EP2220259B9 - Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor - Google Patents

Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor Download PDF

Info

Publication number
EP2220259B9
EP2220259B9 EP08864850A EP08864850A EP2220259B9 EP 2220259 B9 EP2220259 B9 EP 2220259B9 EP 08864850 A EP08864850 A EP 08864850A EP 08864850 A EP08864850 A EP 08864850A EP 2220259 B9 EP2220259 B9 EP 2220259B9
Authority
EP
European Patent Office
Prior art keywords
oxidation
coating
layer
steel
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08864850A
Other languages
German (de)
French (fr)
Other versions
EP2220259B1 (en
EP2220259A1 (en
Inventor
Werner BRANDSTÄTTER
Siegfried Kolnberger
Thomas Kurz
Martin Peruzzi
Johann Strutzenberger
Thomas Manzenreiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2220259A1 publication Critical patent/EP2220259A1/en
Application granted granted Critical
Publication of EP2220259B1 publication Critical patent/EP2220259B1/en
Publication of EP2220259B9 publication Critical patent/EP2220259B9/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0038Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24983Hardness

Definitions

  • the invention relates to a method for producing hardened components made of hardenable steel and a hardenable steel strip for this purpose.
  • Hardenable steels are to be understood below as steels in which a phase transformation of the base material results during the heating and subsequent cooling, the so-called quench hardening from the previous microstructure transformation and optionally during the quench hardening further microstructural transformations results in a material which is significantly harder or higher Has tensile strengths as the starting material.
  • press-hardening in which a board made of a hardenable steel material is heated above the so-called austenitizing temperature and placed in a heated state in a mold and formed in this mold and cooled at the same time, whereby on the one hand, the final geometry of the desired component and on the other hand gives the desired hardness or strength. This procedure is widely used.
  • a method is known in which a hardened component made of hardenable steel sheet with a cathodic corrosion protection, wherein the component is cold-formed already in a metallic coated state, so that it is 0.5 to 2% smaller than the nominal final dimension of the finished hardened component. Subsequently, this component is heated and placed in a tool which corresponds exactly to the final dimensions of the desired component. Due to the thermal expansion, the coated component has expanded to exactly this final dimension and is held on all sides in the so-called mold and cooled, whereby the hardening is brought about.
  • microcracks occur in the steel substrate, regardless of whether a metallic coating is present on the steel substrate or not, especially during hot forming, even of cold preformed but unfinished components.
  • micro-cracks occur especially in the areas that are reshaped and especially in the areas with high degrees of deformation. These microcracks are located on the surface and / or in the metallic coating and may partially extend relatively far into the base material. This has the disadvantage that such cracks under load of the component can continue to grow and represent a pre-damage of the component, which can lead to failure under load.
  • Metallic coatings on steels have long been known in the form of aluminum, aluminum alloy coatings, particularly aluminum-zinc alloy coatings, zinc coatings and zinc alloy coatings.
  • Such coatings have the task of protecting the steel material from corrosion. In the case of aluminum coatings, this is done by what is known as barrier protection, in which the aluminum creates a barrier against the entry of corrosive media.
  • Such coatings have hitherto been used in particular for normal-strength steel alloys, in particular for the motor vehicle industry, the construction industry, but also in the household appliance industry.
  • They can be applied to the steel material by hot dip coating, PVD or CVD or electrodeposited.
  • a process for hot dip coating a strip of high strength steel in which the strip in a continuous furnace in first A reducing atmosphere is heated to a temperature of about 650 ° C. At this temperature, the alloying constituents of the higher-strength steel should diffuse to the surface of the strip in only small amounts.
  • the predominantly made of pure iron surface is converted by a very short heat treatment at an overlying temperature of up to 750 ° C in a continuous furnace integrated reaction chamber with an oxidizing atmosphere in an iron oxide layer. This iron oxide layer is intended to prevent diffusion of the alloying constituents to the surface of the strip in a subsequent annealing treatment at a higher temperature in a reducing atmosphere.
  • the iron oxide layer is converted into a purer iron layer on which the zinc and / or aluminum is optimally adhered in the hot dip.
  • the oxide layer applied by this method should have a maximum thickness of 300 nm. In practice, the layer thickness is usually set to about 150 nm.
  • the object of the invention is to provide a method for producing hardened components made of hardenable steel, with which the forming behavior, in particular the hot forming behavior, is improved.
  • the invention provides to oxidize a hot or cold rolled steel strip on the surface, then make a metallic coating and for the purpose of producing the component from the corresponding coated sheet - so necessary - to cut a board to heat this board to them by heating austenitize at least partially so that in a subsequent forming and cooling of the board, an at least partially cured microstructure or partially cured component is formed.
  • the superficial oxidation of the strip of hardenable steel during the heating for the purpose of Austenit ensues and / or forming and cooling superficially a ductile layer is formed, which can reduce the stresses during forming so well that it no longer comes to microcracking .
  • the metallic coating serves to protect against superficial decarburization, although this metallic coating can of course also perform other tasks, such as corrosion protection.
  • a protective gas atmosphere can be produced, in particular, a superficial oxidation, for. B. to about 700 ° C in an oxidizing atmosphere, brought about and the further heating under inert gas atmosphere are carried out so that further oxidation and / or decarburization is omitted.
  • the oxide layer as in conventional pre-oxidation, largely eliminated for the purpose of galvanizing.
  • the oxidation according to the invention is carried out to a far greater extent than the pre-oxidation according to the prior art.
  • the prior art pre-oxidation takes place up to a maximum thickness of 300 nm, the oxidation according to the invention to a much greater extent, so that even after a reduction has been carried out, an oxidized layer, preferably at least 300 nm thick, remains.
  • the oxidation according to the invention apparently not only superficially creates an iron-oxide layer which, of course, also contains oxides of the alloying elements, it also seems to be the case that the alloying elements are partially oxidized even below this layer.
  • a component produced by the process according to the invention shows on the surface between the steel substrate and the coating a thin, in the micrograph FIG. 4 as a whitish layer.
  • the most likely cause of this ductile layer is oxidized alloying elements, which were not available in the superficially oxidized phase for the phase transformation during curing or have delayed or obstructed this transformation.
  • the exact mechanisms have not yet been elucidated.
  • FIG. 1 the method according to the invention is shown with reference to a method sequence, for example for a hot-dip-coated steel strip, in particular a galvanized steel strip of the 22MnB5 type with an overlay Z140.
  • a bright steel strip 1 is subjected to oxidation before the hot-dip coating, so that the strip 1 is provided with an oxide layer 2.
  • This oxidation is carried out at temperatures between 650 ° and 800 ° C. While for a conventional pre-oxidation, which would be necessary for a hot-dip galvanizing, the oxide layer thickness of 150 nm would be fully sufficient, the oxidation is carried out according to the invention so that the oxide layer thickness is> 300 nm.
  • a partial reduction of the oxides at the surface is carried out in the next step, so that a very thin reduced layer 4 is produced, which consists essentially of pure iron. Below this remains a residual oxide layer 3.
  • the hot-dip coating is carried out with the coating metal, so that a layer 5 of the coating metal on the residual oxide layer 3 results.
  • a layer 5 of the coating metal on the residual oxide layer 3 results.
  • Now around the hardened component To achieve the tape 1 is heated to the Austenitmaschinestemperatur and at least partially austenitized, which inter alia alloy the metallic coating 5 and the surface of the belt 1 together.
  • the oxide layer 3 is in this case partially or completely consumed by diffusion processes between the band 1 and the metallic coating 5, or is not detectable in the high-temperature treatment.
  • the deposition onto the oxide layer can take place without prior reduction or with reduction, if appropriate, however, a pickling is also carried out.
  • this light-colored layer 7 The most probable cause of this light-colored layer 7 is that the oxidation carried out before the metallic coating has oxidized the alloying elements necessary for hardening, such as manganese, in the near-surface region and are not available for conversion or hinder conversion. so that the steel strip in the very thin near-surface area this forms ductile layer 7, which is apparently sufficient to compensate for the near-surface stresses so that no deformation and crack propagation occur during forming.
  • the advantage of the process is also evident after curing, or can also be detected after curing, if a correspondingly produced or hardened sheet is subjected to a three-point bending test, for example. This can also positively influence the crash behavior.
  • Time is measured, the distance from touching the flexural strength value with the sample and the force.
  • the force and displacement or a force-bending angle curve are recorded, the angle being calculated from the path.
  • the test criterion is the bending angle at the force maximum.
  • the ductile layer 7 is located between the hardened substrate and the coating after the hardening reaction.
  • the average layer thickness of this layer is greater than 0.3 microns, which layer may be continuous, but need not be completely continuous, to bring about the success of the invention.
  • FIG. 6 shows a scanning electron micrograph of a comparative example according to the invention. It can be seen that the zinc content decreases abruptly from about 40% Zn content to below 5% Zn due to the diffusion processes in the direction of the base material martensite.
  • the grains of the iron-zinc layer have near the base material only a very low zinc content, these appear in the cross-section whitish Fe-rich layer acts as a ductile intermediate layer between the other laminates.
  • FIG. 7 shows an excerpt FIG. 6 with a line-zinc concentration profile from an energy-dispersive X-ray analysis (EDX). It is once again clearly evident that the zinc content decreases in the direction of the base material.
  • EDX energy-dispersive X-ray analysis
  • FIGS. 4 and 5 each show a cross-section of a hardened steel strip of the invention ( FIG. 4 ) and the prior art ( FIG. 5 ), where clearly the substrate in the cut 1, lying over the converted metallic coating 6 and lying between the ductile layer 7 are visible.
  • FIG. 5 shows a layer structure according to the prior art, in which a galvanized strip 101 has a steel substrate 102 made of high-strength steel, on which a zinc-iron layer 103 is applied. A ductile layer is missing.
  • the metallic coating can be selected from all common metallic coatings, since it is only a matter of counteracting a decarburization. Therefore, the coatings may be pure aluminum or aluminum-silicon coatings as well as alloy coatings of aluminum and zinc (Galvalume) as well as coatings of zinc or substantially zinc. But other coatings of metals or alloys are suitable if you can experience the high temperatures during curing in the short term.
  • the coatings may, for. B. by electroplating or hot dip coating or PVD or CVD method may be applied.
  • the oxidation can hereby be brought about conventionally in that the strip passes through a directly heated preheater in which gas burners are used and an increase of the oxidation potential in the atmosphere surrounding the strip can be produced by a change of the gas-air mixture.
  • the oxygen potential can be controlled and lead to oxidation of the iron on the strip surface.
  • the control is carried out in such a way that an oxidation is achieved which is significantly above the oxidation in the prior art.
  • the iron oxide layer formed or an optionally achieved internal oxidation of the steel only superficially or partially reduced.
  • oxidation or pre-oxidation is also carried out considerably more than it would be necessary.
  • the oxidation strength can be adjusted here in particular by the supply of an oxidizing agent.
  • the control of the oxidation can be controlled via the atmosphere, via an oxidant concentration of an optionally added further oxidizing agent, the treatment time, the temperature, the temperature profile and the water vapor content in the furnace chamber.
  • Such a treated band as in the Figures 3 and 4 is excellent, and free of microcracks in the steel substrate cold form, heat and press hardening or reshaping but also hot forming and press hardening.
  • An advantage of the invention is the provision of a method and a steel strip which make it possible, in a simpler and safer way, to considerably increase the quality of formed and hardened components made of higher-strength steel.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von gehärteten Bauteilen aus härtbarem Stahl und ein härtbares Stahlband hierfür.The invention relates to a method for producing hardened components made of hardenable steel and a hardenable steel strip for this purpose.

Es ist bekannt, Bauteile aus einem härtbaren Stahl herzustellen und insbesondere gehärtete Bauteile. Unter härtbaren Stählen sollen nachfolgend Stähle verstanden werden, bei denen sich beim Aufheizen eine Phasenumwandlung des Grundmaterials ergibt und bei einer nachfolgenden Abkühlung, der sogenannten Abschreckhärtung aus der vorangegangenen Gefügeumwandlung und gegebenenfalls bei der Abschreckhärtung weiteren Gefügeumwandlungen ein Material ergibt, welches deutlich härter ist bzw. höhere Zugfestigkeiten besitzt als das Ausgangsmaterial.It is known to produce components from a hardenable steel and in particular hardened components. Hardenable steels are to be understood below as steels in which a phase transformation of the base material results during the heating and subsequent cooling, the so-called quench hardening from the previous microstructure transformation and optionally during the quench hardening further microstructural transformations results in a material which is significantly harder or higher Has tensile strengths as the starting material.

Aus der DE 24 52 486 C2 ist beispielsweise das Verfahren des sogenannten Presshärtens bekannt, bei dem eine Platine aus einem härtbaren Stahlmaterial über die sogenannte Austenitisierungstemperatur hinaus erhitzt wird und im erhitzten Zustand in ein Formwerkzeug eingelegt und in diesem Formwerkzeug umgeformt und gleichzeitig gekühlt wird, wodurch sich einerseits die Endgeometrie des gewünschten Bauteils und zum anderen die gewünschte Härte bzw. Festigkeit ergibt. Dieses Verfahren ist weit verbreitet.From the DE 24 52 486 C2 For example, the method of so-called press-hardening is known, in which a board made of a hardenable steel material is heated above the so-called austenitizing temperature and placed in a heated state in a mold and formed in this mold and cooled at the same time, whereby on the one hand, the final geometry of the desired component and on the other hand gives the desired hardness or strength. This procedure is widely used.

Aus der EP 1 651 789 A1 ist ein Verfahren bekannt, bei dem ein gehärtetes Bauteil aus härtbarem Stahlblech mit einem kathodischen Korrosionsschutz hergestellt wird, wobei das Bauteil bereits in metallisch beschichtetem Zustand kalt umgeformt wird, so dass es 0,5 bis 2 % kleiner ist als die Soll-Endabmessung des fertigen gehärteten Bauteils. Anschließend wird dieses Bauteil aufgeheizt und in ein Werkzeug eingelegt, welches exakt den Endabmessungen des gewünschten Bauteils entspricht. Durch die Wärmedehnung hat sich das beschichtete Bauteil auf genau diese Endabmessung ausgedehnt und wird in dem sogenannten Formwerkzeug allseitig gehalten und abgekühlt, wodurch die Härtung herbeigeführt wird.From the EP 1 651 789 A1 a method is known in which a hardened component made of hardenable steel sheet with a cathodic corrosion protection, wherein the component is cold-formed already in a metallic coated state, so that it is 0.5 to 2% smaller than the nominal final dimension of the finished hardened component. Subsequently, this component is heated and placed in a tool which corresponds exactly to the final dimensions of the desired component. Due to the thermal expansion, the coated component has expanded to exactly this final dimension and is held on all sides in the so-called mold and cooled, whereby the hardening is brought about.

Zudem ist aus der EP-A 0 971 044 ein Verfahren bekannt, bei dem ein Blech aus einem härtbaren Stahl und mit einer metallischen Beschichtung auf eine Temperatur oberhalb der Austenitisierungstemperatur aufgeheizt wird und anschließend in ein Warmumformwerkzeug verbracht wird, wo das aufgeheizte Blech umgeformt und gleichzeitig abgekühlt und durch das Abkühlen gehärtet wird.Moreover, from the EP-A 0 971 044 a method is known in which a sheet of a hardenable steel and with a metallic coating is heated to a temperature above the Austenitisierungstemperatur and then placed in a hot forming tool, where the heated sheet is formed and simultaneously cooled and cured by cooling.

Bei den vorgenannten Verfahren zum Warmumformen ist von Nachteil, dass - unabhängig davon, ob eine metallische Beschichtung auf dem Stahlsubstrat vorhanden ist oder nicht - insbesondere beim Warmumformen, auch von kalt vorgeformten aber nicht fertig geformten Bauteilen, im Stahlsubstrat Mikrorisse auftreten.It is disadvantageous in the abovementioned methods for hot forming that microcracks occur in the steel substrate, regardless of whether a metallic coating is present on the steel substrate or not, especially during hot forming, even of cold preformed but unfinished components.

Diese Mikrorisse treten insbesondere in den Bereichen auf, die umgeformt werden und insbesondere in den Bereichen mit hohen Umformgraden. Diese Mikrorisse befinden sich an der Oberfläche und/oder in der metallischen Beschichtung und können sich teilweise relativ weit ins Grundmaterial hinein erstrecken. Hierbei ist von Nachteil, dass derartige Risse bei Belastung des Bauteils weiter wachsen können und eine Vorschädigung des Bauteils darstellen, die bei Belastung zum Versagen führen kann.These micro-cracks occur especially in the areas that are reshaped and especially in the areas with high degrees of deformation. These microcracks are located on the surface and / or in the metallic coating and may partially extend relatively far into the base material. This has the disadvantage that such cracks under load of the component can continue to grow and represent a pre-damage of the component, which can lead to failure under load.

Metallische Beschichtungen auf Stählen sind in Form von Aluminium, Aluminiumlegierungsbeschichtungen, insbesondere Aluminium-Zink-Legierungsbeschichtungen, Zinkbeschichtungen und Zinklegierungsbeschichtungen seit langem bekannt.Metallic coatings on steels have long been known in the form of aluminum, aluminum alloy coatings, particularly aluminum-zinc alloy coatings, zinc coatings and zinc alloy coatings.

Derartige Beschichtungen haben die Aufgabe, das Stahlmaterial vor Korrosion zu schützen. Bei Aluminiumbeschichtungen geschieht dies durch einen sogenannten Barriereschutz, bei dem das Aluminium eine Barriere gegen den Zutritt korrosiver Medien schafft.Such coatings have the task of protecting the steel material from corrosion. In the case of aluminum coatings, this is done by what is known as barrier protection, in which the aluminum creates a barrier against the entry of corrosive media.

Bei Zinkbeschichtungen erfolgt der Schutz durch die sogenannte kathodische Wirkung des Zinks.For zinc coatings, protection is provided by the so-called cathodic effect of zinc.

Derartige Beschichtungen wurden bislang insbesondere bei normalfesten Stahllegierungen, insbesondere für den Kraftfahrzeugbau, die Bauindustrie, aber auch in der Hausgeräteindustrie, verwendet.Such coatings have hitherto been used in particular for normal-strength steel alloys, in particular for the motor vehicle industry, the construction industry, but also in the household appliance industry.

Sie können durch Schmelztauchbeschichten, PVD- oder CVD-Verfahren oder galvanisch abgeschieden auf das Stahlmaterial aufgebracht werden.They can be applied to the steel material by hot dip coating, PVD or CVD or electrodeposited.

Durch den Einsatz höherfester Stahlgüten wurde auch versucht, letztere mit derartigen Schmelztauchbeschichtungen zu überziehen.The use of higher-strength steel grades has also tried to coat the latter with such hot-dip coatings.

Aus der DE 10 2004 059 566 B3 ist beispielsweise ein Verfahren zum Schmelztauchbeschichten eines Bandes aus höherfestem Stahl bekannt, bei dem das Band in einem Durchlaufofen zunächst in einer reduzierenden Atmosphäre auf eine Temperatur von ca. 650°C erwärmt wird. Bei dieser Temperatur sollen die Legierungsbestandteile des höherfesten Stahls in nur geringen Mengen an die Oberfläche des Bandes diffundieren. Die dabei überwiegend aus Reineisen bestehende Oberfläche wird durch eine sehr kurze Wärmebehandlung bei einer darüber liegenden Temperatur von bis zu 750°C in einer im Durchlaufofen integrierten Reaktionskammer mit oxidierender Atmosphäre in eine Eisenoxidschicht umgewandelt. Diese Eisenoxidschicht soll bei einer anschließenden Glühbehandlung bei einer höheren Temperatur in einer reduzierenden Atmosphäre das Diffundieren der Legierungsbestandteile an die Oberfläche des Bandes verhindern. In der reduzierenden Atmosphäre wird die Eisenoxidschicht in eine reinere Eisenschicht umgewandelt, auf der im Schmelztauchbad das Zink und/oder Aluminium optimal haftend aufgebracht wird. Die durch dieses Verfahren aufgebrachte Oxidschicht soll eine Dicke von maximal 300 nm besitzen. In der Praxis wird die Schichtdicke meist auf etwa 150 nm eingestellt.From the DE 10 2004 059 566 B3 For example, a process for hot dip coating a strip of high strength steel is known in which the strip in a continuous furnace in first A reducing atmosphere is heated to a temperature of about 650 ° C. At this temperature, the alloying constituents of the higher-strength steel should diffuse to the surface of the strip in only small amounts. The predominantly made of pure iron surface is converted by a very short heat treatment at an overlying temperature of up to 750 ° C in a continuous furnace integrated reaction chamber with an oxidizing atmosphere in an iron oxide layer. This iron oxide layer is intended to prevent diffusion of the alloying constituents to the surface of the strip in a subsequent annealing treatment at a higher temperature in a reducing atmosphere. In the reducing atmosphere, the iron oxide layer is converted into a purer iron layer on which the zinc and / or aluminum is optimally adhered in the hot dip. The oxide layer applied by this method should have a maximum thickness of 300 nm. In practice, the layer thickness is usually set to about 150 nm.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von gehärteten Bauteilen aus härtbarem Stahl zu schaffen, mit welchem das Umformverhalten, insbesondere auch das Warmumformverhalten, verbessert wird.The object of the invention is to provide a method for producing hardened components made of hardenable steel, with which the forming behavior, in particular the hot forming behavior, is improved.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.The object is achieved by a method having the features of claim 1. Advantageous developments are characterized in the subclaims.

Es ist eine weitere Aufgabe, ein Stahlband zu schaffen, welches eine verbesserte Umformbarkeit, insbesondere Warmumformbarkeit, besitzt.It is another object to provide a steel strip which has improved formability, especially hot workability.

Die Aufgabe wird mit einem Stahlband mit den Merkmalen des Anspruchs 10 gelöst.The object is achieved with a steel strip having the features of claim 10.

Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the dependent claims.

Die Erfindung sieht vor, ein warm oder kalt gewalztes Stahlband oberflächlich zu oxidieren, anschließend eine metallische Beschichtung vorzunehmen und zum Zwecke der Herstellung des Bauteils aus dem dementsprechend beschichteten Blech - so nötig - eine Platine zu schneiden, diese Platine aufzuheizen, um sie durch das Aufheizen zumindest teilweise so zu austenitisieren, dass bei einem nachfolgenden Umformen und Abkühlen der Platine ein zumindest teilgehärtetes Gefüge bzw. teilgehärtetes Bauteil gebildet wird. Überraschenderweise wird durch die oberflächliche Oxidation des Bandes aus dem härtbaren Stahl offenbar während des Aufheizens zum Zwecke des Austenitisierens und/oder beim Umformen und Kühlen oberflächlich eine duktile Schicht gebildet, welche die Spannungen beim Umformen so gut abbauen kann, dass es zu keiner Mikrorissbildung mehr kommt. Die metallische Beschichtung dient hierbei dem Schutz vor einer oberflächlichen Entkohlung, wobei diese metallische Beschichtung selbstverständlich auch andere Aufgaben, wie Korrosionsschutz übernehmen kann.The invention provides to oxidize a hot or cold rolled steel strip on the surface, then make a metallic coating and for the purpose of producing the component from the corresponding coated sheet - so necessary - to cut a board to heat this board to them by heating austenitize at least partially so that in a subsequent forming and cooling of the board, an at least partially cured microstructure or partially cured component is formed. Surprisingly, the superficial oxidation of the strip of hardenable steel during the heating for the purpose of Austenitisierens and / or forming and cooling superficially a ductile layer is formed, which can reduce the stresses during forming so well that it no longer comes to microcracking , The metallic coating serves to protect against superficial decarburization, although this metallic coating can of course also perform other tasks, such as corrosion protection.

