JP6830468B2 - Hot-forming air-quenching weldable steel sheet - Google Patents

Hot-forming air-quenching weldable steel sheet Download PDF

Info

Publication number
JP6830468B2
JP6830468B2 JP2018208132A JP2018208132A JP6830468B2 JP 6830468 B2 JP6830468 B2 JP 6830468B2 JP 2018208132 A JP2018208132 A JP 2018208132A JP 2018208132 A JP2018208132 A JP 2018208132A JP 6830468 B2 JP6830468 B2 JP 6830468B2
Authority
JP
Japan
Prior art keywords
steel sheet
steel
hot
amount
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018208132A
Other languages
Japanese (ja)
Other versions
JP2019065396A (en
Inventor
ファリッド・ハッサーニ
ヒョン・ジュン
ニーナ・フォンスタイン
Original Assignee
アルセロールミタル・エス・ア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルセロールミタル・エス・ア filed Critical アルセロールミタル・エス・ア
Publication of JP2019065396A publication Critical patent/JP2019065396A/en
Application granted granted Critical
Publication of JP6830468B2 publication Critical patent/JP6830468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling

Description

関連出願の相互参照
本出願は、米国特許法35U.S.C.§119(e)に基づいて2014年2月5日に出願された米国仮出願第61/935,948号の利益を主張する。
Cross-reference to related applications This application is based on 35 U.S. S. C. Claim the interests of US Provisional Application No. 61 / 935,948 filed on February 5, 2014 under § 119 (e).

本発明は鋼板に関する。特に、本発明は、均一で非常に高い引張強度および高い溶接性を有する部品に熱間形成することができる鋼板に関する。 The present invention relates to a steel sheet. In particular, the present invention relates to steel sheets that are uniform and can be hot formed on parts with very high tensile strength and high weldability.

近代的車両は、乗客の安全性を向上し、車両重量を軽量化するために、高強度鋼および超高強度鋼の部分が増加してきている。多くの形成された車両ボデー部品の配置は、冷間形成され進化した高強度鋼の使用を妨げる。この結果、熱間成形後にマルテンサイト条件に焼き入れすることが、超高強度鋼部品を製造するためのポピュラーな手段になってきている。 Modern vehicles are increasing in parts of high-strength steel and ultra-high-strength steel in order to improve passenger safety and reduce the weight of the vehicle. The placement of many formed vehicle body components hinders the use of cold-formed and evolved high-strength steel. As a result, quenching under martensite conditions after hot forming has become a popular means for producing ultra-high strength steel parts.

特殊鋼は熱間鍛造に使用されて、必要な焼き入れ性を確保して工程パラメーターに適合する。これらの特殊鋼の多くは、水冷式金型内での焼き入れのために設計されている。 Special steels are used for hot forging to ensure the required hardenability and meet process parameters. Many of these specialty steels are designed for quenching in water-cooled dies.

このような熱間鍛造鋼の一例はUSIBORであり、これは、(重量%もしくはwt%で)0.15から0.25%のC、0.8から1.5%のMn、0.1から0.35%のSi、0.01から0.2%のCr、0.1%未満のTi、0.1%未満のA1、0.05%未満のP、0.03%未満のSおよび0.0005から0.01%のBを含む。この要素は米国特許第6,296,805号明細書に開示される鋼に含まれる。この要素では、TiおよびBは、水冷式金型内での熱間プレス後に高い機械的特性を達成するために必要である。 An example of such hot forged steel is USIBOR, which is 0.15 to 0.25% C (in weight% or wt%), 0.8 to 1.5% Mn, 0.1. From 0.35% Si, 0.01 to 0.2% Cr, less than 0.1% Ti, less than 0.1% A1, less than 0.05% P, less than 0.03% S And contains 0.0005 to 0.01% B. This element is included in the steel disclosed in US Pat. No. 6,296,805. In this element, Ti and B are required to achieve high mechanical properties after hot pressing in a water-cooled die.

USIBORからの高強度部品の製造は、米国特許第6,564,604号明細書に記載されている。工程は、熱間圧延または冷間圧延されたブランクを炉内で700℃より上に加熱し、加熱されたブランクを金型に移動し、金型内でブランクをプレス形成し、ブランクを形成した水冷式金型を維持し、部品が室温に達するまで閉じることを含む。水冷式金型での急速冷却、つまり、焼き入れは、マルテンサイト構造、この結果、高強度を得るために必要である。焼き入れされた鋼は、連続溶融被覆工程によって熱間鍛造用の熱処理に先立ってZnまたはAl−Siで被覆されて、熱間鍛造の間の酸化および後の腐食攻撃から鋼基板を保護する。 Manufacture of high-strength parts from USIBOR is described in US Pat. No. 6,564,604. In the process, a hot-rolled or cold-rolled blank was heated above 700 ° C. in a furnace, the heated blank was moved to a mold, and the blank was press-formed in the mold to form a blank. Includes maintaining the water-cooled mold and closing the parts until they reach room temperature. Rapid cooling in a water-cooled mold, i.e. quenching, is necessary to obtain a martensite structure, resulting in high strength. The hardened steel is coated with Zn or Al—Si prior to heat treatment for hot forging by a continuous melt coating step to protect the steel substrate from oxidation during hot forging and subsequent corrosion attacks.

USIBORは、熱間鍛造に広く使用され、水冷式金型内での焼き入れ後に1500MPaの引張強度を達成することができるが、USIBORは多くの不都合を有する。1つの不都合は、0.25wt%のCを含むUSIBORは、溶接性が劣ることである。さらに、USIBORの微構造は、冷却速度に非常に敏感であり、水冷式金型内での冷却速度が遅い場合にはフェライトまたはベイナイト形成を示し、従って、熱間鍛造部品の強度の均一な分布は保証されない可能性がある。さらに、USIBORを使用する熱間鍛造工程は一般に長く、熱間鍛造に使用される高価な装置の生産性は比較的低い。さらに、1500MPaより大きい引張強度を有するUSIBORの延性(例えば、伸び)は比較的低い。 USIBOR is widely used for hot forging and can achieve a tensile strength of 1500 MPa after quenching in a water-cooled die, but USIBOR has many disadvantages. One inconvenience is that USIBOR containing 0.25 wt% C is inferior in weldability. In addition, the microstructure of USIBOR is very sensitive to cooling rates and exhibits ferrite or bainite formation at slow cooling rates in water-cooled dies, thus providing a uniform distribution of the strength of hot forged parts. May not be guaranteed. Moreover, the hot forging process using USIBOR is generally long and the productivity of expensive equipment used for hot forging is relatively low. Furthermore, the ductility (eg, elongation) of USIBOR having a tensile strength greater than 1500 MPa is relatively low.

