WO2015039763A2 - Steel for hot forming - Google Patents

Steel for hot forming Download PDF

Info

Publication number
WO2015039763A2
WO2015039763A2 PCT/EP2014/002552 EP2014002552W WO2015039763A2 WO 2015039763 A2 WO2015039763 A2 WO 2015039763A2 EP 2014002552 W EP2014002552 W EP 2014002552W WO 2015039763 A2 WO2015039763 A2 WO 2015039763A2
Authority
WO
WIPO (PCT)
Prior art keywords
blank
steel
tube
strip
sheet
Prior art date
Application number
PCT/EP2014/002552
Other languages
French (fr)
Other versions
WO2015039763A3 (en
Inventor
David Neal HANLON
Stefanus Matheus Cornelis van BOHEMEN
Original Assignee
Tata Steel Ijmuiden B.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP20130004573 external-priority patent/EP2851440A1/en
Application filed by Tata Steel Ijmuiden B.V. filed Critical Tata Steel Ijmuiden B.V.
Priority to EP14771785.4A priority Critical patent/EP2988887A2/en
Priority to CN201480058068.3A priority patent/CN105658834A/en
Priority to US15/022,391 priority patent/US20160289809A1/en
Priority to CA2924812A priority patent/CA2924812A1/en
Priority to KR1020167009944A priority patent/KR20160057457A/en
Priority to JP2016515478A priority patent/JP2016537502A/en
Publication of WO2015039763A2 publication Critical patent/WO2015039763A2/en
Publication of WO2015039763A3 publication Critical patent/WO2015039763A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys

Definitions

  • the invention relates to a steel for hot forming.
  • Steels for hot forming are much used, both uncoated and pre-coated, especially in the automotive industry. These steels get high mechanical properties (such as a high strength) after heating to a temperature above the Ac3 temperature, for instance a temperature between 850 °C and 950 °C, pressing in a hot forming press and quenching at a velocity above the critical quenching rate. Before heating, these steels have a good formability and a tensile strength between 300 MPa and 500 MPa, for most grades. After the hot forming process, these steels have a very high tensile strength, which can be above 1500 MPa, and nowadays up to 2000 MPa. However, the elongation of these products is not very good, for instance an elongation of around 5%. The high tensile strength makes the hot formed products especially suitable for use in the body-in-white of automotive vehicles.
  • Hot forming is generally used for the direct hot forming process, but is also used in the indirect hot forming process.
  • a general picture of hot forming (or hot stamping) is given by A. Naganathan and L. Penter, Chapter 7: Hot Stamping, in Sheet Metal Forming - Processes and Applications, (T. Altan and A. E. Tekkaya, editors), ASM International, 2012.
  • a boron-alloyed steel is used, in particular steel grade 22MnB5.
  • the chemical composition can differ between steel suppliers, but usually the amount of carbon is approximately 0.22 weight% (usually between 0.20 and 0.25 weight%), the amount of manganese is approximately 1.27 weight% (usually between 1.00 and 1.40 weight%), the amount of silicon is approximately 0.25 weight% (usually between 0.10 and 0.40 weight%), the amount of chromium is approximately 0.15 weight% (usually between 0.1 and 0.50 weight%) and the amount of boron is approximately 0.0030 weight% (usually between 0.0020 and 0.0040 weight%).
  • Other elements should be low, such as sulphur and phosphorus for general metallurgical reasons, and other elements can be present in small amounts, such as nickel, copper, aluminium, vanadium and titanium.
  • Steel grade 22MnB5 is often pre-coated before it is used in the hot forming process.
  • the pre-coating that is generally used is a AISi coating.
  • a steel for hot forming having the following composition in weight%:
  • the inventors have found that the mechanical properties of the hot formed product are optimized because the number of non-metallic constituents in the steel substrate are reduced.
  • Non-metallic constituents reduce the homogeneity of the substrate and these inhomogeneities can lead to local stress concentrations and premature failure of a mechanically loaded product.
  • Typical non-metallic constituents in steel are TiN, BN, Fe 26 (B,C) 6i MnS, AIN, CaS, Al 2 0 3 , P, Fe 3 C etc.
  • the invented steel composition is aimed to reduce the size and amount of all these non-metallic constituents by reducing the amount of B, Ti, S, Ca, Al, P and other required chemical elements.
  • the nowadays commonly used 22MnB5 substrate composition contains 20 to 40 ppm boron (B) to improve the hardenability during hot forming operations.
  • the steelmaker adds titanium (Ti) to the cast to prevent B to form boron nitride (BN).
  • BN boron nitride
  • the presence of BN near the surface can deteriorate the quality of the hot dipped coating.
  • the Ti is normally added in an over- stochiometric ratio to the nitrogen (N) to maximize the efficiency of the added amount of B.
  • Boron is also known to form fine Fe 2 6(B,C) 6 complex precipitates that can lead to local stress concentrations in the matrix. Therefore the inventors have removed the B from the steel composition to limit the presence of B based non-metallic constituents.
  • the inventors added manganese (Mn) and/or chromium (Cr).
  • Mn is a favourable metallic component because of its compatibility with the iron matrix. Moreover, the addition of more Mn than in the commonly used 22MnB5 reduces the Ac 1 and Ac 3 temperature of the steel substrate (temperature at which the substrate starts to transform to austenite and when it is fully austenitic respectively). This means that a lower furnace temperature can be utilized to austenitize the substrate prior to hot forming. Reducing the furnace temperature is economically and environmentally favourable and also opens up new process opportunities for Zn, Zn alloy or Al and Al alloy coatings. For Zn alloy coatings it is commonly known that an increased furnace temperature reduces the corrosion performance of the hot formed product. For Al or Al alloy coatings it is known that high furnace temperatures reduce the weldability of the component. A steel composition that enables the use of lower furnace temperatures is therefore favourable over the commonly used 22MnB5.
  • Mn does strengthen the substrate by solid solution strengthening. Furthermore, Mn additions also lower the M s temperature (temperature at which Martensite forms upon cooling), which means that less (auto-)tempering will occur and therefore the substrate will have a higher martensite strength at room temperature. Due to both strengthening mechanisms, the inventors claim that they can reduce the amount of carbon (C) in steel substrates for hot forming and obtain a similar strength level as achieved with 22MnB5. Reducing the amount of C is favourable to prevent Fe3C formation during (auto-)tempering during the hot forming process step. Fe3C precipitates can introduce local inhomogeneities and stress concentrations during mechanically loading, leading to premature failure of the product. Furthermore, the spot-weldability of hot-formed products will improve due to the lower C content in the inventive steel substrate.
  • Cr increases the hardenability, and it also lowers the M s temperature. Furthermore, Cr contributes to the strength of the substrate by solid solution strengthening.
  • Si also delivers a solid solution strengthening contribution. In addition, Si retards the (auto)tempering because of its weak solubility in carbides.
  • Sulphur (S) is a common element found in steel substrates. Steelmakers use various desulphurization methods to reduce the amount of S because it could lead to hot-shortness during continuous casting. S can also precipitate with manganese (Mn) to form soft MnS inclusions. During hot rolling and subsequent cold rolling, these inclusions are elongated and form relatively large inhomogeneities that could lead to premature failure, especially when loaded in the tangential direction. Calcium (Ca) can be added to spherodize the S containing inclusions and to minimize the amount of elongated inclusions. However, the presence of CaS inclusions will still lead to inhomogeneities in the matrix. Therefore, it is best to reduce S.