Anstelle einer metallischen Beschichtung kann während des Aufheizens zum Zwecke der Austenitisierung auch eine Schutzgasatmosphäre hergestellt werden, insbesondere kann eine oberflächliche Oxidation, z. B. bis etwa 700°C in oxidierender Atmosphäre, herbeigeführt werden und die weitere Aufheizung unter Inertgasatmosphäre so durchgeführt werden, dass eine weitere Oxidation und/oder Entkohlung unterbleibt.Instead of a metallic coating, during the heating for the purpose of austenitizing also a protective gas atmosphere can be produced, in particular, a superficial oxidation, for. B. to about 700 ° C in an oxidizing atmosphere, brought about and the further heating under inert gas atmosphere are carried out so that further oxidation and / or decarburization is omitted.

Sollte es notwendig sein, kann die Oxidation des Stahlbandes zum Zwecke des Aufbringens der metallischen Beschichtung oberflächlich reduziert werden, um eine reaktive Oberfläche zu erzielen.Should it be necessary, the oxidation of the steel strip for the purpose of applying the metallic coating on the surface be reduced to achieve a reactive surface.

Keinesfalls wird die Oxidschicht jedoch, wie beim herkömmlichen Voroxidieren, zum Zwecke des Verzinkens weitgehend beseitigt. Zudem wird die erfindungsgemäße Oxidation in einem weit größerem Maße durchgeführt, als die Voroxidation nach dem Stand der Technik. Die Voroxidation nach dem Stand der Technik erfolgt bis maximal 300 nm Dicke, die erfindungsgemäße Oxdiation in weit stärkerem Maße, so dass selbst nach einer durchgeführten Reduktion noch eine, vorzugsweise mindestens 300 nm dicke, oxidierte Schicht verbleibt.Under no circumstances, however, is the oxide layer, as in conventional pre-oxidation, largely eliminated for the purpose of galvanizing. In addition, the oxidation according to the invention is carried out to a far greater extent than the pre-oxidation according to the prior art. The prior art pre-oxidation takes place up to a maximum thickness of 300 nm, the oxidation according to the invention to a much greater extent, so that even after a reduction has been carried out, an oxidized layer, preferably at least 300 nm thick, remains.

Durch die erfindungsgemäße Oxidation wird offenbar nicht nur oberflächlich eine Eisen-Oxid-Schicht geschaffen, die selbstverständlich auch Oxide der Legierungselemente enthält, es scheint zudem so zu sein, dass auch unterhalb dieser Schicht die Legierungselemente teilweise oxidiert sind.The oxidation according to the invention apparently not only superficially creates an iron-oxide layer which, of course, also contains oxides of the alloying elements, it also seems to be the case that the alloying elements are partially oxidized even below this layer.

Nach dem Härten zeigt ein nach dem erfindungsgemäßen Verfahren hergestelltes Bauteil an der Oberfläche zwischen dem Stahlsubstrat und der Beschichtung eine dünne, im Schliffbild Figur 4 als weißliche Schicht. Die derzeit wahrscheinlichste Ursache für diese duktile Schicht sind oxidierte Legierungselemente, die in dem oberflächlich oxidierten Bereich für die Phasenumwandlung bei der Härtung nicht zur Verfügung standen oder diese Umwandlung verzögert bzw. behindert haben. Die genauen Mechanismen konnten bislang jedoch nicht aufgeklärt werden.After curing, a component produced by the process according to the invention shows on the surface between the steel substrate and the coating a thin, in the micrograph FIG. 4 as a whitish layer. Currently, the most likely cause of this ductile layer is oxidized alloying elements, which were not available in the superficially oxidized phase for the phase transformation during curing or have delayed or obstructed this transformation. However, the exact mechanisms have not yet been elucidated.

Überraschenderweise hat sich herausgestellt, dass eine derartige - für die eigentliche Beschichtung mit einem Überzugsmetall nicht notwendige - Oxidation auch nach der Metallbeschichtung zu einer erhöhten Duktilität des gehärteten Substrats im Oberflächenbereich führt. In überraschender Weise kann mit einer Oxidation, die eine Eisenoxidschicht mit einer Schichtdicke > 300 nm bildet, ein Blech erzielt werden, welches auch beim Warmumformen und bei der Wärmebehandlung zum Zwecke des Härtens, beispielsweise für einen geeigneten Stahl vom Typ 22MnB5 oberhalb 850°C, bzw. der jeweiligen Austenitisierungstemperatur, mikrorissfrei umformbar ist.Surprisingly, it has been found that such oxidation, which is not necessary for the actual coating with a coating metal, leads to increased ductility of the hardened substrate in the surface region, even after the metal coating. In a surprising way can be achieved with an oxidation, which forms an iron oxide layer with a layer thickness> 300 nm, a sheet which also during hot forming and during the heat treatment for the purpose of curing, for example for a suitable steel type 22MnB5 above 850 ° C, or the respective Austenitisierungstemperatur, microcracking is deformable.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert, es zeigen dabei:

Figur 1:
stark schematisiert den erfindungsgemäßen Verfahrensablauf;
Figur 2:
ein Diagramm zeigend die Verbesserung beim Biegewinkel bei der Erfindung gegenüber dem Stand der Technik;
Figur 3:
stark schematisiert einen Schichtaufbau nach der Erfindung im Vergleich zum Stand der Technik nach dem Härten;
Figur 4:
eine mikroskopische Schliffaufnahme der Oberfläche des erfindungsgemäßen Stahlbandes;
Figur 5:
eine mikroskopische Schliffaufnahme eines nicht erfindungsgemäßen Vergleichsbeispiels;
Figur 6:
eine rasterelektronische Schliffaufnahme eines erfindungsgemäßen Vergleichsbeispiels;
Figur 7:
ein Auschnitt aus der rasterelektronischen Schliffaufnahme Figur 6 mit einem Linien-Zink-Konzentrationsprofil aus einer energiedispersiven Röntgenanalyse (EDX).
The invention will be explained by way of example with reference to a drawing, in which:
FIG. 1:
highly schematic of the process sequence according to the invention;
FIG. 2:
a graph showing the improvement in the bending angle in the invention over the prior art;
FIG. 3:
strongly schematized a layer structure according to the invention in comparison with the prior art after curing;
FIG. 4:
a microscopic micrograph of the surface of the steel strip according to the invention;
FIG. 5:
a microscopic micrograph of a comparative example not according to the invention;
FIG. 6:
a scanning electron micrograph of a comparative example according to the invention;
FIG. 7:
an excerpt from the scanning electron micrograph FIG. 6 with a line-zinc concentration profile from an energy-dispersive X-ray analysis (EDX).

In Figur 1 ist das erfindungsgemäße Verfahren anhand eines Verfahrensablaufs, beispielsweise für ein schmelztauchbeschichtetes Stahlband, insbesondere ein verzinktes Stahlband vom Typ 22MnB5 mit einer Auflage Z140, gezeigt.In FIG. 1 the method according to the invention is shown with reference to a method sequence, for example for a hot-dip-coated steel strip, in particular a galvanized steel strip of the 22MnB5 type with an overlay Z140.

Die in Figur 1 und 3 dargestellten Schichtdicken sind nicht maßstäblich dargestellt, sondern zum Zwecke einer besseren Darstellbarkeit im Maßstab zueinander verzerrt.In the FIG. 1 and 3 layer thicknesses shown are not shown to scale, but distorted to scale for the purpose of better representability.

Ein blankes Stahlband 1 wird vor der Schmelztauchbeschichtung einer Oxidation unterzogen, so dass das Band 1 mit einer Oxidschicht 2 versehen ist.A bright steel strip 1 is subjected to oxidation before the hot-dip coating, so that the strip 1 is provided with an oxide layer 2.

Diese Oxidation wird bei Temperaturen zwischen 650° und 800°C durchgeführt. Während für eine herkömmliche Voroxidation, die für eine Feuerverzinkung notwendig wäre, die Oxidschichtdicke mit 150 nm voll ausreichend wäre, wird die Oxidation erfindungsgemäß so durchgeführt, dass die Oxidschichtdicke > 300 nm ist. Um die metallische Schmelztauchbeschichtung, beispielsweise Verzinkung oder Aluminierung, aufzubringen, wird im nächsten Schritt eine teilweise Reduktion der Oxide an der Oberfläche durchgeführt, so dass eine sehr dünne reduzierte Schicht 4 erzeugt wird, die im Wesentlichen aus Reineisen besteht. Hierunter verbleibt eine Restoxidschicht 3.This oxidation is carried out at temperatures between 650 ° and 800 ° C. While for a conventional pre-oxidation, which would be necessary for a hot-dip galvanizing, the oxide layer thickness of 150 nm would be fully sufficient, the oxidation is carried out according to the invention so that the oxide layer thickness is> 300 nm. In order to apply the metallic hot-dip coating, for example galvanizing or aluminizing, a partial reduction of the oxides at the surface is carried out in the next step, so that a very thin reduced layer 4 is produced, which consists essentially of pure iron. Below this remains a residual oxide layer 3.

Unter der Oxidschicht 3 besteht durch die Oxidation vermutlich ein Bereich einer "inneren Oxidation" 3a. In diesem Bereich 3a sind offenbar die Legierungselemente teilweise oxidiert bzw. liegen teilweise in oxidierter Form vor.Under the oxide layer 3, the oxidation presumably results in a region of "internal oxidation" 3a. In this region 3a, it is apparent that the alloying elements are partially oxidized or partially present in oxidized form.

Nachfolgend erfolgt die Schmelztauchbeschichtung mit dem Überzugsmetall, so dass sich eine Schicht 5 aus dem Überzugsmetall auf der Restoxidschicht 3 ergibt. Um nun das gehärtete Bauteil zu erzielen, wird das Band 1 auf die Austenitisierungstemperatur erhitzt und zumindest teilweise austenitisiert, wodurch sich u. a. die metallische Beschichtung 5 und die Oberfläche des Bandes 1 miteinander legieren. Die Oxidschicht 3 wird hierbei durch Diffusionsvorgänge zwischen dem Band 1 und der metallischen Beschichtung 5 teilweise oder vollständig aufgezehrt, bzw. ist bei der Hochtemperaturbehandlung nicht nachweisbar.Subsequently, the hot-dip coating is carried out with the coating metal, so that a layer 5 of the coating metal on the residual oxide layer 3 results. Now around the hardened component To achieve the tape 1 is heated to the Austenitisierungstemperatur and at least partially austenitized, which inter alia alloy the metallic coating 5 and the surface of the belt 1 together. The oxide layer 3 is in this case partially or completely consumed by diffusion processes between the band 1 and the metallic coating 5, or is not detectable in the high-temperature treatment.

Bei einer galvanisch aufgebrachten metallischen Beschichtung kann die Abscheidung auf die Oxidschicht ohne vorherige Reduktion oder mit Reduktion erfolgen, gegebenenfalls wird jedoch noch eine Beizung vorgenommen.In the case of a galvanically applied metallic coating, the deposition onto the oxide layer can take place without prior reduction or with reduction, if appropriate, however, a pickling is also carried out.

Um das gehärtete Bauteil oder teilgehärtete Bauteil je nach Austenitisierungsgrad zu erhalten, erfolgt anschließend die Umformung und Abkühlung in einem Werkzeug, wobei sich die Schicht 6 gegebenenfalls den Phasen nach umwandelt und auch eine Phasenumwandlung im Band 1 stattfindet. Nach dem Härten kann zwischen dem Band 1 und der metallischen Beschichtung 6 eine in Schliffbild (Figur 4) helle, duktile Schicht 7 beobachtet werden, welche offenbar dafür verantwortlich ist, dass das Endprodukt ein mikrorissfreies, gehärtetes Bauteil ist. Diese duktile Schicht 7 bildet sich vermutlich bereits während des Aufheizens zum Zwecke des Härtens und ist somit bei der Warmumformung schon vorhanden.In order to obtain the hardened component or partially cured component depending on Austenitisierungsgrad, then the forming and cooling takes place in a tool, wherein the layer 6, where appropriate, the phases converted and also a phase transformation takes place in the band 1. After curing, between the strip 1 and the metallic coating 6, a micrograph ( FIG. 4 ) bright, ductile layer 7 is observed, which is apparently responsible for the fact that the final product is a micro-crack-free, hardened component. This ductile layer 7 presumably already forms during heating for the purpose of hardening and is therefore already present during hot forming.

Die wahrscheinlichste Ursache für diese helle Schicht 7 ist offenbar, dass durch die durchgeführte Oxidation vor der metallischen Beschichtung die für die Härtung notwendigen Legierungselemente, wie beispielsweise Mangan, im oberflächennahen Bereich oxidiert wurden und für eine Umwandlung nicht zur Verfügung stehen bzw. eine Umwandlung behindern, so dass das Stahlband in dem sehr dünnen oberflächennahen Bereich diese duktile Schicht 7 ausbildet, die offenbar ausreicht, die oberflächennahen Spannungen so auszugleichen, dass beim Umformen keine Rissbildung und kein Rissfortschritt erfolgen.The most probable cause of this light-colored layer 7 is that the oxidation carried out before the metallic coating has oxidized the alloying elements necessary for hardening, such as manganese, in the near-surface region and are not available for conversion or hinder conversion. so that the steel strip in the very thin near-surface area this forms ductile layer 7, which is apparently sufficient to compensate for the near-surface stresses so that no deformation and crack propagation occur during forming.

Es wird zudem vermutet, dass hierfür auch der Bereich 3a der "inneren Oxidation" der Legierungselemente von Bedeutung ist.It is also assumed that the area 3a of the "internal oxidation" of the alloying elements is also important for this purpose.

Der Vorteil des Verfahrens zeigt sich auch noch nach dem Härten, bzw. kann auch noch nach dem Härten nachgewiesen werden, wenn ein entsprechend erfindungsgemäß hergestelltes bzw. gehärtetes Blech beispielsweise einem Dreipunkt-Biegeversuch unterzogen wird. Dies kann auch das Crashverhalten positiv beeinflussen.The advantage of the process is also evident after curing, or can also be detected after curing, if a correspondingly produced or hardened sheet is subjected to a three-point bending test, for example. This can also positively influence the crash behavior.

Bei diesem Dreipunkt-Biegeversuch werden zwei Auflager mit einem Durchmesser von 30 mm im Abstand der doppelten Blechdicke angeordnet. Das gehärtete Blech wird aufgelegt und anschließend mit einem Biegeschwert mit Radius 0,2 mm im jeweils gleichen Abstand zu den Auflagern belastet.In this three-point bending test two supports with a diameter of 30 mm are arranged at a distance of twice the sheet thickness. The hardened sheet is placed on top and then loaded with a bending bar with a radius of 0.2 mm at the same distance from the supports.

Gemessen werden die Zeit, der Weg ab Berührung des Biegeschwertes mit der Probe und die Kraft.Time is measured, the distance from touching the flexural strength value with the sample and the force.

Aufgenommen werden Kraft und Weg bzw. eine Kraft-Biege-Winkelkurve, wobei der Winkel aus dem Weg berechnet wird. Das Prüfkriterium ist der Biegewinkel beim Kraftmaximum.The force and displacement or a force-bending angle curve are recorded, the angle being calculated from the path. The test criterion is the bending angle at the force maximum.

Der Vergleich ist in der Figur 2 für einen Stahl Typ 22MnB5 mit einer Beschichtung Z140 zu sehen, aus der man ersehen kann, dass durch die erfindungsgemäß erzeugte duktile Schicht ein erheblich größerer Biegewinkel bei der gehärteten kalten Probe erzielt werden kann.The comparison is in the FIG. 2 for a steel type 22MnB5 with a coating Z140, from which it can be seen that a significantly greater bending angle can be achieved in the cured cold sample by the ductile layer produced according to the invention.

Die Erfindung und der Stand der Technik sind auch in Figur 3 nochmals gegenüber gestellt, wonach im Stand der Technik nach dem Härten zwar eine metallische Beschichtung vorhanden ist, die auf dem gehärteten Substrat haftet, jedoch eine duktile Schicht nicht vorhanden ist.The invention and the prior art are also in FIG. 3 Once again, according to which the prior art after curing, although a metallic coating is present, which adheres to the cured substrate, but a ductile layer is not present.

Bei der Erfindung befindet sich zwischen dem gehärteten Substrat und der Beschichtung nach der Härtereaktion die duktile Schicht 7.In the invention, between the hardened substrate and the coating after the hardening reaction, the ductile layer 7 is located.

Die mittlere Schichtdicke dieser Schicht ist größer als 0,3 µm, wobei die Schicht durchgehend sein kann, aber nicht vollkommen durchgehend sein muss, um den erfindungsgemäßen Erfolg herbeizuführen.The average layer thickness of this layer is greater than 0.3 microns, which layer may be continuous, but need not be completely continuous, to bring about the success of the invention.

Figur 6 zeigt eine rasterelektronische Schliffaufnahme eines erfindungsgemäßen Vergleichsbeispiels. Man erkennt, dass der Zinkanteil aufgrund der Diffusionsvorgänge in Richtung Grundwerkstoff Martensit abrupt abnimmt von ca. 40 % Zn-Anteil auf unter 5 % Zn. FIG. 6 shows a scanning electron micrograph of a comparative example according to the invention. It can be seen that the zinc content decreases abruptly from about 40% Zn content to below 5% Zn due to the diffusion processes in the direction of the base material martensite.

Die Körner der Eisen-Zink Schicht weisen nahe dem Grundwerkstoff nur mehr einen sehr geringen Zinkgehalt auf, diese im Schnittbild weißlich erscheinden Fe-reiche Schicht wirkt als duktile Zwischenschicht zwischen den anderen Schichtkörpern.The grains of the iron-zinc layer have near the base material only a very low zinc content, these appear in the cross-section whitish Fe-rich layer acts as a ductile intermediate layer between the other laminates.

Figur 7 zeigt ein Auschnitt aus Figur 6 mit einem Linien-Zink-Konzentrationsprofil aus einer energiedispersiven Röntgenanalyse(EDX). Dabei wird nochmals deutlich ersichtlich, dass der Zinkgehalt in Richtung des Grundwerkstoffs abnimmt. FIG. 7 shows an excerpt FIG. 6 with a line-zinc concentration profile from an energy-dispersive X-ray analysis (EDX). It is once again clearly evident that the zinc content decreases in the direction of the base material.

Die Figuren 4 und 5 zeigen je eine Schliffaufnahme eines gehärteten Stahlbandes der Erfindung (Figur 4) und des Standes der Technik (Figur 5), wobei im Schliff deutlich das Substrat 1, darüber liegend die umgewandelte metallische Beschichtung 6 und dazwischen liegend die duktile Schicht 7 sichtbar sind.The FIGS. 4 and 5 each show a cross-section of a hardened steel strip of the invention ( FIG. 4 ) and the prior art ( FIG. 5 ), where clearly the substrate in the cut 1, lying over the converted metallic coating 6 and lying between the ductile layer 7 are visible.

Figur 5 zeigt einen Schichtaufbau nach dem Stand der Technik, bei dem ein verzinktes Band 101 ein Stahlsubstrat 102 aus höherfestem Stahl besitzt, auf den eine Zink-Eisen-Schicht 103 aufgebracht ist. Eine duktile Schicht ist nicht vorhanden. FIG. 5 shows a layer structure according to the prior art, in which a galvanized strip 101 has a steel substrate 102 made of high-strength steel, on which a zinc-iron layer 103 is applied. A ductile layer is missing.

Erfindungsgemäß kann der metallische Überzug aus allen gängigen metallischen Überzügen ausgewählt sein, da es lediglich darum geht, einer Entkohlung entgegenzuwirken. Daher können die Beschichtungen reine Aluminium- bzw. Aluminium-Silizium-Beschichtungen als auch Legierungsbeschichtungen aus Aluminium und Zink (Galvalume) als auch Beschichtungen aus Zink oder im Wesentlichen Zink sein. Aber auch andere Überzüge aus Metallen oder Legierungen sind geeignet, wenn sie kurzfristig die hohen Temperaturen bei der Härtung erleiden können.According to the invention, the metallic coating can be selected from all common metallic coatings, since it is only a matter of counteracting a decarburization. Therefore, the coatings may be pure aluminum or aluminum-silicon coatings as well as alloy coatings of aluminum and zinc (Galvalume) as well as coatings of zinc or substantially zinc. But other coatings of metals or alloys are suitable if you can experience the high temperatures during curing in the short term.

Die Beschichtungen können z. B. durch Galvanisieren oder Schmelztauchbeschichten oder PVD- oder CVD-Verfahren aufgebracht sein.The coatings may, for. B. by electroplating or hot dip coating or PVD or CVD method may be applied.

Die Oxidation kann hierbei klassisch dadurch herbeigeführt werden, dass das Band einen direkt beheizten Vorwärmer durchläuft, bei dem Gasbrenner eingesetzt werden und durch eine Veränderung des Gas-Luft-Gemisches eine Erhöhung des Oxidationspotentials in der das Band umgebenden Atmosphäre erzeugt werden kann. Hierdurch kann das Sauerstoffpotential gesteuert werden und zu einer Oxidation des Eisens an der Bandoberfläche führen. Hierbei wird die Steuerung derart durchgeführt, dass eine Oxidation erreicht wird, die deutlich über der Oxidation im Stand der Technik liegt. In einer anschließenden Ofenstrecke wird im Gegensatz zum Stand der Technik die gebildete Eisenoxidschicht bzw. eine gegebenenfalls erzielte innere Oxidation des Stahles nur oberflächlich bzw. teilweise reduziert.The oxidation can hereby be brought about conventionally in that the strip passes through a directly heated preheater in which gas burners are used and an increase of the oxidation potential in the atmosphere surrounding the strip can be produced by a change of the gas-air mixture. As a result, the oxygen potential can be controlled and lead to oxidation of the iron on the strip surface. In this case, the control is carried out in such a way that an oxidation is achieved which is significantly above the oxidation in the prior art. In a subsequent furnace section, in contrast to the prior art, the iron oxide layer formed or an optionally achieved internal oxidation of the steel only superficially or partially reduced.

Darüber hinaus ist es möglich, das Band in einem an sich bekannten RTF-Vorwärmer unter Schutzgasatmosphäre zu glühen, wobei hierbei die Oxidation bzw. Voroxidation ebenfalls erheblich stärker durchgeführt wird, als es an sich notwendig wäre. Die Oxidationsstärke kann hier insbesondere durch die Zufuhr eines Oxidationsmittels eingestellt werden.Moreover, it is possible to anneal the strip in a known RTF preheater under a protective gas atmosphere, wherein in this case the oxidation or pre-oxidation is also carried out considerably more than it would be necessary. The oxidation strength can be adjusted here in particular by the supply of an oxidizing agent.

Darüber hinaus hat sich gezeigt, dass eine Befeuchtung der Ofenatmosphäre, d. h. eine sehr stark wasserdampfhaltige Atmosphäre (stärker als üblich) alleine oder zusammen mit weiteren Oxidationsmitteln den gewünschten Effekt erzielt. Erfindungswesentlich ist, dass die gegebenenfalls nachfolgende Reduktion lediglich so durchgeführt wird, dass eine Restoxidation verbleibt. Bei einer Wärmebehandlung allein mit einer wasserdampfhaltigen Atmosphäre wird der innere Oxidationszustand des Stahls nicht vollständig zurückgeführt.In addition, it has been found that moistening the furnace atmosphere, i. H. a very strong water vapor-containing atmosphere (stronger than usual) alone or together with other oxidizing agents achieved the desired effect. It is essential to the invention that the optionally subsequent reduction is carried out only in such a way that a residual oxidation remains. In a heat treatment alone with a water vapor-containing atmosphere, the internal oxidation state of the steel is not completely returned.

Die Steuerung der Oxidation kann über die Atmosphäre, über eine Oxidationsmittelkonzentration eines gegebenenfalls zugesetzten weiteren Oxidationsmittels, die Behandlungsdauer, die Temperatur, den Temperaturverlauf und den Wasserdampfgehalt im Ofenraum gesteuert werden.The control of the oxidation can be controlled via the atmosphere, via an oxidant concentration of an optionally added further oxidizing agent, the treatment time, the temperature, the temperature profile and the water vapor content in the furnace chamber.

Ein derart behandeltes Band, wie es in den Figuren 3 und 4 dargestellt ist, lässt sich hervorragend und frei von Mikrorissen im Stahlsubstrat kalt formen, aufheizen und presshärten bzw. nachformen aber auch warm umformen und presshärten.Such a treated band, as in the Figures 3 and 4 is excellent, and free of microcracks in the steel substrate cold form, heat and press hardening or reshaping but also hot forming and press hardening.

Dabei hat sich gezeigt, dass die erfindungsgemäße Durchführung der Oxidation - im Gegensatz zur Randentkohlung bei unbeschichtetem Stahlmaterial - keinerlei negativen Einflüsse auf die erzielbare Endfestigkeit des Materials hat.It has been found that the implementation of the invention oxidation - in contrast to the edge decarburization in uncoated Steel material - has no negative effects on the achievable ultimate strength of the material.

Bei der Erfindung ist von Vorteil, dass ein Verfahren und ein Stahlband geschaffen werden, die es in einfacherer und sicherer Weise ermöglichen, die Qualität umgeformter und gehärteter Bauteile aus höherfestem Stahl erheblich zu steigern.An advantage of the invention is the provision of a method and a steel strip which make it possible, in a simpler and safer way, to considerably increase the quality of formed and hardened components made of higher-strength steel.

Bezugszeichen:Reference numerals:

11
Stahlbandsteel strip
22
Oxidschichtoxide
33
Restoxidschichtresidual oxide layer
44
dünne reduzierte Schichtthin reduced layer
55
metallische Beschichtungmetallic coating
66
metallischen Beschichtungmetallic coating
77
helle, duktile Schichtbright, ductile layer
101101
verzinktes Bandgalvanized band
102102
Stahlsubstratsteel substrate
103103
Zink-Eisen-SchichtZinc-iron layer

Claims (12)

  1. Method for producing a hardened component from a hardenable steel, wherein the steel strip is subjected to a temperature increase and, in the process, an oxidizing treatment in a furnace, so that a superficial oxide layer is produced, and a coating with a metal or a metal alloy is then carried out, and, in order to produce an at least partially hardened component, the strip is heated and at least partially austenitized and then cooled off and thus hardened, wherein, in order to produce a superficial ductile layer (7), the oxides at the surface are partially reduced prior to the coating with a metal or a metal alloy, so that a very thin reduced layer (4) is produced, which is located on the residual oxide layer (3), wherein an area of an inner oxidation (3a) is located beneath the oxide layer (3) in the strip, in which the steel-alloy elements are present in a partially oxidized form.
  2. Method according to claim 1, characterised in that a reducing treatment is carried out after producing the superficial oxide layer (3) in order to reverse the oxidation superficially, and a reducing layer (4) is produced on the layer (3), and a coating with a metal or a metal alloy is subsequently carried out, wherein, however, the oxidation and the reduction are carried out such that, after the superficial reduction and the coating, an oxide layer (3) remains between the coating and the steel strip.
  3. Method according to claim 1 or 2, characterised in that the metallic coating is formed as a hot-dip coating with a molten metal or a molten metal alloy or by electrodeposition of one or more metals on the strip or by PVD and/or CVD methods.
  4. Method according to any one of the preceding claims, characterised in that the oxidizing treatment is carried out by means of an oxidizing furnace chamber atmosphere and/or a water-vapour containing furnace chamber atmosphere.
  5. Method according to any one of the preceding claims, characterised in that the degree of oxidation and the oxide layer thickness is adjusted by the content of oxidizing agents in the treatment atmosphere and/or the duration of the treatment and/or the temperature level and/or the water-vapour concentration in the furnace chamber.
  6. Method according to any one of the preceding claims, characterised in that coating is carried out with aluminium or an alloy substantially containing aluminium, or with an alloy from aluminium and zinc, and/or a different zinc alloy substantially containing zinc, and/or zinc and/or other coating metals.
  7. Method according to any one of the preceding claims, characterised in that the furnace chamber in which the oxidation and/or reduction is carried out is directly or indirectly heated.
  8. Method according to any one of the preceding claims, characterised in that the furnace chamber in which the oxidation and/or reduction is carried out is heated by means of gas and/or oil burners and/or convectively, or that the steel strip is heated inductively.
  9. Method according to any one of the preceding claims, characterised in that the oxidation is carried out such that an oxidation layer thickness of more than 300 nm is achieved at the end of the oxidation, and the subsequent reduction is carried out such that the oxide layer is partially reduced from the surface.
  10. Steel strip from a hardenable steel, comprising a steel substrate (1) and a metallic coating applied thereon, wherein an oxidation layer (3) of the steel substrate (1) is present in the boundary area in which the metallic coating (5) is formed overlying the steel substrate (1), and a reduction layer (4) is present on the oxidation layer (3).
  11. Steel strip according to claim 10, characterised in that the metallic coating (5) consists of aluminium or substantially aluminium, an aluminium alloy, an aluminium-zinc-alloy, a zinc alloy substantially containing zinc, a zinc-iron alloy or substantially zinc.
  12. Use of a steel strip according to any one of the claims 10 to 11 for producing press-hardened components in which the component is cold-formed, austenitized and then quench hardened, or austenitized, formed, and quench hardened.
EP08864850A 2007-12-20 2008-12-18 Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor Active EP2220259B9 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007061489A DE102007061489A1 (en) 2007-12-20 2007-12-20 Process for producing hardened hardenable steel components and hardenable steel strip therefor
PCT/EP2008/010850 WO2009080292A1 (en) 2007-12-20 2008-12-18 Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor

Publications (3)

Publication Number Publication Date
EP2220259A1 EP2220259A1 (en) 2010-08-25
EP2220259B1 EP2220259B1 (en) 2012-08-15
EP2220259B9 true EP2220259B9 (en) 2012-12-19

Family

ID=40548658

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08864850A Active EP2220259B9 (en) 2007-12-20 2008-12-18 Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor

Country Status (11)

Country Link
US (1) US9090951B2 (en)
EP (1) EP2220259B9 (en)
JP (1) JP5776961B2 (en)
KR (1) KR20100113492A (en)
CN (1) CN101918599B (en)
BR (1) BRPI0817353B1 (en)
CA (1) CA2705700C (en)
DE (1) DE102007061489A1 (en)
ES (1) ES2393093T3 (en)
MX (1) MX2010005433A (en)
WO (1) WO2009080292A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2474639B1 (en) * 2009-08-31 2019-04-17 Nippon Steel & Sumitomo Metal Corporation High-strength galvannealed steel sheet
DE102009044861B3 (en) 2009-12-10 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product
KR101798257B1 (en) 2010-02-19 2017-11-15 타타 스틸 네덜란드 테크날러지 베.뷔. Strip, sheet or blank suitable for hot forming and process for the production thereof
US9677145B2 (en) * 2011-08-12 2017-06-13 GM Global Technology Operations LLC Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel
CN104379775B (en) * 2012-05-03 2017-03-08 麦格纳国际公司 The automotive component being formed by the metallic plate being coated with nonmetallic coating
WO2014037627A1 (en) 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured
CN103160764A (en) * 2013-03-25 2013-06-19 冷水江钢铁有限责任公司 Single-side continuous hot zinc-plating method for composite strip steel
PT2984198T (en) * 2013-04-10 2021-09-22 Tata Steel Ijmuiden Bv Product formed by hot forming of metallic coated steel sheet, method to form the product, and steel strip
CN105247095B (en) 2013-05-17 2017-07-18 Ak钢铁产权公司 The galvanized steel and production method applied for die quenching
CN103320589B (en) * 2013-06-11 2014-11-05 鞍钢股份有限公司 Method for preventing nickelic steel billet from being oxidized in heating process
DE102013015032A1 (en) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
JP2017066508A (en) 2015-10-02 2017-04-06 株式会社神戸製鋼所 Galvanized steel sheet for hot press and method of producing hot press formed article
DE102015016656A1 (en) * 2015-12-19 2017-06-22 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) A method of making a coated hot worked cured body and a body made by the method
DE102016102344B4 (en) * 2016-02-10 2020-09-24 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
GB201611342D0 (en) * 2016-06-30 2016-08-17 Ge Oil & Gas Uk Ltd Sacrificial shielding
DE102017210201A1 (en) * 2017-06-19 2018-12-20 Thyssenkrupp Ag Process for producing a steel component provided with a metallic, corrosion-protective coating
DE102017211753A1 (en) * 2017-07-10 2019-01-10 Thyssenkrupp Ag Method for producing a press-hardened component
JP6740973B2 (en) * 2017-07-12 2020-08-19 Jfeスチール株式会社 Method for manufacturing hot-dip galvanized steel sheet
DE102018217835A1 (en) 2018-10-18 2020-04-23 Sms Group Gmbh Process for producing a hot-formable steel flat product
DE102018222063A1 (en) * 2018-12-18 2020-06-18 Volkswagen Aktiengesellschaft Steel substrate for the production of a hot-formed and press-hardened sheet steel component as well as a hot-forming process
DE102019108459B4 (en) * 2019-04-01 2021-02-18 Salzgitter Flachstahl Gmbh Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings
WO2023074115A1 (en) * 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member
JP7243949B1 (en) * 2021-10-29 2023-03-22 Jfeスチール株式会社 hot pressed parts

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE435527B (en) 1973-11-06 1984-10-01 Plannja Ab PROCEDURE FOR PREPARING A PART OF Hardened Steel
JPH0627315B2 (en) * 1985-07-01 1994-04-13 川崎製鉄株式会社 Method for producing high-strength alloyed hot-dip galvanized steel sheet
JPH01159318A (en) * 1987-12-16 1989-06-22 Kawasaki Steel Corp Production of middle-carbon low-alloy tough steel
JPH0624860A (en) 1992-07-09 1994-02-01 Kurosaki Refract Co Ltd Production of aluminous porous body
US6087019A (en) * 1996-05-31 2000-07-11 Kawasaki Steel Corporation Plated steel sheet
FR2780984B1 (en) 1998-07-09 2001-06-22 Lorraine Laminage COATED HOT AND COLD STEEL SHEET HAVING VERY HIGH RESISTANCE AFTER HEAT TREATMENT
FR2807447B1 (en) 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
KR100603427B1 (en) * 2000-04-24 2006-07-20 제이에프이 스틸 가부시키가이샤 Galvannealed Sheet Steel
KR100753244B1 (en) * 2001-06-06 2007-08-30 신닛뽄세이테쯔 카부시키카이샤 High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
FR2828888B1 (en) * 2001-08-21 2003-12-12 Stein Heurtey METHOD FOR HOT GALVANIZATION OF HIGH STRENGTH STEEL METAL STRIPS
JP2003193213A (en) * 2001-12-21 2003-07-09 Kobe Steel Ltd Hot dip galvanized steel sheet and galvannealed steel sheet
BRPI0412599B1 (en) 2003-07-29 2016-05-17 Voestalpine Automotive Gmbh method for producing hardened structural parts made of sheet steel plate.
DE102004059566B3 (en) 2004-12-09 2006-08-03 Thyssenkrupp Steel Ag Process for hot dip coating a strip of high strength steel
KR100892815B1 (en) * 2004-12-21 2009-04-10 가부시키가이샤 고베 세이코쇼 Method and facility for hot dip zinc plating
WO2006106999A1 (en) * 2005-03-30 2006-10-12 Nippon Steel Corporation Process for producing hot-dipped hot-rolled steel sheet
EP1826289A1 (en) * 2006-02-28 2007-08-29 Ocas N.V. A steel sheet coated with an aluminium based coating, said sheet having high formability
JP4972775B2 (en) * 2006-02-28 2012-07-11 Jfeスチール株式会社 Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion
DE102007022174B3 (en) 2007-05-11 2008-09-18 Voestalpine Stahl Gmbh Method for creating and removing a temporary protective layer for a cathodic coating

Also Published As

Publication number Publication date
JP5776961B2 (en) 2015-09-09
US20110076477A1 (en) 2011-03-31
BRPI0817353B1 (en) 2017-06-06
WO2009080292A1 (en) 2009-07-02
EP2220259B1 (en) 2012-08-15
MX2010005433A (en) 2010-06-18
EP2220259A1 (en) 2010-08-25
ES2393093T3 (en) 2012-12-18
CN101918599A (en) 2010-12-15
CN101918599B (en) 2016-06-01
US9090951B2 (en) 2015-07-28
BRPI0817353A2 (en) 2015-03-31
CA2705700A1 (en) 2009-07-02
CA2705700C (en) 2016-04-26
JP2011508824A (en) 2011-03-17
KR20100113492A (en) 2010-10-21
DE102007061489A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
EP2220259B9 (en) Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor
EP2656187B1 (en) Method for producing hardened structural elements
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
DE102011053939B4 (en) Method for producing hardened components
WO2015036151A1 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
WO2005021820A1 (en) Method for producing a hardened profile part
AT412878B (en) Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection useful in the production of hardened steel sections, e.g. for automobile construction
DE102010056265B3 (en) Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating
EP3250727B2 (en) Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet
WO2016078644A1 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
WO2011069906A2 (en) Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
EP3303647B1 (en) Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
WO2023074114A1 (en) Hot-pressed member
EP3867058A1 (en) Method for producing a heat-formable flat steel product
DE102017002385A1 (en) Method and body semi-finished for producing a body component for a motor vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20100428

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MANZENREITER, THOMAS

Inventor name: KURZ, THOMAS

Inventor name: BRANDSTAETTER, WERNER

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: STRUTZENBERGER, JOHANN

Inventor name: PERUZZI, MARTIN

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20111124

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502008007988

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0008020000

Ipc: C23C0002280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 2/12 20060101ALI20120103BHEP

Ipc: C21D 8/02 20060101ALI20120103BHEP

Ipc: C23C 2/02 20060101ALI20120103BHEP

Ipc: C23C 2/06 20060101ALI20120103BHEP

Ipc: C23C 2/28 20060101AFI20120103BHEP

Ipc: C21D 1/68 20060101ALI20120103BHEP

Ipc: C21D 9/46 20060101ALI20120103BHEP

Ipc: C21D 9/48 20060101ALI20120103BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 570901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008007988

Country of ref document: DE

Effective date: 20121011

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2393093

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20121218

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502008007988

Country of ref document: DE

Representative=s name: NAEFE, JAN ROBERT, DIPL.-ING., DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121115

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121217

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130516

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121115

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008007988

Country of ref document: DE

Effective date: 20130516

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081218

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230102

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231206

Year of fee payment: 16

Ref country code: SE

Payment date: 20231227

Year of fee payment: 16

Ref country code: NL

Payment date: 20231226

Year of fee payment: 16

Ref country code: IT

Payment date: 20231220

Year of fee payment: 16

Ref country code: FR

Payment date: 20231227

Year of fee payment: 16

Ref country code: AT

Payment date: 20231204

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231227

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231229

Year of fee payment: 16