EP2655675B1 - Method for producing hardened structural elements - Google Patents

Method for producing hardened structural elements Download PDF

Info

Publication number
EP2655675B1
EP2655675B1 EP11811025.3A EP11811025A EP2655675B1 EP 2655675 B1 EP2655675 B1 EP 2655675B1 EP 11811025 A EP11811025 A EP 11811025A EP 2655675 B1 EP2655675 B1 EP 2655675B1
Authority
EP
European Patent Office
Prior art keywords
cooling
temperature
zinc
blank
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11811025.3A
Other languages
German (de)
French (fr)
Other versions
EP2655675A2 (en
Inventor
Andreas Sommer
Harald Schwinghammer
Siegfried Kolnberger
Thomas Kurz
Martin Rosner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/en
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/en
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/en
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/en
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2655675A2 publication Critical patent/EP2655675A2/en
Application granted granted Critical
Publication of EP2655675B1 publication Critical patent/EP2655675B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for producing hardened corrosion-protected components with the features of claim 1.
  • press-hardened components made of sheet steel are used in automobiles in particular.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area.
  • a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached.
  • This heated blank is then transferred to a molding tool and in this molding tool it is formed into the finished component in a single-stage forming step, and in the process through the cooled one Mold simultaneously cooled at a rate that is above the critical hardening rate. The hardened component is thus produced.
  • the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.
  • This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed and thereby hardened.
  • the direct method is somewhat easier to implement here, but only enables shapes that can actually be created with a single forming step, i.e. relatively simple profile shapes.
  • the indirect method is a bit more complex, but it is also able to produce more complex shapes.
  • Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion.
  • zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, as these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.
  • microcracks can also occur in the coating, which are also undesirable, but not nearly as pronounced.
  • the zinc-iron phase diagram shows that above 782 ° C. there is a large area in which liquid zinc-iron phases occur as long as the iron content is low, in particular less than 60%. However, this is also the temperature range in which the austenitized steel is hot worked. However, it is also pointed out that if the deformation takes place above 782 ° C, there is a great risk of stress corrosion due to liquid zinc, which presumably penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, with iron contents less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but an indirect forming process. This is intended to circumvent the problem described.
  • a method for hot forming a coated steel product wherein the steel material has a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot worked wherein the coating has an oxide layer consisting mainly of zinc oxide before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated.
  • a special procedure is provided for this.
  • a method for hot forming a steel in which a component made of a given boron-manganese steel is heated to a temperature at Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a way that the cooling rate to the MS point is at least equal to the critical cooling rate and that the average cooling rate of the molded component from the MS point at 200 ° C is in the range of 25 ° C / s to 150 ° C / s.
  • an oxide skin is formed on the surface of the anti-corrosion coating from the elements with an affinity for oxygen during heating, which protects the cathodic anti-corrosion layer, in particular the zinc layer.
  • the method takes into account the thermal expansion of the component due to the scaling down of the component in relation to its final geometry, so that neither calibration nor reshaping is necessary during hot-stamping.
  • WO 2010/109012 A1 From the WO 2010/109012 A1 the applicant is known a method for producing partially hardened steel components, wherein a blank made of a hardenable steel sheet is subjected to a temperature increase which is sufficient for quench hardening and the blank is transferred to a forming tool after reaching a desired temperature and possibly a desired holding time by the The blank is formed into a component and quenched hardened at the same time, or the blank is cold formed and the component obtained by the cold forming is then subjected to a temperature increase, the temperature increase being carried out so that a temperature of the component is reached that is necessary for quench hardening is necessary and the component is then transferred to a tool, in which the heated component is cooled and thereby quenched and hardened, with during the heating of the board or the component for the purpose of increasing the temperature to one for hardening necessary temperature in the areas that should have a lower hardness and / or a higher ductility, absorption masses are applied or are spaced with a small gap,
  • the object of the invention is to create a method for producing sheet steel components provided with an anti-corrosion layer, in which the formation of cracks is reduced or eliminated and, nevertheless, adequate protection against corrosion is achieved.
  • the invention takes a more favorable route by using the direct method in which a plate coated with zinc or a zinc alloy is heated and is reshaped and quench hardened after heating.
  • the composition of the steel alloy is set within the scope of the usual composition of a manganese-boron steel (22MnB5) so that quench hardening is carried out, and the presence of austenite also in the case of the delayed conversion of austenite into martensite Lower temperature below 780 ° C or lower is reached, so that at the moment in which mechanical stress is introduced into the steel by deformation, which in connection with a zinc melt and austenite would lead to "liquid metal embrittlement", just none or only very few liquid zinc phases are still present. It is thus possible to achieve sufficient quench hardening by means of a boron-manganese steel adjusted according to the alloying elements without provoking excessive or damaging crack formation.
  • the cooling can take place with air nozzles, whereby the control of air nozzles for blowing can take place via pyrometers, which, for example, are available outside the press and the furnace in a separate system as well as the corresponding nozzles.
  • the cooling options are not limited to air nozzles, cooled tables can also be used on which the circuit boards are positioned accordingly, so that the circuit boards come to rest on cooled areas of the table and are brought into thermally conductive contact, for example by pressing or sucking.
  • a conventional boron-manganese steel (e.g. 22MnB5) for use as a press-hardening steel material is adjusted with regard to the transformation of the austenite into other phases in such a way that the transformation shifts to deeper areas and martensite can be formed.
  • the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion retarders in such steels.
  • quench hardening i. H. rapid cooling with a cooling rate above the critical hardening rate can be safely achieved even below 780 ° C.
  • work is carried out below the peritectic of the zinc-iron system, i.e. H. mechanical tension is only applied below the peritectic. This also means that at the moment when mechanical stress is applied, there are no longer any liquid zinc phases that can come into contact with the austenite.
  • a holding phase can be provided in the temperature range of the peritectic, so that the solidification of the zinc coating is promoted and promoted before it is subsequently reshaped.
  • Figure 1 one recognizes a favorable temperature profile for an austenitized steel sheet, whereby it can be seen that after the heating to a temperature above the austenitizing temperature, a certain cooling already takes place by the corresponding placing in a cooling device. This is followed by a rapid intermediate cooling step.
  • the intermediate cooling step is advantageously carried out at cooling rates of at least 15 K / s, preferably at least 30 K / s, more preferably at least 50 K / s.
  • the blank is then transferred to the press and reshaped and hardened.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen gehärteter korrosionsgeschützter Bauteile mit den Merkmalen des Anspruchs 1.The invention relates to a method for producing hardened corrosion-protected components with the features of claim 1.

Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen.It is known that so-called press-hardened components made of sheet steel are used in automobiles in particular. These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area. By using these high-strength steel components, it is possible to reduce the material thickness compared to normal-strength steel and thus achieve low body weights.

Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren.In press hardening, there are basically two different ways of producing such components. A distinction is made between the so-called direct and indirect method.

Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannten Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt.In the direct method, a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached. This heated blank is then transferred to a molding tool and in this molding tool it is formed into the finished component in a single-stage forming step, and in the process through the cooled one Mold simultaneously cooled at a rate that is above the critical hardening rate. The hardened component is thus produced.

Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess, das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstemperatur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten.In the case of the indirect process, the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.

Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet.This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed and thereby hardened.

Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen.The direct method is somewhat easier to implement here, but only enables shapes that can actually be created with a single forming step, i.e. relatively simple profile shapes.

Das indirekte Verfahren ist etwas aufwendiger, dafür aber in der Lage auch komplexere Formen zu realisieren.The indirect method is a bit more complex, but it is also able to produce more complex shapes.

Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen.In addition to the need for press-hardened components, the need arose not to produce such components from uncoated sheet steel, but to provide such components with a corrosion protection layer.

Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendete Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden.Only aluminum or aluminum alloys, which are used to a lesser extent, or the much more frequently required zinc-based coatings are suitable as a corrosion protection layer in automobile construction. Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion. In addition, zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, as these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.

Bei beiden Verfahren konnten jedoch Nachteile aufgefunden werden, die auch im Stand der Technik diskutiert werden. Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu Mikro- (10 µm bis 100 µm) oder sogar Makrorissen im Material, wobei die Mikrorisse in der Beschichtung erscheinen und die Makrorisse sogar durch den vollständigen Blechquerschnitt reichen. Derartige Bauteile mit Makrorissen sind für die weitere Verwendung ungeeignet.In both processes, however, disadvantages could be found which are also discussed in the prior art. In the direct process, i.e. the hot forming of press-hardening steels with zinc coating, micro (10 µm to 100 µm) or even macro cracks occur in the material, whereby the micro cracks appear in the coating and the macro cracks even extend through the entire sheet metal cross-section. Such components with macro cracks are unsuitable for further use.

Beim indirekten Prozess, d.h. der Kaltumformung mit einer anschließenden Härtung und Restformung kann es ebenfalls zu Mikrorissen in der Beschichtung kommen, welche ebenfalls unerwünscht sind, aber bei weitem nicht so ausgeprägt.In the indirect process, i.e. cold forming with subsequent hardening and residual forming, microcracks can also occur in the coating, which are also undesirable, but not nearly as pronounced.

Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung, nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt.Up to now, zinc-coated steels have not been used in the direct process, i.e. hot forming, with the exception of one component in Asia. Rather, steels with an aluminum-silicon coating are used here.

Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumformprozess einen aluminierten Bor-Mangan-Stahl gibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbeschichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor GI mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält und ein sogenannter galvanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält.An overview can be found in the publication "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In this publication it is stated that there is an aluminized boron-manganese steel for the hot forming process, which is sold commercially under the name Usibor 1500P. In addition, for the purpose of cathodic corrosion protection, steels precoated with zinc are sold for the hot forming process, namely the galvanized Usibor GI with a zinc coating that contains a small amount of aluminum and a so-called galvanealed coated Usibor GA, which contains a zinc layer with 10% iron.

Es wird darauf hingewiesen, dass das Zink-Eisen-Phasendiagramm zeigt, dass oberhalb von 782°C ein großer Bereich entsteht, in dem flüssige Zink-Eisen-Phasen auftreten, solange der Eisengehalt gering, insbesondere geringer als 60 % ist. Dies ist jedoch auch der Temperaturbereich, in dem der austenitisierte Stahl warm umgeformt wird. Es wird aber auch darauf hingewiesen, dass, wenn die Umformung oberhalb von 782°C stattfindet, ein großes Risiko der Spannungskorrosion durch flüssiges Zink besteht, welches vermutlich in die Korngrenzen des Basisstahls eindringt, welche zu Makrorissen im Basisstahl führt. Darüber hinaus ist bei Eisengehalten geringer als 30 % in der Beschichtung die Maximaltemperatur zum Umformen eines sicheren Produkts ohne Makrorisse niedriger als 782°C. Dies ist der Grund, warum hiermit kein direktes Umformverfahren betrieben wird, sondern dass indirekte Umformverfahren. Hiermit soll das geschilderte Problem umgangen werden.It should be noted that the zinc-iron phase diagram shows that above 782 ° C. there is a large area in which liquid zinc-iron phases occur as long as the iron content is low, in particular less than 60%. However, this is also the temperature range in which the austenitized steel is hot worked. However, it is also pointed out that if the deformation takes place above 782 ° C, there is a great risk of stress corrosion due to liquid zinc, which presumably penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, with iron contents less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but an indirect forming process. This is intended to circumvent the problem described.

Eine weitere Möglichkeit dieses Problem zu umgehen, soll darin liegen, galvannealed beschichteten Stahl zu verwenden, was daran liegt, dass der zu Beginn schon bestehende Eisengehalt von 10 % und die Abwesenheit einer Fe2Al5-Sperrschicht zu einer homogeneren Ausbildung des Beschichtung von überwiegend eisenreichen Phasen führt. Dies resultiert in einer Verringerung oder Vermeidung von zinkreichen, flüssigen Phasen.Another possibility to circumvent this problem is to use galvannealed coated steel, which is due to the fact that the iron content of 10% already existing at the beginning and the absence of an Fe 2 Al 5 barrier layer lead to a more homogeneous formation of the coating of predominantly rich in iron Phases leads. This results in a reduction or avoidance of zinc-rich, liquid phases.

