EP2655673B1 - Method for producing hardened structural elements - Google Patents

Method for producing hardened structural elements Download PDF

Info

Publication number
EP2655673B1
EP2655673B1 EP11808211.4A EP11808211A EP2655673B1 EP 2655673 B1 EP2655673 B1 EP 2655673B1 EP 11808211 A EP11808211 A EP 11808211A EP 2655673 B1 EP2655673 B1 EP 2655673B1
Authority
EP
European Patent Office
Prior art keywords
zinc
temperature
blank
steel
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11808211.4A
Other languages
German (de)
French (fr)
Other versions
EP2655673A2 (en
Inventor
Harald Schwinghammer
Thomas Kurz
Siegfried Kolnberger
Martin Rosner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/en
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/en
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/en
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/en
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2655673A2 publication Critical patent/EP2655673A2/en
Application granted granted Critical
Publication of EP2655673B1 publication Critical patent/EP2655673B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for producing hardened, corrosion-protected components with the features of claim 1.
  • press-hardened components made of sheet steel are used, particularly in automobiles.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area.
  • a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached.
  • This heated blank is then transferred to a molding tool and in this molding tool, in a one-step molding step, it is formed into the finished component and in the process through the cooled one
  • the mold is cooled at the same time at a rate that is above the critical hardening rate. The hardened component is thus produced.
  • the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.
  • This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed, and thereby hardened.
  • the direct method is a bit easier to implement here, but only allows shapes that can actually be created with a single forming step, i.e. relatively simple profile shapes.
  • Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion.
  • zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, as these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.
  • microcracks can also occur in the coating, which are also undesirable, but not nearly as pronounced.
  • the zinc-iron phase diagram shows that above 782 ° C there is a large area that contains liquid zinc as long as the iron content is less than 60%. However, this is also the temperature range in which the austenitized steel is hot worked. However, it is also pointed out that if the deformation takes place above 782 ° C, there is a great risk of stress corrosion due to liquid zinc, which penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, if the iron content is less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but an indirect forming process. This is to circumvent the problem described.
  • the steel material having a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot formed, wherein the coating has an oxide layer, which consists mainly of zinc oxide, before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated.
  • a special procedure is provided for this.
  • JP 2007 182608 A discloses a method for producing a hardened steel component with a coating of zinc, which is a direct method for hot forming.
  • the object of the invention is to create a method for the production of sheet steel components provided with a corrosion protection layer, in which the formation of cracks is reduced or eliminated and nevertheless sufficient protection against corrosion is achieved.
  • the indirect method takes a more favorable route in that the direct method is used in which a zinc or zinc alloy coated plate is heated and is reshaped and quench hardened after heating.
  • the composition of the steel alloy is set within the scope of the usual composition of a magnesium drill steel (22 MnB5) so that quench hardening is achieved through a delayed conversion of the austenite into martensite and thus the presence of austenite even in the lower Temperature is carried out below 780 ° C or lower, so that at the moment in which mechanical tension is applied to the steel, which in connection with a zinc melt and austenite would lead to "liquid metal embrittlement", just no or very few liquid zinc phases are present.
  • a magnesium drill steel 22 MnB5
  • a conventional boron-manganese steel for use as a press-hardening steel material is adjusted with regard to the conversion of the austenite into other phases in such a way that the conversion shifts into deeper ranges.
  • the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as transformation retarders in such steels.
  • quench hardening i.e. H. rapid cooling with a cooling rate above the critical hardening rate can be safely achieved even below 780 ° C.
  • work is carried out below the peritectic of the zinc-iron system, i.e. H. mechanical tension is only applied below the peritectic.
  • mechanical tension is only applied below the peritectic. This also means that at the moment when mechanical stress is applied, there are no longer any liquid zinc phases that can come into contact with the austenite.
  • a holding phase can be provided according to the invention in the temperature range of the peritectic, so that the solidification of the zinc coating is promoted and driven before it is subsequently reshaped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen gehärteter korrosionsgeschützter Bauteile mit den Merkmalen des Anspruchs 1.The invention relates to a method for producing hardened, corrosion-protected components with the features of claim 1.

Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen.It is known that so-called press-hardened components made of sheet steel are used, particularly in automobiles. These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area. By using these high-strength steel components, it is possible to reduce the material thickness compared to normal-strength steel and thus to achieve low body weights.

Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren.In press hardening, there are basically two different ways of producing such components. A distinction is made between the so-called direct and indirect method.

Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannten Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt.In the direct method, a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached. This heated blank is then transferred to a molding tool and in this molding tool, in a one-step molding step, it is formed into the finished component and in the process through the cooled one The mold is cooled at the same time at a rate that is above the critical hardening rate. The hardened component is thus produced.

Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess, das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstemperatur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten.In the case of the indirect process, the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.

Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet.This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed, and thereby hardened.

Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen.The direct method is a bit easier to implement here, but only allows shapes that can actually be created with a single forming step, i.e. relatively simple profile shapes.

Das indirekte Verfahren ist etwas aufwendiger, dafür aber in der Lage auch komplexere Formen zu realisieren.The indirect process is somewhat more complex, but it is also able to produce more complex shapes.

Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen.In addition to the need for press-hardened components, the need arose not to produce such components from uncoated sheet steel, but to provide such components with a corrosion protection layer.

Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendeter Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden.Only aluminum or aluminum alloys, which are used to a lesser extent, or the much more frequently required coatings based on zinc are considered as a corrosion protection layer in automobile construction. Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion. In addition, zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, as these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.

Bei beiden Verfahren konnten jedoch Nachteile aufgefunden werden, die auch im Stand der Technik diskutiert werden. Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu Mikro- (10 µm bis 100µm) oder sogar Makrorissen im Material, wobei die Mikrorisse in der Beschichtung erscheinen und die Makrorisse sogar durch den vollständigen Blechquerschnitt reichen. Derartige Bauteile mit Makrorissen sind für die weitere Verwendung ungeeignet.However, disadvantages could be found in both processes, which are also discussed in the prior art. In the direct process, i.e. hot forming of press-hardening steels with zinc coating, micro (10 µm to 100 µm) or even macro cracks occur in the material, whereby the micro cracks appear in the coating and the macro cracks even extend through the entire sheet metal cross-section. Such components with macro cracks are unsuitable for further use.

Beim indirekten Prozess, d.h. der Kaltumformung mit einer anschließenden Härtung und Restformung kann es ebenfalls zu Mikrorissen in der Beschichtung kommen, welche ebenfalls unerwünscht sind, aber bei weitem nicht so ausgeprägt.In the indirect process, i.e. cold forming with subsequent hardening and residual forming, microcracks can also occur in the coating, which are also undesirable, but not nearly as pronounced.

Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt.With the exception of one component in Asia, zinc-coated steels have so far not been used in the direct process, i.e. hot forming. Rather, steels with an aluminum-silicon coating are used here.

Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumformprozess einen aluminierten Bor-Mangan-Stahl ergibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbeschichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor GI mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält und ein sogenannter galvanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält.An overview is given in the publication "Corrosion resistance of different metallic coatings on press hardened steels for automotive ", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. This publication states that it results in an aluminized boron-manganese steel for the hot forming process, which is sold commercially under the name Usibor 1500P In addition, for the purpose of cathodic corrosion protection, steels precoated with zinc are sold for the hot forming process, namely the galvanized Usibor GI with a zinc coating that contains a small amount of aluminum and a so-called galvanealed coated Usibor GA, which contains a zinc layer with 10% iron.

Es wird darauf hingewiesen, dass das Zink-Eisen-Phasendiagramm zeigt, dass oberhalb von 782°C ein großer Bereich entsteht, der flüssiges Zink enthält, so lang der Eisengehalt geringer als 60 % ist. Dies ist jedoch auch der Temperaturbereich, in dem der austenitisierte Stahl warm umgeformt wird. Es wird aber auch darauf hingewiesen, dass, wenn die Umformung oberhalb von 782°C stattfindet, ein großes Risiko der Spannungskorrosion durch flüssiges Zink besteht, welches in die Korngrenzen des Basisstahls eindringt, welche zu Makrorissen im Basisstahl führt. Darüber hinaus ist bei Eisengehalten geringer als 30 % in der Beschichtung die Maximaltemperatur zum Umformen eines sicheren Produkts ohne Makrorisse niedriger als 782°C. Dies ist der Grund, warum hiermit kein direktes Umformverfahren betrieben wird, sondern dass indirekte Umformverfahren. Hiermit soll das geschilderte Problem umgangen werden.It should be noted that the zinc-iron phase diagram shows that above 782 ° C there is a large area that contains liquid zinc as long as the iron content is less than 60%. However, this is also the temperature range in which the austenitized steel is hot worked. However, it is also pointed out that if the deformation takes place above 782 ° C, there is a great risk of stress corrosion due to liquid zinc, which penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, if the iron content is less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but an indirect forming process. This is to circumvent the problem described.

Eine weitere Möglichkeit dieses Problem zu umgehen, soll darin liegen, galvannealed beschichteten Stahl zu verwenden, was daran liegt, dass der zu Beginn schon bestehende Eisengehalt von 10 % und die Abwesenheit einer Fe2Al5-Sperrschicht den kritischen Wert von 60 % Eisen in der Beschichtung beim Erhitzen schnell überschreitet, was die Anwesenheit von flüssigem Eisen während des Warmumformprozesses vermeidet.Another way to get around this problem is to use galvannealed coated steel, which is due to the fact that the iron content of 10% that already exists at the beginning and the absence of an Fe 2 Al 5 barrier layer, the critical value of 60% iron in of the coating when heated quickly exceeds, which avoids the presence of liquid iron during the hot forming process.

Aus der EP 1 439 240 B1 ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf einen Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen.From the EP 1 439 240 B1 a method for hot forming a coated steel product is known, the steel material having a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot formed, wherein the coating has an oxide layer, which consists mainly of zinc oxide, before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated. A special procedure is provided for this.

Aus der EP 1 642 991 B1 ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS-Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet. Auch JP 2007 182608 A offenbart ein Verfahren zum Herstellen eines gehärteten Stahlbauteils mit einer Beschichtung aus Zink, welches ein direktes Verfahren zum Warmumformen darstellt.From the EP 1 642 991 B1 a method for hot forming a steel is known in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a way that the cooling rate to the MS point corresponds to at least the critical cooling rate and that the average cooling rate of the molded component from the MS point to 200 ° C is in the range of 25 ° C / s to 150 ° C / s. Also JP 2007 182608 A discloses a method for producing a hardened steel component with a coating of zinc, which is a direct method for hot forming.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von mit einer Korrosionsschutzschicht versehenen Stahlblechbauteilen zu schaffen, bei dem die Rissbildung vermindert oder beseitigt wird und dennoch ein ausreichender Korrosionsschutz erzielt wird.The object of the invention is to create a method for the production of sheet steel components provided with a corrosion protection layer, in which the formation of cracks is reduced or eliminated and nevertheless sufficient protection against corrosion is achieved.

Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved with the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the subclaims.

Der vorbeschriebene Effekt der Rissbildung durch flüssiges Zink, welches den Stahl im Bereich der Korngrenzen penetriert, ist auch als sogenanntes "liquid metal embrittlement" bekannt.The above-described effect of crack formation by liquid zinc, which penetrates the steel in the area of the grain boundaries, is also known as so-called "liquid metal embrittlement".

Im Gegensatz zur im Stand der Technik eingeschlagenen Richtung wegen des "liquid metal embrittlements", das indirekte Verfahren auch bei einfachen Geometrien vorzusehen, geht die Erfindung einen günstigeren Weg indem das direkte Verfahren Anwendung findet, bei dem eine mit Zink oder einer Zinklegierung beschichtete Platine aufgeheizt wird und nach dem Aufheizen umgeformt und abschreckgehärtet wird.In contrast to the direction taken in the prior art because of the "liquid metal embrittlements", the indirect method is also provided for simple geometries, the invention takes a more favorable route in that the direct method is used in which a zinc or zinc alloy coated plate is heated and is reshaped and quench hardened after heating.

Wie erfindungsgemäß erkannt wurde darf möglichst keine Zinkschmelze mit Austenit während der Umformphase, also dem Eintrag von Spannung, in Berührung kommen. Erfindungsgemäß wird daher vorgesehen, die Umformung unter der peritektischen Temperatur des Systems Eisen-Zink (Schmelze, Ferrit, T-Phase) durchzuführen. Um hierbei eine Abschreckhärtung noch gewährleisten zu können wird die Zusammensetzung der Stahllegierung im Rahmen der üblichen Zusammensetzung eines Magnesium-Bohrstahles (22 MnB5) so eingestellt, dass eine Abschreckhärtung durch eine verzögerte Umwandlung des Austenits in Martensit und damit das Vorhandensein von Austenit auch bei der tieferen Temperatur unterhalb von 780°C oder tiefer durchgeführt wird, so dass in dem Moment in dem mechanische Spannung auf den Stahl eingebracht wird, welche in Verbindung mit einer Zinkschmelze und Austenit zum "liquid metal embrittlement" führen würde, eben keine oder nur noch sehr wenige flüssige Zinkphasen vorhanden sind. Somit gelingt es mittels eines entsprechend der Legierungselemente eingestellten Bor-Manganstahls eine ausreichende Abschreckhärtung zu erzielen ohne eine übermäßige oder schädigende Rissbildung zu provozieren.As was recognized according to the invention, as far as possible no zinc melt should come into contact with austenite during the forming phase, that is to say when stress is introduced. According to the invention, it is therefore provided that the deformation is carried out below the peritectic temperature of the iron-zinc system (melt, ferrite, T phase). In order to still be able to guarantee quench hardening, the composition of the steel alloy is set within the scope of the usual composition of a magnesium drill steel (22 MnB5) so that quench hardening is achieved through a delayed conversion of the austenite into martensite and thus the presence of austenite even in the lower Temperature is carried out below 780 ° C or lower, so that at the moment in which mechanical tension is applied to the steel, which in connection with a zinc melt and austenite would lead to "liquid metal embrittlement", just no or very few liquid zinc phases are present. Thus it succeeds by means of a corresponding the alloying elements adjusted boron-manganese steel to achieve sufficient quench hardening without provoking excessive or damaging crack formation.

Die Erfindung wird anhand einer Zeichnung erläutert, es zeigen dabei:

Figur 1:
eine Tabelle zeigend die Ofenverweildauer von mit einer 140 g/m2 betragenden Zinkschicht beschichteten Stahlplatinen mit unterschiedlichen Transferzeiten ins Umformwerkzeug und damit verbundenen repräsentativen Risstiefen;
Figur 2:
die Zeit-Temperaturkurve bei der Abkühlung zwischen Ofen und Umformung;
Figur 3:
stark vergrößerte Bilder zeigend die Proben mit den unterschiedlichen Transferzeiten;
Figur 4:
Querschnittschliffdarstellungen der Proben nach Figur 3;
Figur 5:
das Zink-Eisen-Diagramm.
The invention is explained with reference to a drawing, it shows:
Figure 1:
a table showing the furnace dwell time of steel blanks coated with a zinc layer of 140 g / m 2 with different transfer times into the forming tool and associated representative crack depths;
Figure 2:
the time-temperature curve during cooling between furnace and forming;
Figure 3:
greatly enlarged images showing the samples with the different transfer times;
Figure 4:
Cross-sectional micrographs of the samples Figure 3 ;
Figure 5:
the zinc-iron diagram.

Erfindungsgemäß wird ein üblicher Bor-Manganstahl zur Verwendung als presshärtender Stahlwerkstoff bezüglich der Umwandlung des Austenits in andere Phasen so eingestellt, dass sich die Umwandlung in tiefere Bereiche verschiebt.According to the invention, a conventional boron-manganese steel for use as a press-hardening steel material is adjusted with regard to the conversion of the austenite into other phases in such a way that the conversion shifts into deeper ranges.

Für die Erfindung sind somit Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] [%] B N [%] 0,22 0,19 1,22 0,0066 0,001 0,053 0,26 0,031 0,0025 0,0042 Rest Eisen und erschmelzungsbedingte VerunreinigungenSteels of the general alloy composition are therefore suitable for the invention (all data in% by mass): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] [%] B N [%] 0.22 0.19 1.22 0.0066 0.001 0.053 0.26 0.031 0.0025 0.0042 The remainder is iron and impurities from the melting process

Wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden.The alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as transformation retarders in such steels.

Für die Erfindung sind somit Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,6 Mangan (Mn) 0,8-3,0 Aluminium (Al) 0,01 - 0,07 Silizium (Si) 0,01-0,5 Chrom (Cr) 0,02-0,6 Titan (Ti) 0,01-0,05 Stickstoff (N) 0,003-0,1 Bor (B) 0,0005 - 0.06 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Rest Eisen und erschmelzungsbedingte VerunreinigungenSteels of the general alloy composition are therefore suitable for the invention (all data in% by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.05 Nitrogen (N) 0.003-0.1 Boron (B) 0.0005-0.06 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1 The remainder is iron and impurities from the melting process

Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,30 Mangan (Mn) 1,00-3,00 Aluminium (Al) 0,03-0,06 Silizium (Si) 0,15-0,20 Chrom (Cr) 0,2-0,3 Titan (Ti) 0,03-0,04 Stickstoff (N) 0,004-0,006 Bor (B) 0,001-0,06 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Rest Eisen und erschmelzungsbedingte VerunreinigungenSteel arrangements as follows have proven particularly suitable (all data in% by mass): Carbon (C) 0.08-0.30 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.15-0.20 Chromium (Cr) 0.2-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) 0.004-0.006 Boron (B) 0.001-0.06 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1 The remainder is iron and impurities from the melting process

Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. eine rasche Abkühlung mit einer über der kritischen Härtegeschwindigkeit liegenden Abkühlgeschwindigkeit auch noch unter 780°C sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums mechanische Spannung aufgebracht wird. Dies bedeutet ferner, dass in dem Moment in dem mechanische Spannung aufgebracht wird, keine flüssigen Zinkphasen mehr vorhanden sind welche mit dem Austenit in Kontakt kommen können.By adjusting the alloying elements acting as conversion retarders, quench hardening, i.e. H. rapid cooling with a cooling rate above the critical hardening rate can be safely achieved even below 780 ° C. This means that in this case work is carried out below the peritectic of the zinc-iron system, i.e. H. mechanical tension is only applied below the peritectic. This also means that at the moment when mechanical stress is applied, there are no longer any liquid zinc phases that can come into contact with the austenite.

In Figur 1 erkennt man, dass diese unterschiedliche Ausgangstemperatur beim Härten durch unterschiedliche Transferzeiten aus dem Ofen in die Umformpresse erzielt wurden. Bei einer Transferzeit von 3 Sek. erkennt man stark ausgebildete tiefgehende Risse mit einer repräsentativen Risstiefe von 200 µm. Über Transferzeiten von 5 Sek. und 7 Sek. erkennt man, dass sowohl die Rissstärke als auch die Risstiefe sichtbar abnehmen, während bei einer Transferzeit von 9 Sek. soweit vorangeschritten ist, dass die Tief und Breite der Risse deutlich gesunken ist. Dies war in dieser Form so nicht zu erwarten, da der Fachmann trotz des bekannten Phänomens des liquid metal embrittlements davon ausgegangen wäre, dass eine sehr weiche duktile und viele flüssige Phasen entfaltende mehr oder weniger flüssige metallische Deckschicht dem Umformen besser folgen kann als eine bereits feste metallische Schicht.In Figure 1 one can see that these different starting temperatures during hardening were achieved through different transfer times from the furnace to the forming press. With a transfer time of 3 seconds, one can see strongly developed deep cracks with a representative crack depth of 200 µm. Transfer times of 5 seconds and 7 seconds show that both the crack strength and the crack depth are visibly decreasing, while with a transfer time of 9 seconds the depth and width of the cracks have clearly decreased. This was not to be expected in this form, since, despite the known phenomenon of the liquid metal embrittlement, the person skilled in the art would have assumed that a very soft, ductile and more or less liquid metallic cover layer with many liquid phases can follow the forming process better than an already solid one metallic layer.

Zudem kann nach dem Aufheizen der Platine man erfindungsgemäß im Temperaturbereich des Peritektikums eine Haltephase vorsehen, so dass die Erstarrung der Zinkbeschichtung gefördert und vorangetrieben wird bevor anschließend umgeformt wird.In addition, after the blank has been heated up, a holding phase can be provided according to the invention in the temperature range of the peritectic, so that the solidification of the zinc coating is promoted and driven before it is subsequently reshaped.

Mit der Erfindung gelingt es somit, zuverlässig ein kostengünstiges Warmumformverfahren für mit Zink oder Zinklegierungen beschichteter Stahlbleche zu erreichen bei dem einerseits eine Abschreckhärtung herbeigeführt wird und andererseits Mikro- und Makrorissbildung, die zu Bauteilschäden führt, vermindert oder vermieden wird.With the invention it is thus possible to reliably achieve a cost-effective hot forming process for steel sheets coated with zinc or zinc alloys, in which, on the one hand, quench hardening is brought about and, on the other hand, micro and macro cracking, which leads to component damage, is reduced or avoided.

Claims (3)

  1. Method for producing a hardened steel component with a coating of zinc or a zinc alloy, wherein a blank is stamped from a sheet coated with the zinc or zinc alloy, the stamped blank is heated to a temperature ≥Ac3 and kept at this temperature for a predefined time where appropriate, in order to allow austenite formation, after which the heated blank is moved into a forming tool, formed in said forming tool and cooled in said forming tool at a speed that lies above the critical hardening speed, and thereby hardened,
    wherein
    the steel material is adjusted in a conversion-delayed manner, such that with a forming temperature which lies within the range of 600°C to 800°C, in particular 730°C to 782°C, and is below the peritectic temperature of the iron/zinc graph, quench-hardening takes place through conversion of the austenite into martensite, wherein a steel material having the following analysis is used (all figures in % by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminium (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.05 Nitrogen (N) 0.003-0.1 Boron (B) 0.0005-0.06 Phosphor (P) <0.01 Sulphur (S) <0.01 Molybdenum (Mo) < 1
    Residual iron and smelting-related impurities.
  2. Method according to Claim 1, characterized in that a steel material with the following analysis is used (all figures in % by mass): Carbon (C) 0.08-0.30 Manganese (Mn) 1.00-3.00 Aluminium (Al) 0.03-0.06 Silicon (Si) 0.15-0.20 Chromium (Cr) 0.2-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) 0.004-0.006 Boron (B) 0.001-0.06 Phosphor (P) <0.01 Sulphur (S) <0.01 Molybdenum (Mo) <1
    Residual iron and smelting-related impurities.
  3. Method according to one of the preceding claims, characterized in that the blank is heated in a furnace to a temperature >Ac3 and kept at this temperature for a predefined time, after which the blank is left to cool to a temperature between 600°C and 800°C, in particular 730°C and 782°C, and kept at this temperature in order to achieve hardening of the zinc layer and moved into the forming tool after a predefined time, where it is formed.
EP11808211.4A 2010-12-24 2011-12-22 Method for producing hardened structural elements Active EP2655673B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102010056265.3A DE102010056265C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102010056264.5A DE102010056264C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102011053939.5A DE102011053939B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components
DE102011053941.7A DE102011053941B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components with regions of different hardness and / or ductility
PCT/EP2011/073887 WO2012085251A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Publications (2)

Publication Number Publication Date
EP2655673A2 EP2655673A2 (en) 2013-10-30
EP2655673B1 true EP2655673B1 (en) 2021-02-03

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
EP11811025.3A Active EP2655675B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11808211.4A Active EP2655673B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11811026.1A Active EP2656187B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11808645.3A Active EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11811025.3A Active EP2655675B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP11811026.1A Active EP2656187B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11808645.3A Active EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility

Country Status (8)

Country Link
US (2) US20140020795A1 (en)
EP (5) EP2655675B1 (en)
JP (2) JP2014507556A (en)
KR (3) KR20130132566A (en)
CN (5) CN103547687A (en)
ES (5) ES2848159T3 (en)
HU (5) HUE054867T2 (en)
WO (5) WO2012085256A2 (en)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (en) * 2012-10-31 2015-11-10 アイシン高丘株式会社 Die quench apparatus and die quench method for aluminum alloy material
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
WO2015029653A1 (en) * 2013-08-29 2015-03-05 Jfeスチール株式会社 Hot-pressed member manufacturing method and hot-pressed member
DE102013015032A1 (en) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
CA2924812A1 (en) * 2013-09-19 2015-03-26 Tata Steel Ijmuiden B.V. Steel for hot forming
JP6167814B2 (en) * 2013-09-30 2017-07-26 マツダ株式会社 Automatic transmission
DE102014000969A1 (en) 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motor vehicle component
DE102014101159B4 (en) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Process for the surface treatment of workpieces
CN106715745A (en) * 2014-03-28 2017-05-24 塔塔钢铁艾默伊登有限责任公司 Method for hot forming a coated steel blank
JP6260411B2 (en) * 2014-03-31 2018-01-17 新日鐵住金株式会社 Slow cooling steel
JP5825413B1 (en) * 2014-04-23 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed product
MX2017003759A (en) * 2014-09-22 2017-06-30 Arcelormittal Reinforcement element for a vehicle, method for producing the same and door assembly.
JP6152836B2 (en) * 2014-09-25 2017-06-28 Jfeスチール株式会社 Manufacturing method of hot press-formed product
JP6056826B2 (en) * 2014-09-30 2017-01-11 Jfeスチール株式会社 Manufacturing method of hot press-formed product
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (en) * 2014-12-12 2017-08-09 Jfeスチール株式会社 Manufacturing method of hot press-formed product
CN105772584B (en) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 Improve the thermoforming process and molding machine of forming parts performance
CN104668326B (en) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
EP3067129A1 (en) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Press systems and methods
EP3266531B1 (en) 2015-03-09 2019-02-27 Autotech Engineering, A.I.E. Press systems and methods
JP7141828B2 (en) * 2015-05-29 2022-09-26 フォエスタルピネ スタール ゲーエムベーハー Uniform non-contact temperature control method and apparatus for non-endless surface to be temperature controlled
MX2017014559A (en) 2015-06-03 2018-03-15 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components.
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017484A1 (en) 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
DE102016114658B4 (en) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Process for forming and hardening steel materials
CN106334875A (en) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 Steel welding component with aluminum or aluminum alloy coating and manufacturing method thereof
CN106424280B (en) * 2016-11-30 2017-09-29 华中科技大学 A kind of high-strength steel hot forming differentiation mechanical property distribution flexible control method
DE102017115755A1 (en) 2017-07-13 2019-01-17 Schwartz Gmbh Method and device for heat treatment of a metallic component
EP3437750A1 (en) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Press method for coated steels
DE102017131253A1 (en) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
DE102017131247A1 (en) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
CN112513310A (en) 2018-05-24 2021-03-16 通用汽车环球科技运作有限责任公司 Method for improving strength and ductility of press-hardened steel
CN112534078A (en) 2018-06-19 2021-03-19 通用汽车环球科技运作有限责任公司 Low density press hardened steel with enhanced mechanical properties
CN109433960A (en) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system
EP3712292B1 (en) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CA3150898C (en) * 2019-10-14 2022-09-27 Jorge CASTILLA MORENO Press systems and methods
EP3872230A1 (en) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
KR20220151700A (en) * 2020-04-20 2022-11-15 닛폰세이테츠 가부시키가이샤 Manufacturing method of hot press molded article and hot press molded article
CN111822571A (en) * 2020-07-12 2020-10-27 首钢集团有限公司 Hot stamping method capable of customizing organization performance subareas of parts
KR102553226B1 (en) * 2020-12-21 2023-07-07 주식회사 포스코 Electro-magnetic Test Device
CN113182374A (en) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 Thermal forming method of high-strength structural member
DE102021122383A1 (en) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Process for the production of a hot-formed and press-hardened sheet steel component
EP4382630A1 (en) 2021-10-29 2024-06-12 JFE Steel Corporation Hot-pressed member
WO2023074114A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (en) * 1991-11-04 1994-03-04 Isoform DEVICE FOR STAMPING SHEET MATERIALS, PARTICULARLY SHEET SHEET.
DE19838332A1 (en) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Quality monitoring of galvannealed coating of steel strip involves determining the visual appearance of the coating as a variable relevant to its quality and using it for controlling the annealing furnace
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
KR100646619B1 (en) 2001-10-23 2006-11-23 수미도모 메탈 인더스트리즈, 리미티드 Method for press working, plated steel product for use therein and method for producing the steel product
JP4085876B2 (en) * 2003-04-23 2008-05-14 住友金属工業株式会社 Hot press-formed product and method for producing the same
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
AT412403B (en) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
CN1829817B (en) * 2003-07-29 2015-01-07 沃斯特阿尔派因钢铁有限责任公司 Method for producing a hardened steel part
WO2005031021A1 (en) * 2003-09-29 2005-04-07 Jfe Steel Corporation Steel parts for machine structure, material therefor, and method for manufacture thereof
JP2005177805A (en) * 2003-12-19 2005-07-07 Nippon Steel Corp Hot press forming method
JP4131715B2 (en) * 2004-05-18 2008-08-13 トピー工業株式会社 Method and apparatus for partial heat treatment of heat treatment member
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP4329639B2 (en) * 2004-07-23 2009-09-09 住友金属工業株式会社 Steel plate for heat treatment with excellent liquid metal brittleness resistance
DE102005003551B4 (en) 2005-01-26 2015-01-22 Volkswagen Ag Method for hot forming and hardening a steel sheet
JP2007016296A (en) * 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
JP4733522B2 (en) * 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4681492B2 (en) 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
JP5092523B2 (en) * 2007-04-20 2012-12-05 新日本製鐵株式会社 Manufacturing method of high-strength parts and high-strength parts
KR20100019500A (en) * 2007-06-15 2010-02-18 수미도모 메탈 인더스트리즈, 리미티드 Process for manufacturing shaped article
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP4890416B2 (en) 2007-10-18 2012-03-07 アイシン高丘株式会社 Press working apparatus and press working method in die quench method
MX2011006528A (en) * 2008-12-19 2011-07-13 Tata Steel Ijmuiden Bv Method for manufacturing a coated part using hot forming techniques.
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009015013B4 (en) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Process for producing partially hardened steel components
DE102009017326A1 (en) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Process for producing press-hardened components
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
KR101171450B1 (en) * 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
JP5740099B2 (en) * 2010-04-23 2015-06-24 東プレ株式会社 Manufacturing method of hot press products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HUE053150T2 (en) 2021-06-28
WO2012085251A2 (en) 2012-06-28
WO2012085248A2 (en) 2012-06-28
EP2655673A2 (en) 2013-10-30
WO2012085256A2 (en) 2012-06-28
HUE052381T2 (en) 2021-04-28
EP2655672A2 (en) 2013-10-30
CN103384726B (en) 2016-11-23
WO2012085256A3 (en) 2012-08-16
EP2655675B1 (en) 2021-03-10
WO2012085248A3 (en) 2012-08-16
CN103384726A (en) 2013-11-06
ES2829950T8 (en) 2021-06-10
WO2012085247A2 (en) 2012-06-28
HUE055049T2 (en) 2021-10-28
ES2858225T3 (en) 2021-09-29
WO2012085247A3 (en) 2012-08-16
WO2012085253A2 (en) 2012-06-28
JP2014505791A (en) 2014-03-06
KR20130126962A (en) 2013-11-21
KR20130132566A (en) 2013-12-04
EP2656187A2 (en) 2013-10-30
ES2858225T8 (en) 2022-01-05
EP2656187B1 (en) 2020-09-09
CN103392014A (en) 2013-11-13
CN103547686B (en) 2016-11-23
CN103415630B (en) 2015-09-23
ES2829950T3 (en) 2021-06-02
CN103547686A (en) 2014-01-29
CN103392014B (en) 2016-01-27
ES2851176T3 (en) 2021-09-03
CN103415630A (en) 2013-11-27
KR101582922B1 (en) 2016-01-07
EP2655674B1 (en) 2021-02-03
HUE054867T2 (en) 2021-10-28
JP2014507556A (en) 2014-03-27
JP5727037B2 (en) 2015-06-03
ES2853207T3 (en) 2021-09-15
WO2012085253A3 (en) 2012-08-16
US20140020795A1 (en) 2014-01-23
EP2655674A2 (en) 2013-10-30
EP2655675A2 (en) 2013-10-30
ES2848159T3 (en) 2021-08-05
HUE054465T2 (en) 2021-09-28
EP2655672B1 (en) 2020-12-16
US20140027026A1 (en) 2014-01-30
KR20130132565A (en) 2013-12-04
US10640838B2 (en) 2020-05-05
CN103547687A (en) 2014-01-29
WO2012085251A3 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
EP2655673B1 (en) Method for producing hardened structural elements
DE102011053939B4 (en) Method for producing hardened components
EP2449138B1 (en) Process of manufacturing a part from an air hardenable steel and the part manufactured by the process
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
EP2177641B1 (en) Steel plate having a galvanized corrosion protection layer
DE102010056264B4 (en) Method for producing hardened components
DE102013100682B3 (en) A method of producing cured components and a structural component made by the method
EP2848709A1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
DE102011053941B4 (en) Method for producing hardened components with regions of different hardness and / or ductility
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
EP1939308A1 (en) Method for manufacturing a component through hot press hardening and highly rigid component with improved breaking strain
DE102013009232A1 (en) Process for producing a component by hot forming a precursor of steel
DE102010056265C5 (en) Process for producing hardened components
EP3658307B1 (en) Sheet metal component, produced by hot working a flat steel product, and method for the production thereof
DE102012024626A1 (en) Vehicle body and method of manufacturing a molded article therefor
EP3303647B1 (en) Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130702

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171020

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200917

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1359711

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017051

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2853207

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054867

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017051

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231211

Year of fee payment: 13

Ref country code: SE

Payment date: 20231227

Year of fee payment: 13

Ref country code: NL

Payment date: 20231226

Year of fee payment: 13

Ref country code: HU

Payment date: 20231212

Year of fee payment: 13

Ref country code: FR

Payment date: 20231227

Year of fee payment: 13

Ref country code: CZ

Payment date: 20231207

Year of fee payment: 13

Ref country code: AT

Payment date: 20231204

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 13

Ref country code: CH

Payment date: 20240101

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011017051

Country of ref document: DE

Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203