EP3250727B1 - Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component - Google Patents

Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component Download PDF

Info

Publication number
EP3250727B1
EP3250727B1 EP17721056.4A EP17721056A EP3250727B1 EP 3250727 B1 EP3250727 B1 EP 3250727B1 EP 17721056 A EP17721056 A EP 17721056A EP 3250727 B1 EP3250727 B1 EP 3250727B1
Authority
EP
European Patent Office
Prior art keywords
thickness
steel sheet
overcoat
press
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17721056.4A
Other languages
German (de)
French (fr)
Other versions
EP3250727B2 (en
EP3250727A1 (en
Inventor
Thomas Koll
Marc Debeaux
Friedrich Luther
Christian Fritzsche
Stefan MÜTZE
Frank Beier
Matthias Graul
Haucke-Frederik Hartmann
Jan-Frederik LASS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Salzgitter Flachstahl GmbH
Original Assignee
Volkswagen AG
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=58668836&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3250727(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Volkswagen AG, Salzgitter Flachstahl GmbH filed Critical Volkswagen AG
Publication of EP3250727A1 publication Critical patent/EP3250727A1/en
Application granted granted Critical
Publication of EP3250727B1 publication Critical patent/EP3250727B1/en
Publication of EP3250727B2 publication Critical patent/EP3250727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/324Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal matrix material layer comprising a mixture of at least two metals or metal phases or a metal-matrix material with hard embedded particles, e.g. WC-Me
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe

Definitions

  • the invention relates to a component made of press-form-hardened sheet steel coated on the basis of aluminum, the coating having a coating which is applied in the hot-dip process and which contains aluminum and silicon.
  • the invention also relates to a method for producing such a component.
  • the coating relates to an aluminum-silicon coating.
  • press hardening can be used to produce high-strength components that are primarily used in the bodywork area.
  • Press hardening can in principle be carried out using two different method variants, namely using the direct or indirect method. While the process steps of forming and hardening run separately in the indirect process, they take place together in one tool in the direct process. In the following only the direct method is considered.
  • a steel sheet is heated above the so-called austenitizing temperature (Ac3).
  • the steel sheet heated in this way is then transferred to a forming tool and formed into the finished component in a single-stage forming step and cooled by the cooled forming tool at a speed that is above the critical cooling rate of the steel, so that a hardened component is produced.
  • the steel sheet itself is usually cut out of a steel strip, usually wound up as a coil, and then processed further.
  • the sheet steel to be formed is often referred to as a blank.
  • Known hot-formable steels for this area of application are, for example, the manganese-boron steel "22MnB5" and recently also air-hardenable steels according to the European patent EP 2 449 138 B1 .
  • steel sheets with anti-scaling protection are also used for press hardening (e.g. for automotive body construction) used.
  • press hardening e.g. for automotive body construction
  • the advantages here are that the blanks or components do not scale in the furnace, which reduces wear on the press tools due to flaked scale and the components often do not have to be blasted before further processing.
  • the following (alloy) coatings applied by hot dipping are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / Galvannealed), zinc-magnesium-aluminum (ZM ), as well as electrolytically deposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming.
  • AS aluminum-silicon
  • Z zinc-aluminum
  • ZF / Galvannealed zinc-magnesium-aluminum
  • ZM zinc-magnesium-aluminum
  • EP 2 312 011 A1 describes a process for the production of metallic coatings on molded parts for use in automobile construction.
  • the molded part is provided with an aluminum alloy in a molten bath and then subjected to a heat treatment in an oxidizing atmosphere to produce a high-temperature-resistant aluminum oxide layer.
  • Anodic oxidation is also planned after the heat treatment.
  • the German patent DE 198 53 285 C1 presents a method for producing a protective layer on martensitic steel.
  • a protective gas atmosphere argon with 5% H 2
  • the steel to be coated is immersed in a melt of aluminum or an aluminum alloy, cooled and then hot isostatically pressed at the austenitizing temperature.
  • the aluminum protective layer produced in this way is between 100 and 200 ⁇ m thick and should contain an approximately 1 ⁇ m thick aluminum oxide layer on its surface, no further information is given on its formation or preservation.
  • the advantage of the aluminum-based coatings compared to the zinc-based coatings is that, in addition to a larger process window (e.g. with regard to the heating parameters), the finished components do not have to be processed further need to be blasted. In addition, there is no risk of liquid metal embrittlement with aluminum-based coatings and no microcracks can form in the near-surface substrate area at the former austenite grain boundaries, which can have a negative effect on fatigue strength at depths of more than 10 ⁇ m.
  • the alloying of the coating with iron and the formation of a paintable surface topography require a correspondingly long dwell time in the roller hearth furnace that is usually used, which significantly increases the cycle times and reduces the profitability of the press mold hardening.
  • the minimum dwell time is thus determined by the coating and not by the base material, for which only the required austenitizing temperature would be required.
  • the corrosion resistance is reduced by the stronger alloying with iron, since the aluminum content in the alloy layer decreases with the dwell time in the furnace and the iron content increases.
  • longer ovens are usually used for AS boards in order to achieve high cycle rates despite the necessary oven dwell time. However, these are more expensive to purchase and operate and also take up a lot of space.
  • Another disadvantage of AS coatings is that with very short annealing times, spot welding is extremely poor. This is expressed, for example, in only a very small welding area. One of the reasons for this is a very low contact resistance with short glow times.
  • the object of the invention is therefore to provide a component made of a press-hardened steel sheet coated on the basis of aluminum, which can be produced inexpensively and has excellent paintability and weldability, in particular resistance spot weldability. Furthermore, a method for producing such a component is to be specified.
  • the teaching of the invention comprises a component made of press-form-hardened sheet steel coated on the basis of aluminum, the coating having a coating applied in the hot-dip process which contains aluminum and silicon, which is characterized in that the press-form-hardened component has an interdiffusion zone in the transition area between sheet steel and coating I, the thickness of the interdiffusion zone I having the following formula, depending on the layer thickness of the coating prior to heating and press hardening I.
  • both sides G / m 2 + 19th 7th obeys, on the interdiffusion zone I a zone with different intermetallic phases with an average total thickness between 8 and 50 microns is formed, on which in turn a cover layer containing aluminum oxide and / or hydroxide with an average thickness of at least 0.05 microns to at most 5 microns is arranged.
  • aluminum-based coatings are understood to be metallic coatings in which aluminum is the main component (in percent by mass).
  • examples of possible aluminum-based coatings are aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements such as magnesium, transition metals such as manganese, titanium and rare earths.
  • a coating of the steel sheet according to the invention is produced, for example, in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the remainder being aluminum.
  • top layers containing aluminum oxide and / or hydroxide act on the component formed by compression molding due to their network-like structure as ideal adhesion promoters for subsequent painting, in particular cathodic dip painting (KTL).
  • KTL cathodic dip painting
  • a lengthy alloying of the aluminum-based coating with iron in the furnace is no longer necessary, so that the throughput times in the furnace for heating the sheet steel to the forming temperature can be drastically reduced. While so far, for example, annealing times in a roller hearth furnace of at least 4 minutes at a furnace temperature of 950 ° C have been required for the alloying of the coating with iron and the formation of a paintable surface topography for sheet metal thicknesses of 1.5 mm Glowing times of only 2 - 3 minutes are required, which significantly reduces the glow time.
  • the maximum possible furnace times do not change due to the top layer containing aluminum oxide and / or hydroxide.
  • the heating process window is thus greatly expanded towards shorter furnace times.
  • furnace time is extended accordingly due to the lower heating rate of the steel material.
  • the typical oven temperatures between 900 and 950 ° C should also be adhered to here.
  • furnace temperatures between 930 and 950 ° C are advantageous.
  • the cover layer according to the invention made of aluminum oxides and / or hydroxides has an advantageous effect on resistance spot weldability in the case of short furnace times, since the contact resistance is increased and good resistance heating is thus achieved.
  • a thickness of this cover layer of at least 0.05 ⁇ m has therefore proven to be positive.
  • a thickness between 0.10 and 3 ⁇ m was found for the top layer as a good compromise between weldability and paint adhesion.
  • top layers with an average thickness between 0.15 and 1 ⁇ m are particularly advantageous.
  • the term is to be understood at least in some areas in the sense of local sections of the treated steel sheet or steel strip, so that a steel sheet or steel strip is created with structures and properties that specifically differ from one another locally.
  • the cover layer is preferably applied to the surface of the coating in a continuous process.
  • the treatment advantageously takes place in an atmosphere which also contains proportions of basic components, preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).
  • basic components preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).
  • a thin oxidic top layer can advantageously be achieved by anodic oxidation (thin layer anodizing), plasma oxidation and a hydroxide-containing top layer by means of a hot water treatment of the aluminum-based coating at temperatures of at least 90 ° C, advantageously at least 95 ° C and / or a treatment in steam at temperatures of at least 90 ° C, advantageously at least 95 ° C can be produced.
  • a gas phase treatment of the AS surface also leads to the same goal.
  • the AS surface is treated with an atmosphere which can contain at least variable proportions of oxygen, water vapor, and optionally also proportions of basic components, in particular ammonia, primary, secondary or tertiary aliphatic amines.
  • This treatment leads to a time- or temperature-controlled growth of a top layer containing aluminum oxide and / or hydroxide.
  • the composition of the gas phase can be used to control the layer thickness growth of this cover layer.
  • the treatment is carried out at a temperature of 40 ° C to 100 ° C, preferably 90 ° C to 100 ° C. Lower treatment temperatures lengthen the treatment time, treatment temperatures above 100 ° C may require pressure vessels.
  • Both anodization and gas phase treatment result in an aluminum oxide and / or hydroxide-containing cover layer, which has mesh-like or needle-like structures on its surface.
  • the associated increase in surface area improves the adhesion of a subsequent KT coating. Since longer heating times are no longer required to create a paintable surface topography, the corrosion protection of the coating is also increased. This can be explained by the fact that with only a short annealing time required in the roller hearth furnace, there is less diffusion of aluminum and iron. Among other things, this also leads to a relatively small interdiffusion zone. This is exemplary for an AS layer of the starting material of 150 g / m 2 (AS150) below 7 ⁇ m.
  • the thicknesses of the interdiffusion layers I according to the invention for a layer of the starting material result from the linear relationship according to the following formulas for various sheet thickness-dependent Heating times:
  • the necessary heating time in the oven depends only on the sheet metal thickness, since the coating according to the invention does not require any holding time in the oven to produce a paintable surface. Thicker sheets therefore require longer heating times for heating than thinner sheets.
  • table 1 lists short (220 seconds), very short (180 seconds) and extremely short (150 seconds) heating times compared to conventional heating times (360 seconds) in a roller hearth furnace.
  • Another positive effect of the short heating time is a significantly reduced proportion of pores in the alloy layer and in the diffusion zone. Pores arise with longer glow times, e.g. due to the Kirkendall effect. Tests have shown that the short-term annealing can reduce the total pore proportion to values of less than 6% and even to values of less than 4% or 2%. Which can, for example, have a beneficial effect on the suitability for welding.
  • Figure 1 shows schematically the layer structure of the coating on a compression-molded component with a coating of AS and the usual long heating time according to the prior art in order to achieve a through-alloying of the coating with iron.
  • a steel sheet with a coating of AS150 that is to say with a layer of 150 g / m 2 of the coating, was used for the component.
  • An interdiffusion zone Fe (Al, Si) with a thickness of 7 to 14 ⁇ m is formed on the martensitic steel base material, on which a zone with different intermetallic phases (e.g. Fe 2 SiAl 2 and FeAl 2 ) has formed, the individual phases in this zone can be distributed in rows or clusters.
  • an only very thin aluminum oxide layer with a thickness of less than 0.05 ⁇ m has formed. You can also see pores that have formed in the various zones.
  • Figure 2 shows the layer structure of a coating according to the invention on a press-hardened component with an AS coating on which a cover layer according to the invention of at least 0.05 ⁇ m containing aluminum oxide and / or hydroxide is formed and which is produced with shorter heating times compared to the prior art has been.
  • a cover layer according to the invention of at least 0.05 ⁇ m containing aluminum oxide and / or hydroxide is formed in the transition area between sheet steel and coating there is an interdiffusion zone in which aluminum and silicon have diffused into the steel Fe (Al, Si). Due to the very short heating time required in the furnace to the austenitizing temperature, this layer has an average thickness of less than 7 ⁇ m for AS150, for example.
  • Another layer with different intermetallic phases e.g. Fe 2 SiAl 2 and FeAl 2
  • the individual phases in this zone can appear in rows or in clusters and on which an aluminum oxide and / or -hydroxide-containing top layer in an average thickness of at least 0.05 ⁇ m to is
  • Figure 3 shows graphically the thickness I according to the invention of the interdiffusion zone for a layer of the starting material between 50 g / m 2 and 180 g / m 2 according to the following relationship: I. ⁇ m ⁇ 1 35 ⁇ Edition both sides G / m 2 + 19th 7th
  • Table 1 summarizes tests on paint adhesion (phosphating treatment typical for automobiles and cathodic dip painting; testing after 72 hours of constant condensation climate in accordance with DIN EN ISO 6270-2: 2005 CH) and suitability for welding (resistance spot welding) of press-hardened AS150 samples at 940 ° C oven temperature and various heating times.
  • the sheet thickness of the samples is 1.5 mm. It can be seen that there is only good paint adhesion and weldability with heating times of 220 s and less if a cover layer according to the invention containing aluminum oxide and / or hydroxide is present. In addition, short heating times of 220 s and less resulted in interdiffusion layers of less than 7 ⁇ m on the press-hardened component.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

Die Erfindung betrifft ein Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten Überzug aufweist, der Aluminium und Silizium enthält. Auch betrifft die Erfindung ein Verfahren zur Herstellung eines solchen Bauteils. Insbesondere betrifft die Beschichtung einen Aluminium-Silizium-Überzug.The invention relates to a component made of press-form-hardened sheet steel coated on the basis of aluminum, the coating having a coating which is applied in the hot-dip process and which contains aluminum and silicon. The invention also relates to a method for producing such a component. In particular, the coating relates to an aluminum-silicon coating.

Es ist bekannt, dass warmumgeformte Stahlbleche insbesondere im Automobilbau immer häufiger Verwendung finden. Durch den auch als Presshärten bezeichneten Prozess können hochfeste Bauteile erzeugt werden, die vorwiegend im Bereich der Karosserie eingesetzt werden. Das Presshärten kann grundsätzlich mittels zwei verschiedener Verfahrensvarianten durchgeführt werden, nämlich mittels des direkten oder indirekten Verfahrens. Während beim indirekten Verfahren die Prozessschritte des Umformens und Härtens getrennt voneinander ablaufen, finden sie beim direkten Verfahren in einem Werkzeug gemeinsam statt. Im Folgenden wird nur das direkte Verfahren betrachtet.It is known that hot-formed steel sheets are being used more and more, especially in automobile construction. The process, also known as press hardening, can be used to produce high-strength components that are primarily used in the bodywork area. Press hardening can in principle be carried out using two different method variants, namely using the direct or indirect method. While the process steps of forming and hardening run separately in the indirect process, they take place together in one tool in the direct process. In the following only the direct method is considered.

Beim direkten Verfahren wird ein Stahlblech über die sogenannte Austenitisierungstemperatur (Ac3) aufgeheizt. Anschließend wird das so erhitzte Stahlblech in ein Formwerkzeug überführt und in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Abkühlgeschwindigkeit des Stahls liegt, abgekühlt, so dass ein gehärtetes Bauteil erzeugt wird. Das Stahlblech selbst wird dabei üblicherweise aus einem meist als Coil aufgewickelten Stahlband herausgeschnitten und anschließend weiterverarbeitet. Das umzuformende Stahlblech wird häufig auch als Platine bezeichnet.In the direct process, a steel sheet is heated above the so-called austenitizing temperature (Ac3). The steel sheet heated in this way is then transferred to a forming tool and formed into the finished component in a single-stage forming step and cooled by the cooled forming tool at a speed that is above the critical cooling rate of the steel, so that a hardened component is produced. The steel sheet itself is usually cut out of a steel strip, usually wound up as a coil, and then processed further. The sheet steel to be formed is often referred to as a blank.

Bekannte warmumformbare Stähle für diesen Einsatzbereich sind zum Beispiel der Mangan-Bor-Stahl "22MnB5" und neuerdings auch luftvergütbare Stähle gemäß des europäischen Patentes EP 2 449 138 B1 .Known hot-formable steels for this area of application are, for example, the manganese-boron steel "22MnB5" and recently also air-hardenable steels according to the European patent EP 2 449 138 B1 .

Neben unbeschichteten Stahlblechen werden auch Stahlbleche mit einem Verzunderungsschutz für das Presshärten (z.B. für den automobilen Karosseriebau) eingesetzt. Die Vorteile liegen hier neben der erhöhten Korrosionsbeständigkeit des fertigen Bauteils darin, dass die Platinen oder Bauteile im Ofen nicht verzundern, wodurch der Verschleiß der Pressenwerkzeuge durch abgeplatzten Zunder reduziert wird und die Bauteile vor der Weiterverarbeitung oft nicht aufwendig gestrahlt werden müssen.In addition to uncoated steel sheets, steel sheets with anti-scaling protection are also used for press hardening (e.g. for automotive body construction) used. In addition to the increased corrosion resistance of the finished component, the advantages here are that the blanks or components do not scale in the furnace, which reduces wear on the press tools due to flaked scale and the components often do not have to be blasted before further processing.

Für das Presshärten sind derzeit die folgenden, durch Schmelztauchen aufgebrachten (Legierungs-) Beschichtungen bekannt: Aluminium-Silizium (AS), Zink-Aluminium (Z), Zink-Aluminium-Eisen (ZF/ Galvannealed), Zink-Magnesium-Aluminium (ZM), sowie elektrolytisch abgeschiedene Beschichtungen aus Zink-Nickel oder Zink, wobei die letztere vor der Warmumformung in eine Eisen-Zink-Legierungsschicht umgewandelt wird. Diese Korrosionsschutzbeschichtungen werden üblicherweise in kontinuierlichen Durchlaufverfahren auf das Warm- oder Kaltband aufgebracht.For press hardening, the following (alloy) coatings applied by hot dipping are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / Galvannealed), zinc-magnesium-aluminum (ZM ), as well as electrolytically deposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming. These anti-corrosion coatings are usually applied to the hot or cold strip in a continuous process.

Die Herstellung von Bauteilen mittels Abschrecken von Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 601 19 826 T2 bekannt. Hier wird eine zuvor oberhalb der Austenitisierungstemperatur auf 800 - 1200 °C erwärmte und ggf. mit einem metallischen Überzug aus Zink oder auf Basis von Zink versehene Blechplatine in einem fallweise gekühlten Werkzeug durch Warmumformung zu einem Bauteil umgeformt, wobei während des Umformens durch schnellen Wärmeentzug das Blech bzw. Bauteil im Umformwerkzeug eine Abschreckhärtung (Presshärtung) erfährt und durch das entstehende martensitische Härtegefüge die geforderten Festigkeitseigenschaften erreicht.The production of components by quenching preliminary products made of press-hardenable steels by hot forming in a forming tool is out of the German patent DE 601 19 826 T2 known. Here, a sheet metal blank previously heated above the austenitizing temperature to 800 - 1200 ° C and possibly provided with a metallic coating made of zinc or based on zinc is formed into a component in a tool that is cooled in some cases by hot forming, with rapid heat extraction during the forming process The sheet metal or component in the forming tool experiences quench hardening (press hardening) and the required strength properties are achieved through the resulting martensitic hardening structure.

Die Herstellung von Bauteilen mittels Abschrecken von mit einer Aluminiumlegierung beschichteten Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 699 33 751 T2 bekannt. Hier wird ein mit einer Aluminiumlegierung beschichtetes Blech vor einem Umformen auf über 700 °C erwärmt, wobei eine intermetallisch legierte Verbindung auf Basis von Eisen, Aluminium und Silizium auf der Oberfläche entsteht und nachfolgend das Blech umgeformt und mit einer Geschwindigkeit oberhalb der kritischen Abkühlgeschwindigkeit abkühlt wird.The production of components by quenching precursors coated with an aluminum alloy made of press-hardenable steels by hot forming in a forming tool is out of the German patent DE 699 33 751 T2 known. Here, a sheet metal coated with an aluminum alloy is heated to over 700 ° C before forming, whereby an intermetallic alloyed compound based on iron, aluminum and silicon is formed on the surface and then the sheet metal is formed and cooled at a rate above the critical cooling rate .

Aus der Offenlegungsschrift US 2011/0300407 A1 ist ein Verfahren zur Herstellung eines pressformgehärteten Stahlblechs zur Verwendung in der Automobilbranche bekannt. Im Schmelztauchverfahren wird das Stahlblech mit einem Aluminium-Silizium (AS)-Überzug mit einer Schichtauflage von 20 bis 80 g/m2 versehen, auf Temperaturen über 820°C erwärmt und die Temperatur für einige Zeit (ca. 3 Minuten) gehalten. Dabei werden im Überzug unterschiedliche intermetallische Phasen ausgebildet, beispielsweise Fe3Al, FeAl oder Fe-Al2O3. Nach dem Warmumformen mittels einer Presse wird das Produkt noch in der Presse abgekühlt.From the published patent application US 2011/0300407 A1 is a method of manufacture a press hardened steel sheet for use in the automotive industry. In the hot-dip process, the steel sheet is provided with an aluminum-silicon (AS) coating with a layer of 20 to 80 g / m 2 , heated to temperatures above 820 ° C. and the temperature is maintained for some time (approx. 3 minutes). Different intermetallic phases are formed in the coating, for example Fe 3 Al, FeAl or Fe-Al 2 O 3 . After hot forming using a press, the product is still cooled in the press.

Auch die europäische Patentanmeldung EP 2 312 011 A1 beschreibt ein Verfahren zur Herstellung von metallischen Beschichtungen auf Gussformteilen für den Einsatz im Automobilbau. Dazu wird das Gussformteil in einem Schmelzbad mit einer Aluminiumlegierung versehen und anschließend zur Herstellung einer hochtemperaturbeständigen Aluminiumoxidschicht einer Wärmebehandlung in einer oxidierenden Atmosphäre unterzogen. Nach der Wärmebehandlung ist auch eine anodische Oxidation vorgesehen.Also the European patent application EP 2 312 011 A1 describes a process for the production of metallic coatings on molded parts for use in automobile construction. For this purpose, the molded part is provided with an aluminum alloy in a molten bath and then subjected to a heat treatment in an oxidizing atmosphere to produce a high-temperature-resistant aluminum oxide layer. Anodic oxidation is also planned after the heat treatment.

Die deutsche Patentschrift DE 198 53 285 C1 stellt ein Verfahren zur Herstellung einer Schutzschicht auf martensitischem Stahl vor. Unter Schutzgasatmosphäre (Argon mit 5% H2) wird der zu beschichtende Stahl in eine Schmelze aus Aluminium oder einer Aluminiumlegierung getaucht, abgekühlt und dann bei Austenitisierungstemperatur heißisostatisch gepresst. Die derart erzeugte Aluminium-Schutzschicht ist zwischen 100 und 200 µm dick und soll an ihrer Oberfläche eine ca. 1 µm dicke Aluminiumoxid-Schicht enthalten, zu deren Entstehung oder Erhalt keine weiteren Angaben gemacht werden.The German patent DE 198 53 285 C1 presents a method for producing a protective layer on martensitic steel. In a protective gas atmosphere (argon with 5% H 2 ), the steel to be coated is immersed in a melt of aluminum or an aluminum alloy, cooled and then hot isostatically pressed at the austenitizing temperature. The aluminum protective layer produced in this way is between 100 and 200 μm thick and should contain an approximately 1 μm thick aluminum oxide layer on its surface, no further information is given on its formation or preservation.

Aus der europäischen Patentanmeldung EP 2 017 074 A2 ist eine Kraftfahrzeugrohrleitung aus einem Stahlrohr mit einer Aluminiumschicht bekannt, die mittels Schmelztauchbeschichten aufgebracht wird. Eine Dicke einer Aluminiumoxidschicht wird über die Temperatur des Aluminiums und der Sauerstoffkonzentration während der Beschichtung eingestellt; sie liegt zwischen 4 und 30 nm.From the European patent application EP 2 017 074 A2 a motor vehicle pipeline made of a steel pipe with an aluminum layer is known, which is applied by means of hot-dip coating. A thickness of an aluminum oxide layer is set via the temperature of the aluminum and the oxygen concentration during the coating; it is between 4 and 30 nm.

Der Vorteil bei den aluminiumbasierten Überzügen gegenüber den zinkbasierten Überzügen liegt darin, dass neben einem größeren Prozessfenster (z.B. hinsichtlich der Erwärmungsparameter) die fertigen Bauteile vor der Weiterverarbeitung nicht gestrahlt werden müssen. Darüber hinaus besteht bei aluminiumbasierten Überzügen nicht die Gefahr von Flüssigmetallversprödung und es können sich keine Mikrorisse im oberflächennahen Substratbereich an den ehemaligen Austenitkorngrenzen ausbilden, die bei Tiefen über 10 µm einen negativen Effekt auf die Dauerfestigkeit haben können.The advantage of the aluminum-based coatings compared to the zinc-based coatings is that, in addition to a larger process window (e.g. with regard to the heating parameters), the finished components do not have to be processed further need to be blasted. In addition, there is no risk of liquid metal embrittlement with aluminum-based coatings and no microcracks can form in the near-surface substrate area at the former austenite grain boundaries, which can have a negative effect on fatigue strength at depths of more than 10 µm.

Nachteilig bei der Verwendung von aluminiumbasierten Überzügen, z.B. aus Aluminium-Silizium (AS), ist jedoch die mangelhafte Lackhaftung des umgeformten Bauteils bei der automobiltypischen kathodischen Tauchlackierung (KTL), wenn eine zu kurze Erwärmungszeit beim Presshärten verwendet wurde. Bei kurzen Erwärmungszeiten weist die Oberfläche eine zu geringe Rauheit auf, so dass keine ausreichende Lackhaftung erreicht wird.The disadvantage of using aluminum-based coatings, e.g. made of aluminum-silicon (AS), is the poor paint adhesion of the formed component in the cathodic dip painting (KTL) typical of automobiles if too short a heating time was used for press hardening. In the case of short heating times, the surface has too little roughness, so that sufficient paint adhesion is not achieved.

Im Gegensatz zu den zinkbasierten Überzügen lassen sich aluminiumbasierte Überzüge nicht oder nur unzureichend phosphatieren und somit kann durch den Phosphatierschritt keine Verbesserung der Lackhaftung erzielt werden. Aus diesen Gründen müssen bisher bei der Verarbeitung von Platinen mit aluminiumbasierten Überzügen Mindesterwärmzeiten eingehalten werden, wodurch der Überzug mit Eisen durchlegiert und sich eine raue Oberflächentopografie ausbildet, die eine ausreichende Lackhaftung beim Lackieren des umgeformten Bauteils bewirkt.In contrast to zinc-based coatings, aluminum-based coatings cannot be phosphated or can only be phosphated insufficiently and thus no improvement in paint adhesion can be achieved through the phosphating step. For these reasons, up to now, minimum heating times have to be observed when processing circuit boards with aluminum-based coatings, as a result of which the coating is alloyed with iron and a rough surface topography is formed, which causes sufficient paint adhesion when painting the formed component.

Das Durchlegieren des Überzugs mit Eisen und die Ausbildung einer lackierfähigen Oberflächentopografie erfordern allerdings eine entsprechend lange Verweildauer im üblicherweise verwendeten Rollenherdofen, was die Taktzeiten deutlich verlängert und die Wirtschaftlichkeit des Pressformhärtens reduziert. Die Mindestverweildauer wird somit durch den Überzug bestimmt und nicht durch das Grundmaterial, für das lediglich die Erreichung der notwendigen Austenitisierungstemperatur notwendig wäre. Zudem wird die Korrosionsbeständigkeit durch das stärkere Auflegieren mit Eisen verringert, da der Aluminiumgehalt in der Legierungsschicht mit der Ofenverweilzeit abnimmt und der Eisengehalt ansteigt. Für AS-Platinen werden üblicherweise angepasste, längere Öfen eingesetzt, um trotz der notwendigen Ofenverweilzeit hohe Taktraten zu erzielen. Diese sind jedoch teurer in der Anschaffung und im Betrieb und haben zudem einen sehr großen Platzbedarf.
Ein weiterer Nachteil von AS-Überzügen besteht darin, dass bei sehr kurzen Glühzeiten die Schweißbarkeit im Punktschweißverfahren äußerst schlecht ist. Dies drückt sich z.B. in einem nur sehr kleinen Schweißbereich aus. Ursächlich hierfür ist unter anderem ein sehr geringer Übergangswiderstand bei kurzen Glühzeiten.
The alloying of the coating with iron and the formation of a paintable surface topography, however, require a correspondingly long dwell time in the roller hearth furnace that is usually used, which significantly increases the cycle times and reduces the profitability of the press mold hardening. The minimum dwell time is thus determined by the coating and not by the base material, for which only the required austenitizing temperature would be required. In addition, the corrosion resistance is reduced by the stronger alloying with iron, since the aluminum content in the alloy layer decreases with the dwell time in the furnace and the iron content increases. Adapted, longer ovens are usually used for AS boards in order to achieve high cycle rates despite the necessary oven dwell time. However, these are more expensive to purchase and operate and also take up a lot of space.
Another disadvantage of AS coatings is that with very short annealing times, spot welding is extremely poor. This is expressed, for example, in only a very small welding area. One of the reasons for this is a very low contact resistance with short glow times.

Aufgabe der Erfindung ist es deshalb, ein Bauteil aus einem pressformgehärteten auf Basis von Aluminium beschichteten Stahlblech anzugeben, welches kostengünstig herstellbar ist und eine hervorragende Lackierbarkeit und Schweißbarkeit, insbesondere Widerstandspunktschweißbarkeit, aufweist. Des Weiteren soll ein Verfahren zur Herstellung eines solchen Bauteils angegeben werden.The object of the invention is therefore to provide a component made of a press-hardened steel sheet coated on the basis of aluminum, which can be produced inexpensively and has excellent paintability and weldability, in particular resistance spot weldability. Furthermore, a method for producing such a component is to be specified.

Die Lehre der Erfindung umfasst ein Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech, wobei die Beschichtung einen im Schmelztauchverfahren aufgebrachten Überzug aufweist, der Aluminium und Silizium enthält, welches dadurch gekennzeichnet ist, dass das pressformgehärtete Bauteil im Übergangsbereich zwischen Stahlblech und Überzug eine Interdiffusionszone I aufweist, wobei abhängig von der Schichtauflage des Überzugs vor Erwärmung und Presshärtung die Dicke der Interdiffusionszone I folgender Formel I μm < 1 35 × Auflage beidseitig g / m 2 + 19 7

Figure imgb0001
gehorcht, auf der Interdiffusionszone I eine Zone mit verschiedenen intermetallischen Phasen mit einer mittleren Gesamtdicke zwischen 8 und 50 µm ausgebildet ist, auf der wiederum eine Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht in einer mittleren Dicke von mindestens 0,05 µm bis höchstens 5 µm angeordnet ist.The teaching of the invention comprises a component made of press-form-hardened sheet steel coated on the basis of aluminum, the coating having a coating applied in the hot-dip process which contains aluminum and silicon, which is characterized in that the press-form-hardened component has an interdiffusion zone in the transition area between sheet steel and coating I, the thickness of the interdiffusion zone I having the following formula, depending on the layer thickness of the coating prior to heating and press hardening I. μm < 1 35 × Edition both sides G / m 2 + 19th 7th
Figure imgb0001
obeys, on the interdiffusion zone I a zone with different intermetallic phases with an average total thickness between 8 and 50 microns is formed, on which in turn a cover layer containing aluminum oxide and / or hydroxide with an average thickness of at least 0.05 microns to at most 5 microns is arranged.

Als aluminiumbasierte Überzüge werden nachfolgend metallische Überzüge verstanden, bei denen Aluminium der Hauptbestandteil (in Massenprozent) ist. Beispiele für mögliche aluminiumbasierte Überzüge sind Aluminium-Silizium (AS), Aluminium-Zink-Silizium (AZ), sowie dieselben Überzüge mit Beimischungen zusätzlicher Elemente, wie z.B. Magnesium, Übergangsmetallen wie Mangan, Titan und seltenen Erden. Ein erfindungsgemäßer Überzug des Stahlbleches wird beispielsweise in einem Schmelzbad mit einem Si-Gehalt von 8 bis 12 Gewichts-%, einem Fe-Gehalt von 1 bis 4 Gewichts-%, Rest Aluminium erzeugt.In the following, aluminum-based coatings are understood to be metallic coatings in which aluminum is the main component (in percent by mass). Examples of possible aluminum-based coatings are aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements such as magnesium, transition metals such as manganese, titanium and rare earths. A coating of the steel sheet according to the invention is produced, for example, in a molten bath with an Si content of 8 to 12% by weight, an Fe content of 1 to 4% by weight, the remainder being aluminum.

Durch die Ausbildung einer definierten Aluminiumoxid und/oder -hydroxid enthaltenden Deckschicht auf der aluminiumbasierten Beschichtung des Stahlbleches oder des Stahlbandes, können die vorgenannten negativen Aspekte von aluminiumbasierten Beschichtungen deutlich reduziert oder sogar ganz verhindert werden.Through the formation of a defined cover layer containing aluminum oxide and / or hydroxide on the aluminum-based coating of the steel sheet or the steel strip, the aforementioned negative aspects of aluminum-based coatings can be significantly reduced or even completely prevented.

Die Aluminiumoxid und/oder -hydroxid enthaltenen Deckschichten wirken auf dem durch Pressformhärten umgeformten Bauteil auf Grund ihrer netzartigen Struktur als ideale Haftvermittler für eine anschließende Lackierung, insbesondere der kathodischen Tauchlackierung (KTL). Ein langwieriges Durchlegieren der aluminiumbasierten Beschichtung im Ofen mit Eisen ist damit nicht mehr erforderlich, so dass sich die Durchlaufzeiten im Ofen zum Aufheizen des Stahlblechs auf Umformtemperatur drastisch verkürzen lassen. Während bislang beispielsweise bei Blechdicken von 1,5 mm Glühzeiten im Rollenherdofen von mindestens 4 Minuten bei 950 °C Ofentemperatur für das Durchlegieren der Beschichtung mit Eisen und die Ausbildung einer lackierfähigen Oberflächentopografie erforderlich sind, werden beim erfindungsgemäßen Verfahren bei einer Blechdicke von 1,5 mm Glühzeiten von nur noch 2 - 3 Minuten benötigt, die Glühzeit wird somit signifikant reduziert. Die maximal möglichen Ofenzeiten ändern sich durch die Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht nicht. Somit wird das Prozessfenster der Erwärmung hin zu kürzeren Ofenzeiten stark erweitert.The top layers containing aluminum oxide and / or hydroxide act on the component formed by compression molding due to their network-like structure as ideal adhesion promoters for subsequent painting, in particular cathodic dip painting (KTL). A lengthy alloying of the aluminum-based coating with iron in the furnace is no longer necessary, so that the throughput times in the furnace for heating the sheet steel to the forming temperature can be drastically reduced. While so far, for example, annealing times in a roller hearth furnace of at least 4 minutes at a furnace temperature of 950 ° C have been required for the alloying of the coating with iron and the formation of a paintable surface topography for sheet metal thicknesses of 1.5 mm Glowing times of only 2 - 3 minutes are required, which significantly reduces the glow time. The maximum possible furnace times do not change due to the top layer containing aluminum oxide and / or hydroxide. The heating process window is thus greatly expanded towards shorter furnace times.

Für dickere Bleche verlängert sich die Ofenzeit bedingt durch die geringere Aufheizgeschwindigkeit des Stahlwerkstoffes entsprechend. Die typischen Ofentemperaturen zwischen 900 und 950 °C sollten auch hier eingehalten werden. Für hohe Taktzeiten sind Ofentemperaturen zwischen 930 und 950 °C vorteilhaft.For thicker sheets, the furnace time is extended accordingly due to the lower heating rate of the steel material. The typical oven temperatures between 900 and 950 ° C should also be adhered to here. For high cycle times, furnace temperatures between 930 and 950 ° C are advantageous.

Zudem wirkt sich die erfindungsgemäße Deckschicht aus Aluminiumoxiden und/oder - hydroxiden vorteilhaft auf die Widerstandpunktschweißbarkeit bei kurzen Ofenzeiten aus, da der Übergangswiderstand erhöht wird und so eine gute Widerstandserwärmung erreicht wird. Für eine gute Schweißbarkeit nach kurzen Erwärmzeiten hat sich daher eine Dicke dieser Deckschicht von mindestens 0,05 µm als positiv herausgestellt.In addition, the cover layer according to the invention made of aluminum oxides and / or hydroxides has an advantageous effect on resistance spot weldability in the case of short furnace times, since the contact resistance is increased and good resistance heating is thus achieved. For good weldability after short heating times, a thickness of this cover layer of at least 0.05 μm has therefore proven to be positive.

Bei Versuchen wurde festgestellt, dass die Lackhaftung besser bzw. die Unterwanderung infolge eines korrosiven Angriffs umso geringer wird, je dicker die Aluminiumoxid und/oder -hydroxid enthaltende Deckschicht ist. Andererseits ist bei zu großer Dicke dieser Deckschicht der Übergangswiderstand beim Widerstandspunktschweißen zu hoch, wodurch sich die Schweißbarkeit wiederum verschlechtern würde. Daher sollte eine maximale Dicke der Deckschicht von 5 µm nicht überschritten werden.Tests have shown that the paint adhesion is better or the infiltration under corrosion due to a corrosive attack is less, the thicker the top layer containing aluminum oxide and / or hydroxide. On the other hand is at large thickness of this cover layer, the contact resistance in resistance spot welding is too high, which in turn would worsen the weldability. Therefore, a maximum thickness of the top layer of 5 µm should not be exceeded.

Als guter Kompromiss zwischen Schweißeignung und Lackhaftung wurde für die Deckschicht eine Dicke zwischen 0,10 und 3 µm gefunden.A thickness between 0.10 and 3 µm was found for the top layer as a good compromise between weldability and paint adhesion.

Für eine hervorragende Schweißeignung bei guter Lackhaftung sind Deckschichten mit einer mittleren Dicke zwischen 0,15 und 1 µm besonders vorteilhaft.For excellent weldability with good paint adhesion, top layers with an average thickness between 0.15 and 1 µm are particularly advantageous.

Erfindungsgemäß umfasst die Erfindung ebenfalls ein Verfahren zur Herstellung eines Bauteils, insbesondere nach Anspruch 1, aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech mit besonderer Eignung zum Lackieren und Widerstandspunktschweißen, wobei als Beschichtung ein aluminiumbasierter Überzug im Schmelztauchverfahren auf das Stahlblech aufgebracht wird, welches dadurch gekennzeichnet ist,

  • dass das Stahlblech oder Stahlband mit dem Überzug nach dem Schmelztauchprozess und vor dem Umformprozess einer Behandlung durch anodische Oxidation und/oder einer Plasmaoxidation und/oder einer Heißwasserbehandlung und/oder einer Behandlung in einer Atmosphäre, die mindestens variable Anteile von Sauerstoff, Wasserdampf unterzogen wird
  • dass die Heißwasserbehandlung oder die Behandlung unter Wasserdampf bei Temperaturen von wenigstens 90 °C, vorteilhaft wenigstens 95 °C, erfolgt
  • dass im Zuge der Behandlung auf der Oberfläche des Überzugs unter Ausbildung von Oxiden oder Hydroxiden eine Aluminiumoxid und/oder - hydroxid enthaltene Deckschicht mit einer Dicke von mindestens 0,05 µm bis höchstens 5µm ausgebildet wird
  • dass das Stahlblech oder Stahlband zumindest bereichsweise auf eine Temperatur oberhalb der Austenitisierungstemperatur erwärmt wird
  • dass das erwärmte Stahlblech oder Stahlband anschließend umgeformt und danach mit einer Geschwindigkeit abgekühlt wird, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt,
wobei die Erwärm- und Verweilzeit während des Pressformhärtens so kurz ausgewählt werden, dass die Dicke der Interdiffusionszone I der Formel, die in Anspruch 1 erwähnt ist, gehorcht.According to the invention, the invention also comprises a method for producing a component, in particular according to claim 1, from press-form-hardened steel sheet coated on the basis of aluminum with particular suitability for painting and resistance spot welding, an aluminum-based coating being applied to the steel sheet as a coating in the hot-dip process, which thereby is marked,
  • that the steel sheet or steel strip with the coating, after the hot-dip process and before the forming process, is subjected to a treatment by anodic oxidation and / or plasma oxidation and / or hot water treatment and / or treatment in an atmosphere that is subjected to at least variable proportions of oxygen and water vapor
  • that the hot water treatment or the treatment under steam at temperatures of at least 90.degree. C., advantageously at least 95.degree. C., takes place
  • that in the course of the treatment on the surface of the coating with the formation of oxides or hydroxides, an aluminum oxide and / or hydroxide-containing cover layer with a thickness of at least 0.05 µm to at most 5 µm is formed
  • that the steel sheet or steel strip is heated at least in some areas to a temperature above the austenitizing temperature
  • that the heated steel sheet or steel strip is then reshaped and then cooled at a rate that is at least partially above the critical cooling rate,
wherein the heating and dwell time during the compression molding hardening are selected to be so short that the thickness of the interdiffusion zone I of the formula shown in FIG Claim 1 is mentioned obeyed.

Im Zusammenhang mit der Erfindung ist der Begriff zumindest bereichsweise im Sinne von örtlichen Abschnitten des behandelten Stahlblechs oder Stahlbandes zu verstehen, so dass ein Stahlblech oder Stahlband mit gezielt örtlich voneinander abweichenden Gefügen und Eigenschaften entstehen.In connection with the invention, the term is to be understood at least in some areas in the sense of local sections of the treated steel sheet or steel strip, so that a steel sheet or steel strip is created with structures and properties that specifically differ from one another locally.

Bevorzugt wird die Deckschicht in einem kontinuierlichen Prozess auf die Oberfläche des Überzugs aufgebracht.The cover layer is preferably applied to the surface of the coating in a continuous process.

Vorteilhafter Weise findet die Behandlung in einer Atmosphäre statt, die auch Anteile basischer Komponenten, vorzugsweise Ammoniak (NH3), primäre, sekundäre oder tertiäre aliphatische Amine (NH2R, NHR2), NR3) enthält.The treatment advantageously takes place in an atmosphere which also contains proportions of basic components, preferably ammonia (NH 3 ), primary, secondary or tertiary aliphatic amines (NH 2 R, NHR 2 ), NR 3 ).

Verfahrenstechnisch kann eine dünne oxidische Deckschicht vorteilhaft durch anodische Oxidation (Dünnschichteloxieren), Plasmaoxidation und eine Hydroxid enthaltene Deckschicht mittels einer Heißwasserbehandlung der aluminiumbasierten Beschichtung bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C und/oder einer Behandlung in Wasserdampf bei Temperaturen von mindestens 90 °C, vorteilhaft mindestens 95 °C hergestellt werden.In terms of process technology, a thin oxidic top layer can advantageously be achieved by anodic oxidation (thin layer anodizing), plasma oxidation and a hydroxide-containing top layer by means of a hot water treatment of the aluminum-based coating at temperatures of at least 90 ° C, advantageously at least 95 ° C and / or a treatment in steam at temperatures of at least 90 ° C, advantageously at least 95 ° C can be produced.

Alternativ zur Anodisierung führt auch eine Gasphasenbehandlung der AS-Oberfläche zum gleichen Ziel. Hierzu wird die AS-Oberfläche mit einer Atmosphäre behandelt, die mindestens variable Anteile von Sauerstoff, Wasserdampf, optional auch Anteile basischer Komponenten, insbesondere Ammoniak, primären, sekundären oder tertiären aliphatischen Aminen enthalten kann. Diese Behandlung führt zu einem zeit- bzw. temperaturgesteuerten Wachstum einer Aluminiumoxid und/oder -hydroxid enthaltenen Deckschicht. Weiterhin lässt sich die Zusammensetzung der Gasphase zur Steuerung des Schichtdickenwachstums dieser Deckschicht nutzen. Die Behandlung wird bei einer Temperatur von 40 °C bis 100 °C, vorzugsweise 90 °C bis 100 °C durchgeführt. Niedrigere Behandlungstemperaturen verlängern die Behandlungsdauer, Behandlungstemperaturen über 100 °C erfordern ggf. Druckbehälter.As an alternative to anodizing, a gas phase treatment of the AS surface also leads to the same goal. For this purpose, the AS surface is treated with an atmosphere which can contain at least variable proportions of oxygen, water vapor, and optionally also proportions of basic components, in particular ammonia, primary, secondary or tertiary aliphatic amines. This treatment leads to a time- or temperature-controlled growth of a top layer containing aluminum oxide and / or hydroxide. Furthermore, the composition of the gas phase can be used to control the layer thickness growth of this cover layer. The treatment is carried out at a temperature of 40 ° C to 100 ° C, preferably 90 ° C to 100 ° C. Lower treatment temperatures lengthen the treatment time, treatment temperatures above 100 ° C may require pressure vessels.

Sowohl Anodisierung als auch Gasphasenbehandlung führen zu einer Aluminiumoxid und/oder -hydroxid enthaltenen Deckschicht, die an ihrer Oberfläche netz- oder nadelartige Strukturen aufweist. Die damit verbundene Oberflächenvergrößerung verbessert die Haftung einer nachfolgenden KT-Lackierung.
Da längere Erwärmungszeiten zur Ausbildung einer lackierfähigen Oberflächentopografie nicht mehr erforderlich sind, wird zudem der Korrosionsschutz der Beschichtung erhöht. Dies ist damit zu erklären, dass bei einer nur kurzen erforderlichen Glühzeit im Rollenherdofen weniger Diffusion von Aluminium und Eisen stattfindet. Dies führt unter anderem auch zu einer relativ gering ausgebildeten Interdiffusionszone. Beispielhaft ist diese für eine AS-Auflage des Ausgangsmaterials von 150 g/m2 (AS150) unterhalb von 7 µm.
Both anodization and gas phase treatment result in an aluminum oxide and / or hydroxide-containing cover layer, which has mesh-like or needle-like structures on its surface. The associated increase in surface area improves the adhesion of a subsequent KT coating.
Since longer heating times are no longer required to create a paintable surface topography, the corrosion protection of the coating is also increased. This can be explained by the fact that with only a short annealing time required in the roller hearth furnace, there is less diffusion of aluminum and iron. Among other things, this also leads to a relatively small interdiffusion zone. This is exemplary for an AS layer of the starting material of 150 g / m 2 (AS150) below 7 μm.

In Versuchen wurden je nach Ofenverweildauer bei Verwendung von Platinen mit einer AS-Auflage von 150 g/m2 auch Dicken der Diffusionszone von unterhalb 5 µm, und sogar unterhalb 4 µm am fertigen Bauteil erzielt.In tests, depending on the furnace dwell time, when using blanks with an AS layer of 150 g / m 2 , the diffusion zone thicknesses of less than 5 µm and even less than 4 µm were achieved on the finished component.

Bei Verwendung von Platinen mit einer AS-Auflage von 80 g/m2 (AS80) ist bekannt, dass sich hier die Ofenzeit auch bei nicht erfindungsgemäßem Überzug geringfügig reduzieren lässt und auch dadurch dünnere Diffusionsschichten von z.B. 5 µm resultieren. Versuche haben gezeigt, dass sich mit der erfindungsgemäßen Lösung die Ofenzeiten auch in diesem Fall noch weiter reduzieren lassen und hierdurch Dicken der Diffusionsschichten von unterhalb 5 µm am fertigen Bauteil erzielt werden können. In weiteren Versuchen konnten durch eine weitere Verkürzung der Erwärmzeit im Ofen auch noch geringere Dicken der Diffusionsschichten von unterhalb 3 µm, und sogar unterhalb von 2 µm am fertigen Bauteil erzielt werden.When using boards with an AS layer of 80 g / m 2 (AS80), it is known that the furnace time can be reduced slightly even if the coating is not according to the invention and that this also results in thinner diffusion layers of, for example, 5 μm. Tests have shown that with the solution according to the invention, the furnace times can be reduced even further in this case, and that the diffusion layers can be achieved with a thickness of less than 5 μm on the finished component. In further tests, by further shortening the heating time in the furnace, even thinner diffusion layers of less than 3 µm and even less than 2 µm were achieved on the finished component.

Bei Einsatz von Platinen mit einer Schichtauflage zwischen AS80 und AS150 und bei Schichtauflagen die kleiner als AS80 sind oder größer als AS150 ergeben sich nach dem Presshärten die Dicken der erfindungsgemäßen Interdiffusionschichten I für eine Schichtauflage des Ausgangsmaterials aus dem linearen Zusammenhang gemäß den folgenden Formeln für verschiedene blechdickenabhängige Erwärmzeiten:

Figure imgb0002
Figure imgb0003
Figure imgb0004
When using circuit boards with a layer between AS80 and AS150 and with layers smaller than AS80 or larger than AS150, the thicknesses of the interdiffusion layers I according to the invention for a layer of the starting material result from the linear relationship according to the following formulas for various sheet thickness-dependent Heating times:
Figure imgb0002
Figure imgb0003
Figure imgb0004

Die notwendige Erwärmzeit im Ofen richtet sich erfindungsgemäß nur nach der Blechdicke, da der erfindungsgemäße Überzug keine Haltezeit im Ofen zur Erzeugung einer lackierfähigen Oberfläche erfordert. Dickere Bleche erfordern für die Erwärmung daher längere Erwärmzeiten als dünnere Bleche.According to the invention, the necessary heating time in the oven depends only on the sheet metal thickness, since the coating according to the invention does not require any holding time in the oven to produce a paintable surface. Thicker sheets therefore require longer heating times for heating than thinner sheets.

Beispielhaft für Bleche mit 1,5 mm Dicke sind in Tabelle 1 kurze (220 Sekunden), sehr kurze (180 Sekunden) und äußerst kurze (150 Sekunden) Erwärmzeiten im Vergleich zu üblichen Erwärmzeiten (360 Sekunden) im Rollenherdofen aufgeführt.As an example for sheets with a thickness of 1.5 mm, table 1 lists short (220 seconds), very short (180 seconds) and extremely short (150 seconds) heating times compared to conventional heating times (360 seconds) in a roller hearth furnace.

Ein weiterer positiver Effekt der kurzen Erwärmzeit ist ein deutlich verringerter Porenanteil in der Legierungsschicht sowie in der Diffusionszone. Poren entstehen bei längeren Glühzeiten z.B. durch den Kirkendall-Effekt. Bei Versuchen wurde festgestellt, dass sich durch die Kurzzeitglühung der Gesamtporenanteil auf Werte von weniger als 6 % und sogar auf Werte von unter 4 % bzw. 2 % reduzieren lässt. Was sich z.B. vorteilhaft auf die Schweißeignung auswirken kann.Another positive effect of the short heating time is a significantly reduced proportion of pores in the alloy layer and in the diffusion zone. Pores arise with longer glow times, e.g. due to the Kirkendall effect. Tests have shown that the short-term annealing can reduce the total pore proportion to values of less than 6% and even to values of less than 4% or 2%. Which can, for example, have a beneficial effect on the suitability for welding.

Für das Pressformhärten von Platinen mit einer Aluminium-Silizium Beschichtung ist es nun nicht mehr erforderlich, lange Verweilzeiten des Stahlbleches im Ofen einzuhalten. Das Stahlblech muss nur noch auf die erforderliche Umformtemperatur aufgeheizt werden und kann bei Erreichen der Umformtemperatur sofort der Umformpresse zugeführt, umgeformt und abgeschreckt werden.In order to press mold hardening blanks with an aluminum-silicon coating, it is no longer necessary to keep the steel sheet in the furnace for long periods of time. The steel sheet only needs to be heated to the required forming temperature and, when the forming temperature is reached, it can be fed into the forming press immediately, formed and quenched.

Dadurch können auch vorteilhaft kürzere Rollenherdöfen als die bislang eingesetzten verwendet werden. Darüber hinaus ist die Verwendung von anderen Ofentypen beispielsweise zur induktiven oder konduktiven Schnellerwärmung möglich, ohne dass die erwärmten Platinen zur Ausbildung einer lackierfähigenAs a result, shorter roller hearth furnaces than those previously used can advantageously be used. In addition, the use of other types of ovens, for example for inductive or conductive rapid heating, is possible without having to use the heated plates to form a paintable one

Oberflächentopografie auf Temperatur gehalten werden müssen.Surface topography must be kept at temperature.

Weiter ist es nun möglich, Platinen nur partiell zu erwärmen und zu härten, wodurch auch in den Bereichen mit geringem Wärmeeinfluss eine gute Punktschweißbarkeit und KT-Lackhaftung gegeben ist.In addition, it is now possible to only partially heat and harden the blanks, which means that spot weldability and KT paint adhesion are good even in areas with little heat influence.

Nachfolgend wird anhand der dargestellten Figuren die Erfindung näher beschrieben.The invention is described in more detail below with reference to the figures shown.

Figur 1 zeigt schematisch den Schichtaufbau der Beschichtung an einem pressformgehärteten Bauteil mit einer Beschichtung aus AS und üblicher, zur Erzielung einer Durchlegierung des Überzugs mit Eisen, langer Erwärmungszeit nach dem Stand der Technik. Für das Bauteil wurde ein Stahlblech mit einem Überzug aus AS150, also mit einer Schichtauflage des Überzugs von 150 g/m2 verwendet. Auf dem martensitischen Stahlgrundwerkstoff ist eine Interdiffusionszone Fe(AI,Si) mit einer Dicke von 7 bis 14 µm ausgebildet, auf der sich eine Zone mit verschiedenen intermetallischen Phasen (z.B. Fe2SiAl2 und FeAl2) gebildet hat, wobei die einzelnen Phasen in dieser Zone zeilenförmig oder auch clusterförmig verteilt auftreten können. Durch die Oxidation im Ofen sowie beim Transfer in die Presse hat sich eine nur sehr dünne Aluminiumoxidschicht mit einer Dicke von weniger als 0,05 µm gebildet. Zu erkennen sind ebenfalls Poren, die sich in den verschiedenen Zonen gebildet haben. Figure 1 shows schematically the layer structure of the coating on a compression-molded component with a coating of AS and the usual long heating time according to the prior art in order to achieve a through-alloying of the coating with iron. A steel sheet with a coating of AS150, that is to say with a layer of 150 g / m 2 of the coating, was used for the component. An interdiffusion zone Fe (Al, Si) with a thickness of 7 to 14 µm is formed on the martensitic steel base material, on which a zone with different intermetallic phases ( e.g. Fe 2 SiAl 2 and FeAl 2 ) has formed, the individual phases in this zone can be distributed in rows or clusters. As a result of the oxidation in the furnace and during the transfer to the press, an only very thin aluminum oxide layer with a thickness of less than 0.05 µm has formed. You can also see pores that have formed in the various zones.

Figur 2 zeigt im Vergleich dazu den Schichtaufbau einer erfindungsgemäßen Beschichtung an einem pressformgehärteten Bauteil mit einer AS-Beschichtung auf der eine erfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht von mindestens 0,05 µm ausgebildet ist und die mit im Vergleich zum Stand der Technik verkürzten Erwärmzeiten erzeugt wurde. Im Übergangsbereich zwischen Stahlblech und Beschichtung ist eine Interdiffusionszone ausgebildet, in der Aluminium und Silizium in den Stahl hinein diffundiert sind Fe(AI, Si). Durch die nur noch sehr kurze notwendige Erwärmungszeit im Ofen auf Austenitisierungstemperatur, weist diese Schicht beispielsweise für AS150 eine Dicke von weniger als 7 µm im Mittel auf. Auf dieser Schicht bildet sich im Zuge der Erwärmung eine weitere Schicht mit verschiedenen intermetallischen Phasen (z.B. Fe2SiAl2 und FeAl2), wobei die einzelnen Phasen in dieser Zone zeilenförmig oder auch clusterförmig verteilt auftreten können und, auf der eine Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht in einer mittleren Dicke von mindestens 0,05 µm bis höchstens 5 µm angeordnet ist. Figure 2 In comparison, shows the layer structure of a coating according to the invention on a press-hardened component with an AS coating on which a cover layer according to the invention of at least 0.05 μm containing aluminum oxide and / or hydroxide is formed and which is produced with shorter heating times compared to the prior art has been. In the transition area between sheet steel and coating there is an interdiffusion zone in which aluminum and silicon have diffused into the steel Fe (Al, Si). Due to the very short heating time required in the furnace to the austenitizing temperature, this layer has an average thickness of less than 7 µm for AS150, for example. Another layer with different intermetallic phases (e.g. Fe 2 SiAl 2 and FeAl 2 ) is formed on this layer in the course of the heating process. The individual phases in this zone can appear in rows or in clusters and on which an aluminum oxide and / or -hydroxide-containing top layer in an average thickness of at least 0.05 µm to is arranged at most 5 µm.

Figur 3 zeigt grafisch die erfindungsgemäße Dicke I der Interdiffusionszone für eine Schichtauflage des Ausgangsmaterials zwischen 50 g/m2 und 180 g/m2 nach dem folgenden Zusammenhang: I μm < 1 35 × Auflage beidseitig g / m 2 + 19 7

Figure imgb0005
Figure 3 shows graphically the thickness I according to the invention of the interdiffusion zone for a layer of the starting material between 50 g / m 2 and 180 g / m 2 according to the following relationship: I. μm < 1 35 × Edition both sides G / m 2 + 19th 7th
Figure imgb0005

Tabelle 1 fasst Versuche zur Lackhaftung (automobiltypische Phosphatierungsbehandlung und kathodische Tauchlackierung; Prüfung nach 72 Stunden Kondenswasser-Konstantklima gemäß DIN EN ISO 6270-2:2005 CH) und Schweißeignung (Widerstandspunktschweißen) pressgehärteter AS150-Proben bei 940 °C Ofentemperatur und verschiedenen Erwärmzeiten zusammen. Die Blechdicke der Proben beträgt 1,5 mm. Zu erkennen ist, dass sich nur eine gute Lackhaftung und Schweißeignung bei Erwärmzeiten von 220 s und weniger ergibt, wenn eineerfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht vorhanden ist. Bei kurzen Erwärmzeiten von 220 s und weniger ergaben sich darüber hinaus Interdiffusionsschichten von weniger als 7 µm am pressgehärteten Bauteil. Bei den nicht erfindungsgemäßen langen Erwärmzeiten von 360 s nach dem Stand der Technik, ist hingegen auf Grund der Durchlegierung des Überzugs mit Eisen auch bei den Proben ohne die erfindungsgemäße Aluminiumoxid und/oder -hydroxid enthaltene Deckschicht eine gute Lackhaftung und Schweißeignung gegeben. Die Dicke der Interdiffusionsschichten liegt nach 360 s Erwärmzeit deutlich über 7 µm. Tabelle 1 Nr. Material Dicke Auflage Deckschicht Ofentemperatur Ofenverweilzeit Schweißbereich KT-Lackhaftung Dicke der Diffusionsschich Erfindungsgemäß 1 22MnB5 1,5mm AS150 nein 940 °C 150 s n.i.O. n.i.O. <7 µm nein 2 22MnB5 1,5 mm AS150 Abscheidezeit a 940 °C 150 s >1 kA (i.O.) i.O. <7 µm ja 3 22MnB5 1,5 mm AS150 Abscheidezeit b 940 °C 150 s >1 kA (i.O.) i.O. <7 µm ja 4 22MnB5 1,5 mm AS150 Abscheidezeit c 940 °C 150 s >1 kA (i.O.) i.O. <7 µm ja 5 22MnB5 1,5mm AS150 nein 940 °C 180 s n.i.O. n.i.O. <7 µm nein 6 22MnB5 1,5mm AS150 Abscheidezeit a 940 °C 180 s >1 kA (i.O.) i.O. <7 µm ja 7 22MnB5 1,5 mm AS150 Abscheidezeit b 940 °C 180 s >1 kA (i.O.) i.O. <7 µm ja 8 22MnB5 1,5mm AS150 Abscheidezeit c 940 °C 180 s >1 kA (i.O.) i.O. <7 µm ja 9 22MnB5 1,5mm AS150 nein 940 °C 220 s n.i.O. n.i.O. <7 µm nein 10 22MnB5 1,5mm AS150 Abscheidezeit a 940 °C 220 s >1 kA (i.O.) i.O. <7 µm ja 11 22MnB5 1,5 mm AS150 Abscheidezeit b 940 °C 220 s >1 kA (i.O.) i.O. <7 µm ja 12 22MnB5 1,5mm AS150 Abscheidezeit c 940 °C 220 s >1 kA (i.O.) i.O. <7 µm ia 13 22MnB5 1,5mm AS150 nein 940 °C 360 s >1 kA (i.O.) i.O. >7 µm nein 14 22MnB5 1,5 mm AS150 Abscheidezeit a 940 °C 360 s >1 kA (i.O.) i.O. >7 µm nein 15 22MnB5 1,5 mm AS150 Abscheidezeit b 940 °C 360 s >1 kA (i.O.) i.O. >7 µm nein 16 22MnB5 1,5mm AS150 Abscheidezeit c 940 °C 360 s >1 kA (i.O.) i.O. >7 µm nein Table 1 summarizes tests on paint adhesion (phosphating treatment typical for automobiles and cathodic dip painting; testing after 72 hours of constant condensation climate in accordance with DIN EN ISO 6270-2: 2005 CH) and suitability for welding (resistance spot welding) of press-hardened AS150 samples at 940 ° C oven temperature and various heating times. The sheet thickness of the samples is 1.5 mm. It can be seen that there is only good paint adhesion and weldability with heating times of 220 s and less if a cover layer according to the invention containing aluminum oxide and / or hydroxide is present. In addition, short heating times of 220 s and less resulted in interdiffusion layers of less than 7 µm on the press-hardened component. In the case of the long heating times of 360 s according to the prior art, which are not according to the invention, on the other hand, due to the alloying of the coating with iron, good paint adhesion and weldability is given even in the samples without the cover layer according to the invention containing aluminum oxide and / or hydroxide. The thickness of the interdiffusion layers is well over 7 µm after a heating time of 360 s. Table 1 No. material thickness Edition Top layer Oven temperature Oven dwell time Welding area KT paint adhesion Thickness of the diffusion layer According to the invention 1 22MnB5 1.5mm AS150 No 940 ° C 150 s not ok not ok <7 µm No 2 22MnB5 1.5 mm AS150 Deposition time a 940 ° C 150 s > 1 kA (OK) OK <7 µm Yes 3 22MnB5 1.5 mm AS150 Deposition time b 940 ° C 150 s > 1 kA (OK) OK <7 µm Yes 4th 22MnB5 1.5 mm AS150 Deposition time c 940 ° C 150 s > 1 kA (OK) OK <7 µm Yes 5 22MnB5 1.5mm AS150 No 940 ° C 180 s not ok not ok <7 µm No 6th 22MnB5 1.5mm AS150 Deposition time a 940 ° C 180 s > 1 kA (OK) OK <7 µm Yes 7th 22MnB5 1.5 mm AS150 Deposition time b 940 ° C 180 s > 1 kA (OK) OK <7 µm Yes 8th 22MnB5 1.5mm AS150 Deposition time c 940 ° C 180 s > 1 kA (OK) OK <7 µm Yes 9 22MnB5 1.5mm AS150 No 940 ° C 220 s not ok not ok <7 µm No 10 22MnB5 1.5mm AS150 Deposition time a 940 ° C 220 s > 1 kA (OK) OK <7 µm Yes 11 22MnB5 1.5 mm AS150 Deposition time b 940 ° C 220 s > 1 kA (OK) OK <7 µm Yes 12th 22MnB5 1.5mm AS150 Deposition time c 940 ° C 220 s > 1 kA (OK) OK <7 µm ia 13th 22MnB5 1.5mm AS150 No 940 ° C 360 s > 1 kA (OK) OK > 7 µm No 14th 22MnB5 1.5 mm AS150 Deposition time a 940 ° C 360 s > 1 kA (OK) OK > 7 µm No 15th 22MnB5 1.5 mm AS150 Deposition time b 940 ° C 360 s > 1 kA (OK) OK > 7 µm No 16 22MnB5 1.5mm AS150 Deposition time c 940 ° C 360 s > 1 kA (OK) OK > 7 µm No

Claims (11)

  1. Component made of press-form-hardened steel sheet coated on the basis of aluminium, the coating having an overcoat which is applied by a hot-dip process and contains aluminium and silicon, characterised in that the press-form-hardened component has an interdiffusion zone I in the transition region between the steel sheet and the overcoat, wherein, depending on the coating weight of the overcoat before heating and press hardening, which for the starting material is between 50 g/m2 and 180 g/m2, the thickness of the interdiffusion zone I obeys the following formula I μm < 1 35 × weight on both sides g / m 2 + 19 7
    Figure imgb0009
    and, on the interdiffusion zone I, a zone having different intermetallic phases with an average total thickness between 8 and 50 µm is formed, on which zone in turn a cover layer containing aluminium oxide and/or hydroxide is arranged in an average thickness of at least 0.05 µm to at most 5 µm.
  2. Component according to claim 1, characterised in that, depending on the current coating weight of the starting material, the thickness of the interdiffusion zone I is designed according to the following formula I μm < 1 35 × weight on both sides g / m 2 + 5 7 .
    Figure imgb0010
  3. Component according to claim 1, characterised in that, depending on the current coating weight of the starting material, the thickness of the interdiffusion zone I is designed according to the following formula I μm < 1 35 × weight on both sides g / m 2 2 7 .
    Figure imgb0011
  4. Component according to at least one of claims 1 to 3, characterised in that the average layer thickness of the cover layer is at least 0.10 µm and at most 3.0 µm.
  5. Component according to at least one of claims 1 to 3, characterised in that the average layer thickness of the cover layer is at least 0.15 µm and at most 1.0 µm.
  6. Component according to at least one of claims 1 to 5, characterised in that the overcoat has a total porosity of less than 6%, advantageously less than 4% and optimally less than 2%.
  7. Component according to at least one of claims 1 to 6, characterised in that the overcoat of the steel sheet was produced in a molten bath with an Si content from 8 to 12 wt.%, an Fe content from 1 to 4 wt.%, the remainder aluminium and unavoidable impurities.
  8. Method for producing a component, in particular according to claim 1, from press-form-hardened steel sheet or steel strip coated on the basis of aluminium, with particular suitability for painting and resistance spot welding, with an aluminium-based overcoat being applied to the steel sheet or steel strip as a coating by a hot-dip process, characterised in that
    - the steel sheet or steel strip having the overcoat is subjected, after the hot-dip process and before the shaping process, to treatment by anodic oxidation and/or plasma oxidation and/or hot water treatment and/or treatment in an atmosphere containing at least variable proportions of oxygen and water vapour,
    - the hot water treatment or the treatment under water vapour takes place at temperatures of at least 90°C, advantageously at least 95°C,
    - in the course of the treatment, a cover layer containing aluminium oxide and/or hydroxide and having a thickness of at least 0.05 µm to at most 5 µm is formed on the surface of the overcoat with the formation of oxides or hydroxides
    - the steel sheet or steel strip is heated at least in some regions to a temperature above the austenitisation temperature
    - the heated sheet steel or steel strip is then shaped and then cooled at a rate that is above the critical cooling rate at least in some regions,
    wherein the heating time and dwell time during the press form hardening are selected to be short enough that the thickness of the interdiffusion zone I obeys the formula mentioned in claim 1.
  9. Method according to claim 8, characterised in that the cover layer is applied to the surface of the overcoat in a continuous process.
  10. Method according to either claim 8 or claim 9, characterised in that the treatment takes place in an atmosphere which also contains proportions of basic components, preferably ammonia (NH3), primary, secondary or tertiary aliphatic amines (NH2R, NHR2).
  11. Use of a component according to claims 1 to 7 for the manufacture of motor vehicles.
EP17721056.4A 2016-04-18 2017-04-13 Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet Active EP3250727B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016107152.8A DE102016107152B4 (en) 2016-04-18 2016-04-18 Component of press-hardened aluminum-coated steel sheet and method for producing such a component and its use
PCT/EP2017/058918 WO2017182382A1 (en) 2016-04-18 2017-04-13 Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component

Publications (3)

Publication Number Publication Date
EP3250727A1 EP3250727A1 (en) 2017-12-06
EP3250727B1 true EP3250727B1 (en) 2021-07-07
EP3250727B2 EP3250727B2 (en) 2024-01-17

Family

ID=58668836

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17721056.4A Active EP3250727B2 (en) 2016-04-18 2017-04-13 Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet

Country Status (7)

Country Link
US (1) US11339479B2 (en)
EP (1) EP3250727B2 (en)
KR (1) KR102189424B1 (en)
CN (1) CN109477197B (en)
DE (1) DE102016107152B4 (en)
RU (1) RU2704339C1 (en)
WO (1) WO2017182382A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019171157A1 (en) * 2018-03-09 2019-09-12 Arcelormittal A manufacturing process of press hardened parts with high productivity
EP4151771B1 (en) * 2020-05-13 2024-08-07 Nippon Steel Corporation Steel sheet for hot stamping
JP7269526B2 (en) * 2020-05-13 2023-05-09 日本製鉄株式会社 Steel plate for hot stamping
JP7269524B2 (en) * 2020-05-13 2023-05-09 日本製鉄株式会社 hot stamping material
DE102020120580A1 (en) * 2020-08-04 2022-02-10 Muhr Und Bender Kg METHOD OF MAKING COATED STEEL STRIP, AND METHOD OF MAKING A HARDENED STEEL PRODUCT
DE102021118766A1 (en) * 2021-07-20 2023-01-26 Kamax Holding Gmbh & Co. Kg Component with integrated aluminum diffusion layer and aluminum oxide layer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836878C2 (en) 1978-08-23 1984-05-30 Siemens AG, 1000 Berlin und 8000 München Process for the anodic production of hydrophobic oxide layers on aluminum foils for electrolytic capacitors
US20110300407A1 (en) 2009-01-09 2011-12-08 Posco Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof
CA2933039A1 (en) 2013-12-25 2015-07-02 Nippon Steel & Sumitomo Metal Corporation Automobile part and method for manufacturing automobile part
EP2993248A1 (en) 2014-09-05 2016-03-09 ThyssenKrupp Steel Europe AG Flat steel product with an Al coating, method for producing the same, steel component and method for producing the same

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4546051A (en) * 1982-07-08 1985-10-08 Nisshin Steel Co., Ltd. Aluminum coated steel sheet and process for producing the same
EP0760399B1 (en) * 1995-02-24 2003-05-14 Nisshin Steel Co., Ltd. Hot-dip aluminized sheet, process for producing the sheet, and alloy layer control device
DE19853285C1 (en) * 1998-11-19 2000-06-15 Karlsruhe Forschzent Process for producing a protective layer on a martensitic steel and use of the steel provided with the protective layer
FR2787735B1 (en) 1998-12-24 2001-02-02 Lorraine Laminage PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED
FR2807447B1 (en) 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same
US8307680B2 (en) * 2006-10-30 2012-11-13 Arcelormittal France Coated steel strips, methods of making the same, methods of using the same, stamping blanks prepared from the same, stamped products prepared from the same, and articles of manufacture which contain such a stamped product
EP2017074A3 (en) * 2007-06-13 2009-07-01 TI Automotive (Heidelberg) GmbH Aluminium coated automobile pipe and method for producing the same by hot dip plating
WO2009090443A1 (en) * 2008-01-15 2009-07-23 Arcelormittal France Process for manufacturing stamped products, and stamped products prepared from the same
DE102010024664A1 (en) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Method for producing a component made of an air-hardenable steel and a component produced therewith
FR2947566B1 (en) 2009-07-03 2011-12-16 Snecma PROCESS FOR PRODUCING A MARTENSITIC STEEL WITH MIXED CURING
EP2312011A1 (en) * 2009-10-15 2011-04-20 Georg Fischer Automotive AG Method for metallic coating of a casting mould part and aluminized casting mould part produced according to the method
DE102009053260B4 (en) 2009-11-05 2011-09-01 Salzgitter Flachstahl Gmbh Process for coating steel strips and coated steel strip
JP5263258B2 (en) 2010-10-25 2013-08-14 新日鐵住金株式会社 Manufacturing method of high-strength automobile parts and high-strength parts
DE102011001140A1 (en) * 2011-03-08 2012-09-13 Thyssenkrupp Steel Europe Ag Flat steel product, method for producing a flat steel product and method for producing a component
WO2012137687A1 (en) * 2011-04-01 2012-10-11 新日本製鐵株式会社 Hot stamp-molded high-strength component having excellent corrosion resistance after coating, and method for manufacturing same
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
DE102012002079B4 (en) 2012-01-30 2015-05-13 Salzgitter Flachstahl Gmbh Process for producing a cold or hot rolled steel strip from a high strength multiphase steel
DE102013004905A1 (en) 2012-03-23 2013-09-26 Salzgitter Flachstahl Gmbh Zunderarmer tempered steel and process for producing a low-dispersion component of this steel
DE102012006941B4 (en) 2012-03-30 2013-10-17 Salzgitter Flachstahl Gmbh Method for producing a steel component by hot forming
DE102013005301A1 (en) 2013-03-21 2014-09-25 Salzgitter Flachstahl Gmbh Process for improving the weldability of high manganese steel strip and coated steel strip
DE102013009232A1 (en) 2013-05-28 2014-12-04 Salzgitter Flachstahl Gmbh Process for producing a component by hot forming a precursor of steel
JP5873465B2 (en) * 2013-08-14 2016-03-01 日新製鋼株式会社 Al-coated steel sheet excellent in total reflection characteristics and corrosion resistance and its manufacturing method
DE102013015032A1 (en) 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
WO2015150848A1 (en) * 2014-03-31 2015-10-08 Arcelormittal Investigación Y Desarrollo Sl Method of producing press-hardened and -coated steel parts at a high productivity rate
DE102014016614A1 (en) 2014-10-31 2016-05-04 Salzgitter Flachstahl Gmbh Process for producing a component by forming a steel circuit board
JP2016101911A (en) * 2014-11-18 2016-06-02 株式会社シマノ Bicycle chain
DE102016215709A1 (en) * 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Chain component and chain
US10481052B2 (en) 2018-03-28 2019-11-19 Ford Global Technologies, Llc Quality control process to assess the aluminized coating characteristics of hot stamped parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2836878C2 (en) 1978-08-23 1984-05-30 Siemens AG, 1000 Berlin und 8000 München Process for the anodic production of hydrophobic oxide layers on aluminum foils for electrolytic capacitors
US20110300407A1 (en) 2009-01-09 2011-12-08 Posco Aluminum-Plated Steel Sheet Having Superior Corrosion Resistance, Hot Press Formed Product Using the Same, and Method for Production Thereof
CA2933039A1 (en) 2013-12-25 2015-07-02 Nippon Steel & Sumitomo Metal Corporation Automobile part and method for manufacturing automobile part
WO2015098653A1 (en) 2013-12-25 2015-07-02 新日鐵住金株式会社 Vehicle component and vehicle component manufacturing method
EP2993248A1 (en) 2014-09-05 2016-03-09 ThyssenKrupp Steel Europe AG Flat steel product with an Al coating, method for producing the same, steel component and method for producing the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. BENGTSON: "Quantitative depth profile analysis by glow discharge", SPECTROCHIMICA ACTA PART B: ATOMIC SPECTROSCOPY, vol. 49, no. 4, 1994, XP026556883, DOI: 10.1016/0584-8547(94)80034-0
CHANG, Y.Y. TSAUR, C.C. ROCK, J.C.: "Microstructure studies of an aluminide coating on 9Cr-1Mo steel during high temperature oxidation", SURFACE AND COATINGS TECHNOLOGY, vol. 200, no. 22-23, 20 June 2006 (2006-06-20), NL , pages 6588 - 6593, XP005422353, ISSN: 0257-8972, DOI: 10.1016/j.surfcoat.2005.11.038
M WINDMANN ET AL: "Phase formation at the interface between a boron alloyed steel substrate and an Al-rich coating", SURFACE & COATINGS TECHNOLOGY, ELSEVIER B.V, 15 July 2013 (2013-07-15), pages 130 - 139, XP055498672, DOI: 10.1016/j.surfcoat.2013.03.045
RICHARDS, R. W.; JONES, R. D.; CLEMENTS, P. D.; CLARKE, H.: "Metallurgy of continuous hot dip aluminizing.", INTERNATIONAL MATERIALS REVIEWS, vol. 39, no. 5, 1 January 1994 (1994-01-01), US , pages 191 - 212, XP008156586, ISSN: 0950-6608, DOI: 10.1179/imr.1994.39.5.191
SPIESS LOTHAR, ET AL: "Materialcharakterisierungsverfahren Röntgenfluoreszenzanalyse (RFA) und Glimmentladungsspektroskopie (GDOES) im Alltag eines Werkstoffprüflabors", DGZFP-JAHRESTAGUNG 2010, 1 January 2010 (2010-01-01), pages 1 - 8, XP093042362

Also Published As

Publication number Publication date
EP3250727B2 (en) 2024-01-17
DE102016107152A1 (en) 2017-10-19
WO2017182382A1 (en) 2017-10-26
CN109477197B (en) 2021-10-26
KR20190003502A (en) 2019-01-09
RU2704339C1 (en) 2019-10-28
US20200308708A1 (en) 2020-10-01
DE102016107152B4 (en) 2017-11-09
US11339479B2 (en) 2022-05-24
EP3250727A1 (en) 2017-12-06
CN109477197A (en) 2019-03-15
KR102189424B1 (en) 2020-12-11

Similar Documents

Publication Publication Date Title
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
EP2655673B1 (en) Method for producing hardened structural elements
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
DE102017127987A1 (en) Coated steel substrate and method for producing a hardened component from a coated steel substrate
EP2733226A1 (en) Method for producing a product from a flexible rolled strip material
DE102010017354A9 (en) Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product
EP2513346B1 (en) Method for producing an easily deformable flat steel product
DE102010056265B3 (en) Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating
DE102010056264B4 (en) Method for producing hardened components
DE102015202642A1 (en) A method of making a product of rolled strip material
WO2016026885A1 (en) Surface-finished steel sheet and method for the production thereof
EP4038215B1 (en) Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom
EP3303647B1 (en) Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
EP3585917B1 (en) Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom
DE102020120580A1 (en) METHOD OF MAKING COATED STEEL STRIP, AND METHOD OF MAKING A HARDENED STEEL PRODUCT
EP4093896A1 (en) Steel component comprising an anti-corrosion layer containing manganese
EP4247992A1 (en) Steel material and method for production thereof

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SALZGITTER FLACHSTAHL GMBH

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRAUL, MATTHIAS

Inventor name: KOLL, THOMAS

Inventor name: FRITZSCHE, CHRISTIAN

Inventor name: HARTMANN, HAUCKE-FREDERIK

Inventor name: LUTHER, FRIEDRICH

Inventor name: BEIER, FRANK

Inventor name: LASS, JAN-FREDERIK

Inventor name: MUETZE, STEFAN

Inventor name: DEBEAUX, MARC

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190418

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1408678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017010846

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211108

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211007

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502017010846

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

26 Opposition filed

Opponent name: THYSSENKRUPP STEEL EUROPE AG

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220413

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1408678

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: TITEL

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20240117

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502017010846

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20170413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240425

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707