  • Ca calcium
  • Aluminium (Al) is normally added to steel in an over-stoichiometric ratio to oxygen (O) to prevent carbon monoxide (CO) formation during continuous casting by reducing the available amount of free O through formation of aluminium oxide Al 2 0 3 .
  • the formed Al 2 0 3 normally forms a slag on top of the liquid steel, but can be entrapped in the solidifying steel during casting. During subsequent hot and cold- rolling, this inclusion will become segmented and forms non-metallic inclusions that lead to premature fracture upon mechanically loading the product.
  • the over- stoichometric Al precipitates as aluminium nitrides (AIN) which also leads to local inhomogeneities in the steel matrix.
  • the more limited amounts of the elements according to claim 2 or 3 are used. It will be clear that a more limited amount of the elements as specified in claims 2 and 3 provides a steel in which the number of non-metallic constituents in the steel substrate are further reduced. For instance, the over-stochiometric amount of Tl will form titanium nitrides, which are known as hard, non-deformable inclusions. By limiting the amount of Ti and N, the TiN inclusions are limited. Claim 3 shows that it is possible to use a steel for hot forming in which no boron is added, such that the boron in the steel will be only present as an unavoidable impurity.
  • the amount of boron that will be present as an impurity will depend on the raw materials used in the ironmaking process and also depends on the steelmaking process, the inventors have found that the impurity level for boron that is nowadays obtained has a maximum of 0.0001 weight% or 1 ppm.
  • the amount of Mn and Cr is such that Mn + Cr ⁇ 2.5 weight%, preferably Mn + Cr ⁇ 2.6 weight%.
  • Mn + Cr ⁇ 2.5 weight% preferably Mn + Cr ⁇ 2.6 weight%.
  • the steel for hot forming as described above is used for producing a strip, sheet, blank or tube having the usual dimensions, such as a hot-rolled and optionally cold rolled strip having a length of more than 100 m, a width between 800 and 1700 mm, and a thickness between 0.8 and 4.0 mm.
  • a hot-rolled and optionally cold rolled strip having a length of more than 100 m, a width between 800 and 1700 mm, and a thickness between 0.8 and 4.0 mm.
  • Such a strip is cut into sheets and blanks or formed into a tube.
  • the strip, sheet, blank or tube is pre-coated with a layer of aluminium or an aluminium based alloy, or pre-coated with a layer of zinc or a
  • Pre-coated blanks and tubes are preferred by the automotive industry for body-in-white parts.
  • the pre-coating comprises 5 to 13 wt% silicon and/or less than 5 wt% iron, the remainder being aluminium, the pre-coating preferably having a thickness between 10 and 40 m per side, more preferably a thickness between 20 and 35 m per side. Such thicknesses provide a good corrosion protection for the hot formed parts coated with the specified aluminium alloy.
  • the pre-coating comprised 8 to 12 wt% silicon and/or 2 to 5 wt% iron, the remainder being aluminium.
  • Such an aluminium-alloy pre-coating is commonly used.
  • the pre-coating is an iron-zinc diffusion coating obtained by heat treating a zinc layer, the zinc layer comprising Al ⁇ 0.18 wt% and Fe ⁇ 15 wt%, the remainder being zinc and traces of other elements, the pre-coating preferably having a thickness between 5 and 15 ⁇ per side, more preferably a thickness between 6 and 13 ⁇ per side.
  • This zinc pre-coating provides good corrosion properties.
  • the pre-coating comprises 0.5 to 4 wt% Al and 0.5 to 3.2 wt% Mg, the remainder being zinc and traces of other elements, the coating layer preferably having a thickness between 5 and 15 pm per side, more preferably a thickness between 6 and 13 ⁇ per side. This pre-coating provides even better corrosion properties.
  • CQR critical quenching rate
  • the blank or tube is at least partially heated to a temperature higher than the Ac1 temperature, preferably higher than the Ac3 temperature, but lower than 950°C, preferably lower than 900°C. Since the Ac1 and Ac3 temperatures are lower for the composition according to the invention, as discussed above, it is preferably even possible to use heating temperatures below 900°C
  • the heated blank is forcibly cooled before putting it in the hot forming press.
  • Such cooling positively influences the properties of the formed product.
  • the invention also encompasses a product produced using the method as described above.
  • This product has the mechanical properties provided by the hot forming method, as needed for automotive or other purposes.
  • a product as described above is used in a motor vehicle.
  • other properties besides mechanical properties are have to be taken into account, such as the weldability of the product.
  • the inventors have casted multiple compositions into 25kg ingots. These ingots were subsequently hot rolled with a finish temperature of 900°C, a coiling temperature of 630°C and a hot rolled gauge of 4mm. Subsequently the strips were pickled and cold rolled to 1.5mm gauge. Using dilatometry the composition dependent Ac 3 temperature, M s temperature and Critical Cooling Rate (CCR) of the compositions have been determined. For these tests, samples were heated in a Bahr 805A Dilatometer to a temperature of 900°C with a mean heating rate of 15°C/s from room temperature up to 650°C and with a mean heating rate of 3°C/s from 650-900°C. After 3 minutes of soaking at 900°C the samples were quenched with various cooling rates. The obtained data is given in Table 1 for various chemical compositions. Table 1
  • test samples produced under laboratory condition show to contain 1 to 3 ppm B when no boron has been added to the steel. This variation in the amount of boron can be explained by a small contamination of the steelmaking equipment with previously produced boron containing steels.
  • Commercial full-scale production of such types of steel to which no boron has been added contain an amount of less than 2 ppm boron; usually an amount of less then 1 ppm boron is measured.
  • 1.5mm gauge steel blanks were heated to 900°C with a total furnace time of 5 minutes.
  • the blanks were taken out of the furnace, transported to the press within 10 seconds and pressed in between flat tools at a temperature of approximately 780°C.
  • the flat pressing tools had a temperature between 20 and 80°C and the press was closed during approximately 20 seconds.
  • the cooling rate of the blanks in the press was between 50 and 100°C/s directly after the press was closed.
  • the average cooling rate of the blank after leaving the furnace until reaching the martensite start temperature was higher than the critical quenching rate of the substrates as can be seen from the resulting mechanical properties in Table 2.