空気焼き入れ鋼も周知である。例えば、国際公開第2006/048009号は、質量%で、0.07から0.15%のC、0.15から0.30%のSi、1.60から2.10%のMn、0.5から1.0%のCr、0.30から0.60%のMo、0.12から0.20%のV、0.010から0.050%のTiおよび0.0015から0.0040%のBを含む空気焼き入れ性鋼を開示している。鋼は容易に溶接され、亜鉛めっきされることができる。鋼は、高強度、例えば、750から850MPaの降伏強度および850から1000MPaの引張強度を示す。しかし、鋼は、MoやVなどの大量の高価な元素を使用するという不都合を有する。 Air-hardened steel is also well known. For example, WO 2006/048009, in mass%, 0.07 to 0.15% C, 0.15 to 0.30% Si, 1.60 to 2.10% Mn, 0. 5 to 1.0% Cr, 0.30 to 0.60% Mo, 0.12 to 0.20% V, 0.010 to 0.050% Ti and 0.0015 to 0.0040% The air-quenching steel containing B is disclosed. Steel can be easily welded and galvanized. Steel exhibits high strength, eg, yield strength of 750 to 850 MPa and tensile strength of 850 to 1000 MPa. However, steel has the disadvantage of using a large amount of expensive elements such as Mo and V.

独国特許出願公開第10261210(A1)号明細書は、熱間プレス工程において自動車部品の製造のための他の空気焼き入れ性鋼合金について説明する。この合金は、質量%で、0.09から0.13%のC、0.15から0.3%のSi、1.1から1.6%のMn、最大0.015%のP、最大0.011%のS、1.0から1.6%のCr、0.3から0.6%のMo、0.02から0.05%のAlおよび0.12から0.25%のVを含む。鋼が金型内で焼き入れされる場合、上部ベイナイト構造をさらなる焼き入れなしで得ることができる。鋼は、750から1100MPaの降伏強度、950から1300MPaの引張強度および7から16%の伸びを示す。この鋼の1つの不都合は、大量の高価なMoおよびVを使用する必要があることである。 German Patent Application Publication No. 10261210 (A1) describes other air-quenching steel alloys for the manufacture of automotive parts in the hot press process. This alloy is in mass% 0.09 to 0.13% C, 0.15 to 0.3% Si, 1.1 to 1.6% Mn, up to 0.015% P, up to 0.015%. 0.011% S, 1.0 to 1.6% Cr, 0.3 to 0.6% Mo, 0.02 to 0.05% Al and 0.12 to 0.25% V including. If the steel is hardened in the mold, the upper bainite structure can be obtained without further quenching. Steel exhibits yield strength of 750 to 1100 MPa, tensile strength of 950 to 1300 MPa and elongation of 7 to 16%. One disadvantage of this steel is the need to use large amounts of expensive Mo and V.

特開2006−213959号公報は、優れた生産性を備えたホットプレス高強度鋼部材を製造する方法を提供する。この方法は鋼板を使用し、この鋼板は、質量%で、0.05から0.35%のC、0.005から1.0%のSi、0から4.0のMn、0から3.0%のCr、0から4.0%のCu、0から3.0%のNi、0.0002から0.1%のB、0.001から3.0%のTi、≦0.1%のP、≦0.05%のS、0.005から0.1%のAlおよび≦0.01%のNを含み、残部はFeおよび不可避の不純物であり、Mn+Cr/3.1+(Cu+Ni)/1.4≧2.5%である。鋼板は、750から1300℃で10から6000秒間加熱され、次いで、300℃以上でプレス成形される。プレス後に、成形物は金型から取り出され、1200から1100℃から5から40℃に0.1℃/秒以上の冷却速度で冷却されて、面積比で60%以上のマルテンサイト構造を有する部材を得る。この方法によって、プレス金型での焼き入れステップを除去することができる。得られた部材は、内部に材質のばらつきをほとんどに有さず、部材の形状は良好であり、均一性が優れる。 Japanese Unexamined Patent Publication No. 2006-213959 provides a method for producing a hot-pressed high-strength steel member having excellent productivity. This method uses a steel sheet, which is 0.05 to 0.35% C, 0.005 to 1.0% Si, 0 to 4.0 Mn, 0 to 3. by mass. 0% Cr, 0 to 4.0% Cu, 0 to 3.0% Ni, 0.0002 to 0.1% B, 0.001 to 3.0% Ti, ≤0.1% P, ≤0.05% S, 0.005 to 0.1% Al and ≤0.01% N, the balance is Fe and unavoidable impurities, Mn + Cr / 3.1 + (Cu + Ni) /1.4 ≧ 2.5%. The steel sheet is heated at 750 to 1300 ° C. for 10 to 6000 seconds and then press formed at 300 ° C. or higher. After pressing, the molded product is taken out of the die and cooled from 1200 to 1100 ° C. to 5 to 40 ° C. at a cooling rate of 0.1 ° C./sec or more, and has a martensite structure of 60% or more in area ratio. To get. By this method, the quenching step in the press die can be eliminated. The obtained member has almost no variation in the material inside, the shape of the member is good, and the uniformity is excellent.

特開2006−212663号公報は、優れた形成性のホットプレス高強度鋼部材を製造する方法を提供する。この方法は鋼板を使用し、この鋼板は、質量%で、0.05から0.35%のC、0,005から1.0%のSi、0から4.0%のMn、0から3.0%のCr、0から4.0%のCu、0から3.0%のNi、0.0002から0.1%のB、0.001から3.0%のTi、≦0.1%のP、≦0.05%のS、0.005から0.1%のAlおよび≦0.01%のNを含み、残部はFeおよび不可避の不純物であり、Mn+Cr/3.1+(Cu+Ni)/1.4≦2.5である。鋼板は、750から1300℃に加熱され、この温度で10から6000秒間維持され、次いで300℃で2回以上プレス成形されて面積比で60%以上のマルテンサイト構造を有する部材を得る。結果として生じる部材は高強度を示し、内部品質のばらつきをほとんど示さない。 Japanese Unexamined Patent Publication No. 2006-212663 provides a method for producing a hot-pressed high-strength steel member having excellent formability. This method uses a steel sheet, which is 0.05 to 0.35% C, 0.005 to 1.0% Si, 0 to 4.0% Mn, 0 to 3 by mass. 0.0% Cr, 0 to 4.0% Cu, 0 to 3.0% Ni, 0.0002 to 0.1% B, 0.001 to 3.0% Ti, ≤0.1 Containing% P, ≤0.05% S, 0.005 to 0.1% Al and ≤0.01% N, the balance being Fe and unavoidable impurities, Mn + Cr / 3.1 + (Cu + Ni) ) /1.4≤2.5. The steel sheet is heated to 750 to 1300 ° C., maintained at this temperature for 10 to 6000 seconds, and then press-formed twice or more at 300 ° C. to obtain a member having a martensite structure having an area ratio of 60% or more. The resulting member exhibits high strength and little variation in internal quality.