In " 'STUDY OF CRACKS PROPAGATION INSIDE THE STEEL ON PRESS HARDENED STEEL ZINC BASED COATINGS', Pascal Drillet, Raisa Grigorieva, Gregory Leuillier, Thomas Vietoris, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, GALVATECH 2011 - Conference Proceedings, Genova (Italy), 2011 " wird darauf hingewiesen, dass verzinkte Bleche im direkten Verfahren nicht verarbeitbar sind.In " 'STUDY OF CRACKS PROPAGATION INSIDE THE STEEL ON PRESS HARDENED STEEL ZINC BASED COATINGS', Pascal Drillet, Raisa Grigorieva, Gregory Leuillier, Thomas Vietoris, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, GALVATECH 2011 - Conference Proceedings, Genova (Italy ), 2011 "it is pointed out that galvanized sheet metal cannot be processed directly.

Aus der EP 1 439 240 B1 ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei das Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf einen Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen.From the EP 1 439 240 B1 a method for hot forming a coated steel product is known, wherein the steel material has a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot worked wherein the coating has an oxide layer consisting mainly of zinc oxide before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated. A special procedure is provided for this.

Aus der EP 1 642 991 B1 ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS-Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet.From the EP 1 642 991 B1 a method for hot forming a steel is known in which a component made of a given boron-manganese steel is heated to a temperature at Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a way that the cooling rate to the MS point is at least equal to the critical cooling rate and that the average cooling rate of the molded component from the MS point at 200 ° C is in the range of 25 ° C / s to 150 ° C / s.

Aus der EP 1 651 789 B1 der Anmelderin ist ein Verfahren zum Herstellen von gehärteten Bauteilen aus Stahlblech bekannt, wobei hierbei Formteile aus einem mit einem kathodischen Korrosionsschutz versehenen Stahlblech kalt umgeformt werden und eine Wärmebehandlung zum Zwecke der Austenitisierung folgt, wobei vor, beim oder nach dem Kaltumformen des Formteils ein Endbeschnitt des Formteils und erforderliche Ausstanzungen oder die Erzeugung eines Lochbildes vorgenommen werden und die Kaltumformung sowie der Beschnitt und die Ausstanzung und Anordnung des Lochbildes auf dem Bauteil 0,5 % bis 2 % kleiner ausgeführt werden als die Dimensionen, die das endgehärtete Bauteil haben soll, wobei das zur Wärmebehandlung kalt umgeformte Formteil anschließend zumindest teilbereichsweise unter Zutritt von Luftsauerstoff auf eine Temperatur erhitzt wird, welche eine Austenitisierung des Stahlwerkstoffes ermöglicht und das erhitzte Bauteil anschließend in ein Werkzeug überführt wird und in diesem Werkzeug eine sogenannte Formhärtung durchgeführt wird, bei der durch das Anlegen und Pressen (Halten) des Bauteils durch die Formhärtewerkzeuge das Bauteil gekühlt und dadurch gehärtet wird und die kathodische Korrosionsschutzbeschichtung aus einer Mischung aus im Wesentlichen Zink besteht und zudem ein oder mehrere sauerstoffaffine Elemente. Hierdurch wird an der Oberfläche der Korrosionsschutzbeschichtung eine Oxidhaut aus den sauerstoffaffinen Elementen während des Aufheizens gebildet, welche die kathodische Korrosionsschutzschicht, insbesondere die Zinkschicht, schützt. Zudem wird bei dem Verfahren durch die maßstäbliche Verkleinerung des Bauteils in Bezug auf seine Endgeometrie die Wärmedehnung des Bauteils berücksichtigt, so dass beim Formhärten weder eine Kalibrierung noch eine Umformung notwendig sind.From the EP 1 651 789 B1 the applicant is known a method for producing hardened components from sheet steel, in which case molded parts from a steel sheet provided with a cathodic corrosion protection are cold formed and a heat treatment for the purpose of austenitization follows, with an end trimming of the molded part before, during or after the cold forming Molded part and necessary punchings or the creation of a hole pattern are made and the cold forming as well as the trimming and the punching and arrangement of the hole pattern on the component are 0.5% to 2% smaller than the dimensions that the finally hardened component should have, whereby the cold-formed molding for heat treatment is then heated to a temperature at least partially with the admission of atmospheric oxygen, which enables austenitization of the steel material and the heated component is then transferred to a tool and a so-called formh Curing is carried out in which the component is cooled and thereby hardened by applying and pressing (holding) the component using the form hardening tools and the cathodic corrosion protection coating consists essentially of zinc and also one or more elements with an affinity for oxygen. As a result, an oxide skin is formed on the surface of the anti-corrosion coating from the elements with an affinity for oxygen during heating, which protects the cathodic anti-corrosion layer, in particular the zinc layer. In addition, the method takes into account the thermal expansion of the component due to the scaling down of the component in relation to its final geometry, so that neither calibration nor reshaping is necessary during hot-stamping.

