JP5167865B2 - High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same - Google Patents

High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same Download PDF

Info

Publication number
JP5167865B2
JP5167865B2 JP2008050907A JP2008050907A JP5167865B2 JP 5167865 B2 JP5167865 B2 JP 5167865B2 JP 2008050907 A JP2008050907 A JP 2008050907A JP 2008050907 A JP2008050907 A JP 2008050907A JP 5167865 B2 JP5167865 B2 JP 5167865B2
Authority
JP
Japan
Prior art keywords
hot
temperature
less
steel sheet
dip galvanized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008050907A
Other languages
Japanese (ja)
Other versions
JP2009209384A (en
Inventor
英尚 川邉
康伸 長滝
靖 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008050907A priority Critical patent/JP5167865B2/en
Publication of JP2009209384A publication Critical patent/JP2009209384A/en
Application granted granted Critical
Publication of JP5167865B2 publication Critical patent/JP5167865B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、厳しい形状にプレス成形されることが要求される自動車部品などに用いて好適な、加工性および溶接性に優れる引張強度(TS)が980MPa以上の高強度溶融亜鉛めっき鋼板およびその製造方法に関するものである。
なお、本発明における溶融亜鉛めっき鋼板は、亜鉛めっき後の合金化熱処理を施した、いわゆる合金化溶融亜鉛めっき鋼板を含むものである。
The present invention is a high-strength hot-dip galvanized steel sheet having a tensile strength (TS) of 980 MPa or more, excellent in workability and weldability, and suitable for use in automobile parts that are required to be press-formed into a strict shape It is about the method.
The hot dip galvanized steel sheet in the present invention includes a so-called galvannealed steel sheet that has been subjected to an alloying heat treatment after galvanization.

自動車部品などに用いられる高強度溶融亜鉛めっき鋼板は、その用途の特徴上、高強度に加えて、加工性に優れていることが要求される。
最近、車体軽量化による燃費向上および衝突安全性確保の観点から高強度の鋼板が自動車車体に求められ、適用が拡大している。また、従来は軽加工主体であったが、複雑形状への適用も検討され始めている。
High-strength hot-dip galvanized steel sheets used for automobile parts and the like are required to have excellent workability in addition to high strength due to the characteristics of their applications.
Recently, high-strength steel sheets have been demanded for automobile bodies from the viewpoint of improving fuel efficiency and ensuring collision safety by reducing the weight of the vehicle body, and its application is expanding. Conventionally, light processing has been mainly used, but application to complex shapes is also being studied.

しかしながら、一般に、鋼板の高強度化に伴い加工性は低下する傾向にあるため、高強度鋼板を適用する際の一番の課題として、プレス成形時における割れが挙げられる。従って、部品形状に応じて伸びフランジ性などの加工性を向上させることが要求されている。
また、成形後は組み立て工程にて抵抗スポット溶接が施されるため、加工性に加えて、優れた溶接性も要求される。
However, since the workability generally tends to decrease with the increase in strength of the steel sheet, cracking during press forming can be cited as the primary problem when applying a high-strength steel sheet. Therefore, it is required to improve workability such as stretch flangeability according to the part shape.
Moreover, since resistance spot welding is performed in an assembly process after molding, in addition to workability, excellent weldability is also required.

上記の要請に応えるべく、例えば特許文献1〜8には、鋼成分や組織の限定、熱延条件や焼鈍条件の最適化などにより、加工性が高く高強度の溶融亜鉛めっき鋼板を得る方法が提案されている。
特開2004−232011号公報 特開2002−256386号公報 特開2002−317245号公報 特開2005−105367号公報 特許第3263143号公報 特許第3596316号公報 特開2001−11538号公報 特開2006-342373号公報
In order to meet the above requirements, for example, in Patent Documents 1 to 8, there is a method for obtaining a hot-dip galvanized steel sheet having high workability by limiting the steel components and the structure, optimizing hot rolling conditions and annealing conditions, and the like. Proposed.
JP 2004-232011 Japanese Patent Laid-Open No. 2002-256386 JP 2002-317245 A JP 2005-105367 A Japanese Patent No. 3263143 Japanese Patent No. 3596316 Japanese Patent Laid-Open No. 2001-11538 JP 2006-342373 A

上掲した特許文献のうち、特許文献1には、C,Si含有量の多いTS:980MPa級の鋼材について開示されているが、伸びフランジ性については何ら考慮が払われていない。
特許文献2〜4には、Crを活用した鋼材について開示されているが、やはり伸びフランジ性については何ら考慮が払われていない。
特許文献5〜7には、伸びフランジ性を評価する指標の一つである穴拡げ率λに関する記載があるが、引張強度(TS)は980MPaに達していない。
特許文献8には、強度と延性のバランス、曲げ性、スポット溶接性などに優れる溶融亜鉛めっき鋼板について開示されている。特許文献8に開示された技術は、析出強化に着目して上記の各特性のバランスを図ったものであり、強度レベルが引張強度(TS)で980MPa以上の高強度を達成することも可能ではあるが、980MPa以上の高強度を指向した場合、伸びフランジ性を十分に確保できないという問題があった。
Among the above-mentioned patent documents, Patent Document 1 discloses a TS: 980 MPa grade steel material having a large C and Si content, but no consideration is given to stretch flangeability.
Patent Documents 2 to 4 disclose steel materials using Cr, but no consideration is given to stretch flangeability.
Patent Documents 5 to 7 describe a hole expansion ratio λ that is one of the indexes for evaluating stretch flangeability, but the tensile strength (TS) does not reach 980 MPa.
Patent Document 8 discloses a hot-dip galvanized steel sheet that is excellent in balance between strength and ductility, bendability, spot weldability, and the like. The technique disclosed in Patent Document 8 focuses on precipitation strengthening and balances the above characteristics, and it is not possible to achieve a high strength of 980 MPa or more in tensile strength (TS). However, when high strength of 980 MPa or more is aimed, there is a problem that sufficient stretch flangeability cannot be secured.

また、引張強度(TS)が980MPa以上の高強度鋼板においては、製造条件のばらつきに起因して材質がばらつきやすい点にも問題を残していた。従って、良好な加工性およびスポット溶接性に加え、材質のばらつき、特に鋼板の長手方向における材質のばらつきが小さい鋼板が求められていた。   Moreover, in the high-strength steel sheet having a tensile strength (TS) of 980 MPa or more, there remains a problem in that the material is likely to vary due to variations in manufacturing conditions. Therefore, in addition to good workability and spot weldability, there has been a demand for a steel plate that has a small variation in material, particularly a small variation in material in the longitudinal direction of the steel plate.

本発明は、上記の現状に鑑み開発されたもので、TS≧980MPaの高い引張強度を有し、加工性および溶接性に優れた高強度溶融亜鉛めっき鋼板を、材質のばらつきを低減した製造方法と共に提案することを目的とする。   The present invention was developed in view of the above situation, and a high strength hot-dip galvanized steel sheet having high tensile strength of TS ≧ 980 MPa, excellent workability and weldability, and a manufacturing method with reduced material variations It aims to be proposed together.

さて、発明者らは、上記の課題を解決すべく鋭意研究を重ねた。
その結果、
(1) 加工性および溶接性の観点からは、C,P,S量を低減する必要がある、
(2) 良好な表面性状を達成するためにはSi量を低く抑える必要がある、
(3) CやPの低減に伴う強度低下については、Crを活用することにより、合金元素が少な
い場合においても高強度化が可能である、
(4) 上記した成分系において、鋼組織を、体積分率で、フェライト相:20〜60%、マルテンサイト相:40〜80%とし、かつ該フェライト相の平均結晶粒径を5μm以下とすることにより、TS:980MPa以上の高強度の下でも、優れた加工性および溶接性が得られる、
ことの知見を得た。
本発明は上記の知見に立脚するものである。
Now, the inventors have intensively studied to solve the above problems.
as a result,
(1) From the viewpoint of workability and weldability, it is necessary to reduce the amount of C, P and S.
(2) In order to achieve good surface properties, it is necessary to keep the amount of Si low,
(3) About the strength reduction accompanying the reduction of C and P, by using Cr, it is possible to increase the strength even when there are few alloy elements.
(4) In the above component system, the steel structure is, in volume fraction, ferrite phase: 20-60%, martensite phase: 40-80%, and the average crystal grain size of the ferrite phase is 5 μm or less. This makes it possible to obtain excellent workability and weldability even under high strength of TS: 980 MPa or higher.
I got that knowledge.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、C:0.05%以上0.10%未満、Si:0.01%以上0.35%未満、Mn:2.0〜3.5%、P:0.020%以下、S:0.0020%以下、Al:0.005〜0.1%、N:0.0050%以下、Cr:1.0%を超え2.0%以下、Ti:0.010〜0.080%、Nb:0.010〜0.080%およびB:0.0001〜0.0030%を含有し、残部はFeおよび不可避不純物の組成になり、鋼組織が、体積分率で、20〜60%のフェライト相と、40〜80%のマルテンサイト相および5%以下(0%を含む)の残部組織からなり、かつ該フェライト相の平均結晶粒径が5μm以下であり、引張強度が980MPa以上で、さらに鋼板表面に溶融亜鉛めっき層を有することを特徴とする加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板。
That is, the gist configuration of the present invention is as follows.
1. By mass%, C: 0.05% or more and less than 0.10%, Si: 0.01% or more and less than 0.35%, Mn: 2.0 to 3.5%, P: 0.020% or less, S: 0.0020% or less, Al: 0.005 to 0.1%, N: Contains 0.0050% or less, Cr: more than 1.0% and 2.0% or less, Ti: 0.010-0.080%, Nb: 0.010-0.080% and B: 0.0001-0.0030%, the balance is Fe and inevitable impurities, steel The structure consists of 20-60% ferrite phase, 40-80% martensite phase, and 5% or less (including 0%) balance structure in volume fraction, and the average grain size of the ferrite phase Is a high-strength hot-dip galvanized steel sheet excellent in workability and weldability, characterized by having a tensile strength of 980 MPa or more and a hot-dip galvanized layer on the steel sheet surface.

2.上記鋼板がさらに、質量%で、Ca:0.0001〜0.0050%を含有することを特徴とする上記1に記載の高強度溶融亜鉛めっき鋼板。 2. 2. The high-strength hot-dip galvanized steel sheet according to 1 above, wherein the steel sheet further contains Ca: 0.0001 to 0.0050% by mass%.