米国特許第6,296,805号明細書U.S. Pat. No. 6,296,805 米国特許第6,564,604号明細書U.S. Pat. No. 6,564,604 国際公開第2006/048009号International Publication No. 2006/048009 独国特許出願公開第10261210号明細書German Patent Application Publication No. 10261210 特開2006−213959号公報Japanese Unexamined Patent Publication No. 2006-213959 特開2006−212663号公報Japanese Unexamined Patent Publication No. 2006-212663

鋼の引張強度は、C含有量とともに向上することが知られている。しかし、C含有量が増加すると溶接性が低下する。 It is known that the tensile strength of steel increases with the C content. However, as the C content increases, the weldability decreases.

Moなどの大量の高価な元素を含まず、加えて引張強度の内部ばらつきがほとんどなく、優れた溶接性を示す熱間形成性空気焼き入れ性高強度鋼板の必要性が存在する。 There is a need for a hot-forming air-quenching high-strength steel plate that does not contain a large amount of expensive elements such as Mo, has almost no internal variation in tensile strength, and exhibits excellent weldability.

本発明は、(wt%で)0.04≦C≦0.30、0.5≦Mn≦4、0≦Cr≦4、2.7≦Mn+Cr≦5、0.003≦Nb≦0.1、0.015≦Al≦0.1および0.05≦Si≦1.0を含む高引張強度(800から1400MPa)鋼板を提供する。場合により、鋼板は、Ti≦0.2、V≦0.2、Mo<0.3およびB≦0.015の1つ以上を含むことができる。鋼板は、Ac+20℃で、またはこれより上でのオーステナイト化に続いて、金型内で熱間形成されることができ、金型内、もしくは空気、窒素、油または水などの冷却媒体中で冷却されることができる。鋼の要素、特に、2.7から5wt%のMn+Crの含有量は、形成板を冷却速度に敏感でなくし、工程間の時間遅延および最終冷却/焼き入れと無関係に部品の強度の均一な分布を確保する。0.003から0.1wt%のNb含有量は、引張強度をCの量に敏感でなくし、同じ引張強度に必要とされるCの量を低減する。さらに、Cを低減すると溶接性が向上するので、Nbの添加は、C単独と同じ高引張強度を達成するが溶接性が向上する。Zn、AlまたはAl合金のコーティングで鋼板を被覆すると、鋼板の耐食性を向上することができる。 In the present invention (in wt%) 0.04 ≦ C ≦ 0.30, 0.5 ≦ Mn ≦ 4, 0 ≦ Cr ≦ 4, 2.7 ≦ Mn + Cr ≦ 5, 0.003 ≦ Nb ≦ 0.1 , 0.015 ≦ Al ≦ 0.1 and 0.05 ≦ Si ≦ 1.0 to provide a high tensile strength (800 to 1400 MPa) steel sheet. In some cases, the steel sheet may contain one or more of Ti ≦ 0.2, V ≦ 0.2, Mo <0.3 and B ≦ 0.015. The steel sheet can be hot formed in the mold following austenitization at or above Ac 3 + 20 ° C. and in the mold or in a cooling medium such as air, nitrogen, oil or water. Can be cooled inside. The steel elements, especially the Mn + Cr content of 2.7 to 5 wt%, make the forming plate insensitive to cooling rates and a uniform distribution of component strength independent of time delays between processes and final cooling / quenching. To secure. An Nb content of 0.003 to 0.1 wt% makes the tensile strength less sensitive to the amount of C and reduces the amount of C required for the same tensile strength. Further, since C is reduced, the weldability is improved, so that the addition of Nb achieves the same high tensile strength as C alone, but the weldability is improved. Coating the steel sheet with a coating of Zn, Al or Al alloy can improve the corrosion resistance of the steel sheet.

発明の好ましい実施形態は次の図面を参照して詳細に説明される。 Preferred embodiments of the invention will be described in detail with reference to the following drawings.

Cの量が、Nb添加およびこの添加なしで、0.06から0.12wt%に及ぶ場合の様々な鋼板組成物についてのCにともなう引張強度(MPa)の変化を示す。It shows the change in tensile strength (MPa) with C for various steel sheet compositions when the amount of C ranges from 0.06 to 0.12 wt% with and without the addition of Nb. Cの量が、Nb添加およびこの添加なしで、0.06から0.18wt%に及ぶ場合の様々な鋼板組成物についてのCにともなう引張強度(MPa)の変化を示す。It shows the change in tensile strength (MPa) with C for various steel sheet compositions when the amount of C ranges from 0.06 to 0.18 wt% with and without the addition of Nb. 温度(℃)対時間(秒)の対数として冷却曲線をプロットする本発明による鋼についての連続冷却変態(CCT)図を表す。Represents a continuous cooling transformation (CCT) diagram for steel according to the invention, plotting the cooling curve as the logarithm of temperature (° C.) vs. time (seconds). 異なる冷却速度で冷却された本発明の鋼の、倍率を変えて得られた顕微鏡写真である。It is a micrograph obtained by changing the magnification of the steel of this invention cooled by a different cooling rate. 異なる冷却速度で冷却された本発明の鋼の、倍率を変えて得られた顕微鏡写真である。It is a micrograph obtained by changing the magnification of the steel of this invention cooled by a different cooling rate. 異なる冷却速度で冷却された本発明の鋼の、倍率を変えて得られた顕微鏡写真である。It is a micrograph obtained by changing the magnification of the steel of this invention cooled by a different cooling rate. 異なる冷却速度で冷却された本発明の鋼の、倍率を変えて得られた顕微鏡写真である。It is a micrograph obtained by changing the magnification of the steel of this invention cooled by a different cooling rate. 溶接電流対本発明の鋼の試料番号のプロットであり、プロットは、特に点溶接での鋼の散りの非飛散を示す。It is a plot of the welding current vs. the sample number of the steel of the present invention, and the plot shows the non-scattering of the steel scatter, especially in spot welding. 本発明の鋼の完全スポット溶接を示す顕微鏡写真である。It is a micrograph which shows the perfect spot welding of the steel of this invention. 本発明のより高い倍率のベース金属を示す顕微鏡写真である。FIG. 3 is a photomicrograph showing a higher magnification base metal of the present invention. 本発明の熱影響域を示す顕微鏡写真である。It is a micrograph which shows the heat influence area of this invention. 本発明のスポット溶接の溶接域を示す顕微鏡写真である。It is a micrograph which shows the welding area of the spot welding of this invention.

本発明は、強度の均一な分布および向上された溶接性を有する部品に熱間形成することができる鋼板を提供する。鋼板は低合金鋼組成物であり、wt%で、0.04≦C≦0.30、0.5≦Mn≦4、0≦Cr≦4、2.7≦Mn+Cr≦5、0.003≦Nb≦0.10、0.015≦Al≦0.1および0.05≦Si≦1.0を含む。鋼板は、場合により、Ti≦0.2、V≦0.5、Mo<0.6およびB≦0.015の1つ以上を含むことができる。この要素は、熱間成形後に冷却速度に敏感でなく、工程間の時間遅延および最終冷却/焼き入れと無関係に部品の強度の均一な分布を確保する板を作製する。形成された部品の特定位置での冷却速度にかかわることなく引張特性の保証された均一性により、熱間成形の生産性を実質的に向上することができる。引張強度はCの増加につれて向上するが、Cが増加すると溶接性が低下する。しかし、Cの一部をNbで置換することによって、引張強度の向上を維持することができ、溶接性が向上する。 The present invention provides a steel sheet that can be hot formed on parts with a uniform distribution of strength and improved weldability. The steel sheet is a low alloy steel composition, and in wt%, 0.04 ≦ C ≦ 0.30, 0.5 ≦ Mn ≦ 4, 0 ≦ Cr ≦ 4, 2.7 ≦ Mn + Cr ≦ 5, 0.003 ≦ Includes Nb ≦ 0.10, 0.015 ≦ Al ≦ 0.1 and 0.05 ≦ Si ≦ 1.0. The steel sheet may optionally contain one or more of Ti ≦ 0.2, V ≦ 0.5, Mo <0.6 and B ≦ 0.015. This element creates a plate that is not sensitive to cooling rates after hot forming and ensures a uniform distribution of component strength independent of time delays between processes and final cooling / quenching. The guaranteed uniformity of tensile properties, regardless of the cooling rate at a particular position of the formed part, can substantially improve the productivity of hot forming. Tensile strength increases as C increases, but weldability decreases as C increases. However, by substituting a part of C with Nb, the improvement in tensile strength can be maintained and the weldability is improved.

本発明の鋼板の様々な成分元素の濃度は下記理由で限定される。この濃度は重量%(つまり、wt%)で付与される。 The concentrations of various constituent elements of the steel sheet of the present invention are limited for the following reasons. This concentration is given in% by weight (ie, wt%).

炭素は鋼の強度を向上するために不可欠である。しかし、過剰量のCを添加すると、溶接は困難になる。このように、Cの量は0.04から0.30wt%の範囲に限定される。好ましくは、Cの量についての下限は、0.06wt%であり、より好ましくは0.08wt%である。好ましくは、Cの量についての上限は0.18wt%であり、より好ましくは0.16wt%である。 Carbon is essential for improving the strength of steel. However, if an excessive amount of C is added, welding becomes difficult. Thus, the amount of C is limited to the range of 0.04 to 0.30 wt%. Preferably, the lower limit for the amount of C is 0.06 wt%, more preferably 0.08 wt%. Preferably, the upper limit for the amount of C is 0.18 wt%, more preferably 0.16 wt%.

マンガンは、固溶体強化元素であることに加えて、フェライト変態を抑制し、従って、マンガンは、焼き入れ性を確保するために重要な化学元素である。しかし、過剰量のMnを添加すると、PおよびSとの同時分離が促進するだけでなく、製鋼、鋳造および熱間圧延中の製造性に悪影響が及ぶ。このように、Mnの量は0.5から4wt%の範囲に限定される。好ましくは、Mnの量についての下限は1wt%であり、より好ましくは1.5wt%である。好ましくは、Mnの量についての上限は3.5wt%であり、より好ましくは3.0wt%である。 In addition to being a solid solution strengthening element, manganese suppresses ferrite transformation, and therefore manganese is an important chemical element for ensuring hardenability. However, the addition of an excess amount of Mn not only promotes simultaneous separation of P and S, but also adversely affects manufacturability during steelmaking, casting and hot rolling. As described above, the amount of Mn is limited to the range of 0.5 to 4 wt%. Preferably, the lower limit for the amount of Mn is 1 wt%, more preferably 1.5 wt%. Preferably, the upper limit of the amount of Mn is 3.5 wt%, more preferably 3.0 wt%.

クロムは焼き入れ性を向上するために重要である。しかし、過剰量のCrは製造中の製造性に悪影響を及ぼす。このように、Crの量は0から4wt%の範囲に限定される。好ましくは、Crの量についての下限は0.2であり、より好ましくは0.5wt%である。好ましくは、Crの量についての上限は3.5wt%であり、より好ましくは3.0wt%である。 Chromium is important for improving hardenability. However, an excess amount of Cr adversely affects the manufacturability during production. As described above, the amount of Cr is limited to the range of 0 to 4 wt%. Preferably, the lower limit for the amount of Cr is 0.2, more preferably 0.5 wt%. Preferably, the upper limit for the amount of Cr is 3.5 wt%, more preferably 3.0 wt%.

MnおよびCrの総量は、鋼を、成形後の冷却速度に敏感でなくし、工程間の時間遅延および最終冷却/焼き入れと無関係に部品の強度の均一な分布を確保するために、2.7から5wt%の範囲に限定される。好ましくは、Mn+Crの下限は3.0であり、より好ましくは3.3wt%である。好ましくは、Mn+Crの上限は4.7wt%であり、より好ましくは4.4wt%である。 The total amount of Mn and Cr is 2.7 to make the steel less sensitive to the cooling rate after forming and to ensure a uniform distribution of part strength regardless of time delays between processes and final cooling / quenching. Limited to the range of 5 wt%. Preferably, the lower limit of Mn + Cr is 3.0, more preferably 3.3 wt%. Preferably, the upper limit of Mn + Cr is 4.7 wt%, more preferably 4.4 wt%.

すでに、HSLA鋼へのNbの少量の添加は、微細な炭窒化物によるフェライトの析出硬化と同様に、オーステナイト再結晶、従って微細なフェライト粒径を防ぐことに対するこの重要な効果で知られている。また、大量のNbが、高Cクリープ抵抗合金鋼に添加されている。しかし、今まで、マルテンサイト微構造を備えた低から中炭素鋼に対するNbの少量添加の影響は、公開文献で報告されていない。発明者らは、本発明の空気焼き入れ性鋼へのNbの少量の添加が、C含有量への引張強度の感度を低減し、鋼の強度を著しく向上し、従って特有の引張強度を達成するために必要とされるCの量を低減することを発見した。炭素の低減は溶接性を向上するので、Nbの添加は、所望の高引張強度を達成し、溶接性を向上することに役立つ。これらの効果を達成するために、Nbの量は0.003から0.1wt%の範囲に限定される。好ましくは、Nbの量についての下限は0.005であり、より好ましくは0.010wt%である。好ましくは、Nbの量についての上限は0.09wt%であり、より好ましくは0.085wt%である。 Already, the addition of small amounts of Nb to HSLA steels is known for this important effect on preventing austenite recrystallization, and thus fine ferrite grain sizes, as well as precipitation hardening of ferrites with fine carbonitrides. .. Also, a large amount of Nb is added to the high C creep resistance alloy steel. However, to date, the effect of small amounts of Nb on low to medium carbon steels with martensite microstructure has not been reported in the published literature. We found that the addition of a small amount of Nb to the air-quenching steel of the present invention reduced the sensitivity of the tensile strength to the C content and significantly improved the strength of the steel, thus achieving a unique tensile strength. It has been found to reduce the amount of C required to do so. Since the reduction of carbon improves weldability, the addition of Nb helps to achieve the desired high tensile strength and improve weldability. To achieve these effects, the amount of Nb is limited to the range of 0.003 to 0.1 wt%. Preferably, the lower limit for the amount of Nb is 0.005, more preferably 0.010 wt%. Preferably, the upper limit for the amount of Nb is 0.09 wt%, more preferably 0.085 wt%.