Abstract

The invention relates to a steel for hot forming. According to the invention the steel for hot forming has the following composition weight%: C: 0.10 - 0.25, Mn: 1.4 - 2.6, Si:≤0.4, Cr: < 1.0, Al: < 1.5, P < 0.02, s < 0.005, N ≤ 0.03, B < 0.0004, 0 : < 0.008 and optionally: Ti : < 0.3, Mo: < 0.5, Nb: < 0.3, V:≤ 0.5, Ca: < 0.05, the remainder being iron and unavoidable impurities. The invention also relates to a strip, sheet or blank produced with such a steel, method for producing a hot formed product, such a product and the use thereof.

Description

STEEL FOR HOT FORMING
The invention relates to a steel for hot forming.
Steels for hot forming are much used, both uncoated and pre-coated, especially in the automotive industry. These steels get high mechanical properties (such as a high strength) after heating to a temperature above the Ac3 temperature, for instance a temperature between 850 °C and 950 °C, pressing in a hot forming press and quenching at a velocity above the critical quenching rate. Before heating, these steels have a good formability and a tensile strength between 300 MPa and 500 MPa, for most grades. After the hot forming process, these steels have a very high tensile strength, which can be above 1500 MPa, and nowadays up to 2000 MPa. However, the elongation of these products is not very good, for instance an elongation of around 5%. The high tensile strength makes the hot formed products especially suitable for use in the body-in-white of automotive vehicles.
Hot forming is generally used for the direct hot forming process, but is also used in the indirect hot forming process. A general picture of hot forming (or hot stamping) is given by A. Naganathan and L. Penter, Chapter 7: Hot Stamping, in Sheet Metal Forming - Processes and Applications, (T. Altan and A. E. Tekkaya, editors), ASM International, 2012.
As indicated in this publication, for automotive purposes usually a boron-alloyed steel is used, in particular steel grade 22MnB5. The chemical composition can differ between steel suppliers, but usually the amount of carbon is approximately 0.22 weight% (usually between 0.20 and 0.25 weight%), the amount of manganese is approximately 1.27 weight% (usually between 1.00 and 1.40 weight%), the amount of silicon is approximately 0.25 weight% (usually between 0.10 and 0.40 weight%), the amount of chromium is approximately 0.15 weight% (usually between 0.1 and 0.50 weight%) and the amount of boron is approximately 0.0030 weight% (usually between 0.0020 and 0.0040 weight%). Other elements should be low, such as sulphur and phosphorus for general metallurgical reasons, and other elements can be present in small amounts, such as nickel, copper, aluminium, vanadium and titanium.
Steel grade 22MnB5 is often pre-coated before it is used in the hot forming process. The pre-coating that is generally used is a AISi coating.
It is an object of the invention to optimize the mechanical properties of the hot formed product.
It is a further object of the invention to provide a steel for hot forming that provides an alternative to the known steels for hot forming, such as 22MnB5. It is another object of the invention to provide a steel for hot forming that can be used by the automotive industry without changes to the equipment used at present.
It is a further object of the invention to provide a steel for hot forming which enables a more efficient use of the hot forming equipment.
According to the invention a steel for hot forming is provided having the following composition in weight%:
C: 0.10 - 0.25,
Mn: 1.4 - 2.6,
Si:≤ 0.4,
Cr: < 1.0,
Al:≤ 1.5,
P:≤0.02,
S: < 0.005,
O:≤ 0.008,
N: < 0.03,
B:≤ 0.0004,
and optionally:
Ti:≤ 0.3,
Mo:≤ 0.5,
Nb: < 0.3,
V:≤ 0.5,
Ca: < 0.05,
the remainder being iron and unavoidable impurities.
The inventors have found that the mechanical properties of the hot formed product are optimized because the number of non-metallic constituents in the steel substrate are reduced. Non-metallic constituents reduce the homogeneity of the substrate and these inhomogeneities can lead to local stress concentrations and premature failure of a mechanically loaded product. Typical non-metallic constituents in steel are TiN, BN, Fe26(B,C)6i MnS, AIN, CaS, Al203, P, Fe3C etc. The invented steel composition is aimed to reduce the size and amount of all these non-metallic constituents by reducing the amount of B, Ti, S, Ca, Al, P and other required chemical elements.
The nowadays commonly used 22MnB5 substrate composition contains 20 to 40 ppm boron (B) to improve the hardenability during hot forming operations. To maintain this element in its functional state, the steelmaker adds titanium (Ti) to the cast to prevent B to form boron nitride (BN). The presence of BN near the surface can deteriorate the quality of the hot dipped coating. The Ti is normally added in an over- stochiometric ratio to the nitrogen (N) to maximize the efficiency of the added amount of B. Boron is also known to form fine Fe26(B,C)6 complex precipitates that can lead to local stress concentrations in the matrix. Therefore the inventors have removed the B from the steel composition to limit the presence of B based non-metallic constituents. To compensate for the loss of hardenability by reducing the amount of B, the inventors added manganese (Mn) and/or chromium (Cr).
Mn is a favourable metallic component because of its compatibility with the iron matrix. Moreover, the addition of more Mn than in the commonly used 22MnB5 reduces the Ac1 and Ac3 temperature of the steel substrate (temperature at which the substrate starts to transform to austenite and when it is fully austenitic respectively). This means that a lower furnace temperature can be utilized to austenitize the substrate prior to hot forming. Reducing the furnace temperature is economically and environmentally favourable and also opens up new process opportunities for Zn, Zn alloy or Al and Al alloy coatings. For Zn alloy coatings it is commonly known that an increased furnace temperature reduces the corrosion performance of the hot formed product. For Al or Al alloy coatings it is known that high furnace temperatures reduce the weldability of the component. A steel composition that enables the use of lower furnace temperatures is therefore favourable over the commonly used 22MnB5.
In contrast to B, Mn does strengthen the substrate by solid solution strengthening. Furthermore, Mn additions also lower the Ms temperature (temperature at which Martensite forms upon cooling), which means that less (auto-)tempering will occur and therefore the substrate will have a higher martensite strength at room temperature. Due to both strengthening mechanisms, the inventors claim that they can reduce the amount of carbon (C) in steel substrates for hot forming and obtain a similar strength level as achieved with 22MnB5. Reducing the amount of C is favourable to prevent Fe3C formation during (auto-)tempering during the hot forming process step. Fe3C precipitates can introduce local inhomogeneities and stress concentrations during mechanically loading, leading to premature failure of the product. Furthermore, the spot-weldability of hot-formed products will improve due to the lower C content in the inventive steel substrate.
Similar to Mn, Cr increases the hardenability, and it also lowers the Ms temperature. Furthermore, Cr contributes to the strength of the substrate by solid solution strengthening.
Si also delivers a solid solution strengthening contribution. In addition, Si retards the (auto)tempering because of its weak solubility in carbides. Sulphur (S) is a common element found in steel substrates. Steelmakers use various desulphurization methods to reduce the amount of S because it could lead to hot-shortness during continuous casting. S can also precipitate with manganese (Mn) to form soft MnS inclusions. During hot rolling and subsequent cold rolling, these inclusions are elongated and form relatively large inhomogeneities that could lead to premature failure, especially when loaded in the tangential direction. Calcium (Ca) can be added to spherodize the S containing inclusions and to minimize the amount of elongated inclusions. However, the presence of CaS inclusions will still lead to inhomogeneities in the matrix. Therefore, it is best to reduce S.
Aluminium (Al) is normally added to steel in an over-stoichiometric ratio to oxygen (O) to prevent carbon monoxide (CO) formation during continuous casting by reducing the available amount of free O through formation of aluminium oxide Al203. The formed Al203 normally forms a slag on top of the liquid steel, but can be entrapped in the solidifying steel during casting. During subsequent hot and cold- rolling, this inclusion will become segmented and forms non-metallic inclusions that lead to premature fracture upon mechanically loading the product. The over- stoichometric Al precipitates as aluminium nitrides (AIN) which also leads to local inhomogeneities in the steel matrix.
Preferably the more limited amounts of the elements according to claim 2 or 3 are used. It will be clear that a more limited amount of the elements as specified in claims 2 and 3 provides a steel in which the number of non-metallic constituents in the steel substrate are further reduced. For instance, the over-stochiometric amount of Tl will form titanium nitrides, which are known as hard, non-deformable inclusions. By limiting the amount of Ti and N, the TiN inclusions are limited. Claim 3 shows that it is possible to use a steel for hot forming in which no boron is added, such that the boron in the steel will be only present as an unavoidable impurity. Though the amount of boron that will be present as an impurity will depend on the raw materials used in the ironmaking process and also depends on the steelmaking process, the inventors have found that the impurity level for boron that is nowadays obtained has a maximum of 0.0001 weight% or 1 ppm.
Preferably the amount of Mn and Cr is such that Mn + Cr≥ 2.5 weight%, preferably Mn + Cr≥ 2.6 weight%. For these amounts, the mechanical properties of the steel are always sufficient.
The steel for hot forming as described above is used for producing a strip, sheet, blank or tube having the usual dimensions, such as a hot-rolled and optionally cold rolled strip having a length of more than 100 m, a width between 800 and 1700 mm, and a thickness between 0.8 and 4.0 mm. Such a strip is cut into sheets and blanks or formed into a tube.
Preferably, the strip, sheet, blank or tube is pre-coated with a layer of aluminium or an aluminium based alloy, or pre-coated with a layer of zinc or a
zinc based alloy. Pre-coated blanks and tubes are preferred by the automotive industry for body-in-white parts.
Preferably the pre-coating comprises 5 to 13 wt% silicon and/or less than 5 wt% iron, the remainder being aluminium, the pre-coating preferably having a thickness between 10 and 40 m per side, more preferably a thickness between 20 and 35 m per side. Such thicknesses provide a good corrosion protection for the hot formed parts coated with the specified aluminium alloy.
More preferably, the pre-coating comprised 8 to 12 wt% silicon and/or 2 to 5 wt% iron, the remainder being aluminium. Such an aluminium-alloy pre-coating is commonly used.
According to another preferred embodiment the pre-coating is an iron-zinc diffusion coating obtained by heat treating a zinc layer, the zinc layer comprising Al < 0.18 wt% and Fe < 15 wt%, the remainder being zinc and traces of other elements, the pre-coating preferably having a thickness between 5 and 15 μιη per side, more preferably a thickness between 6 and 13 μηι per side. This zinc pre-coating provides good corrosion properties.
According to a further preferred embodiment the pre-coating comprises 0.5 to 4 wt% Al and 0.5 to 3.2 wt% Mg, the remainder being zinc and traces of other elements, the coating layer preferably having a thickness between 5 and 15 pm per side, more preferably a thickness between 6 and 13 μιη per side. This pre-coating provides even better corrosion properties.
According to the invention furthermore is provided a method for producing a hot formed product using the strip, sheet, blank or tube as described above, using the following steps:
- providing a blank, for instance by cutting the strip or sheet, or tube
- heating the blank or tube to a temperature above the Ac1 temperature of the steel, preferably above the Ac3 temperature of the steel, to a temperature of at most 1000°C
- transporting the heated blank or tube into a hot forming press
- forming the blank or tube into a product in the press
- quenching the product with an average cooling rate between the furnace and
Ms temperature above the critical quenching rate (CQR). The CQR is defined as the cooling rate to obtain the required mechanical properties (Rm > 1300MPa) and is lower than the critical cooling rate (CCR) which is the minimal cooling rate at which 100% martensite is formed.
Using this method a hot formed product is produced having the mechanical properties as needed for automotive purposes, which product is either uncoated or coated, dependent on the blank used. As elucidated above, the Ac1 and Ac3 temperatures are lower for the composition according to the invention as compared to the commonly used 22MnB5 type steel.
Preferably the blank or tube is at least partially heated to a temperature higher than the Ac1 temperature, preferably higher than the Ac3 temperature, but lower than 950°C, preferably lower than 900°C. Since the Ac1 and Ac3 temperatures are lower for the composition according to the invention, as discussed above, it is preferably even possible to use heating temperatures below 900°C
According to a preferred embodiment the heated blank is forcibly cooled before putting it in the hot forming press. Such cooling positively influences the properties of the formed product.
The invention also encompasses a product produced using the method as described above. This product has the mechanical properties provided by the hot forming method, as needed for automotive or other purposes.
Preferably a product as described above is used in a motor vehicle. For this purpose also other properties besides mechanical properties are have to be taken into account, such as the weldability of the product.
The invention will be elucidated with reference to the examples below.
The inventors have casted multiple compositions into 25kg ingots. These ingots were subsequently hot rolled with a finish temperature of 900°C, a coiling temperature of 630°C and a hot rolled gauge of 4mm. Subsequently the strips were pickled and cold rolled to 1.5mm gauge. Using dilatometry the composition dependent Ac3 temperature, Ms temperature and Critical Cooling Rate (CCR) of the compositions have been determined. For these tests, samples were heated in a Bahr 805A Dilatometer to a temperature of 900°C with a mean heating rate of 15°C/s from room temperature up to 650°C and with a mean heating rate of 3°C/s from 650-900°C. After 3 minutes of soaking at 900°C the samples were quenched with various cooling rates. The obtained data is given in Table 1 for various chemical compositions. Table 1
Figure imgf000008_0001
With the usual measuring equipment the amount of Ti and B could not be measured more accurately than indicated in Table 1. The table shows that the amount of Ti is low enough. The amount of O has not been measured but it is known that for such steel types the amount is less then 50 ppm in laboratory samples. Steel produced during commercial full-scale production of these steel types has shown to contain less then 30 ppm O.
Other test samples produced under laboratory condition show to contain 1 to 3 ppm B when no boron has been added to the steel. This variation in the amount of boron can be explained by a small contamination of the steelmaking equipment with previously produced boron containing steels. Commercial full-scale production of such types of steel to which no boron has been added contain an amount of less than 2 ppm boron; usually an amount of less then 1 ppm boron is measured.
To demonstrate the effect of the beneficial influence of the absence of non- metallic constituents on the mechanical properties, the inventors performed hot forming trials. 1.5mm gauge steel blanks were heated to 900°C with a total furnace time of 5 minutes. The blanks were taken out of the furnace, transported to the press within 10 seconds and pressed in between flat tools at a temperature of approximately 780°C. The flat pressing tools had a temperature between 20 and 80°C and the press was closed during approximately 20 seconds. The cooling rate of the blanks in the press was between 50 and 100°C/s directly after the press was closed. The average cooling rate of the blank after leaving the furnace until reaching the martensite start temperature was higher than the critical quenching rate of the substrates as can be seen from the resulting mechanical properties in Table 2. These results also demonstrate that even though the carbon levels of the invented substrates are lower, the yield strength (RP) and tensile strength (Rm) are similar to the commonly used 22MnB5. However, due to the reduced number of non-metallic constituents, the invented substrates all have higher total elongation compared to the commonly used 22MnB5.
Table 2
Cast: Furnace Transport Rp Rm Ag A
[No.] [°C] [s] [MPa] [MPa] [%] [%]
6A 2.0Mn 900 8 1 126 1536 4.0 6.9
6B 2.2Mn 900 8 1 109 1551 3.9 7.1
7A 2.0Mn- 900 8 1 1 1 1 1519 3.7 6.3
7B 2.0Mn- 900 8 1 1 19 1544 4.1 7.3
8A 1 .8Mn- 900 8 1 133 1525 3.8 6.6
8B 2.2Mn- 900 8 1 137 1550 4.1 7.0
9A 1.6Mn- 900 8 1 158 1554 3.8 6.5
9B 1 .8Mn- 900 8 1 147 1566 3.7 6.4
1A 22MnB5- 900 8 1 137 1555 3.7 6.0

