EP3215656B1 - Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets - Google Patents

Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets Download PDF

Info

Publication number
EP3215656B1
EP3215656B1 EP15791573.7A EP15791573A EP3215656B1 EP 3215656 B1 EP3215656 B1 EP 3215656B1 EP 15791573 A EP15791573 A EP 15791573A EP 3215656 B1 EP3215656 B1 EP 3215656B1
Authority
EP
European Patent Office
Prior art keywords
layer
zinc
nickel
manganese
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15791573.7A
Other languages
German (de)
French (fr)
Other versions
EP3215656A1 (en
Inventor
Siegfried Kolnberger
Ernst Commenda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP3215656A1 publication Critical patent/EP3215656A1/en
Application granted granted Critical
Publication of EP3215656B1 publication Critical patent/EP3215656B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0478Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/026Deposition of sublayers, e.g. adhesion layers or pre-applied alloying elements or corrosion protection
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • C23C28/025Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/625Discontinuous layers, e.g. microcracked layers
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Definitions

  • the invention relates to a method for producing a corrosion protection coating for hardenable steel sheets and a corrosion protection layer for hardenable steel sheets.
  • a steel strip is produced from a steel material by hot rolling and usually also subsequent cold rolling and the steel strip is subsequently continuously galvanized.
  • the usual galvanizing in this case is the hot dip galvanizing, in which the steel strip is passed through a trough with liquid zinc, wherein the liquid zinc adheres to the steel, the galvanized steel strip is usually conveyed vertically from the trough and then superfluous zinc is stripped with Abstreiferdüsen and the tape then optionally subjected to a heat treatment.
  • the galvanized steel strip thus produced is then usually placed in coils, i. wound up.
  • the boards are formed in a conventional manner in a multi-stage process, and in particular deep-drawn until the component is molded in its final appearance.
  • the component is formed smaller in all three spatial directions about 2% smaller, to take into account a subsequent thermal expansion.
  • this sheet metal component is heated to an austenitizing temperature, ie a temperature above Ac 3 and optionally held until the steel material is present in the austenitic phase.
  • the heated sheet steel component is transferred to a mold hardening tool and held in the mold hardening tool, in which the heated sheet steel component is usually used form-fitting, pressed by a die and a male part, but not substantially reshaped.
  • the steel component Due to the abutment of the die and the male part, which may also be cooled, the steel component is cooled at a speed above the critical hardening rate, resulting in a transformation of the austenite substantially to martensite and results in a high hardness of the component.
  • the board is heated directly to a temperature required for curing above Ac 3 and optionally held and then formed in a tool consisting of female and male in a single-stage stroke and cooled simultaneously by the concern of the tool on the workpiece so quickly that the curing outlined above occurs.
  • This process is called press hardening.
  • Form hardening is superior to press hardening in terms of the possible geometries of a component, since more complicated or more complex spatial forms can be realized in a multi-stage forming process, wherein only comparatively simple geometries can be produced during single-stage forming press hardening.
  • Example 5 discloses a steel plate having a first layer of zinc or a zinc alloy and a second layer of nickel or cobalt. The first layer is over a melt immersion method, wherein the second layer is electrodeposited.
  • the EP 2 602 359 A1 relates to press hardening of coated steels, wherein the steels are coated from nickel and a zinc-nickel layer, wherein both layers are applied electrolytically.
  • WO 2005/021820 A1 is a press hardening of boards of a hardenable steel alloy and in particular a 22MnB5 known, wherein the board may be formed with an electrodeposited zinc layer and a second layer of an oxygen-affine element.
  • From the DE 10 2010 030 465 A1 is a method for producing a provided with a corrosion protection coating and formed of a high-strength sheet steel material formed sheet metal part known.
  • This method comprises the steps of forming a provided starting sheet material to a sheet metal part, forming the anti-corrosion coating by electrolytic application of a zinc-nickel coating on the sheet metal part, wherein at the beginning of the coating process First, a thin nickel layer is deposited, which further prevents hydrogen embrittlement of the steel sheet material.
  • a hot-formed and in particular press-hardened sheet metal part made of a high-strength sheet steel material with an electrolytically applied zinc-nickel coating is known from this. The purpose of this is to provide the nickel layer as a barrier to hydrogen typically introduced into the steel sheet material during electrolytic plating.
  • the EP 0 364 596 B1 relates to a process for the production of zinc-nickel alloy-coated thin sheets with good Pressverformeigenschaften, wherein the formability of such sheets is to be improved by a zinc-nickel alloy coating.
  • the layer is to be deposited with about 30 g / m 2 and a nickel content of 12.5%.
  • the object of the invention is to provide a method for producing hardened sheet steel components.
  • a multilayer anticorrosion layer is produced on a steel sheet, wherein either a very thin nickel layer of 1 .mu.m is deposited electrolytically on the steel and then a zinc layer is likewise deposited electrolytically on the nickel layer, or the thin nickel layer is formed on the steel sheet via an electrolytic deposition and then a zinc layer is applied via hot dip galvanizing.
  • a nickel-containing layer is applied to a normal hot-dip galvanized sheet steel strip via a corresponding after-treatment (coater).
  • the nickel layer has a thickness of approximately 1 ⁇ m when applied as the first layer by means of electrolytic deposition.
  • the outer nickel-containing layer is about 250 nm to 700 nm thick.
  • the nickel in no form forms a barrier against the ingress of liquid zinc to the steel, but rather the nickel reacts very quickly with the zinc and also with iron. that the melting point of the entire corrosion protection layer increases sharply, since instead of zinc-iron- ⁇ -phases zinc-nickel-iron phases are increasingly formed, which have a much higher melting point. This achieves that at the temperatures that are hot worked and quench hardened, there are no liquid phases that could interact with the austenite. This is also the reason why, according to the invention, an externally applied nickel layer acts in a comparable manner, with the nickel which is deposited on the outermost surface diffusing into the corrosion protection layer so rapidly that the increase in the melting point is ensured.
  • nickel instead of nickel, or layers based on nickel, other elements which form intermetallic-less noble phases with Zn or Fe and have a higher oxidation potential than Zn, such as Cu, Co, Mn or Mo, may be used, since manganese, Molybdenum, cobalt and copper the same effects can be achieved. "Based on” here means that these elements predominantly (> 50 wt .-%) are included, but other elements are present as alloying elements. Both nickel and cobalt as well as manganese or copper do not act as a physical barrier against the diffusion of zinc and iron, but are dissolved and incorporated into the molten zinc and zinc-iron phases. In the case of a previously applied nickel layer and subsequent hot-dip galvanizing, the nickel is at least already dissolved by the zinc melt during galvanizing.
  • phase structure forms a similar phase structure of the layer as in pure hot-dip galvanized layers (phs-Ultraform), but this phase structure is zinc-rich or has a greater proportion of ⁇ phases. That these phases are more zinc-rich, is advantageous for the cathodic corrosion protection performance of the layer.
  • the method according to the invention for producing sheet steel components may be either a press hardening method or a shape hardening method, that is, a method in which a sheet steel member is heated and then quench hardened in a tool (mold hardening), or a method in which a board is single stage formed and quench hardened (press hardening).
  • a boron-manganese steel is used as the steel material for press-hardening or mold-hardening, in which, with regard to the transformation of the austenite into other phases, the transformation can shift into deeper regions and martensite is formed.
  • the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are present.
  • steel assemblies have proved to be suitable as follows (all figures in weight percent): Carbon (C) from 0.08 to 0.34 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chrome (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) ⁇ 0.007 Boron (B) 0.002-0.006 Phosphorus (P) ⁇ 0.01 Sulfur (S) ⁇ 0.01 Molybdenum (Mo) ⁇ 1
  • the conventional steels 22MnB5 or 20MnB8 are suitable.
  • a corrosion protection layer according to the invention is a multilayer corrosion protection layer, wherein a plurality of nickel layers and a plurality of zinc layers are applied to a substrate of a hardenable steel material. Instead of a nickel layer, a manganese or copper layer can also be applied.
  • the nickel, copper or manganese layer is preferably applied electrolytically.
  • the zinc layer can be applied electrolytically or by a hot dip process.
  • Another possibility is to apply the zinc layer as a first layer electrolytically or by hot dip method and then apply a nickel layer thereon to the outermost surface and in particular to deposit it electrolytically.
  • nickel refers to other elements that form intermetallic-less noble phases with Zn or Fe and have a higher oxidation potential than Zn, such as Cu, Co, Mn, or Mo.
  • the element nickel is hereby also used for copper and manganese.
  • Fig. 1 One recognizes a light-microscopic etched cut representation of a layer on a steel substrate. In Fig. 2 this is shown enlarged again.
  • a 1 micron thick nickel intermediate layer is first applied to the steel substrate and then hot-dip galvanized, wherein the hot dip galvanizing the nickel intermediate layer was dissolved in the zinc bath.
  • a two-phase structure with a light phase which is interspersed with dark areas, is formed on the surface of the steel substrate ( Fig. 6 ). This was annealed at 870 ° C in a 1 micron thick intermediate nickel layer, then was waited for 45 s, added a transfer time of 5 s and then a cooling in a press.
  • Fig. 6 One shift after Fig. 6 was measured with an EDX element distribution, whereby here too a nickel support layer is present as a preparation aid on the sample.
  • the slice cut that was measured is in Fig. 7 shown.
  • Zinc shows that it is highly enriched in the light phase, while it is present in much lower concentrations in the dark areas, so that apparently there is an iron-rich phase as nodules or roundish accumulation in a zinc matrix.
  • the nickel ( Fig. 10 ) is still very weakly recognizable in the bright zinc matrix, but is obviously not present in the iron-rich nodules, whereas aluminum ( Fig. 11 ) is distributed relatively evenly throughout the layer, albeit with enrichments in the iron-rich phases.
  • Manganese which is present in the base steel material, is scarcely present in the entire layer and can only be detected in the substrate.
  • the element distribution was measured in depth with a so-called EDX line scan ( Fig. 13 ).
  • the scan already starts in the nickel backing layer and goes deep into the steel base material.
  • the result is as in Fig. 14 you can see a corresponding distribution of the elements.
  • the nickel peak is initially close to 100%, which is because the scan already starts in the nickel preparation layer. Subsequently, the nickel content drops, and it can be seen that the nickel content is significantly lower in the dark iron-rich zones than in the bright zinc-rich phases. Accordingly, starting from the outer one Surface iron content is very low and is about 10% and increases significantly in the dark iron-rich phase, to then reach its maximum in the steel matrix.
  • the content of iron is inversely related to the zinc content, which was to be expected according to the two-phase formation.
  • the invention thus makes it possible to influence the corrosion protection layer based on zinc via an additional nickel layer, such that this layer evidently forms faster solid phases during cooling, which then do not react with the austenite of the steel substrate during forming.
  • the invention Compared with a zinc-nickel layer deposited uniformly via electrolysis, the invention has the advantage that it allows a mixed application in electrolytic and hot-dip coating processes. Furthermore, the nickel layer can be easily applied to conventional, already hot-dip galvanized sheets, for which purpose both electrolytic coatings can be used as well as other coating methods, for. B. roll application, i. a roll coating method, such as a coil coating method, in which a nickel-containing layer having a thickness of 250 nm to 700 nm is applied.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen einer Korrosionsschutzbeschichtung für härtbare Stahlbleche und eine Korrosionsschutzschicht für härtbare Stahlbleche.The invention relates to a method for producing a corrosion protection coating for hardenable steel sheets and a corrosion protection layer for hardenable steel sheets.

Für das Härten von Stahlblechen bzw. das Erzeugen von Stahlblechbauteilen aus Stahlblech, die gehärtet sind, und insbesondere Karossieriebauteile, gibt es derzeit zwei gängige Verfahren.For the hardening of steel sheets or the production of sheet steel components made of sheet steel, which are hardened, and in particular Karossieriebauteile, there are currently two common methods.

Beiden Verfahren gemeinsam ist, dass aus einem Stahlmaterial durch Warmwalzen und üblicherweise auch anschließendes Kaltwalzen ein Stahlband erzeugt wird und das Stahlband anschließend kontinuierlich verzinkt wird. Das übliche Verzinkungsverfahren ist hierbei das Feuerverzinken, bei dem das Stahlband durch einen Trog mit flüssigem Zink geführt wird, wobei das flüssige Zink am Stahl anhaftet, das verzinkte Stahlband üblicherweise vertikal aus dem Trog gefördert wird und anschließend überflüssiges Zink mit Abstreiferdüsen abgestreift wird und das Band danach gegebenenfalls einer Wärmebehandlung unterzogen wird. Das so erzeugte verzinkte Stahlband wird dann üblicherweise in Coils, d.h. aufgespult ausgeliefert.Common to both methods is that a steel strip is produced from a steel material by hot rolling and usually also subsequent cold rolling and the steel strip is subsequently continuously galvanized. The usual galvanizing in this case is the hot dip galvanizing, in which the steel strip is passed through a trough with liquid zinc, wherein the liquid zinc adheres to the steel, the galvanized steel strip is usually conveyed vertically from the trough and then superfluous zinc is stripped with Abstreiferdüsen and the tape then optionally subjected to a heat treatment. The galvanized steel strip thus produced is then usually placed in coils, i. wound up.

Um nun aus diesem Stahlband gehärtete Stahlblechbauteile zu erzeugen, werden aus dem Stahlband Platinen einer gewünschten Größe ausgestanzt und diese Platinen dann auf zwei unterschiedliche Arten weiterverarbeitet.In order to produce hardened steel sheet components from this steel strip, blanks of a desired size are punched out of the steel strip and these blanks are then further processed in two different ways.

Bei einem ersten Verfahren werden die Platinen in an sich üblicher Weise in einem mehrstufigen Prozess umgeformt und insbesondere tiefgezogen, bis das Bauteil in seiner endgültigen Erscheinungsform ausgeformt ist. Hierbei wird jedoch üblicherweise das Bauteil in allen drei Raumrichtungen etwa 2 % kleiner ausgebildet, um eine anschließende Wärmedehnung zu berücksichtigen. Anschließend wird dieses Blechbauteil auf eine Austenitisierungstemperatur, d. h. eine Temperatur oberhalb Ac3 aufgeheizt und gegebenenfalls gehalten, bis der Stahlwerkstoff in der austenitischen Phase vorliegt. Anschließend wird das erhitzte Stahlblechbauteil in ein Formhärtewerkzeug überführt und in dem Formhärtewerkzeug, in welches das erhitzte Stahlblechbauteil üblicherweise formschlüssig einsetzbar ist, von einer Matrize und einer Patrize gepresst gehalten, jedoch nicht wesentlich umgeformt. Durch das Anliegen der Matrize und der Patrize, die auch gekühlt sein können, wird das Stahlbauteil mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt, was in einer Umwandlung des Austenits im Wesentlich zu Martensit resultiert und eine hohe Härte des Bauteils ergibt.In a first method, the boards are formed in a conventional manner in a multi-stage process, and in particular deep-drawn until the component is molded in its final appearance. In this case, however, usually the component is formed smaller in all three spatial directions about 2% smaller, to take into account a subsequent thermal expansion. Subsequently, this sheet metal component is heated to an austenitizing temperature, ie a temperature above Ac 3 and optionally held until the steel material is present in the austenitic phase. Subsequently, the heated sheet steel component is transferred to a mold hardening tool and held in the mold hardening tool, in which the heated sheet steel component is usually used form-fitting, pressed by a die and a male part, but not substantially reshaped. Due to the abutment of the die and the male part, which may also be cooled, the steel component is cooled at a speed above the critical hardening rate, resulting in a transformation of the austenite substantially to martensite and results in a high hardness of the component.

Bei einem zweiten bekannten Verfahren wird die Platine direkt auf eine zum Härten notwendige Temperatur oberhalb Ac3 aufgeheizt und gegebenenfalls gehalten und anschließend in einem Werkzeug bestehend aus Matrize und Patrize in einem einstufigen Hub umgeformt und gleichzeitig durch das Anliegen des Werkzeugs am Werkstück so rasch abgekühlt, dass die oben skizzierte Härtung eintritt. Dieses Verfahren wird Presshärten genannt.In a second known method, the board is heated directly to a temperature required for curing above Ac 3 and optionally held and then formed in a tool consisting of female and male in a single-stage stroke and cooled simultaneously by the concern of the tool on the workpiece so quickly that the curing outlined above occurs. This process is called press hardening.

Das Formhärten ist dem Presshärten, was die möglichen Geometrien eines Bauteils betrifft überlegen, da in einem mehrstufigen Umformprozess kompliziertere oder komplexere Raumformen realisierbar sind, wobei während des einstufig umformenden Presshärtens nur vergleichsweise einfache Geometrien erzeugbar sind.Form hardening is superior to press hardening in terms of the possible geometries of a component, since more complicated or more complex spatial forms can be realized in a multi-stage forming process, wherein only comparatively simple geometries can be produced during single-stage forming press hardening.

Endergebnis beider Verfahren ist jedoch ein gehärtetes Stahlblechbauteil.However, the end result of both processes is a hardened sheet steel component.

Übliche Materialien für diese Stahlblechbauteile sind sogenannte Bor-Mangan-Stähle, insbesondere der hierfür am weitesten verbreitete 22MnB5.Common materials for these sheet steel components are so-called boron-manganese steels, in particular the 22MnB5 most widely used for this purpose.

Es ist bekannt, dass insbesondere beim Presshärteverfahren Probleme dahingehend auftreten können, dass flüssiges Zink mit dem im Stahlmaterial vorhandenen Austenit bei hohen Temperaturen Wechselwirkungen eingeht, die noch nicht ganz erklärbar sind, aber dazu führen, dass sich in den stark umgeformten Bereichen Risse bilden. Dieses Phänomen wird als sogenanntes "liquid metal embrittlement" bezeichnet.It is known that, in particular in the press hardening process, problems can arise in that liquid zinc interacts with the austenite present in the steel material at high temperatures which are not yet completely explainable, but cause cracks to form in the strongly deformed areas. This phenomenon is referred to as so-called "liquid metal embrittlement".

Es wurde bereits versucht diesem Phänomen dadurch entgegenzutreten, dass umwandlungsverzögerte Stahlsorten verwendet werden, welche auf hoher Temperatur austenitisiert werden, anschließend zwischengekühlt werden und durch dieses Zwischenkühlen Temperaturen erreichen, die unter der Schmelztemperatur der Zinkphasen in der Beschichtung liegen, und erst dann die Umformung durchzuführen. Durch die Umwandlungsverzögerung liegt selbst bei diesen relativ niedrigen Temperaturen das Eisen noch als Austenit vor, so dass eine zuverlässige Abschreckhärtung erzielt werden kann.It has already been attempted to counteract this phenomenon by using conversion-delayed steel grades which are austenitized at high temperature, then intercooled and, as a result of this intermediate cooling, reach temperatures below the melting temperature of the zinc phases in the coating, and only then carry out the transformation. Due to the conversion delay, even at these relatively low temperatures, the iron is still present as austenite, so that reliable quench hardening can be achieved.

Aus der EP 1 439 240 A1 ist ein Verfahren zum Press- bzw. Formhärten von beschichteten Stählen bekannt. In Beispiel 5 wird eine Stahlplatine mit einer ersten Schicht aus Zink oder einer Zink-Legierung und einer zweiten Schicht aus Nickel oder Kobalt offenbart. Die erste Schicht wird über ein Schmelz tauchverfahren aufgebracht, wobei die zweite Schicht elektrolytisch abgeschieden wird.From the EP 1 439 240 A1 is a method for press or form hardening of coated steels known. Example 5 discloses a steel plate having a first layer of zinc or a zinc alloy and a second layer of nickel or cobalt. The first layer is over a melt immersion method, wherein the second layer is electrodeposited.

Die EP 2 602 359 A1 betrifft das Presshärten von beschichteten Stählen, wobei die Stähle aus Nickel und einer Zink-Nickelschicht beschichtet sind, wobei beide Schichten elektrolytisch aufgebracht werden.The EP 2 602 359 A1 relates to press hardening of coated steels, wherein the steels are coated from nickel and a zinc-nickel layer, wherein both layers are applied electrolytically.

Aus der WO 2005/021820 A1 ist ein Press- bzw. Formhärten von Platinen aus einer härtbaren Stahllegierung und insbesondere einem 22MnB5 bekannt, wobei die Platine mit einer elektrolytisch abgeschiedenen Zinkschicht und einer zweiten Schicht aus einem sauerstoffaffinen Element ausgebildet sein kann.From the WO 2005/021820 A1 is a press hardening of boards of a hardenable steel alloy and in particular a 22MnB5 known, wherein the board may be formed with an electrodeposited zinc layer and a second layer of an oxygen-affine element.

Aus der DE 10 2010 030 465 A1 ist ein Verfahren zum Herstellen eines mit einer Korrosionsschutzbeschichtung versehenen und aus einem höherfesten Stahlblechmaterial gebildeten Blechformteils bekannt. Dieses Verfahren umfasst die Schritte Umformen eines bereitgestellten Ausgangsblechmaterials zu einem Blechformteil, Ausbildung der Korrosionsschutzbeschichtung durch elektrolytisches Aufbringen einer Zink-Nickel-Beschichtung auf das Blechformteil, wobei zu Beginn des Beschichtungsvorganges zunächst eine dünne Nickelschicht abgeschieden wird, die im Weiteren eine Wasserstoffversprödung des Stahlblechmateriales verhindert. Ferner ist hieraus ein warmumgeformtes und insbesondere pressgehärtetes Blechformteil aus einem höherfesten Stahlblechmaterial mit einer elektrolytisch aufgebrachten Zink-Nickel-Beschichtung bekannt. Der Sinn hierbei ist, die Nickelschicht als Barriere gegen in das Stahlblechmaterial typischerweise beim elektrolytischen Beschichten eingebrachten Wasserstoff vorzusehen.From the DE 10 2010 030 465 A1 is a method for producing a provided with a corrosion protection coating and formed of a high-strength sheet steel material formed sheet metal part known. This method comprises the steps of forming a provided starting sheet material to a sheet metal part, forming the anti-corrosion coating by electrolytic application of a zinc-nickel coating on the sheet metal part, wherein at the beginning of the coating process First, a thin nickel layer is deposited, which further prevents hydrogen embrittlement of the steel sheet material. Furthermore, a hot-formed and in particular press-hardened sheet metal part made of a high-strength sheet steel material with an electrolytically applied zinc-nickel coating is known from this. The purpose of this is to provide the nickel layer as a barrier to hydrogen typically introduced into the steel sheet material during electrolytic plating.

Aus der EP 2 290 133 B1 ist ein Verfahren zum Herstellen eines mit einem metallischen, vor Korrosion schützenden Überzug versehen Stahlbauteils bekannt und das Stahlbauteil selber. Hiermit soll ein in der Praxis einfach durchzuführendes Verfahren geschaffen werden, das es erlaubt mit vergleichbar geringem Aufwand ein Stahlbauteil herzustellen, das mit einem gut haftenden und sicher vor Korrosion schützenden metallischen Überzug versehen ist, da angegeben wird, dass Zinküberzüge auf den Stahlblechsorten zum Warmpresshärten nicht gut haften. Ferner sollen bekannte Überzüge durch Oxidation der Oberfläche eine schlechte Lackhaftung besitzen. Nach diesem Dokument soll die aufgebrachte Korrosionsschutzschicht eine elektrolytisch aufgebrachte γ-ZnNi-Phase sein, welche anschließend vorgenommene Erhitzungsoperationen zum Zwecke der Austenitisierung gut vertragen soll.From the EP 2 290 133 B1 For example, there is known a method for producing a steel component provided with a metallic, corrosion-protective coating and the steel component itself. This is to provide a simple to implement in practice method is created, which allows to produce a steel component with comparatively little effort, which is provided with a well-adherent and safe from corrosion protective metallic coating, since it is stated that zinc coatings on the steel sheet for hot press hardening not adhere well. Furthermore, known coatings by oxidation of the surface should have a poor paint adhesion. According to this document, the applied anticorrosion layer should be an electrolytically applied γ-ZnNi phase, which should then well tolerate heating operations carried out for the purpose of austenitizing.

Die EP 0 364 596 B1 betrifft ein Verfahren zur Herstellung von mit Zink-Nickel-Legierung beschichteten Feinblechen mit guten Pressverformeigenschaften, wobei die Umformbarkeit derartiger Bleche durch eine Zink-Nickel-Legierungsbeschichtung verbessert werden soll. Die Schicht soll dabei mit etwa 30 g/m2 und einem Nickelgehalt von 12,5 % abgeschieden werden.The EP 0 364 596 B1 relates to a process for the production of zinc-nickel alloy-coated thin sheets with good Pressverformeigenschaften, wherein the formability of such sheets is to be improved by a zinc-nickel alloy coating. The layer is to be deposited with about 30 g / m 2 and a nickel content of 12.5%.

Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen gehärteter Stahlblechbauteile zu schaffen.The object of the invention is to provide a method for producing hardened sheet steel components.

Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a method having the features of claim 1.

Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the subclaims.

Es ist eine weitere Aufgabe der Erfindung, ein Korrosionsschutzmaterial für härtbare Stahlbleche zu schaffen, welche bei gutem kathodischen Korrosionsschutz das liquid metal embrittlement vermindert oder sogar verhindert.It is a further object of the invention to provide a corrosion protection material for hardenable steel sheets, which reduces or even prevents the liquid metal embrittlement with good cathodic protection against corrosion.

Die Aufgabe wird mit einem Korrosionsschutzmaterial mit den Merkmalen des Anspruchs 10 gelöst.The object is achieved with a corrosion protection material having the features of claim 10.

Vorteilhafte Weiterbildungen sind in hiervon abhängigen Unteransprüchen gekennzeichnet.Advantageous developments are characterized in dependent claims.

Erfindungsgemäß wird eine mehrschichtige Korrosionsschutzschicht auf einem Stahlblech erzeugt, wobei hierbei entweder eine sehr dünne Nickelschicht von 1 µm elektrolytisch auf dem Stahl abgeschieden wird und anschließend eine Zinkschicht ebenfalls elektrolytisch auf der Nickelschicht abgeschieden wird, oder die dünne Nickelschicht über eine elektrolytische Abscheidung auf dem Stahlblech ausgebildet wird und anschließend eine Zinkschicht über Feuerverzinkung aufgebracht wird. Eine weitere Möglichkeit ist, auf ein normales feuerverzinktes Stahlblechband über eine entsprechende Nachbehandlung (coater) eine nickelhaltige Schicht aufzutragen.According to the invention, a multilayer anticorrosion layer is produced on a steel sheet, wherein either a very thin nickel layer of 1 .mu.m is deposited electrolytically on the steel and then a zinc layer is likewise deposited electrolytically on the nickel layer, or the thin nickel layer is formed on the steel sheet via an electrolytic deposition and then a zinc layer is applied via hot dip galvanizing. Another possibility is to apply a nickel-containing layer to a normal hot-dip galvanized sheet steel strip via a corresponding after-treatment (coater).

Die Nickelschicht hat erfindungsgemäß etwa 1 µm Dicke, wenn sie über elektrolytische Abscheidung als erste Schicht aufgebracht wird.According to the invention, the nickel layer has a thickness of approximately 1 μm when applied as the first layer by means of electrolytic deposition.

Wird eine feuerverzinkte Zinkschicht nachbehandelt, besitzt die äußere nickelhaltige Schicht etwa 250 nm bis 700 nm Dicke.When a galvanized zinc layer is post-treated, the outer nickel-containing layer is about 250 nm to 700 nm thick.

Erfindungsgemäß hat sich überraschend herausgestellt, dass bei der erfindungsgemäßen Beschichtung bzw. dem erfindungsgemäßen Schichtaufbau das Nickel in keiner Form eine Barriere gegen den Zutritt von flüssigem Zink zu dem Stahl bildet, vielmehr scheint das Nickel sehr schnell mit dem Zink und auch Eisen so zu reagieren, dass der Schmelzpunkt der gesamten Korrosionsschutzschicht sprunghaft ansteigt, da anstelle von Zink-Eisen-Γ-Phasen vermehrt Zink-Nickel-Eisen-Phasen gebildet werden, welche einen deutlich höheren Schmelzpunkt besitzen. Hierdurch wird erreicht, dass bei den Temperaturen, bei denen warmumgeformt und abschreckgehärtet wird, keine flüssigen Phasen vorliegen, die mit dem Austenit in Wechselwirkung treten könnten. Dies ist auch der Grund, warum erfindungsgemäß eine äußere aufgebrachte Nickelschicht in vergleichbarer Weise wirkt, wobei das Nickel, welches an der äußersten Oberfläche abgeschieden ist, derart schnell in die Korrosionsschutzschicht hineindiffundiert, dass die Erhöhung des Schmelzpunktes sichergestellt ist.According to the invention, it has surprisingly been found that in the coating according to the invention or the layer structure according to the invention the nickel in no form forms a barrier against the ingress of liquid zinc to the steel, but rather the nickel reacts very quickly with the zinc and also with iron. that the melting point of the entire corrosion protection layer increases sharply, since instead of zinc-iron-Γ-phases zinc-nickel-iron phases are increasingly formed, which have a much higher melting point. This achieves that at the temperatures that are hot worked and quench hardened, there are no liquid phases that could interact with the austenite. This is also the reason why, according to the invention, an externally applied nickel layer acts in a comparable manner, with the nickel which is deposited on the outermost surface diffusing into the corrosion protection layer so rapidly that the increase in the melting point is ensured.

Erfindungsgemäß können anstelle von Nickel, oder Schichten auf Basis von Nickel, auch andere Elemente, die mit Zn oder Fe intermetallisch unedlere Phasen bilden und ein höheres Oxidationspotenzial haben als Zn, etwa Cu, Co, Mn oder Mo, verwendet werden, da durch Mangan, Molybdän, Kobalt und Kupfer die gleichen Effekte erzielt werden. "Auf Basis" bedeutet hierbei, dass diese Elemente überwiegend (> 50 Gew.-%) enthalten sind, aber weitere Elemente als Legierungselemente vorhanden sind. Sowohl Nickel und Kobalt als auch Mangan oder Kupfer wirken nicht als physische Barriere gegen die Diffusion zwischen Zink und Eisen, sondern werden in der Zinkschmelze und in Zink-Eisen-Phasen gelöst und eingebaut. Bei einer zuvor aufgebrachten Nickelschicht und einer anschließenden Feuerverzinkung wird das Nickel bereits beim Verzinken von der Zinkschmelze zumindest angelöst.According to the invention, instead of nickel, or layers based on nickel, other elements which form intermetallic-less noble phases with Zn or Fe and have a higher oxidation potential than Zn, such as Cu, Co, Mn or Mo, may be used, since manganese, Molybdenum, cobalt and copper the same effects can be achieved. "Based on" here means that these elements predominantly (> 50 wt .-%) are included, but other elements are present as alloying elements. Both nickel and cobalt as well as manganese or copper do not act as a physical barrier against the diffusion of zinc and iron, but are dissolved and incorporated into the molten zinc and zinc-iron phases. In the case of a previously applied nickel layer and subsequent hot-dip galvanizing, the nickel is at least already dissolved by the zinc melt during galvanizing.

Bei einer Standardglühung zum Zwecke der Austenitisierung und anschließenden Umformung konnte festgestellt werden, dass sich eine ähnliche Phasenstruktur der Schicht ausbildet wie bei reinen feuerverzinkten Schichten (phs-Ultraform), wobei diese Phasenstruktur jedoch zinkreicher ist bzw. einen größeren Anteil an Γ-Phasen besitzt. Dass diese Phasen zinkreicher sind, ist für die kathodische Korrosionsschutzleistung der Schicht vorteilhaft.In a standard annealing for the purpose of austenitizing and subsequent forming could be found that forms a similar phase structure of the layer as in pure hot-dip galvanized layers (phs-Ultraform), but this phase structure is zinc-rich or has a greater proportion of Γ phases. That these phases are more zinc-rich, is advantageous for the cathodic corrosion protection performance of the layer.

Dies wird noch dadurch unterstützt, dass sich eine sehr zinkreiche oberflächennahe Schicht bildet, die bei üblichen Feuerverzinkungsschichten bei der Standardglühung ohne Nickelzwischenschicht nicht beobachtet wird.This is further supported by the fact that a very zinc-rich near-surface layer is formed, which is not observed in standard hot-dip galvanizing in the standard annealing without nickel interlayer.

Die positive Wirkung des Nickels in der Schicht bzw. als separat aufgebrachte elektrolytische Schicht ergibt bei der Betrachtung von Biegeproben. Die Bildung von Rissen durch das liquid metal embrittlement wird eindrucksvoll verringert.The positive effect of the nickel in the layer or as a separately applied electrolytic layer results in the consideration of bending samples. The formation of cracks by the liquid metal embrittlement is impressively reduced.

Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert. Es zeigen dabei:

Figur 1:
eine lichtmikroskopische geätzte Schliffaufnahme eines Stahlblechs mit einer Beschichtung, wobei auf einer 1 µm dicken Nickel-Zwischenschicht eine feuerverzinkte Schicht aufgebracht wurde;
Figur 2:
die Schicht nach Fig. 1 in einer vergrößerten Darstellung;
Figur 3:
eine Schicht nach Fig. 1, wobei durch EDX element mapping die Elemente Eisen, Zink, Nickel und Aluminium in ihrer Verteilung bei einer 1 µm dicken aufgebrachten Nickelzwischenschicht dargestellt sind;
Figur 4:
ein Schliffbild der Beschichtung mit einer 0,5 µm dicken Nickelschicht und einer 10 µm dicken Zinkschicht geglüht bei 800 °C;
Figur 5:
die Schicht nach Fig. 4 mit einer 1 µm dicken Nickelschicht;
Figur 6:
eine Beschichtung nach dem Glühen, einer Haltezeit, einer Tranferzeit und einer anschließenden Kühlung zum Presshärten;
Figur 7:
eine röntgenelektronenmikroskopische Schliffaufnahme einer Korrosionsschutzschicht nach einem Austenitisierungsglühen bei 870 °C;
Figur 8:
die Schicht nach Fig. 7 mit der Verteilung des Eisens;
Figur 9:
die Schicht nach Fig. 7 mit der Verteilung des Zinks;
Figur 10:
die Schicht nach Fig. 7 mit der Verteilung des Nickels, wobei als Präparationshilfe eine Nickelstützschicht auf der Oberfläche aufgebracht ist;
Figur 11:
die Schicht nach Fig. 7 mit der Verteilung des Aluminiums;
Figur 12:
die Schicht nach Fig. 7 mit der Verteilung des Mangan;
Figur 13:
eine Beschichtung nach dem Austenitisieren und Abschrecken mit einer eingezeichneten EDX-Scanlinie;
Figur 14:
die Beschichtung nach Fig. 13 mit dem Scanprofil für die Elemente Eisen, Nickel und Zink;
Figur 15:
vier V-Proben mit Biegeradius 1,5 mm.
The invention will be explained by way of example with reference to a drawing. It shows:
FIG. 1:
a light-microscopic etched micrograph of a steel sheet with a coating, wherein on a 1 micron thick nickel intermediate layer a hot dip galvanized layer has been applied;
FIG. 2:
the layer after Fig. 1 in an enlarged view;
FIG. 3:
one layer after Fig. 1 , wherein by EDX element mapping the elements iron, zinc, nickel and aluminum are shown in their distribution in a 1 micron thick applied nickel intermediate layer;
FIG. 4:
a micrograph of the coating with a 0.5 micron thick nickel layer and a 10 micron thick zinc layer annealed at 800 ° C;
FIG. 5:
the layer after Fig. 4 with a 1 micron thick nickel layer;
FIG. 6:
a coating after annealing, a holding time, a transfer time and a subsequent cooling for press hardening;
FIG. 7:
an X-ray micrograph of a corrosion protection layer after austenitizing annealing at 870 ° C;
FIG. 8:
the layer after Fig. 7 with the distribution of iron;
FIG. 9:
the layer after Fig. 7 with the distribution of zinc;
FIG. 10:
the layer after Fig. 7 with the distribution of the nickel, wherein a nickel support layer is applied to the surface as a preparation aid;
FIG. 11:
the layer after Fig. 7 with the distribution of aluminum;
FIG. 12:
the layer after Fig. 7 with the distribution of manganese;
FIG. 13:
a coating after austenitizing and quenching with an indicated EDX scan line;
FIG. 14:
the coating after Fig. 13 with the scan profile for the elements iron, nickel and zinc;
FIG. 15:
four V samples with bending radius 1.5 mm.

Das erfindungsgemäße Verfahren zum Erzeugen von Stahlblechbauteilen kann entweder ein Presshärteverfahren oder ein Formhärteverfahren sein, also ein Verfahren, bei dem ein Stahlblechbauteil aufgeheizt wird und anschließend in einem Werkzeug abschreckgehärtet wird (Formhärten), oder ein Verfahren, bei dem eine Platine einstufig umgeformt und abschreckgehärtet wird (Presshärten).The method according to the invention for producing sheet steel components may be either a press hardening method or a shape hardening method, that is, a method in which a sheet steel member is heated and then quench hardened in a tool (mold hardening), or a method in which a board is single stage formed and quench hardened (press hardening).

Erfindungsgemäß wird ein Bor-Mangan-Stahl als Stahlwerkstoff für das Presshärten oder Formhärten verwendet, bei dem bezüglich der Umwandlung des Austenits in andere Phasen sich die Umwandlung in tiefere Bereiche verschieben kann und Martensit gebildet wird.According to the invention, a boron-manganese steel is used as the steel material for press-hardening or mold-hardening, in which, with regard to the transformation of the austenite into other phases, the transformation can shift into deeper regions and martensite is formed.

Als Umwandlungsverzögerer in derartigen Stählen, d. h. als Element, welches die Phasenumwandlung des Austenits zum Martensit zu tieferen Temperaturen verschiebt, sind insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän vorhanden.In particular, as a retarder in such steels, ie as an element which shifts the phase transformation of austenite to martensite to lower temperatures the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are present.

Für die Erfindung werden Stähle der allgemeinen Legierungszusammensetzung verwendet (alle Angaben in Gewichtsprozent): Kohlenstoff (C) 0,08-0,6 Mangan (Mn) 0,8-3,0 Aluminium (Al) 0,01-0,07 Silizium (Si) 0,01-0,5 Chrom (Cr) 0,02-0,6 Titan (Ti) 0,01-0,08 Stickstoff (N) < 0,02 Bor (B) 0,002-0,02 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Steels of the general alloy composition are used for the invention (all figures in percent by weight): Carbon (C) 0.08 to 0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chrome (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08 Nitrogen (N) <0.02 Boron (B) 0.002-0.02 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1

Rest Eisen und erschmelzungsbedingte Verunreinigungen.Remaining iron and impurities caused by melting.

Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Gewichtsprozent): Kohlenstoff (C) 0,08-0,34 Mangan (Mn) 1,00-3,00 Aluminium (Al) 0,03-0,06 Silizium (Si) 0,01-0,20 Chrom (Cr) 0,02-0,3 Titan (Ti) 0,03-0,04 Stickstoff (N) < 0,007 Bor (B) 0,002-0,006 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 In particular, steel assemblies have proved to be suitable as follows (all figures in weight percent): Carbon (C) from 0.08 to 0.34 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chrome (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) <0.007 Boron (B) 0.002-0.006 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1

Rest Eisen und erschmelzungsbedingte Verunreinigungen.Remaining iron and impurities caused by melting.

Damit sind insbesondere auch die herkömmlichen Stähle 22MnB5 bzw. 20MnB8 geeignet.Thus, in particular, the conventional steels 22MnB5 or 20MnB8 are suitable.

Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. die rasche Abkühlung mit einer über der kritischen Härtegeschwindigkeit liegenden Abkühlgeschwindigkeit, auch noch unter 780°C sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums mechanische Spannungen aufgebracht werden. Dies bedeutet ferner, dass in dem Moment, in dem mechanische Spannungen aufgebracht werden, keine flüssigen Zinkphasen mehr vorhanden sind, welche mit Austenit in Kontakt kommen können.By adjusting the alloying elements acting as conversion retarders, quench hardening, i. H. rapid cooling with a cooling rate above the critical hardening speed, even at temperatures below 780 ° C. This means that in this case, below the peritectic system of the zinc-iron system is used, i. H. only below the peritectic mechanical stresses are applied. This also means that the moment in which mechanical stresses are applied, there are no longer any liquid zinc phases which can come into contact with austenite.

Eine erfindungsgemäße Korrosionsschutzschicht ist eine mehrschichtig aufgebrachte Korrosionsschutzschicht, wobei auf ein Substrat aus einem härtbaren Stahlmaterial mehreren Nickelschichten und mehreren Zinkschichten aufgebracht werden. Anstelle einer Nickelschicht kann auch eine Mangan- oder Kupferschicht aufgebracht werden.A corrosion protection layer according to the invention is a multilayer corrosion protection layer, wherein a plurality of nickel layers and a plurality of zinc layers are applied to a substrate of a hardenable steel material. Instead of a nickel layer, a manganese or copper layer can also be applied.

Hierbei wird die Nickel-, Kupfer- oder Manganschicht vorzugsweise elektrolytisch aufgebracht. Die Zinkschicht kann elektrolytisch oder über ein Schmelztauchverfahren aufgebracht werden.In this case, the nickel, copper or manganese layer is preferably applied electrolytically. The zinc layer can be applied electrolytically or by a hot dip process.

Grundsätzlich ist es möglich, zuerst die Nickelschicht und anschließend eine Zinkschicht aufzubringen, wobei die nachträglich aufgebrachte Zinkschicht elektrolytisch oder im Schmelztauchverfahren aufgebracht wird.In principle, it is possible first to apply the nickel layer and then a zinc layer, wherein the subsequently applied zinc layer is applied electrolytically or by hot dip.

Eine weitere Möglichkeit besteht darin, die Zinkschicht als erste Schicht elektrolytisch oder über Schmelztauchverfahren aufzubringen und anschließend eine Nickelschicht hierauf an der äußersten Oberfläche aufzubringen und insbesondere elektrolytisch abzuscheiden.Another possibility is to apply the zinc layer as a first layer electrolytically or by hot dip method and then apply a nickel layer thereon to the outermost surface and in particular to deposit it electrolytically.

Wird hier von Nickel gesprochen, sind hiermit auch andere Elemente gemeint, die mit Zn oder Fe intermetallisch unedlere Phasen bilden und ein höheres Oxidationspotenzial haben als Zn, etwa Cu, Co, Mn oder Mo.As used herein, nickel refers to other elements that form intermetallic-less noble phases with Zn or Fe and have a higher oxidation potential than Zn, such as Cu, Co, Mn, or Mo.

Das Element Nickel wird hierbei stellvertretend auch für Kupfer und Mangan verwendet.The element nickel is hereby also used for copper and manganese.

Überraschenderweise hat sich herausgestellt, dass dementsprechend aufgebrachte metallische Schichten offenbar in den Phasenaufbau einer Korrosionsschutzschicht eingreifen, selbst aber keine Diffusionsbarriere darstellen. Deshalb ist die Erfindung auch dann wirksam, wenn die dünne Nickel-, Kupfer- oder Manganschicht auf einer Feuerverzinkungsschicht aufgebracht wird.Surprisingly, it has been found that correspondingly applied metallic layers obviously intervene in the phase structure of a corrosion protection layer, but themselves do not constitute a diffusion barrier. Therefore, the invention is effective even when the thin nickel, copper or manganese layer is applied to a hot dip galvanizing layer.

In Fig. 1 erkennt man eine lichtmikroskopische angeätzte Schliffdarstellung einer Schicht auf einem Stahlsubstrat. In Fig. 2 ist diese noch einmal vergrößert dargestellt.In Fig. 1 One recognizes a light-microscopic etched cut representation of a layer on a steel substrate. In Fig. 2 this is shown enlarged again.

Bei dieser Schicht wird zunächst eine 1 µm dicke Nickelzwischenschicht auf das Stahlsubstrat aufgebracht und anschließend feuerverzinkt, wobei bei der Feuerverzinkung die Nickelzwischenschicht im Zinkbad gelöst wurde.In this layer, a 1 micron thick nickel intermediate layer is first applied to the steel substrate and then hot-dip galvanized, wherein the hot dip galvanizing the nickel intermediate layer was dissolved in the zinc bath.

Wenn eine derartige Schicht mit einer EDX-Elementverteilung gemessen wird, erkennt man in Fig. 3, dass eine Eisengleichverteilung im Bereich des Stahls vorhanden ist, wobei an der Grenzschicht zu den darauf angebrachten Schichten der Eisengehalt abnimmt. Bei der Verteilung von Zink erkennt man, dass im Grenzbereich zu höheren Schichten der Zinkgehalt zunimmt.When such a layer is measured with an EDX element distribution, it can be seen in FIG Fig. 3 that an iron equal distribution is present in the region of the steel, with the iron content decreasing at the boundary layer to the layers attached thereto. The distribution of zinc shows that the zinc content increases at the boundary to higher layers.

Bezüglich des Nickels erkennt man, dass es eine Gleichverteilung innerhalb der Schicht geben muss, da keine klare farbliche Aussage bezüglich des Nickels vorhanden ist. Gleiches trifft für Aluminium zu, welches in der Zinkbeschichtung zur Feuerverzinkung enthalten ist.With regard to the nickel one recognizes that there must be an equal distribution within the layer, since there is no clear color statement regarding the nickel. The same applies to aluminum, which is included in the zinc coating for hot dip galvanizing.

In Fig. 4 und 5 sind jeweils Schichten gegenübergestellt, bei denen einmal die Nickelzwischenschicht eine Dicke von 0,5 µm (Fig. 4) und einmal eine Schichtstärke von 1 µm (Fig. 5) hatte. Hierauf ist jeweils eine feuerverzinkte Schicht von 10 µm abgeschieden. Beide Schichtproben wurden anschließend auf 800 °C erhitzt. Die oberste helle Schicht gehört nicht zu den Korrosionsschutzschichten dazu, es handelt sich um eine Präparationshilfsschicht aus Nickel, die vor der Probenpräparation, d. h. nach dem Erhitzen und Abkühlen, aufgebracht wurde.In 4 and 5 In each case layers are compared, in which once the nickel intermediate layer has a thickness of 0.5 microns ( Fig. 4 ) and once a layer thickness of 1 micron ( Fig. 5 ) would have. On each of these a hot dip galvanized layer of 10 microns is deposited. Both layer samples were then heated to 800 ° C. The uppermost light coat does not belong to the anticorrosive layers, it is a preparation auxiliary layer of nickel, which was applied before the sample preparation, ie after heating and cooling.

Bei diesen Beschichtungen bildet sich an der Oberfläche des Stahlsubstrats ein im Schliff zweiphasiger Aufbau mit einer hellen Phase, die von dunklen Flächen durchsetzt ist (Fig. 6). Hierbei wurde bei einer 1 µm starken Nickelzwischenschicht bei 870 °C geglüht, anschließend wurde 45 s abgewartet, hinzu kam eine Transferzeit von 5 s und anschließend eine Abkühlung in einer Presse.In the case of these coatings, a two-phase structure with a light phase, which is interspersed with dark areas, is formed on the surface of the steel substrate ( Fig. 6 ). This was annealed at 870 ° C in a 1 micron thick intermediate nickel layer, then was waited for 45 s, added a transfer time of 5 s and then a cooling in a press.

Eine Schicht nach Fig. 6 wurde mit einer EDX-Elementverteilung gemessen, wobei auch hier auf der Probe eine Nickelstützschicht als Präparationshilfe vorhanden ist. Der Schichtenausschnitt, der gemessen wurde, ist in Fig. 7 dargestellt.One shift after Fig. 6 was measured with an EDX element distribution, whereby here too a nickel support layer is present as a preparation aid on the sample. The slice cut that was measured is in Fig. 7 shown.

Bei der Verteilung des Eisens (Fig. 8) erkennt man, dass relativ wenig Eisen in der hellen Phase vorhanden ist, während die dunkle Phase deutliche Eisengehalte aufzeigt.In the distribution of iron ( Fig. 8 ) it can be seen that relatively little iron is present in the light phase, while the dark phase shows significant iron contents.

Bei Zink zeigt sich, dass dieses in der hellen Phase stark angereichert ist, während es in den dunklen Flächen in viel niedrigeren Konzentrationen vorhanden ist, so dass offensichtlich eine eisenreiche Phase als Knötchen bzw. rundliche Anreicherung in einer Zinkmatrix vorhanden ist.Zinc shows that it is highly enriched in the light phase, while it is present in much lower concentrations in the dark areas, so that apparently there is an iron-rich phase as nodules or roundish accumulation in a zinc matrix.

Das Nickel (Fig. 10) ist noch sehr schwach in der hellen Zinkmatrix zu erkennen, ist aber in den eisenreichen Knötchen offensichtlich nicht vorhanden, während Aluminium (Fig. 11) in der gesamten Schicht relativ gleich verteilt ist, wenn auch mit Anreicherungen in den eisenreichen Phasen.The nickel ( Fig. 10 ) is still very weakly recognizable in the bright zinc matrix, but is obviously not present in the iron-rich nodules, whereas aluminum ( Fig. 11 ) is distributed relatively evenly throughout the layer, albeit with enrichments in the iron-rich phases.

Mangan, welches im Grundstahlmaterial vorhanden ist, ist in der gesamten Schicht kaum vorhanden und lediglich im Substrat feststellbar.Manganese, which is present in the base steel material, is scarcely present in the entire layer and can only be detected in the substrate.

Bei einer vergleichbaren Schicht wurde die Elementverteilung in die Tiefe mit einem sogenannten EDX-Linescan (Fig. 13) ermittelt. Hierbei beginnt der Scan bereits in der Nickelstützschicht und geht tief in das Stahlgrundmaterial hinein.In a comparable layer, the element distribution was measured in depth with a so-called EDX line scan ( Fig. 13 ). In this case, the scan already starts in the nickel backing layer and goes deep into the steel base material.

Bei einer Beschichtung, die bei 800 °C geglüht wurde, 5 s Transferzeit hatte und anschließend pressgekühlt wurde, ergibt sich, wie in Fig. 14 zu sehen ist, eine entsprechende Verteilung der Elemente. Der Nickelpeak ist anfangs nahezu bei 100 %, was daran liegt, dass der Scan bereits in der Nickelpräparationsschicht beginnt. Anschließend fällt der Nickelgehalt ab, wobei man erkennt, dass in den dunklen eisenreichen Zonen der Nickelgehalt deutlich geringer ist als in den hellen zinkreichen Phasen. Dementsprechend ist beginnend von der äußeren Oberfläche der Eisengehalt sehr niedrig und liegt bei etwa 10 % und steigt in der dunklen eisenreichen Phase deutlich an, um dann in der Stahlmatrix sein Maximum zu erreichen. Dem Eisengehalt gegenläufig verhält sich der Zinkgehalt, was entsprechend der zweiphasigen Ausbildung zu erwarten war.For a coating that was annealed at 800 ° C, had 5 s transfer time, and then was press-cooled, the result is as in Fig. 14 you can see a corresponding distribution of the elements. The nickel peak is initially close to 100%, which is because the scan already starts in the nickel preparation layer. Subsequently, the nickel content drops, and it can be seen that the nickel content is significantly lower in the dark iron-rich zones than in the bright zinc-rich phases. Accordingly, starting from the outer one Surface iron content is very low and is about 10% and increases significantly in the dark iron-rich phase, to then reach its maximum in the steel matrix. The content of iron is inversely related to the zinc content, which was to be expected according to the two-phase formation.

Von einer ursprünglich vorhandenen Nickelschicht ist im Phasenaufbau nichts mehr zu erkennen.From an originally existing nickel layer is no longer visible in the phase structure.

Die positive Auswirkung des Nickels in der Schicht erkennt man bei Biegeproben mit einem Radius von 1,5 mm (Fig. 15).The positive effect of nickel in the layer can be seen in bending samples with a radius of 1.5 mm ( Fig. 15 ).

Während bei einer Nickelzwischenschicht von lediglich 0,5 µm (wobei durch die vollständige Lösung des Nickels in der Korrosionsschutzbeschichtung die Dicke der Nickelschicht lediglich auf die Menge des Nickels in der Schicht einen Einfluss hat). Bei 0,5 µm Nickel und 10 µm feuerverzinkter Schicht hierauf ergibt sich bei 870 °C Glühtemperatur, 45 s Haltezeit, 6 s Transferzeit und dementsprechendem Abkühlen in der Presse ein Rissbild, wie es in Fig. 15 in den beiden linken Darstellungen zu erkennen ist.While with a nickel interlayer of only 0.5 .mu.m (with the complete dissolution of the nickel in the anticorrosion coating, the thickness of the nickel layer has an effect only on the amount of nickel in the layer). At 0.5 μm nickel and 10 μm hot-dip galvanized layer, this results in a crack pattern at 870 ° C., 45 s holding time, 6 s transfer time and corresponding cooling in the press, as shown in FIG Fig. 15 can be seen in the two left representations.

Demgegenüber wird bei einer 1 µm dicken Nickelschicht und ansonsten gleichen Bedingungen ein ganz erheblich feineres Rissbild (Fig. 15, die beiden rechten Darstellungen) erzielt.In contrast, with a 1 micron thick nickel layer and otherwise the same conditions a considerably finer crack pattern ( Fig. 15 , the two right representations) achieved.

Die Erfindung ermöglicht es somit, über eine zusätzliche Nickelschicht einen Einfluss auf die Korrosionsschutzschicht basierend auf Zink zu nehmen, in der Art, dass diese Schicht beim Abkühlen offensichtlich schneller feste Phasen bildet, die dann beim Umformen nicht mit dem Austenit des Stahlsubstrats reagieren.The invention thus makes it possible to influence the corrosion protection layer based on zinc via an additional nickel layer, such that this layer evidently forms faster solid phases during cooling, which then do not react with the austenite of the steel substrate during forming.

Insbesondere in den zinkreichen hellen Phasen der Beschichtung löst sich mehr Nickel als in den dunklen eisenreichen Phasen, die von sich aus einen höheren Schmelzpunkt haben.In particular, in the zinc-rich bright phases of the coating, more nickel dissolves than in the dark iron-rich phases, which by themselves have a higher melting point.

Gegenüber einer einheitlich über Elektrolyse abgeschiedenen Zink-Nickel-Schicht hat die Erfindung den Vorteil, dass sie eine gemischte Aufbringung in elektrolytischen und Schmelztauchbeschichtungsverfahren ermöglicht. Ferner kann die Nickelschicht auf herkömmliche, bereits feuerverzinkte Bleche ohne weiteres aufgebracht werden, wobei hierfür sowohl elektrolytische Beschichtungen angewendet werden können als auch andere Beschichtungsverfahren, z. B. Walzenapplizierung, d.h. ein Walzenauftragsverfahren, wie beispielsweise ein Coil-Coating-Verfahren, bei dem eine nickelhaltige Schicht mit einer Dicke von 250 nm bis 700 nm aufgebracht wird.Compared with a zinc-nickel layer deposited uniformly via electrolysis, the invention has the advantage that it allows a mixed application in electrolytic and hot-dip coating processes. Furthermore, the nickel layer can be easily applied to conventional, already hot-dip galvanized sheets, for which purpose both electrolytic coatings can be used as well as other coating methods, for. B. roll application, i. a roll coating method, such as a coil coating method, in which a nickel-containing layer having a thickness of 250 nm to 700 nm is applied.

Claims (16)

  1. A method for producing hardened steel sheet components, wherein at least two metal layers are deposited successively on a strip of a quench-hardenable steel alloy as anti-corrosion coating on the steel substrate, the one metal layer being a layer made of zinc or based on zinc and the other layer being a layer made of a metal which forms intermetallically less noble phases with Zn or Fe and has a higher oxidation potential than Zn, namely Ni, Cu, Co, Mn or Mo, or is a layer based on these metals, and wherein steels of the general alloy composition, each in weight percent: Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.08 Nitrogen (N) < 0.02 Boron (B) 0.002-0.02 Phosphorus (P) < 0.01 Sulphur (S) < 0.01 Molybdenum (Mo) < 1
    the balance being iron and smelting impurities
    are used, wherein blanks are punched out of the strip provided with the anti-corrosion coating and the blanks are either
    - heated to a temperature > Ac3 and optionally maintained there and then formed in a press hardening tool and quench-hardened to produce the steel sheet component, or
    - the blanks are formed into a steel sheet component in the cold state and the steel sheet component is subsequently heated to a temperature > Ac3 and quench-hardened in a die hardening tool, with the layer sequence between nickel, copper and manganese on the one hand and zinc or based on zinc on the other hand being applied repeatedly.
  2. The method according to claim 1, characterized in that a material with the following alloy composition, the indication in each case in weight percent, is used as the steel material: Carbon (C) 0.08-0.34 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.01-0.20 Chromium (Cr) 0.02-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) < 0.007 Boron (B) 0.002-0.006 Phosphorus (P) < 0.01 Sulphur (S) < 0.01 Molybdenum (Mo) < 1
    the balance being iron and smelting impurities.
  3. The method according to claim 1 or 2, characterized in that the layer made of zinc or based on zinc is applied electrolytically or by a hot-dip process.
  4. The method according to claims 1 to 3, characterized in that the nickel, copper or manganese layer is applied electrolytically or via a roller application process, for example a coil coating process.
  5. The method according to any of the preceding claims, characterized in that the nickel, copper or manganese layer is applied in a thickness of 0.5 µm to 2 µm with electrolytic deposition or in a thickness of 250 nm to 700 nm with roller application, in particular the coil coating process.
  6. The method according to any of the preceding claims, characterized in that the zinc layer or the layer based on zinc is deposited with a thickness of 6 µm to 30 µm.
  7. The method according to any of the preceding claims, characterized in that the layer of nickel, copper or manganese is first deposited on the steel substrate and then the zinc layer or the coating based on zinc is deposited.
  8. The method according to any of the preceding claims, characterized in that the coating made of zinc or based on zinc is applied to the layer of nickel, copper or manganese electrolytically or by hot-dip galvanizing.
  9. The method according to any of the preceding claims, characterized in that the layer made of zinc or based on zinc is first applied electrolytically or by the hot-dip coating process to the steel substrate and then the nickel layer is applied electrolytically to the zinc layer or is applied to the zinc layer by a roller application process, e.g. coil coating process.
  10. An anti-corrosion material for use in a method according to any of claims 1 to 10, the anti-corrosion layer having at least two layers, wherein a layer of nickel, copper or manganese is present and a layer made of zinc or based on zinc is present thereon or thereunder, a multiple sequence of the layers of nickel, copper and manganese on the one hand and zinc or layers based on zinc on the other hand being present on the steel substrate.
  11. The anti-corrosion material according to claim 10, characterized in that the layer made of zinc or based on zinc is deposited electrolytically or by a hot-dip process.
  12. The anti-corrosion material according to claim 10 or 11, characterized in that the nickel, copper or manganese layer is applied electrolytically or by a roller application process, for example the coil coating process.
  13. The anti-corrosion material according to any of claims 10 to 12, characterized in that the nickel, copper or manganese layer has a thickness of 0.5 µm to 2 µm in the case of electrolytic deposition or a thickness of 250 nm to 700 nm in the case of a roller application process, in particular with the coil coating process.
  14. The anti-corrosion material according to any of claims 10 to 13, characterized in that the zinc layer or the layer based on zinc has a thickness of 6 µm to 30 µm.
  15. The anti-corrosion material according to any of claims 10 to 14, characterized in that the layer of nickel, copper or manganese is arranged on the steel substrate and thereon the zinc layer or the coating based on zinc.
  16. The anti-corrosion material according to any of claims 10 to 15, characterized in that a zinc layer or a coating based on zinc, which has been deposited electrolytically or by hot-dip coating, is arranged as being applied to the steel substrate, and the nickel layer is arranged on the zinc layer, the nickel layer being applied electrolytically or by a roller application process, in particular the coil coating process.
EP15791573.7A 2014-11-04 2015-11-04 Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets Active EP3215656B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014116085 2014-11-04
PCT/EP2015/075702 WO2016071399A1 (en) 2014-11-04 2015-11-04 Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets

Publications (2)

Publication Number Publication Date
EP3215656A1 EP3215656A1 (en) 2017-09-13
EP3215656B1 true EP3215656B1 (en) 2019-10-16

Family

ID=54478744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15791573.7A Active EP3215656B1 (en) 2014-11-04 2015-11-04 Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets

Country Status (4)

Country Link
US (1) US20170321314A1 (en)
EP (1) EP3215656B1 (en)
DE (1) DE102015118869A1 (en)
WO (1) WO2016071399A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016218688A1 (en) 2016-09-28 2018-03-29 Bayerische Motoren Werke Aktiengesellschaft Process for producing a hydrogen-carrying steel component for use in motor vehicles, hydrogen-carrying steel component and motor vehicle with a hydrogen-carrying steel component
JP6880690B2 (en) * 2016-12-07 2021-06-02 日本製鉄株式会社 Method for manufacturing molten Zn-Al-Mg-based galvanized steel sheet and molten Zn-Al-Mg-based plated steel sheet
WO2019171157A1 (en) * 2018-03-09 2019-09-12 Arcelormittal A manufacturing process of press hardened parts with high productivity
DE102018128131A1 (en) 2018-11-09 2020-05-14 Thyssenkrupp Ag Hardened component comprising a steel substrate and an anti-corrosion coating, corresponding component for the production of the hardened component as well as manufacturing method and use
DE102018009745A1 (en) 2018-12-14 2020-06-18 Salzgitter Flachstahl Gmbh Sheet metal board for the production of a hot-formed and press-hardened sheet steel component as well as hot-forming processes
EP3712292B1 (en) 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
DE102019113117B4 (en) * 2019-05-17 2023-12-28 voestalpine eifeler Vacotec GmbH Method for producing a cold forming tool and cold forming tool
CN111434402A (en) * 2019-07-30 2020-07-21 苏州普热斯勒先进成型技术有限公司 Method for producing hot stamped parts with a manganese-containing coating on the surface
WO2021084304A1 (en) * 2019-10-30 2021-05-06 Arcelormittal A press hardening method
DE102020203421A1 (en) 2020-03-17 2021-09-23 Thyssenkrupp Steel Europe Ag Flat steel product with a ZnCu layer system
DE102020130543A1 (en) 2020-11-19 2022-05-19 Voestalpine Stahl Gmbh Steel material and method for its manufacture
DE102021105131A1 (en) 2021-03-03 2022-09-08 Salzgitter Flachstahl Gmbh Process for the production of a hot-formed and press-hardened sheet steel component

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7403411L (en) * 1974-03-14 1975-09-15 Nordstjernan Rederi Ab
JPH01234592A (en) 1988-03-16 1989-09-19 Kawasaki Steel Corp Production of steel sheet plated with zn-ni alloy excellent in press-moldability
CN100434564C (en) * 2001-10-23 2008-11-19 住友金属工业株式会社 Hot press forming method, and a plated steel material therefor and its manufacturing method
WO2005021821A1 (en) * 2003-07-29 2005-03-10 Voestalpine Stahl Gmbh Method for producing hardened parts from sheet steel
EP2290133B1 (en) 2009-08-25 2012-04-18 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating and steel component
DE102010030465B4 (en) 2010-06-24 2023-12-07 Bayerische Motoren Werke Aktiengesellschaft Method for producing a sheet metal part from a high-strength steel sheet material with an electrolytically applied zinc-nickel coating
JP4883240B1 (en) * 2010-08-04 2012-02-22 Jfeスチール株式会社 Steel sheet for hot press and method for producing hot press member using the same
DE102010056265C5 (en) * 2010-12-24 2021-11-11 Voestalpine Stahl Gmbh Process for producing hardened components

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3215656A1 (en) 2017-09-13
US20170321314A1 (en) 2017-11-09
DE102015118869A1 (en) 2016-05-04
WO2016071399A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
EP2656187B1 (en) Method for producing hardened structural elements
EP2414562B1 (en) Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
EP1660693B1 (en) Method for producing a hardened profile part
DE102008035714B9 (en) Hot stamping steel sheet having low-temperature tempering property, methods for producing the same, methods of producing parts using the same, and parts made therewith
DE112006003169B4 (en) Steel sheets for hot press forming with excellent heat treatment and impact properties, hot pressed parts produced therefrom and process for their production
EP2045360B1 (en) Method for manufacturing a steel part by hot forming and steel part manufactured by hot forming
EP2848709A1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP3250727B2 (en) Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet
DE102010056265B3 (en) Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating
DE102012024616A1 (en) Sheet steel and molded part thereof
EP1865086B1 (en) Use of a steel flat product produced from a manganese boron steel and method of its production
WO2016026885A1 (en) Surface-finished steel sheet and method for the production thereof
EP2959025B1 (en) Method for producing a corrosion-resistant steel sheet
EP3303647B1 (en) Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
EP3585917A1 (en) Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom
EP4093896A1 (en) Steel component comprising an anti-corrosion layer containing manganese
WO2015149918A1 (en) Component, particularly a structural component for a motor vehicle, and a method for producing such a component
DE102017002385A1 (en) Method and body semi-finished for producing a body component for a motor vehicle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 5/48 20060101ALI20190509BHEP

Ipc: C21D 8/04 20060101ALI20190509BHEP

Ipc: C21D 9/48 20060101ALI20190509BHEP

Ipc: C21D 1/673 20060101ALI20190509BHEP

Ipc: C25D 5/10 20060101ALI20190509BHEP

Ipc: C23C 2/26 20060101ALI20190509BHEP

Ipc: C23C 2/06 20060101ALI20190509BHEP

Ipc: C25D 5/50 20060101ALI20190509BHEP

Ipc: C23C 28/00 20060101ALI20190509BHEP

Ipc: C21D 8/02 20060101ALI20190509BHEP

Ipc: C23C 2/02 20060101ALI20190509BHEP

Ipc: C23C 2/28 20060101ALI20190509BHEP

Ipc: C21D 9/00 20060101ALI20190509BHEP

Ipc: C23C 28/02 20060101AFI20190509BHEP

Ipc: C25D 5/12 20060101ALI20190509BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190628

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010690

Country of ref document: DE

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1191333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200116

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010690

Country of ref document: DE

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200216

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191130

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

26N No opposition filed

Effective date: 20200717

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200116

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151104

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1191333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191016

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231127

Year of fee payment: 9

Ref country code: DE

Payment date: 20231129

Year of fee payment: 9