少量のAlが脱酸素剤として鋼に添加される。しかし、過剰なAlは多くの非金属介在物および表面欠陥をもたらす。Alは、また、強いフェライト成形元素であり、完全オーステナイト化温度を著しく上昇させる。これらは空気焼き入れ性鋼に望ましくない効果である。このように、Alの量は0.015から0.1wt%の範囲に限定される。好ましくは、Alの量についての下限は0.02であり、より好ましくは0.03wt%である。好ましくは、Alの量についての上限は0.09wt%であり、より好ましくは0.08wt%である。 A small amount of Al is added to the steel as an oxygen scavenger. However, excess Al results in many non-metallic inclusions and surface defects. Al is also a strong ferrite molding element, which significantly raises the complete austenitizing temperature. These are undesired effects on air hardenable steels. As described above, the amount of Al is limited to the range of 0.015 to 0.1 wt%. Preferably, the lower limit for the amount of Al is 0.02, more preferably 0.03 wt%. Preferably, the upper limit for the amount of Al is 0.09 wt%, more preferably 0.08 wt%.

Siは鋼板の強度を向上することに有効である。しかし、過剰のSiは、表面スケールの問題を引き起こす。このように、Siの量は0.05から0.35wt%の範囲に限定される。好ましくは、Siの量についての下限は0.07であり、より好ましくは0.1wt%である。好ましくは、Siの量についての上限は0.3wt%であり、より好ましくは0.25wt%である。 Si is effective in improving the strength of the steel sheet. However, excess Si causes surface scale problems. Thus, the amount of Si is limited to the range of 0.05 to 0.35 wt%. Preferably, the lower limit for the amount of Si is 0.07, more preferably 0.1 wt%. Preferably, the upper limit for the amount of Si is 0.3 wt%, more preferably 0.25 wt%.

Tiは、Bを≦0.1wt%の量で備えた鋼に場合により添加されて、焼き入れ性を向上することができる。Tiは非常に高温でNと結合し、従ってBN形成を防ぐ。固溶体中のBは焼き入れ性を向上する。窒素に対して化学量論比を超えるTiは炭化物成形元素である。Tiは、非常に微細な炭化物を形成することによって鋼を強化する。Tiの効果はNbに類似する。 Ti can be optionally added to steels containing B in an amount of ≦ 0.1 wt% to improve hardenability. Ti binds to N at very high temperatures and thus prevents BN formation. B in the solid solution improves hardenability. Ti, which exceeds the stoichiometric ratio to nitrogen, is a carbide molding element. Ti reinforces steel by forming very fine carbides. The effect of Ti is similar to Nb.

Vは、≦0.2wt%の量で鋼に場合により添加されて、微細な析出によって鋼の強度を向上することができる。Vは、鋼の焼き入れ性も向上させる。 V can be optionally added to the steel in an amount of ≦ 0.2 wt% to improve the strength of the steel by fine precipitation. V also improves the hardenability of steel.

Moは、≦0.3wt%の量で鋼に場合により添加されて、強度を向上し、焼き入れ性を向上することができる。 Mo can be optionally added to the steel in an amount of ≦ 0.3 wt% to improve strength and improve hardenability.

Bは、≦0.005wt%の量で鋼に場合により添加されて、鋼の焼き入れ性、従って強度を向上させることができる。 B can be optionally added to the steel in an amount of ≦ 0.005 wt% to improve the hardenability of the steel, and thus the strength.

鋼はFeも含んでおり、不可避の不純物を含むことができる。 Steel also contains Fe and can contain unavoidable impurities.

本発明の鋼板は10%以内の下部ベイナイト相を含むことができるマルテンサイト微構造を有する。微構造は主にマルテンサイトである。ベイナイトの量は10%以内とすることができ、好ましくは5%未満であり、より好ましくは1%未満である。 The steel sheet of the present invention has a martensite microstructure capable of containing up to 10% of the lower bainite phase. The microstructure is mainly martensite. The amount of bainite can be within 10%, preferably less than 5%, more preferably less than 1%.

本発明の鋼板は800から1400MPaの範囲の引張強度を有する。引張強度の下限は、好ましくは900MPaであり、より好ましくは1000MPaである。最終強度は、マルテンサイト中の炭素含有量にほとんど依存する。 The steel sheet of the present invention has a tensile strength in the range of 800 to 1400 MPa. The lower limit of the tensile strength is preferably 900 MPa, more preferably 1000 MPa. The final strength depends largely on the carbon content in martensite.

本発明の鋼板は、4から9%、好ましくは5から9%、より好ましくは6から9%の範囲の伸びを示すことができる。 The steel sheet of the present invention can exhibit an elongation in the range of 4 to 9%, preferably 5 to 9%, more preferably 6 to 9%.

本発明の鋼板は、従来の製鋼および鋳造工程から始まり、次いで熱間圧延が続く工程によって作製することができる。鋳造スラブは、熱間圧延前に再加熱炉に直接投入してもよく、またはそうする前に冷却してもよい。仕上げ温度はArより高くしなければならない以外、熱間圧延工程において仕上げ温度に限定はない。 The steel sheet of the present invention can be produced by a process starting with a conventional steelmaking and casting process, followed by hot rolling. The cast slab may be placed directly in the reheating furnace prior to hot rolling or may be cooled prior to doing so. There is no limit to the finishing temperature in the hot rolling process, except that the finishing temperature must be higher than Ar 3 .

熱間圧延後の巻回温度は熱間圧延後の処理に依存する。冷間圧延が最終厚さを得るように要求される場合、700℃から600℃の間の巻回温度が好ましい。最終要求厚みが熱間圧延によって直接得ることができる場合、600℃から500℃の間の巻回温度が推奨される。 The winding temperature after hot rolling depends on the processing after hot rolling. If cold rolling is required to obtain a final thickness, a winding temperature between 700 ° C and 600 ° C is preferred. If the final required thickness can be obtained directly by hot rolling, a winding temperature between 600 ° C and 500 ° C is recommended.

熱間圧延鋼は酸洗することができる。冷間圧延品については、熱間圧延板は、要求厚さへの冷間圧延前に酸洗することができる。 Hot rolled steel can be pickled. For cold-rolled products, the hot-rolled plate can be pickled before cold-rolling to the required thickness.

熱間圧延または冷間圧延鋼板は、Zn、AlまたはAl−SiなどのAl合金で鋼板の一方の面または両面を被覆することによって、酸化および/または腐食から保護することができる。コーティングは鋼板を連続的に溶融めっきすることによって行うことができる。 Hot-rolled or cold-rolled steel sheets can be protected from oxidation and / or corrosion by coating one or both sides of the steel sheet with an Al alloy such as Zn, Al or Al—Si. The coating can be performed by hot-dip galvanizing the steel sheet continuously.

コーティングを備えた、またはコーティングのない鋼板は、例えば、1つまたは幾つかの金型内で所望の形状に鍛造することによって形成される前に、完全オーステナイト化温度、つまり、少なくともAc+5℃に加熱される。熱間形成部品は、次いで、金型内で、または空気、窒素、油もしくは水などの冷却媒体中で冷却される。異なる冷却媒体は異なる冷却速度をもたらす。形成された部品は、冷却速度にかかわらず部品中に均一なマルテンサイト構造を示す。 The coated or uncoated steel sheet is at full austenitizing temperature, i.e. at least Ac 3 + 5 ° C., before being formed, for example, by forging into the desired shape in one or several dies. Is heated to. The hot forming component is then cooled in the mold or in a cooling medium such as air, nitrogen, oil or water. Different cooling media result in different cooling rates. The formed part exhibits a uniform martensite structure throughout the part regardless of the cooling rate.

最終強度は、要素(特に、CおよびNbの量)によっておよび/または完全オーステナイト化温度より下、もしくは上に加熱することによって制御することができる。 The final intensity can be controlled by factors (particularly the amount of C and Nb) and / or by heating below or above the complete austenitization temperature.

表1に示される要素の50mmのスラブを実験室で作製した。スラブを3.5mmの板に熱間圧延した。再加熱温度は1220℃であり、仕上げ温度は850℃であり、巻回温度は700℃であった。熱間圧延板の両面を2.5mmの厚さに表面研磨して、実験室再加熱工程の間に引き起こされる脱炭表面層を取り除いた。2.5mmの板を、可逆実験室冷間圧延で1mmに冷間圧延(60%の冷間圧延)した。冷間圧延板からの試料は、塩浴中で、900℃で300秒間オーステナイト化し、次いで油焼き入れした。一部の試料に熱電対を備えて油焼き入れの間の冷却速度を測定した。800℃から300℃の平均冷却速度は150℃/秒であった。焼き入れ試料の機械的性質を圧延方向に横断して測定した。機械的性質の概要を表2に付与する。 A 50 mm slab of the elements shown in Table 1 was made in the laboratory. The slab was hot rolled onto a 3.5 mm plate. The reheating temperature was 1220 ° C., the finishing temperature was 850 ° C., and the winding temperature was 700 ° C. Both sides of the hot-rolled plate were surface-polished to a thickness of 2.5 mm to remove the decarburized surface layer caused during the laboratory reheating process. A 2.5 mm plate was cold rolled (60% cold rolled) to 1 mm by reversible laboratory cold rolling. Samples from cold-rolled plates were austenitized at 900 ° C. for 300 seconds in a salt bath and then oil-quenched. Some samples were equipped with thermocouples to measure the cooling rate during oil quenching. The average cooling rate from 800 ° C to 300 ° C was 150 ° C / sec. The mechanical properties of the hardened sample were measured across the rolling direction. An overview of the mechanical properties is given in Table 2.

図1では、表2の引張強度データを要素における炭素に対してプロットした。多くの以前の公開物(例えば、Martensite transformation,structure and properties in hardenable steels,G.Krauss,Hardenability concepts with applications to steel,D.V.Doane&J.S.Kirkaldy ed.,October 24−26,1977,page235参照)で言及するように、引張強度は炭素に強く依存する。しかし、図1は、また、Nbを備えた鋼がNbのない同様の炭素を備えた鋼より高い強度を有することを示す。さらに、Nbを備えた鋼の引張強度に適合する直線の傾斜が、Nbのない鋼についてのものよりはるかに小さいので、Nbが添加された鋼の強度は炭素にそれほど依存しない。図2では、Nbを備えた鋼とNbのない鋼との強度の差は、Cが増大するにつれて小さくなり、両グループの鋼は0.17%以上のCで同様の強度を有する。 In FIG. 1, the tensile strength data in Table 2 are plotted against carbon in the element. Many previous publications (eg, Martensite transition, structure and products in hardenable steels, G. Krauss, Hardenability concepts with35Designs withCard. As mentioned in), tensile strength is strongly dependent on carbon. However, FIG. 1 also shows that steel with Nb has higher strength than steel with similar carbon without Nb. Moreover, the strength of the Nb-added steel is less dependent on carbon, as the slope of the straight line to match the tensile strength of the Nb-equipped steel is much smaller than that for the Nb-free steel. In FIG. 2, the difference in strength between the steel with Nb and the steel without Nb becomes smaller as C increases, and the steels of both groups have similar strength at C of 0.17% or more.

焼き入れされた材料の最終強度に対する冷却速度の効果を決定するために、「臨界冷却速度」、つまり、「フェライトを回避するためのオーステナイト化温度からの最小冷却速度」を評価した。これらの実験では、鋼の連続冷却変態(CCT)図を、MMC膨張計を使用して作製した。これらのテストでは、小試料を900℃に加熱し、次いで試料膨張(長さ変化)を測定しながら所定の冷却速度で冷却した。冷却の間の異なる相変態を、膨張データからおよび冷却した試料の微構造および最終硬度を評価することによって同定した。幾つかの冷却速度が、CCT図を作成するために必要である。 To determine the effect of cooling rate on the final strength of the hardened material, "critical cooling rate", i.e., "minimum cooling rate from austenitizing temperature to avoid ferrite" was evaluated. In these experiments, continuous cooling transformation (CCT) diagrams of steel were made using an MMC expansion meter. In these tests, the small sample was heated to 900 ° C. and then cooled at a predetermined cooling rate while measuring the sample expansion (length change). Different phase transformations during cooling were identified from expansion data and by assessing the microstructure and final hardness of the cooled sample. Some cooling rates are needed to create the CCT diagram.

このような図の一例を図3に示す。この図から分かるように、フェライト変態は1℃/秒より高い冷却速度で生じない。参照先が見つからない(Error!Reference source not found)A&Cで示されている3℃/秒以上の冷却速度での微構造は、マルテンサイト微構造を示す。しかし、参照先が見つからない(Error!Reference source not found)B&Dで示されているより低い冷却速度での高い焼き戻しがある。焼き戻しマルテンサイトにもかかわらず、3℃/秒の冷却速度で350HVの高硬度を得、硬度は冷却速度が速くなるにつれて向上する。1℃/秒より高い、好ましくは3℃/秒より高い冷却速度をもたらすいずれかの媒体(空気、油、金型、窒素)中で本発明の鋼を冷却すると、完全マルテンサイト高強度鋼が生成される。 An example of such a figure is shown in FIG. As can be seen from this figure, ferrite transformation does not occur at cooling rates higher than 1 ° C./sec. The microstructure at a cooling rate of 3 ° C./sec or higher, indicated by the Error! Reference source not found A & C, indicates a martensite microstructure. However, there is a high temper at a lower cooling rate as indicated by the B & D where the reference is not found (Error! Reference source not found). Despite the tempered martensite, a high hardness of 350 HV is obtained at a cooling rate of 3 ° C./sec, and the hardness increases as the cooling rate increases. Cooling the steels of the invention in any medium (air, oil, mold, nitrogen) that provides a cooling rate higher than 1 ° C./sec, preferably higher than 3 ° C./sec, results in a fully martensite high-strength steel. Will be generated.

鋼55、63、81および141のスポット溶接性を、均質な接合構成においてISO18278−2仕様によって評価した。これらのテストは、図5では、散りの非飛散の結果を示し、図6AからDでは、溶接塊の均一な微構造を示した。 Spot weldability of steels 55, 63, 81 and 141 was evaluated according to ISO 18278-2 specifications in a homogeneous joint configuration. These tests showed non-scattering results in FIG. 5 and uniform microstructures of weld ingots in FIGS. 6A-D .

表1および表2、図1および図2は、0.04から0.20wt%のC含有量に関して、一部のCを0.003から0.055wt%の量でNbと置換される場合に同じ高引張強度を得ることができることを示す。 Tables 1 and 2, FIGS. 1 and 2 show that for a C content of 0.04 to 0.20 wt%, some C is replaced with Nb in an amount of 0.003 to 0.055 wt%. It is shown that the same high tensile strength can be obtained.

本明細書における数値範囲の開示は、この数値範囲の端点および数値範囲内のすべての有理数の開示であるように意図される。 The disclosure of a numerical range herein is intended to be the disclosure of the endpoints of this numerical range and all rational numbers within the numerical range.

本発明は特定の実施形態に関して記載されているが、説明された特定の詳細に限定されることはなく、当業者が提案してもよい様々な変更および修正、以下の請求項に定義されるような本発明の範囲内に収まるすべてを含んでいる。 The present invention has been described with respect to a particular embodiment, but is not limited to the particular details described, and various modifications and modifications that may be proposed by one of ordinary skill in the art, as defined in the following claims. It includes everything that falls within the scope of the present invention.

Figure 0006830468
Figure 0006830468

Figure 0006830468
Figure 0006830468

Claims (14)

鋼板であって、重量%で、
0.04≦C≦0.30、
0.5≦Mn≦4、
0≦Cr≦4、
2.7≦Mn+Cr≦5、
0.003≦Nb≦0.1、
0.015≦Al≦0.
含み、
任意に0.2重量%以下のV、及び
任意に0.005重量%以下のBを含み、
残部はFeおよび不可避の不純物であり、
前記鋼板は10面積%以内のベイナイトを含み、残りはマルテンサイトである微構造を有し、
前記鋼板は800から1400MPaの範囲の引張強度を有する鋼板。
It is a steel plate, by weight%,
0.04 ≤ C ≤ 0.30,
0.5 ≤ Mn ≤ 4,
0 ≦ Cr ≦ 4,
2.7 ≤ Mn + Cr ≤ 5,
0.003 ≤ Nb ≤ 0.1,
0.015 ≤ Al ≤ 0. 1
It includes,
Optional V of 0.2% by weight or less, and
Optionally contains B of 0.005% by weight or less ,
The rest are Fe and unavoidable impurities,
The steel sheet contains bainite within 10 area%, and the rest has a microstructure of martensite.
The steel sheet is a steel sheet having a tensile strength in the range of 800 to 1400 MPa.
0.06≦C≦0.18である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.06 ≦ C ≦ 0.18. 0.08≦C≦0.16である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.08 ≦ C ≦ 0.16. 0.5≦Mn≦3.5である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.5 ≦ Mn ≦ 3.5. 0.5≦Mn≦3.0である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.5 ≦ Mn ≦ 3.0. 0.2≦Cr≦3.5である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.2 ≦ Cr ≦ 3.5. 0.5≦Cr≦3.0である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.5 ≦ Cr ≦ 3.0. 3.0≦Mn+Cr≦4.7である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 3.0 ≦ Mn + Cr ≦ 4.7. 3.3≦Mn+Cr≦4.4である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 3.3 ≦ Mn + Cr ≦ 4.4. 0.005≦Nb≦0.060である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.005 ≦ Nb ≦ 0.060. 0.010≦Nb≦0.055である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein 0.010 ≦ Nb ≦ 0.055. 前記鋼板の少なくとも1つの表面はZn、AlまたはAl合金を含む層で被覆されている、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein at least one surface of the steel sheet is coated with a layer containing a Zn, Al or Al alloy. 前記鋼板は95から100面積%のマルテンサイトを含む微構造を有する、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein the steel sheet has a microstructure containing 95 to 100 area% of martensite. 前記鋼板は熱間形成鋼板である、請求項1に記載の鋼板。 The steel sheet according to claim 1, wherein the steel sheet is a hot-formed steel sheet.
JP2018208132A 2014-02-05 2018-11-05 Hot-forming air-quenching weldable steel sheet Active JP6830468B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461935948P 2014-02-05 2014-02-05
US61/935,948 2014-02-05

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016550745A Division JP2017510703A (en) 2014-02-05 2015-02-05 Hot forming air hardenability weldable steel plate

Publications (2)

Publication Number Publication Date
JP2019065396A JP2019065396A (en) 2019-04-25
JP6830468B2 true JP6830468B2 (en) 2021-02-17

Family

ID=53778462

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016550745A Pending JP2017510703A (en) 2014-02-05 2015-02-05 Hot forming air hardenability weldable steel plate
JP2018208132A Active JP6830468B2 (en) 2014-02-05 2018-11-05 Hot-forming air-quenching weldable steel sheet

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016550745A Pending JP2017510703A (en) 2014-02-05 2015-02-05 Hot forming air hardenability weldable steel plate

Country Status (14)

Country Link
EP (1) EP3114246B1 (en)
JP (2) JP2017510703A (en)
KR (3) KR20180104199A (en)
CN (2) CN105980591A (en)
BR (1) BR112016018119B8 (en)
CA (1) CA2938851C (en)
ES (1) ES2746260T3 (en)
HU (1) HUE045244T2 (en)
MA (1) MA39245B2 (en)
MX (1) MX2016010006A (en)
PL (1) PL3114246T3 (en)
RU (1) RU2695688C1 (en)
UA (1) UA119344C2 (en)
WO (1) WO2015120205A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102030815B1 (en) * 2016-12-28 2019-10-11 연세대학교 산학협력단 High intensity medium manganese steel forming parts for warm stamping and manufacturing method for the same
WO2018160700A1 (en) * 2017-03-01 2018-09-07 Ak Steel Properties, Inc. Hot-rolled steel with very high strength and method for production
CN111954722A (en) * 2018-02-06 2020-11-17 集成热处理解决方案有限责任公司 High pressure instantaneous uniform quench to control part performance
WO2020229877A1 (en) * 2019-05-15 2020-11-19 Arcelormittal A cold rolled martensitic steel and a method for it's manufacture

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080440A (en) * 1998-08-31 2000-03-21 Kawasaki Steel Corp High strength cold rolled steel sheet and its manufacture
JP2000282175A (en) * 1999-04-02 2000-10-10 Kawasaki Steel Corp Superhigh strength hot-rolled steel sheet excellent in workability, and its production
TW567231B (en) * 2001-07-25 2003-12-21 Nippon Steel Corp Multi-phase steel sheet excellent in hole expandability and method of producing the same
EP1288322A1 (en) * 2001-08-29 2003-03-05 Sidmar N.V. An ultra high strength steel composition, the process of production of an ultra high strength steel product and the product obtained
JP4351465B2 (en) * 2003-04-15 2009-10-28 新日本製鐵株式会社 Hot-dip galvanized high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4325277B2 (en) * 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
JP4486336B2 (en) * 2003-09-30 2010-06-23 新日本製鐵株式会社 High yield ratio high strength cold-rolled steel sheet and high yield ratio high strength hot-dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high-strength galvannealed steel sheet, and manufacturing method thereof
JP5228447B2 (en) * 2006-11-07 2013-07-03 新日鐵住金株式会社 High Young's modulus steel plate and method for producing the same
JP5194878B2 (en) * 2007-04-13 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
EP1990431A1 (en) * 2007-05-11 2008-11-12 ArcelorMittal France Method of manufacturing annealed, very high-resistance, cold-laminated steel sheets, and sheets produced thereby
KR100928788B1 (en) * 2007-12-28 2009-11-25 주식회사 포스코 High strength steel sheet with excellent weldability and manufacturing method
JP5167865B2 (en) * 2008-02-29 2013-03-21 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP4924730B2 (en) * 2009-04-28 2012-04-25 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability, weldability and fatigue characteristics and method for producing the same
JP5041084B2 (en) * 2010-03-31 2012-10-03 Jfeスチール株式会社 High-tensile hot-rolled steel sheet excellent in workability and manufacturing method thereof
JP5434960B2 (en) * 2010-05-31 2014-03-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in bendability and weldability and method for producing the same
CA2802033C (en) * 2010-06-14 2015-11-24 Nippon Steel & Sumitomo Metal Corporation Hot-stamped steel, method of producing of steel sheet for hot stamping, and method of producing hot-stamped steel
WO2012128225A1 (en) * 2011-03-18 2012-09-27 新日本製鐵株式会社 Steel sheet for hot-stamped member and process for producing same
KR20130132623A (en) * 2011-04-01 2013-12-04 신닛테츠스미킨 카부시키카이샤 Hot stamp-molded high-strength component having excellent corrosion resistance after coating, and method for manufacturing same
JP5533765B2 (en) * 2011-04-04 2014-06-25 新日鐵住金株式会社 High-strength cold-rolled steel sheet with excellent local deformability and its manufacturing method
CN103492600B (en) * 2011-04-27 2015-12-02 新日铁住金株式会社 Hot stamping parts steel plate and manufacture method thereof
JP5742697B2 (en) * 2011-12-12 2015-07-01 新日鐵住金株式会社 Hot stamping molded body excellent in balance between strength and toughness, manufacturing method thereof, and manufacturing method of steel sheet for hot stamping molded body
RU2581330C2 (en) * 2012-01-13 2016-04-20 Ниппон Стил Энд Сумитомо Метал Корпорейшн Hot-stamp steel and its production
JP5860333B2 (en) * 2012-03-30 2016-02-16 株式会社神戸製鋼所 High yield ratio high strength cold-rolled steel sheet with excellent workability
JP6359518B2 (en) * 2012-04-05 2018-07-18 タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv Low Si content steel strip

Also Published As

Publication number Publication date
BR112016018119B8 (en) 2020-12-15
KR20160117543A (en) 2016-10-10
KR20210047366A (en) 2021-04-29
MX2016010006A (en) 2016-12-16
CA2938851C (en) 2020-06-09
EP3114246B1 (en) 2019-08-28
BR112016018119B1 (en) 2020-11-17
EP3114246A4 (en) 2018-04-04
WO2015120205A1 (en) 2015-08-13
MA39245A1 (en) 2017-03-31
JP2017510703A (en) 2017-04-13
PL3114246T3 (en) 2020-03-31
MA39245B2 (en) 2021-04-30
CN105980591A (en) 2016-09-28
EP3114246A1 (en) 2017-01-11
HUE045244T2 (en) 2019-12-30
JP2019065396A (en) 2019-04-25
CN113416892A (en) 2021-09-21
BR112016018119A2 (en) 2017-08-08
UA119344C2 (en) 2019-06-10
KR20180104199A (en) 2018-09-19
CA2938851A1 (en) 2015-08-13
RU2695688C1 (en) 2019-07-25
ES2746260T3 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP7433386B2 (en) Hot rolled and coated steel sheets for hot stamping, hot stamped and coated steel parts and methods for producing them
JP6830468B2 (en) Hot-forming air-quenching weldable steel sheet
TWI504757B (en) High strength molten galvanized steel sheet and its manufacturing method
JP6236078B2 (en) Cold rolled steel sheet product and method for producing the same
JP2013545890A (en) Steel blank hot forming method and hot formed parts
CN107208232B (en) Self hardening superhigh intensity multi-phase Steels with excellent processability and the method that band is prepared by it
KR102630305B1 (en) Method for producing high-strength steel parts with improved ductility, and parts obtained by said method
CA2924812A1 (en) Steel for hot forming
KR20170086062A (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
CN113316650B (en) High-strength steel strip
KR20170084209A (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
JP7151871B2 (en) hot stamped body
WO2015039738A1 (en) Steel for hot forming
CA3110823A1 (en) Hot rolled steel sheet with high hole expansion ratio and manufacturing process thereof
CN112955572B (en) Press hardened part with high delayed fracture resistance and method for manufacturing same
WO2016146581A1 (en) Steel for hot forming
US20180105892A9 (en) Hot formable, air hardenable, weldable, steel sheet
KR20180125458A (en) Method for producing hot-formed steel component and hot-formed steel component
EP3271491A1 (en) Steel for hot forming

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210126

R150 Certificate of patent or registration of utility model

Ref document number: 6830468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250