EP2655672A2 - Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität - Google Patents

Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität

Info

Publication number
EP2655672A2
EP2655672A2 EP11807691.8A EP11807691A EP2655672A2 EP 2655672 A2 EP2655672 A2 EP 2655672A2 EP 11807691 A EP11807691 A EP 11807691A EP 2655672 A2 EP2655672 A2 EP 2655672A2
Authority
EP
European Patent Office
Prior art keywords
temperature
cooling
board
heated
blank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11807691.8A
Other languages
English (en)
French (fr)
Other versions
EP2655672B1 (de
Inventor
Andreas Sommer
Harald Schwinghammer
Thomas Kurz
Siegfried Kolnberger
Martin Rosner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/de
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/de
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/de
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/de
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2655672A2 publication Critical patent/EP2655672A2/de
Application granted granted Critical
Publication of EP2655672B1 publication Critical patent/EP2655672B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for producing hardened components with regions of different hardness and / or ductility with the features of claim 1.
  • press-hardened components made of sheet steel are used.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components of the bodywork sector.
  • the use of these high-strength steel components makes it possible to reduce the material thickness compared to a normal-strength steel and thus to achieve low body weights.
  • a sheet steel plate is heated above the so-called austenitizing temperature and, if appropriate, kept at this temperature until a desired degree of austenitization is achieved. Subsequently, this heated board is transferred to a mold and in this mold in a one-step forming step for formed component and this cooled by the cooled mold simultaneously with a speed that is above the critical hardness speed. Thus, the hardened component is produced.
  • the component is first, if necessary, in a multi-stage forming process, the component formed almost completely finished. This formed component is then also heated to a temperature above the Austenitmaschinestempe- temperature and optionally held for a desired time required at this temperature.
  • this heated component is transferred to a mold and inserted, which already has the dimensions of the component or the final dimensions of the component, where appropriate, taking into account the thermal expansion of the preformed component.
  • the direct method is somewhat simpler to implement, but allows only shapes that are actually to be realized with a single forming step, i. relatively simple profile shapes.
  • the indirect process is a bit more complex, but it is also able to realize more complex shapes.
  • Zinc has the advantage here that zinc not only provides a barrier protection layer such as aluminum, but cathodic corrosion protection.
  • zinc-coated press-hardened components fit better into the overall corrosion protection concept of vehicle bodies, since they are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or eliminated.
  • Zinc-coated steels are currently - with the exception of one component in the Asian region - in the direct process, i. hot forming, not used. Instead, steels with an aluminum-silicon coating are used here.
  • the zinc-iron phase diagram shows that above 782 ° C a large area arises in which liquid zinc-iron phases occur as long as the iron content is low, in particular less than 60%. However, this is also the temperature range in which the austenitized steel is thermoformed. It should also be noted, however, that if the deformation occurs above 782 ° C, there is a great risk of stress corrosion by liquid zinc, which is believed to penetrate the grain boundaries of the base steel, resulting in macrocracks in the base steel. In addition, with iron levels less than 30% in the coating, the maximum temperature for forming a safe product with no macrocracks is less than 782 ° C. This is the reason why hereby no direct forming process is operated, but that indirect forming process. This is intended to circumvent the problem described.
  • a method for hot forming a coated steel product wherein the steel material has a zinc or zinc alloy coating formed on the surface of the steel material and the steel base material with the coating at a temperature of 700 ° C to 1000 Is heated and hot-formed, the coating having an oxide layer consisting mainly of zinc oxide before the steel base material is heated with the zinc or zinc alloy layer, to prevent evaporation of the zinc upon heating.
  • a special procedure is provided.
  • a method for hot forming a steel in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, kept at this temperature and then the heated one Steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a manner that the cooling rate to MS point at least the critical cooling rate and that the average cooling rate of the molded component from the MS Point at 200 ° C is in the range of 25 ° C / s to 150 ° C / s.
  • the applicant's EP 1 651 789 B1 discloses a method for producing hardened components from sheet steel, in which case shaped parts are cold-formed from a steel sheet provided with a cathodic protection against corrosion and followed by a heat treatment for the purpose of austenitizing, before, during or after the cold forming of the molding, a final trimming of the molding and required punching or the creation of a hole pattern are made and the cold forming and the trimming and the punching and arrangement of the hole pattern on the component 0.5% to 2% smaller than the dimensions that the should then have hardened component, wherein the cold-formed for heat treatment molding is then at least partially heated under the access of air oxygen to a temperature which allows Austenitmaschine the steel material and the heated component is then transferred to a tool and in the
  • the tool is a so-called mold hardening carried out in which by applying and pressing (holding) of the component by the mold hardening tools, the component is cooled and thereby hardened and the cathodic protection zs coating consists of a mixture of
  • an oxide skin is formed on the surface of the anti-corrosion coating from the oxygen-affine elements during the heating, which protects the cathodic anti-corrosion layer, in particular the zinc layer.
  • the process by the scale reduction of the component with respect to its final geometry, the thermal expansion of the component is taken into account, so that neither a calibration nor a transformation are necessary in the form of hardening.
  • a method for producing partially hardened steel components wherein a board made of a hardenable steel sheet is subjected to a temperature increase, which is sufficient for quenching and the board after reaching a desired temperature and optionally a desired hold time in a forming tool is converted by the board is formed into a component and simultaneously quenched, or cold formed the board and the component obtained by the cold forming is then subjected to a temperature increase, wherein the temperature increase is performed so that a temperature of the component is achieved, which is necessary for a quench hardening and the component is then transferred to a tool in which the heated component is cooled and thereby quenched hardened, wherein during the heating of the board or the component to Z raise the temperature increase to a temperature necessary for curing in the areas which are to have a lower hardness and / or a higher ductility, absorption masses or are spaced with a small gap, the absorption mass with respect to their extent and thickness, their thermal conductivity and their heat
  • DE 10 2005 003 551 A1 discloses a method for hot working and hardening of a steel sheet, in which a steel sheet is heated to a temperature above the Ac 3 point. after cooling to a temperature in the range of 400 ° C to 600 ° C undergoes and is transformed only after reaching this temperature range.
  • this document does not deal with the crack problem or a coating, nor is a martensite formation described.
  • the aim of the invention is the formation of intermediate structures, so-called bainite.
  • the object of the invention is to provide a method for producing especially provided with a corrosion protective layer sheet steel components with areas of different hardness or ductility, with local stresses in the component and distortion as well as cracks, as otherwise caused by "liquid metal assisted cracking" can be avoided.
  • the method according to the invention can be carried out successfully in both the so-called indirect process and in the direct process with regard to the mechanical properties.
  • the boards are shaped before heating to the finished component, possibly reduced in all three spatial axes by an expected heat expansion.
  • the thus obtained component is heated in an oven, wherein, in order to achieve regions of different temperature, absorption masses or insulating components or the like are provided in the regions of the component which are not or less to be hardened.
  • a temperature is reached in these areas, which is below AC 3 o- and possibly even Aci and thus a quench hardening by conversion of austenite into martensite a restricts or prevents.
  • a complete austenitization is sought, which leads to a martensitic hardness during quenching.
  • the board is heated without being deformed and the areas of the board which are not or less hardened are also brought into contact with absorption masses, which reduce heating of the sheet due to their thermal conductivity and heat capacity or are likewise arranged according to insulation components , Subsequently, this board is reshaped.
  • the board is evened out in terms of temperature in both cases before curing (indirect process) or curing and forming (direct process).
  • so-called conversion-delayed steels are used. This means that the transformation into martensite takes place later so that the components, after equalizing the temperature and setting in the hardening tool or the hardening / shaping tool, despite having uniform temperature, have areas which are characterized by the subsequent rapid cooling with a cooling rate above the critical one Hardness hardened while the other areas, which were not brought to the Austenitmaschinestemperatur, are softer. It is advantageous that the equalization of the temperature also leads to a uniform formability, so that local stresses due to different temperatures or different thermo-mechanical properties are avoided and, in particular, thinning in the boundary regions between cold and hot regions is avoided.
  • Another advantage obtained by the direct method is that the so-called "liquid metal embrittlement" is avoided.
  • the composition of the steel alloy is adjusted within the usual composition of a manganese boron steel (22MnB5) such that a quench hardening by a delayed transformation of austenite into martensite and thus the presence of austenite even at the lower temperature below 780 ° C or lower, so that at the moment in the mechanical stress is introduced to the steel, which would lead in connection with a molten zinc and austenite to the "liquid metal embrittlement", just no or very few liquid Zinc phases are present.
  • a set according to the alloying elements boron manganese steel sufficient Quench hardening without provoking excessive or damaging cracking.
  • the active intermediate cooling before forming is necessary for a crack-free forming.
  • the intermediate cooling can take place, for example, in one or more stages.
  • additional time periods can be planned for the sheets, which have different heated areas, for example, to bring about no hardening in colder areas, to equalize the temperature, in particular, wait until the over Austenitizing temperature heated areas have a temperature that has adapted to the temperature of the less heated areas.
  • This adaptation of the temperature profile can be effected in particular also by an active cooling of the hotter areas, in particular by blowing on these areas or the like, possibly covering, shielding or insulating the cold or colder areas during the cooling of the heated areas.
  • a control of air nozzles for blowing in the special case of sheets of different temperature can be done via pyrometers, which are for example outside the press and the furnace in a separate plant as well as the corresponding nozzles.
  • the cooling options are not limited to air nozzles, it can also be used on cooled tables on which the boards are positioned accordingly and which include cooled and non-cooled areas, so that the cooled areas of the board on cooled areas of the Table to come to rest and be brought into heat-conducting contact, for example by pressing or suction.
  • the use of a cooling press is conceivable in which the press geometry by the planar boards is very simple and inexpensive, the areas of the tool in which the board should be cooled according to liquid cooled, while the areas that are not to be cooled, for example compared the cold metal of the press by means of insulating layers, which are inserted in the tools, be shielded or these areas are easily heated, for example by induction or kept at temperature.
  • a uniform forming temperature is achieved before forming, which ensures improved forming behavior in the forming press.
  • Figure 1 the time-temperature curve during the cooling between
  • Figure 2 greatly enlarged images showing the samples with the different temperatures
  • FIG. 3 cross-section of the samples according to FIG.
  • FIG. 5 a ZTU diagram
  • FIG. 6 shows the schematic sequence of the method according to the invention in the direct process
  • FIG. 7 shows the schematic sequence of the method according to the invention in the indirect process
  • Figure 8 the schematic sequence with combined centering and cooling station for one-sided intermediate cooling.
  • a conventional boron manganese steel for use as a press-hardening steel material is adjusted with respect to the transformation of the austenite into other phases so that the transformation shifts to deeper areas and martensite can be formed.
  • alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion inhibitors in such steels.
  • Steels of the general alloy composition are also suitable for the invention (all figures in% by mass):
  • Titanium (Ti) 0, 03-0, 04
  • a holding phase can be provided in the temperature range of the peritectic, so that the solidification of the zinc coating is promoted and advanced before it is subsequently formed.
  • FIG. 1 shows a favorable temperature profile for an austenitized steel sheet, whereby it can be seen that after heating to a temperature above the austenitizing temperature and the corresponding introduction into a cooling device, a certain cooling already takes place. This is followed by a rapid intermediate cooling step.
  • the intermediate cooling step is advantageously carried out at cooling rates of at least 15 K / s, preferably at least 30 K / s, more preferably at least 50 K / s.
  • the board is transferred to the press and carried out the forming and curing.
  • Figure 4 can be seen in the iron-carbon diagram such as a board with different hot areas treated accordingly. It can be seen for the hot, to be cured areas a high starting temperature between 800 ° C and 900 ° C while the soft areas have been heated to a temperature below 700 ° C and in particular are then not available for curing. A temperature adjustment can be seen at a temperature of about 550 ° C or slightly below, and after setting the hotter areas, this temperature of the softer areas, the rapid cooling at 20 K / s.
  • the temperature adjustment is carried out such that there are still differences in the temperatures of the (previously) hot regions and the (previously) colder regions which do not exceed 75 ° C., in particular 50 ° C. ( in both directions) .
  • FIG. 3 shows the difference in the formation of cracks. Without intermediate cooling cracking occurs, which extends into the steel material, with the intercooling results only superficial cracks in the coating, which are not critical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen eines gehärteten Stahlbauteils mit unterschiedlich duktilen bzw. harten Bereichen, wobei eine Platine ausgestanzt wird, und entweder die ausgestanzte Platine teilbereichsweise auf eine Temperatur ≥Ac3 erhitzt und ggf. bei dieser Temperatur für eine vorbestimmte Zeit gehalten wird um die Austenitbildung durchzuführen und anschliessend die teilbereichsweise aufgeheizte Platine in ein Formwerkzeug überführt wird, in dem Formwerkzeug umgeformt wird und in dem Formwerkzeug mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt und dadurch gehärtet wird, oder fertig kalt umgeformt wird und die umgeformte Platine teilbereichsweise auf eine Temperatur >Ac3 erhitzt und gegebenenfalls bei dieser Temperatur für eine vorbestimmte Zeit gehalten wird, um die Austenitbildung durchzuführen und anschliessend die teilbereichsweise aufgeheizte und umgeformte Platine in ein Härtewerkzeug überführt wird, in dem Härtewerkzeug gehärtet wird mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, wobei der Stahlwerkstoff derart umwandlungsverzögert eingestellt ist, dass bei einer Umformtemperatur die im Bereich von 450 °C bis 700 °C liegt, eine Abschreckhärtung durch Umwandlung des Austenits in Martensit stattfindet, wobei nach dem Erhitzen und vor dem Umformen ein aktives Kühlen stattfindet, bei dem die Platine oder Teile der Platine oder die umgeformte Platine oder Bereiche hiervon mit einer Abkühlgeschwindigkeit >15K/s abgekühlt wird.

Description

Verfahren zum Erzeugen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität
Die Erfindung betrifft ein Verfahren zum Herstellen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität mit den Merkmalen des Anspruchs 1.
Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen.
Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren.
Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannten Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt.
Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess , das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstempe- ratur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten.
Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet .
Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen.
Das indirekte Verfahren ist etwas aufwendiger, dafür aber in der Lage auch komplexere Formen zu realisieren.
Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem
Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen. Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendete Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden.
Bei beiden Verfahren konnten jedoch Nachteile aufgefunden werden, die auch im Stand der Technik diskutiert werden. Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu Mikro- (10 μπι bis 100 μπι) oder sogar Makrorissen im Material, wobei die Mikrorisse in der Beschichtung erscheinen und die Makrorisse sogar durch den vollständigen Blechquerschnitt reichen. Derartige Bauteile mit Makrorissen sind für die weitere Verwendung ungeeignet.
Beim indirekten Prozess, d.h. der Kaltumformung mit einer anschließenden Härtung und Restformung kann es ebenfalls zu Mik- rorissen in der Beschichtung kommen, welche ebenfalls unerwünscht sind, aber bei weitem nicht so ausgeprägt.
Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung, nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt.
Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez . In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumform- prozess einen aluminierten Bor-Mangan-Stahl ergibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbe- schichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor Gl mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält und ein sogenannter gal- vanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält.
Es wird darauf hingewiesen, dass das Zink-Eisen-Phasendiagramm zeigt, dass oberhalb von 782°C ein großer Bereich entsteht, in dem flüssige Zink-Eisen-Phasen auftreten, so lang der Eisengehalt gering, insbesondere geringer als 60 % ist. Dies ist jedoch auch der Temperaturbereich, in dem der austenitisierte Stahl warm umgeformt wird. Es wird aber auch darauf hingewiesen, dass, wenn die Umformung oberhalb von 782°C stattfindet, ein großes Risiko der Spannungskorrosion durch flüssiges Zink besteht, welches vermutlich in die Korngrenzen des Basisstahls eindringt, welche zu Makrorissen im Basisstahl führt. Darüber hinaus ist bei Eisengehalten geringer als 30 % in der Beschichtung die Maximaltemperatur zum Umformen eines sicheren Produkts ohne Makrorisse niedriger als 782°C. Dies ist der Grund, warum hiermit kein direktes Umformverfahren betrieben wird, sondern dass indirekte Umformverfahren. Hiermit soll das geschilderte Problem umgangen werden.
Eine weitere Möglichkeit dieses Problem zu umgehen, soll darin liegen, galvannealed beschichteten Stahl zu verwenden, was daran liegt, dass der zu Beginn schon bestehende Eisengehalt von 10 % und die Abwesenheit einer Fe2Al5-Sperrschicht zu einer homogeneren Ausbildung des Beschichtung von überwiegend eisen- reichen Phasen führt. Dies resultiert in einer Verringerung oder Vermeidung von zinkreichen, flüssigen Phasen.
In "'STUDY OF CRACKS PROPAGATION INSIDE THE STEEL ON PRESS HARDENED STEEL ZINC BASED COATINGS ' , Pascal Drillet, Raisa Grigorieva, Gregory Leuillier, Thomas Vietoris, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, GALVATECH 2011 - Conference Proceedings, Genova (Italy), 2011" wird darauf hingewiesen, dass verzinkte Bleche im direkten Verfahren nicht verarbeitbar sind.
Aus der EP 1 439 240 Bl ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei das Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf einen Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen.
Aus der EP 1 642 991 Bl ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS- Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet .
Aus der EP 1 651 789 Bl der Anmelderin ist ein Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech bekannt, wobei hierbei Formteile aus einem mit einem kathodischen Korrosionsschutz versehenen Stahlblech kalt umgeformt werden und eine Wärmebehandlung zum Zwecke der Austenitisierung folgt, wobei vor, beim oder nach dem Kaltumformen des Formteils ein Endbeschnitt des Formteils und erforderliche Ausstanzungen oder die Erzeugung eines Lochbildes vorgenommen werden und die Kaltumformung sowie der Beschnitt und die Ausstanzung und Anordnung des Lochbildes auf dem Bauteil 0,5 % bis 2 % kleiner ausgeführt werden als die Dimensionen, die das endgehärtete Bauteil haben soll, wobei das zur Wärmebehandlung kalt umgeformte Formteil anschließend zumindest teilbereichsweise unter Zutritt von LuftSauerstoff auf eine Temperatur erhitzt wird, welche eine Austenitisierung des Stahlwerkstoffes ermöglicht und das erhitzte Bauteil anschließend in ein Werkzeug überführt wird und in diesem Werkzeug eine sogenannte Formhärtung durchgeführt wird, bei der durch das Anlegen und Pressen (Halten) des Bauteils durch die Formhärtewerkzeuge das Bauteil gekühlt und dadurch gehärtet wird und die kathodische Korrosi- onsschut zbeschichtung aus einer Mischung aus im Wesentlichen Zink besteht und zudem ein oder mehrere Sauerstoffäffine Elemente. Hierdurch wird an der Oberfläche der Korrosionsschut z- beschichtung eine Oxidhaut aus den Sauerstoffäffinen Elementen während des Aufheizens gebildet, welche die kathodische Korrosionsschutzschicht, insbesondere die Zinkschicht, schützt. Zudem wird bei dem Verfahren durch die maßstäbliche Verkleinerung des Bauteils in Bezug auf seine Endgeometrie die Wärmedehnung des Bauteils berücksichtigt, so dass beim Formhärten weder eine Kalibrierung noch eine Umformung notwendig sind. Aus der WO 2010/109012 AI der Anmelderin ist ein Verfahren zum Herstellen partiell gehärteter Stahlbauteile bekannt, wobei eine Platine aus einem härtbaren Stahlblech einer Temperaturerhöhung unterworfen wird, welche für eine Abschreckhärtung ausreicht und die Platine nach Erreichen einer gewünschten Temperatur und gegebenenfalls einer gewünschten Haltezeit in ein Umformwerkzeug überführt wird, indem die Platine zu einem Bauteil umgeformt und gleichzeitig abgeschreckt gehärtet wird, oder die Platine kalt umgeformt wird und das durch die kalte Umformung erhaltene Bauteil anschließend einer Temperaturerhöhung unterzogen wird, wobei die Temperaturerhöhung so durchgeführt wird, dass eine Temperatur des Bauteils erreicht wird, die für eine Abschreckhärtung notwendig ist und das Bauteil anschließend in ein Werkzeug überführt wird, in dem das erhitzte Bauteil abgekühlt und dadurch abgeschreckt gehärtet wird, wobei während des Erhitzens der Platine oder des Bauteils zum Zwecke der Temperaturerhöhung auf eine zum Härten notwendige Temperatur in den Bereichen, die eine geringere Härte und/oder eine höhere Duktilität besitzen sollen, Absorptionsmassen anliegen oder mit einem geringen Spalt beabstandet sind, wobei die Absorptionsmasse bezüglich ihrer Ausdehnung und Dicke, ihrer Wärmeleitfähigkeit und ihrer Wärmekapazität und/oder hinsichtlich ihres Emissionsgrades gerade so dimensioniert sind, dass die in dem duktil verbleibendem Bereich auf das Bauteil einwirkende Wärmeenergie durch das Bauteil hin durch in die Absorptionsmasse fließt, so dass diese Bereiche kühler bleiben und insbesondere die zum Härten notwendige Temperatur gerade nicht oder nur teilweise erreichen, so dass diese Bereiche nicht oder nur teilweise gehärtet werden können .
Aus der DE 10 2005 003 551 AI ist ein Verfahren zur Warmumformung und Härtung eines Stahlblechs bekannt, bei dem ein Stahlblech auf eine Temperatur über den Ac3-Punkt erwärmt wird, da- nach eine Abkühlung auf eine Temperatur im Bereich von 400 °C bis 600°C erfährt und erst nach Erreichen dieses Temperaturbereichs umgeformt wird. Diese Schrift geht allerdings nicht auf die Rissproblematik bzw. eine Beschichtung ein, noch wird eine Martensitbildung beschrieben. Ziel der Erfindung ist die Bildung von Zwischengefüge, sogenanntem Bainit .
Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von insbesondere mit einer Korrosionsschutzschicht versehenen Stahlblechbauteilen mit Bereichen unterschiedlicher Härte bzw. Duktilität zu schaffen, wobei lokale Spannungen im Bauteil sowie Verzug als auch Risse, wie sie sonst durch "liquid metal assisted cracking" verursacht werden können, vermieden werden.
Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.
Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet .
Das erfindungsgemäße Verfahren ist sowohl beim sogenannten indirekten Prozess als auch beim direkten Prozess bezüglich der mechanischen Eigenschaften mit Erfolg durchführbar. Um Bereiche mit unterschiedlichen Festigkeiten beim Abschreckhärten zu erzielen werden beim indirekten Verfahren die Platinen vor dem Erhitzen zum fertigen Bauteil umgeformt, gegebenenfalls in alle drei Raumachsen vermindert um eine erwartete Wärmeausde- hung. Anschließend wird das so erzielte Bauteil in einem Ofen erhitzt, wobei, um Bereiche unterschiedlicher Temperatur zu erreichen, Absorptionsmassen oder Isolierbauteile oder Ähnliches in den Bereichen des Bauteils vorgesehen werden, die nicht oder weniger gehärtet werden sollen. Hierdurch wird in diesen Bereichen eine Temperatur erreicht, welche unter AC3 o- der gegebenenfalls sogar Aci liegt und insofern eine Abschreckhärtung durch Umwandlung des Austenits in Martensit ein- schränkt oder verhindert. In den übrigen Bereichen wird eine vollständige Austenitisierung angestrebt, welche beim Abschrecken zu einer martensitischen Härte führt.
Beim direkten Verfahren wird die Platine aufgeheizt ohne umgeformt zu sein und es werden die Bereiche der Platine, die nicht oder weniger gehärtet werden sollen, ebenfalls mit Absorptionsmassen in Kontakt gebracht, welche durch ihre Wärmeleitfähigkeit und Wärmekapazität eine Erwärmung des Blechs verringern oder ebenfalls entsprechend Isolationsbauteile angeordnet. Anschließend wird diese Platine umgeformt.
Erfindungsgemäß wird jedoch die Platine in beiden Fällen vor der Härtung (indirektes Verfahren) oder dem Härten und Umformen (direktes Verfahren) bezüglich der Temperatur vergleichmäßigt. Dies bedeutet, dass die aufgeheizte Platine mit den Bereichen unterschiedlicher Temperatur vor dem Einlegen in das Umformwerkzeug einem Zwischenkühlschritt unterworfen wird, bei dem die heißeren Bereiche aktiv auf die Temperatur bzw. den Temperaturbereich der kälteren Bereiche abgekühlt wird. Wie dies geschieht, wird später erläutert.
Um bei der Abkühlung keine unkontrollierte Härtung zu erzielen, werden erfindungsgemäß sogenannte umwandlungsverzögerte Stähle verwendet. Dies bedeutet, dass die Umwandlung in Martensit später stattfindet, so dass die Bauteile nach der Vergleichmäßigung der Temperatur und der Einlegung in das Härtewerkzeug oder das Härte-/Umformwerkzeug trotz gleichmäßiger Temperatur Bereiche besitzen, die durch die anschließende rasche Kühlung mit einer Abkühlgeschwindigkeit über der kritischen Härtegeschwindigkeit gehärtet sind, während die anderen Bereiche, welche nicht auf die Austenitisierungstemperatur gebracht wurden, weicher sind. Hierbei ist von Vorteil, dass es durch die Vergleichmäßigung der Temperatur auch zu einer gleichmäßigen Umformbarkeit kommt, so dass lokale Spannungen durch unterschiedliche Temperaturen oder unterschiedliche thermomechanische Eigenschaften vermieden werden und insbesondere Ausdünnungen in den Grenzbereichen zwischen kalten und heißen Bereichen vermieden werden.
Ein weiterer Vorteil, der beim direkten Verfahren erzielt wird, ist, dass das sogenannte "liquid metal embrittlement " vermieden wird.
Der vorbeschriebene Effekt der Rissbildung durch flüssiges Zink, welches den Stahl im Bereich der Korngrenzen penetriert, ist auch als sogenanntes "liquid metal embrittlement" oder "liquid metal assisted cracking" bekannt.
Wie erfindungsgemäß erkannt wurde, darf möglichst keine Zinkschmelze mit Austenit während der Umformphase, also dem Eintrag von Spannung, in Berührung kommen. Erfindungsgemäß wird daher vorgesehen, die Umformung unter der peritektischen Temperatur des Systems Eisen-Zink (Schmelze, Ferrit, Gamma-Phase) durchzuführen. Um hierbei eine Abschreckhärtung noch gewährleisten zu können wird die Zusammensetzung der Stahllegierung im Rahmen der üblichen Zusammensetzung eines Mangan-Borstahles (22MnB5) so eingestellt, dass eine Abschreckhärtung durch eine verzögerte Umwandlung des Austenits in Martensit und damit das Vorhandensein von Austenit auch bei der tieferen Temperatur unterhalb von 780°C oder tiefer durchgeführt wird, so dass in dem Moment in dem mechanische Spannung auf den Stahl eingebracht wird, welche in Verbindung mit einer Zinkschmelze und Austenit zum "liquid metal embrittlement" führen würde, eben keine oder nur noch sehr wenige flüssige Zinkphasen vorhanden sind. Somit gelingt es mittels eines entsprechend der Legierungselemente eingestellten Bor-Manganstahls eine ausreichende Abschreckhärtung zu erzielen ohne eine übermäßige oder schädigende Rissbildung zu provozieren.
Zudem hat sich herausgestellt, dass neben der Einstellung der Stahlanalyse die aktive Zwischenkühlung vor dem Umformen für eine rissfreie Umformung notwendig ist. Die Zwischenkühlung kann beispielsweise ein- oder mehrstufig erfolgen.
Während der TransferZeiten zwischen dem Ofen und der Presse können zusätzlich Zeiträume eingeplant sein um die Bleche, die unterschiedlich aufgeheizte Bereiche besitzen, um beispielsweise in kälteren Bereichen gar keine Härtung herbeizuführen, von der Temperatur her zu vergleichmäßigen, wobei insbesondere abgewartet wird, bis die über die Austenitisierungstemperatur erhitzten Bereiche eine Temperatur haben, die sich an die Temperatur der weniger erhitzten Bereiche angeglichen hat. Diese Angleichung des Temperaturprofils kann dabei insbesondere auch durch eine aktive Kühlung der heißeren Bereiche erfolgen, insbesondere durch Anblasen dieser Bereiche oder Ähnliches wobei ggf. während des Abkühlens der erhitzten Bereiche die kalten bzw. kälteren Bereiche abgedeckt, abgeschirmt oder isoliert werden .
Insbesondere kann eine Steuerung von Luftdüsen zum Anblasen im speziellen Fall von Blechen unterschiedlicher Temperatur über Pyrometer erfolgen, die beispielsweise außerhalb der Presse und des Ofens in einer gesonderten Anlage ebenso wie die entsprechenden Düsen vorhanden sind.
Die Kühlmöglichkeiten sind hierbei nicht auf Luftdüsen beschränkt, es können auch gekühlte Tische verwendet werden auf denen die Platinen entsprechend positioniert werden und welche gekühlte und nicht gekühlte Bereiche umfassen, so dass die abzukühlenden Bereiche der Platine auf abgekühlten Bereichen des Tisches zu liegen kommen und beispielsweise durch Aufdrücken oder Ansaugen in wärmeleitenden Kontakt gebracht werden.
Auch der Einsatz einer Kühlpresse ist denkbar, bei der die Pressengeometrie durch die ebenen Platinen denkbar einfach und günstig ist, wobei die Bereiche des Werkzeugs in denen die Platine abgekühlt werden soll entsprechend flüssig gekühlt sind, während die Bereiche, die nicht abgekühlt werden sollen beispielsweise gegenüber dem kalten Metall der Presse mittels Isolierschichten, die in die Werkzeuge eingelegt sind, abgeschirmt werden oder diese Bereiche beispielsweise mittels Induktion leicht erwärmt oder auf Temperatur gehalten werden.
Bei Platinen mit Bereichen unterschiedlicher Temperatur wird vor dem Umformen eine gleichmäßige Umformtemperatur erreicht was ein verbessertes Umformverhalten in der Umformpresse sicherstellt .
Bei beiden Verfahren ist von Vorteil, dass durch die niedrigere Temperatur zum Härten weniger Energie abgeführt werden muss und dadurch die Taktzeiten verkürzt werden.
Die Erfindung wird anhand einer Zeichnung erläutert, es zeigen dabei :
Figur 1: die Zeit-Temperaturkurve bei der Abkühlung zwischen
Ofen und Umformung;
Figur 2: stark vergrößerte Bilder zeigend die Proben mit den unterschiedlichen Temperaturen;
Figur 3: Querschnittschliffdarstellungen der Proben nach Figur
2; Figur 4 : das Zink-Eisen-Diagramm, mit entsprechenden Abkühlkurven für Bleche mit unterschiedlich aufgeheizten Bereichen ;
Figur 5: ein ZTU-Schaubild;
Figur 6: den schematischen Ablauf des erfindungsgemäßen Verfahrens bei dem direkten Prozess;
Figur 7: den schematischen Ablauf des erfindungsgemäßen Verfahrens bei dem indirekten Prozess;
Figur 8: den schematischen Ablauf mit kombinierter Zentrier- und Kühlstation zur einseitigen Zwischenkühlung.
Erfindungsgemäß wird ein üblicher Bor-Manganstahl zur Verwendung als presshärtender Stahlwerkstoff bezüglich der Umwandlung des Austenits in andere Phasen so eingestellt, dass sich die Umwandlung in tiefere Bereiche verschiebt und Martensit gebildet werden kann.
Für die Erfindung sind somit Stähle dieser Legierungs Zusammensetzung geeignet (alle Angaben in Masse-%) :
C Si Mn P S AI Cr Ti B N
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
0,22 0,19 1,22 0,0066 0,001 0,053 0,26 0,031 0,0025 0,0042 Rest Eisen und erschmel zungsbedingte Verunreinigungen
Wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden. Für die Erfindung sind auch Stähle der allgemeinen Legierungs- zusammenset zung geeignet (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,6
Mangan (Mn) 0,8-3,0
Aluminium (AI) 0, 01-0, 07
Silizium (Si) 0, 01-0,5
Chrom (Cr) 0,02-0,6
Titan (Ti) 0,01-0,08
Stickstoff (N) < 0,02
Bor (B) 0,002-0,02
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel zungsbedingte Verunreinigungen
Insbesondere als geeignet erwiesen haben sich Stahlan
wie folgt (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,30
Mangan (Mn) 1, 00-3, 00
Aluminium (AI) 0, 03-0, 06
Silizium (Si) 0, 01-0,20
Chrom (Cr) 0,02-0,3
Titan (Ti) 0, 03-0, 04
Stickstoff (N) < 0, 007
Bor (B) 0,002-0,006
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel zungsbedingte Verunreinigungen
Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. eine rasche Abkühlung mit einer über der kritischen Härtegeschwindig- keit liegenden Abkühlgeschwindigkeit auch noch unter 780°C sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums mechanische Spannung aufgebracht wird. Dies bedeutet ferner, dass in dem Moment in dem mechanische Spannung aufgebracht wird, keine flüssigen Zinkphasen mehr vorhanden sind welche mit dem Austenit in Kontakt kommen können.
Zudem kann nach dem Aufheizen der Platine man erfindungsgemäß im Temperaturbereich des Peritektikums eine Haltephase vorsehen, so dass die Erstarrung der Zinkbeschichtung gefördert und vorangetrieben wird bevor anschließend umgeformt wird.
In Figur 1 erkennt man einen günstigen Temperaturverlauf für ein austenitisiertes Stahlblech wobei erkennbar ist, dass nach dem Aufheizen auf eine Temperatur über der Austenit isie- rungstemperatur und dem entsprechenden Verbringen in eine Kühleinrichtung bereits eine gewisse Abkühlung stattfindet. Anschließend folgt ein rascher Zwischenkühlschritt . Der Zwi- schenkühlschritt wird vorteilhafterweise mit Abkühlgeschwindigkeiten mit mindestens 15 K/s, vorzugsweise mindestens 30 K/s, weiter bevorzugt mindestens 50 K/s durchgeführt. Anschließend wird die Platine in die Presse transferiert und die Umformung und Härtung durchgeführt.
In Figur 4 erkennt man im Eisen-Kohlenstoff-Diagramm wie beispielsweise eine Platine mit unterschiedlich heißen Bereichen entsprechend behandelt wird. Hierbei erkennt man für die heißen, zu härtenden Bereiche eine hohe Starttemperatur zwischen 800°C und 900°C während die weichen Bereiche auf eine Temperatur unter 700°C aufgeheizt worden sind und insbesondere dann für eine Härtung nicht zur Verfügung stehen. Ein Temperaturangleich erkennt man bei einer Temperatur von etwa 550 °C oder etwas darunter, wobei nach Einstellung der heißeren Bereiche auch diese Temperatur der weicheren Bereiche die rasche Abkühlung mit 20 K/s erfolgt.
Für die Zwecke der Erfindung ist es dabei ausreichend, wenn die Temperaturangleichung so durchgeführt wird, dass noch Differenzen in den Temperaturen der (vormals) heißen Bereiche und der (vormals) kälteren Bereiche bestehen, die 75°C, insbesondere 50°C nicht überschreiten (in beide Richtungen) .
In Figur 3 erkennt man den Unterschied in der Rissbildung. Ohne Zwischenkühlung erfolgt eine Rissbildung, die bis in das Stahlmaterial reicht, mit der Zwischenkühlung ergeben sich lediglich oberflächliche Risse in der Beschichtung, die jedoch unkritisch sind.
Mit der Erfindung gelingt es somit, zuverlässig ein kostengünstiges Warmumformverfahren für mit Zink oder Zinklegierungen beschichteter Stahlbleche mit Bereichen unterschiedlicher Härte bzw. Duktilität zu erreichen bei dem einerseits eine Abschreckhärtung herbeigeführt wird und andererseits Mikro- und Makrorissbildung, die zu Bauteilschäden führt, vermindert oder vermieden wird.

Claims

Patentansprüche
1. Verfahren zum Herstellen eines gehärteten Stahlbauteils mit unterschiedlich duktilen bzw. harten Bereichen, wobei eine Platine ausgestanzt wird, und entweder die ausgestanzte Platine teilbereichsweise auf eine Temperatur ^Ac3 erhitzt und ggf. bei dieser Temperatur für eine vorbestimmte Zeit gehalten wird um die Austenitbildung durchzuführen und anschließend die teilbereichsweise aufgeheizte Platine in ein Formwerkzeug überführt wird, in dem Formwerkzeug umgeformt wird und in dem Formwerkzeug mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt und dadurch gehärtet wird, oder fertig kalt umgeformt wird und die umgeformte Platine teilbereichsweise auf eine Temperatur >Ac3 erhitzt und gegebenenfalls bei dieser Temperatur für eine vorbestimmte Zeit gehalten wird, um die Austenitbildung durchzuführen und anschließend die teilbereichsweise aufgeheizte und umgeformte Platine in ein Härtewerkzeug überführt wird, in dem Härtewerkzeug gehärtet wird mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, dadurch gekennzeichnet, dass der Stahlwerkstoff derart umwandlungsverzögert eingestellt ist, dass bei einer Umformtemperatur die im Bereich von 450°C bis 700°C liegt, eine Abschreckhärtung durch Umwandlung des Austenits in Martensit stattfindet, wobei nach dem Erhitzen und vor dem Umformen ein aktives Kühlen stattfindet, bei dem die Platine oder Teile der Platine oder die umgeformte Platine oder Bereiche hiervon mit einer Abkühlgeschwindigkeit >15K/s abgekühlt wird.
Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Stahlwerkstoff als Umwandlungsverzögerer die Elemente Bor, Mangan und Kohlenstoff und optional Chrom und Molybdän enthält .
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Stahlwerkstoff mit folgender Analyse verwendet wird (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,6
Mangan (Mn) 0,8-3,0
Aluminium (AI) 0, 01-0, 07
Silizium (Si) 0, 01-0,5
Chrom (Cr) 0,02-0,6
Titan (Ti) 0,01-0,08
Stickstoff (N) < 0,02
Bor (B) 0,002-0,02
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel gsbedingte Verunreinigungen
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Stahlwerkstoff mit folgender Analyse verwendet wird (alle Angaben in Masse-%) :
Kohlenstoff (C) 0,08-0,30
Mangan (Mn) 1,00-3,00
Aluminium (AI) 0,03-0,06 Silizium (Si) 0, 01-0,20
Chrom (Cr) 0,02-0,3
Titan (Ti) 0, 03-0, 04
Stickstoff (N) 0,007
Bor (B) 0,002-0,006
Phosphor (P) < 0,01
Schwefel (S) < 0,01
Molybdän (Mo) < 1
Rest Eisen und erschmel zungsbedingte Verunreinigungen
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Platine in einem Ofen auf eine Temperatur >Ac3 aufgeheizt wird und für eine vorbestimmte Zeit gehalten wird und anschließend die Platine auf eine Temperatur zwischen 500°C und 600°C abgekühlt wird, um eine Verfestigung der Zinkschicht zu erzielen und anschließend in das Formwerkzeug überführt und dort umgeformt wird.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aktive Kühlung so durchgeführt wird, dass die Abkühlrate >30 K/s beträgt.
Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die aktive Kühlung so durchgeführt wird, dass die Abkühlung mit mehr als 50 K/s stattfindet.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Platinen welche zur Erzielung unterschiedlicher Härtebereiche entsprechende Bereiche unterschiedlich starker Aufheizung aufweisen die aktive Kühlung so durchgeführt wird, dass nach der aktiven Kühlung die vormals heißeren, austenit isierten Bereiche vom Temperaturniveau her an die weniger stark aufgeheiz- ten Bereiche angeglichen sind (+/- 50 K) , so dass die Platine mit einer im Wesentlichen einheitlichen Temperatur in das Umformwerkzeug eingelegt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die aktive Kühlung durch Anblasen mit Luft oder Gas, Ansprühen mit Wasser oder anderen Kühlflüssigkeiten, Eintauchen in Wasser oder andere Kühlflüssigkeiten erfolgt oder die aktive Kühlung durch das Anlegen von kühleren Festkörpern an die Platine bewirkt wird.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kühlungsfortschritt und/oder die Einlegetemperatur in das Umformwerkzeug mittels Sensoren, insbesondere Pyrometern überwacht und die Kühlung entsprechend gesteuert wird.
11. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Stahlwerkstoff ein mit Zink oder einer Zinklegierung beschichteter Stahlwerkstoff verwendet wird.
EP11807691.8A 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität Active EP2655672B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102010056265.3A DE102010056265C5 (de) 2010-12-24 2010-12-24 Verfahren zum Erzeugen gehärteter Bauteile
DE102010056264.5A DE102010056264C5 (de) 2010-12-24 2010-12-24 Verfahren zum Erzeugen gehärteter Bauteile
DE102011053939.5A DE102011053939B4 (de) 2011-09-26 2011-09-26 Verfahren zum Erzeugen gehärteter Bauteile
DE102011053941.7A DE102011053941B4 (de) 2011-09-26 2011-09-26 Verfahren zum Erzeugen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität
PCT/EP2011/073889 WO2012085253A2 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität

Publications (2)

Publication Number Publication Date
EP2655672A2 true EP2655672A2 (de) 2013-10-30
EP2655672B1 EP2655672B1 (de) 2020-12-16

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
EP11808645.3A Active EP2655674B1 (de) 2010-12-24 2011-12-22 Verfahren zum umformen und härten von beschichteten stahlblechen
EP11807691.8A Active EP2655672B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität
EP11811025.3A Active EP2655675B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile
EP11808211.4A Active EP2655673B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile
EP11811026.1A Active EP2656187B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11808645.3A Active EP2655674B1 (de) 2010-12-24 2011-12-22 Verfahren zum umformen und härten von beschichteten stahlblechen

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP11811025.3A Active EP2655675B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile
EP11808211.4A Active EP2655673B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile
EP11811026.1A Active EP2656187B1 (de) 2010-12-24 2011-12-22 Verfahren zum erzeugen gehärteter bauteile

Country Status (8)

Country Link
US (2) US20140020795A1 (de)
EP (5) EP2655674B1 (de)
JP (2) JP5727037B2 (de)
KR (3) KR20130132566A (de)
CN (5) CN103547686B (de)
ES (5) ES2858225T3 (de)
HU (5) HUE054465T2 (de)
WO (5) WO2012085256A2 (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (ja) * 2012-10-31 2015-11-10 アイシン高丘株式会社 アルミニウム合金材のダイクエンチ装置およびダイクエンチ方法
DE102013100682B3 (de) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh Verfahren zum Erzeugen gehärteter Bauteile und ein Strukturbauteil, welches nach dem Verfahren hergestellt ist
WO2015029653A1 (ja) * 2013-08-29 2015-03-05 Jfeスチール株式会社 熱間プレス成形部材の製造方法および熱間プレス成形部材
DE102013015032A1 (de) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinkbasierte Korrosionsschutzbeschichtung für Stahlbleche zur Herstellung eines Bauteils bei erhöhter Temperatur durch Presshärten
WO2015039763A2 (en) * 2013-09-19 2015-03-26 Tata Steel Ijmuiden B.V. Steel for hot forming
JP6167814B2 (ja) * 2013-09-30 2017-07-26 マツダ株式会社 自動変速機
DE102014000969A1 (de) 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Kraftfahrzeugbauteil
DE102014101159B4 (de) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Verfahren zur Oberflächenbehandlung von Werkstücken
WO2015144318A1 (en) * 2014-03-28 2015-10-01 Tata Steel Ijmuiden B.V. Method for hot forming a coated steel blank
JP6260411B2 (ja) * 2014-03-31 2018-01-17 新日鐵住金株式会社 緩冷却鋼材
JP5825413B1 (ja) * 2014-04-23 2015-12-02 Jfeスチール株式会社 熱間プレス成形品の製造方法
MX2017003759A (es) * 2014-09-22 2017-06-30 Arcelormittal Elemento de refuerzo para un vehiculo, metodo para producir el mismo y montaje de puerta.
JP6152836B2 (ja) * 2014-09-25 2017-06-28 Jfeスチール株式会社 熱間プレス成形品の製造方法
JP6056826B2 (ja) * 2014-09-30 2017-01-11 Jfeスチール株式会社 熱間プレス成形品の製造方法
DE102014114394B3 (de) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Verfahren zum Erzeugen eines gehärteten Stahlblechs
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (ja) * 2014-12-12 2017-08-09 Jfeスチール株式会社 熱間プレス成形品の製造方法
CN105772584B (zh) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 改善零件成型性能的热成型工艺及成型装置
CN104668326B (zh) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 一种高强度钢材零部件性能梯度化分布的热冲压方法
ES2725470T3 (es) 2015-03-09 2019-09-24 Autotech Eng Sl Sistemas y procedimientos de prensado
EP3067129A1 (de) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Presssysteme und -verfahren
EP3302837B1 (de) * 2015-05-29 2020-03-11 voestalpine Stahl GmbH Verfahren zum homogenen kontaktlosen temperieren von temperierenden, nicht endlosen oberflächen und vorrichtung hierfür
KR20180016980A (ko) 2015-06-03 2018-02-20 잘쯔기터 플래시슈탈 게엠베하 아연도금 강으로 제조된 변형-경화된 부품, 그 제조방법 및 부품의 변형-경화에 적합한 강 스트립 제조방법
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
WO2017017484A1 (en) 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
DE102016102324B4 (de) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlbauteile
DE102016102322B4 (de) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Verfahren und Vorrichtung zum Erzeugen gehärteter Stahlbauteile
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
DE102016114658B4 (de) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Verfahren zum Formen und Härten von Stahlwerkstoffen
CN106334875A (zh) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 一种带铝或者铝合金镀层的钢制焊接部件及其制造方法
CN106424280B (zh) * 2016-11-30 2017-09-29 华中科技大学 一种高强钢热成形差异化力学性能分布柔性控制方法
DE102017115755A1 (de) * 2017-07-13 2019-01-17 Schwartz Gmbh Verfahren und Vorrichtung zur Wärmebehandlung eines metallischen Bauteils
EP3437750A1 (de) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Pressverfahren für beschichtete stähle
DE102017131253A1 (de) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
DE102017131247A1 (de) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Verfahren zum Erzeugen metallischer Bauteile mit angepassten Bauteileigenschaften
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109433960A (zh) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 热冲压高强钢汽车车身覆盖件及其制造方法、制造系统
EP3712292B1 (de) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Bauteil umfassend ein stahlsubstrat, eine zwischenschicht und eine korrosionsschutzbeschichtung, entsprechende verfahren und verwendungen
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
EP4045205B1 (de) * 2019-10-14 2023-03-08 Autotech Engineering, S.L. Presssysteme und -verfahren
EP3872230A1 (de) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Verfahren zum herstellen gehärteter stahlbauteile mit einer konditionierten zinklegierungskorrosionsschutzschicht
US20230166314A1 (en) * 2020-04-20 2023-06-01 Nippon Steel Corporation Method for manufacturing hot-press-formed article, and hot-press-formed article
CN111822571A (zh) * 2020-07-12 2020-10-27 首钢集团有限公司 可定制零件的组织性能分区的热冲压方法
KR102553226B1 (ko) * 2020-12-21 2023-07-07 주식회사 포스코 전자기 검사 장치
CN113182374A (zh) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 一种高强度结构件的热成型方法
DE102021122383A1 (de) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
WO2023074114A1 (ja) 2021-10-29 2023-05-04 Jfeスチール株式会社 熱間プレス部材

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (fr) * 1991-11-04 1994-03-04 Isoform Dispositif d'emboutissage de materiaux en feuille, notamment de flans de tole.
DE19838332A1 (de) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Verfahren und Vorrichtung zur Qualitätsüberwachung und -regelung des Galvannealed-Überzuges von Stahlbändern
FR2807447B1 (fr) * 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
EP1439240B2 (de) 2001-10-23 2018-10-03 Nippon Steel & Sumitomo Metal Corporation Verfahren zur heisspressbearbeitung von einem plattierten stahlprodukt
JP4085876B2 (ja) * 2003-04-23 2008-05-14 住友金属工業株式会社 熱間プレス成形品およびその製造方法
JP4325277B2 (ja) 2003-05-28 2009-09-02 住友金属工業株式会社 熱間成形法と熱間成形部材
ATE478971T1 (de) 2003-07-29 2010-09-15 Voestalpine Stahl Gmbh Verfahren zum herstellen von geharteten bauteilen aus stahlblech
AT412403B (de) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Korrosionsgeschütztes stahlblech
CN100355928C (zh) * 2003-09-29 2007-12-19 杰富意钢铁株式会社 机械构造用钢部件、其所用原料及其制造方法
JP2005177805A (ja) * 2003-12-19 2005-07-07 Nippon Steel Corp ホットプレス成形方法
JP4131715B2 (ja) * 2004-05-18 2008-08-13 トピー工業株式会社 熱処理部材の部分熱処理方法とその装置
JP2006051543A (ja) * 2004-07-15 2006-02-23 Nippon Steel Corp 冷延、熱延鋼板もしくはAl系、Zn系めっき鋼板を使用した高強度自動車部材の熱間プレス方法および熱間プレス部品
JP4329639B2 (ja) * 2004-07-23 2009-09-09 住友金属工業株式会社 耐液体金属脆性に優れた熱処理用鋼板
DE102005003551B4 (de) 2005-01-26 2015-01-22 Volkswagen Ag Verfahren zur Warmumformung und Härtung eines Stahlblechs
JP2007016296A (ja) * 2005-07-11 2007-01-25 Nippon Steel Corp 成形後の延性に優れたプレス成形用鋼板及びその成形方法、並びにプレス整形用鋼板を用いた自動車用部材
WO2007048883A1 (fr) * 2005-10-27 2007-05-03 Usinor Procede de fabrication d'une piece a tres hautes caracteristiques mecaniques a partir d'une tole laminee et revetue
JP4733522B2 (ja) * 2006-01-06 2011-07-27 新日本製鐵株式会社 耐食性、耐疲労性に優れた高強度焼き入れ成形体の製造方法
JP4681492B2 (ja) * 2006-04-07 2011-05-11 新日本製鐵株式会社 鋼板熱間プレス方法及びプレス成形品
DE102007013739B3 (de) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Verfahren zum flexiblen Walzen von beschichteten Stahlbändern
JP5194986B2 (ja) * 2007-04-20 2013-05-08 新日鐵住金株式会社 高強度部品の製造方法および高強度部品
JP5092523B2 (ja) * 2007-04-20 2012-12-05 新日本製鐵株式会社 高強度部品の製造方法および高強度部品
WO2008153183A1 (ja) * 2007-06-15 2008-12-18 Sumitomo Metal Industries, Ltd. 成形品の製造方法
JP2009061473A (ja) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd 高強度部品の製造方法
JP4890416B2 (ja) * 2007-10-18 2012-03-07 アイシン高丘株式会社 ダイクエンチ工法におけるプレス加工装置及びプレス加工方法
EP2379756A1 (de) * 2008-12-19 2011-10-26 Tata Steel IJmuiden B.V. Verfahren zur herstellung eines beschichteten teils unter verwendung von warmformtechniken
JP4825882B2 (ja) 2009-02-03 2011-11-30 トヨタ自動車株式会社 高強度焼き入れ成形体及びその製造方法
DE102009015013B4 (de) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Verfahren zum Herstellen partiell gehärteter Stahlbauteile
DE102009017326A1 (de) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Verfahren zur Herstellung von pressgehärteten Bauteilen
DE102009051673B3 (de) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Herstellung von Galvannealed-Blechen durch Wärmebehandlung elektrolytisch veredelter Bleche
KR101171450B1 (ko) * 2009-12-29 2012-08-06 주식회사 포스코 도금 강재의 열간 프레스 성형방법 및 이를 이용한 열간 프레스 성형품
JP5740099B2 (ja) * 2010-04-23 2015-06-24 東プレ株式会社 熱間プレス製品の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012085253A2 *

Also Published As

Publication number Publication date
EP2655673B1 (de) 2021-02-03
HUE054465T2 (hu) 2021-09-28
EP2655675B1 (de) 2021-03-10
KR101582922B1 (ko) 2016-01-07
US20140020795A1 (en) 2014-01-23
EP2655675A2 (de) 2013-10-30
EP2656187A2 (de) 2013-10-30
ES2848159T3 (es) 2021-08-05
US20140027026A1 (en) 2014-01-30
KR20130126962A (ko) 2013-11-21
ES2851176T3 (es) 2021-09-03
HUE053150T2 (hu) 2021-06-28
EP2655673A2 (de) 2013-10-30
WO2012085253A2 (de) 2012-06-28
CN103547686B (zh) 2016-11-23
JP2014507556A (ja) 2014-03-27
JP2014505791A (ja) 2014-03-06
JP5727037B2 (ja) 2015-06-03
EP2656187B1 (de) 2020-09-09
CN103415630A (zh) 2013-11-27
HUE052381T2 (hu) 2021-04-28
EP2655672B1 (de) 2020-12-16
ES2829950T8 (es) 2021-06-10
CN103384726B (zh) 2016-11-23
EP2655674A2 (de) 2013-10-30
HUE055049T2 (hu) 2021-10-28
US10640838B2 (en) 2020-05-05
CN103415630B (zh) 2015-09-23
ES2858225T3 (es) 2021-09-29
WO2012085256A2 (de) 2012-06-28
WO2012085247A2 (de) 2012-06-28
WO2012085251A2 (de) 2012-06-28
CN103384726A (zh) 2013-11-06
CN103392014A (zh) 2013-11-13
WO2012085247A3 (de) 2012-08-16
CN103547686A (zh) 2014-01-29
HUE054867T2 (hu) 2021-10-28
ES2858225T8 (es) 2022-01-05
WO2012085251A3 (de) 2012-08-16
EP2655674B1 (de) 2021-02-03
WO2012085248A3 (de) 2012-08-16
ES2829950T3 (es) 2021-06-02
WO2012085253A3 (de) 2012-08-16
KR20130132566A (ko) 2013-12-04
WO2012085248A2 (de) 2012-06-28
KR20130132565A (ko) 2013-12-04
CN103547687A (zh) 2014-01-29
ES2853207T3 (es) 2021-09-15
WO2012085256A3 (de) 2012-08-16
CN103392014B (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
EP2655672B1 (de) Verfahren zum erzeugen gehärteter bauteile mit bereichen unterschiedlicher härte und/oder duktilität
DE102011053939B4 (de) Verfahren zum Erzeugen gehärteter Bauteile
DE102011053941B4 (de) Verfahren zum Erzeugen gehärteter Bauteile mit Bereichen unterschiedlicher Härte und/oder Duktilität
EP2553133B1 (de) Stahl, stahlflachprodukt, stahlbauteil und verfahren zur herstellung eines stahlbauteils
DE102013100682B3 (de) Verfahren zum Erzeugen gehärteter Bauteile und ein Strukturbauteil, welches nach dem Verfahren hergestellt ist
EP2297367B1 (de) Verfahren zum herstellen eines stahlformteils mit einem überwiegend ferritisch-bainitischen gefüge
EP2240622B1 (de) Verfahren zur herstellung eines bauteils aus einem mit einem al-si-überzug versehenen stahlprodukt und zwischenprodukt eines solchen verfahrens
EP2848709A1 (de) Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehenen Stahlbauteils und Stahlbauteil
DE102008035714A1 (de) Stahlblech zum Warmpreßformen, das Niedrigtemperatur-Vergütungseigenschaft hat, Verfahren zum Herstellen desselben, Verfahren zum Herstellen von Teilen unter Verwendung desselben, und damit hergestellte Teile
EP1939308A1 (de) Verfahren zum Herstellen eines Bauteils durch Wärmepresshärten und hochfestes Bauteil mit verbesserter Bruchdehnung
EP2177641A1 (de) Stahlblech mit einer feuerverzinkten Korrosionsschutzschicht
EP3250727B2 (de) Verfahren zur herstellung eines bauteils aus pressformgehärtetem, auf basis von aluminium beschichtetem stahlblech
DE102010056264B4 (de) Verfahren zum Erzeugen gehärteter Bauteile
DE102010056265B3 (de) Verfahren zum Erzeugen gehärteter Bauteile
EP3728657B1 (de) Verfahren zum erzeugen metallischer bauteile mit angepassten bauteileigenschaften
EP3642371A1 (de) Verfahren zur herstellung eines mit einem metallischen, vor korrosion schützenden überzug versehenen stahlbauteils
EP2664682A1 (de) Stahl für die Herstellung eines Stahlbauteils, daraus bestehendes Stahlflachprodukt, daraus hergestelltes Bauteil und Verfahren zu dessen Herstellung
EP3365469B1 (de) Verfahren zum herstellen eines stahlbauteils für ein fahrzeug
DE102015113056B4 (de) Verfahren zum kontaktlosen Kühlen von Stahlblechen und Vorrichtung hierfür
DE102019219235B3 (de) Verfahren zur Herstellung eines warmumgeformten und pressgehärteten Stahlblechbauteils
WO2020244974A1 (de) Verfahren zur herstellung eines warmumgeformten und pressgehärteten stahlblechbauteils
EP3652351A1 (de) Verfahren zur herstellung eines pressgehärteten bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130723

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: SOMMER, ANDREAS

Inventor name: SCHWINGHAMMER, HARALD

Inventor name: KURZ, THOMAS

Inventor name: ROSNER, MARTIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOMMER, ANDREAS

Inventor name: ROSNER, MARTIN

Inventor name: SCHWINGHAMMER, HARALD

Inventor name: KURZ, THOMAS

Inventor name: KOLNBERGER, SIEGFRIED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171020

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200715

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOMMER, ANDREAS

Inventor name: KURZ, THOMAS

Inventor name: ROSNER, MARTIN

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: SCHWINGHAMMER, HARALD

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017016

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1345651

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210115

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TR-IP CONSULTING LLC, CH

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210316

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E053150

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2848159

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017016

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

26N No opposition filed

Effective date: 20210917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210416

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231211

Year of fee payment: 13

Ref country code: SE

Payment date: 20231227

Year of fee payment: 13

Ref country code: NL

Payment date: 20231226

Year of fee payment: 13

Ref country code: HU

Payment date: 20231212

Year of fee payment: 13

Ref country code: FR

Payment date: 20231227

Year of fee payment: 13

Ref country code: CZ

Payment date: 20231207

Year of fee payment: 13

Ref country code: AT

Payment date: 20231204

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 13

Ref country code: CH

Payment date: 20240101

Year of fee payment: 13