Claims

1. Steel for hot forming having the following composition in weight%:
C: 0.10 - 0.25,
Mn: 1.4 - 2.6,
Si: < 0.4,
Cr: < 1.0,
Al: < 1.5,
P: < 0.02,
S: < 0.005,
N:≤ 0.03,
B: < 0.0004,
O:≤ 0.008
and optionally:
Ti: < 0.3,
Mo: < 0.5,
Nb: < 0.3,
V: < 0.5,
Ca: < 0.05,
the remainder being iron and unavoidable impurities.
2. Steel according to claim 1 , wherein:
C: 0.12 - 0.23 and/or
Mn: 1.6 - 2.5 and/or
Si: < 0.3 and/or
Cr: < 0.8 and/or
Al: < 0.5 and preferably Al < 0.1
O: < 0.005 and/or
N:≤ 0.01 and/or
B: < 0.0003 and preferably B < 0.0002 and/or
Ti: < 0.1 and/or
Mo:≤ 0.2 and/or
Nb: < 0.1 and/or
V: < 0.2 and/or
Ca: < 0.01.
3. Steel according to claim 1 or 2, wherein:
C: 0.15 - 0.21 and/or
Mn: 1 .8 - 2.4 and/or
Si: < 0.2 and/or
Cr:≤ 0.7, preferably Cr 0.2 - 0.7 and/or
Al: < 0.05 and/or
N: < 0.006 and/or
Ti: < 0.02 and/or
Mo: < 0.08 and/or
Nb:≤ 0.02 and/or
V: < 0.02 and/or
B: < 0.0001 and preferably B≤ 0.00009.
4. Steel according to claim 1 , 2 or 3, wherein Mn + Cr≥ 2.5 weight%, preferably Mn + Cr≥ 2.6 weight%.
5. Strip, sheet, blank, or tube produced with the steel according to any one of the preceding claims.
6. Strip, sheet, blank or tube according to claim 5, pre-coated with a layer of aluminium or an aluminium based alloy, or pre-coated with a layer of zinc or a zinc based alloy.
7. Strip, sheet, blank or tube according to claim 6, wherein the pre-coating comprised 5 to 13 wt% silicon and/or less than 5 wt% iron, the remainder being aluminium, the pre-coating preferably having a thickness between 10 and 40 μιη per side, more preferably a thickness between 20 and 35 μνη per side.
8. Strip, sheet, blank or tube according to claim 7, wherein the pre-coating comprised 8 to 12 wt% silicon and/or 2 to 5 wt% iron, the remainder being aluminium.
9. Strip, sheet, blank or tube according to claim 6, wherein the pre-coating is an iron-zinc diffusion coating obtained by heat treating a zinc layer, the zinc layer comprising Al < 0.18 wt% and Fe < 15 wt%, the remainder being zinc and traces of other elements, the pre-coating preferably having a thickness between 5 and 15 μιτι per side, more preferably a thickness between 6 and 13 μηι per side.
10. Strip, sheet, blank or tube according to claim 6, wherein the pre-coating comprises 0.5 to 4 wt% Al and 0.5 to 3.2 wt% Mg, the remainder being zinc and traces of other elements, the pre-coating preferably having a thickness between 5 and 15 μιτι per side, more preferably a thickness between 6 and 13 μηι per side.
11. Method for producing a hot formed product using the strip, sheet, blank or tube according to any one of the claims 6 - 10, using the following steps:
- providing a blank, for instance by cutting the strip or sheet, or tube
- heating the blank or tube to a temperature above the Ac1 temperature of the steel, preferably above the Ac3 temperature of the steel, to a temperature of at most 1000°C
- transporting the heated blank or tube into a hot forming press
- forming the blank or tube into a product in the press
- quenching the product with an average cooling rate between the furnace and Ms temperature above the critical quenching rate (CQR).
12. Method according to claim 11 , wherein the blank or tube is at least partially heated to a temperature higher than Ac preferably higher than Ac3, but lower than 950°C, preferably lower than 900°C.
13. Method according to claim 11 or 12, wherein the heated blank or tube is forcibly cooled before putting it in the hot forming press.
14. Product produced using the method according to any one of claims 11 - 13.
15. Use of a product according to claim 14 in a motor vehicle.
PCT/EP2014/002552 2013-09-19 2014-09-19 Steel for hot forming WO2015039763A2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP14771785.4A EP2988887A2 (en) 2013-09-19 2014-09-19 Steel for hot forming
CN201480058068.3A CN105658834A (en) 2013-09-19 2014-09-19 Steel for hot forming
US15/022,391 US20160289809A1 (en) 2013-09-19 2014-09-19 Steel for hot forming
CA2924812A CA2924812A1 (en) 2013-09-19 2014-09-19 Steel for hot forming
KR1020167009944A KR20160057457A (en) 2013-09-19 2014-09-19 Steel for hot forming
JP2016515478A JP2016537502A (en) 2013-09-19 2014-09-19 Hot forming steel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP20130004573 EP2851440A1 (en) 2013-09-19 2013-09-19 Steel for hot forming
EP13004573.5 2013-09-19
EP14162308.2 2014-03-28
EP14162308 2014-03-28

Publications (2)

Publication Number Publication Date
WO2015039763A2 true WO2015039763A2 (en) 2015-03-26
WO2015039763A3 WO2015039763A3 (en) 2015-08-20

Family

ID=51589248

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/002552 WO2015039763A2 (en) 2013-09-19 2014-09-19 Steel for hot forming

Country Status (7)

Country Link
US (1) US20160289809A1 (en)
EP (1) EP2988887A2 (en)
JP (1) JP2016537502A (en)
KR (1) KR20160057457A (en)
CN (2) CN105658834A (en)
CA (1) CA2924812A1 (en)
WO (1) WO2015039763A2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146581A1 (en) * 2015-03-16 2016-09-22 Tata Steel Ijmuiden B.V. Steel for hot forming
WO2017144419A1 (en) * 2016-02-23 2017-08-31 Tata Steel Ijmuiden B.V. Hot formed part and method for producing it
WO2018085672A1 (en) * 2016-11-04 2018-05-11 Nucor Corporation Multiphase, cold-rolled ultra-high strength steel
WO2018158166A1 (en) * 2017-02-28 2018-09-07 Tata Steel Ijmuiden B.V. Method for producing a hot-formed coated steel product
WO2019020575A1 (en) * 2017-07-25 2019-01-31 Tata Steel Ijmuiden B.V. Steel strip, sheet or blank for producing a hot formed part, part, and method for hot forming a blank into a part
WO2019205698A1 (en) * 2018-04-28 2019-10-31 育材堂(苏州)材料科技有限公司 Hot stamped component, pre-coated steel plate for hot stamping, and hot stamping process
WO2020128571A1 (en) * 2018-12-18 2020-06-25 Arcelormittal A press hardened part with high resistance to delayed fracture and a manufacturing process thereof
EP3548641B1 (en) 2016-11-29 2020-08-26 Tata Steel IJmuiden B.V. Method for manufacturing a hot-formed article, and obtained article
US11021776B2 (en) 2016-11-04 2021-06-01 Nucor Corporation Method of manufacture of multiphase, hot-rolled ultra-high strength steel
RU2773459C1 (en) * 2018-12-18 2022-06-03 Арселормиттал Press-hardened part with high resistance to delayed destruction and the method for its manufacture

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015092929A1 (en) 2013-12-20 2015-06-25 新日鐵住金株式会社 Hot-pressed steel sheet member and method for producing same, and steel sheet for hot pressing
DE102017211076B4 (en) * 2017-06-29 2019-03-14 Thyssenkrupp Ag Method for producing a coated steel component and steel component
KR102372480B1 (en) * 2020-03-27 2022-03-08 현대제철 주식회사 Tailor rolled blank, manufacturing method for hot stamping product using tailor rolled blank and hot stamping product manufactured using the same
CN112210724B (en) * 2020-08-10 2022-02-18 唐山钢铁集团有限责任公司 ESP (electronic stability program) production-based high-strength hot forming steel and method
CN115627440A (en) * 2022-10-21 2023-01-20 中南大学 LaB6 enhanced aluminum-chromium-silicon solid powder aluminizing agent and aluminizing method

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3505043A (en) * 1969-01-08 1970-04-07 Inland Steel Co Al-mg-zn alloy coated ferrous metal sheet
JPH1096062A (en) * 1996-09-24 1998-04-14 Nkk Corp High strength and high tensile strength steel excellent in hot dip galvanizing plating resistance
WO2000050658A1 (en) * 1999-02-22 2000-08-31 Nippon Steel Corporation High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
WO2001023624A1 (en) * 1999-09-29 2001-04-05 Nkk Corporation Sheet steel and method for producing sheet steel
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
JP2005126733A (en) * 2003-10-21 2005-05-19 Nippon Steel Corp Steel sheet for hot press having excellent hot workability, and automotive member
EP1621645A1 (en) * 2004-07-28 2006-02-01 Corus Staal BV Steel sheet with hot dip galvanized zinc alloy coating
JP5549582B2 (en) * 2004-11-30 2014-07-16 Jfeスチール株式会社 Sheet steel
EP1767659A1 (en) * 2005-09-21 2007-03-28 ARCELOR France Method of manufacturing multi phase microstructured steel piece
WO2007064172A1 (en) * 2005-12-01 2007-06-07 Posco Steel sheet for hot press forming having excellent heat treatment and impact property, hot press parts made of it and the method for manufacturing thereof
JP4466619B2 (en) * 2006-07-05 2010-05-26 Jfeスチール株式会社 High tensile welded steel pipe for automobile structural members and method for manufacturing the same
EP3587104B1 (en) * 2006-10-30 2022-03-30 ArcelorMittal Coated steel strips
RU2442839C2 (en) * 2007-01-31 2012-02-20 ДжФЕ СТИЛ КОРПОРЕЙШН Steel with high expanding endurance and acceptable resistance against delayed fracture and method for its production
JP5586008B2 (en) * 2007-02-23 2014-09-10 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ Thermomechanical molding method of final product with very high strength and product produced by the method
JP5369713B2 (en) * 2009-01-28 2013-12-18 Jfeスチール株式会社 Hot press member excellent in ductility, steel plate for hot press member, and method for producing hot press member
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
CN102031456B (en) * 2009-09-30 2013-07-03 鞍钢股份有限公司 Steel plate for stamping and quenching and thermoforming method of steel plate
KR101475585B1 (en) * 2010-06-14 2014-12-22 신닛테츠스미킨 카부시키카이샤 Hot-stamp-molded article, process for production of steel sheet for hot stamping, and process for production of hot-stamp-molded article
CN103314120B (en) * 2010-10-22 2014-11-05 新日铁住金株式会社 Process for producing hot stamp molded article, and hot stamp molded article
US9512499B2 (en) * 2010-10-22 2016-12-06 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall and hot stamped body having vertical wall
EP2655675B1 (en) * 2010-12-24 2021-03-10 Voestalpine Stahl GmbH Method for producing hardened structural elements
RU2572901C9 (en) * 2011-07-29 2016-06-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Annealed layer of galvanic coating, and steel plate with such coating, and method of its producing
RU2581333C2 (en) * 2012-01-13 2016-04-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-stamp steel and method of its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. NAGANATHAN; L. PENTER: "Sheet Metal Forming - Processes and Applications", 2012, ASM INTEMATIONAL, article "Hot Stamping"

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016146581A1 (en) * 2015-03-16 2016-09-22 Tata Steel Ijmuiden B.V. Steel for hot forming
WO2017144419A1 (en) * 2016-02-23 2017-08-31 Tata Steel Ijmuiden B.V. Hot formed part and method for producing it
US11021776B2 (en) 2016-11-04 2021-06-01 Nucor Corporation Method of manufacture of multiphase, hot-rolled ultra-high strength steel
WO2018085672A1 (en) * 2016-11-04 2018-05-11 Nucor Corporation Multiphase, cold-rolled ultra-high strength steel
US11965230B2 (en) 2016-11-04 2024-04-23 Nucor Corporation Multiphase ultra-high strength hot rolled steel
US10968502B2 (en) 2016-11-04 2021-04-06 Nucor Corporation Method of manufacture of multiphase, cold-rolled ultra-high strength steel
EP3548641B1 (en) 2016-11-29 2020-08-26 Tata Steel IJmuiden B.V. Method for manufacturing a hot-formed article, and obtained article
WO2018158166A1 (en) * 2017-02-28 2018-09-07 Tata Steel Ijmuiden B.V. Method for producing a hot-formed coated steel product
US11319623B2 (en) 2017-02-28 2022-05-03 Tata Steel Ijmuiden B.V. Method for producing a steel strip with an aluminium alloy coating layer
WO2019020575A1 (en) * 2017-07-25 2019-01-31 Tata Steel Ijmuiden B.V. Steel strip, sheet or blank for producing a hot formed part, part, and method for hot forming a blank into a part
US11248276B2 (en) 2018-04-28 2022-02-15 Ironovation Materials Technology Co., Ltd. Hot stamped component, precoated steel sheet used for hot stamping and hot stamping process
US11578382B2 (en) 2018-04-28 2023-02-14 Ironovation Materials Technology Co., Ltd. Hot stamped component, precoated steel sheet used for hot stamping and hot stamping process
US11667988B2 (en) 2018-04-28 2023-06-06 Ironovation Materials Technology Co., Ltd. Hot stamped component, precoated steel sheet used for hot stamping and hot stamping process
WO2019205698A1 (en) * 2018-04-28 2019-10-31 育材堂(苏州)材料科技有限公司 Hot stamped component, pre-coated steel plate for hot stamping, and hot stamping process
WO2020128571A1 (en) * 2018-12-18 2020-06-25 Arcelormittal A press hardened part with high resistance to delayed fracture and a manufacturing process thereof
RU2773459C1 (en) * 2018-12-18 2022-06-03 Арселормиттал Press-hardened part with high resistance to delayed destruction and the method for its manufacture
US11725255B2 (en) 2018-12-18 2023-08-15 Arcelormittal Press hardened part with high resistance to delayed fracture and a manufacturing process thereof

Also Published As

Publication number Publication date
CN105658834A (en) 2016-06-08
EP2988887A2 (en) 2016-03-02
US20160289809A1 (en) 2016-10-06
CA2924812A1 (en) 2015-03-26
KR20160057457A (en) 2016-05-23
WO2015039763A3 (en) 2015-08-20
CN109023136A (en) 2018-12-18
JP2016537502A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
WO2015039763A2 (en) Steel for hot forming
JP6580123B2 (en) Method for producing press-hardening steel sheet and parts obtained by the method
WO2015039738A1 (en) Steel for hot forming
US10640855B2 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
US20160186298A1 (en) Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 mpa and improved properties and method for producing a strip from said steel
CN115109996B (en) Method for producing a high-strength steel component with improved ductility and component obtained by said method
EP2816129B1 (en) Cold-rolled steel sheet, plated steel sheet, and method for manufacturing the same
RU2721767C2 (en) Superhigh-strength, air-hardening, multiphase steel, having excellent process characteristics, and method of producing said steel
EP2980245B1 (en) High-strength alloyed molten-zinc-plated steel sheet and method for manufacturing same
US20180044759A1 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
EP3122486A1 (en) Method for hot forming a coated steel blank
CN113544296B (en) Hot-stamped molded body
JP6830468B2 (en) Hot-forming air-quenching weldable steel sheet
CA2979923A1 (en) Steel for hot forming
EP3271491A1 (en) Steel for hot forming

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2014771785

Country of ref document: EP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15022391

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2924812

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016515478

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167009944

Country of ref document: KR

Kind code of ref document: A