EP3250727B1 - Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component - Google Patents
Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component Download PDFInfo
- Publication number
- EP3250727B1 EP3250727B1 EP17721056.4A EP17721056A EP3250727B1 EP 3250727 B1 EP3250727 B1 EP 3250727B1 EP 17721056 A EP17721056 A EP 17721056A EP 3250727 B1 EP3250727 B1 EP 3250727B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- thickness
- steel sheet
- overcoat
- press
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 54
- 239000010959 steel Substances 0.000 title claims description 54
- 229910052782 aluminium Inorganic materials 0.000 title claims description 36
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000576 coating method Methods 0.000 claims description 61
- 239000011248 coating agent Substances 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 14
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- 238000003466 welding Methods 0.000 claims description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 7
- 238000010422 painting Methods 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 239000007858 starting material Substances 0.000 claims description 6
- 229910000760 Hardened steel Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 238000010924 continuous production Methods 0.000 claims description 3
- 150000004679 hydroxides Chemical class 0.000 claims description 3
- 150000003139 primary aliphatic amines Chemical class 0.000 claims description 3
- 150000005619 secondary aliphatic amines Chemical class 0.000 claims description 3
- 150000003510 tertiary aliphatic amines Chemical class 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 5
- 229910021502 aluminium hydroxide Inorganic materials 0.000 claims 2
- 239000012535 impurity Substances 0.000 claims 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 55
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 26
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 19
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 16
- 230000008021 deposition Effects 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 10
- 238000009792 diffusion process Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000005275 alloying Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000012876 topography Methods 0.000 description 5
- 229910052725 zinc Inorganic materials 0.000 description 5
- 239000011701 zinc Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 229910015372 FeAl Inorganic materials 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- -1 zinc-aluminum-iron Chemical compound 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000007743 anodising Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000712 Boron steel Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000002318 adhesion promoter Substances 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229940024545 aluminum hydroxide Drugs 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- PALQHNLJJQMCIQ-UHFFFAOYSA-N boron;manganese Chemical compound [Mn]#B PALQHNLJJQMCIQ-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000000376 effect on fatigue Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/14—Removing excess of molten coatings; Controlling or regulating the coating thickness
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/324—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12736—Al-base component
- Y10T428/1275—Next to Group VIII or IB metal-base component
- Y10T428/12757—Fe
Definitions
- the invention relates to a component made of press-form-hardened sheet steel coated on the basis of aluminum, the coating having a coating which is applied in the hot-dip process and which contains aluminum and silicon.
- the invention also relates to a method for producing such a component.
- the coating relates to an aluminum-silicon coating.
- press hardening can be used to produce high-strength components that are primarily used in the bodywork area.
- Press hardening can in principle be carried out using two different method variants, namely using the direct or indirect method. While the process steps of forming and hardening run separately in the indirect process, they take place together in one tool in the direct process. In the following only the direct method is considered.
- a steel sheet is heated above the so-called austenitizing temperature (Ac3).
- the steel sheet heated in this way is then transferred to a forming tool and formed into the finished component in a single-stage forming step and cooled by the cooled forming tool at a speed that is above the critical cooling rate of the steel, so that a hardened component is produced.
- the steel sheet itself is usually cut out of a steel strip, usually wound up as a coil, and then processed further.
- the sheet steel to be formed is often referred to as a blank.
- Known hot-formable steels for this area of application are, for example, the manganese-boron steel "22MnB5" and recently also air-hardenable steels according to the European patent EP 2 449 138 B1 .
- steel sheets with anti-scaling protection are also used for press hardening (e.g. for automotive body construction) used.
- press hardening e.g. for automotive body construction
- the advantages here are that the blanks or components do not scale in the furnace, which reduces wear on the press tools due to flaked scale and the components often do not have to be blasted before further processing.
- the following (alloy) coatings applied by hot dipping are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / Galvannealed), zinc-magnesium-aluminum (ZM ), as well as electrolytically deposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming.
- AS aluminum-silicon
- Z zinc-aluminum
- ZF / Galvannealed zinc-magnesium-aluminum
- ZM zinc-magnesium-aluminum
- EP 2 312 011 A1 describes a process for the production of metallic coatings on molded parts for use in automobile construction.
- the molded part is provided with an aluminum alloy in a molten bath and then subjected to a heat treatment in an oxidizing atmosphere to produce a high-temperature-resistant aluminum oxide layer.
- Anodic oxidation is also planned after the heat treatment.
- the German patent DE 198 53 285 C1 presents a method for producing a protective layer on martensitic steel.
- a protective gas atmosphere argon with 5% H 2
- the steel to be coated is immersed in a melt of aluminum or an aluminum alloy, cooled and then hot isostatically pressed at the austenitizing temperature.
- the aluminum protective layer produced in this way is between 100 and 200 ⁇ m thick and should contain an approximately 1 ⁇ m thick aluminum oxide layer on its surface, no further information is given on its formation or preservation.
- the advantage of the aluminum-based coatings compared to the zinc-based coatings is that, in addition to a larger process window (e.g. with regard to the heating parameters), the finished components do not have to be processed further need to be blasted. In addition, there is no risk of liquid metal embrittlement with aluminum-based coatings and no microcracks can form in the near-surface substrate area at the former austenite grain boundaries, which can have a negative effect on fatigue strength at depths of more than 10 ⁇ m.
- the alloying of the coating with iron and the formation of a paintable surface topography require a correspondingly long dwell time in the roller hearth furnace that is usually used, which significantly increases the cycle times and reduces the profitability of the press mold hardening.
- the minimum dwell time is thus determined by the coating and not by the base material, for which only the required austenitizing temperature would be required.
- the corrosion resistance is reduced by the stronger alloying with iron, since the aluminum content in the alloy layer decreases with the dwell time in the furnace and the iron content increases.
- longer ovens are usually used for AS boards in order to achieve high cycle rates despite the necessary oven dwell time. However, these are more expensive to purchase and operate and also take up a lot of space.
- Another disadvantage of AS coatings is that with very short annealing times, spot welding is extremely poor. This is expressed, for example, in only a very small welding area. One of the reasons for this is a very low contact resistance with short glow times.
- the object of the invention is therefore to provide a component made of a press-hardened steel sheet coated on the basis of aluminum, which can be produced inexpensively and has excellent paintability and weldability, in particular resistance spot weldability. Furthermore, a method for producing such a component is to be specified.
- the teaching of the invention comprises a component made of press-form-hardened sheet steel coated on the basis of aluminum, the coating having a coating applied in the hot-dip process which contains aluminum and silicon, which is characterized in that the press-form-hardened component has an interdiffusion zone in the transition area between sheet steel and coating I, the thickness of the interdiffusion zone I having the following formula, depending on the layer thickness of the coating prior to heating and press hardening I.
- both sides G / m 2 + 19th 7th obeys, on the interdiffusion zone I a zone with different intermetallic phases with an average total thickness between 8 and 50 microns is formed, on which in turn a cover layer containing aluminum oxide and / or hydroxide with an average thickness of at least 0.05 microns to at most 5 microns is arranged.
- aluminum-based coatings are understood to be metallic coatings in which aluminum is the main component (in percent by mass).
- examples of possible aluminum-based coatings are aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements such as magnesium, transition metals such as manganese, titanium and rare earths.
- a coating of the steel sheet according to the invention is produced, for example, in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the remainder being aluminum.
- top layers containing aluminum oxide and / or hydroxide act on the component formed by compression molding due to their network-like structure as ideal adhesion promoters for subsequent painting, in particular cathodic dip painting (KTL).
- KTL cathodic dip painting
- a lengthy alloying of the aluminum-based coating with iron in the furnace is no longer necessary, so that the throughput times in the furnace for heating the sheet steel to the forming temperature can be drastically reduced. While so far, for example, annealing times in a roller hearth furnace of at least 4 minutes at a furnace temperature of 950 ° C have been required for the alloying of the coating with iron and the formation of a paintable surface topography for sheet metal thicknesses of 1.5 mm Glowing times of only 2 - 3 minutes are required, which significantly reduces the glow time.
- the maximum possible furnace times do not change due to the top layer containing aluminum oxide and / or hydroxide.
- the heating process window is thus greatly expanded towards shorter furnace times.
- furnace time is extended accordingly due to the lower heating rate of the steel material.
- the typical oven temperatures between 900 and 950 ° C should also be adhered to here.
- furnace temperatures between 930 and 950 ° C are advantageous.
- the cover layer according to the invention made of aluminum oxides and / or hydroxides has an advantageous effect on resistance spot weldability in the case of short furnace times, since the contact resistance is increased and good resistance heating is thus achieved.
- a thickness of this cover layer of at least 0.05 ⁇ m has therefore proven to be positive.
- a thickness between 0.10 and 3 ⁇ m was found for the top layer as a good compromise between weldability and paint adhesion.
- top layers with an average thickness between 0.15 and 1 ⁇ m are particularly advantageous.
- the term is to be understood at least in some areas in the sense of local sections of the treated steel sheet or steel strip, so that a steel sheet or steel strip is created with structures and properties that specifically differ from one another locally.
- the cover layer is preferably applied to the surface of the coating in a continuous process.
- the treatment advantageously takes place in an atmosphere which also contains proportions of basic components, preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).
- basic components preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).
- a thin oxidic top layer can advantageously be achieved by anodic oxidation (thin layer anodizing), plasma oxidation and a hydroxide-containing top layer by means of a hot water treatment of the aluminum-based coating at temperatures of at least 90 ° C, advantageously at least 95 ° C and / or a treatment in steam at temperatures of at least 90 ° C, advantageously at least 95 ° C can be produced.
- a gas phase treatment of the AS surface also leads to the same goal.
- the AS surface is treated with an atmosphere which can contain at least variable proportions of oxygen, water vapor, and optionally also proportions of basic components, in particular ammonia, primary, secondary or tertiary aliphatic amines.
- This treatment leads to a time- or temperature-controlled growth of a top layer containing aluminum oxide and / or hydroxide.
- the composition of the gas phase can be used to control the layer thickness growth of this cover layer.
- the treatment is carried out at a temperature of 40 ° C to 100 ° C, preferably 90 ° C to 100 ° C. Lower treatment temperatures lengthen the treatment time, treatment temperatures above 100 ° C may require pressure vessels.
- Both anodization and gas phase treatment result in an aluminum oxide and / or hydroxide-containing cover layer, which has mesh-like or needle-like structures on its surface.
- the associated increase in surface area improves the adhesion of a subsequent KT coating. Since longer heating times are no longer required to create a paintable surface topography, the corrosion protection of the coating is also increased. This can be explained by the fact that with only a short annealing time required in the roller hearth furnace, there is less diffusion of aluminum and iron. Among other things, this also leads to a relatively small interdiffusion zone. This is exemplary for an AS layer of the starting material of 150 g / m 2 (AS150) below 7 ⁇ m.
- the thicknesses of the interdiffusion layers I according to the invention for a layer of the starting material result from the linear relationship according to the following formulas for various sheet thickness-dependent Heating times:
- the necessary heating time in the oven depends only on the sheet metal thickness, since the coating according to the invention does not require any holding time in the oven to produce a paintable surface. Thicker sheets therefore require longer heating times for heating than thinner sheets.
- table 1 lists short (220 seconds), very short (180 seconds) and extremely short (150 seconds) heating times compared to conventional heating times (360 seconds) in a roller hearth furnace.
- Another positive effect of the short heating time is a significantly reduced proportion of pores in the alloy layer and in the diffusion zone. Pores arise with longer glow times, e.g. due to the Kirkendall effect. Tests have shown that the short-term annealing can reduce the total pore proportion to values of less than 6% and even to values of less than 4% or 2%. Which can, for example, have a beneficial effect on the suitability for welding.
- Figure 1 shows schematically the layer structure of the coating on a compression-molded component with a coating of AS and the usual long heating time according to the prior art in order to achieve a through-alloying of the coating with iron.
- a steel sheet with a coating of AS150 that is to say with a layer of 150 g / m 2 of the coating, was used for the component.
- An interdiffusion zone Fe (Al, Si) with a thickness of 7 to 14 ⁇ m is formed on the martensitic steel base material, on which a zone with different intermetallic phases (e.g. Fe 2 SiAl 2 and FeAl 2 ) has formed, the individual phases in this zone can be distributed in rows or clusters.
- an only very thin aluminum oxide layer with a thickness of less than 0.05 ⁇ m has formed. You can also see pores that have formed in the various zones.
- Figure 2 shows the layer structure of a coating according to the invention on a press-hardened component with an AS coating on which a cover layer according to the invention of at least 0.05 ⁇ m containing aluminum oxide and / or hydroxide is formed and which is produced with shorter heating times compared to the prior art has been.
- a cover layer according to the invention of at least 0.05 ⁇ m containing aluminum oxide and / or hydroxide is formed in the transition area between sheet steel and coating there is an interdiffusion zone in which aluminum and silicon have diffused into the steel Fe (Al, Si). Due to the very short heating time required in the furnace to the austenitizing temperature, this layer has an average thickness of less than 7 ⁇ m for AS150, for example.
- Another layer with different intermetallic phases e.g. Fe 2 SiAl 2 and FeAl 2
- the individual phases in this zone can appear in rows or in clusters and on which an aluminum oxide and / or -hydroxide-containing top layer in an average thickness of at least 0.05 ⁇ m to is
- Figure 3 shows graphically the thickness I according to the invention of the interdiffusion zone for a layer of the starting material between 50 g / m 2 and 180 g / m 2 according to the following relationship: I. ⁇ m ⁇ 1 35 ⁇ Edition both sides G / m 2 + 19th 7th
- Table 1 summarizes tests on paint adhesion (phosphating treatment typical for automobiles and cathodic dip painting; testing after 72 hours of constant condensation climate in accordance with DIN EN ISO 6270-2: 2005 CH) and suitability for welding (resistance spot welding) of press-hardened AS150 samples at 940 ° C oven temperature and various heating times.
- the sheet thickness of the samples is 1.5 mm. It can be seen that there is only good paint adhesion and weldability with heating times of 220 s and less if a cover layer according to the invention containing aluminum oxide and / or hydroxide is present. In addition, short heating times of 220 s and less resulted in interdiffusion layers of less than 7 ⁇ m on the press-hardened component.
Landscapes
- Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Thermal Sciences (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Articles (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
Die Erfindung betrifft ein Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten Überzug aufweist, der Aluminium und Silizium enthält. Auch betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Bauteils. Insbesondere betrifft die Beschichtung einen Aluminium-Silizium-Überzug.The invention relates to a component made of press-form-hardened sheet steel coated on the basis of aluminum, the coating having a coating which is applied in the hot-dip process and which contains aluminum and silicon. The invention also relates to a method for producing such a component. In particular, the coating relates to an aluminum-silicon coating.
Es ist bekannt, dass warmumgeformte Stahlbleche insbesondere im Automobilbau immer häufiger Verwendung finden. Durch den auch als Presshärten bezeichneten Prozess können hochfeste Bauteile erzeugt werden, die vorwiegend im Bereich der Karosserie eingesetzt werden. Das Presshärten kann grundsätzlich mittels zwei verschiedener Verfahrensvarianten durchgeführt werden, nämlich mittels des direkten oder indirekten Verfahrens. Während beim indirekten Verfahren die Prozessschritte des Umformens und Härtens getrennt voneinander ablaufen, finden sie beim direkten Verfahren in einem Werkzeug gemeinsam statt. Im Folgenden wird nur das direkte Verfahren betrachtet.It is known that hot-formed steel sheets are being used more and more, especially in automobile construction. The process, also known as press hardening, can be used to produce high-strength components that are primarily used in the bodywork area. Press hardening can in principle be carried out using two different method variants, namely using the direct or indirect method. While the process steps of forming and hardening run separately in the indirect process, they take place together in one tool in the direct process. In the following only the direct method is considered.
Beim direkten Verfahren wird ein Stahlblech über die sogenannte Austenitisierungstemperatur (Ac3) aufgeheizt. Anschließend wird das so erhitzte Stahlblech in ein Formwerkzeug überführt und in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Abkühlgeschwindigkeit des Stahls liegt, abgekühlt, so dass ein gehärtetes Bauteil erzeugt wird. Das Stahlblech selbst wird dabei üblicherweise aus einem meist als Coil aufgewickelten Stahlband herausgeschnitten und anschließend weiterverarbeitet. Das umzuformende Stahlblech wird häufig auch als Platine bezeichnet.In the direct process, a steel sheet is heated above the so-called austenitizing temperature (Ac3). The steel sheet heated in this way is then transferred to a forming tool and formed into the finished component in a single-stage forming step and cooled by the cooled forming tool at a speed that is above the critical cooling rate of the steel, so that a hardened component is produced. The steel sheet itself is usually cut out of a steel strip, usually wound up as a coil, and then processed further. The sheet steel to be formed is often referred to as a blank.
Bekannte warmumformbare Stähle für diesen Einsatzbereich sind zum Beispiel der Mangan-Bor-Stahl "22MnB5" und neuerdings auch luftvergütbare Stähle gemäß des europäischen Patentes
Neben unbeschichteten Stahlblechen werden auch Stahlbleche mit einem Verzunderungsschutz für das Presshärten (z.B. für den automobilen Karosseriebau) eingesetzt. Die Vorteile liegen hier neben der erhöhten Korrosionsbeständigkeit des fertigen Bauteils darin, dass die Platinen oder Bauteile im Ofen nicht verzundern, wodurch der Verschleiß der Pressenwerkzeuge durch abgeplatzten Zunder reduziert wird und die Bauteile vor der Weiterverarbeitung oft nicht aufwendig gestrahlt werden müssen.In addition to uncoated steel sheets, steel sheets with anti-scaling protection are also used for press hardening (e.g. for automotive body construction) used. In addition to the increased corrosion resistance of the finished component, the advantages here are that the blanks or components do not scale in the furnace, which reduces wear on the press tools due to flaked scale and the components often do not have to be blasted before further processing.
Für das Presshärten sind derzeit die folgenden, durch Schmelztauchen aufgebrachten (Legierungs-) Beschichtungen bekannt: Aluminium-Silizium (AS), Zink-Aluminium (Z), Zink-Aluminium-Eisen (ZF/ Galvannealed), Zink-Magnesium-Aluminium (ZM), sowie elektrolytisch abgeschiedene Beschichtungen aus Zink-Nickel oder Zink, wobei die letztere vor der Warmumformung in eine Eisen-Zink-Legierungsschicht umgewandelt wird. Diese Korrosionsschutzbeschichtungen werden üblicherweise in kontinuierlichen Durchlaufverfahren auf das Warm- oder Kaltband aufgebracht.For press hardening, the following (alloy) coatings applied by hot dipping are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / Galvannealed), zinc-magnesium-aluminum (ZM ), as well as electrolytically deposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming. These anti-corrosion coatings are usually applied to the hot or cold strip in a continuous process.
Die Herstellung von Bauteilen mittels Abschrecken von Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem
Die Herstellung von Bauteilen mittels Abschrecken von mit einer Aluminiumlegierung beschichteten Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem
Aus der Offenlegungsschrift
Auch die
Die
Aus der
Der Vorteil bei den aluminiumbasierten Überzügen gegenüber den zinkbasierten Überzügen liegt darin, dass neben einem größeren Prozessfenster (z.B. hinsichtlich der Erwärmungsparameter) die fertigen Bauteile vor der Weiterverarbeitung nicht gestrahlt werden müssen. Darüber hinaus besteht bei aluminiumbasierten Überzügen nicht die Gefahr von Flüssigmetallversprödung und es können sich keine Mikrorisse im oberflächennahen Substratbereich an den ehemaligen Austenitkorngrenzen ausbilden, die bei Tiefen über 10 µm einen negativen Effekt auf die Dauerfestigkeit haben können.The advantage of the aluminum-based coatings compared to the zinc-based coatings is that, in addition to a larger process window (e.g. with regard to the heating parameters), the finished components do not have to be processed further need to be blasted. In addition, there is no risk of liquid metal embrittlement with aluminum-based coatings and no microcracks can form in the near-surface substrate area at the former austenite grain boundaries, which can have a negative effect on fatigue strength at depths of more than 10 µm.
Nachteilig bei der Verwendung von aluminiumbasierten Überzügen, z.B. aus Aluminium-Silizium (AS), ist jedoch die mangelhafte Lackhaftung des umgeformten Bauteils bei der automobiltypischen kathodischen Tauchlackierung (KTL), wenn eine zu kurze Erwärmungszeit beim Presshärten verwendet wurde. Bei kurzen Erwärmungszeiten weist die Oberfläche eine zu geringe Rauheit auf, so dass keine ausreichende Lackhaftung erreicht wird.The disadvantage of using aluminum-based coatings, e.g. made of aluminum-silicon (AS), is the poor paint adhesion of the formed component in the cathodic dip painting (KTL) typical of automobiles if too short a heating time was used for press hardening. In the case of short heating times, the surface has too little roughness, so that sufficient paint adhesion is not achieved.
Im Gegensatz zu den zinkbasierten Überzügen lassen sich aluminiumbasierte Überzüge nicht oder nur unzureichend phosphatieren und somit kann durch den Phosphatierschritt keine Verbesserung der Lackhaftung erzielt werden. Aus diesen Gründen müssen bisher bei der Verarbeitung von Platinen mit aluminiumbasierten Überzügen Mindesterwärmzeiten eingehalten werden, wodurch der Überzug mit Eisen durchlegiert und sich eine raue Oberflächentopografie ausbildet, die eine ausreichende Lackhaftung beim Lackieren des umgeformten Bauteils bewirkt.In contrast to zinc-based coatings, aluminum-based coatings cannot be phosphated or can only be phosphated insufficiently and thus no improvement in paint adhesion can be achieved through the phosphating step. For these reasons, up to now, minimum heating times have to be observed when processing circuit boards with aluminum-based coatings, as a result of which the coating is alloyed with iron and a rough surface topography is formed, which causes sufficient paint adhesion when painting the formed component.
Das Durchlegieren des Überzugs mit Eisen und die Ausbildung einer lackierfähigen Oberflächentopografie erfordern allerdings eine entsprechend lange Verweildauer im üblicherweise verwendeten Rollenherdofen, was die Taktzeiten deutlich verlängert und die Wirtschaftlichkeit des Pressformhärtens reduziert. Die Mindestverweildauer wird somit durch den Überzug bestimmt und nicht durch das Grundmaterial, für das lediglich die Erreichung der notwendigen Austenitisierungstemperatur notwendig wäre. Zudem wird die Korrosionsbeständigkeit durch das stärkere Auflegieren mit Eisen verringert, da der Aluminiumgehalt in der Legierungsschicht mit der Ofenverweilzeit abnimmt und der Eisengehalt ansteigt. Für AS-Platinen werden üblicherweise angepasste, längere Öfen eingesetzt, um trotz der notwendigen Ofenverweilzeit hohe Taktraten zu erzielen. Diese sind jedoch teurer in der Anschaffung und im Betrieb und haben zudem einen sehr großen Platzbedarf.
Ein weiterer Nachteil von AS-Überzügen besteht darin, dass bei sehr kurzen Glühzeiten die Schweißbarkeit im Punktschweißverfahren äußerst schlecht ist. Dies drückt sich z.B. in einem nur sehr kleinen Schweißbereich aus. Ursächlich hierfür ist unter anderem ein sehr geringer Übergangswiderstand bei kurzen Glühzeiten.The alloying of the coating with iron and the formation of a paintable surface topography, however, require a correspondingly long dwell time in the roller hearth furnace that is usually used, which significantly increases the cycle times and reduces the profitability of the press mold hardening. The minimum dwell time is thus determined by the coating and not by the base material, for which only the required austenitizing temperature would be required. In addition, the corrosion resistance is reduced by the stronger alloying with iron, since the aluminum content in the alloy layer decreases with the dwell time in the furnace and the iron content increases. Adapted, longer ovens are usually used for AS boards in order to achieve high cycle rates despite the necessary oven dwell time. However, these are more expensive to purchase and operate and also take up a lot of space.
Another disadvantage of AS coatings is that with very short annealing times, spot welding is extremely poor. This is expressed, for example, in only a very small welding area. One of the reasons for this is a very low contact resistance with short glow times.
Aufgabe der Erfindung ist es deshalb, ein Bauteil aus einem pressformgehärteten auf Basis von Aluminium beschichteten Stahlblech anzugeben, welches kostengünstig herstellbar ist und eine hervorragende Lackierbarkeit und Schweißbarkeit, insbesondere Widerstandspunktschweißbarkeit, aufweist. Des Weiteren soll ein Verfahren zur Herstellung eines solchen Bauteils angegeben werden.The object of the invention is therefore to provide a component made of a press-hardened steel sheet coated on the basis of aluminum, which can be produced inexpensively and has excellent paintability and weldability, in particular resistance spot weldability. Furthermore, a method for producing such a component is to be specified.
Die Lehre der Erfindung umfasst ein Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten Überzug aufweist, der Aluminium und Silizium enthält, welches dadurch gekennzeichnet ist, dass das pressformgehärtete Bauteil im Übergangsbereich zwischen Stahlblech und Überzug eine Interdiffusionszone I aufweist, wobei abhängig von der Schichtauflage des Überzugs vor Erwärmung und Presshärtung die Dicke der Interdiffusionszone I folgender Formel
Als aluminiumbasierte Überzüge werden nachfolgend metallische Überzüge verstanden, bei denen Aluminium der Hauptbestandteil (in Massenprozent) ist. Beispiele für mögliche aluminiumbasierte Überzüge sind Aluminium-Silizium (AS), Aluminium-Zink-Silizium (AZ), sowie dieselben Überzüge mit Beimischungen zusätzlicher Elemente, wie z.B. Magnesium, Übergangsmetallen wie Mangan, Titan und seltenen Erden. Ein erfindungsgemäßer Überzug des Stahlbleches wird beispielsweise in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium erzeugt.In the following, aluminum-based coatings are understood to be metallic coatings in which aluminum is the main component (in percent by mass). Examples of possible aluminum-based coatings are aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements such as magnesium, transition metals such as manganese, titanium and rare earths. A coating of the steel sheet according to the invention is produced, for example, in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the remainder being aluminum.
Durch die Ausbildung einer definierten Aluminiumoxid und/oder -hydroxid enthaltenden Deckschicht auf der aluminiumbasierten Beschichtung des Stahlbleches oder des Stahlbandes, können die vorgenannten negativen Aspekte von aluminiumbasierten Beschichtungen deutlich reduziert oder sogar ganz verhindert werden.Through the formation of a defined cover layer containing aluminum oxide and / or hydroxide on the aluminum-based coating of the steel sheet or the steel strip, the aforementioned negative aspects of aluminum-based coatings can be significantly reduced or even completely prevented.
Die Aluminiumoxid und/oder -hydroxid enthaltenen Deckschichten wirken auf dem durch Pressformhärten umgeformten Bauteil auf Grund ihrer netzartigen Struktur als ideale Haftvermittler für eine anschließende Lackierung, insbesondere der kathodischen Tauchlackierung (KTL). Ein langwieriges Durchlegieren der aluminiumbasierten Beschichtung im Ofen mit Eisen ist damit nicht mehr erforderlich, so dass sich die Durchlaufzeiten im Ofen zum Aufheizen des Stahlblechs auf Umformtemperatur drastisch verkürzen lassen. Während bislang beispielsweise bei Blechdicken von 1,5 mm Glühzeiten im Rollenherdofen von mindestens 4 Minuten bei 950 °C Ofentemperatur für das Durchlegieren der Beschichtung mit Eisen und die Ausbildung einer lackierfähigen Oberflächentopografie erforderlich sind, werden beim erfindungsgemäßen Verfahren bei einer Blechdicke von 1,5 mm Glühzeiten von nur noch 2 - 3 Minuten benötigt, die Glühzeit wird somit signifikant reduziert. Die maximal möglichen Ofenzeiten ändern sich durch die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht nicht. Somit wird das Prozessfenster der Erwärmung hin zu kürzeren Ofenzeiten stark erweitert.The top layers containing aluminum oxide and / or hydroxide act on the component formed by compression molding due to their network-like structure as ideal adhesion promoters for subsequent painting, in particular cathodic dip painting (KTL). A lengthy alloying of the aluminum-based coating with iron in the furnace is no longer necessary, so that the throughput times in the furnace for heating the sheet steel to the forming temperature can be drastically reduced. While so far, for example, annealing times in a roller hearth furnace of at least 4 minutes at a furnace temperature of 950 ° C have been required for the alloying of the coating with iron and the formation of a paintable surface topography for sheet metal thicknesses of 1.5 mm Glowing times of only 2 - 3 minutes are required, which significantly reduces the glow time. The maximum possible furnace times do not change due to the top layer containing aluminum oxide and / or hydroxide. The heating process window is thus greatly expanded towards shorter furnace times.
Für dickere Bleche verlängert sich die Ofenzeit bedingt durch die geringere Aufheizgeschwindigkeit des Stahlwerkstoffes entsprechend. Die typischen Ofentemperaturen zwischen 900 und 950 °C sollten auch hier eingehalten werden. Für hohe Taktzeiten sind Ofentemperaturen zwischen 930 und 950 °C vorteilhaft.For thicker sheets, the furnace time is extended accordingly due to the lower heating rate of the steel material. The typical oven temperatures between 900 and 950 ° C should also be adhered to here. For high cycle times, furnace temperatures between 930 and 950 ° C are advantageous.
Zudem wirkt sich die erfindungsgemäße Deckschicht aus Aluminiumoxiden und/oder - hydroxiden vorteilhaft auf die Widerstandpunktschweißbarkeit bei kurzen Ofenzeiten aus, da der Übergangswiderstand erhöht wird und so eine gute Widerstandserwärmung erreicht wird. Für eine gute Schweißbarkeit nach kurzen Erwärmzeiten hat sich daher eine Dicke dieser Deckschicht von mindestens 0,05 µm als positiv herausgestellt.In addition, the cover layer according to the invention made of aluminum oxides and / or hydroxides has an advantageous effect on resistance spot weldability in the case of short furnace times, since the contact resistance is increased and good resistance heating is thus achieved. For good weldability after short heating times, a thickness of this cover layer of at least 0.05 μm has therefore proven to be positive.
Bei Versuchen wurde festgestellt, dass die Lackhaftung besser bzw. die Unterwanderung infolge eines korrosiven Angriffs umso geringer wird, je dicker die Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht ist. Andererseits ist bei zu großer Dicke dieser Deckschicht der Übergangswiderstand beim Widerstandspunktschweißen zu hoch, wodurch sich die Schweißbarkeit wiederum verschlechtern würde. Daher sollte eine maximale Dicke der Deckschicht von 5 µm nicht überschritten werden.Tests have shown that the paint adhesion is better or the infiltration under corrosion due to a corrosive attack is less, the thicker the top layer containing aluminum oxide and / or hydroxide. On the other hand is at large thickness of this cover layer, the contact resistance in resistance spot welding is too high, which in turn would worsen the weldability. Therefore, a maximum thickness of the top layer of 5 µm should not be exceeded.
Als guter Kompromiss zwischen Schweißeignung und Lackhaftung wurde für die Deckschicht eine Dicke zwischen 0,10 und 3 µm gefunden.A thickness between 0.10 and 3 µm was found for the top layer as a good compromise between weldability and paint adhesion.
Für eine hervorragende Schweißeignung bei guter Lackhaftung sind Deckschichten mit einer mittleren Dicke zwischen 0,15 und 1 µm besonders vorteilhaft.For excellent weldability with good paint adhesion, top layers with an average thickness between 0.15 and 1 µm are particularly advantageous.
Erfindungsgemäß umfasst die Erfindung ebenfalls ein Verfahren zur Herstellung eines Bauteils, insbesondere nach Anspruch 1, aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech mit besonderer Eignung zum Lackieren und Widerstandspunktschweißen, wobei als Beschichtung ein aluminiumbasierter Überzug im Schmelztauchverfahren auf das Stahlblech aufgebracht wird, welches dadurch gekennzeichnet ist,
- dass das Stahlblech oder Stahlband mit dem Überzug nach dem Schmelztauchprozess und vor dem Umformprozess einer Behandlung durch anodische Oxidation und/oder einer Plasmaoxidation und/oder einer Heißwasserbehandlung und/oder einer Behandlung in einer Atmosphäre, die mindestens variable Anteile von Sauerstoff, Wasserdampf unterzogen wird
- dass die Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 90 °C, vorteilhaft wenigstens 95 °C, erfolgt
- dass im Zuge der Behandlung auf der Oberfläche des Überzugs unter Ausbildung von Oxiden oder Hydroxiden eine Aluminiumoxid und/oder - hydroxid enthaltene Deckschicht mit einer
Dicke von mindestens 0,05 µm bis höchstens 5µm ausgebildet wird - dass das Stahlblech oder Stahlband zumindest bereichsweise auf eine Temperatur oberhalb der Austenitisierungstemperatur erwärmt wird
- dass das erwärmte Stahlblech oder Stahlband anschließend umgeformt und danach mit einer Geschwindigkeit abgekühlt wird, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt,
- that the steel sheet or steel strip with the coating, after the hot-dip process and before the forming process, is subjected to a treatment by anodic oxidation and / or plasma oxidation and / or hot water treatment and / or treatment in an atmosphere that is subjected to at least variable proportions of oxygen and water vapor
- that the hot water treatment or the treatment under steam at temperatures of at least 90.degree. C., advantageously at least 95.degree. C., takes place
- that in the course of the treatment on the surface of the coating with the formation of oxides or hydroxides, an aluminum oxide and / or hydroxide-containing cover layer with a thickness of at least 0.05 µm to at most 5 µm is formed
- that the steel sheet or steel strip is heated at least in some areas to a temperature above the austenitizing temperature
- that the heated steel sheet or steel strip is then reshaped and then cooled at a rate that is at least partially above the critical cooling rate,
Im Zusammenhang mit der Erfindung ist der Begriff zumindest bereichsweise im Sinne von örtlichen Abschnitten des behandelten Stahlblechs oder Stahlbandes zu verstehen, so dass ein Stahlblech oder Stahlband mit gezielt örtlich voneinander abweichenden Gefügen und Eigenschaften entstehen.In connection with the invention, the term is to be understood at least in some areas in the sense of local sections of the treated steel sheet or steel strip, so that a steel sheet or steel strip is created with structures and properties that specifically differ from one another locally.
Bevorzugt wird die Deckschicht in einem kontinuierlichen Prozess auf die Oberfläche des Überzugs aufgebracht.The cover layer is preferably applied to the surface of the coating in a continuous process.
Vorteilhafter Weise findet die Behandlung in einer Atmosphäre statt, die auch Anteile basischer Komponenten, vorzugsweise Ammoniak (NH3), primäre, sekundäre oder tertiäre aliphatische Amine (NH2R, NHR2), NR3) enthält.The treatment advantageously takes place in an atmosphere which also contains proportions of basic components, preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).
Verfahrenstechnisch kann eine dünne oxidische Deckschicht vorteilhaft durch anodische Oxidation (Dünnschichteloxieren), Plasmaoxidation und eine Hydroxid enthaltene Deckschicht mittels einer Heißwasserbehandlung der aluminiumbasierten Beschichtung bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C und/oder einer Behandlung in Wasserdampf bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C hergestellt werden.In terms of process technology, a thin oxidic top layer can advantageously be achieved by anodic oxidation (thin layer anodizing), plasma oxidation and a hydroxide-containing top layer by means of a hot water treatment of the aluminum-based coating at temperatures of at least 90 ° C, advantageously at least 95 ° C and / or a treatment in steam at temperatures of at least 90 ° C, advantageously at least 95 ° C can be produced.
Alternativ zur Anodisierung führt auch eine Gasphasenbehandlung der AS-Oberfläche zum gleichen Ziel. Hierzu wird die AS-Oberfläche mit einer Atmosphäre behandelt, die mindestens variable Anteile von Sauerstoff, Wasserdampf, optional auch Anteile basischer Komponenten, insbesondere Ammoniak, primären, sekundären oder tertiären aliphatischen Aminen enthalten kann. Diese Behandlung führt zu einem zeit- bzw. temperaturgesteuerten Wachstum einer Aluminiumoxid und/oder -hydroxid enthaltenen Deckschicht. Weiterhin lässt sich die Zusammensetzung der Gasphase zur Steuerung des Schichtdickenwachstums dieser Deckschicht nutzen. Die Behandlung wird bei einer Temperatur von 40 °C bis 100 °C, vorzugsweise 90 °C bis 100 °C durchgeführt. Niedrigere Behandlungstemperaturen verlängern die Behandlungsdauer, Behandlungstemperaturen über 100 °C erfordern ggf. Druckbehälter.As an alternative to anodizing, a gas phase treatment of the AS surface also leads to the same goal. For this purpose, the AS surface is treated with an atmosphere which can contain at least variable proportions of oxygen, water vapor, and optionally also proportions of basic components, in particular ammonia, primary, secondary or tertiary aliphatic amines. This treatment leads to a time- or temperature-controlled growth of a top layer containing aluminum oxide and / or hydroxide. Furthermore, the composition of the gas phase can be used to control the layer thickness growth of this cover layer. The treatment is carried out at a temperature of 40 ° C to 100 ° C, preferably 90 ° C to 100 ° C. Lower treatment temperatures lengthen the treatment time, treatment temperatures above 100 ° C may require pressure vessels.
Sowohl Anodisierung als auch Gasphasenbehandlung führen zu einer Aluminiumoxid und/oder -hydroxid enthaltenen Deckschicht, die an ihrer Oberfläche netz- oder nadelartige Strukturen aufweist. Die damit verbundene Oberflächenvergrößerung verbessert die Haftung einer nachfolgenden KT-Lackierung.
Da längere Erwärmungszeiten zur Ausbildung einer lackierfähigen Oberflächentopografie nicht mehr erforderlich sind, wird zudem der Korrosionsschutz der Beschichtung erhöht. Dies ist damit zu erklären, dass bei einer nur kurzen erforderlichen Glühzeit im Rollenherdofen weniger Diffusion von Aluminium und Eisen stattfindet. Dies führt unter anderem auch zu einer relativ gering ausgebildeten Interdiffusionszone. Beispielhaft ist diese für eine AS-Auflage des Ausgangsmaterials von 150 g/m2 (AS150) unterhalb von 7 µm.Both anodization and gas phase treatment result in an aluminum oxide and / or hydroxide-containing cover layer, which has mesh-like or needle-like structures on its surface. The associated increase in surface area improves the adhesion of a subsequent KT coating.
Since longer heating times are no longer required to create a paintable surface topography, the corrosion protection of the coating is also increased. This can be explained by the fact that with only a short annealing time required in the roller hearth furnace, there is less diffusion of aluminum and iron. Among other things, this also leads to a relatively small interdiffusion zone. This is exemplary for an AS layer of the starting material of 150 g / m 2 (AS150) below 7 μm.
In Versuchen wurden je nach Ofenverweildauer bei Verwendung von Platinen mit einer AS-Auflage von 150 g/m2 auch Dicken der Diffusionszone von unterhalb 5 µm, und sogar unterhalb 4 µm am fertigen Bauteil erzielt.In tests, depending on the furnace dwell time, when using blanks with an AS layer of 150 g / m 2 , the diffusion zone thicknesses of less than 5 µm and even less than 4 µm were achieved on the finished component.
Bei Verwendung von Platinen mit einer AS-Auflage von 80 g/m2 (AS80) ist bekannt, dass sich hier die Ofenzeit auch bei nicht erfindungsgemäßem Überzug geringfügig reduzieren lässt und auch dadurch dünnere Diffusionsschichten von z.B. 5 µm resultieren. Versuche haben gezeigt, dass sich mit der erfindungsgemäßen Lösung die Ofenzeiten auch in diesem Fall noch weiter reduzieren lassen und hierdurch Dicken der Diffusionsschichten von unterhalb 5 µm am fertigen Bauteil erzielt werden können. In weiteren Versuchen konnten durch eine weitere Verkürzung der Erwärmzeit im Ofen auch noch geringere Dicken der Diffusionsschichten von unterhalb 3 µm, und sogar unterhalb von 2 µm am fertigen Bauteil erzielt werden.When using boards with an AS layer of 80 g / m 2 (AS80), it is known that the furnace time can be reduced slightly even if the coating is not according to the invention and that this also results in thinner diffusion layers of, for example, 5 μm. Tests have shown that with the solution according to the invention, the furnace times can be reduced even further in this case, and that the diffusion layers can be achieved with a thickness of less than 5 μm on the finished component. In further tests, by further shortening the heating time in the furnace, even thinner diffusion layers of less than 3 µm and even less than 2 µm were achieved on the finished component.
Bei Einsatz von Platinen mit einer Schichtauflage zwischen AS80 und AS150 und bei Schichtauflagen die kleiner als AS80 sind oder größer als AS150 ergeben sich nach dem Presshärten die Dicken der erfindungsgemäßen Interdiffusionschichten I für eine Schichtauflage des Ausgangsmaterials aus dem linearen Zusammenhang gemäß den folgenden Formeln für verschiedene blechdickenabhängige Erwärmzeiten:
Die notwendige Erwärmzeit im Ofen richtet sich erfindungsgemäß nur nach der Blechdicke, da der erfindungsgemäße Überzug keine Haltezeit im Ofen zur Erzeugung einer lackierfähigen Oberfläche erfordert. Dickere Bleche erfordern für die Erwärmung daher längere Erwärmzeiten als dünnere Bleche.According to the invention, the necessary heating time in the oven depends only on the sheet metal thickness, since the coating according to the invention does not require any holding time in the oven to produce a paintable surface. Thicker sheets therefore require longer heating times for heating than thinner sheets.
Beispielhaft für Bleche mit 1,5 mm Dicke sind in Tabelle 1 kurze (220 Sekunden), sehr kurze (180 Sekunden) und äußerst kurze (150 Sekunden) Erwärmzeiten im Vergleich zu üblichen Erwärmzeiten (360 Sekunden) im Rollenherdofen aufgeführt.As an example for sheets with a thickness of 1.5 mm, table 1 lists short (220 seconds), very short (180 seconds) and extremely short (150 seconds) heating times compared to conventional heating times (360 seconds) in a roller hearth furnace.
Ein weiterer positiver Effekt der kurzen Erwärmzeit ist ein deutlich verringerter Porenanteil in der Legierungsschicht sowie in der Diffusionszone. Poren entstehen bei längeren Glühzeiten z.B. durch den Kirkendall-Effekt. Bei Versuchen wurde festgestellt, dass sich durch die Kurzzeitglühung der Gesamtporenanteil auf Werte von weniger als 6 % und sogar auf Werte von unter 4 % bzw. 2 % reduzieren lässt. Was sich z.B. vorteilhaft auf die Schweißeignung auswirken kann.Another positive effect of the short heating time is a significantly reduced proportion of pores in the alloy layer and in the diffusion zone. Pores arise with longer glow times, e.g. due to the Kirkendall effect. Tests have shown that the short-term annealing can reduce the total pore proportion to values of less than 6% and even to values of less than 4% or 2%. Which can, for example, have a beneficial effect on the suitability for welding.
Für das Pressformhärten von Platinen mit einer Aluminium-Silizium Beschichtung ist es nun nicht mehr erforderlich, lange Verweilzeiten des Stahlbleches im Ofen einzuhalten. Das Stahlblech muss nur noch auf die erforderliche Umformtemperatur aufgeheizt werden und kann bei Erreichen der Umformtemperatur sofort der Umformpresse zugeführt, umgeformt und abgeschreckt werden.In order to press mold hardening blanks with an aluminum-silicon coating, it is no longer necessary to keep the steel sheet in the furnace for long periods of time. The steel sheet only needs to be heated to the required forming temperature and, when the forming temperature is reached, it can be fed into the forming press immediately, formed and quenched.
Dadurch können auch vorteilhaft kürzere Rollenherdöfen als die bislang eingesetzten verwendet werden. Darüber hinaus ist die Verwendung von anderen Ofentypen beispielsweise zur induktiven oder konduktiven Schnellerwärmung möglich, ohne dass die erwärmten Platinen zur Ausbildung einer lackierfähigenAs a result, shorter roller hearth furnaces than those previously used can advantageously be used. In addition, the use of other types of ovens, for example for inductive or conductive rapid heating, is possible without having to use the heated plates to form a paintable one
Oberflächentopografie auf Temperatur gehalten werden müssen.Surface topography must be kept at temperature.
Weiter ist es nun möglich, Platinen nur partiell zu erwärmen und zu härten, wodurch auch in den Bereichen mit geringem Wärmeeinfluss eine gute Punktschweißbarkeit und KT-Lackhaftung gegeben ist.In addition, it is now possible to only partially heat and harden the blanks, which means that spot weldability and KT paint adhesion are good even in areas with little heat influence.
Nachfolgend wird anhand der dargestellten Figuren die Erfindung näher beschrieben.The invention is described in more detail below with reference to the figures shown.
Tabelle 1 fasst Versuche zur Lackhaftung (automobiltypische Phosphatierungsbehandlung und kathodische Tauchlackierung; Prüfung nach 72 Stunden Kondenswasser-Konstantklima gemäß DIN EN ISO 6270-2:2005 CH) und Schweißeignung (Widerstandspunktschweißen) pressgehärteter AS150-Proben bei 940 °C Ofentemperatur und verschiedenen Erwärmzeiten zusammen. Die Blechdicke der Proben beträgt 1,5 mm. Zu erkennen ist, dass sich nur eine gute Lackhaftung und Schweißeignung bei Erwärmzeiten von 220 s und weniger ergibt, wenn eineerfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht vorhanden ist. Bei kurzen Erwärmzeiten von 220 s und weniger ergaben sich darüber hinaus Interdiffusionsschichten von weniger als 7 µm am pressgehärteten Bauteil. Bei den nicht erfindungsgemäßen langen Erwärmzeiten von 360 s nach dem Stand der Technik, ist hingegen auf Grund der Durchlegierung des Überzugs mit Eisen auch bei den Proben ohne die erfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht eine gute Lackhaftung und Schweißeignung gegeben. Die Dicke der Interdiffusionsschichten liegt nach 360 s Erwärmzeit deutlich über 7 µm.
Claims (11)
- Component made of press-form-hardened steel sheet coated on the basis of aluminium, the coating having an overcoat which is applied by a hot-dip process and contains aluminium and silicon, characterised in that the press-form-hardened component has an interdiffusion zone I in the transition region between the steel sheet and the overcoat, wherein, depending on the coating weight of the overcoat before heating and press hardening, which for the starting material is between 50 g/m2 and 180 g/m2, the thickness of the interdiffusion zone I obeys the following formula
- Component according to at least one of claims 1 to 3, characterised in that the average layer thickness of the cover layer is at least 0.10 µm and at most 3.0 µm.
- Component according to at least one of claims 1 to 3, characterised in that the average layer thickness of the cover layer is at least 0.15 µm and at most 1.0 µm.
- Component according to at least one of claims 1 to 5, characterised in that the overcoat has a total porosity of less than 6%, advantageously less than 4% and optimally less than 2%.
- Component according to at least one of claims 1 to 6, characterised in that the overcoat of the steel sheet was produced in a molten bath with an Si content from 8 to 12 wt.%, an Fe content from 1 to 4 wt.%, the remainder aluminium and unavoidable impurities.
- Method for producing a component, in particular according to claim 1, from press-form-hardened steel sheet or steel strip coated on the basis of aluminium, with particular suitability for painting and resistance spot welding, with an aluminium-based overcoat being applied to the steel sheet or steel strip as a coating by a hot-dip process, characterised in that- the steel sheet or steel strip having the overcoat is subjected, after the hot-dip process and before the shaping process, to treatment by anodic oxidation and/or plasma oxidation and/or hot water treatment and/or treatment in an atmosphere containing at least variable proportions of oxygen and water vapour,- the hot water treatment or the treatment under water vapour takes place at temperatures of at least 90°C, advantageously at least 95°C,- in the course of the treatment, a cover layer containing aluminium oxide and/or hydroxide and having a thickness of at least 0.05 µm to at most 5 µm is formed on the surface of the overcoat with the formation of oxides or hydroxides- the steel sheet or steel strip is heated at least in some regions to a temperature above the austenitisation temperature- the heated sheet steel or steel strip is then shaped and then cooled at a rate that is above the critical cooling rate at least in some regions,wherein the heating time and dwell time during the press form hardening are selected to be short enough that the thickness of the interdiffusion zone I obeys the formula mentioned in claim 1.
- Method according to claim 8, characterised in that the cover layer is applied to the surface of the overcoat in a continuous process.
- Method according to either claim 8 or claim 9, characterised in that the treatment takes place in an atmosphere which also contains proportions of basic components, preferably ammonia (NH3), primary, secondary or tertiary aliphatic amines (NH2R, NHR2).
- Use of a component according to claims 1 to 7 for the manufacture of motor vehicles.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102016107152.8A DE102016107152B4 (en) | 2016-04-18 | 2016-04-18 | Component of press-hardened aluminum-coated steel sheet and method for producing such a component and its use |
PCT/EP2017/058918 WO2017182382A1 (en) | 2016-04-18 | 2017-04-13 | Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3250727A1 EP3250727A1 (en) | 2017-12-06 |
EP3250727B1 true EP3250727B1 (en) | 2021-07-07 |
EP3250727B2 EP3250727B2 (en) | 2024-01-17 |
Family
ID=58668836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP17721056.4A Active EP3250727B2 (en) | 2016-04-18 | 2017-04-13 | Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet |
Country Status (7)
Country | Link |
---|---|
US (1) | US11339479B2 (en) |
EP (1) | EP3250727B2 (en) |
KR (1) | KR102189424B1 (en) |
CN (1) | CN109477197B (en) |
DE (1) | DE102016107152B4 (en) |
RU (1) | RU2704339C1 (en) |
WO (1) | WO2017182382A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019171157A1 (en) * | 2018-03-09 | 2019-09-12 | Arcelormittal | A manufacturing process of press hardened parts with high productivity |
EP4151771B1 (en) * | 2020-05-13 | 2024-08-07 | Nippon Steel Corporation | Steel sheet for hot stamping |
JP7269526B2 (en) * | 2020-05-13 | 2023-05-09 | 日本製鉄株式会社 | Steel plate for hot stamping |
JP7269524B2 (en) * | 2020-05-13 | 2023-05-09 | 日本製鉄株式会社 | hot stamping material |
DE102020120580A1 (en) * | 2020-08-04 | 2022-02-10 | Muhr Und Bender Kg | METHOD OF MAKING COATED STEEL STRIP, AND METHOD OF MAKING A HARDENED STEEL PRODUCT |
DE102021118766A1 (en) * | 2021-07-20 | 2023-01-26 | Kamax Holding Gmbh & Co. Kg | Component with integrated aluminum diffusion layer and aluminum oxide layer |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2836878C2 (en) | 1978-08-23 | 1984-05-30 | Siemens AG, 1000 Berlin und 8000 München | Process for the anodic production of hydrophobic oxide layers on aluminum foils for electrolytic capacitors |
US20110300407A1 (en) | 2009-01-09 | 2011-12-08 | Posco | Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof |
CA2933039A1 (en) | 2013-12-25 | 2015-07-02 | Nippon Steel & Sumitomo Metal Corporation | Automobile part and method for manufacturing automobile part |
EP2993248A1 (en) | 2014-09-05 | 2016-03-09 | ThyssenKrupp Steel Europe AG | Flat steel product with an Al coating, method for producing the same, steel component and method for producing the same |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4546051A (en) * | 1982-07-08 | 1985-10-08 | Nisshin Steel Co., Ltd. | Aluminum coated steel sheet and process for producing the same |
EP0760399B1 (en) * | 1995-02-24 | 2003-05-14 | Nisshin Steel Co., Ltd. | Hot-dip aluminized sheet, process for producing the sheet, and alloy layer control device |
DE19853285C1 (en) * | 1998-11-19 | 2000-06-15 | Karlsruhe Forschzent | Process for producing a protective layer on a martensitic steel and use of the steel provided with the protective layer |
FR2787735B1 (en) | 1998-12-24 | 2001-02-02 | Lorraine Laminage | PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED |
FR2807447B1 (en) | 2000-04-07 | 2002-10-11 | Usinor | METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET |
CA2387322C (en) * | 2001-06-06 | 2008-09-30 | Kawasaki Steel Corporation | High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same |
US8307680B2 (en) * | 2006-10-30 | 2012-11-13 | Arcelormittal France | Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product |
EP2017074A3 (en) * | 2007-06-13 | 2009-07-01 | TI Automotive (Heidelberg) GmbH | Aluminium coated automobile pipe and method for producing the same by hot dip plating |
WO2009090443A1 (en) * | 2008-01-15 | 2009-07-23 | Arcelormittal France | Process for manufacturing stamped products, and stamped products prepared from the same |
DE102010024664A1 (en) | 2009-06-29 | 2011-02-17 | Salzgitter Flachstahl Gmbh | Method for producing a component made of an air-hardenable steel and a component produced therewith |
FR2947566B1 (en) | 2009-07-03 | 2011-12-16 | Snecma | PROCESS FOR PRODUCING A MARTENSITIC STEEL WITH MIXED CURING |
EP2312011A1 (en) * | 2009-10-15 | 2011-04-20 | Georg Fischer Automotive AG | Method for metallic coating of a casting mould part and aluminized casting mould part produced according to the method |
DE102009053260B4 (en) | 2009-11-05 | 2011-09-01 | Salzgitter Flachstahl Gmbh | Process for coating steel strips and coated steel strip |
JP5263258B2 (en) | 2010-10-25 | 2013-08-14 | 新日鐵住金株式会社 | Manufacturing method of high-strength automobile parts and high-strength parts |
DE102011001140A1 (en) * | 2011-03-08 | 2012-09-13 | Thyssenkrupp Steel Europe Ag | Flat steel product, method for producing a flat steel product and method for producing a component |
WO2012137687A1 (en) * | 2011-04-01 | 2012-10-11 | 新日本製鐵株式会社 | Hot stamp-molded high-strength component having excellent corrosion resistance after coating, and method for manufacturing same |
US9677145B2 (en) * | 2011-08-12 | 2017-06-13 | GM Global Technology Operations LLC | Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel |
DE102012002079B4 (en) | 2012-01-30 | 2015-05-13 | Salzgitter Flachstahl Gmbh | Process for producing a cold or hot rolled steel strip from a high strength multiphase steel |
DE102013004905A1 (en) | 2012-03-23 | 2013-09-26 | Salzgitter Flachstahl Gmbh | Zunderarmer tempered steel and process for producing a low-dispersion component of this steel |
DE102012006941B4 (en) | 2012-03-30 | 2013-10-17 | Salzgitter Flachstahl Gmbh | Method for producing a steel component by hot forming |
DE102013005301A1 (en) | 2013-03-21 | 2014-09-25 | Salzgitter Flachstahl Gmbh | Process for improving the weldability of high manganese steel strip and coated steel strip |
DE102013009232A1 (en) | 2013-05-28 | 2014-12-04 | Salzgitter Flachstahl Gmbh | Process for producing a component by hot forming a precursor of steel |
JP5873465B2 (en) * | 2013-08-14 | 2016-03-01 | 日新製鋼株式会社 | Al-coated steel sheet excellent in total reflection characteristics and corrosion resistance and its manufacturing method |
DE102013015032A1 (en) | 2013-09-02 | 2015-03-05 | Salzgitter Flachstahl Gmbh | Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening |
WO2015150848A1 (en) * | 2014-03-31 | 2015-10-08 | Arcelormittal Investigación Y Desarrollo Sl | Method of producing press-hardened and -coated steel parts at a high productivity rate |
DE102014016614A1 (en) | 2014-10-31 | 2016-05-04 | Salzgitter Flachstahl Gmbh | Process for producing a component by forming a steel circuit board |
JP2016101911A (en) * | 2014-11-18 | 2016-06-02 | 株式会社シマノ | Bicycle chain |
DE102016215709A1 (en) * | 2015-08-28 | 2017-03-02 | Tsubakimoto Chain Co. | Chain component and chain |
US10481052B2 (en) | 2018-03-28 | 2019-11-19 | Ford Global Technologies, Llc | Quality control process to assess the aluminized coating characteristics of hot stamped parts |
-
2016
- 2016-04-18 DE DE102016107152.8A patent/DE102016107152B4/en not_active Withdrawn - After Issue
-
2017
- 2017-04-13 CN CN201780024316.6A patent/CN109477197B/en active Active
- 2017-04-13 RU RU2018136149A patent/RU2704339C1/en active
- 2017-04-13 US US16/093,466 patent/US11339479B2/en active Active
- 2017-04-13 KR KR1020187030273A patent/KR102189424B1/en active IP Right Grant
- 2017-04-13 WO PCT/EP2017/058918 patent/WO2017182382A1/en active Application Filing
- 2017-04-13 EP EP17721056.4A patent/EP3250727B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2836878C2 (en) | 1978-08-23 | 1984-05-30 | Siemens AG, 1000 Berlin und 8000 München | Process for the anodic production of hydrophobic oxide layers on aluminum foils for electrolytic capacitors |
US20110300407A1 (en) | 2009-01-09 | 2011-12-08 | Posco | Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof |
CA2933039A1 (en) | 2013-12-25 | 2015-07-02 | Nippon Steel & Sumitomo Metal Corporation | Automobile part and method for manufacturing automobile part |
WO2015098653A1 (en) | 2013-12-25 | 2015-07-02 | 新日鐵住金株式会社 | Vehicle component and vehicle component manufacturing method |
EP2993248A1 (en) | 2014-09-05 | 2016-03-09 | ThyssenKrupp Steel Europe AG | Flat steel product with an Al coating, method for producing the same, steel component and method for producing the same |
Non-Patent Citations (5)
Title |
---|
A. BENGTSON: "Quantitative depth profile analysis by glow discharge", SPECTROCHIMICA ACTA PART B: ATOMIC SPECTROSCOPY, vol. 49, no. 4, 1994, XP026556883, DOI: 10.1016/0584-8547(94)80034-0 |
CHANG, Y.Y. TSAUR, C.C. ROCK, J.C.: "Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation", SURFACE AND COATINGS TECHNOLOGY, vol. 200, no. 22-23, 20 June 2006 (2006-06-20), NL , pages 6588 - 6593, XP005422353, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2005.11.038 |
M WINDMANN ET AL: "Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating", SURFACE & COATINGS TECHNOLOGY, ELSEVIER B.V, 15 July 2013 (2013-07-15), pages 130 - 139, XP055498672, DOI: 10.1016/j.surfcoat.2013.03.045 |
RICHARDS, R. W.; JONES, R. D.; CLEMENTS, P. D.; CLARKE, H.: "Metallurgy of continuous hot dip aluminizing.", INTERNATIONAL MATERIALS REVIEWS, vol. 39, no. 5, 1 January 1994 (1994-01-01), US , pages 191 - 212, XP008156586, ISSN: 0950-6608, DOI: 10.1179/imr.1994.39.5.191 |
SPIESS LOTHAR, ET AL: "Materialcharakterisierungsverfahren Röntgenfluoreszenzanalyse (RFA) und Glimmentladungsspektroskopie (GDOES) im Alltag eines Werkstoffprüflabors", DGZFP-JAHRESTAGUNG 2010, 1 January 2010 (2010-01-01), pages 1 - 8, XP093042362 |
Also Published As
Publication number | Publication date |
---|---|
EP3250727B2 (en) | 2024-01-17 |
DE102016107152A1 (en) | 2017-10-19 |
WO2017182382A1 (en) | 2017-10-26 |
CN109477197B (en) | 2021-10-26 |
KR20190003502A (en) | 2019-01-09 |
RU2704339C1 (en) | 2019-10-28 |
US20200308708A1 (en) | 2020-10-01 |
DE102016107152B4 (en) | 2017-11-09 |
US11339479B2 (en) | 2022-05-24 |
EP3250727A1 (en) | 2017-12-06 |
CN109477197A (en) | 2019-03-15 |
KR102189424B1 (en) | 2020-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3250727B1 (en) | Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component | |
EP3041969B1 (en) | Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening | |
EP2655673B1 (en) | Method for producing hardened structural elements | |
EP2848709B1 (en) | Method for producing a steel component with an anti-corrosive metal coating and steel component | |
DE102017127987A1 (en) | Coated steel substrate and method for producing a hardened component from a coated steel substrate | |
EP2733226A1 (en) | Method for producing a product from a flexible rolled strip material | |
DE102010017354A9 (en) | Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product | |
EP2513346B1 (en) | Method for producing an easily deformable flat steel product | |
DE102010056265B3 (en) | Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating | |
DE102010056264B4 (en) | Method for producing hardened components | |
DE102015202642A1 (en) | A method of making a product of rolled strip material | |
WO2016026885A1 (en) | Surface-finished steel sheet and method for the production thereof | |
EP4038215B1 (en) | Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom | |
EP3303647B1 (en) | Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components | |
EP3585917B1 (en) | Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom | |
DE102020120580A1 (en) | METHOD OF MAKING COATED STEEL STRIP, AND METHOD OF MAKING A HARDENED STEEL PRODUCT | |
EP4093896A1 (en) | Steel component comprising an anti-corrosion layer containing manganese | |
EP4247992A1 (en) | Steel material and method for production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170630 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SALZGITTER FLACHSTAHL GMBH Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GRAUL, MATTHIAS Inventor name: KOLL, THOMAS Inventor name: FRITZSCHE, CHRISTIAN Inventor name: HARTMANN, HAUCKE-FREDERIK Inventor name: LUTHER, FRIEDRICH Inventor name: BEIER, FRANK Inventor name: LASS, JAN-FREDERIK Inventor name: MUETZE, STEFAN Inventor name: DEBEAUX, MARC |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20190418 |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210325 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1408678 Country of ref document: AT Kind code of ref document: T Effective date: 20210715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502017010846 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211108 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211007 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211008 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502017010846 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
26 | Opposition filed |
Opponent name: THYSSENKRUPP STEEL EUROPE AG Effective date: 20220406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220413 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220413 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220413 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220430 |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220413 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1408678 Country of ref document: AT Kind code of ref document: T Effective date: 20220413 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230526 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220413 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PK Free format text: TITEL |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20240117 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502017010846 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20170413 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240418 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240425 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 |