3.質量%で、C:0.05%以上0.10%未満、Si:0.01%以上0.35%未満、Mn:2.0〜3.5%、P:0.020%以下、S:0.0020%以下、Al:0.005〜0.1%、N:0.0050%以下、Cr:1.0%を超え2.0%以下、Ti:0.010〜0.080%、Nb:0.010〜0.080%およびB:0.0001〜0.0030%を含有し、残部はFeおよび不可避不純物の組成になる鋼スラブを、熱間圧延後、コイルに巻取ったのち、酸洗し、ついで冷間圧延後、溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造するに際し、
上記熱間圧延では、スラブ加熱温度を1150〜1300℃、熱間仕上げ圧延温度を850〜950℃として熱間圧延した後、熱間仕上げ圧延温度〜(熱間仕上げ圧延温度−100℃)の温度域を平均冷却速度:5〜200℃/秒として冷却し、巻取り温度:400〜600℃でコイルに巻取り、ついで酸洗後、冷間圧延したのち、200℃から中間温度までの1次平均昇温速度を10〜50℃/秒として500〜800℃の中間温度まで加熱し、さらに該中間温度から焼鈍温度までの2次平均昇温速度を0.1〜10℃/秒として750〜900℃の焼鈍温度まで加熱し10〜500秒保持したのち、450〜550℃の冷却停止温度まで1〜30℃/秒の平均冷却速度で冷却し、ついで溶融亜鉛めっき処理、あるいはさらに合金化処理を施すことで、
鋼組織が、体積分率で、20〜60%のフェライト相、40〜80%のマルテンサイト相および5%以下(0%を含む)の残部組織からなり、かつ該フェライト相の平均結晶粒径が5μm以下であり、引張強度が980MPa以上である鋼板を得ることを特徴とする加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板の製造方法。


3. By mass%, C: 0.05% or more and less than 0.10%, Si: 0.01% or more and less than 0.35%, Mn: 2.0 to 3.5%, P: 0.020% or less, S: 0.0020% or less, Al: 0.005 to 0.1%, N: Steel slab containing 0.0050% or less, Cr: more than 1.0% and 2.0% or less, Ti: 0.010-0.080%, Nb: 0.010-0.080% and B: 0.0001-0.0030%, with the balance being Fe and inevitable impurities , After hot rolling, after winding into a coil, pickling, then cold rolling, hot-dip galvanized to produce a hot-dip galvanized steel sheet,
In the above hot rolling, after hot rolling with a slab heating temperature of 1150 to 1300 ° C and a hot finish rolling temperature of 850 to 950 ° C, a temperature of hot finish rolling temperature to (hot finish rolling temperature-100 ° C) The zone is cooled at an average cooling rate of 5 to 200 ° C./second, wound at a coiling temperature of 400 to 600 ° C., then pickled, cold-rolled, and then primary from 200 ° C. to an intermediate temperature. Heating to an intermediate temperature of 500 to 800 ° C with an average temperature increase rate of 10 to 50 ° C / second, and 750 to 900 ° C with a secondary average temperature increase rate from the intermediate temperature to the annealing temperature of 0.1 to 10 ° C / second After heating to the annealing temperature of the steel and holding it for 10 to 500 seconds, it is cooled to a cooling stop temperature of 450 to 550 ° C. at an average cooling rate of 1 to 30 ° C./second, and then hot dip galvanized or further alloyed. that is,
The steel structure has a volume fraction of 20-60% ferrite phase, 40-80% martensite phase, and a remaining structure of 5% or less (including 0%), and the average grain size of the ferrite phase A method for producing a high-strength hot-dip galvanized steel sheet excellent in workability and weldability, characterized in that a steel sheet having a tensile strength of 980 MPa or more is obtained .


4.上記の熱間仕上げ圧延終了後、(巻取り温度)×1.1の温度までの経過時間を5秒以上とすることを特徴とする上記3に記載の高強度溶融亜鉛めっき鋼板の製造方法。 4). 4. The method for producing a high-strength hot-dip galvanized steel sheet according to 3 above, wherein an elapsed time from the end of the hot finish rolling to a temperature of (winding temperature) × 1.1 is 5 seconds or more.

5.上記鋼スラブがさらに、質量%で、Ca:0.0001〜0.0050%を含有することを特徴とする上記3または4に記載の高強度溶融亜鉛めっき鋼板の製造方法。
なお、本発明において、加工性に優れるとは、TS×El≧15000MPa・%で、かつTS×λ≧35000MPa・%の両方を満足することであり、また溶接性に優れるとは、ナゲット径:4t1/2(mm)(t:鋼板の板厚)以上で母材破断することであり、高強度とは、引張強度(TS)が980MPa以上を意味する。
5. 5. The method for producing a high-strength hot-dip galvanized steel sheet according to 3 or 4 above, wherein the steel slab further contains, by mass%, Ca: 0.0001 to 0.0050%.
In the present invention, excellent workability means satisfying both TS × El ≧ 15000 MPa ·% and TS × λ ≧ 35000 MPa ·%, and excellent weldability means nugget diameter: The base material breaks at 4t 1/2 (mm) (t: plate thickness of the steel plate) or more, and high strength means that the tensile strength (TS) is 980 MPa or more.

本発明によれば、加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板を得ることができる。
また、本発明の製造方法によれば、鋼板のコイル長手方向における材質のばらつきが小さい、すなわちコイル長手方向における材質変動の小さい高強度溶融亜鉛めっき鋼板を得ることができる。
そして、本発明により得られる高強度溶融亜鉛めっき鋼板は、自動車部品として要求される強度および加工性を共に満足しており、厳しい形状にプレス成形される自動車部品として好適である。
According to the present invention, a high-strength hot-dip galvanized steel sheet excellent in workability and weldability can be obtained.
Moreover, according to the manufacturing method of the present invention, it is possible to obtain a high-strength hot-dip galvanized steel sheet having a small variation in material in the coil longitudinal direction of the steel sheet, that is, a small material variation in the coil longitudinal direction.
The high-strength hot-dip galvanized steel sheet obtained by the present invention satisfies both strength and workability required for automobile parts, and is suitable as an automobile part that is press-formed into a strict shape.

以下、本発明を具体的に説明する。
まず、本発明において、鋼板の成分組成を上記の範囲に限定した理由について説明するなお、成分に関する「%」表示は特に断らない限り質量%を意味するものとする。
C:0.05%以上0.10%未満
マルテンサイト相の強度はC量に比例する傾向にあるので、Cはマルテンサイト相を利用して鋼を強化する上で不可欠の元素である。980MPa以上のTSを得るには0.05%以上のCが必要であり、C量の増加に伴ってTSは増加する。しかしながら、C量が0.10%以上になるとスポット溶接性が著しく劣化し、またマルテンナイト相の硬質化、さらにはマルテンサイト相よりも硬質な残留オーステナイト相の生成により、伸びフランジ性等の加工性も著しく低下する傾向にある。そのため、C量は0.05%以上0.10%未満の範囲に限定した。980MPa以上のTSを安定して確保する観点から、好ましいC量は0.08%以上0.10%未満である。
Hereinafter, the present invention will be specifically described.
First, in the present invention, the reason why the component composition of the steel sheet is limited to the above range will be described. Note that the “%” indication regarding the component means mass% unless otherwise specified.
C: 0.05% or more and less than 0.10% Since the strength of the martensite phase tends to be proportional to the amount of C, C is an indispensable element for strengthening steel using the martensite phase. In order to obtain TS of 980 MPa or more, 0.05% or more of C is necessary, and TS increases as the amount of C increases. However, when the C content exceeds 0.10%, the spot weldability is remarkably deteriorated, the martensite phase is hardened, and further, a retained austenite phase harder than the martensite phase is generated, so that workability such as stretch flangeability is also achieved. It tends to decrease significantly. Therefore, the C content is limited to a range of 0.05% or more and less than 0.10%. From the viewpoint of stably securing TS of 980 MPa or more, a preferable C amount is 0.08% or more and less than 0.10%.

Si:0.01%以上0.35%未満
Siは、固溶強化により強度向上に寄与する元素である。しかしながら、含有量が0.01%に満たないとその効果に乏しく、一方0.35%以上含有してもその効果は飽和するばかりか、フェライト相の延性の低下を招く。また、過度に含有されることにより、熱延時に難剥離性のスケールを生成して鋼板の表面性状を劣化させ、加工性を低下させる。また、鋼板表面に酸化物として濃化し、不めっきの原因ともなる。以上より、Si量は0.01%以上0.35%未満に限定した。好ましくは0.01〜0.20%の範囲である。
Si: 0.01% or more and less than 0.35%
Si is an element that contributes to strength improvement by solid solution strengthening. However, if the content is less than 0.01%, the effect is poor. On the other hand, if the content is 0.35% or more, the effect is not only saturated but also the ductility of the ferrite phase is lowered. Moreover, by containing excessively, the scale of difficulty peelability is produced | generated at the time of hot rolling, the surface property of a steel plate is deteriorated, and workability is reduced. Moreover, it concentrates as an oxide on the steel plate surface and causes non-plating. From the above, the Si content was limited to 0.01% or more and less than 0.35%. Preferably it is 0.01 to 0.20% of range.

Mn:2.0〜3.5%
Mnは、強度向上に有効に寄与し、この効果は2.0%以上含有することで認められる。一方、3.5%を超えて過度に含有すると、Mnの偏析などに起因して部分的に変態点が異なる組織となり、結果としてフェライト相とマルテンサイト相がバンド状で存在する不均一な組織となり、加工性が低下する。また、鋼板表面に酸化物として濃化し、不めっきの原因ともなる。以上より、Mn量は2.0〜3.5%の範囲に限定した。好ましくは2.2〜2.8%の範囲である。
Mn: 2.0-3.5%
Mn contributes effectively to strength improvement, and this effect is recognized by containing 2.0% or more. On the other hand, if it exceeds 3.5% and excessively contained, it becomes a structure in which the transformation point is partially different due to segregation of Mn and the like, and as a result, it becomes a non-uniform structure in which the ferrite phase and the martensite phase exist in a band shape, Workability is reduced. Moreover, it concentrates as an oxide on the steel plate surface and causes non-plating. From the above, the amount of Mn was limited to the range of 2.0 to 3.5%. Preferably it is 2.2 to 2.8% of range.

P:0.020%以下
Pは、強度向上に寄与する元素であるが、その反面溶接性を劣化させる元素でもあり、P量が0.020%を超えるとその影響が顕著に現れる。また一方で、過度のP低減は製鋼工程における製造コストの増加を伴うため、P量の下限は0.001%程度とすることが好ましい。以上より、P量は0.020%以下に限定した。好ましくは0.015%以下、より好ましくは0.010%以下である。
P: 0.020% or less P is an element that contributes to strength improvement, but on the other hand, it is also an element that deteriorates weldability. When the amount of P exceeds 0.020%, the effect becomes remarkable. On the other hand, since excessive P reduction is accompanied by an increase in manufacturing cost in the steel making process, the lower limit of the P amount is preferably about 0.001%. From the above, the P content is limited to 0.020% or less. Preferably it is 0.015% or less, More preferably, it is 0.010% or less.

