EP2656187B1 - Method for producing hardened structural elements - Google Patents

Method for producing hardened structural elements Download PDF

Info

Publication number
EP2656187B1
EP2656187B1 EP11811026.1A EP11811026A EP2656187B1 EP 2656187 B1 EP2656187 B1 EP 2656187B1 EP 11811026 A EP11811026 A EP 11811026A EP 2656187 B1 EP2656187 B1 EP 2656187B1
Authority
EP
European Patent Office
Prior art keywords
zinc
coating
layer
steel
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11811026.1A
Other languages
German (de)
French (fr)
Other versions
EP2656187A2 (en
Inventor
Harald Schwinghammer
Thomas Kurz
Siegfried Kolnberger
Martin Rosner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/en
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/en
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/en
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/en
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2656187A2 publication Critical patent/EP2656187A2/en
Application granted granted Critical
Publication of EP2656187B1 publication Critical patent/EP2656187B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for producing hardened, corrosion-protected components with the features of claim 1.
  • press-hardened components made of sheet steel are used, particularly in automobiles.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area.
  • a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached.
  • This heated blank is then transferred to a molding tool and in this molding tool it is formed into the finished component in a single-stage forming step and, in this case, by the cooled molding tool at a speed that exceeds the critical hardening speed is cooled.
  • the hardened component is thus produced.
  • the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.
  • This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed and thereby hardened.
  • the direct method is somewhat easier to implement here, but only allows shapes that can actually be produced with a single forming step, i.e. relatively simple profile shapes.
  • Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion.
  • zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, since these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.
  • the zinc-iron phase diagram shows that above 782 ° C there is a large area that contains liquid zinc as long as the iron content is less than 60%. However, this is also the temperature range in which the austenitized steel is hot worked. However, it is also pointed out that if the deformation takes place above 782 ° C, there is a great risk of stress corrosion due to liquid zinc, which penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, if the iron content is less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but an indirect forming process. This is to circumvent the problem described.
  • a method for hot forming a coated steel product is known, the steel material having a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot formed, wherein the coating has an oxide layer consisting mainly of zinc oxide before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated.
  • a special procedure is provided for this.
  • From the EP 2 159 292 a method for hot forming a coated steel product is also known.
  • a method for hot forming a steel in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a way that the cooling rate to the MS point corresponds to at least the critical cooling rate and that the average cooling rate of the molded component from the MS point to 200 ° C is in the range of 25 ° C / s to 150 ° C / s.
  • the object of the invention is to create a method for the production of sheet steel components provided with a corrosion protection layer, in which the formation of cracks is reduced or eliminated and nevertheless sufficient protection against corrosion is achieved.
  • the object is achieved in that it was recognized that the combination of the base material in the austenitized form, i.e. At high temperatures, the presence in this state of liquid zinc phases and the introduction of stress through deformation must be avoided in order to avoid the stresses induced thereby and thus cracks.
  • a barrier layer is arranged between the austenitized base material and the liquid zinc phases.
  • Such a barrier layer is, for example, a zinc ferrite barrier layer from the reaction between zinc and iron, which dissolves pure zinc via a solid phase solution, the layer growing as a result using up zinc and forming a stable zinc ferrite mixed crystal.
  • zinc-nickel layers are also possible as the first or sole corrosion protection layer because a zinc-nickel layer does not develop any liquid zinc phases during the process.
  • the reduction in liquid zinc or the rapid build-up of an effective barrier layer can be achieved by quickly completing the formation of the barrier layer by reducing the available amount of zinc and thus avoiding a remaining liquid phase of zinc.
  • This can include can be achieved by reducing the zinc layer thickness.
  • the zinc-iron reaction can also be accelerated and thus a faster and greater barrier layer thickness can be achieved if the chemistry of the zinc layer is interfered with.
  • Conventional zinc layers which are applied in the quick-dip galvanizing process, contain a certain amount of aluminum, which forms an inhibiting layer between the carrier material (steel) on the one hand and the zinc layer on the other, preventing a strong reaction between the substrate and the coating.
  • the addition of aluminum can be reduced in a targeted manner in order to promote precisely this rapid formation of a thick zinc-iron layer.
  • aluminum is reduced in the liquid zinc coating and, if necessary, the coating is fed to a galvanealing reaction before forming to form zinc-iron phases in order to dissolve this inhibiting layer. Such a coating then does not cause any liquid zinc layers during direct forming, which could have harmful interaction with the austenite.
  • a zinc-ferrite layer can be formed with a longer furnace dwell time and the associated longer annealing treatment of a zinc coating, which effectively prevents the "liquid metal embrittlement", even if austenite is present and stresses are introduced.
  • Figure 1 shows the analysis of a typical steel which was used for the method according to the invention. It will be understood that the remainder of the analysis consists of iron and fusion-related, inevitable impurities.
  • critical intervals of the furnace dwell time which are approximately 90 s to 140 s with a zinc coating of 80 g / m 2 , approximately 100 s to 155 s with a zinc coating of 100 g / m 2 and with a zinc coating of 120 g / m 2 is even 90 s to over 200 s.
  • the critical intervals of the furnace dwell time with zinc-iron coatings of 80 g / m 2 , 100 g / m 2 and 120 g / m 2 are significantly shorter, with the critical intervals, especially with a zinc-iron coating of 80 g / m 2 between 45 s and 70 s and a zinc-iron layer of 120 g / m 2 with 50 s to 105 s are also significantly narrower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Herstellen gehärteter korrosionsgeschützter Bauteile mit den Merkmalen des Anspruchs 1.The invention relates to a method for producing hardened, corrosion-protected components with the features of claim 1.

Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen.It is known that so-called press-hardened components made of sheet steel are used, particularly in automobiles. These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area. By using these high-strength steel components, it is possible to reduce the material thickness compared to normal-strength steel and thus to achieve low body weights.

Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren.In press hardening, there are basically two different ways of producing such components. A distinction is made between the so-called direct and indirect method.

Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannten Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt.In the direct process, a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached. This heated blank is then transferred to a molding tool and in this molding tool it is formed into the finished component in a single-stage forming step and, in this case, by the cooled molding tool at a speed that exceeds the critical hardening speed is cooled. The hardened component is thus produced.

Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess, das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstemperatur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten.In the case of the indirect process, the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.

Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet.This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed and thereby hardened.

Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen.The direct method is somewhat easier to implement here, but only allows shapes that can actually be produced with a single forming step, i.e. relatively simple profile shapes.

Das indirekte Verfahren ist etwas aufwendiger, dafür aber in der Lage auch komplexere Formen zu realisieren.The indirect process is somewhat more complex, but it is also able to produce more complex shapes.

Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen.In addition to the need for press-hardened components, the need arose not to produce such components from uncoated sheet steel, but to provide such components with a corrosion protection layer.

Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendeter Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden.Only aluminum or aluminum alloys, which are used to a lesser extent, are used as a corrosion protection layer in automobile construction in question or the much more frequently required coatings based on zinc. Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion. In addition, zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, since these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.

Bei beiden Verfahren konnten jedoch Nachteile aufgefunden werden, die auch im Stand der Technik diskutiert werden. Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu Mikro- (10 µm bis 100µm) oder sogar Makrorissen im Material, wobei die Mikrorisse in der Beschichtung erscheinen und die Makrorisse sogar durch den vollständigen Blechquerschnitt reichen. Derartige Bauteile mit Makrorissen sind für die weitere Verwendung ungeeignet.However, disadvantages could be found in both processes, which are also discussed in the prior art. In the direct method, i.e. The hot forming of press-hardening steels with zinc coating leads to micro (10 µm to 100 µm) or even macro cracks in the material, whereby the micro cracks appear in the coating and the macro cracks even extend through the entire sheet metal cross-section. Such components with macro cracks are unsuitable for further use.

Beim indirekten Prozess, d.h. der Kaltumformung mit einer anschließenden Härtung und Restformung kann es ebenfalls zu Mikrorissen in der Beschichtung kommen, welche ebenfalls unerwünscht sind, aber bei weitem nicht so ausgeprägt.In the indirect process, i.e. Cold forming with subsequent hardening and residual forming can also lead to microcracks in the coating, which are also undesirable, but not nearly as pronounced.

Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt.With the exception of one component in Asia, zinc-coated steels have been used in a direct process, i.e. not used for hot forming. Rather, steels with an aluminum-silicon coating are used here.

Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumformprozess einen aluminierten Bor-Mangan-Stahl ergibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbeschichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor GI mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält und ein sogenannter galvanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält.An overview can be found in the publication "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In this Publication states that it results in an aluminized boron-manganese steel for the hot forming process, which is sold commercially under the name Usibor 1500P. In addition, for the purpose of cathodic corrosion protection, steels precoated with zinc are sold for the hot forming process, namely the galvanized Usibor GI with a zinc coating that contains small amounts of aluminum and a so-called galvanealed coated Usibor GA, which contains a zinc layer with 10% iron.

Es wird darauf hingewiesen, dass das Zink-Eisen-Phasendiagramm zeigt, dass oberhalb von 782°C ein großer Bereich entsteht, der flüssiges Zink enthält, so lang der Eisengehalt geringer als 60 % ist. Dies ist jedoch auch der Temperaturbereich, in dem der austenitisierte Stahl warm umgeformt wird. Es wird aber auch darauf hingewiesen, dass, wenn die Umformung oberhalb von 782°C stattfindet, ein großes Risiko der Spannungskorrosion durch flüssiges Zink besteht, welches in die Korngrenzen des Basisstahls eindringt, welche zu Makrorissen im Basisstahl führt. Darüber hinaus ist bei Eisengehalten geringer als 30 % in der Beschichtung die Maximaltemperatur zum Umformen eines sicheren Produkts ohne Makrorisse niedriger als 782°C. Dies ist der Grund, warum hiermit kein direktes Umformverfahren betrieben wird, sondern dass indirekte Umformverfahren. Hiermit soll das geschilderte Problem umgangen werden.It should be noted that the zinc-iron phase diagram shows that above 782 ° C there is a large area that contains liquid zinc as long as the iron content is less than 60%. However, this is also the temperature range in which the austenitized steel is hot worked. However, it is also pointed out that if the deformation takes place above 782 ° C, there is a great risk of stress corrosion due to liquid zinc, which penetrates the grain boundaries of the base steel, which leads to macro cracks in the base steel. In addition, if the iron content is less than 30% in the coating, the maximum temperature for forming a safe product without macro cracks is lower than 782 ° C. This is the reason why this is not a direct forming process, but an indirect forming process. This is to circumvent the problem described.

Eine weitere Möglichkeit dieses Problem zu umgehen, soll darin liegen, galvannealed beschichteten Stahl zu verwenden, was daran liegt, dass der zu Beginn schon bestehende Eisengehalt von 10 % und die Abwesenheit einer Fe2Al5-Sperrschicht den kritischen Wert von 60 % Eisen in der Beschichtung beim Erhitzen schnell überschreitet, was die Anwesenheit von flüssigem Eisen während des Warmumformprozesses vermeidet.Another way to get around this problem is to use galvannealed coated steel, which is due to the fact that the iron content of 10% that already exists at the beginning and the absence of an Fe 2 Al 5 barrier layer, the critical value of 60% iron in rapidly exceeds the coating when heated, which avoids the presence of liquid iron during the hot forming process.

Aus der EP 1 439 240 B1 ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf einen Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen. Aus der EP 2 159 292 ist auch ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt.From the EP 1 439 240 B1 a method for hot forming a coated steel product is known, the steel material having a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot formed, wherein the coating has an oxide layer consisting mainly of zinc oxide before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated. A special procedure is provided for this. From the EP 2 159 292 a method for hot forming a coated steel product is also known.

Aus der EP 1 642 991 B1 ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS-Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet.From the EP 1 642 991 B1 a method for hot forming a steel is known in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a way that the cooling rate to the MS point corresponds to at least the critical cooling rate and that the average cooling rate of the molded component from the MS point to 200 ° C is in the range of 25 ° C / s to 150 ° C / s.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von mit einer Korrosionsschutzschicht versehenen Stahlblechbauteilen zu schaffen, bei dem die Rissbildung vermindert oder beseitigt wird und dennoch ein ausreichender Korrosionsschutz erzielt wird.The object of the invention is to create a method for the production of sheet steel components provided with a corrosion protection layer, in which the formation of cracks is reduced or eliminated and nevertheless sufficient protection against corrosion is achieved.

Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved with the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous further developments are characterized in the subclaims.

Der vorbeschriebene Effekt der Rissbildung durch flüssiges Zink, welches den Stahl im Bereich der Korngrenzen penetriert, ist auch als sogenanntes "liquid metal embrittlement" bekannt.The above-described effect of crack formation due to liquid zinc, which penetrates the steel in the area of the grain boundaries, is also known as what is known as "liquid metal embrittlement".

Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass erkannt wurde, dass die Kombination des Grundwerkstoffes in der austenitisierten Form, d.h. bei hohen Temperaturen, die Anwesenheit in diesem Zustand von flüssigen Zinkphasen und der Eintrag von Spannung durch Umformung vermieden werden müssen, um die hierdurch induzierten Spannungen und damit Risse zu vermeiden.According to the invention, the object is achieved in that it was recognized that the combination of the base material in the austenitized form, i.e. At high temperatures, the presence in this state of liquid zinc phases and the introduction of stress through deformation must be avoided in order to avoid the stresses induced thereby and thus cracks.

Dies wird erfindungsgemäß dadurch erreicht, dass zwischen dem austenitisierten Grundwerkstoff und den flüssigen Zinkphasen eine Sperrschicht angeordnet wird. Die Sperrschicht zwischen dem Grundwerkstoff (Austenit) und den in diesem Temperaturbereich flüssigen Zinkphasen puffert einerseits Mikrorisse ab, wobei die Entstehung einer dickeren Sperrschicht zusätzlich flüssige Phasen verbraucht.This is achieved according to the invention in that a barrier layer is arranged between the austenitized base material and the liquid zinc phases. The barrier layer between the base material (austenite) and the zinc phases, which are liquid in this temperature range, on the one hand buffers microcracks, whereby the formation of a thick barrier layer also consumes liquid phases.

Eine solche Sperrschicht ist beispielsweise eine Zinkferritsperrschicht aus der Reaktion zwischen Zink und Eisen, welche über eine Festphasenlösung reines Zink löst, wobei die hierdurch wachsende Schicht Zink aufbraucht und einen stabilen Zinkferrit-Mischkristall bildet.Such a barrier layer is, for example, a zinc ferrite barrier layer from the reaction between zinc and iron, which dissolves pure zinc via a solid phase solution, the layer growing as a result using up zinc and forming a stable zinc ferrite mixed crystal.

Dieser Effekt tritt sowohl bei reinen Zink-Schichten, Zink-Aluminium-Legierungsschichten, als auch Zink-Magnesium-Legierungsschichten auf, welche somit ebenfalls geeignet sind.This effect occurs both with pure zinc layers, zinc-aluminum alloy layers and zinc-magnesium alloy layers, which are therefore also suitable.

Erfindungsgemäß ist darüber hinaus möglich Zink-Nickel-Schichten als erste oder alleinige Korrosionsschutzschicht aufzubringen, da eine Zink-Nickel-Schicht keine flüssigen Zink-Phasen während des Prozesses entwickelt.According to the invention, zinc-nickel layers are also possible as the first or sole corrosion protection layer because a zinc-nickel layer does not develop any liquid zinc phases during the process.

Erfindungsgemäß kann die Verminderung an flüssigem Zink bzw. der rasche Aufbau einer wirksamen Sperrschicht dadurch ausgebildet werden, dass die Bildung der Sperrschicht durch die Reduktion der verfügbaren Menge an Zink rasch abgeschlossen wird und somit eine verbleibende flüssige Phase an Zink vermieden wird. Dies kann u.a. durch eine Reduktion der Zinkauflagendicke erzielt werden.According to the invention, the reduction in liquid zinc or the rapid build-up of an effective barrier layer can be achieved by quickly completing the formation of the barrier layer by reducing the available amount of zinc and thus avoiding a remaining liquid phase of zinc. This can include can be achieved by reducing the zinc layer thickness.

Erfindungsgemäß kann in diesem Fall aber auch eine Beschleunigung der Zink-Eisen-Reaktion und damit eine schnellere und größere Sperrschichtdicke erzielt werden, wenn in die Chemie der Zinkschicht eingriffen wird. Herkömmliche Zinkschichten, die im Schnelltauchverzinkungsprozess aufgebracht werden, besitzen einen gewissen Anteil von Aluminium, das eine Hemmschicht zwischen dem Trägermaterial (Stahl) einerseits und der Zinkschicht andererseits bildet und dadurch eine starke Reaktion von Substrat und Beschichtung verhindert. Die Zugabe von Aluminium kann gezielt vermindert werden, um genau dieses rasche Ausbilden einer dicken Zink-Eisen-Schicht zu befördern. Hierfür wird Aluminium in der flüssigen Zinkbeschichtung reduziert und gegebenenfalls die Beschichtung vor dem Umformen einer Galvanealing-Reaktion zur Ausbildung von Zink-Eisen-Phasen zugeführt, um diese Hemmschicht aufzulösen. Eine solche Beschichtung verursacht dann beim direkten Umformen keine flüssigen Zinkschichten, die mit dem Austenit in schädlicher Interaktion treten können.According to the invention, however, in this case the zinc-iron reaction can also be accelerated and thus a faster and greater barrier layer thickness can be achieved if the chemistry of the zinc layer is interfered with. Conventional zinc layers, which are applied in the quick-dip galvanizing process, contain a certain amount of aluminum, which forms an inhibiting layer between the carrier material (steel) on the one hand and the zinc layer on the other, preventing a strong reaction between the substrate and the coating. The addition of aluminum can be reduced in a targeted manner in order to promote precisely this rapid formation of a thick zinc-iron layer. For this purpose, aluminum is reduced in the liquid zinc coating and, if necessary, the coating is fed to a galvanealing reaction before forming to form zinc-iron phases in order to dissolve this inhibiting layer. Such a coating then does not cause any liquid zinc layers during direct forming, which could have harmful interaction with the austenite.

Darüber hinaus ist es möglich, schon bei der Herstellung eine herkömmliche Zinkschicht mit geringen Gehalten an Aluminium länger als üblich wärmezubehandeln, um über eine verlängerte Glühdauer eine dickere Sperrschicht, die das Material beim direkten Umformprozess schützt, auszubilden.In addition, it is possible to heat-treat a conventional zinc layer with a low content of aluminum for longer than usual during production in order to extend it over a longer period Annealing time to form a thicker barrier layer that protects the material during the direct forming process.

Die Erfindung wird lediglich beispielhaft anhand einer Zeichnung erläutert. Es zeigen dabei:

Figur 1:
eine Tabelle mit der typischen chemischen Zusammensetzung der untersuchten Stahlproben;
Figur 2:
ein Diagramm zeigend den Zusammenhang zwischen Risstiefe und Ofenverweildauer bei einer vor dem Umwandlung stehenden Glühbehandlung;
Figur 3:
ein Diagramm zeigend die kritischen Intervalle der Ofenverweildauer;
Figur 4:
eine Tabelle zeigend die Ofenverweildauer zusammen mit Bildern, zeigend die Rissausbildung abhängig von der Ofenverweildauer;
Figur 5:
Proben gemäß Figur 4 in einem Querschnitt zeigend die Risstiefe abhängig von der Ofenverweildauer;
Figur 6:
die Ferrit-Schichtausbildung durch längere Ofenverweildauer;
Figur 7:
das Zink-Eisen-Zustandsdiagramm.
The invention is explained merely by way of example with reference to a drawing. It shows:
Figure 1:
a table with the typical chemical composition of the steel samples examined;
Figure 2:
a diagram showing the relationship between crack depth and furnace dwell time in an annealing treatment prior to conversion;
Figure 3:
a diagram showing the critical intervals of the oven residence time;
Figure 4:
a table showing the oven dwell time together with pictures showing the crack formation depending on the oven dwell time;
Figure 5:
Samples according to Figure 4 showing in a cross section the depth of the crack as a function of the furnace dwell time;
Figure 6:
the formation of the ferrite layer due to longer furnace dwell times;
Figure 7:
the zinc-iron phase diagram.

Erfindungsgemäß kann mit einer längeren Ofenverweildauer und damit einhergehend einer längeren Glühbehandlung einer Zinkbeschichtung eine Zink-Ferrit-Schicht ausgebildet werden, die wirksam das "liquid metal embrittlement" verhindert, auch wenn einerseits Austenit vorliegt und Spannungen eingetragen werden.According to the invention, a zinc-ferrite layer can be formed with a longer furnace dwell time and the associated longer annealing treatment of a zinc coating, which effectively prevents the "liquid metal embrittlement", even if austenite is present and stresses are introduced.

Hierdurch ist es erfindungsgemäß möglich, anstelle des Ausweichens auf den aufwendigeren, indirekten Prozess auch das direkte Verfahren durchzuführen.In this way it is possible according to the invention to also carry out the direct method instead of using the more complex, indirect process.

In Figur 1 ist die Analyse eines typischen Stahles gezeigt, der für das erfindungsgemäße Verfahren verwendet wurde. Es versteht sich, dass der Rest der Analyse aus Eisen und verschmelzungsbedingten, unvermeidbaren Unreinigungen besteht.In Figure 1 shows the analysis of a typical steel which was used for the method according to the invention. It will be understood that the remainder of the analysis consists of iron and fusion-related, inevitable impurities.

In Figur 2 ist der Zusammenhang zwischen der Ofenverweildauer dem Vorhandensein flüssiger Phasen und der Risstiefe gezeigt.In Figure 2 the relationship between the furnace dwell time, the presence of liquid phases and the crack depth is shown.

Aus dem Diagramm ist ersichtlich, dass bei den unterschiedlichen Kurven nach einer gewissen Ofenverweildauer die Kurven stark ansteigen, was mit der Entstehung flüssiger Zinkphasen zusammenhängt. Hiermit wird gleichzeitig eine steigende Risstiefe induziert. Ebenfalls bei allen Kurven kann ein Abknicken gesehen werden, bei dem die Risstiefe nicht weiter ansteigt, sondern die beobachtete Risstiefe nach dieser Ofenverweildauer abnimmt. Sodann ergibt sich wiederum ein relativ scharfer Knick und ein Kurvenverlauf hin zu geringeren Risstiefen mit der steigenden Ofenverweildauer. Hierbei kann festgestellt werden, dass bei einer reinen Zinkauflage von 120 g/m2 sehr lange Ofenverweildauern notwendig sind, während bei einer Zink-Eisen-Schicht mit 120 g Auflage sowohl die absolut erzielbare Risstiefe geringer ist, als auch in erheblich kürzerer Ofenverweildauer ein starkes Abnehmen der Risstiefe beobachtet werden kann.It can be seen from the diagram that the curves for the different curves rise sharply after a certain period of time in the furnace, which is related to the formation of liquid zinc phases. At the same time, this induces an increasing crack depth. A kink can also be seen in all curves, in which the crack depth does not increase any further, but instead the observed crack depth decreases after this furnace dwell time. Then there is again a relatively sharp kink and a curve progression towards smaller crack depths with increasing furnace dwell time. It can be stated here that with a pure zinc layer of 120 g / m 2 very long furnace dwell times are necessary, while with a zinc-iron layer with 120 g layer, both the absolutely achievable crack depth is lower and, with a considerably shorter furnace dwell time, a strong one Decrease in crack depth can be observed.

Im Gegensatz zu einer Zink-Eisen-Auflage von 120 g/m2 ist bei einer Zink-Eisen-Auflage von lediglich 80 g/m2 die erzielbare Risstiefe gegenüber einer Zink-Eisen-Schicht von 120 g/m2 in erheblicher Weise verringert und auch die Zeit bis zum Beobachten verringerter Risstiefen nochmal erheblich verkürzt.In contrast to a zinc-iron layer of 120 g / m 2 , with a zinc-iron layer of only 80 g / m 2 the achievable crack depth compared to a zinc-iron layer is 120 g / m 2 in considerably reduced and also the time to observe reduced crack depths again considerably shortened.

Aus diesem Beobachtungen ergeben sich beobachtete kritische Intervalle der Ofenverweildauer, die bei einer Zinkauflage von 80 g/m2 etwa 90 s bis 140 s, bei einer Zinkauflage von 100 g/m2 etwa 100 s bis 155 s und bei einer Zinkauflage von 120 g/m2 sogar 90 s bis über 200 s beträgt.From these observations, there are observed critical intervals of the furnace dwell time, which are approximately 90 s to 140 s with a zinc coating of 80 g / m 2 , approximately 100 s to 155 s with a zinc coating of 100 g / m 2 and with a zinc coating of 120 g / m 2 is even 90 s to over 200 s.

Im Gegensatz hierzu sind die kritischen Intervalle der Ofenverweildauer bei Zink-Eisen-Auflagen von 80 g/m2, 100 g/m2 und 120 g/m2 deutlich geringer, wobei auch die kritischen Intervalle, insbesondere bei einer Zink-Eisen-Auflage von 80 g/m2 zwischen 45 s und 70 s und einer Zink-Eisen-Auflage von 120 g/m2 mit 50 s bis 105 s auch deutlich schmaler sind.In contrast to this, the critical intervals of the furnace dwell time with zinc-iron coatings of 80 g / m 2 , 100 g / m 2 and 120 g / m 2 are significantly shorter, with the critical intervals, especially with a zinc-iron coating of 80 g / m 2 between 45 s and 70 s and a zinc-iron layer of 120 g / m 2 with 50 s to 105 s are also significantly narrower.

Dies ist daran zu sehen, dass bei den bereits vorreagierten Zink-Eisen-Auflagen, bei denen eine Eisenaluminatsperrschicht nicht vorhanden ist, die weitere Zink-Eisen-Reaktion so schnell stattfindet, dass nur wenige flüssige Phase für ein liquid metal embrittlement zur Verfügung stehen.This can be seen from the fact that with the already pre-reacted zinc-iron coatings, in which an iron aluminate barrier layer is not present, the further zinc-iron reaction takes place so quickly that only a few liquid phases are available for a liquid metal embrittlement.

Den direkten Einfluss der Ofenverweildauern kann man in Figur 4 erkennen, wobei in der Tabelle abzulesen ist, dass drei gleichartige Zinkbeschichtungen mit 140 g/m2 bei ähnlichen Temperaturen von 870°C bis max. 910°C für 185 s, 325 s und 475 s gehalten wurden. Bei diesem Versuch wurden die so erhitzten Bauteile mit einer Transferzeit von 3 s in ein Formwerkzeug überführt und dort direkt im heißen Zustand umgeformt.The direct influence of the oven dwell times can be seen in Figure 4 recognize, whereby the table shows that three similar zinc coatings with 140 g / m 2 at similar temperatures from 870 ° C to max. 910 ° C for 185 s, 325 s and 475 s. In this experiment, the components heated in this way were transferred to a molding tool with a transfer time of 3 s and formed there directly in the hot state.

Abhängig von der Ofenverweildauer ergeben sich unterschiedliche Risstiefen von max. 200 µm bei der geringsten Ofenverweildauer bis 20 µm bei der längsten Ofenverweildauer.Different crack depths of max. 200 µm for the shortest oven dwell time to 20 µm for the longest oven dwell time.

Die Bilder zeigen sehr deutlich die augenfällig erheblichen Unterschiede.The pictures clearly show the significant differences.

Diese werden auch in Figur 5 noch einmal besonders deutlich, indem Querschliffe der unterschiedlichen Proben aus Figur 4 ersichtlich sind. Demnach ist nicht nur die Risstiefe sondern auch die Rissbreite in erheblicher Weise mit steigender Ofenverweildauer reduziert. Zudem kann man erkennen, dass bei der Probe mit der Ofenverweildauer die Risse lediglich in der Beschichtung vorhanden sind, während die Risse bei den übrigen Proben bis ins Grundmaterial reichen.These are also used in Figure 5 again particularly clearly by making cross-sections of the different samples Figure 4 can be seen. Accordingly, not only the depth of the crack, but also the width of the crack is reduced considerably with increasing furnace dwell time. In addition, it can be seen that the cracks in the sample with the oven dwell time are only present in the coating, while the cracks in the other samples extend into the base material.

Somit kann gezeigt werden, dass es mit dem erfindungsgemäßen Verfahren möglich ist, den direkten Umformprozess beizubehalten und somit insbesondere in der Geometrie einfachere Bauteile kostengünstig herzustellen, wenn sichergestellt ist, dass im empfindlichen Temperaturintervall bei der Umformung so wenig wie möglich flüssiges Zink vorhanden ist. Die erfindungsgemäße Einhaltung bestimmter Temperaturzeitparameter ermöglicht somit mit bisherigen Verfahren weiter zu arbeiten.It can thus be shown that with the method according to the invention it is possible to maintain the direct forming process and thus, in particular, to produce components with simpler geometry at low cost, if it is ensured that as little as possible liquid zinc is present in the sensitive temperature range during the forming. The compliance with certain temperature-time parameters according to the invention thus makes it possible to continue working with previous methods.

Claims (7)

  1. Method for producing a hardened steel component with a coating of zinc or a zinc alloy, wherein a hardenable steel material is coated with a zinc layer or a layer of a zinc alloy, from which blanks are stamped out of the hardenable steel material, the blanks are heated to a temperature at the AC3 point or above and, after a desired hold time, are reshaped in the heated condition in a forming die, wherein the reshaped steel sheet blank is cooled down by the forming die at a speed exceeding the critical hardening speed and is hardened thereby, characterised in that the blank is held, depending on the thickness of the zinc or zinc alloy layer, before the reshaping, at a temperature above 782°C until a barrier layer of zinc ferrite has been formed between the steel and the coating of zinc or zinc alloy and the molten zinc forming the zinc ferrite layer has increased and has become thick enough that, during reshaping, liquid zinc phases do not react with the steel, wherein, with zinc layers between 80 g/m2 and 120 g/m2, the furnace holding time does not fall below 120 sec. to 210 sec., or with zinc-iron (galvanealed) layers, with coatings of 80 g/m2 to 120 g/m2, the furnace holding time does not fall below 75 sec. to 100 sec..
  2. Method according to claim 1, characterised in that the zinc-ferrite barrier coat is a zinc-ferrite barrier coat resulting from the reaction between zinc and iron which releases pure zinc via a solid state solution wherein the growing layer consumes zinc and forms a stable zinc-ferrite solid solution.
  3. Method according to claim 1, characterised in that the coating on the steel is a zinc coating with an aluminium proportion of 0.1 % to 5 %.
  4. Method according to any one of the preceding claims, characterised in that the coating on the steel is applied electrolytically and/or by hot dip coating.
  5. Method according to any one of the preceding claims, characterised in that the coating on the steel comprises a thin electrolytically deposited zinc layer and a zinc layer or zinc-aluminium layer deposited on it.
  6. Method according to claim 5, characterised in that, before the hot dip galvanising, the electrolytically applied zinc layer was converted into a zinc-ferrite layer.
  7. Method according to any one of the preceding claims, characterised in that the coating is a zinc-nickel coating, a zinc-aluminium coating, a zinc-iron coating, a zinc-chromium coating, a pure zinc coating or a zinc-magnesium coating.
EP11811026.1A 2010-12-24 2011-12-22 Method for producing hardened structural elements Active EP2656187B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102010056264.5A DE102010056264C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102010056265.3A DE102010056265C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102011053939.5A DE102011053939B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components
DE102011053941.7A DE102011053941B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components with regions of different hardness and / or ductility
PCT/EP2011/073892 WO2012085256A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Publications (2)

Publication Number Publication Date
EP2656187A2 EP2656187A2 (en) 2013-10-30
EP2656187B1 true EP2656187B1 (en) 2020-09-09

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
EP11808645.3A Active EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
EP11811026.1A Active EP2656187B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11808211.4A Active EP2655673B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
EP11811025.3A Active EP2655675B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11808645.3A Active EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP11808211.4A Active EP2655673B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
EP11811025.3A Active EP2655675B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Country Status (8)

Country Link
US (2) US20140020795A1 (en)
EP (5) EP2655674B1 (en)
JP (2) JP2014507556A (en)
KR (3) KR20130132566A (en)
CN (5) CN103415630B (en)
ES (5) ES2829950T3 (en)
HU (5) HUE054867T2 (en)
WO (5) WO2012085253A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (en) * 2012-10-31 2015-11-10 アイシン高丘株式会社 Die quench apparatus and die quench method for aluminum alloy material
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
JP5825447B2 (en) * 2013-08-29 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed member
DE102013015032A1 (en) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
US20160289809A1 (en) * 2013-09-19 2016-10-06 Tata Steel Ijmuiden B.V. Steel for hot forming
JP6167814B2 (en) * 2013-09-30 2017-07-26 マツダ株式会社 Automatic transmission
DE102014000969A1 (en) 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motor vehicle component
DE102014101159B4 (en) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Process for the surface treatment of workpieces
CN106715745A (en) * 2014-03-28 2017-05-24 塔塔钢铁艾默伊登有限责任公司 Method for hot forming a coated steel blank
JP6260411B2 (en) * 2014-03-31 2018-01-17 新日鐵住金株式会社 Slow cooling steel
JP5825413B1 (en) * 2014-04-23 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed product
MX2017003759A (en) 2014-09-22 2017-06-30 Arcelormittal Reinforcement element for a vehicle, method for producing the same and door assembly.
JP6152836B2 (en) * 2014-09-25 2017-06-28 Jfeスチール株式会社 Manufacturing method of hot press-formed product
JP6056826B2 (en) * 2014-09-30 2017-01-11 Jfeスチール株式会社 Manufacturing method of hot press-formed product
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (en) * 2014-12-12 2017-08-09 Jfeスチール株式会社 Manufacturing method of hot press-formed product
CN105772584B (en) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 Improve the thermoforming process and molding machine of forming parts performance
CN104668326B (en) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
PL3266531T3 (en) 2015-03-09 2020-01-31 Autotech Engineering, S.L. Press systems and methods
EP3067129A1 (en) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Press systems and methods
EP3302837B1 (en) * 2015-05-29 2020-03-11 voestalpine Stahl GmbH Method for the homogeneous non-contact temperature control of non-endless surfaces which are to be temperature-controlled, and device therefor
EP3303647B1 (en) 2015-06-03 2019-03-20 Salzgitter Flachstahl GmbH Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
WO2017017484A1 (en) 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
DE102016114658B4 (en) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Process for forming and hardening steel materials
CN106334875A (en) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 Steel welding component with aluminum or aluminum alloy coating and manufacturing method thereof
CN106424280B (en) * 2016-11-30 2017-09-29 华中科技大学 A kind of high-strength steel hot forming differentiation mechanical property distribution flexible control method
DE102017115755A1 (en) * 2017-07-13 2019-01-17 Schwartz Gmbh Method and device for heat treatment of a metallic component
EP3437750A1 (en) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Press method for coated steels
DE102017131247A1 (en) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
DE102017131253A1 (en) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
CN112513310A (en) 2018-05-24 2021-03-16 通用汽车环球科技运作有限责任公司 Method for improving strength and ductility of press-hardened steel
CN112534078A (en) 2018-06-19 2021-03-19 通用汽车环球科技运作有限责任公司 Low density press hardened steel with enhanced mechanical properties
CN109433960A (en) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system
EP3712292B1 (en) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
MX2022004499A (en) 2019-10-14 2022-05-06 Autotech Eng Sl Press systems and methods.
EP3872230A1 (en) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
MX2022012929A (en) * 2020-04-20 2022-11-16 Nippon Steel Corp Method for manufacturing hot-press-formed article, and hot-press-formed article.
CN111822571A (en) * 2020-07-12 2020-10-27 首钢集团有限公司 Hot stamping method capable of customizing organization performance subareas of parts
KR102553226B1 (en) * 2020-12-21 2023-07-07 주식회사 포스코 Electro-magnetic Test Device
CN113182374A (en) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 Thermal forming method of high-strength structural member
DE102021122383A1 (en) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Process for the production of a hot-formed and press-hardened sheet steel component
WO2023074114A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (en) * 1991-11-04 1994-03-04 Isoform DEVICE FOR STAMPING SHEET MATERIALS, PARTICULARLY SHEET SHEET.
DE19838332A1 (en) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Quality monitoring of galvannealed coating of steel strip involves determining the visual appearance of the coating as a variable relevant to its quality and using it for controlling the annealing furnace
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
DE60236447D1 (en) 2001-10-23 2010-07-01 Sumitomo Metal Ind PROCESS FOR HOT PRESS PROCESSING OF A PLATED STEEL PRODUCT
JP4085876B2 (en) * 2003-04-23 2008-05-14 住友金属工業株式会社 Hot press-formed product and method for producing the same
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
JP5113385B2 (en) 2003-07-29 2013-01-09 フェストアルピネ シュタール ゲーエムベーハー Method for manufacturing hardened steel parts
AT412403B (en) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
EP1669469B1 (en) * 2003-09-29 2008-12-17 JFE Steel Corporation Steel parts for machine structure, material therefor, and method for manufacture thereof
JP2005177805A (en) * 2003-12-19 2005-07-07 Nippon Steel Corp Hot press forming method
JP4131715B2 (en) * 2004-05-18 2008-08-13 トピー工業株式会社 Method and apparatus for partial heat treatment of heat treatment member
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP4329639B2 (en) * 2004-07-23 2009-09-09 住友金属工業株式会社 Steel plate for heat treatment with excellent liquid metal brittleness resistance
DE102005003551B4 (en) 2005-01-26 2015-01-22 Volkswagen Ag Method for hot forming and hardening a steel sheet
JP2007016296A (en) 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
JP4733522B2 (en) * 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4681492B2 (en) * 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
JP5092523B2 (en) * 2007-04-20 2012-12-05 新日本製鐵株式会社 Manufacturing method of high-strength parts and high-strength parts
CN101680048B (en) * 2007-06-15 2013-12-25 新日铁住金株式会社 Process for manufacturing shaped article
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP4890416B2 (en) * 2007-10-18 2012-03-07 アイシン高丘株式会社 Press working apparatus and press working method in die quench method
EP2379756A1 (en) * 2008-12-19 2011-10-26 Tata Steel IJmuiden B.V. Method for manufacturing a coated part using hot forming techniques
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009015013B4 (en) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Process for producing partially hardened steel components
DE102009017326A1 (en) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Process for producing press-hardened components
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
KR101171450B1 (en) * 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
JP5740099B2 (en) * 2010-04-23 2015-06-24 東プレ株式会社 Manufacturing method of hot press products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
HUE055049T2 (en) 2021-10-28
EP2655673B1 (en) 2021-02-03
WO2012085253A3 (en) 2012-08-16
CN103384726A (en) 2013-11-06
EP2655674A2 (en) 2013-10-30
CN103384726B (en) 2016-11-23
WO2012085248A2 (en) 2012-06-28
US10640838B2 (en) 2020-05-05
EP2655675A2 (en) 2013-10-30
WO2012085256A2 (en) 2012-06-28
CN103392014A (en) 2013-11-13
CN103547686B (en) 2016-11-23
WO2012085247A2 (en) 2012-06-28
ES2848159T3 (en) 2021-08-05
EP2655672A2 (en) 2013-10-30
WO2012085247A3 (en) 2012-08-16
WO2012085256A3 (en) 2012-08-16
CN103415630A (en) 2013-11-27
US20140020795A1 (en) 2014-01-23
KR20130132566A (en) 2013-12-04
ES2853207T3 (en) 2021-09-15
WO2012085251A3 (en) 2012-08-16
EP2655672B1 (en) 2020-12-16
KR101582922B1 (en) 2016-01-07
ES2858225T8 (en) 2022-01-05
US20140027026A1 (en) 2014-01-30
EP2655674B1 (en) 2021-02-03
HUE054867T2 (en) 2021-10-28
ES2829950T3 (en) 2021-06-02
WO2012085253A2 (en) 2012-06-28
ES2858225T3 (en) 2021-09-29
JP5727037B2 (en) 2015-06-03
KR20130132565A (en) 2013-12-04
JP2014505791A (en) 2014-03-06
JP2014507556A (en) 2014-03-27
HUE054465T2 (en) 2021-09-28
EP2655675B1 (en) 2021-03-10
HUE052381T2 (en) 2021-04-28
HUE053150T2 (en) 2021-06-28
WO2012085251A2 (en) 2012-06-28
EP2655673A2 (en) 2013-10-30
CN103415630B (en) 2015-09-23
CN103547687A (en) 2014-01-29
KR20130126962A (en) 2013-11-21
CN103392014B (en) 2016-01-27
ES2851176T3 (en) 2021-09-03
EP2656187A2 (en) 2013-10-30
WO2012085248A3 (en) 2012-08-16
ES2829950T8 (en) 2021-06-10
CN103547686A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
EP2656187B1 (en) Method for producing hardened structural elements
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
DE102010056265C5 (en) Process for producing hardened components
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP2449138B1 (en) Process of manufacturing a part from an air hardenable steel and the part manufactured by the process
EP2220259B9 (en) Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
DE102011053939B4 (en) Method for producing hardened components
EP3250727B2 (en) Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet
DE102010056264C5 (en) Process for producing hardened components
EP2513346A2 (en) Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
EP3642371A1 (en) Method for producing a steel component provided with a metallic coating protecting against corrosion
EP2987889A1 (en) Surface finished steel sheet and method for the production thereof
EP3303647B1 (en) Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
DE102016222961A1 (en) Process for hot forming of steel components and vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130701

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171019

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200430

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1312421

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016897

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: TR-IP CONSULTING LLC, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E052381

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2829950

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210602

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016897

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231211

Year of fee payment: 13

Ref country code: SE

Payment date: 20231227

Year of fee payment: 13

Ref country code: NL

Payment date: 20231226

Year of fee payment: 13

Ref country code: HU

Payment date: 20231212

Year of fee payment: 13

Ref country code: FR

Payment date: 20231227

Year of fee payment: 13

Ref country code: CZ

Payment date: 20231207

Year of fee payment: 13

Ref country code: AT

Payment date: 20231204

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 13

Ref country code: CH

Payment date: 20240101

Year of fee payment: 13