Aus der WO 2010/109012 A1 der Anmelderin ist ein Verfahren zum Herstellen partiell gehärteter Stahlbauteile bekannt, wobei eine Platine aus einem härtbaren Stahlblech einer Temperaturerhöhung unterworfen wird, welche für eine Abschreckhärtung ausreicht und die Platine nach Erreichen einer gewünschten Temperatur und gegebenenfalls einer gewünschten Haltezeit in ein Umformwerkzeug überführt wird, indem die Platine zu einem Bauteil umgeformt und gleichzeitig abgeschreckt gehärtet wird, oder die Platine kalt umgeformt wird und das durch die kalte Umformung erhaltene Bauteil anschließend einer Temperaturerhöhung unterzogen wird, wobei die Temperaturerhöhung so durchgeführt wird, dass eine Temperatur des Bauteils erreicht wird, die für eine Abschreckhärtung notwendig ist und das Bauteil anschließend in ein Werkzeug überführt wird, in dem das erhitzte Bauteil abgekühlt und dadurch abgeschreckt gehärtet wird, wobei während des Erhitzens der Platine oder des Bauteils zum Zwecke der Temperaturerhöhung auf eine zum Härten notwendige Temperatur in den Bereichen, die eine geringere Härte und/oder eine höhere Duktilität besitzen sollen, Absorptionsmassen anliegen oder mit einem geringen Spalt beabstandet sind, wobei die Absorptionsmasse bezüglich ihrer Ausdehnung und Dicke, ihrer Wärmeleitfähigkeit und ihrer Wärmekapazität und/oder hinsichtlich ihres Emissionsgrades gerade so dimensioniert sind, dass die in dem duktil verbleibendem Bereich auf das Bauteil einwirkende Wärmeenergie durch das Bauteil hin durch in die Absorptionsmasse fließt, so dass diese Bereiche kühler bleiben und insbesondere die zum Härten notwendige Temperatur gerade nicht oder nur teilweise erreichen, so dass diese Bereiche nicht oder nur teilweise gehärtet werden können.From the WO 2010/109012 A1 the applicant is known a method for producing partially hardened steel components, wherein a blank made of a hardenable steel sheet is subjected to a temperature increase which is sufficient for quench hardening and the blank is transferred to a forming tool after reaching a desired temperature and possibly a desired holding time by the The blank is formed into a component and quenched hardened at the same time, or the blank is cold formed and the component obtained by the cold forming is then subjected to a temperature increase, the temperature increase being carried out so that a temperature of the component is reached that is necessary for quench hardening is necessary and the component is then transferred to a tool, in which the heated component is cooled and thereby quenched and hardened, with during the heating of the board or the component for the purpose of increasing the temperature to one for hardening necessary temperature in the areas that should have a lower hardness and / or a higher ductility, absorption masses are applied or are spaced with a small gap, the absorption mass with regard to its expansion and thickness, its thermal conductivity and its heat capacity and / or with regard to its emissivity are dimensioned in such a way that the thermal energy acting on the component in the ductile area flows through the component through into the absorption mass, so that these areas remain cooler and in particular do not or only partially reach the temperature required for hardening, so that these areas cannot be hardened or only partially hardened.

Aus der DE 10 2005 003 551 A1 ist ein Verfahren zur Warmumformung und Härtung eines Stahlblechs bekannt, bei dem ein Stahlblech auf eine Temperatur über den Ac3-Punkt erwärmt wird, danach eine Abkühlung auf eine Temperatur im Bereich von 400°C bis 600°C erfährt und erst nach Erreichen dieses Temperaturbereichs umgeformt wird. Diese Schrift geht allerdings nicht auf die Rissproblematik bzw. eine Beschichtung ein, noch wird eine Martensitbildung beschrieben. Ziel der Erfindung ist die Bildung von Zwischengefüge, sogenanntem Bainit.From the DE 10 2005 003 551 A1 a method for hot forming and hardening of a steel sheet is known, in which a steel sheet is heated to a temperature above the Ac 3 point, then is cooled to a temperature in the range from 400 ° C to 600 ° C and is only reshaped after this temperature range has been reached. However, this document does not deal with the problem of cracks or a coating, nor is martensite formation described. The aim of the invention is the formation of intermediate structures, so-called bainite.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von mit einer Korrosionsschutzschicht versehenen Stahlblechbauteilen zu schaffen, bei dem die Rissbildung vermindert oder beseitigt wird und dennoch ein ausreichender Korrosionsschutz erzielt wird.The object of the invention is to create a method for producing sheet steel components provided with an anti-corrosion layer, in which the formation of cracks is reduced or eliminated and, nevertheless, adequate protection against corrosion is achieved.

Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved with the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the subclaims.

Der vorbeschriebene Effekt der Rissbildung durch flüssiges Zink, welches den Stahl im Bereich der Korngrenzen penetriert, ist auch als sogenanntes "liquid metal embrittlement" oder "liquid metal assisted cracking" bekannt.The above-described effect of crack formation by liquid zinc, which penetrates the steel in the area of the grain boundaries, is also known as so-called "liquid metal embrittlement" or "liquid metal assisted cracking".

Im Gegensatz zur im Stand der Technik eingeschlagenen Richtung, wegen des "liquid metal embrittlements" das indirekte Verfahren auch bei einfachen Geometrien vorzusehen, geht die Erfindung einen günstigeren Weg indem das direkte Verfahren Anwendung findet, bei dem eine mit Zink oder einer Zinklegierung beschichtete Platine aufgeheizt wird und nach dem Aufheizen umgeformt und abschreckgehärtet wird.In contrast to the direction taken in the prior art of providing the indirect method even with simple geometries because of the "liquid metal embrittlements", the invention takes a more favorable route by using the direct method in which a plate coated with zinc or a zinc alloy is heated and is reshaped and quench hardened after heating.

Wie erfindungsgemäß erkannt wurde darf möglichst keine Zinkschmelze mit Austenit während der Umformphase, also dem Eintrag von Spannung, in Berührung kommen. Erfindungsgemäß wird daher vorgesehen, die Umformung unter der peritektischen Temperatur des Systems Eisen-Zink (Schmelze, Ferrit, Gamma-Phase) durchzuführen. Um hierbei eine Abschreckhärtung noch gewährleisten zu können wird die Zusammensetzung der Stahllegierung im Rahmen der üblichen Zusammensetzung eines Mangan-Borstahles (22MnB5) so eingestellt, dass eine Abschreckhärtung durchgeführt, und dabei durch eine verzögerte Umwandlung des Austenits in Martensit das Vorhandensein von Austenit auch bei der tieferen Temperatur unterhalb von 780°C oder tiefer erreicht wird, so dass in dem Moment in dem mechanische Spannung durch Umformung auf den Stahl eingebracht wird, welche in Verbindung mit einer Zinkschmelze und Austenit zum "liquid metal embrittlement" führen würde, eben keine oder nur noch sehr wenige flüssige Zinkphasen vorhanden sind. Somit gelingt es mittels eines entsprechend der Legierungselemente eingestellten Bor-Manganstahls eine ausreichende Abschreckhärtung zu erzielen ohne eine übermäßige oder schädigende Rissbildung zu provozieren.As was recognized according to the invention, as far as possible no zinc melt should come into contact with austenite during the forming phase, that is to say when stress is introduced. According to the invention It is therefore intended to carry out the forming under the peritectic temperature of the iron-zinc system (melt, ferrite, gamma phase). In order to still be able to guarantee quench hardening, the composition of the steel alloy is set within the scope of the usual composition of a manganese-boron steel (22MnB5) so that quench hardening is carried out, and the presence of austenite also in the case of the delayed conversion of austenite into martensite Lower temperature below 780 ° C or lower is reached, so that at the moment in which mechanical stress is introduced into the steel by deformation, which in connection with a zinc melt and austenite would lead to "liquid metal embrittlement", just none or only very few liquid zinc phases are still present. It is thus possible to achieve sufficient quench hardening by means of a boron-manganese steel adjusted according to the alloying elements without provoking excessive or damaging crack formation.