S:0.0020%以下
S量が増加すると熱間赤熱脆性の原因となり、製造工程上不具合を生じる場合があり、また介在物MnSを形成し、冷間圧延後に板状の介在物として存在することにより、特に材料の極限変形能を低下させ、伸びフランジ性などの成形性を低下させる。S量が0.0020%までは問題ない。なお、過度の低減は製鋼工程における脱硫コストの増加を伴うため、Sの下限は0.0001%程度とすることが好ましい。以上から、S量は0.0020%以下に限定した。好ましくは0.0015%以下である。
S: 0.0020% or less When the amount of S increases, it may cause hot red hot brittleness, which may cause problems in the manufacturing process, and inclusion MnS is formed, and is present as a plate-like inclusion after cold rolling. Especially, the ultimate deformability of the material is lowered, and the moldability such as stretch flangeability is lowered. There is no problem until the S content is 0.0020%. In addition, since excessive reduction accompanies the increase in the desulfurization cost in a steelmaking process, it is preferable that the lower limit of S is about 0.0001%. From the above, the amount of S was limited to 0.0020% or less. Preferably it is 0.0015% or less.

Al:0.005〜0.1%
Alは、製鋼工程において脱酸剤として有効であり、また局部延性を低下させる非金属介在物をスラグ中に分離する点でも有用な元素である。さらに、Alは、焼鈍時に、めっき性を阻害する表層でのMn、Si系の酸化物の形成を抑制し、めっき表面外観を向上させる効果がある。このような効果を得るには0.005%以上のAlが必要である。一方、0.1%を超えて添加すると、鋼成分コストの増大を招くだけでなく、溶接性を低下させる。それ故、Al量は0.005〜0.1%の範囲に限定した。好ましくは0.01〜0.06%の範囲である。
Al: 0.005-0.1%
Al is an effective element as a deoxidizer in the steelmaking process, and is also a useful element in separating non-metallic inclusions that reduce local ductility into slag. Furthermore, Al has the effect of suppressing the formation of Mn and Si-based oxides on the surface layer that hinders plating properties during annealing and improving the plating surface appearance. In order to obtain such an effect, 0.005% or more of Al is necessary. On the other hand, if added over 0.1%, not only the steel component cost increases, but also the weldability decreases. Therefore, the Al content is limited to the range of 0.005 to 0.1%. Preferably it is 0.01 to 0.06% of range.

N:0.0050%以下
組織強化鋼において材料特性に及ぼすNの影響はあまり大きくはないが、0.0050%以下であれば本発明の効果を損なわない。一方、フェライトの清浄化による延性向上の観点か
らはN量は少ない方が好ましい。なお、製鋼上のコストが増大するため、下限は0.0001%程度とすることが好ましい。以上から、N量は0.0050%以下に限定した。
N: 0.0050% or less The influence of N on material properties in the structure-reinforced steel is not so great, but if it is 0.0050% or less, the effect of the present invention is not impaired. On the other hand, it is preferable that the amount of N is small from the viewpoint of improving ductility by cleaning ferrite. In addition, since the cost on steelmaking increases, the lower limit is preferably about 0.0001%. From the above, the N content is limited to 0.0050% or less.

Cr:1.0%を超え2.0%以下
Crは、鋼の焼入れ性に寄与する元素であり、本発明ではCr添加により焼入れ性を確保してマルテンサイト形成を安定させる。この効果を得るためには1.0%を超えるCr量が必要である。また、Crは、フェライト相を固溶強化し、マルテンサイト相とフェライト相の硬度差を低減して伸びフランジ性の向上に寄与する。しかしながら、Cr量が2.0%を超えると、鋼板表面にCrが局所的に偏在し、不均一な表面性状となることから、成形時に不均一に変形し加工性が低下する。以上から、Cr量は1.0%を超え2.0%以下の範囲に限定した。好ましくは1.1〜1.6%の範囲である。
Cr: more than 1.0% and less than 2.0%
Cr is an element that contributes to the hardenability of steel. In the present invention, the addition of Cr secures the hardenability and stabilizes the formation of martensite. In order to obtain this effect, a Cr content exceeding 1.0% is required. Cr also strengthens the ferrite phase by solid solution, reduces the hardness difference between the martensite phase and the ferrite phase, and contributes to the improvement of stretch flangeability. However, if the Cr content exceeds 2.0%, Cr is unevenly distributed locally on the surface of the steel sheet, resulting in non-uniform surface properties, resulting in non-uniform deformation during forming and reduced workability. From the above, the Cr content was limited to the range of more than 1.0% and less than 2.0%. Preferably it is 1.1 to 1.6% of range.

Ti:0.010〜0.080%
Tiは、鋼中でCまたはNと微細な炭化物や窒化物を形成することにより、熱延板組織および焼鈍後の鋼板組織の細粒化および析出強化の付与に有効に作用する。この効果を得るためには、0.010%以上のTiが必要である。しかしながら、Ti量が0.080%を超えるとこの効果が飽和するだけでなく、フェライト中に過度に析出物が生成し、フェライトの延性を低下させる。従って、Ti量は0.010〜0.080%の範囲に限定した。より好ましくは0.020
〜0.060%の範囲である。
Ti: 0.010-0.080%
Ti effectively acts to impart refinement and precipitation strengthening of the hot-rolled sheet structure and the steel sheet structure after annealing by forming fine carbides and nitrides with C or N in the steel. In order to obtain this effect, 0.010% or more of Ti is necessary. However, when the Ti amount exceeds 0.080%, not only this effect is saturated, but also precipitates are generated excessively in the ferrite, which lowers the ductility of the ferrite. Therefore, the Ti content is limited to the range of 0.010 to 0.080%. More preferably 0.020
It is in the range of ~ 0.060%.

Nb:0.010〜0.080%
Nbは、固溶強化または析出強化により強度の向上に寄与する元素である。また、フェライトを強化することによりマルテンサイト相との硬度差を低減する効果を通じて、伸びフランジ性の改善にも有効に寄与する。このような効果はNb量が0.010%以上で得られる。しかしながら、0.080%を超えて過度に含有させると、熱延板が硬質化し、熱間圧延、冷間圧延時の圧延荷重の増大を招く。また、フェライトの延性を低下させ、加工性が劣化する。従って、Nb量は0.010〜0.080%の範囲に限定した。なお、強度および加工性の観点からは、Nb量は0.030〜0.070%の範囲とするのが好ましい。
Nb: 0.010-0.080%
Nb is an element that contributes to improvement in strength by solid solution strengthening or precipitation strengthening. It also contributes to the improvement of stretch flangeability through the effect of reducing the hardness difference from the martensite phase by strengthening ferrite. Such an effect is obtained when the Nb content is 0.010% or more. However, if it is contained excessively exceeding 0.080%, the hot-rolled sheet becomes hard and causes an increase in rolling load during hot rolling and cold rolling. In addition, the ductility of the ferrite is lowered and workability is deteriorated. Therefore, the Nb content is limited to a range of 0.010 to 0.080%. From the viewpoint of strength and workability, the Nb content is preferably in the range of 0.030 to 0.070%.

B:0.0001〜0.0030%
Bは、焼入れ性を高め、焼鈍冷却過程で起こるフェライトの生成を抑制し、所望のマルテンサイト量を得るのに寄与する。この効果を得るためには、B量は0.0001%以上含有させる必要があるが、0.0030%を超えると上記の効果は飽和する。それ故、B量は0.0001〜0.0030%の範囲に限定した。好ましくは0.0005〜0.0020%の範囲である。
B: 0.0001-0.0030%
B improves hardenability, suppresses the formation of ferrite that occurs during the annealing cooling process, and contributes to obtaining a desired amount of martensite. In order to acquire this effect, it is necessary to contain B amount 0.0001% or more, but if it exceeds 0.0030%, the above effect is saturated. Therefore, the amount of B is limited to the range of 0.0001 to 0.0030%. Preferably it is 0.0005 to 0.0020% of range.

以上、必須成分について説明したが、本発明では、必要に応じてCaを適宜含有させることができる。
Ca:0.0001〜0.0050%
Caは、MnSなど硫化物の形状制御により延性や伸びフランジ性を向上させる効果があるが、多量に含有させてもその効果は飽和する傾向にある。よって、Caを含有させる場合、Caの含有量は0.0001〜0.0050%、より好ましくは0.0001〜0.0020%の範囲とする。
Although the essential components have been described above, in the present invention, Ca can be appropriately contained as necessary.
Ca: 0.0001 to 0.0050%
Ca has the effect of improving ductility and stretch flangeability by controlling the shape of sulfides such as MnS, but the effect tends to be saturated even if contained in a large amount. Therefore, when Ca is contained, the content of Ca is 0.0001 to 0.0050%, more preferably 0.0001 to 0.0020%.

本発明の鋼板は、所望の加工性および溶接性を得る上で、上記を基本成分とし、残部はFeおよび不可避不純物の組成からなる。不可避不純物の中でもVは、炭化物を析出させフェライト相の延性を低下させる。よって、V量は0.05%未満とすることが好ましい。より好ましくは0.005%未満である。   The steel sheet of the present invention has the above as basic components for obtaining desired workability and weldability, and the balance is composed of Fe and inevitable impurities. Among inevitable impurities, V precipitates carbides and lowers the ductility of the ferrite phase. Therefore, the V amount is preferably less than 0.05%. More preferably, it is less than 0.005%.

同様に析出物を生成させるZr、Mgなども含有量を極力低減する方が好ましく、それぞれ0.0200%未満とすることが好ましい。より好ましくは、それぞれ0.002%未満、さらに好ましくは0.0002%未満である。
その他の元素として、例えば、Cuは溶接性、Niはめっき後の表面外観に悪影響を及ぼすことから、Cu量およびNi量はそれぞれ0.4%未満とすることが好ましい。より好ましくは0.04%未満である。
なお、その他元素として、例えば、めっき性を大きく変化させることなく硫化物系介在物の形態を制御する作用を有するREMや鋼板表層の結晶粒を整粒にする作用を有するSbをそれぞれ0.0001〜0.1%の範囲で含有させても本発明の効果に影響するものではない。
Similarly, it is preferable to reduce the content of Zr, Mg, and the like that generate precipitates as much as possible, and it is preferable that each content be less than 0.0200%. More preferably, each is less than 0.002%, and more preferably less than 0.0002%.
As other elements, for example, Cu adversely affects weldability and Ni adversely affects the surface appearance after plating. Therefore, the Cu content and the Ni content are each preferably less than 0.4%. More preferably, it is less than 0.04%.
In addition, as other elements, for example, REM having an action of controlling the form of sulfide inclusions without greatly changing the plating property and Sb having an action of adjusting the grain size of the steel sheet surface layer are 0.0001 to 0.1, respectively. Even if contained in the range of%, the effect of the present invention is not affected.

次に、本発明にとって重要な要件の一つである鋼組織の限定範囲および限定理由について説明する。
フェライト相の平均結晶粒径:5μm以下
結晶粒の微細化は、鋼板の伸びフランジ性の向上に寄与する。そこで、本発明では、複合組織中のフェライト相の平均結晶粒径を5μm以下に制限することとした。フェライト相の平均結晶粒径が過度に粗大化すると、プレス加工後に鋼板表面が荒れることがある。また、軟質な領域と硬質な領域が粗に存在すると、加工が不均一となり成形性が劣化する。この点、フェライト相とマルテンサイト相が均一微細に存在すると、加工時に鋼板の変形が均一となるので、フェライト相の平均結晶粒径は小さい方が望ましい。加工性の劣化を抑制するために好ましい範囲は1〜3.5μmである。
Next, the limited range and reason for limiting the steel structure, which is one of the important requirements for the present invention, will be described.
Average crystal grain size of ferrite phase: 5 μm or less Refinement of crystal grains contributes to improvement of stretch flangeability of a steel sheet. Therefore, in the present invention, the average crystal grain size of the ferrite phase in the composite structure is limited to 5 μm or less. If the average crystal grain size of the ferrite phase becomes excessively large, the steel plate surface may be roughened after press working. In addition, if the soft region and the hard region are present roughly, the processing becomes non-uniform and the formability deteriorates. In this respect, if the ferrite phase and the martensite phase are present uniformly and finely, the deformation of the steel sheet becomes uniform during processing, and therefore it is desirable that the average crystal grain size of the ferrite phase is small. In order to suppress the deterioration of workability, the preferred range is 1 to 3.5 μm.

フェライト相の体積分率:20〜60%
フェライト相は軟質相であり、鋼板の延性に寄与するため、本発明の鋼板では、フェライト相を体積分率で20%以上含有させる必要がある。一方で、フェライト相が60%を超えて存在すると過度に軟質化し、強度の確保が困難となる。よって、フェライト相は体積分率で20〜60%、好ましくは30〜50%の範囲とした。
Volume fraction of ferrite phase: 20-60%
Since the ferrite phase is a soft phase and contributes to the ductility of the steel sheet, the steel sheet of the present invention needs to contain the ferrite phase in a volume fraction of 20% or more. On the other hand, if the ferrite phase exceeds 60%, it becomes too soft and it is difficult to ensure the strength. Therefore, the ferrite phase has a volume fraction of 20 to 60%, preferably 30 to 50%.

マルテンサイト相の体積分率:40〜80%
フェライト相以外には、オーステナイトからの低温変態相であるマルテンサイト相を体積分率で40〜80%の範囲で含有する組織とすることで、良好な材質が得られる。マルテンサイト相は、硬質相であり、変態組織強化によって鋼板の強度を増加させる作用を有している。また、変態生成時に可動転位の発生を伴うため、鋼板の降伏比を低下させる作用も有する。しかしながら、マルテンサイト相が体積分率で40%に満たない場合、軟質化し
、強度の確保が困難となるという問題があり、一方80%を超えると過度に硬質化し、伸びフランジ性等の加工性が著しく低下するという問題がある。好ましいマルテンサイト相は体積率で50〜70%である。
Volume fraction of martensite phase: 40-80%
In addition to the ferrite phase, an excellent material can be obtained by forming a martensite phase, which is a low-temperature transformation phase from austenite, in a volume fraction of 40 to 80%. The martensite phase is a hard phase and has an effect of increasing the strength of the steel sheet by strengthening the transformation structure. In addition, since the generation of movable dislocation is accompanied at the time of transformation generation, it also has the effect of reducing the yield ratio of the steel sheet. However, when the martensite phase is less than 40% in volume fraction, there is a problem that it becomes soft and it is difficult to ensure strength. On the other hand, when it exceeds 80%, it becomes excessively hard and workability such as stretch flangeability There is a problem that the remarkably decreases. A preferred martensite phase is 50 to 70% by volume.

上記したフェライト相およびマルテンサイト相以外の残部組織としては、ベイナイト相、残留オーステナイト相、セメンタイト等が考えられるが、これらのうちの1種または2種以上の合計が体積分率で5%以下であれば、本発明の効果を損ねるものではない。なお、残部組織の体積分率は0%であっても良い。   As the remaining structure other than the ferrite phase and the martensite phase described above, a bainite phase, a retained austenite phase, cementite, and the like can be considered, but the total of one or more of these is 5% or less in volume fraction. If present, the effect of the present invention is not impaired. The volume fraction of the remaining tissue may be 0%.

次に、本発明の高強度溶融亜鉛めっき鋼板の製造方法について説明する。
まず、上記の好適成分組成に調製された溶鋼から、連続鋳造法または造塊−分塊法でスラブを製造する。ついで、得られたスラブを、冷却後、再加熱したのち、あるいは鋳造後加熱処理を経ずにそのまま、熱間圧延を行う。スラブ加熱温度を1150〜1300℃として、熱延板を均一組織化し、伸びフランジ性などの加工性を向上させるために仕上げ圧延温度を850〜950℃とし、フェライト相とパーライト相の2相からなるバンド状組織の生成を抑制して熱延板を均一組織化し、さらに伸びフランジ性など加工性を向上させるために[熱間仕上げ圧延温度〜(熱間仕上げ圧延温度−100℃)]間の平均冷却速度を5〜200℃/秒とし、表面性状および冷間圧延性を向上させるため巻取り温度を400〜600℃として、熱間圧延を終了し、酸洗後、冷間圧延により所望の板厚とする。冷間圧延率(冷間圧延の圧下率)は、フェライト相の再結晶促進により延性を向上させるために30%以上とすることが望ましい。なお、圧延負荷が増大しすぎると生産性が低下するため、冷間圧延率の上限は70%程度とすることが好ましい。
Next, the manufacturing method of the high intensity | strength hot-dip galvanized steel plate of this invention is demonstrated.
First, a slab is manufactured from the molten steel prepared to the above-mentioned preferred component composition by a continuous casting method or an ingot-bundling method. Subsequently, the obtained slab is cooled and then reheated, or hot rolling is performed as it is without undergoing a heat treatment after casting. The slab heating temperature is 1150-1300 ° C, the hot-rolled sheet is uniformly structured, and the finish rolling temperature is 850-950 ° C to improve workability such as stretch flangeability, and consists of two phases: ferrite phase and pearlite phase. Average between [Hot Finishing Rolling Temperature ~ (Hot Finishing Rolling Temperature – 100 ° C)] in order to suppress the formation of band-like structure to make hot rolled sheet uniform and further improve workability such as stretch flangeability. The cooling rate is 5 to 200 ° C./second, the rolling temperature is 400 to 600 ° C. in order to improve the surface properties and the cold rolling property, the hot rolling is finished, and after pickling, the desired plate is obtained by cold rolling. Thickness. The cold rolling rate (cold rolling reduction rate) is desirably 30% or more in order to improve ductility by promoting recrystallization of the ferrite phase. In addition, since productivity will fall when rolling load increases too much, it is preferable that the upper limit of a cold rolling rate shall be about 70%.

ついで、溶融亜鉛めっき工程では、冷却開始前の焼鈍時の組織を制御し、最終的に得られるフェライト分率を最適化させるために、200℃から中間温度までの1次平均昇温速度を10〜50℃/秒とし、中間温度を500〜800℃とし、中間温度から焼鈍温度までの2次平均昇温速度を0.1〜10℃/秒とし、焼鈍温度を750〜900℃とし、この温度域に10〜500秒保持したのち、冷却停止温度:450〜550℃まで1〜30℃/秒の平均冷却速度で冷却する。冷却後、引き続き溶融亜鉛浴に鋼板を浸漬し、ガスワイピング等により亜鉛めっき付着量を制御したのち、あるいはさらに加熱して合金化処理を行った後、室温まで冷却する。
かくして本発明で目的とする高強度溶融亜鉛めっき鋼板が得られるが、めっき後の鋼板
にスキンパス圧延を施しても良い。
Next, in the hot dip galvanizing process, in order to control the microstructure during annealing before the start of cooling and optimize the ferrite fraction finally obtained, the primary average rate of temperature increase from 200 ° C to the intermediate temperature is set to 10 -50 ° C / second, intermediate temperature 500-800 ° C, secondary average heating rate from intermediate temperature to annealing temperature 0.1-10 ° C / second, annealing temperature 750-900 ° C, this temperature range After 10 to 500 seconds, cooling is stopped at an average cooling rate of 1 to 30 ° C./second from 450 to 550 ° C. After cooling, the steel sheet is subsequently immersed in a molten zinc bath, and the amount of galvanized coating is controlled by gas wiping or the like, or further heated and alloyed, and then cooled to room temperature.
Thus, the intended high-strength hot-dip galvanized steel sheet can be obtained in the present invention, but skin-pass rolling may be applied to the steel sheet after plating.

以下、製造条件の限定範囲および限定理由を具体的に説明する。
スラブ加熱温度:1150〜1300℃
鋼スラブの加熱段階で存在している析出物は、最終的に得られる鋼板内では粗大な析出物として存在し、強度に寄与しないため、鋳造時に析出したTi,Nb系析出物を再溶解させる必要がある。ここに、1150℃以上の加熱により強度への寄与が認められる。また、スラブ表層の気泡、偏析などの欠陥をスケールオフし、鋼板表面の亀裂、凹凸を減少し、平滑な鋼板表面を達成する観点からも1150℃以上に加熱することが有利である。しかしながら、加熱温度が1300℃を超えると、オーステナイト粒の粗大化を引き起こし、最終組織が粗大化し、伸びフランジ性を低下させる。従って、スラブ加熱温度は1150〜1300℃の範囲に限定した。
Hereinafter, the limitation range and limitation reason of the manufacturing conditions will be specifically described.
Slab heating temperature: 1150 ~ 1300 ℃
Precipitates present in the heating stage of steel slabs exist as coarse precipitates in the finally obtained steel sheet and do not contribute to strength, so the Ti and Nb-based precipitates precipitated during casting are redissolved. There is a need. Here, contribution to strength is recognized by heating at 1150 ° C. or higher. In addition, it is advantageous to heat to 1150 ° C. or higher from the viewpoint of scaling off defects such as bubbles and segregation on the surface of the slab, reducing cracks and irregularities on the steel sheet surface, and achieving a smooth steel sheet surface. However, when the heating temperature exceeds 1300 ° C., the austenite grains become coarse, the final structure becomes coarse, and stretch flangeability deteriorates. Therefore, the slab heating temperature was limited to the range of 1150 to 1300 ° C.

熱間仕上げ圧延温度:850〜950℃
熱間仕上げ圧延温度を850℃以上とすることにより加工性(延性、伸びフランジ性)を著しく向上させることができる。仕上げ圧延温度が850℃未満の場合、熱間圧延後に、結晶が展伸された加工組織となり、冷延・焼鈍後に不均一な組織となりやすく、加工時の材料の均一な変形が阻害され、優れた加工性を得ることが困難となる。
一方、熱間仕上げ圧延温度が950℃を超えると酸化物(スケール)の生成量が急激に増大し、地鉄−酸化物界面が荒れ、酸洗、冷間圧延後の表面品質が劣化する傾向にある。また酸洗後に熱延スケールの取れ残りなどが一部に存在しやすくなり、抵抗スポット溶接性に悪影響を及ぼす。さらに、熱間仕上げ圧延温度が950℃を超えると結晶粒径が過度に粗大となり、加工時にプレス品表面荒れを生じる場合がある。従って、熱間仕上げ圧延温度は850〜950℃、好ましくは900℃〜950℃の範囲とした。
Hot finish rolling temperature: 850-950 ° C
By setting the hot finish rolling temperature to 850 ° C. or higher, workability (ductility, stretch flangeability) can be remarkably improved. When the finish rolling temperature is less than 850 ° C, it becomes a processed structure in which crystals are stretched after hot rolling, and tends to be a non-uniform structure after cold rolling and annealing, which prevents the uniform deformation of the material during processing and is excellent. It is difficult to obtain high workability.
On the other hand, when the hot finish rolling temperature exceeds 950 ° C., the amount of oxide (scale) generated increases rapidly, the iron-oxide interface becomes rough, and the surface quality after pickling and cold rolling tends to deteriorate. It is in. In addition, after the pickling, unsettled portions of the hot-rolled scale are likely to be present in part, which adversely affects resistance spot weldability. Furthermore, when the hot finish rolling temperature exceeds 950 ° C., the crystal grain size becomes excessively large, and the surface of the pressed product may be roughened during processing. Therefore, the hot finish rolling temperature is set to 850 to 950 ° C, preferably 900 to 950 ° C.

[熱間仕上げ圧延温度〜(熱間仕上げ圧延温度−100℃)]間の平均冷却速度:
5〜200℃/秒
熱間仕上げ圧延直後の高温域[熱間仕上げ温度〜(熱間仕上げ温度−100℃)]における、冷却速度が5℃/秒に満たないと、熱間圧延後、再結晶、粒成長し、熱延板組織が粗大化すると共に、フェライトとパーライトが層状に形成されたバンド状組織となる。焼鈍前にバンド状組織になると、成分の濃度ムラが生じた状態で熱処理されるため、めっき工程での熱処理で組織の微細均一化が困難となり、最終的に得られる組織が不均一となり、伸びフランジ性が低下する。このため、[熱間仕上げ温度〜(熱間仕上げ温度−100℃)]における平均冷却速度は5℃/秒以上とする。一方、当該温度域における平均冷却速度が200℃/秒を超えても効果は飽和する傾向にあるので、当該温度域における平均冷却速度は5〜200℃/秒の範囲とした。なお、上記の制御冷却後、巻取りまでの温度域の冷却速度については、特に制限されるものではない。
Average cooling rate between [Hot finish rolling temperature-(Hot finish rolling temperature-100 ° C)]:
5 to 200 ° C./second If the cooling rate is less than 5 ° C./second in the high temperature region [Hot finishing temperature to (Hot finishing temperature−100 ° C.)] immediately after hot finish rolling, Crystals and grains grow, the hot-rolled sheet structure becomes coarse, and a band-like structure is formed in which ferrite and pearlite are formed in layers. If a band-like structure is formed before annealing, heat treatment is performed in a state in which the concentration of the components is uneven. Therefore, it becomes difficult to make the structure fine and uniform by the heat treatment in the plating process, resulting in a non-uniform structure and elongation. Flangeability decreases. For this reason, the average cooling rate in [hot finishing temperature to (hot finishing temperature−100 ° C.)] is set to 5 ° C./second or more. On the other hand, since the effect tends to be saturated even if the average cooling rate in the temperature range exceeds 200 ° C./second, the average cooling rate in the temperature range is set to a range of 5 to 200 ° C./second. Note that the cooling rate in the temperature region after the above-described control cooling and before winding is not particularly limited.

巻取り温度:400〜600℃
巻取り温度については、600℃を超えると、熱延スケール厚が増加し、酸洗、冷間圧延後の表面が荒れ、表面に凹凸が形成されるため加工性の低下を招き、また酸洗後に熱延スケールが残存しやすくなり抵抗スポット溶接性に悪影響を及ぼす。一方、巻取り温度が400℃未満では熱延板強度が上昇し、冷間圧延における圧延負荷が増大し、生産性が低下する傾向にある。従って、巻取り温度は400〜600℃の範囲とした。
Winding temperature: 400 ~ 600 ℃
When the coiling temperature exceeds 600 ° C., the hot-rolled scale thickness increases, the surface after pickling and cold rolling becomes rough, and irregularities are formed on the surface, leading to a decrease in workability, and pickling. Later, the hot-rolled scale tends to remain and adversely affects resistance spot weldability. On the other hand, when the coiling temperature is less than 400 ° C., the hot rolled sheet strength increases, the rolling load in cold rolling increases, and the productivity tends to decrease. Therefore, the coiling temperature is in the range of 400 to 600 ° C.

1次平均昇温速度(200℃から中間温度まで):10〜50℃/秒、中間温度:500〜800℃、2次平均昇温速度(中間温度から焼鈍温度まで):0.1〜10℃/秒
1次昇温速度が10℃/秒より遅いと、結晶粒が粗大化し、伸びフランジ性が低下する。この1次昇温速度は速くてもかまわないが、50℃/秒を超えると飽和する傾向にある。従って、1次平均昇温速度は10〜50℃/秒の範囲とした。
中間温度が800℃を超えると結晶粒径が粗大化し、伸びフランジ性が低下する。中間温度は低くてもかまわないが、500℃未満では効果は飽和し、最終的に得られる組織に差が少なくなる。従って、中間温度は500〜800℃の範囲とした。
2次平均昇温速度が10℃/秒より速い場合には、オーステナイトの生成が遅く、最終的に得られるフェライト相分率が多くなり、強度確保が困難となる。一方、2次平均昇温速度が0.1/秒より遅い場合には、結晶粒径が粗大化し、伸びフランジ性が低下する。従って、2次平均昇温速度は0.1〜10℃/秒の範囲とした。
Primary average rate of temperature rise (from 200 ° C. to intermediate temperature): 10 to 50 ° C./second, Intermediate temperature: 500 to 800 ° C. Secondary average rate of temperature rise (from intermediate temperature to annealing temperature): 0.1 to 10 ° C. / Second When the primary heating rate is slower than 10 ° C./second, the crystal grains become coarse and stretch flangeability deteriorates. The primary heating rate may be high, but tends to saturate when it exceeds 50 ° C./second. Therefore, the primary average heating rate was set in the range of 10 to 50 ° C./second.
When the intermediate temperature exceeds 800 ° C., the crystal grain size becomes coarse and stretch flangeability deteriorates. The intermediate temperature may be low, but if it is less than 500 ° C., the effect is saturated, and the difference in the final structure is reduced. Therefore, the intermediate temperature is set in the range of 500 to 800 ° C.
When the secondary average temperature rising rate is faster than 10 ° C./second, austenite formation is slow, and the finally obtained ferrite phase fraction increases, making it difficult to ensure strength. On the other hand, when the secondary average temperature rising rate is slower than 0.1 / second, the crystal grain size becomes coarse and stretch flangeability deteriorates. Therefore, the secondary average temperature rising rate was set in the range of 0.1 to 10 ° C./second.

焼鈍温度:750〜900℃、この温度での保持時間:10〜500秒
焼鈍温度が750℃より低い場合、冷間加工により導入された歪が未回復の未再結晶フェライトに存在し、伸び、穴拡げ率など加工性が劣化する傾向にある。一方、焼鈍温度が900℃より高い場合、加熱中にオーステナイトが粗大化し、その後の冷却過程で生成するフェライト相の量が減少し、伸びが低下する傾向にある。また、最終的に得られる結晶粒径が過度に粗大化し、穴拡げ率が低下する傾向にある。従って、焼鈍温度は750〜900℃の範囲とした。
また、当該焼鈍温度における保持時間が10秒未満では焼鈍中に未溶解炭化物が存在する可能性が高くなり、焼鈍中あるいは冷却開始温度におけるオーステナイト相の存在量が少なくなる可能性があり、最終的に鋼板の強度確保が困難となる傾向がある。一方、長時間焼鈍により結晶粒は成長し粗大化する傾向にあり、上記の焼鈍温度における保持時間が500秒を超えると加熱焼鈍中のオーステナイト相の粒径が粗大化し、最終的に熱処理後に得られる鋼板の組織が粗大化し、穴拡げ率が低下する傾向にある。加えて、粗大粒に起因し、プレス成形後の肌荒れの原因ともなり好ましくない。さらに、冷却停止温度までの冷却過程中のフェライト相の生成量も減少するため、伸びも低下する傾向にある。従って、より微細な組織を達成することと、焼鈍前の組織の影響を小さくして均一微細な組織を得ることとを両立するために、保持時間は10〜500秒の範囲とした。好ましい保持時間は20〜200秒の範囲である。
Annealing temperature: 750-900 ° C, holding time at this temperature: 10-500 seconds When annealing temperature is lower than 750 ° C, strain introduced by cold working is present in unrecovered unrecrystallized ferrite, elongation, Workability such as hole expansion rate tends to deteriorate. On the other hand, when the annealing temperature is higher than 900 ° C., austenite becomes coarse during heating, and the amount of ferrite phase generated in the subsequent cooling process decreases, and the elongation tends to decrease. Moreover, the crystal grain diameter finally obtained becomes excessively coarse, and the hole expansion rate tends to decrease. Therefore, the annealing temperature was set in the range of 750 to 900 ° C.
In addition, if the holding time at the annealing temperature is less than 10 seconds, there is a high possibility that undissolved carbides are present during annealing, and the austenite phase may be less present during annealing or at the cooling start temperature. In particular, it tends to be difficult to ensure the strength of the steel sheet. On the other hand, crystal grains tend to grow and become coarse due to long-term annealing, and when the holding time at the annealing temperature exceeds 500 seconds, the grain size of the austenite phase during heating annealing becomes coarse and finally obtained after heat treatment. The structure of the obtained steel sheet is coarsened, and the hole expansion rate tends to decrease. In addition, it is not preferable because it is caused by coarse grains and causes rough skin after press molding. Furthermore, the amount of ferrite phase produced during the cooling process to the cooling stop temperature also decreases, so that the elongation tends to decrease. Therefore, in order to achieve both the achievement of a finer structure and the reduction of the influence of the structure before annealing to obtain a uniform and fine structure, the holding time is set in the range of 10 to 500 seconds. A preferred holding time is in the range of 20 to 200 seconds.

冷却停止温度までの平均冷却速度:1〜30℃/秒
この冷却速度は、軟質なフェライト相と硬質なマルテンサイト相の存在比率を制御し、TS:980MPa級以上の強度と加工性を確保するのに重要な役割を担っている。すなわち、平均冷却速度が30℃/秒を超えると、冷却中のフェライト相生成が抑制され、マルテンサイト相が過度に生成するためTS:980MPa級の確保は容易ではあるが、成形性の劣化を招く。一方、1℃/秒より遅いと、冷却過程中に生成するフェライト相の量が多くなりすぎ、TSの低下を招く傾向にある。当該平均冷却速度の好ましい範囲は5〜20℃/秒である。なお、この場合の冷却は、ガス冷却が好ましいが、炉冷、ミスト冷却、ロール冷却、水冷などを用いて組み合わせて行うことも可能である。
Average cooling rate up to the cooling stop temperature: 1-30 ° C / sec This cooling rate controls the ratio of soft ferrite phase and hard martensite phase to ensure TS: 980 MPa class strength and workability It plays an important role. That is, when the average cooling rate exceeds 30 ° C./second, the generation of ferrite phase during cooling is suppressed, and the martensite phase is excessively generated. Therefore, it is easy to secure TS: 980 MPa class, but the formability deteriorates. Invite. On the other hand, if it is slower than 1 ° C./second, the amount of ferrite phase generated during the cooling process becomes too large, and the TS tends to decrease. A preferable range of the average cooling rate is 5 to 20 ° C./second. The cooling in this case is preferably gas cooling, but may be performed in combination using furnace cooling, mist cooling, roll cooling, water cooling, or the like.

冷却停止温度:450〜550℃
冷却停止温度が550℃より高い場合、オーステナイトからマルテンサイト相より軟質な組織を形成するパーライト変態あるいはベイナイト変態が進行し、TS:980MPa級の確保が困難となる。また、硬質な残留オーステナイト相が生成すると伸びフランジ性が低下する。一方、冷却停止温度が450℃未満の場合、冷却中のフェライト生成が過多となりTS:980MPa級の確保が困難となる。
Cooling stop temperature: 450-550 ° C
When the cooling stop temperature is higher than 550 ° C., a pearlite transformation or a bainite transformation that forms a softer structure than a martensite phase proceeds from austenite, and it becomes difficult to secure TS: 980 MPa class. Further, when a hard retained austenite phase is generated, stretch flangeability is deteriorated. On the other hand, when the cooling stop temperature is less than 450 ° C., the generation of ferrite during cooling becomes excessive, and it becomes difficult to secure TS: 980 MPa class.

上記の冷却停止後、一般的な溶融亜鉛めっき処理を施して溶融亜鉛めっきとする。あるいはさらに、上記の溶融亜鉛めっき処理後、誘導加熱装置などを用いて再加熱を施す合金化処理を施して、合金化溶融亜鉛めっき鋼板とする。
ここに、溶融亜鉛めっきの付着量は、片面当たり20〜150g/m2程度とすることが好ましい。
というのは、このめっき付着量が20g/m2未満では、耐食性の確保が困難であり、一方150g/m2を超えると、耐食効果は飽和し、むしろコストアップとなるからである。
After the cooling is stopped, a general hot dip galvanizing process is performed to obtain hot dip galvanizing. Or, further, after the above hot dip galvanizing treatment, an alloying treatment is performed in which reheating is performed using an induction heating device or the like to obtain an alloyed hot dip galvanized steel sheet.
Here, the adhesion amount of hot dip galvanizing is preferably about 20 to 150 g / m 2 per side.
This is because it is difficult to ensure corrosion resistance if the plating adhesion amount is less than 20 g / m 2 , while if it exceeds 150 g / m 2 , the corrosion resistance effect is saturated, and the cost is rather increased.

なお、連続焼鈍後、最終的に得られた合金化溶融亜鉛めっき鋼板に、形状矯正や表面粗度調整の目的から調質圧延(スキンパス圧延ともいう)を行ってもかまわないが、過度にスキンパス圧延を行うと過多に歪が導入され結晶粒が展伸され圧延加工組織となり、延性が低下するため、スキンパス圧延の圧延率(伸び率)は0.1〜1.5%程度とすることが好ましい。   In addition, after continuous annealing, the galvannealed steel sheet finally obtained may be subjected to temper rolling (also called skin pass rolling) for the purpose of shape correction or surface roughness adjustment. When rolling is performed, excessive strain is introduced and the crystal grains are stretched to form a rolled structure and the ductility is lowered. Therefore, the rolling rate (elongation rate) of skin pass rolling is preferably about 0.1 to 1.5%.

上記した本発明の製造方法によって、所望の加工性および溶接性を有する高強度溶融亜鉛めっき鋼板を得ることができるが、熱間仕上げ圧延後、熱間仕上げ圧延温度〜(熱間仕上げ圧延温度−100℃)の温度域を平均冷却速度:5〜200℃/秒として冷却したのち、必要に応じてさらに、熱間仕上げ圧延後、(巻取り温度)×1.1までの経過時間を5秒間以上とし、その後、巻取りを行うことによって、コイル長手方向の材質変動を効果的に抑制することができる。   According to the production method of the present invention described above, a high-strength hot-dip galvanized steel sheet having desired workability and weldability can be obtained. After hot finish rolling, hot finish rolling temperature to (hot finish rolling temperature- 100 ° C) after cooling at an average cooling rate of 5 to 200 ° C / second, and if necessary, after hot finish rolling, the elapsed time to (winding temperature) x 1.1 should be 5 seconds or more. Then, the material variation in the coil longitudinal direction can be effectively suppressed by performing winding.

熱間仕上げ圧延終了後に鋼板を巻取り温度近傍、具体的には(巻取り温度)×1.1未満の温度まで急冷する場合、熱間圧延によって一部に展伸された結晶粒を有するオーステナイトと、再結晶した整粒のオーステナイトが混在することがある。このような混在組織は、熱間圧延直後において、特に、鋼板の幅方向のエッジ部などに顕著に発生する。この場合、最終的に得られる熱延板には、一部に展伸された結晶粒が存在していた領域には層状の低温変態相組織が、整粒の再結晶オーステナイトが存在していた領域にはオーステナイトから変態生成した整粒の低温変態組織が、存在することとなる。また、上記のような急速冷却の場合、コイル全長にわたり均一に急速冷却することが困難であり、冷却時に、コイルの先端部、尾端部およびコイル長手方向中央部で温度ムラを生じたり、冷却に使用する水が冷却後に鋼板上に残存したりすることから、不均一な熱延板組織となりやすい。   When the steel sheet is rapidly cooled to a temperature close to the coiling temperature after completion of the hot finish rolling, specifically to a temperature below (coiling temperature) × 1.1, austenite having crystal grains partially expanded by hot rolling, Recrystallized sized austenite may be mixed. Such a mixed structure is noticeably generated immediately after hot rolling, particularly at an edge portion in the width direction of the steel sheet. In this case, in the finally obtained hot-rolled sheet, a layered low-temperature transformation phase structure was present in the region where partially expanded crystal grains were present, and sized recrystallized austenite was present. In the region, there is a low-temperature transformation structure of sized particles produced by transformation from austenite. Also, in the case of the rapid cooling as described above, it is difficult to perform uniform rapid cooling over the entire length of the coil, and during cooling, temperature unevenness occurs at the tip, tail, and coil longitudinal center of the coil, Since the water used in this process remains on the steel sheet after cooling, it tends to be a non-uniform hot rolled sheet structure.

熱間圧延段階で生じた不均一な組織に起因する鋼板中の成分や組織のむら、あるいは偏在は、溶融亜鉛めっき工程の焼鈍過程においても完全に解消することができない。その結果、最終製品の組織も不均一となる。組織の不均一性に起因して第2相が硬質化すると、軟質なフェライトとの硬度差が発生し、プレス成形時における材料の均一な変形を阻害し、伸びフランジ性の劣化を招く。   The unevenness or uneven distribution of the components and structure in the steel sheet due to the non-uniform structure generated in the hot rolling stage cannot be completely eliminated even in the annealing process of the hot dip galvanizing process. As a result, the structure of the final product is not uniform. When the second phase is hardened due to the non-uniformity of the structure, a difference in hardness from soft ferrite occurs, which inhibits uniform deformation of the material during press molding and causes deterioration of stretch flangeability.

熱間仕上げ圧延終了後、(巻取り温度)×1.1の温度までの経過時間が5秒未満の場合、熱間圧延終了後、巻取り温度近傍まで急冷することとなり、上記のような問題が生ずるためと考えられるが、コイル長手方向の材質変動が大きくなりやすい。このため、熱間仕上げ圧延終了後、(巻取り温度)×1.1の温度までの経過時間を5秒以上とする。なお、該経過時間の上限は製造設備にもよるが、長くしすぎると生産性を低下させるだけであるため、その上限は30秒程度とすることが好ましく、より好ましい経過時間の上限は20秒程度である。   After the hot finish rolling, if the elapsed time to the temperature of (winding temperature) × 1.1 is less than 5 seconds, after the hot rolling is finished, the steel is rapidly cooled to the vicinity of the winding temperature, causing the above-mentioned problems. This is thought to be due to the fact that material fluctuations in the coil longitudinal direction tend to be large. For this reason, after completion of hot finish rolling, the elapsed time up to the temperature of (winding temperature) × 1.1 is set to 5 seconds or more. The upper limit of the elapsed time depends on the production equipment, but if it is too long, it only reduces the productivity, so the upper limit is preferably about 30 seconds, and the more preferable upper limit of elapsed time is 20 seconds. Degree.

表1に示す成分組成になる鋼を溶製し、スラブとしたのち、表2に示す種々の条件で熱間圧延、酸洗、圧下率:50%の冷間圧延、連続焼鈍およびめっき処理を施し、板厚が1.4mmでめっき付着量が片面当たり45g/m2の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造した。得られた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板について、以下に示す材料試験を行い、材料特性を調査した。
得られた結果を表3に示す。
After melting the steel having the composition shown in Table 1 into a slab, hot rolling, pickling, cold rolling with a reduction ratio of 50%, continuous annealing and plating treatment under various conditions shown in Table 2 Thus, hot-dip galvanized steel sheets and alloyed hot-dip galvanized steel sheets having a plate thickness of 1.4 mm and a coating adhesion amount of 45 g / m 2 per side were produced. About the obtained hot dip galvanized steel sheet and alloyed hot dip galvanized steel sheet, the material test shown below was done and the material characteristic was investigated.
The obtained results are shown in Table 3.

材料試験および材料特性の評価法は次のとおりである。なお、サンプル採取位置は、最終製品コイルの尾端から5mの位置とした。
(1) 鋼板の組織
圧延方向断面、板厚:1/4面位置を光学顕微鏡または走査型電子顕微鏡(SEM)で観察することにより調査した。フェライト相の結晶粒径は、JIS G 0551に規定の方法に準拠して結晶粒度を測定し、平均結晶粒径に換算した。また、フェライト相の体積分率は、倍率:1000倍の断面組織写真を用いて、画像解析により、任意に設定した100mm×100mm四方の正方形領域内に存在するフェライト相の占有面積を求め、これをフェライト相の体積分率とした。また、マルテンサイト相の体積分率も同様にして求めた。
The material test and the evaluation method of material properties are as follows. The sampling position was 5 m from the tail end of the final product coil.
(1) Structure of steel plate The cross-section in the rolling direction, the thickness: 1/4 plane position was investigated by observing with an optical microscope or a scanning electron microscope (SEM). The crystal grain size of the ferrite phase was measured according to the method specified in JIS G 0551, and converted to an average crystal grain size. In addition, the volume fraction of the ferrite phase is obtained by obtaining the area occupied by the ferrite phase existing in a square area of 100 mm x 100 mm square arbitrarily set by image analysis using a cross-sectional structure photograph at a magnification of 1000 times. Is the volume fraction of the ferrite phase. The volume fraction of the martensite phase was determined in the same manner.

(2) 引張特性
圧延方向と90°の方向を長手方向(引張方向)とするJIS Z 2201に記載の5号試験片を用い、JIS Z 2241に準拠した引張試験を行い評価した。なお、引張特性の評価基準はTS×EI値が15000MPa・%以上を良好とした。
(2) Tensile properties Using the No. 5 test piece described in JIS Z 2201 with the rolling direction and 90 ° direction as the longitudinal direction (tensile direction), a tensile test based on JIS Z 2241 was performed and evaluated. The evaluation standard for tensile properties was a TS × EI value of 15000 MPa ·% or higher.

(3) 穴拡げ率
日本鉄鋼連盟規格JFST1001に基づき実施した。初期直径d0=10mmの穴を打抜き、60°の円錐ポンチを上昇させて穴を拡げた際に、亀裂が板厚貫通したところでポンチの上昇を止め、亀裂貫通後の打抜き穴径dを測定し、次式
穴拡げ率(%)=((d−d0)/d0)×100
により穴拡げ率を算出した。
この試験は、同一番号の鋼板について3回実施し、穴拡げ率の平均値(λ)を求めた。なお、穴拡げ率の評価基準はTS×λ値が35000MPa・%以上を良好とした。
(3) Hole expansion rate This was carried out based on the Japan Iron and Steel Federation standard JFST1001. When a hole with an initial diameter of d 0 = 10 mm is punched and the hole is widened by raising a 60 ° conical punch, the punch stops rising when the crack penetrates the plate thickness, and the punched hole diameter d is measured after crack penetration. The following formula hole expansion rate (%) = ((d−d 0 ) / d 0 ) × 100
Was used to calculate the hole expansion rate.
This test was performed three times for the same number of steel plates, and the average value (λ) of the hole expansion rate was obtained. The evaluation standard for the hole expansion rate was good when the TS × λ value was 35000 MPa ·% or more.

(4) 抵抗スポット溶接性
電極:DR6mm−40R、加圧力:4.8kN、初期加圧時間:30cycles/60Hz、通電時間:17cycles/60Hz、保持時間:1cycle/60Hzとし、試験電流を変化させた各溶接条件(4.6〜10.0kAまで0.2kAピッチで変化させ、また10.5kAから溶着まで0.5kAピッチで変化させる条件)で、同一番号の鋼板をスポット溶接し、十字引張試験、溶接部のナゲット径の測定に供した。抵抗スポット溶接継手の十字引張り試験はJIS Z 3137に準拠して実施した。ナゲット径はJIS Z 3139の記載に準拠して実施した。抵抗スポット溶接後の対称円状のプラグを板表面に垂直な断面について、溶接点のほぼ中心を通る断面を適当な方法で半切断し、研磨、腐食の後、光学顕微鏡観察による断面組織観察により測定した。コロナボンドを除いた溶融領域の最大直径をナゲット径とした。ナゲット径が4t1/2(mm)(t:鋼板の板厚)以上の溶接材において十字引張り試験を行った際、母材で破断した場合に、溶接性を良好とした。
(4) Resistance spot weldability Electrode: DR6mm-40R, pressure: 4.8kN, initial pressurization time: 30cycles / 60Hz, energization time: 17cycles / 60Hz, holding time: 1cycle / 60Hz Spot welding of steel plates with the same number under welding conditions (changes at a 0.2 kA pitch from 4.6 to 10.0 kA, and at a 0.5 kA pitch from 10.5 kA to welding), cross tension test, and the nugget diameter of the weld It used for the measurement. The cross tension test of the resistance spot welded joint was performed in accordance with JIS Z 3137. The nugget diameter was carried out according to the description of JIS Z 3139. For the cross section perpendicular to the plate surface of the symmetrical circular plug after resistance spot welding, the cross section passing through the approximate center of the welding point is half-cut by an appropriate method, and after polishing and corrosion, by cross-sectional structure observation by optical microscope observation It was measured. The maximum diameter of the molten region excluding the corona bond was defined as the nugget diameter. When a cross tensile test was performed on a welded material having a nugget diameter of 4 t 1/2 (mm) (t: plate thickness of the steel plate) or more, the weldability was improved when the nugget fractured at the base material.

Figure 0005167865
Figure 0005167865

Figure 0005167865
Figure 0005167865

Figure 0005167865
Figure 0005167865

表3に示したとおり、発明例では、TS×EI≧15000MPa・%、TS×λ≧35000MPa・%で、かつ良好な抵抗スポット溶接性を同時に満足する加工性に優れる高強度溶融亜鉛めっき鋼板が得られていることが確認できた。
これに対し、鋼成分が本発明の適正範囲外であるNo.11、12および13は、加工性と溶接性を両立できていなかった。1次昇温速度、中間温度および焼鈍温度のいずれかの条件が本発明の適正範囲外であるNo.14、15および17は、フェライト相の結晶粒怪が粗大なため、伸びフランジ性が劣っていた。
2次昇温速度、保持時間または冷却停止温度が本発明の適正範囲外であるNo.16、18および20は、フェライト相の分率が多く、TSが980MPaよりも低かった。平均冷却速度が本発明の適正範囲外であるNo.19は、フェライト相の分率が少ないため、Elが低く、穴拡げ率λも低く、加工性が劣っていた。
As shown in Table 3, in the invention example, a high strength hot dip galvanized steel sheet with excellent workability satisfying TS × EI ≧ 15000 MPa ·%, TS × λ ≧ 35000 MPa ·% and simultaneously satisfying good resistance spot weldability is obtained. It was confirmed that it was obtained.
On the other hand, Nos. 11, 12 and 13 whose steel components were outside the proper range of the present invention could not achieve both workability and weldability. Nos. 14, 15 and 17 in which any one of the primary heating rate, intermediate temperature and annealing temperature is out of the proper range of the present invention has poor stretch flangeability due to coarse ferrite grains. It was.
Nos. 16, 18 and 20 whose secondary heating rate, holding time or cooling stop temperature were outside the proper range of the present invention had a high fraction of ferrite phase and TS was lower than 980 MPa. No. 19 having an average cooling rate outside the appropriate range of the present invention had a low El fraction, a low hole expansion rate λ, and a poor workability because the ferrite phase fraction was small.

表4に示す成分組成になる鋼を溶製し、スラブとしたのち、表5に示す種々の条件で熱間圧延、酸洗、圧下率:50%の冷間圧延、連続焼鈍およびめっき処理を行い、板厚が1.4mmでめっき付着量が片面当たり45g/m2の溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を製造した。
得られた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板について、上記した(1)〜(4)の材料試験および以下の(5)に示す材質変動評価を行い調査した。
(5) コイル長手方向材質変動調査
最終製品コイルの幅方向中央で、長手方向の位置が、先端部、尾端部および中央部の3箇所において穴拡げ率λ(%)を実施例1の(3)と同様の方法で求め、それぞれλ1、λ2およびλ3とした。なお、先端部とは最終製品コイルの先端から5mの位置、中央部とは最終製品コイルの全長に対して中央の位置、尾端部とは最終コイルの尾端から5mの位置とした。
かくして得られたλ1、λ2およびλ3から、次式より穴拡げ率変動量Δλ(%)を算出し、Δλが−10≦Δλ(%)≦10の範囲にあるとき、コイル全長にわたり材質変動が小さく良好な材料特性を有するものとした。
Δλ(%)=λ3−(λ1+λ2)/2
After melting the steel having the composition shown in Table 4 into a slab, hot rolling, pickling, rolling reduction: 50% cold rolling, continuous annealing, and plating treatment under various conditions shown in Table 5 Thus, a hot-dip galvanized steel sheet and an alloyed hot-dip galvanized steel sheet having a sheet thickness of 1.4 mm and a coating adhesion amount of 45 g / m 2 per side were produced.
The obtained hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet were investigated by conducting the material tests (1) to (4) described above and the material fluctuation evaluation shown in the following (5).
(5) Coil longitudinal direction material fluctuation investigation In the center in the width direction of the final product coil, the position in the longitudinal direction shows the hole expansion ratio λ (%) in the three points of the tip, tail and center. They were obtained by the same method as in 3), and were set to λ1, λ2, and λ3, respectively. Note that the tip portion is a position 5 m from the tip of the final product coil, the center portion is a center position with respect to the entire length of the final product coil, and the tail end portion is a position 5 m from the tail end of the final coil.
From the λ1, λ2 and λ3 obtained in this way, the hole expansion rate fluctuation amount Δλ (%) is calculated from the following equation, and when Δλ is in the range of −10 ≦ Δλ (%) ≦ 10, the material variation over the entire coil length Small and good material properties were assumed.
Δλ (%) = λ3− (λ1 + λ2) / 2

Figure 0005167865
Figure 0005167865

Figure 0005167865
Figure 0005167865

得られた結果を表6に示す。   The results obtained are shown in Table 6.

Figure 0005167865
Figure 0005167865

表6に示したとおり、発明例では、TS×EI≧15000MPa・%、TS×λ≧35000MPa・%であって、コイル全長にわたって材質変動が小さく、良好な抵抗スポット溶接性をそれぞれ同時に満足する加工性に優れる高強度溶融亜鉛めっき鋼板が得られていることが確認できた。
これに対し、熱間仕上げ圧延後、(巻取り温度)×1.1の温度までの経過時間が適正範囲外のNo.32、35、36および37は、加工性と溶接性は満足するものの、材質変動が大きい。また、熱間仕上げ圧延後の鋼板の滞留温度および滞留時間が適正範囲内であっても、鋼板の成分が適正範囲外であるNo.34は、材質変動は小さいものの、加工性に劣っていた。
As shown in Table 6, in the invention example, TS × EI ≧ 15000 MPa ·%, TS × λ ≧ 35000 MPa ·%, the material variation is small over the entire length of the coil, and satisfactory resistance spot weldability is satisfied at the same time. It was confirmed that a high-strength hot-dip galvanized steel sheet having excellent properties was obtained.
On the other hand, No.32, 35, 36 and 37 whose elapsed time up to the temperature of (winding temperature) x 1.1 after hot finish rolling is outside the proper range are satisfactory in workability and weldability. Fluctuation is large. In addition, even if the residence temperature and residence time of the steel sheet after hot finish rolling were within the proper range, No. 34 whose steel plate components were outside the proper range was inferior in workability, although the material variation was small. .

本発明の高強度溶融亜鉛めっき鋼板は、高い引張強度を有するだけでなく、加工性およ
び溶接性に優れるため、自動車部品をはじめとして、建築および家電分野など厳しい寸法
精度および加工性が必要とされる用途に好適に使用することができる。
The high-strength hot-dip galvanized steel sheet of the present invention not only has high tensile strength, but also has excellent workability and weldability. Therefore, strict dimensional accuracy and workability are required in fields such as automobile parts, architecture, and home appliances. It can be used suitably for a certain application.

Claims (5)

質量%で、C:0.05%以上0.10%未満、Si:0.01%以上0.35%未満、Mn:2.0〜3.5%、P:0.020%以下、S:0.0020%以下、Al:0.005〜0.1%、N:0.0050%以下、Cr:1.0%を超え2.0%以下、Ti:0.010〜0.080%、Nb:0.010〜0.080%およびB:0.0001〜0.0030%を含有し、残部はFeおよび不可避不純物の組成になり、鋼組織が、体積分率で、20〜60%のフェライト相と、40〜80%のマルテンサイト相および5%以下(0%を含む)の残部組織からなり、かつ該フェライト相の平均結晶粒径が5μm以下であり、引張強度が980MPa以上で、さらに鋼板表面に溶融亜鉛めっき層を有することを特徴とする加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板。   By mass%, C: 0.05% or more and less than 0.10%, Si: 0.01% or more and less than 0.35%, Mn: 2.0 to 3.5%, P: 0.020% or less, S: 0.0020% or less, Al: 0.005 to 0.1%, N: Contains 0.0050% or less, Cr: more than 1.0% and 2.0% or less, Ti: 0.010-0.080%, Nb: 0.010-0.080% and B: 0.0001-0.0030%, the balance is Fe and inevitable impurities, steel The structure consists of 20-60% ferrite phase, 40-80% martensite phase, and 5% or less (including 0%) balance structure in volume fraction, and the average grain size of the ferrite phase Is a high-strength hot-dip galvanized steel sheet excellent in workability and weldability, characterized by having a tensile strength of 980 MPa or more and a hot-dip galvanized layer on the steel sheet surface. 前記鋼板がさらに、質量%で、Ca:0.0001〜0.0050%を含有することを特徴とする請求項1に記載の高強度溶融亜鉛めっき鋼板。   The high-strength hot-dip galvanized steel sheet according to claim 1, wherein the steel sheet further contains Ca: 0.0001 to 0.0050% by mass. 質量%で、C:0.05%以上0.10%未満、Si:0.01%以上0.35%未満、Mn:2.0〜3.5%、P:0.020%以下、S:0.0020%以下、Al:0.005〜0.1%、N:0.0050%以下、Cr:1.0%を超え2.0%以下、Ti:0.010〜0.080%、Nb:0.010〜0.080%およびB:0.0001〜0.0030%を含有し、残部はFeおよび不可避不純物の組成になる鋼スラブを、熱間圧延後、コイルに巻取ったのち、酸洗し、ついで冷間圧延後、溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造するに際し、
上記熱間圧延では、スラブ加熱温度を1150〜1300℃、熱間仕上げ圧延温度を850〜950℃として熱間圧延した後、熱間仕上げ圧延温度〜(熱間仕上げ圧延温度−100℃)の温度域を平均冷却速度:5〜200℃/秒として冷却し、巻取り温度:400〜600℃でコイルに巻取り、ついで酸洗後、冷間圧延したのち、200℃から中間温度までの1次平均昇温速度を10〜50℃/秒として500〜800℃の中間温度まで加熱し、さらに該中間温度から焼鈍温度までの2次平均昇温速度を0.1〜10℃/秒として750〜900℃の焼鈍温度まで加熱し10〜500秒保持したのち、450〜550℃の冷却停止温度まで1〜30℃/秒の平均冷却速度で冷却し、ついで溶融亜鉛めっき処理、あるいはさらに合金化処理を施すことで、
鋼組織が、体積分率で、20〜60%のフェライト相、40〜80%のマルテンサイト相および5%以下(0%を含む)の残部組織からなり、かつ該フェライト相の平均結晶粒径が5μm以下であり、引張強度が980MPa以上である鋼板を得ることを特徴とする加工性および溶接性に優れる高強度溶融亜鉛めっき鋼板の製造方法。
By mass%, C: 0.05% or more and less than 0.10%, Si: 0.01% or more and less than 0.35%, Mn: 2.0 to 3.5%, P: 0.020% or less, S: 0.0020% or less, Al: 0.005 to 0.1%, N: Steel slab containing 0.0050% or less, Cr: more than 1.0% and 2.0% or less, Ti: 0.010-0.080%, Nb: 0.010-0.080% and B: 0.0001-0.0030%, with the balance being Fe and inevitable impurities , After hot rolling, after winding into a coil, pickling, then cold rolling, hot-dip galvanized to produce a hot-dip galvanized steel sheet,
In the above hot rolling, after hot rolling with a slab heating temperature of 1150 to 1300 ° C and a hot finish rolling temperature of 850 to 950 ° C, a temperature of hot finish rolling temperature to (hot finish rolling temperature-100 ° C) The zone is cooled at an average cooling rate of 5 to 200 ° C./second, wound at a coiling temperature of 400 to 600 ° C., then pickled, cold-rolled, and then primary from 200 ° C. to an intermediate temperature. Heating to an intermediate temperature of 500 to 800 ° C with an average temperature increase rate of 10 to 50 ° C / second, and 750 to 900 ° C with a secondary average temperature increase rate from the intermediate temperature to the annealing temperature of 0.1 to 10 ° C / second After heating to the annealing temperature of the steel and holding it for 10 to 500 seconds, it is cooled to a cooling stop temperature of 450 to 550 ° C. at an average cooling rate of 1 to 30 ° C./second, and then hot dip galvanized or further alloyed. that is,
The steel structure has a volume fraction of 20-60% ferrite phase, 40-80% martensite phase, and a remaining structure of 5% or less (including 0%), and the average grain size of the ferrite phase A method for producing a high-strength hot-dip galvanized steel sheet excellent in workability and weldability, characterized in that a steel sheet having a tensile strength of 980 MPa or more is obtained .
前記の熱間仕上げ圧延終了後、(巻取り温度)×1.1の温度までの経過時間を5秒以上とすることを特徴とする請求項3に記載の高強度溶融亜鉛めっき鋼板の製造方法。   4. The method for producing a high-strength hot-dip galvanized steel sheet according to claim 3, wherein after the hot finish rolling is finished, an elapsed time up to a temperature of (winding temperature) × 1.1 is 5 seconds or more. 上記鋼スラブがさらに、質量%で、Ca:0.0001〜0.0050%を含有することを特徴とする請求項3または4に記載の高強度溶融亜鉛めっき鋼板の製造方法。   The method for producing a high-strength hot-dip galvanized steel sheet according to claim 3 or 4, wherein the steel slab further contains, by mass%, Ca: 0.0001 to 0.0050%.
JP2008050907A 2008-02-29 2008-02-29 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same Expired - Fee Related JP5167865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050907A JP5167865B2 (en) 2008-02-29 2008-02-29 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050907A JP5167865B2 (en) 2008-02-29 2008-02-29 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009209384A JP2009209384A (en) 2009-09-17
JP5167865B2 true JP5167865B2 (en) 2013-03-21

Family

ID=41182826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050907A Expired - Fee Related JP5167865B2 (en) 2008-02-29 2008-02-29 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same

Country Status (1)

Country Link
JP (1) JP5167865B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829564A (en) * 2013-12-18 2016-08-03 杰富意钢铁株式会社 High-strength steel sheet and method for producing same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5412746B2 (en) * 2008-04-22 2014-02-12 新日鐵住金株式会社 High strength steel plate with good weldability and stretch flangeability
JP5434960B2 (en) * 2010-05-31 2014-03-05 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in bendability and weldability and method for producing the same
JP5682356B2 (en) * 2011-02-03 2015-03-11 新日鐵住金株式会社 Hot-dip galvanized steel sheet and manufacturing method thereof
CN105980591A (en) * 2014-02-05 2016-09-28 安赛乐米塔尔股份公司 Hot formable, air hardenable, weldable, steel sheet
US10294542B2 (en) 2014-04-22 2019-05-21 Jfe Steel Corporation Method for producing high-strength galvanized steel sheet and high-strength galvannealed steel sheet
CN107208237B (en) 2015-02-13 2019-03-05 杰富意钢铁株式会社 High strength hot dip galvanized steel sheet and its manufacturing method
JP6057027B1 (en) * 2015-02-13 2017-01-11 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR101998952B1 (en) 2017-07-06 2019-07-11 주식회사 포스코 Ultra high strength hot rolled steel sheet having low deviation of mechanical property and excellent surface quality, and method for manufacturing the same
KR102649505B1 (en) * 2019-07-10 2024-03-21 닛폰세이테츠 가부시키가이샤 high strength steel plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587116B2 (en) * 2000-01-25 2004-11-10 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4292986B2 (en) * 2003-04-16 2009-07-08 Jfeスチール株式会社 High tensile cold-rolled steel sheet and method for producing the same
JP4486336B2 (en) * 2003-09-30 2010-06-23 新日本製鐵株式会社 High yield ratio high strength cold-rolled steel sheet and high yield ratio high strength hot-dip galvanized steel sheet excellent in weldability and ductility, high yield ratio high-strength galvannealed steel sheet, and manufacturing method thereof
JP4542515B2 (en) * 2006-03-01 2010-09-15 新日本製鐵株式会社 High strength cold-rolled steel sheet excellent in formability and weldability, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet, manufacturing method of high-strength cold-rolled steel sheet, and manufacturing method of high-strength hot-dip galvanized steel sheet , Manufacturing method of high strength galvannealed steel sheet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105829564A (en) * 2013-12-18 2016-08-03 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
CN105829564B (en) * 2013-12-18 2019-01-22 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
US10526676B2 (en) 2013-12-18 2020-01-07 Jfe Steel Corporation High-strength steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2009209384A (en) 2009-09-17

Similar Documents

Publication Publication Date Title
JP5194878B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP4924730B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability, weldability and fatigue characteristics and method for producing the same
JP5434960B2 (en) High-strength hot-dip galvanized steel sheet excellent in bendability and weldability and method for producing the same
JP5858199B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP5413546B2 (en) High strength thin steel sheet and method for producing the same
JP5167865B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same
JP5983895B2 (en) High strength steel plate and method for producing the same, and method for producing high strength galvanized steel plate
KR102173601B1 (en) High-strength thin steel sheet and its manufacturing method
JP5082432B2 (en) Method for producing high-strength hot-dip galvanized steel sheet
JP5971434B2 (en) High-strength hot-dip galvanized steel sheet excellent in stretch flangeability, in-plane stability and bendability of stretch flangeability, and manufacturing method thereof
KR101923327B1 (en) High strength galvanized steel sheet and production method therefor
JP6544494B1 (en) High strength galvanized steel sheet and method of manufacturing the same
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
JP6394812B2 (en) Thin steel plate and plated steel plate, hot rolled steel plate manufacturing method, cold rolled full hard steel plate manufacturing method, heat treatment plate manufacturing method, thin steel plate manufacturing method and plated steel plate manufacturing method
JPWO2019106895A1 (en) High strength galvanized steel sheet and manufacturing method thereof
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2013241636A (en) Low yield ratio type high strength hot dip galvanized steel sheet, low yield ratio type high strength alloying hot dip galvannealed steel sheet, method for manufacturing low yield ratio type high strength hot dip galvanized steel sheet, and method for manufacturing low yield ratio type high strength alloying hot dip galvannealed steel sheet
JP5375001B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5167865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees