optionally held for a desired time required at this temperature.
  • this heated component is transferred to a mold and inserted, which already has the dimensions of the component or the final dimensions of the component, where appropriate, taking into account the thermal expansion of the preformed component.
  • the direct method is somewhat simpler to implement, but allows only shapes that are actually to be realized with a single forming step, i. relatively simple profile shapes.
  • the indirect process is a bit more complex, but it is also able to realize more complex shapes.
  • Zinc has the advantage here that zinc not only provides a barrier protection layer such as aluminum, but cathodic corrosion protection.
  • zinc-coated press-hardened components fit better into the overall corrosion protection concept of vehicle bodies, since they are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or eliminated.
  • Zinc-coated steels are currently - with the exception of one component in the Asian region - in the direct process, i. the hot forming not used. Instead, steels with an aluminum-silicon coating are used here.
  • the zinc-iron phase diagram shows that above 782 ° C a large area is created containing liquid zinc as long as the iron content is less than 60%. However, this is also the temperature range in which the austenitized steel is thermoformed. It should also be noted, however, that if the forming takes place above 782 ° C, there is a great risk of stress corrosion by liquid zinc, which penetrates into the grain boundaries of the base steel, resulting in macrocracks in the base steel. In addition, with iron levels less than 30% in the coating, the maximum temperature for forming a safe product with no macrocracks is less than 782 ° C. This is the reason why hereby no direct forming process is operated, but that indirect forming process. This is intended to circumvent the problem described.
  • a method for hot forming a steel in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, kept at this temperature and then heated Steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a manner that the cooling rate to MS point at least the critical cooling rate and that the average cooling rate of the molded component from the MS point to 200 ° C is in the range of 25 ° C / s to 150 ° C / s.
  • the object of the invention is to provide a method for producing provided with a corrosion protective layer sheet steel components, in which the cracking is reduced or eliminated and yet sufficient corrosion protection is achieved.
  • the object is achieved with the features of claim 1.
  • liquid metal embrittlement The above-described effect of liquid zinc cracking, which penetrates the steel in the vicinity of the grain boundaries, is also known as so-called "liquid metal embrittlement”.
  • the invention is a more favorable way by using the direct method is applied in which a zinc or a zinc alloy coated board heated is reformed and quench hardened after heating.
  • the composition of the steel alloy is adjusted within the usual composition of a magnesium drill steel (22 MnB5) so that quench hardening by a delayed transformation of the austenite into martensite and thus the presence of austenite is also possible
  • the lower temperature is carried out below 780 ° C or lower, so that at the moment in the mechanical stress is introduced to the steel, which would lead in connection with a molten zinc and austenite to the "liquid metal embritt element", just no or only still very few liquid zinc phases are present.
  • FIG. 1 shows a table showing the furnace residence time of steel plates coated with a zinc layer amounting to 140 g / m 2 with different transfer times into the forming tool and associated representative crack depths;
  • FIG. 3 greatly enlarged images showing the samples with the different transfer times
  • FIG. 4 cross-section of the samples according to FIG. 4
  • Figure 5 the zinc-iron diagram.
  • a conventional boron manganese steel for use as a press-hardening steel material is adjusted with respect to the transformation of the austenite into other phases so that the transformation shifts into deeper regions.
  • the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion inhibitors in such steels.
  • Titanium (Ti) 0, 01-0, 05
  • Titanium (Ti) 0, 03-0, 04

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen eines gehärteten Stahlbauteils mit einer Beschichtung aus Zink oder einer Zinklegierung, wobei aus einem mit dem Zink oder der Zinklegierung beschichteten Blech eine Platine ausgestanzt wird, die ausgestanzte Platine auf eine Temperatur ≥Ac3 erhitzt und ggf. bei dieser Temperatur für eine vorbestimmte Zeit gehalten wird um die Austenitbildung durchzuführen und anschließend die aufgeheizte Platine in ein Formwerkzeug überführt wird, in dem Formwerkzeug umgeformt wird und in dem Formwerkzeug mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt und dadurch gehärtet wird, wobei der Stahlwerkstoff derart umwandlungsverzögert eingestellt ist, dass bei einer Umformtemperatur die im Bereich von 600°C bis 800°C, insbesondere 730°C bis 782°C und insbesondere unter der peritektischen Temperatur des Zink-Eisen-Diagramms liegt, eine Abschreckhärtung durch Umwandlung des Austenits in Martensit stattfindet.