Insbesondere kann die Kühlung mit Luftdüsen erfolgen, wobei die Steuerung von Luftdüsen zum Anblasen über Pyrometer erfolgen kann, die beispielsweise außerhalb der Presse und des Ofens in einer gesonderten Anlage ebenso wie die entsprechenden Düsen vorhanden sind.In particular, the cooling can take place with air nozzles, whereby the control of air nozzles for blowing can take place via pyrometers, which, for example, are available outside the press and the furnace in a separate system as well as the corresponding nozzles.

Die Kühlmöglichkeiten sind hierbei nicht auf Luftdüsen beschränkt, es können auch gekühlte Tische verwendet werden auf denen die Platinen entsprechend positioniert werden, so dass die Platinen auf abgekühlten Bereichen des Tisches zu liegen kommen und beispielsweise durch Aufdrücken oder Ansaugen in wärmeleitenden Kontakt gebracht werden.The cooling options are not limited to air nozzles, cooled tables can also be used on which the circuit boards are positioned accordingly, so that the circuit boards come to rest on cooled areas of the table and are brought into thermally conductive contact, for example by pressing or sucking.

Auch der Einsatz einer Kühlpresse ist denkbar, bei der die Pressengeometrie durch die ebenen Platinen denkbar einfach und günstig ist, wobei die Bereiche des Werkzeugs in denen die Platine abgekühlt werden soll entsprechend flüssig gekühlt sind. Vollflächig aufgeheizte Platinen können in entsprechenden Einrichtungen somit vollflächig abgekühlt werden, wobei die vollflächige Abkühlung sowohl über die beschriebenen Tische als auch über die beschriebenen Zwischenpressen als auch über einfaches Ansprühen, Anblasen oder Eintauchen erfolgen kann.The use of a cooling press is also conceivable, in which the press geometry is very simple and easy thanks to the flat plates is favorable, the areas of the tool in which the board is to be cooled are correspondingly liquid-cooled. Blanks that have been heated over the entire surface can thus be cooled over the entire surface in corresponding devices, with the entire surface cooling being able to take place both via the described tables and via the intermediate presses described as well as simply by spraying, blowing or dipping.

Die Erfindung wird anhand einer Zeichnung erläutert, es zeigen dabei:

Figur 1:
die Zeit-Temperaturkurve bei der Abkühlung zwischen Ofen und Umformung;
Figur 2:
das Zink-Eisen-Diagramm;
Figur 3:
Querschnittschliffdarstellungen der Oberfläche von Proben mit und ohne Zwischenkühlung;
Figur 4:
ZTU-Schaubild mit vereinfachter Darstellung des Abkühlverlaufs.
The invention is explained with reference to a drawing, it shows:
Figure 1:
the time-temperature curve during cooling between furnace and forming;
Figure 2:
the zinc-iron diagram;
Figure 3:
Cross-sectional views of the surface of samples with and without intermediate cooling;
Figure 4:
ZTU diagram with a simplified representation of the cooling process.

Erfindungsgemäß wird ein üblicher Bor-Manganstahl (z.B. 22MnB5) zur Verwendung als presshärtender Stahlwerkstoff bezüglich der Umwandlung des Austenits in andere Phasen so eingestellt, dass sich die Umwandlung in tiefere Bereiche verschiebt und Martensit gebildet werden kann.According to the invention, a conventional boron-manganese steel (e.g. 22MnB5) for use as a press-hardening steel material is adjusted with regard to the transformation of the austenite into other phases in such a way that the transformation shifts to deeper areas and martensite can be formed.

Für die Erfindung sind somit Stähle dieser Legierungszusammensetzung geeignet (alle Angaben in Masse-%): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] [%] B N [%] 0,22 0,19 1,22 0,0066 0,001 0,053 0,26 0,031 0,0025 0,0042 Rest Eisen und erschmelzungsbedingte VerunreinigungenSteels of this alloy composition are therefore suitable for the invention (all data in% by mass): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] [%] B N [%] 0.22 0.19 1.22 0.0066 0.001 0.053 0.26 0.031 0.0025 0.0042 The remainder is iron and impurities from the melting process

Wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden.The alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion retarders in such steels.

Für die Erfindung sind auch Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,6 Mangan (Mn) 0,8-3,0 Aluminium (Al) 0,01-0,07 Silizium (Si) 0,01-0,5 Chrom (Cr) 0,02-0,6 Titan (Ti) 0,01-0,08 Stickstoff (N) < 0,02 Bor (B) 0,002-0,02 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Rest Eisen und erschmelzungsbedingte VerunreinigungenSteels of the general alloy composition are also suitable for the invention (all data in% by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08 Nitrogen (N) <0.02 Boron (B) 0.002-0.02 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1 The remainder is iron and impurities from the melting process

Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,30 Mangan (Mn) 1,00-3,00 Aluminium (Al) 0,03-0,06 Silizium (Si) 0,01-0,20 Chrom (Cr) 0,02-0,3 Titan (Ti) 0,03-0,04 Stickstoff (N) < 0,007 Bor (B) 0,002-0,006 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Rest Eisen und erschmelzungsbedingte VerunreinigungenSteel arrangements as follows have proven particularly suitable (all data in% by mass): Carbon (C) 0.08-0.30 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chromium (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) <0.007 Boron (B) 0.002-0.006 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1 The remainder is iron and impurities from the melting process

Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. eine rasche Abkühlung mit einer über der kritischen Härtegeschwindigkeit liegenden Abkühlgeschwindigkeit auch noch unter 780°C sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums mechanische Spannung aufgebracht wird. Dies bedeutet ferner, dass in dem Moment in dem mechanische Spannung aufgebracht wird, keine flüssigen Zinkphasen mehr vorhanden sind welche mit dem Austenit in Kontakt kommen können.By adjusting the alloying elements that act as conversion retarders, quench hardening, i. H. rapid cooling with a cooling rate above the critical hardening rate can be safely achieved even below 780 ° C. This means that in this case work is carried out below the peritectic of the zinc-iron system, i.e. H. mechanical tension is only applied below the peritectic. This also means that at the moment when mechanical stress is applied, there are no longer any liquid zinc phases that can come into contact with the austenite.

Zudem kann nach dem Aufheizen der Platine erfindungsgemäß im Temperaturbereich des Peritektikums eine Haltephase vorgesehen sein, so dass die Erstarrung der Zinkbeschichtung gefördert und vorangetrieben wird bevor anschließend umgeformt wird.In addition, according to the invention, after the blank has been heated, a holding phase can be provided in the temperature range of the peritectic, so that the solidification of the zinc coating is promoted and promoted before it is subsequently reshaped.

In Figur 1 erkennt man einen günstigen Temperaturverlauf für ein austenitisiertes Stahlblech, wobei erkennbar ist, dass nach dem Aufheizen auf eine Temperatur über der Austenitisierungstemperatur durch das entsprechende Verbringen in eine Kühleinrichtung bereits eine gewisse Abkühlung stattfindet. Anschließend folgt ein rascher Zwischenkühlschritt. Der Zwischenkühlschritt wird vorteilhafterweise mit Abkühlgeschwindigkeiten mit mindestens 15 K/s, vorzugsweise mindestens 30 K/s, weiter bevorzugt mindestens 50 K/s durchgeführt. Anschließend wird die Platine in die Presse transferiert und die Umformung und Härtung durchgeführt.In Figure 1 one recognizes a favorable temperature profile for an austenitized steel sheet, whereby it can be seen that after the heating to a temperature above the austenitizing temperature, a certain cooling already takes place by the corresponding placing in a cooling device. This is followed by a rapid intermediate cooling step. The intermediate cooling step is advantageously carried out at cooling rates of at least 15 K / s, preferably at least 30 K / s, more preferably at least 50 K / s. The blank is then transferred to the press and reshaped and hardened.

In Figur 3 erkennt man den Unterschied in der Rissbildung. Ohne Zwischenkühlung erfolgt eine Rissbildung, die bis in das Stahlmaterial reicht, mit der Zwischenkühlung ergeben sich lediglich oberflächliche Risse in der Beschichtung, die jedoch unkritisch sind.In Figure 3 you can see the difference in the formation of cracks. Without intermediate cooling, cracks are formed that reach into the steel material; with intermediate cooling, only superficial cracks occur in the coating, but these are not critical.

Mit der Erfindung gelingt es somit, zuverlässig ein kostengünstiges Warmumformverfahren für mit Zink oder Zinklegierungen beschichteter Stahlbleche zu erreichen bei dem einerseits eine Abschreckhärtung herbeigeführt wird und andererseits Mikro- und Makrorissbildung, die zu Bauteilschäden führt, vermindert oder vermieden wird.With the invention it is thus possible to reliably achieve a cost-effective hot forming process for steel sheets coated with zinc or zinc alloys in which, on the one hand, quench hardening is brought about and, on the other hand, micro and macro cracking, which leads to component damage, is reduced or avoided.

Claims (5)

  1. Method of producing a hardened steel component with a coating of zinc or of a zinc alloy, wherein a blank is stamped out of a sheet coated with the zinc or zinc alloy, the stamped out blank is heated to a temperature ≥Ac3 and, if necessary, held at this temperature for a predetermined time to allow austenite to form, after which the heated blank is transferred into a forming tool, is formed in the forming tool at a speed which exceeds the critical hardening speed, is cooled down and is hardened thereby, in which the steel material is delayed in its conversion such that, at a forming temperature in the range of 450°C to 700°C and below the peritectic temperature of the zinc-iron system, quench hardening to convert the austenite into martensite takes place, upon which, after heating and before the conversion, active cooling takes place wherein the blank or parts of the blank is/are cooled down at a cooling speed >15K/sec wherein a steel material is used with the following analysis (all data in % by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminium (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08 Nitrogen (N) < 0.02 Boron (B) 0.002-0.02 Phosphorus (P) < 0.01 Sulphur (S) <0.01 Molybdenum (Mo) < 1
    the remainder being iron and impurities caused by the melting, and progress of the cooling and/or the temperature at the which the material is loaded into the forming tool is monitored by means of sensors, in particular pyrometers, and the cooling is controlled accordingly where the blank is then heated in a furnace to a temperature >Ac3 and is held for a predetermined time, wherein the blank is cooled down to a temperature between 500°C and 600°C in order to harden the layer of zinc, after which it is then transferred into the forming tool where it is formed.
  2. Method according to claim 1 characterised in that a steel material with the following analysis is used (all data on % by mass): Carbon (C) 0.08-0.30 Manganese (Mn) 1.00-3.00 Aluminium (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chromium (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) < 0.007 Boron (B) 0.002-0.006 Phosphorus (P) < 0.01 Sulphur (S) <0.01 Molybdenum (Mo) < 1
    the remainder being iron and impurities caused by the melting.
  3. Method according to any one of the preceding claims, characterised in that the active cooling is performed such that the cooling down rate is >30 K/sec.
  4. Method according to claim 3, characterised in that the active cooling is performed such that the cooling takes place at a rate greater than 50 K/sec.
  5. Method according to any one of the preceding claims, characterised in that the active cooling is executed by blowing with air or gas, spraying with water or with other cooling fluids, immersing in water or in other cooling fluids or the active cooling is achieved by placing cooler solid bodies on the blank.
EP11811025.3A 2010-12-24 2011-12-22 Method for producing hardened structural elements Active EP2655675B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102010056264.5A DE102010056264C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102010056265.3A DE102010056265C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102011053941.7A DE102011053941B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components with regions of different hardness and / or ductility
DE102011053939.5A DE102011053939B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components
PCT/EP2011/073880 WO2012085247A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Publications (2)

Publication Number Publication Date
EP2655675A2 EP2655675A2 (en) 2013-10-30
EP2655675B1 true EP2655675B1 (en) 2021-03-10

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
EP11808645.3A Active EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
EP11811026.1A Active EP2656187B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11808211.4A Active EP2655673B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11811025.3A Active EP2655675B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
EP11808645.3A Active EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
EP11811026.1A Active EP2656187B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11808211.4A Active EP2655673B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Country Status (8)

Country Link
US (2) US20140020795A1 (en)
EP (5) EP2655672B1 (en)
JP (2) JP5727037B2 (en)
KR (3) KR20130126962A (en)
CN (5) CN103392014B (en)
ES (5) ES2858225T3 (en)
HU (5) HUE052381T2 (en)
WO (5) WO2012085251A2 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (en) * 2012-10-31 2015-11-10 アイシン高丘株式会社 Die quench apparatus and die quench method for aluminum alloy material
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
US10167530B2 (en) 2013-08-29 2019-01-01 Jfe Steel Corporation Method of manufacturing hot press formed part, and hot press formed part
DE102013015032A1 (en) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
CN109023136A (en) * 2013-09-19 2018-12-18 塔塔钢铁艾默伊登有限责任公司 For hot formed steel
JP6167814B2 (en) * 2013-09-30 2017-07-26 マツダ株式会社 Automatic transmission
DE102014000969A1 (en) * 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motor vehicle component
DE102014101159B4 (en) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Process for the surface treatment of workpieces
WO2015144318A1 (en) * 2014-03-28 2015-10-01 Tata Steel Ijmuiden B.V. Method for hot forming a coated steel blank
JP6260411B2 (en) * 2014-03-31 2018-01-17 新日鐵住金株式会社 Slow cooling steel
JP5825413B1 (en) * 2014-04-23 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed product
WO2016046593A1 (en) * 2014-09-22 2016-03-31 Arcelormittal Reinforcement element for a vehicle, method for producing the same and door assembly
JP6152836B2 (en) * 2014-09-25 2017-06-28 Jfeスチール株式会社 Manufacturing method of hot press-formed product
JP6056826B2 (en) * 2014-09-30 2017-01-11 Jfeスチール株式会社 Manufacturing method of hot press-formed product
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (en) * 2014-12-12 2017-08-09 Jfeスチール株式会社 Manufacturing method of hot press-formed product
CN105772584B (en) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 Improve the thermoforming process and molding machine of forming parts performance
CN104668326B (en) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
EP3266531B1 (en) 2015-03-09 2019-02-27 Autotech Engineering, A.I.E. Press systems and methods
EP3067129A1 (en) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Press systems and methods
JP6908231B2 (en) * 2015-05-29 2021-07-21 フォエスタルピネ スタール ゲーエムベーハー Methods and equipment for uniform non-contact cooling of high temperature non-endless surfaces
US20180171424A1 (en) 2015-06-03 2018-06-21 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
DE102016114658B4 (en) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Process for forming and hardening steel materials
CN106334875A (en) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 Steel welding component with aluminum or aluminum alloy coating and manufacturing method thereof
CN106424280B (en) * 2016-11-30 2017-09-29 华中科技大学 A kind of high-strength steel hot forming differentiation mechanical property distribution flexible control method
DE102017115755A1 (en) 2017-07-13 2019-01-17 Schwartz Gmbh Method and device for heat treatment of a metallic component
EP3437750A1 (en) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Press method for coated steels
DE102017131253A1 (en) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
DE102017131247A1 (en) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
WO2019241902A1 (en) 2018-06-19 2019-12-26 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109433960A (en) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system
EP3712292B1 (en) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
ES2946893T3 (en) * 2019-10-14 2023-07-27 Autotech Eng Sl Pressing systems and procedures
EP3872230A1 (en) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
WO2021215418A1 (en) * 2020-04-20 2021-10-28 日本製鉄株式会社 Method for manufacturing hot-press-formed article, and hot-press-formed article
CN111822571A (en) * 2020-07-12 2020-10-27 首钢集团有限公司 Hot stamping method capable of customizing organization performance subareas of parts
KR102553226B1 (en) * 2020-12-21 2023-07-07 주식회사 포스코 Electro-magnetic Test Device
CN113182374A (en) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 Thermal forming method of high-strength structural member
DE102021122383A1 (en) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Process for the production of a hot-formed and press-hardened sheet steel component
CN118103543A (en) 2021-10-29 2024-05-28 杰富意钢铁株式会社 Hot-pressed component
WO2023074114A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (en) * 1991-11-04 1994-03-04 Isoform DEVICE FOR STAMPING SHEET MATERIALS, PARTICULARLY SHEET SHEET.
DE19838332A1 (en) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Quality monitoring of galvannealed coating of steel strip involves determining the visual appearance of the coating as a variable relevant to its quality and using it for controlling the annealing furnace
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
ATE468416T1 (en) 2001-10-23 2010-06-15 Sumitomo Metal Ind METHOD FOR HOT PRESSING A PLATED STEEL PRODUCT
JP4085876B2 (en) * 2003-04-23 2008-05-14 住友金属工業株式会社 Hot press-formed product and method for producing the same
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
AT412403B (en) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
PL1651789T3 (en) 2003-07-29 2011-03-31 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel
EP1669469B1 (en) * 2003-09-29 2008-12-17 JFE Steel Corporation Steel parts for machine structure, material therefor, and method for manufacture thereof
JP2005177805A (en) * 2003-12-19 2005-07-07 Nippon Steel Corp Hot press forming method
JP4131715B2 (en) * 2004-05-18 2008-08-13 トピー工業株式会社 Method and apparatus for partial heat treatment of heat treatment member
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP4329639B2 (en) * 2004-07-23 2009-09-09 住友金属工業株式会社 Steel plate for heat treatment with excellent liquid metal brittleness resistance