Description

Verfahren zum Erzeugen gehärteter Bauteile
Die Erfindung betrifft ein Verfahren zum Herstellen gehärteter korrosionsgeschützter Bauteile mit den Merkmalen des Anspruchs 1.
Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen.
Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren.
Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannten Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt.
Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess , das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstempe- ratur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten.
Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet .
Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen.
Das indirekte Verfahren ist etwas aufwendiger, dafür aber in der Lage auch komplexere Formen zu realisieren.
Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem
Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen. Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendeter Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden.
Bei beiden Verfahren konnten jedoch Nachteile aufgefunden werden, die auch im Stand der Technik diskutiert werden. Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu Mikro- (10 μπι bis ΙΟΟμπι) oder sogar Makrorissen im Material, wobei die Mikroris- se in der Beschichtung erscheinen und die Makrorisse sogar durch den vollständigen Blechquerschnitt reichen. Derartige Bauteile mit Makrorissen sind für die weitere Verwendung ungeeignet .
Beim indirekten Prozess, d.h. der Kaltumformung mit einer anschließenden Härtung und Restformung kann es ebenfalls zu Mik- rorissen in der Beschichtung kommen, welche ebenfalls unerwünscht sind, aber bei weitem nicht so ausgeprägt.
Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt.
Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez . In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumform- prozess einen aluminierten Bor-Mangan-Stahl ergibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbe- schichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor Gl mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält und ein sogenannter gal- vanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält.
Es wird darauf hingewiesen, dass das Zink-Eisen-Phasendiagramm zeigt, dass oberhalb von 782°C ein großer Bereich entsteht, der flüssiges Zink enthält, so lang der Eisengehalt geringer als 60 % ist. Dies ist jedoch auch der Temperaturbereich, in dem der austenitisierte Stahl warm umgeformt wird. Es wird aber auch darauf hingewiesen, dass, wenn die Umformung oberhalb von 782°C stattfindet, ein großes Risiko der Spannungskorrosion durch flüssiges Zink besteht, welches in die Korngrenzen des Basisstahls eindringt, welche zu Makrorissen im Basisstahl führt. Darüber hinaus ist bei Eisengehalten geringer als 30 % in der Beschichtung die Maximaltemperatur zum Umformen eines sicheren Produkts ohne Makrorisse niedriger als 782°C. Dies ist der Grund, warum hiermit kein direktes Umformverfahren betrieben wird, sondern dass indirekte Umformverfahren. Hiermit soll das geschilderte Problem umgangen werden.
Eine weitere Möglichkeit dieses Problem zu umgehen, soll darin liegen, galvannealed beschichteten Stahl zu verwenden, was daran liegt, dass der zu Beginn schon bestehende Eisengehalt von 10 % und die Abwesenheit einer Fe2Al5-Sperrschicht den kritischen Wert von 60 % Eisen in der Beschichtung beim Erhitzen schnell überschreitet, was die Anwesenheit von flüssigem Eisen während des Warmumformprozesses vermeidet.
Aus der EP 1 439 240 Bl ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf einen Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen.
Aus der EP 1 642 991 Bl ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS- Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet .
Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von mit einer Korrosionsschutzschicht versehenen Stahlblechbauteilen zu schaffen, bei dem die Rissbildung vermindert oder beseitigt wird und dennoch ein ausreichender Korrosionsschutz erzielt wird. Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.
Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet .
Der vorbeschriebene Effekt der Rissbildung durch flüssiges Zink, welches den Stahl im Bereich der Korngrenzen penetriert, ist auch als sogenanntes "liquid metal embrittlement " bekannt.
Im Gegensatz zur im Stand der Technik eingeschlagenen Richtung wegen des "liquid metal embrittlements " , das indirekte Verfahren auch bei einfachen Geometrien vorzusehen, geht die Erfindung einen günstigeren Weg indem das direkte Verfahren Anwendung findet, bei dem eine mit Zink oder einer Zinklegierung beschichtete Platine aufgeheizt wird und nach dem Aufheizen umgeformt und abschreckgehärtet wird.
Wie erfindungsgemäß erkannt wurde darf möglichst keine Zinkschmelze mit Austenit während der Umformphase, also dem Eintrag von Spannung, in Berührung kommen. Erfindungsgemäß wird daher vorgesehen, die Umformung unter der peritektischen Temperatur des Systems Eisen-Zink (Schmelze, Ferrit, T-Phase) durchzuführen. Um hierbei eine Abschreckhärtung noch gewährleisten zu können wird die Zusammensetzung der Stahllegierung im Rahmen der üblichen Zusammensetzung eines Magnesium- Bohrstahles (22 MnB5) so eingestellt, dass eine Abschreckhärtung durch eine verzögerte Umwandlung des Austenits in Marten- sit und damit das Vorhandensein von Austenit auch bei der tieferen Temperatur unterhalb von 780 °C oder tiefer durchgeführt wird, so dass in dem Moment in dem mechanische Spannung auf den Stahl eingebracht wird, welche in Verbindung mit einer Zinkschmelze und Austenit zum "liquid metal embritt lement " führen würde, eben keine oder nur noch sehr wenige flüssige Zinkphasen vorhanden sind. Somit gelingt es mittels eines ent - sprechend der Legierungselemente eingestellten Bor- Manganstahls eine ausreichende Abschreckhärtung zu erzielen ohne eine übermäßige oder schädigende Rissbildung zu provozieren .
Die Erfindung wird anhand einer Zeichnung erläutert, es zeigen dabei :
Figur 1: eine Tabelle zeigend die Ofenverweildauer von mit einer 140 g/m2 betragenden Zinkschicht beschichteten Stahlplatinen mit unterschiedlichen Transferzeiten ins Umformwerkzeug und damit verbundenen repräsentativen Risstiefen;
Figur 2: die Zeit-Temperaturkurve bei der Abkühlung zwischen
Ofen und Umformung;
Figur 3: stark vergrößerte Bilder zeigend die Proben mit den unterschiedlichen Transferzeiten ;
Figur 4: Querschnittschliffdarstellungen der Proben nach Figur
3;
Figur 5: das Zink-Eisen-Diagramm.
Erfindungsgemäß wird ein üblicher Bor-Manganstahl zur Verwendung als presshärtender Stahlwerkstoff bezüglich der Umwandlung des Austenits in andere Phasen so eingestellt, dass sich die Umwandlung in tiefere Bereiche verschiebt.
Für die Erfindung sind somit Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): Si Mn AI Cr Ti B N
0,22 0,19 1,22 0,0066 0,001 0,053 0,26 0,031 0,0025 0,0042 Rest Eisen und erschmel zungsbedingte Verunreinigungen
Wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden.
Für die Erfindung sind somit Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,6
Mangan (Mn) 0,8-3,0
Aluminium (AI) 0, 1-0, 07
Silizium (Si) 0, 01-0,5
Chrom (Cr) 0,02-0,6
Titan (Ti) 0, 01-0, 05
Stickstoff (N) 0, 003-0, 1
Bor (B) 0, 005-0, 06
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel zungsbedingte Verunreinigungen
Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,30
Mangan (Mn) 1, 00-3, 00
Aluminium (AI) 0, 03-0, 06
Silizium (Si) 0, 15-0,20
Chrom (Cr) 0,2-0,3
Titan (Ti) 0, 03-0, 04
Stickstoff (N) 0,004-0,006 Bor (B) 0, 001-0, 06
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel zungsbedingte Verunreinigungen
Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. eine rasche Abkühlung mit einer über der kritischen Härtegeschwindigkeit liegenden Abkühlgeschwindigkeit auch noch unter 780°C sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums mechanische Spannung aufgebracht wird. Dies bedeutet ferner, dass in dem Moment in dem mechanische Spannung aufgebracht wird, keine flüssigen Zinkphasen mehr vorhanden sind welche mit dem Austenit in Kontakt kommen können.
In Figur 1 erkennt man, dass diese unterschiedliche Ausgangstemperatur beim Härten durch unterschiedliche Transferzeiten aus dem Ofen in die Umformpresse erzielt wurden. Bei einer Transferzeit von 3 Sek. erkennt man stark ausgebildete tiefgehende Risse mit einer repräsentativen Risstiefe von 200 μπι. Über Transferzeiten von 5 Sek. und 7 Sek. erkennt man, dass sowohl die Rissstärke als auch die Risstiefe sichtbar abnehmen, während bei einer Transferzeit von 9 Sek. soweit vorangeschritten ist, dass die Tief und Breite der Risse deutlich gesunken ist. Dies war in dieser Form so nicht zu erwarten, da der Fachmann trotz des bekannten Phänomens des liquid metal embrittlements davon ausgegangen wäre, dass eine sehr weiche duktile und viele flüssige Phasen entfaltende mehr oder weniger flüssige metallische Deckschicht dem Umformen besser folgen kann als eine bereits feste metallische Schicht. Zudem kann nach dem Aufheizen der Platine man erfindungsgemäß im Temperaturbereich des Peritektikums eine Haltephase vorsehen, so dass die Erstarrung der Zinkbeschichtung gefördert und vorangetrieben wird bevor anschließend umgeformt wird.
Mit der Erfindung gelingt es somit, zuverlässig ein kostengünstiges Warmumformverfahren für mit Zink oder Zinklegierungen beschichteter Stahlbleche zu erreichen bei dem einerseits eine Abschreckhärtung herbeigeführt wird und andererseits Mik- ro- und Makrorissbildung, die zu Bauteilschäden führt, vermindert oder vermieden wird.

Claims

Patentansprüche
Verfahren zum Herstellen eines gehärteten Stahlbauteils mit einer Beschichtung aus Zink oder einer Zinklegierung, wobei aus einem mit dem Zink oder der Zinklegierung beschichteten Blech eine Platine ausgestanzt wird, die ausgestanzte Platine auf eine Temperatur ^Ac3 erhitzt und ggf. bei dieser Temperatur für eine vorbestimmte Zeit gehalten wird um die Austenitbildung durchzuführen und anschließend die aufgeheizte Platine in ein Formwerkzeug überführt wird, in dem Formwerkzeug umgeformt wird und in dem Formwerkzeug mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt und dadurch gehärtet wird, dadurch gekennzeichnet, dass der Stahlwerkstoff derart umwandlungsverzögert eingestellt ist, dass bei einer Umformtemperatur die im Bereich von 600°C bis 800°C, insbesondere 730°C bis 782°C und insbesondere unter der peritektischen Temperatur des Zink- Eisen-Diagramms liegt, eine Abschreckhärtung durch Umwandlung des Austenits in Martensit stattfindet.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Stahlwerkstoff als Umwandlungsverzögerer die Elemente Bor, Mangan und Kohlenstoff und optional Chrom und Molybdän enthält . Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Stahlwerkstoff mit folgender Analyse verwendet wird (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,6
Mangan (Mn) 0,8-3,0
Aluminium (AI) 0, 1-0, 07
Silizium (Si) 0, 01-0,5
Chrom (Cr) 0,02-0,6
Titan (Ti) 0, 01-0, 05
Stickstoff (N) 0, 003-0, 1
Bor (B) 0, 005-0, 06
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel zungsbedingte Verunreinigungen
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Stahlwerkstoff mit folgender Analyse verwendet wird (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,30
Mangan (Mn) 1, 00-3, 00
Aluminium (AI) 0, 03-0, 06
Silizium (Si) 0, 15-0,20
Chrom (Cr) 0,2-0,3
Titan (Ti) 0, 03-0, 04
Stickstoff (N) 0,004-0,006
Bor (B) 0, 001-0, 06
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel zungsbedingte Verunreinigungen Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Platine in einem Ofen auf eine Temperatur >Ac3 aufgeheizt wird und für eine vorbestimmte Zeit gehalten wird und anschließend die Platine auf eine Temperatur zwischen 600°C bis 800°C, insbesondere 730°C bis 782°C abkühlen gelassen und auf dieser Temperatur gehalten wird, um eine Verfestigung der Zinkschicht zu erzielen und nach einer vorbestimmten Haltezeit in das Formwerkzeug überführt und dort umgeformt wird .
PCT/EP2011/073887 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile WO2012085251A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180068534.2A CN103547687A (zh) 2010-12-24 2011-12-22 生产硬化的结构部件的方法
ES11808211T ES2853207T3 (es) 2010-12-24 2011-12-22 Procedimiento para la fabricación de componentes endurecidos
EP11808211.4A EP2655673B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102010056265.3A DE102010056265C5 (de) 2010-12-24 2010-12-24 Verfahren zum Erzeugen gehärteter Bauteile
DE102010056265.3 2010-12-24
DE102010056264.5 2010-12-24
DE102010056264.5A DE102010056264C5 (de) 2010-12-24 2010-12-24 Verfahren zum Erzeugen gehärteter Bauteile
DE102011053939.5 2011-09-26
DE102011053941.7 2011-09-26
DE102011053939.5A DE102011053939B4 (de) 2011-09-26 2011-09-26 Verfahren zum Erzeugen gehärteter Bauteile
DE102011053941.7A DE102011053941B4 (de) 2011-09-26 2011-09-26 Verfahren zum Erzeugen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität

Publications (2)

Publication Number Publication Date
WO2012085251A2 true WO2012085251A2 (de) 2012-06-28
WO2012085251A3 WO2012085251A3 (de) 2012-08-16

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/EP2011/073892 WO2012085256A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile
PCT/EP2011/073882 WO2012085248A2 (de) 2010-12-24 2011-12-22 Verfahren zum umformen und härten von beschichteten stahlblechen
PCT/EP2011/073889 WO2012085253A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität
PCT/EP2011/073880 WO2012085247A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile
PCT/EP2011/073887 WO2012085251A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile

Family Applications Before (4)

Application Number Title Priority Date Filing Date
PCT/EP2011/073892 WO2012085256A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile
PCT/EP2011/073882 WO2012085248A2 (de) 2010-12-24 2011-12-22 Verfahren zum umformen und härten von beschichteten stahlblechen
PCT/EP2011/073889 WO2012085253A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität
PCT/EP2011/073880 WO2012085247A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile

Country Status (8)

Country Link
US (2) US20140020795A1 (de)
EP (5) EP2655674B1 (de)
JP (2) JP5727037B2 (de)
KR (3) KR20130132566A (de)
CN (5) CN103547686B (de)
ES (5) ES2858225T3 (de)
HU (5) HUE054465T2 (de)
WO (5) WO2012085256A2 (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (ja) * 2012-10-31 2015-11-10 アイシン高丘株式会社 アルミニウム合金材のダイクエンチ装置およびダイクエンチ方法
DE102013100682B3 (de) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh Verfahren zum Erzeugen gehärteter Bauteile und ein Strukturbauteil, welches nach dem Verfahren hergestellt ist
WO2015029653A1 (ja) * 2013-08-29 2015-03-05 Jfeスチール株式会社 熱間プレス成形部材の製造方法および熱間プレス成形部材
DE102013015032A1 (de) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinkbasierte Korrosionsschutzbeschichtung für Stahlbleche zur Herstellung eines Bauteils bei erhöhter Temperatur durch Presshärten
WO2015039763A2 (en) * 2013-09-19 2015-03-26 Tata Steel Ijmuiden B.V. Steel for hot forming
JP6167814B2 (ja) * 2013-09-30 2017-07-26 マツダ株式会社 自動変速機
DE102014000969A1 (de) 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kraftfahrzeugbauteil
DE102014101159B4 (de) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Verfahren zur Oberflächenbehandlung von Werkstücken
WO2015144318A1 (en) * 2014-03-28 2015-10-01 Tata Steel Ijmuiden B.V. Method for hot forming a coated steel blank
JP6260411B2 (ja) * 2014-03-31 2018-01-17 新日鐵住金株式会社 緩冷却鋼材
JP5825413B1 (ja) * 2014-04-23 2015-12-02 Jfeスチール株式会社 熱間プレス成形品の製造方法
MX2017003759A (es) * 2014-09-22 2017-06-30 Arcelormittal Elemento de refuerzo para un vehiculo, metodo para producir el mismo y montaje de puerta.
JP6152836B2 (ja) * 2014-09-25 2017-06-28 Jfeスチール株式会社 熱間プレス成形品の製造方法
JP6056826B2 (ja) * 2014-09-30 2017-01-11 Jfeスチール株式会社 熱間プレス成形品の製造方法
DE102014114394B3 (de) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines gehärteten Stahlblechs
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (ja) * 2014-12-12 2017-08-09 Jfeスチール株式会社 熱間プレス成形品の製造方法
CN105772584B (zh) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 改善零件成型性能的热成型工艺及成型装置
CN104668326B (zh) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 一种高强度钢材零部件性能梯度化分布的热冲压方法
ES2725470T3 (es) 2015-03-09 2019-09-24 Autotech Eng Sl Sistemas y procedimientos de prensado
EP3067129A1 (de) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Presssysteme und -verfahren
EP3302837B1 (de) * 2015-05-29 2020-03-11 voestalpine Stahl GmbH Verfahren zum homogenen kontaktlosen temperieren von temperierenden, nicht endlosen oberflächen und vorrichtung hierfür
KR20180016980A (ko) 2015-06-03 2018-02-20 잘쯔기터 플래시슈탈 게엠베하 아연도금 강으로 제조된 변형-경화된 부품, 그 제조방법 및 부품의 변형-경화에 적합한 강 스트립 제조방법
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
WO2017017484A1 (en) 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
DE102016102324B4 (de) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlbauteile
DE102016102322B4 (de) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlbauteile
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
DE102016114658B4 (de) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Verfahren zum Formen und Härten von Stahlwerkstoffen
CN106334875A (zh) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制焊接部件及其制造方法
CN106424280B (zh) * 2016-11-30 2017-09-29 华中科技大学 一种高强钢热成形差异化力学性能分布柔性控制方法
DE102017115755A1 (de) * 2017-07-13 2019-01-17 Schwartz Gmbh Verfahren und Vorrichtung zur Wärmebehandlung eines metallischen Bauteils
EP3437750A1 (de) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Pressverfahren für beschichtete stähle
DE102017131253A1 (de) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
DE102017131247A1 (de) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109433960A (zh) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 热冲压高强钢汽车车身覆盖件及其制造方法、制造系统
EP3712292B1 (de) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Bauteil umfassend ein stahlsubstrat, eine zwischenschicht und eine korrosionsschutzbeschichtung, entsprechende verfahren und verwendungen
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
EP4045205B1 (de) * 2019-10-14 2023-03-08 Autotech Engineering, S.L. Presssysteme und -verfahren
EP3872230A1 (de) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinklegierungskorrosionsschutzschicht
US20230166314A1 (en) * 2020-04-20 2023-06-01 Nippon Steel Corporation Method for manufacturing hot-press-formed article, and hot-press-formed article
CN111822571A (zh) * 2020-07-12 2020-10-27 首钢集团有限公司 可定制零件的组织性能分区的热冲压方法
KR102553226B1 (ko) * 2020-12-21 2023-07-07 주식회사 포스코 전자기 검사 장치
CN113182374A (zh) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 一种高强度结构件的热成型方法
DE102021122383A1 (de) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
WO2023074114A1 (ja) 2021-10-29 2023-05-04 Jfeスチール株式会社 熱間プレス部材

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642991B1 (de) 2003-05-28 2009-02-18 Sumitomo Metal Industries, Ltd. Verfahren zum warmumformen und warmumgeformtes element
EP1439240B1 (de) 2001-10-23 2010-05-19 Sumitomo Metal Industries, Ltd. Verfahren zur heisspressbearbeitung von einem plattierten stahlprodukt

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (fr) * 1991-11-04 1994-03-04 Isoform Dispositif d'emboutissage de materiaux en feuille, notamment de flans de tole.
DE19838332A1 (de) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Verfahren und Vorrichtung zur Qualitätsüberwachung und -regelung des Galvannealed-Überzuges von Stahlbändern
FR2807447B1 (fr) * 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
JP4085876B2 (ja) * 2003-04-23 2008-05-14 住友金属工業株式会社 熱間プレス成形品およびその製造方法
ATE478971T1 (de) 2003-07-29 2010-09-15 Voestalpine Stahl Gmbh Verfahren zum herstellen von geharteten bauteilen aus stahlblech
AT412403B (de) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Korrosionsgeschütztes stahlblech
CN100355928C (zh) * 2003-09-29 2007-12-19 杰富意钢铁株式会社 机械构造用钢部件、其所用原料及其制造方法
JP2005177805A (ja) * 2003-12-19 2005-07-07 Nippon Steel Corp ホットプレス成形方法
JP4131715B2 (ja) * 2004-05-18 2008-08-13 トピー工業株式会社 熱処理部材の部分熱処理方法とその装置
JP2006051543A (ja) * 2004-07-15 2006-02-23 Nippon Steel Corp 冷延、熱延鋼板もしくはAl系、Zn系めっき鋼板を使用した高強度自動車部材の熱間プレス方法および熱間プレス部品
JP4329639B2 (ja) * 2004-07-23 2009-09-09 住友金属工業株式会社 耐液体金属脆性に優れた熱処理用鋼板
DE102005003551B4 (de) 2005-01-26 2015-01-22 Volkswagen Ag Verfahren zur Warmumformung und Härtung eines Stahlblechs
JP2007016296A (ja) * 2005-07-11 2007-01-25 Nippon Steel Corp 成形後の延性に優れたプレス成形用鋼板及びその成形方法、並びにプレス整形用鋼板を用いた自動車用部材
WO2007048883A1 (fr) * 2005-10-27 2007-05-03 Usinor Procede de fabrication d'une piece a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue
JP4733522B2 (ja) * 2006-01-06 2011-07-27 新日本製鐵株式会社 耐食性、耐疲労性に優れた高強度焼き入れ成形体の製造方法
JP4681492B2 (ja) * 2006-04-07 2011-05-11 新日本製鐵株式会社 鋼板熱間プレス方法及びプレス成形品
DE102007013739B3 (de) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Verfahren zum flexiblen Walzen von beschichteten Stahlbändern
JP5194986B2 (ja) * 2007-04-20 2013-05-08 新日鐵住金株式会社 高強度部品の製造方法および高強度部品
JP5092523B2 (ja) * 2007-04-20 2012-12-05 新日本製鐵株式会社 高強度部品の製造方法および高強度部品
WO2008153183A1 (ja) * 2007-06-15 2008-12-18 Sumitomo Metal Industries, Ltd. 成形品の製造方法
JP2009061473A (ja) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd 高強度部品の製造方法
JP4890416B2 (ja) * 2007-10-18 2012-03-07 アイシン高丘株式会社 ダイクエンチ工法におけるプレス加工装置及びプレス加工方法
EP2379756A1 (de) * 2008-12-19 2011-10-26 Tata Steel IJmuiden B.V. Verfahren zur herstellung eines beschichteten teils unter verwendung von warmformtechniken
JP4825882B2 (ja) 2009-02-03 2011-11-30 トヨタ自動車株式会社 高強度焼き入れ成形体及びその製造方法
DE102009015013B4 (de) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Verfahren zum Herstellen partiell gehärteter Stahlbauteile
DE102009017326A1 (de) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von pressgehärteten Bauteilen
DE102009051673B3 (de) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Herstellung von Galvannealed-Blechen durch Wärmebehandlung elektrolytisch veredelter Bleche
KR101171450B1 (ko) * 2009-12-29 2012-08-06 주식회사 포스코 도금 강재의 열간 프레스 성형방법 및 이를 이용한 열간 프레스 성형품
JP5740099B2 (ja) * 2010-04-23 2015-06-24 東プレ株式会社 熱間プレス製品の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439240B1 (de) 2001-10-23 2010-05-19 Sumitomo Metal Industries, Ltd. Verfahren zur heisspressbearbeitung von einem plattierten stahlprodukt
EP1642991B1 (de) 2003-05-28 2009-02-18 Sumitomo Metal Industries, Ltd. Verfahren zum warmumformen und warmumgeformtes element

Also Published As

Publication number Publication date
EP2655673B1 (de) 2021-02-03
HUE054465T2 (hu) 2021-09-28
EP2655675B1 (de) 2021-03-10
KR101582922B1 (ko) 2016-01-07
US20140020795A1 (en) 2014-01-23
EP2655675A2 (de) 2013-10-30
EP2656187A2 (de) 2013-10-30
ES2848159T3 (es) 2021-08-05
US20140027026A1 (en) 2014-01-30
KR20130126962A (ko) 2013-11-21
ES2851176T3 (es) 2021-09-03
HUE053150T2 (hu) 2021-06-28
EP2655673A2 (de) 2013-10-30
WO2012085253A2 (de) 2012-06-28
CN103547686B (zh) 2016-11-23
JP2014507556A (ja) 2014-03-27
JP2014505791A (ja) 2014-03-06
JP5727037B2 (ja) 2015-06-03
EP2656187B1 (de) 2020-09-09
CN103415630A (zh) 2013-11-27
EP2655672A2 (de) 2013-10-30
HUE052381T2 (hu) 2021-04-28
EP2655672B1 (de) 2020-12-16
ES2829950T8 (es) 2021-06-10
CN103384726B (zh) 2016-11-23
EP2655674A2 (de) 2013-10-30
HUE055049T2 (hu) 2021-10-28
US10640838B2 (en) 2020-05-05
CN103415630B (zh) 2015-09-23
ES2858225T3 (es) 2021-09-29
WO2012085256A2 (de) 2012-06-28
WO2012085247A2 (de) 2012-06-28
CN103384726A (zh) 2013-11-06
CN103392014A (zh) 2013-11-13
WO2012085247A3 (de) 2012-08-16
CN103547686A (zh) 2014-01-29
HUE054867T2 (hu) 2021-10-28
ES2858225T8 (es) 2022-01-05
WO2012085251A3 (de) 2012-08-16
EP2655674B1 (de) 2021-02-03
WO2012085248A3 (de) 2012-08-16
ES2829950T3 (es) 2021-06-02
WO2012085253A3 (de) 2012-08-16
KR20130132566A (ko) 2013-12-04
WO2012085248A2 (de) 2012-06-28
KR20130132565A (ko) 2013-12-04
CN103547687A (zh) 2014-01-29
ES2853207T3 (es) 2021-09-15
WO2012085256A3 (de) 2012-08-16
CN103392014B (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
EP2655673B1 (de) Verfahren zum erzeugen gehärteter bauteile
DE102011053939B4 (de) Verfahren zum Erzeugen gehärteter Bauteile
EP3041969B1 (de) Zinkbasierte korrosionsschutzbeschichtung für stahlbleche zur herstellung eines bauteils bei erhöhter temperatur durch presshärten
EP2553133B1 (de) Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils
DE102013100682B3 (de) Verfahren zum Erzeugen gehärteter Bauteile und ein Strukturbauteil, welches nach dem Verfahren hergestellt ist
DE102010056264B4 (de) Verfahren zum Erzeugen gehärteter Bauteile
EP3215656B1 (de) Verfahren zum herstellen einer korrosionsschutzbeschichtung für härtbare stahlbleche und korrosionsschutzschicht für härtbare stahlbleche
DE102011053941B4 (de) Verfahren zum Erzeugen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität
EP2848709A1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
DE102008035714A1 (de) Stahlblech zum Warmpreßformen, das Niedrigtemperatur-Vergütungseigenschaft hat, Verfahren zum Herstellen desselben, Verfahren zum Herstellen von Teilen unter Verwendung desselben, und damit hergestellte Teile
DE102010056265B3 (de) Verfahren zum Erzeugen gehärteter Bauteile
EP3250727B2 (de) Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech
EP1939308A1 (de) Verfahren zum Herstellen eines Bauteils durch Wärmepresshärten und hochfestes Bauteil mit verbesserter Bruchdehnung
EP2664682A1 (de) Stahl für die Herstellung eines Stahlbauteils, daraus bestehendes Stahlflachprodukt, daraus hergestelltes Bauteil und Verfahren zu dessen Herstellung
EP3658307A1 (de) Blechbauteil, hergestellt durch warmumformen eines stahlflachprodukts und verfahren zu dessen herstellung
EP3303647B1 (de) Umformgehärtetes bauteil aus verzinktem stahl, herstellverfahren hierzu und verfahren zur herstellung eines stahlbandes geeignet zur umformhärtung von bauteilen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11808211

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011808211

Country of ref document: EP