DE102005003551B4 (en) 2005-01-26 2015-01-22 Volkswagen Ag Method for hot forming and hardening a steel sheet
JP2007016296A (en) * 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
JP4733522B2 (en) * 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4681492B2 (en) 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
JP5092523B2 (en) * 2007-04-20 2012-12-05 新日本製鐵株式会社 Manufacturing method of high-strength parts and high-strength parts
EP2159292B1 (en) * 2007-06-15 2018-05-30 Nippon Steel & Sumitomo Metal Corporation Process for manufacturing shaped article
JP2009061473A (en) 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP4890416B2 (en) 2007-10-18 2012-03-07 アイシン高丘株式会社 Press working apparatus and press working method in die quench method
MX2011006528A (en) * 2008-12-19 2011-07-13 Tata Steel Ijmuiden Bv Method for manufacturing a coated part using hot forming techniques.
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009015013B4 (en) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Process for producing partially hardened steel components
DE102009017326A1 (en) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Process for producing press-hardened components
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
KR101171450B1 (en) * 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
JP5740099B2 (en) * 2010-04-23 2015-06-24 東プレ株式会社 Manufacturing method of hot press products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20140027026A1 (en) 2014-01-30
HUE053150T2 (en) 2021-06-28
HUE054465T2 (en) 2021-09-28
EP2655675A2 (en) 2013-10-30
ES2848159T3 (en) 2021-08-05
WO2012085256A2 (en) 2012-06-28
CN103384726B (en) 2016-11-23
KR20130132566A (en) 2013-12-04
EP2655672A2 (en) 2013-10-30
CN103415630A (en) 2013-11-27
US10640838B2 (en) 2020-05-05
WO2012085248A3 (en) 2012-08-16
WO2012085247A3 (en) 2012-08-16
CN103547686A (en) 2014-01-29
JP2014505791A (en) 2014-03-06
CN103415630B (en) 2015-09-23
ES2851176T3 (en) 2021-09-03
ES2829950T8 (en) 2021-06-10
JP2014507556A (en) 2014-03-27
EP2655673B1 (en) 2021-02-03
WO2012085251A3 (en) 2012-08-16
WO2012085247A2 (en) 2012-06-28
CN103547687A (en) 2014-01-29
WO2012085248A2 (en) 2012-06-28
KR20130132565A (en) 2013-12-04
EP2656187A2 (en) 2013-10-30
EP2655674A2 (en) 2013-10-30
WO2012085253A3 (en) 2012-08-16
ES2858225T3 (en) 2021-09-29
CN103392014A (en) 2013-11-13
EP2655672B1 (en) 2020-12-16
US20140020795A1 (en) 2014-01-23
CN103392014B (en) 2016-01-27
HUE052381T2 (en) 2021-04-28
ES2829950T3 (en) 2021-06-02
JP5727037B2 (en) 2015-06-03
CN103547686B (en) 2016-11-23
WO2012085253A2 (en) 2012-06-28
WO2012085251A2 (en) 2012-06-28
KR20130126962A (en) 2013-11-21
HUE055049T2 (en) 2021-10-28
EP2656187B1 (en) 2020-09-09
KR101582922B1 (en) 2016-01-07
ES2853207T3 (en) 2021-09-15
EP2655673A2 (en) 2013-10-30
ES2858225T8 (en) 2022-01-05
WO2012085256A3 (en) 2012-08-16
CN103384726A (en) 2013-11-06
HUE054867T2 (en) 2021-10-28
EP2655674B1 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
EP2655675B1 (en) Method for producing hardened structural elements
DE102011053939B4 (en) Method for producing hardened components
EP2177641B1 (en) Steel plate having a galvanized corrosion protection layer
DE102011053941B4 (en) Method for producing hardened components with regions of different hardness and / or ductility
DE102013100682B3 (en) A method of producing cured components and a structural component made by the method
EP2547800B1 (en) Method for producing workpieces from lightweight steel having material properties that can be adjusted over the wall thickness
EP2449138B1 (en) Process of manufacturing a part from an air hardenable steel and the part manufactured by the process
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP3303642B1 (en) Method for contactlessly cooling steel sheets and device therefor
DE102010056264C5 (en) Process for producing hardened components
EP2848709A1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP1939308A1 (en) Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain
WO2011141367A1 (en) Method for producing a structural part from an iron-manganese-steel sheet
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
DE102010056265B3 (en) Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating
DE102015113056B4 (en) Method for the contactless cooling of steel sheets and device therefor
EP3365469B1 (en) Method for producing a steel component for a vehicle
DE102019130381A1 (en) Motor vehicle component with increased strength
DE102017110851B3 (en) Method for producing steel composite materials
DE102019219235B3 (en) Process for the production of a hot-formed and press-hardened sheet steel component
WO2024110306A1 (en) Method of hot press forming, with improved process window

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130719

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: KURZ, THOMAS

Inventor name: SOMMER, ANDREAS

Inventor name: SCHWINGHAMMER, HARALD

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: ROSNER, MARTIN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHWINGHAMMER, HARALD

Inventor name: KURZ, THOMAS

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: SOMMER, ANDREAS

Inventor name: ROSNER, MARTIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171020

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201026

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1369868

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TR-IP CONSULTING LLC, CH

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017079

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210611

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2858225

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210929

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E055049

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210712

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017079

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

26N No opposition filed

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231211

Year of fee payment: 13

Ref country code: SE

Payment date: 20231227

Year of fee payment: 13

Ref country code: NL

Payment date: 20231226

Year of fee payment: 13

Ref country code: HU

Payment date: 20231212

Year of fee payment: 13

Ref country code: FR

Payment date: 20231227

Year of fee payment: 13

Ref country code: CZ

Payment date: 20231207

Year of fee payment: 13

Ref country code: AT

Payment date: 20231204

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 13

Ref country code: CH

Payment date: 20240102

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011017079

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE