EP1660693B1 - Method for producing a hardened profile part - Google Patents
Method for producing a hardened profile part Download PDFInfo
- Publication number
- EP1660693B1 EP1660693B1 EP04736386.6A EP04736386A EP1660693B1 EP 1660693 B1 EP1660693 B1 EP 1660693B1 EP 04736386 A EP04736386 A EP 04736386A EP 1660693 B1 EP1660693 B1 EP 1660693B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- zinc
- coating
- oxygen
- corrosion protection
- protection layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 16
- 238000000576 coating method Methods 0.000 claims abstract description 100
- 238000005260 corrosion Methods 0.000 claims abstract description 91
- 230000007797 corrosion Effects 0.000 claims abstract description 89
- 239000011248 coating agent Substances 0.000 claims abstract description 78
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 74
- 239000010959 steel Substances 0.000 claims abstract description 74
- 238000010438 heat treatment Methods 0.000 claims abstract description 57
- 238000001816 cooling Methods 0.000 claims abstract description 23
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 15
- 239000001301 oxygen Substances 0.000 claims abstract description 15
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 9
- 229910000851 Alloy steel Inorganic materials 0.000 claims abstract description 7
- 239000011701 zinc Substances 0.000 claims description 96
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 81
- 229910052725 zinc Inorganic materials 0.000 claims description 71
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 69
- 238000000034 method Methods 0.000 claims description 59
- 229910052782 aluminium Inorganic materials 0.000 claims description 40
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 39
- 229910052751 metal Inorganic materials 0.000 claims description 39
- 239000002184 metal Substances 0.000 claims description 39
- 229910052742 iron Inorganic materials 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 22
- 238000004210 cathodic protection Methods 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 9
- 238000003466 welding Methods 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 7
- 239000011572 manganese Substances 0.000 claims description 7
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 6
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 4
- 238000007598 dipping method Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000004080 punching Methods 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 2
- 238000005275 alloying Methods 0.000 claims description 2
- 239000010960 cold rolled steel Substances 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 239000010937 tungsten Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 5
- 230000005855 radiation Effects 0.000 claims 2
- 229910000760 Hardened steel Inorganic materials 0.000 claims 1
- 239000005864 Sulphur Substances 0.000 claims 1
- 229910052804 chromium Inorganic materials 0.000 claims 1
- 239000011651 chromium Substances 0.000 claims 1
- 238000007493 shaping process Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 71
- 239000000463 material Substances 0.000 description 19
- 230000004888 barrier function Effects 0.000 description 15
- 239000011241 protective layer Substances 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 238000009792 diffusion process Methods 0.000 description 10
- 238000000137 annealing Methods 0.000 description 9
- 238000004090 dissolution Methods 0.000 description 9
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 229910045601 alloy Inorganic materials 0.000 description 7
- 239000000956 alloy Substances 0.000 description 7
- 238000005520 cutting process Methods 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 230000001681 protective effect Effects 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- -1 Zinc Chemical class 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 6
- 229910000640 Fe alloy Inorganic materials 0.000 description 5
- 229910001297 Zn alloy Inorganic materials 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000006698 induction Effects 0.000 description 5
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 238000005246 galvanizing Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 241000282373 Panthera pardus Species 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000001976 improved effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910007570 Zn-Al Inorganic materials 0.000 description 2
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000002051 biphasic effect Effects 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000005261 decarburization Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910000680 Aluminized steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000005244 galvannealing Methods 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000009993 protective function Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003856 thermoforming Methods 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D22/00—Shaping without cutting, by stamping, spinning, or deep-drawing
- B21D22/02—Stamping using rigid devices or tools
- B21D22/04—Stamping using rigid devices or tools for dimpling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21J—FORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
- B21J5/00—Methods for forging, hammering, or pressing; Special equipment or accessories therefor
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/34—Pretreatment of metallic surfaces to be electroplated
- C25D5/36—Pretreatment of metallic surfaces to be electroplated of iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2221/00—Treating localised areas of an article
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2251/00—Treating composite or clad material
- C21D2251/02—Clad material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/4998—Combined manufacture including applying or shaping of fluent material
- Y10T29/49982—Coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49995—Shaping one-piece blank by removing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12785—Group IIB metal-base component
- Y10T428/12792—Zn-base component
- Y10T428/12799—Next to Fe-base component [e.g., galvanized]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
Definitions
- the invention relates to a method for producing a hardened profile component with cathodic corrosion protection and to a hardened metallic profile component with cathodic corrosion protection.
- Low alloy steel sheets are not resistant to corrosion after being produced by suitable forming steps, either by hot rolling or cold rolling. This means that after a relatively short time and due to the humidity at the surface, oxidation occurs.
- a corrosion protection layer is a layer produced on a metal or in the near-surface region of a metal, which consists of one or more layers. Multi-layer coatings are also referred to as corrosion protection systems.
- Possible corrosion protection layers are, for example, organic coatings, inorganic coatings and metallic coatings.
- the purpose of metallic corrosion protection layers is to transfer the properties of the support material to the steel surface for as long as possible. Accordingly, the choice of an effective metallic corrosion protection requires the knowledge of the corrosion-chemical relationships in the system steel / coating metal / attacking medium.
- the coating metals can be electrochemically nobler or electrochemically less noble than steel.
- the respective coating metal protects the steel only through the formation of protective layers.
- barrier protection As soon as the surface of the coating metal has pores or was injured, a "local element" forms in the presence of moisture, in which the base partner is attacked by the metal to be protected.
- the more noble coating metals include tin, nickel and copper.
- Metallic protective layers are applied by various methods. Depending on the metal and process, the connection of the steel surface is chemical, physical or mechanical and ranges from alloy formation and diffusion to adhesion and mere mechanical clamping.
- the metallic coatings should have similar technological and mechanical properties as steel and behave similarly to steel or mechanical deformations or plastic deformations. The coatings should therefore not be damaged during forming and also affected by forming operations.
- the metal to be protected is immersed in molten metal melts.
- corresponding alloy layers are formed at the phase boundary steel-coating metal.
- An example of this is the hot dip galvanizing.
- Hot dip galvanizing the steel strip is passed through a zinc bath, the zinc bath having a temperature of around 450 ° C.
- Hot-dip galvanized products have high corrosion resistance, good weldability and formability, and their main applications are the construction, automotive and household appliance industries.
- electrodeposited metal coatings i. the electrolytic, so under current passage deposition of metallic coatings of electrolytes.
- electrolytic coating is also possible with such metals, which can not be coated by melt-dip process.
- Conventional layer thicknesses in electrolytic coating are usually between 2.5 and 10 microns, they are thus generally lower than in enamel dip coatings.
- Some metals, e.g. Zinc also allow thick film coatings with electrolytic coating.
- Electrolytically galvanized sheets are mainly used in the automotive industry, because of the high surface quality, these sheets are used above all in the outer skin area. They have good formability, weldability and storability as well as good paintable and matt surfaces.
- the surface of the plate is scaled by heating, so that after forming and hardening the sheet surface must be cleaned, for example by sandblasting. Then the sheet is trimmed and possibly punched necessary holes.
- the sheets have a very high hardness in the mechanical processing and therefore the processing is complicated and in particular a high tool wear exists.
- WO 03/035922 A1 & EP 1439240 A1 discloses a method for producing a hardened profile component made of steel with cathodic corrosion protection, wherein a galvanized steel sheet is warmed up, then heated to an austenitizing temperature and then hot-press molded.
- the Zn coating melt may contain elements such as 0.08-0.4% Al.
- the US 6,564,604 B2 The object of the invention is to provide steel sheets which are subsequently subjected to a heat treatment, and a method for producing parts by press-hardening these coated steel sheets. In this case, it should be ensured despite the increase in temperature that the steel sheet is not decarburized and the surface of the steel sheet is not oxidized before, during and after the hot pressing or the heat treatment.
- an alloyed intermetallic mixture should be applied to the surface before or after punching, which should provide protection against corrosion and decarburization and also can provide a lubricating function.
- this document proposes to use a conventional, apparently electrolytically applied zinc layer, wherein this zinc layer is to convert with the steel substrate in a subsequent Austenit atmosphere the sheet substrate in a homogeneous Zn Fe Fe alloy layer.
- This homogeneous layer structure is confirmed by microscopic images. Contrary to previous assumptions, this coating is said to have a mechanical resistance that prevents it from melting. In practice, however, such an effect does not show.
- the use of zinc or zinc alloys should provide cathodic protection of the edges when cuts are present.
- the US 6,564,604 B2 a coating is specified which consists of 50% to 55% aluminum and 45% to 50% zinc with possibly small amounts of silicon.
- a coating is not new in itself and known under the brand name Galvalume®. It is stated that the coating metals zinc and aluminum with iron should form a homogeneous zinc-aluminum-iron alloy coating. In the case of this coating, it is disadvantageous that sufficient cathodic corrosion protection is no longer achieved here, but the predominant barrier protection which is achieved with this is not sufficient when used in the press hardening process, since partial surface damage to the surface is unavoidable.
- the method described in this document is unable to solve the problem that, in general, zinc-based cathodic corrosion coatings are not suitable for protecting steel sheets which are to be subjected to a heat treatment after coating and may also be subjected to another shaping or Ümform suits.
- a method for producing a sheet metal component wherein the sheet on the surface should have an aluminum layer or an aluminum alloy layer.
- a sheet provided with such coatings is to be subjected to a press hardening process, giving as possible coating alloys an alloy with 9-10% silicon, 2-3.5% iron, balance aluminum with impurities and a second alloy with 2-4% iron and the rest aluminum with impurities.
- Such coatings are known per se and correspond to the coating of a hot-dip aluminized steel sheet. In such a coating is disadvantageous in that only a so-called barrier protection is achieved. The moment that such a barrier layer is damaged or cracked in the Fe-Al layer, the base material, in this case the steel, is attacked and corroded. A cathodic protective effect is absent.
- the DE 102 46 614 A1 therefore proposes a coating as a metal or a metal alloy by means of a galvanic coating process in organic, non-aqueous solution, wherein a particularly suitable and therefore preferred coating material is aluminum or an aluminum alloy.
- a particularly suitable and therefore preferred coating material is aluminum or an aluminum alloy.
- zinc or zinc alloys would be suitable.
- Such a coated sheet can then be cold preformed and hot finished molded.
- this method has the disadvantage that an aluminum coating, even if it was applied electrolytically, no longer offers corrosion protection in case of damage to the surface of the finished component, since the protective barrier has been broken.
- an electrodeposited zinc coating it is disadvantageous that during heating for hot forming, the zinc is largely oxidized and no longer available for cathodic protection. Under a protective gas atmosphere, the zinc evaporates.
- a method for the production of metal profile components for motor vehicles is known.
- starting material provided in strip form is fed to a roll forming unit and formed into a rolled section.
- at least partial areas of the rolled section are to be heated inductively to a temperature required for hardening and then quenched in a cooling unit.
- the rolled sections are cut to form the profile components.
- a particular advantage of roll forming is to be seen in the low production costs due to the high processing speed and low compared to a press tool costs.
- a special heat-treatable steel is used for the profile component.
- partial regions of the starting material may also be inductive, prior to entry into the rolling profiling unit, to those required for hardening Temperature heated and quenched before cutting the rolled section in a cooling unit.
- the cutting must take place already in the hardened state, which is problematic due to the high hardness of the material.
- the cut-to-length profile components have to be cleaned or descaled and after the ignition a corrosion piece coating has to be applied, whereby such corrosion piece coatings usually do not give a very good cathodic corrosion protection.
- the object is to provide a method for producing a hardened profile component with a cathodic corrosion protection, wherein the cathodic corrosion protection is formed so that even the starting material has a protective layer which does not convert during the further processing in a negative way.
- Another object is to provide a cathodic anti-corrosion layer for curable profile components.
- Another object is to provide a hardened profile component with cathodic corrosion protection.
- the inventive method provides, on a hardenable steel sheet, a coating of a mixture consisting essentially of zinc and an oxygen affinity element, such as magnesium, silicon, titanium, calcium and aluminum with a content of 0.1 to 15 wt .-% of the Apply oxygen-affine element and heat the coated steel sheet at least partially with the access of oxygen to a temperature above the Austenitmaschinestemperatur the sheet metal alloy and before to reform, wherein the sheet is cooled after sufficient heating and the cooling rate is such that hardening of the sheet metal alloy takes place.
- a hardened component is obtained from a steel sheet having a good cathodic corrosion protection.
- the corrosion protection according to the invention for steel sheets, which are first formed and in particular roll-profiled and then subjected to a heat treatment and deformed and thereby hardened, is a cathodic corrosion protection which is essentially based on zinc.
- 0.1% to 15% of one or more oxygen-containing elements such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese or any mixture or alloy thereof are added to the zinc forming the coating. It has been found that such small amounts of an oxygen affinity element as magnesium, silicon, titanium, calcium, aluminum, boron and manganese cause a surprising effect in this particular application.
- At least Mg, Al, Ti, Si, Ca, B, Mn are suitable as oxygen-affine elements.
- aluminum is mentioned below, this is representative of the other elements mentioned.
- an oxygen-affine element in particular aluminum, an essentially Al 2 O 3 or an oxide of the oxygen-affine element (MgO, CaO, TiO, SiO 2 , B 2 O 3 , MnO) existing, very effective and healing, superficial protective layer.
- This very thin oxide layer protects the underlying Zn restroom corrosion protection layer even at very high temperatures from oxidation.
- an approximately two-layer corrosion protection layer is formed, which consists of a cathodically highly effective layer with a high proportion of zinc and a very thin oxidation protection layer of one or more oxides (Al 2 O 3 , MgO , CaO, TiO, SiO 2 , B 2 O 3 , MnO) is protected against oxidation and evaporation.
- a cathodic corrosion protection layer with a superior chemical resistance.
- This means that the heat treatment has to take place in an oxidizing atmosphere. Although under protective gas (oxygen-free atmosphere) oxidation can be avoided, the zinc would evaporate due to the high vapor pressure.
- a zinc alloy with a content of aluminum in weight percent of greater than 0.1 but less than 15%, in particular less than 10%, more preferably less than 5% on a Steel sheet, in particular an alloyed steel sheet are applied, where in a second step, the sheet is formed inline as a strand and heated in the presence of atmospheric oxygen to a temperature above the Austenitmaschinestemperatur the sheet metal alloy and then cooled at an increased rate.
- a thin barrier phase is formed, in particular Fe 2 Al 5 -x Zn x , which forms the Fe-Zn Diffusion in a liquid metal coating process, which takes place in particular at a temperature up to 690 ° C, hindered.
- the sheet is formed with a zinc-metal coating with an addition of aluminum, which is effective only towards the sheet surface, as in the proximal region of the support an extremely thin barrier phase, which is effective against rapid growth of an iron-zinc compound phase, having.
- the metal layer on the sheet is liquefied for the time being.
- the oxygen-containing aluminum from the zinc reacts with atmospheric oxygen to form solid oxide, thereby causing a decrease in the aluminum metal concentration, which causes a steady diffusion of aluminum towards depletion, that is to the distal region.
- This Tonerdeanreichtation, at the air exposed layer area now acts as oxidation protection for the layer metal and as Abdampfungssperre for the zinc.
- the aluminum is withdrawn from the proximal blocking phase by continuous diffusion towards the distal region and is available there for the formation of the superficial Al 2 O 3 layer.
- the formation of a sheet metal coating is achieved, which leaves a cathodically highly effective layer with a high zinc content.
- Well suited is, for example, a zinc alloy with a content of aluminum in weight percent of greater than 0.2 but less than 4, preferably greater than 0.26 but less than 2.5 wt .-%.
- the zinc alloy layer is applied to the sheet surface passing through a liquid metal bath at a temperature higher than 425 ° C, but lower than 690 ° C, especially at 440 ° C to 495 ° C, followed by cooling of the coated sheet, not only the proximal barrier phase can be effectively formed, or a very good diffusion inhibition can be observed in the region of the barrier layer, but it also takes place to improve the thermoforming properties of the sheet material.
- An advantageous embodiment of the invention is given in a method in which a hot or cold rolled steel strip having a thickness of for example greater than 0.15 mm and having a concentration range of at least one of the alloying elements within the limits in wt .-% carbon to 0.4, preferably 0.15 to 0.3 silicon to 1.9, preferably 0.11 to 1.5 manganese to 3.0, preferably 0.8 to 2.5 chrome to 1.5, preferably 0.1 to 0.9 molybdenum to 0.9, preferably 0.1 to 0.5 nickel to 0.9, titanium to 0.2 preferably 0.02 to 0.1 vanadium to 0.2 tungsten to 0.2, aluminum to 0.2, preferably 0.02 to 0.07 boron to 0.01, preferably 0.0005 to 0.005 sulfur Max. 0.01, preferably max. 0.008 phosphorus Max. 0.025, preferably max. 0.01 Rest iron and impurities is used.
- the surface structure of the cathodic corrosion protection according to the invention is particularly favorable for a high adhesion of paints and varnishes.
- the strip-form provided starting material with the coating according to the invention is fed to a roll forming unit and formed into a rolled section, wherein the rolled section is deformed during roll forming and subsequently cut to length in a cutting unit to the profile components.
- at least partial areas of the rolled section after leaving the rolling profiling unit or heated to a temperature required for curing prior to entry into the roll forming unit and quenched prior to being cut to length in a cooling unit.
- the required heating takes place, for example, inductively.
- starting material provided in strip form is fed to a roll forming unit and converted into a rolled section in the roll forming unit, wherein the rolled section is deformed during roll forming and then the rolled section is cut to length in a cutting unit to the profile components. Subsequently, the already cut to length profiles are stored in a profile memory with separation and then subjected to the hardening step by heating and cooling.
- a further advantageous embodiment provides for subjecting the separated profiles to an intermediate heat stage prior to curing under oxygen access, wherein in the intermediate heat stage an advantageous change in the corrosion protection layer takes place and only then to a temperature required for curing.
- the latter can be done with band material as well as with cut profiles.
- open and closed profiles can be produced by inductive high frequency welding, laser welding, spot welding, seam welding, projection welding and rolling technology.
- a profile component according to the invention with cathodic protection against corrosion was subsequently produced, as explained below, subsequently subjected to a heat treatment for hardening the profile component and rapid cooling. Subsequently, the sample was analyzed for optical and electrochemical properties. Assessment criteria were the appearance of the annealed sample and the protection energy.
- the protection energy is the measure for the electrochemical protection of the layer, which is determined by galvanostatic detachment.
- the electrochemical method of galvanostatic dissolution of the metallic surface coatings of a material allows to classify the mechanism of corrosion protection of the layer.
- the potential-time behavior of a corrosion-protective layer is determined for a given constant current flow. For the measurements, a current density of 12.7 mA / cm 2 was specified.
- the measuring arrangement is a three-electrode system.
- the counterelectrode used was a platinum network, the reference electrode consisting of Ag / AgCl (3M).
- the electrolyte consists of 100 g / l ZnSO 4 .5H 2 O and 200 g / l NaCl dissolved in deionized water.
- the barrier protection is characterized by the fact that it separates the base material from the corrosive medium.
- a steel sheet is hot dip galvanized with a melt consisting of 95% zinc and 5% aluminum.
- the coated steel sheet is then roll-profiled in a profiling device. After annealing, the sheet shows a silvery-gray surface with no defects.
- cross section FIG. 7 shows that the coating consists of a light phase and a dark phase, wherein the phases are Zn-Fe-Al-containing phases.
- the bright phases are more zinc-rich, the dark phases more iron-rich.
- the galvanostatic dissolution shows a potential of about -0.7 V required for the resolution. This value is significantly below the potential of the steel. After a measuring time of approx. 1,000 seconds, a potential of approx. -0.6 V arises. This potential is also clearly below the steel potential. After a measurement time of approximately 3,500 seconds, this part of the layer is used up and the necessary potential for dissolving the layer approaches the steel potential. This coating thus offers after the annealing in addition to the barrier protection a cathodic corrosion protection.
- the potential is up to a measuring time of 3,500 seconds at a value of ⁇ -0.6 V, so that a considerable cathodic protection is maintained over a long time, even if the sheet was fed to the austenitizing temperature.
- the potential time diagram is in FIG. 8 shown.
- the sheet is passed through a melt or through a zinc bath, with a zinc content of 99.8% and an aluminum content of 0.2%.
- the coated steel sheet is then roll profiled in a profiling.
- Aluminum present in the zinc coating reacts with atmospheric oxygen during the calcination and forms a protective Al 2 O 3 skin. Through constant diffusion of the oxygen-affinity aluminum to the surface, this protective skin is maintained and expanded.
- inductive heating of the sheet shows a silvery-gray surface without defects. From the originally about 15 microns thick zinc coating develops during the annealing due to diffusion, a about 20 to 25 microns thick layer, said layer ( FIG.
- the annealed material has a potential of approx. -0.75 V. After a measuring time of approx. 1,500 seconds, the potential required for the resolution increases to ⁇ -0.6 V. The phase lasts up to a measuring time of approx. 2,800 seconds. Then the required potential increases to steel potential. In this case too, in addition to barrier protection, there is cathodic corrosion protection. The potential is up to a measurement time of 2,800 seconds at a value of ⁇ -0.6 V. Thus, such a material has thus over a very long time a cathodic protection against corrosion.
- the potential time diagram is FIG. 10 refer to.
- This anticorrosive layer contains some aluminum in the zinc bath, of the order of about 0.13%.
- the profile component is heated to a temperature of about 500 ° C prior to austenitizing.
- the zinc layer is completely converted into Zn-Fe phases.
- the zinc layer is thus wholly, i. converted to Zn-Fe phases to the surface. This results in zinc-rich phases on the steel sheet, all of which are formed with a Zn-Fe ratio of> 70% zinc.
- This anticorrosive layer contains some aluminum in the zinc bath, of the order of about 0.13%.
- the profile component with the aforementioned fully converted coating is inductively heated to> 900 ° C.
- the result is a yellow-green surface.
- the yellow-green surface indicates oxidation of the Zn-Fe phases during annealing.
- An aluminum oxide protective layer is undetectable. The reason for the absence of an aluminum oxide protective layer can be explained by the fact that in the annealing treatment the aluminum does not migrate as quickly to the surface due to solid Zn-Fe phases and can protect the Zn-Fe coating from oxidation. When heating this material at temperatures around 500 ° C is still no liquid zinc-rich phase, because this forms only at higher temperatures of 782 ° C. If 782 ° C are reached, thermodynamically there is a liquid zinc-rich phase in which the aluminum is freely available. Nevertheless, the surface layer is not protected against oxidation.
- the corrosion protection layer is already partially oxidized at this time and no opaque aluminum oxide skin can form any more.
- the layer shows wavy rugged in cross-section and consists of Zn and Zn-Fe oxides ( FIG. 11 ).
- the surface of said material is much larger due to the highly crystalline acicular surface finish of the surface, which could also be detrimental to the formation of a covering and thicker aluminum oxide protective layer.
- the said non-inventive coating forms a brittle layer which is provided with numerous cracks, both transversely and longitudinally to the coating. As a result, in the course of the heating, both decarburization and oxidation of the steel substrates can take place, especially with cold preformed components.
- a profile component made of a sheet metal with a galvanizing as in Example 3 is subjected after the roll forming a particular short, inductive heat treatment, at about 490 ° C to 550 ° C, the zinc layer is only partially converted into Zn-Fe phases.
- the process is carried out in such a way that the phase transformation is only partially carried out and therefore not yet converted zinc with aluminum on the surface is present and thus free aluminum as oxidation protection for the zinc layer is available.
- the profile component with the heat-treated coating according to the invention and only partially converted into Zn-Fe phases is subsequently heated inductively to the required austenitizing temperature.
- the result is a surface that is gray and without defects.
- a SEM / EDX examination of the cross section shows an approximately 20 microns thick surface layer, wherein from the originally about 15 microns thick zinc coating of the coating has formed in the inductive annealing due to diffusion, an about 20 microns Zn-Fe layer, said layer with the typical for the invention two-phase structure a "leopard pattern" with a gray phase in the image with a composition Zn / Fe of about 30/70 and light areas with the composition Zn / Fe of about 80/20. In addition, individual areas with zinc contents ⁇ 90% zinc are present. On the surface, a protective layer of aluminum oxide is detectable.
- both barrier protection and very good cathodic corrosion protection can therefore be achieved form. Even with this material, the cathodic protection against corrosion can be maintained over a very long measuring time.
- the cathodic corrosion protection is negligible with a voltage difference of 100 mV to the steel potential in poorly conducting electrolytes. Although there is still a cathodic corrosion protection even with a smaller difference to the steel potential, if a current is detected when using a steel electrode, but this is negligible for practical aspects, since the corrosive medium must conduct very well, so this contribution to the cathodic Corrosion protection can be used.
- the area between the potential curve at the galvanostatic dissolution and the specified threshold value of 100 mV was set below the steel potential ( FIG. 8 ). Only the area below the threshold is taken into account. The overlying surface contributes negligibly little or not at all to the cathodic corrosion protection and is therefore not included in the evaluation.
- cathodic corrosion protection in the context of the invention is subsequently determined that at 15 microns thick coatings and the process and experimental conditions described at least a cathodic corrosion protection energy of 4 J / cm 2 is present.
- a zinc layer which has been deposited electrolytically on the steel sheet surface is not in itself capable of providing a corrosion protection according to the invention, even after a heating step above the austenitizing temperature.
- the anticorrosive coatings according to the invention were mentioned for profiling a profiled strand or for roll forming and the subsequent hardening of such a profiled strand or profiled strand sections.
- the coatings according to the invention or, according to the invention, for a sheet-metal component which must be subjected to a heating step are also suitable for other processes in which a steel sheet should first be provided with a corrosion protection layer, and the thus coated steel sheet is then subjected to a heating step for curing the same and before the heating, in the heating or after heating, a deformation of the sheet is to take place.
- the fundamental advantage of the layer is that a heated component does not have to be descaled after heating and, moreover, that a very good cathodic corrosion protection layer with a very high corrosion protection energy is available.
- the profile component according to the invention is produced in that a band is first passed through a forward punch and then inserted into the profiling machine.
- the strip is bent to a desired profile.
- the necessary welding is carried out in a welding device.
- the heating device being, for example, an induction coil.
- the profile is heated at least partially to an austenitizing temperature necessary for hardening.
- the cooling takes place.
- a special cooling is used which prevents the partially liquid surface layer is fused. This causes high cooling rates with low fluid pressure.
- the special cooling mimics the immersion of the profile in a water bath, with a very large amount of water at low pressure on all sides led to the profile.
- an additional heating device for the induction heating device which serves to heat the sheet to the austenitizing temperature, which leads the sheet to the first heating stage at approximately 550 ° C.
- This can be, for example, an induction heating device to which - in order to comply with the necessary periods of time - an isolated region, for example an insulated tunnel region, is connected.
- the cooling is followed by a calibration device, which subjects the heated and quenched profile strand to a calibration, whereupon the profile strand is then cut to length using a cutting unit.
- band is drawn off from a strip preparation section and punched in a forward punch in a soft state and then profiled or bent and shaped accordingly in a profiling machine.
- a welding device may also follow the profiling.
- the thus preformed profile strand is then cut with a cutting unit or cutting device to the appropriate lengths and transferred to a profile memory with separation.
- a multiplicity of profiles in particular a multiplicity of profiles of different cross sections which are also formed differently, are stored. From the profile memory with separation the desired profiles are subtracted and fed via a drive roller set the hardness level.
- the individual profiles are heated with an inductive heating already described to the temperature necessary for curing and subsequently quenched in the form already described, that is gently.
- the cured profiles can be retrofitted on a straightening scaffold.
- a heat treatment of the coating is performed prior to heating to the temperature required for curing.
- the profile is first heated to a temperature necessary for the heat treatment in particular 550 ° C. This heating can be done relatively quickly in an inductive heating stage, wherein, if necessary, the heat of the component for a certain time in an insulating region, for example, an insulated tunnel through which the profiles are performed is maintained.
- the profiled and finished molded profile strands are cut to standard profile lengths and then transferred to the profile memory with separation, the profile memory stores there exclusively tubes and profiles of a certain length, for example 6m. Depending on the required profile, the profiles are then removed individually and fed to the appropriate further treatment. Even with these profiles, if necessary, a hole pattern can already be arranged.
- the profiling and in particular the arrangement of the hole pattern can be such that the thermal expansion is fully taken into account during the heat treatment and / or heating to the temperature necessary for curing, so that the component after quenching with respect to the dimensional and Position tolerances is made accurately.
- a profile component made of sheet steel which has a cathodic protection against corrosion, which reliably remains even when the sheet is heated above the austenitizing temperature. It is also advantageous that the components do not have to be reworked after curing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Articles (AREA)
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Electroplating Methods And Accessories (AREA)
- Heat Treatment Of Steel (AREA)
- Forging (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum Herstellen eines gehärteten Profilbauteils mit kathodischem Korrosionsschutz sowie ein gehärtetes metallisches Profilbauteil mit kathodischem Korrosionsschutz.The invention relates to a method for producing a hardened profile component with cathodic corrosion protection and to a hardened metallic profile component with cathodic corrosion protection.
Niedrig legierte Stahlbleche, insbesondere für den Karosseriebau sind, nachdem sie durch geeignete Umformschritte entweder durch Warmwalzen oder Kaltwalzen erzeugt wurden, nicht korrosionsbeständig. Dies bedeutet, dass sich schon nach relativ kurzer Zeit und aufgrund der Luftfeuchtigkeit an der Oberfläche Oxidation einstellt.Low alloy steel sheets, especially for bodywork, are not resistant to corrosion after being produced by suitable forming steps, either by hot rolling or cold rolling. This means that after a relatively short time and due to the humidity at the surface, oxidation occurs.
Es ist bekannt, Stahlbleche vor Korrosion mit entsprechenden Korrosionsschutzschichten zu schützen. Nach DIN-50900, Teil 1 ist Korrosion die Reaktion eines metallischen Werkstoffs mit seiner Umgebung, die eine messbare Veränderung des Werkstoffs bewirkt und zu einer Beeinträchtigung der Funktion eines metallischen Bauteils oder eines ganzen Systems führen kann. Um Korrosionsschäden zu vermeiden, wird Stahl üblicherweise geschützt, damit er den Korrosionsbelastungen während der geforderten Nutzungsdauer Stand hält. Die Vermeidung von Korrosionsschäden kann durch die Beeinflussung der Eigenschaften der Reaktionspartner und/oder durch Änderungen der Reaktionsbedingungen, Trennung des metallischen Werkstoffs vom korrosiven Medium durch aufgebrachte Schutzschichten sowie durch elektrochemische Maßnahmen erfolgen.It is known to protect steel sheets from corrosion with corresponding anti-corrosion layers. According to DIN-50900, Part 1, corrosion is the reaction of a metallic material with its environment, which causes a measurable change in the material and can lead to a deterioration in the function of a metallic component or an entire system. In order to avoid corrosion damage, steel is usually protected so that it can withstand the corrosion loads during the required service life. The avoidance of corrosion damage can be achieved by influencing the properties of the reactants and / or by changing the reaction conditions, separating the metallic material from the corrosive Medium done by applied protective layers and by electrochemical measures.
Nach DIN 50902 ist eine Korrosionsschutzschicht eine auf einem Metall oder im oberflächennahen Bereich eines Metalls hergestellte Schicht, die aus einer oder mehreren Lagen besteht. Mehrlagige Schichten werden auch als Korrosionsschutzsysteme bezeichnet.According to DIN 50902, a corrosion protection layer is a layer produced on a metal or in the near-surface region of a metal, which consists of one or more layers. Multi-layer coatings are also referred to as corrosion protection systems.
Mögliche Korrosionsschutzschichten sind beispielsweise organische Beschichtungen, anorganische Beschichtungen und metallische Überzüge. Der Sinn metallischer Korrosionsschutzschichten besteht darin, der Stahloberfläche für einen möglichst langen Zeitraum die Eigenschaften des Auflagewerkstoffes zu übertragen. Die Wahl eines wirksamen metallischen Korrosionsschutzes setzt dementsprechend die Kenntnis der korrosionschemischen Zusammenhänge im System Stahl/Überzugsmetall/angreifendes Medium voraus.Possible corrosion protection layers are, for example, organic coatings, inorganic coatings and metallic coatings. The purpose of metallic corrosion protection layers is to transfer the properties of the support material to the steel surface for as long as possible. Accordingly, the choice of an effective metallic corrosion protection requires the knowledge of the corrosion-chemical relationships in the system steel / coating metal / attacking medium.
Die Überzugsmetalle können gegenüber Stahl elektrochemisch edler oder elektrochemisch unedler sein. Im ersten Fall schützt das jeweilige Überzugsmetall den Stahl allein durch die Bildung von Schutzschichten. Man spricht von einem sogenannten Barriereschutz. Sobald die Oberfläche des Überzugmetalls Poren aufweist oder verletzt wurde, bildet sich in Gegenwart von Feuchtigkeit ein "Lokalelement", bei dem der unedle Partner also das zu schützende Metall, angegriffen wird. Zu den edleren Überzugsmetallen gehören Zinn, Nickel und Kupfer.The coating metals can be electrochemically nobler or electrochemically less noble than steel. In the first case, the respective coating metal protects the steel only through the formation of protective layers. One speaks of a so-called barrier protection. As soon as the surface of the coating metal has pores or was injured, a "local element" forms in the presence of moisture, in which the base partner is attacked by the metal to be protected. The more noble coating metals include tin, nickel and copper.
Unedlere Metalle bilden auf der einen Seite schützende Deckschichten; auf der anderen Seite werden sie, da sie gegenüber dem Stahl unedler sind, bei Undichtigkeiten der Schicht zusätzlich angegriffen. Im Falle einer Verletzung einer derartigen Überzugsschicht wird der Stahl dementsprechend nicht angegriffen, sondern durch die Bildung von Lokalelementen zunächst das unedlere Überzugsmetall korrodiert. Man spricht von einem sogenannten galvanischen oder kathodischen Korrosionsschutz. Zu den unedleren Metallen gehört beispielsweise Zink.Less precious metals form protective coatings on one side; on the other hand, being less noble than steel, they are additionally attacked by leaks in the layer. In the case of a breach of such a coating layer, the steel is accordingly not attacked, but by the formation of local elements first corrodes the less noble coating metal. One speaks of a so-called galvanic or cathodic corrosion protection. For example, zinc is one of the less noble metals.
Metallische Schutzschichten werden nach verschiedenen Verfahren aufgebracht. Je nach Metall und Verfahren ist die Verbindung der Stahloberfläche chemischer, physikalischer oder mechanischer Art und reicht von der Legierungsbildung und Diffusion bis zur Adhäsion und bloßen mechanischen Verklammerung.Metallic protective layers are applied by various methods. Depending on the metal and process, the connection of the steel surface is chemical, physical or mechanical and ranges from alloy formation and diffusion to adhesion and mere mechanical clamping.
Die metallischen Überzüge sollen ähnliche technologische und mechanische Eigenschaften wie Stahl besitzen und sich auch gegenüber mechanischen Beanspruchungen oder plastischen Unformungen ähnlich wie Stahl verhalten. Die Überzüge sollen also entsprechend bei der Umformung nicht beschädigt werden und auch von Umformungsvorgängen beeinträchtigt werden.The metallic coatings should have similar technological and mechanical properties as steel and behave similarly to steel or mechanical deformations or plastic deformations. The coatings should therefore not be damaged during forming and also affected by forming operations.
Beim Aufbringen von Schmelztauchüberzügen wird das zu schützende Metall in flüssige Metallschmelzen eingetaucht. Durch das Schmelztauchen bilden sich an der Phasengrenze Stahl-Überzugsmetall entsprechende Legierungsschichten aus. Ein Beispiel hierfür ist das Feuerverzinken.When applying hot-dip coatings, the metal to be protected is immersed in molten metal melts. As a result of the hot dip, corresponding alloy layers are formed at the phase boundary steel-coating metal. An example of this is the hot dip galvanizing.
Beim Feuerverzinken wird das Stahlband durch ein Zinkbad geführt, wobei das Zinkbad eine Temperatur von rund 450°C besitzt. Feuerverzinkte Erzeugnisse weisen einen hohen Korrosionswiderstand, eine gute Schweißeignung und Umformbarkeit auf, ihre Haupteinsatzgebiete sind die Bau-, Automobil- und Hausgeräteindustrie.In hot dip galvanizing, the steel strip is passed through a zinc bath, the zinc bath having a temperature of around 450 ° C. Hot-dip galvanized products have high corrosion resistance, good weldability and formability, and their main applications are the construction, automotive and household appliance industries.
Zudem ist die Herstellung eines Überzugs aus einer Zink-Eisenlegierung bekannt. Hierfür werden diese Erzeugnisse nach dem Feuerverzinken bei Temperaturen oberhalb des Zinkschmelzpunktes, meistens zwischen 480°C und 550°C einer Diffusionsglühung unterzogen. Dabei wachsen die Zink-Eisenlegierungs-Schichten und zehren die darüberliegende Zinkschicht auf. Dieses Verfahren wird mit "Galvannealing" bezeichnet. Die so erzeugte Zink-Eisenlegierung besitzt ebenfalls einen hohen Korrosionswiderstand, gute Schweißeignung und Umformbarkeit. Haupteinsatzgebiete sind die Automobil- und Hausgeräteindustrie. Darüber hinaus können durch Schmelztauchen auch andere Überzüge aus Aluminium-Silizium, Zink-Aluminium und Aluminium-Zink hergestellt werden.In addition, the production of a coating of a zinc-iron alloy is known. For this purpose, these products are after hot dip galvanizing at temperatures above the zinc melting point, mostly subjected to a diffusion annealing between 480 ° C and 550 ° C. The zinc-iron alloy layers grow and absorb the overlying zinc layer. This process is called "galvannealing". The zinc-iron alloy thus produced also has a high corrosion resistance, good weldability and formability. Main applications are the automotive and home appliance industry. In addition, other coatings of aluminum-silicon, zinc-aluminum and aluminum-zinc can be produced by hot dipping.
Ferner ist die Herstellung elektrolytisch abgeschiedener Metallüberzüge bekannt, d.h. die elektrolytische, also unter Stromdurchgang erfolgende Abscheidung metallischer Überzüge aus Elektrolyten.Furthermore, the production of electrodeposited metal coatings is known, i. the electrolytic, so under current passage deposition of metallic coatings of electrolytes.
Die elektrolytische Beschichtung ist auch bei solchen Metallen möglich, die sich durch Schmelz-Tauch-Verfahren nicht beschichten lassen. Übliche Schichtdicken bei elektrolytischen Beschichtung liegen meist zwischen 2,5 und 10 µm, sie sind damit im Allgemeinen geringer als bei Schmelz-Tauchüberzügen. Einige Metalle, z.B. Zink, erlauben auch Dickschichtüberzüge bei elektrolytischer Beschichtung. Elektrolytisch verzinkte Bleche werden vorwiegend in der Automobilindustrie eingesetzt, aufgrund der hohen Oberflächengüte werden diese Bleche vor allen Dingen im Außenhautbereich eingesetzt. Sie besitzen eine gute Umformbarkeit, Schweißeignung und Lagerfähigkeit sowie gut lackierbare und matte Oberflächen.The electrolytic coating is also possible with such metals, which can not be coated by melt-dip process. Conventional layer thicknesses in electrolytic coating are usually between 2.5 and 10 microns, they are thus generally lower than in enamel dip coatings. Some metals, e.g. Zinc, also allow thick film coatings with electrolytic coating. Electrolytically galvanized sheets are mainly used in the automotive industry, because of the high surface quality, these sheets are used above all in the outer skin area. They have good formability, weldability and storability as well as good paintable and matt surfaces.
Insbesondere im Automobilbau besteht eine Bestrebung, die Rohkarosse immer leichter auszubilden. Dies hängt einerseits damit zusammen, dass leichtere Fahrzeuge weniger Kraftstoff verbrauchen, zum anderen werden Fahrzeuge mit immer mehr Zusatzfunktionen und Zusatzaggregaten ausgestattet, welche eine Gewichtserhöhung mit sich bringen, welche durch eine leichtere Rohkarosse kompensiert werden soll.In particular, in the automotive industry there is an effort to make the body shell always easier. This is partly due to the fact that lighter vehicles consume less fuel, on the other hand vehicles are equipped with more and more additional functions and additional aggregates, which increases the weight bring with it, which should be compensated by a lighter body shell.
Gleichzeitig steigen jedoch die Sicherheitsanforderungen für Kraftfahrzeuge, wobei für die Sicherheit der Personen in einem Kraftfahrzeug und deren Schutz bei Unfällen die Karosserie verantwortlich ist. Entsprechend besteht eine Forderung, bei leichteren Karosserierohgewichten eine erhöhte Sicherheit bei Verunfallung herbeizuführen. Dies gelingt nur dadurch, dass insbesondere im Bereich der Fahrgastzelle Werkstoffe mit einer erhöhten Festigkeit eingesetzt werden.At the same time, however, the safety requirements for motor vehicles are increasing, with the body being responsible for the safety of persons in a motor vehicle and their protection in the event of accidents. Accordingly, there is a requirement for lighter body heights to bring about increased safety in case of accident. This can only be achieved by using materials with increased strength, in particular in the area of the passenger compartment.
Um die geforderten Festigkeiten zu erzielen, ist es notwendig, Stahlsorten zu verwenden, die verbesserte Eigenschaften mechanischer Art haben bzw. die verwendeten Stahlsorten so zu behandeln, dass sie die geforderten mechanischen Eigenschaften haben.In order to achieve the required strengths, it is necessary to use steel grades which have improved properties of a mechanical nature or to treat the steel grades used so that they have the required mechanical properties.
Um Stahlbleche mit einer erhöhten Festigkeit auszubilden, ist es bekannt, Stahlbauteile in einem Schritt zu formen und gleichzeitig zu härten. Dieses Verfahren wird auch "Presshärten" genannt. Hierbei wird ein Stahlblech auf eine Temperatur oberhalb der Austenitisierungstemperatur, üblicherweise oberhalb 900°C, erhitzt und anschließend in einem kalten Werkzeug umgeformt. Das Werkzeug verformt hierbei das heiße Stahlblech, welches aufgrund des Oberflächenkontaktes zur kalten Form sehr schnell abkühlt, so dass die an sich bekannten Härteeffekte bei Stahl auftreten. Zudem ist es bekannt, das Stahlblech zunächst umzuformen und anschließend in einer Kalibrierpresse das umgeformte Stahlblechbauteil abzukühlen und zu härten. Im Gegensatz zum ersteren Verfahren ist hierbei von Vorteil, dass das Blech in kaltem Zustand umgeformt wird und hierdurch komplexere Formgebungen möglich sind. Bei beiden Verfahren wird das Blech jedoch durch die Erhitzung oberflächlich verzundert, so dass nach dem Umformen und dem Härten die Blechoberfläche gereinigt werden muss, beispielsweise durch Sandstrahlen. Anschließend wird das Blech beschnitten und ggf. notwendige Löcher eingestanzt. Hierbei ist von Nachteil, dass die Bleche bei der mechanischen Bearbeitung eine sehr hohe Härte aufweisen und die Bearbeitung somit aufwendig wird und insbesondere ein hoher Werkzeugverschleiß besteht.In order to form steel sheets with increased strength, it is known to form steel components in one step and to harden at the same time. This process is also called "press hardening". Here, a steel sheet is heated to a temperature above the Austenitisierungstemperatur, usually above 900 ° C, and then formed in a cold tool. In this case, the tool deforms the hot steel sheet, which cools very rapidly due to the surface contact with the cold mold, so that the hardening effects known per se occur with steel. In addition, it is known to first reshape the steel sheet and then to cool and harden the formed sheet steel component in a sizing press. In contrast to the former method, it is advantageous that the sheet is formed in a cold state and thus more complex shapes are possible. In both methods, however, the surface of the plate is scaled by heating, so that after forming and hardening the sheet surface must be cleaned, for example by sandblasting. Then the sheet is trimmed and possibly punched necessary holes. In this case, it is disadvantageous that the sheets have a very high hardness in the mechanical processing and therefore the processing is complicated and in particular a high tool wear exists.
Die
Im zweiten Beispiel der
Aus der
Ferner ist von Nachteil, dass auch eine solche feueraluminierte Beschichtung beim Aufheizen des Stahlblechs auf die Austenitisierungstemperatur und den anschließenden Presshärteschritts so weit chemisch und mechanisch beansprucht wird, dass das fertiggestellte Bauteil eine nicht ausreichende Korrosionsschutzschicht besitzt. Im Ergebnis kann somit festgehalten werden, dass eine derartige feueraluminierte Schicht für das Presshärten komplexer Geometrien, d.h. für das Erhitzen eines Stahlblechs auf eine Temperatur, die über der Austenitisierungstemperatur liegt, nicht gut geeignet ist.Furthermore, it is disadvantageous that even such a hot-dip coated coating during the heating of the steel sheet to the austenitizing temperature and the subsequent press hardening step is so far chemically and mechanically claimed that the finished component has an insufficient corrosion protection layer. As a result, it can be stated that such a hot-dip aluminized layer is suitable for press-hardening complex geometries, i. for heating a steel sheet to a temperature higher than the austenitizing temperature is not well suited.
Aus der
Aus der
Aufgabe ist es, ein Verfahren zum Herstellen eines gehärteten Profilbauteils mit einem kathodischem Korrosionsschutz zu schaffen, wobei der kathodische Korrosionsschutz so ausgebildet ist, dass bereits das Ausgangsmaterial über eine Schutzschicht verfügt die sich während der Weiterbearbeitung nicht in negativer Weise umwandelt.The object is to provide a method for producing a hardened profile component with a cathodic corrosion protection, wherein the cathodic corrosion protection is formed so that even the starting material has a protective layer which does not convert during the further processing in a negative way.
Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.The object is achieved by a method having the features of claim 1. Advantageous developments are characterized in the subclaims.
Eine weitere Aufgabe ist es, eine kathodische Korrosionsschutzschicht für härtbare Profilbauteile zu schaffen.Another object is to provide a cathodic anti-corrosion layer for curable profile components.
Die Aufgabe wird mit einer Korrosionsschutzschicht mit den Merkmalen des Anspruchs 29 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.The object is achieved with a corrosion protection layer having the features of claim 29. Advantageous developments are characterized in the dependent claims.
Eine weitere Aufgabe ist es ein gehärtetes Profilbauteil mit kathodischem Korrosionsschutz zu schaffen.Another object is to provide a hardened profile component with cathodic corrosion protection.
Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 45 gelöst. Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.The object is achieved by a method having the features of claim 45. Advantageous developments are characterized in the dependent claims.
Das erfindungsgemäße Verfahren sieht vor, auf ein härtbares Stahlblech eine Beschichtung aus einer Mischung bestehend im Wesentlichen aus Zink und einem sauerstoffaffinen Element, wie Magnesium, Silizium, Titanium, Calcium und Aluminium mit einem Gehalt von 0,1 bis 15 Gew.-% an dem sauerstoffaffinen Element aufzubringen und das beschichtete Stahlblech zumindest teilbereichsweise unter Zutritt von Sauerstoff auf eine Temperatur oberhalb der Austenitisierungstemperatur der Blechlegierung zu erwärmen und davor umzuformen, wobei das Blech nach einer ausreichenden Erwärmung abgekühlt wird und die Abkühlrate so bemessen wird, dass eine Härtung der Blechlegierung erfolgt. Im Ergebnis wird ein gehärtetes Bauteil aus einem Stahlblech erzielt, welches einen guten kathodischen Korrosionsschutz besitzt.The inventive method provides, on a hardenable steel sheet, a coating of a mixture consisting essentially of zinc and an oxygen affinity element, such as magnesium, silicon, titanium, calcium and aluminum with a content of 0.1 to 15 wt .-% of the Apply oxygen-affine element and heat the coated steel sheet at least partially with the access of oxygen to a temperature above the Austenitisierungstemperatur the sheet metal alloy and before to reform, wherein the sheet is cooled after sufficient heating and the cooling rate is such that hardening of the sheet metal alloy takes place. As a result, a hardened component is obtained from a steel sheet having a good cathodic corrosion protection.
Der erfindungsgemäße Korrosionsschutz für Stahlbleche, die zunächst umgeformt und insbesondere Walzprofiliert und anschlieβend einer Wärmebehandlung unterzogen und umgeformt und dabei gehärtet werden, ist ein kathodischer Korrosionsschutz, der im Wesentlichen auf Zink basiert. Erfindungsgemäß sind dem die Beschichtung ausbildenden Zink 0,1% bis 15% eines oder mehrerer sauerstoffaffiner Elemente wie Magnesium, Silizium, Titanium, Calcium, Aluminium, Bor und Mangan oder jeder Mischung bzw. Legierung hieraus zugefügt. Es konnte herausgefunden werden, dass derart geringe Mengen eines sauerstoffaffinen Elements wie Magnesium, Silizium, Titanium, Calcium, Aluminium, Bor und Mangan bei dieser speziellen Anwendung einen überraschenden Effekt herbeiführen.The corrosion protection according to the invention for steel sheets, which are first formed and in particular roll-profiled and then subjected to a heat treatment and deformed and thereby hardened, is a cathodic corrosion protection which is essentially based on zinc. According to the invention, 0.1% to 15% of one or more oxygen-containing elements such as magnesium, silicon, titanium, calcium, aluminum, boron and manganese or any mixture or alloy thereof are added to the zinc forming the coating. It has been found that such small amounts of an oxygen affinity element as magnesium, silicon, titanium, calcium, aluminum, boron and manganese cause a surprising effect in this particular application.
Als sauerstoffaffine Elemente kommen erfindungsgemäß zumindest Mg, Al, Ti, Si, Ca, B, Mn in Frage. Wenn nachfolgend Aluminium genannt wird, steht dies stellvertretend auch für die genannten anderen Elemente.According to the invention, at least Mg, Al, Ti, Si, Ca, B, Mn are suitable as oxygen-affine elements. When aluminum is mentioned below, this is representative of the other elements mentioned.
Es hat sich überraschend herausgestellt, dass sich trotz der geringen Menge eines sauerstoffaffinen Elements, wie insbesondere Aluminium, sich beim Aufheizen offensichtlich eine im Wesentlichen aus Al2O3 bzw. einem Oxid des sauerstoffaffinen Elements (MgO, CaO, TiO, SiO2, B2O3, MnO) bestehende, sehr wirksame und nachheilende, oberflächliche Schutzschicht bildet. Diese sehr dünne Oxid-Schicht schützt die darunter liegende Znhaltige Korrosionsschutzschicht selbst bei sehr hohen Temperaturen vor Oxidation. D.h., dass sich während der speziellen Weiterverarbeitung des verzinkten Bleches im Presshärteverfahren, eine angenähert zweischichtige Korrosionsschutzschicht ausbildet, die aus einer kathodisch hochwirksamen Schicht, mit hohem Anteil Zink besteht und von einer sehr dünnen Oxidationsschutzschicht aus einem oder mehreren Oxiden (Al2O3, MgO, CaO, TiO, SiO2, B2O3, MnO) gegenüber Oxidation und Abdampfen geschützt ist. Es ergibt sich somit eine kathodische Korrosionsschutzschicht mit einer überragenden chemischen Beständigkeit. Dies bedeutet, dass die Wärmebehandlung in einer oxidierenden Atmosphäre zu erfolgen hat. Unter Schutzgas (sauerstofffreie Atmosphäre) kann eine Oxidation zwar vermieden werden, das Zink würde jedoch aufgrund des hohen Dampfdrucks abdampfen.It has surprisingly been found that, despite the small amount of an oxygen-affine element, in particular aluminum, an essentially Al 2 O 3 or an oxide of the oxygen-affine element (MgO, CaO, TiO, SiO 2 , B 2 O 3 , MnO) existing, very effective and healing, superficial protective layer. This very thin oxide layer protects the underlying Znhaltige corrosion protection layer even at very high temperatures from oxidation. That is, during the special processing of the galvanized sheet in the press hardening process, an approximately two-layer corrosion protection layer is formed, which consists of a cathodically highly effective layer with a high proportion of zinc and a very thin oxidation protection layer of one or more oxides (Al 2 O 3 , MgO , CaO, TiO, SiO 2 , B 2 O 3 , MnO) is protected against oxidation and evaporation. This results in a cathodic corrosion protection layer with a superior chemical resistance. This means that the heat treatment has to take place in an oxidizing atmosphere. Although under protective gas (oxygen-free atmosphere) oxidation can be avoided, the zinc would evaporate due to the high vapor pressure.
Um ein Blech mit dem erfindungsgemäßen Korrosionsschutz zu versehen, kann in einem ersten Schritt eine Zinklegierung mit einem Gehalt an Aluminium in Gewichtsprozent von größer als 0,1 jedoch geringer als 15%, insbesondere geringer als 10%, weiter bevorzugt geringer als 5% auf ein Stahlblech, insbesondere ein legiertes Stahlblech aufgebracht werden, worauf in einem zweiten Schritt das Blech inline als Strang umgeformt und bei Zutritt von Luftsauerstoff auf eine Temperatur oberhalb der Austenitisierungstemperatur der Blechlegierung erwärmt und danach mit erhöhter Geschwindigkeit abgekühlt wird.To provide a sheet with the corrosion protection according to the invention, in a first step, a zinc alloy with a content of aluminum in weight percent of greater than 0.1 but less than 15%, in particular less than 10%, more preferably less than 5% on a Steel sheet, in particular an alloyed steel sheet are applied, where in a second step, the sheet is formed inline as a strand and heated in the presence of atmospheric oxygen to a temperature above the Austenitisierungstemperatur the sheet metal alloy and then cooled at an increased rate.
Es wird angenommen, dass im ersten Schritt des Verfahrens, und zwar bei der Beschichtung des Bleches an der Blechoberfläche bzw. im proximalen Bereich der Schicht, eine dünne Sperrphase aus insbesondere Fe2Al5-xZnx gebildet wird, die die Fe-Zn-Diffusion bei einem Flüssigmetallbeschichtungsverfahren, welches insbesondere bei einer Temperatur bis 690°C erfolgt, behindert. Somit wird im ersten Verfahrensschritt das Blech mit einer Zink-Metallbeschichtung mit einer Zugabe von Aluminium erstellt, welche nur zur Blechoberfläche hin, als im proximalen Bereich der Auflage eine äußerst dünne Sperrphase, welche gegen ein rasches Wachsen einer Eisen-Zink-Verbindungsphase wirksam ist, aufweist. Zudem ist denkbar, dass allein die Anwesenheit von Aluminium die Eisen-Zink-Diffusionsneigung im Bereich der Grenzschicht senkt.It is assumed that in the first step of the process, namely when the sheet is coated on the sheet surface or in the proximal region of the layer, a thin barrier phase is formed, in particular Fe 2 Al 5 -x Zn x , which forms the Fe-Zn Diffusion in a liquid metal coating process, which takes place in particular at a temperature up to 690 ° C, hindered. Thus, in the first process step, the sheet is formed with a zinc-metal coating with an addition of aluminum, which is effective only towards the sheet surface, as in the proximal region of the support an extremely thin barrier phase, which is effective against rapid growth of an iron-zinc compound phase, having. In addition, it is conceivable that only the presence of aluminum lowers the iron-zinc diffusion tendency in the region of the boundary layer.
Erfolgt nun im zweiten Schritt ein Anwärmen des mit einer Zink-Aluminium-Metallschicht versehenen Bleches auf die Austenitisierungstemperatur des Blechwerkstoffes unter Luftsauerstoffzutritt, so wird vorerst die Metallschicht am Blech verflüssigt. An der distalen Oberfläche reagiert das sauerstoffaffinere Aluminium aus dem Zink mit Luftsauerstoff unter Bildung von festem Oxid bzw. Tonerde, wodurch in dieser Richtung ein Abfall der Aluminiummetallkonzentration entsteht, welche eine stetige Diffusion von Aluminium zur Abreicherung hin, also zum distalen Bereich hin bewirkt. Diese Tonerdeanreicherung, an dem der Luft ausgesetzte Schichtbereich wirkt nun als Oxidationsschutz für das Schichtmetall und als Abdampfungssperre für das Zink.If, in the second step, heating of the sheet provided with a zinc-aluminum-metal layer to the austenitizing temperature of the sheet metal material with access of atmospheric oxygen occurs, the metal layer on the sheet is liquefied for the time being. At the distal surface, the oxygen-containing aluminum from the zinc reacts with atmospheric oxygen to form solid oxide, thereby causing a decrease in the aluminum metal concentration, which causes a steady diffusion of aluminum towards depletion, that is to the distal region. This Tonerdeanreicherung, at the air exposed layer area now acts as oxidation protection for the layer metal and as Abdampfungssperre for the zinc.
Zudem wird beim Anwärmen das Aluminium aus der proximalen Sperrphase durch stetige Diffusion zum distalen Bereich hin abgezogen und steht dort zur Bildung der oberflächlichen Al2O3-Schicht zur Verfügung. Somit wird die Ausbildung einer Blechbeschichtung erreicht, welche eine kathodisch hochwirksame Schicht mit hohem Zinkanteil hinterlässt.In addition, during heating, the aluminum is withdrawn from the proximal blocking phase by continuous diffusion towards the distal region and is available there for the formation of the superficial Al 2 O 3 layer. Thus, the formation of a sheet metal coating is achieved, which leaves a cathodically highly effective layer with a high zinc content.
Gut geeignet ist beispielweise eine Zinklegierung mit einem Gehalt an Aluminium in Gewichtsprozent von größer als 0,2 jedoch kleiner als 4, vorzugsweise von größer 0,26 jedoch kleiner 2,5 Gew.-%.Well suited is, for example, a zinc alloy with a content of aluminum in weight percent of greater than 0.2 but less than 4, preferably greater than 0.26 but less than 2.5 wt .-%.
Wenn in günstiger Weise im ersten Schritt die Aufbringung der Zinklegierungsschicht auf die Blechoberfläche im Durchlauf durch ein Flüssigmetallbad bei einer Temperatur von höher als 425°C, jedoch niedriger als 690°C, insbesondere bei 440°C bis 495°C erfolgt, mit anschließender Abkühlung des beschichteten Blechs, kann nicht nur die proximale Sperrphase wirkungsvoll gebildet werden, bzw. eine sehr gute Diffusionsbehinderung im Bereich der Sperrschicht beobachtet werden, sondern es erfolgt damit auch eine Verbesserung der Warmverformungseigenschaften des Blechmaterials.Conveniently, in the first step, the zinc alloy layer is applied to the sheet surface passing through a liquid metal bath at a temperature higher than 425 ° C, but lower than 690 ° C, especially at 440 ° C to 495 ° C, followed by cooling of the coated sheet, not only the proximal barrier phase can be effectively formed, or a very good diffusion inhibition can be observed in the region of the barrier layer, but it also takes place to improve the thermoforming properties of the sheet material.
Eine vorteilhafte Ausgestaltung der Erfindung ist bei einem Verfahren gegeben, bei welchem ein warm- oder kaltgewalztes Stahlband mit einer Dicke von beispielsweise größer als 0,15 mm und mit einem Konzentrationsbereich mindestens einer der Legierungselemente in den Grenzen in Gew.-%
Es konnte festgestellt werden, dass die Oberflächenstruktur des erfindungsgemäßen kathodischen Korrosionsschutzes besonders günstig für eine hohe Haftfähigkeit von Farben und Lacken ist.It has been found that the surface structure of the cathodic corrosion protection according to the invention is particularly favorable for a high adhesion of paints and varnishes.
Die Haftung der Beschichtung am Stahlblechgegenstand kann weiter verbessert werden, wenn die Oberflächenschicht eine zinkreiche, intermetallische Eisen-Zink-Aluminium-Phase und eine eisenreiche Eisen-Zink-Aluminium-Phase besitzt, wobei die eisenreiche Phase ein Verhältnis Zink zu Eisen von höchstens 0,95 (Zn/Fe ≤ 0,95), vorzugsweise von 0,20 bis 0,80 (Zn/Fe = 0,20 bis 0,80) und die zinkreiche Phase ein Verhältnis Zink zu Eisen von mindestens 2,0 (Zn/Fe ≥ 2,0) vorzugsweise von 2,3 bis 19,0 (Zn/Fe = 2,3 bis 19,0) aufweist.The adhesion of the coating to the steel sheet article can be further improved if the surface layer has a zinc-rich intermetallic iron-zinc-aluminum phase and an iron-rich iron-zinc-aluminum phase, the iron-rich phase having a zinc to iron ratio of at most 0, 95 (Zn / Fe ≦ 0.95), preferably from 0.20 to 0.80 (Zn / Fe = 0.20 to 0.80), and the zinc rich phase has a zinc to iron ratio of at least 2.0 (Zn / Fe ≥ 2.0), preferably from 2.3 to 19.0 (Zn / Fe = 2.3 to 19.0).
Das in Bandform bereitgestellte Ausgangsmaterial mit der erfindungsgemäßen Beschichtung wird einer Walzprofiliereinheit zugeführt und zu einem Walzprofil umgeformt, wobei das Walzprofil während des Walzprofilierens verformt und anschlieβend in einer Ablängeinheit zu den Profilbauteilen abgelängt wird. Erfindungsgemäß werden zumindest partielle Bereiche des Walzprofils nach dem Austritt aus der Walzprofiliereinheit oder vor dem Eintritt in die Walzprofiliereinheit auf eine zum Härten erforderliche Temperatur erhitzt und vor dem Ablängen in einer Abkühleinheit abgeschreckt. Die erforderliche Erwärmung erfolgt zum Beispiel induktiv.The strip-form provided starting material with the coating according to the invention is fed to a roll forming unit and formed into a rolled section, wherein the rolled section is deformed during roll forming and subsequently cut to length in a cutting unit to the profile components. According to the invention, at least partial areas of the rolled section after leaving the rolling profiling unit or heated to a temperature required for curing prior to entry into the roll forming unit and quenched prior to being cut to length in a cooling unit. The required heating takes place, for example, inductively.
Bei einer weiteren vorteilhaften Ausführungsform wird in Bandform bereitgestelltes Ausgangsmaterial einer Walzprofiliereinheit zugeführt und in der Walzprofiliereinheit zu einem Walzprofil umgeformt, wobei das Walzprofil während des Walzprofilierens verformt wird und anschließend das Walzprofil in einer Ablängeinheit zu den Profilbauteilen abgelängt wird. Anschließend werden die bereits fertig abgelängten Profile in einem Profilspeicher mit Vereinzelung gelagert und anschlieβend dem Härteschritt durch Aufheizen und Abkühlen unterzogen.In a further advantageous embodiment, starting material provided in strip form is fed to a roll forming unit and converted into a rolled section in the roll forming unit, wherein the rolled section is deformed during roll forming and then the rolled section is cut to length in a cutting unit to the profile components. Subsequently, the already cut to length profiles are stored in a profile memory with separation and then subjected to the hardening step by heating and cooling.
Eine weitere vorteilhafte Ausführungsform sieht vor, die vereinzelten Profile vor dem Härten unter Sauerstoffzutritt einer Zwischenwärmstufe zu unterziehen, wobei in der Zwischenwärmstufe eine vorteilhafte Veränderung der Korrosionsschutzschicht erfolgt und erst dann auf eine zum Härten erforderliche Temperatur aufzuheizen. Letzteres kann sowohl mit Bandmaterial als auch mit abgelängten Profilen geschehen.A further advantageous embodiment provides for subjecting the separated profiles to an intermediate heat stage prior to curing under oxygen access, wherein in the intermediate heat stage an advantageous change in the corrosion protection layer takes place and only then to a temperature required for curing. The latter can be done with band material as well as with cut profiles.
Grundsätzlich können offene und geschlossene Profile durch induktive Hochfrequenzschweißung, Laserschweißung, Punktschweiβung, Rollennahtschweißung, Buckelschweißung und Walztechnologie erzeugt werden.Basically, open and closed profiles can be produced by inductive high frequency welding, laser welding, spot welding, seam welding, projection welding and rolling technology.
Die Erfindung wird nachfolgend anhand einer Zeichnung beispielhaft erläutert, es zeigen hierbei:
- Figur 1:
- schematisch eine Vorrichtung mit Induktionsspule und Abkühlring zum Herstellen von gehärteten Profilbauteilen;
- Figur 2:
- schematisch eine Vorrichtung zum Herstellen der erfindungsgemäßen Bauteile,
- Figur 3:
- eine weitere Ausführungsform einer Vorrichtung zum Herstellen der Profilbauteile;
- Figur 4:
- schematisch den Temperaturzeitverlauf beim Herstellen des erfindungsgemäßen Profilbauteils;
- Figur 5:
- den Temperaturzeitverlauf bei einer weiteren vorteilhaften Ausführungsform des Verfahrens zum Herstellen des erfindungsgemäßen Profilbauteils;
- Figur 6:
- die lichtmikroskopische Aufnahme des Querschnitts eines erfindungsgemäß hergestellten Profilbauteils mit erfindungsgemäßer Phasenzusammensetzung;
- Figur 7:
- REM-Aufnahme des Querschliffs einer geglühten Probe eines erfindungsgemäßen kathodischen korrosionsgeschützten Blechs;
- Figur 8:
- den Potentialverlauf für das Blech nach
Figur 7 ; - Figur 9:
- die REM-Aufnahme des Querschliffs einer geglühten Probe eines erfindungsgemäßen mit einem kathodischen Korrosionsschutz versehenen Blechs;
- Figur 10:
- den Potentialverlauf des Blechs nach
Figur 9 ; - Figur 11:
- REM-Aufnahme des Querschliffs eines nicht erfindungsgemäß beschichteten und behandelten Blechs;
- Figur 12:
- den Potentialverlauf des nicht erfindungsgemäßem Blechs nach
Figur 11 ; - Figur 13:
- REM-Aufnahme des Querschliffs der Oberfläche eines erfindungsgemäß beschichteten und wärmebehandelten Blechs;
- Figur 14:
- den Potentialverlauf des Blechs nach
Figur 13 ;
- FIG. 1:
- schematically an apparatus with induction coil and cooling ring for producing hardened profile components;
- FIG. 2:
- schematically a device for producing the components according to the invention,
- FIG. 3:
- a further embodiment of an apparatus for producing the profile components;
- FIG. 4:
- schematically the temperature-time profile during the manufacture of the profile component according to the invention;
- FIG. 5:
- the temperature time course in a further advantageous embodiment of the method for producing the profile component according to the invention;
- FIG. 6:
- the photomicrograph of the cross section of a profile component according to the invention produced with phase composition according to the invention;
- FIG. 7:
- SEM image of the cross section of an annealed specimen of a cathodic corrosion-protected sheet according to the invention;
- FIG. 8:
- the potential curve for the sheet after
FIG. 7 ; - FIG. 9:
- the SEM image of the cross section of a calcined sample of a cathode according to the invention provided with a cathodic corrosion protection;
- FIG. 10:
- the potential course of the sheet after
FIG. 9 ; - FIG. 11:
- SEM image of the cross section of a sheet not coated and treated according to the invention;
- FIG. 12:
- the potential curve of the non-inventive sheet after
FIG. 11 ; - FIG. 13:
- SEM image of the cross section of the surface of a sheet coated and heat-treated according to the invention;
- FIG. 14:
- the potential course of the sheet after
FIG. 13 ;
Ein erfindungsgemäßes Profilbauteil mit kathodischem Korrosionsschutz wurde wie noch nachfolgend erläutert hergestellt anschließend einer Wärmebehandlung zum Härten des Profilbauteils und einer schnellen Abkühlung unterzogen. Anschließend wurde die Probe auf optische und elektrochemische Eigenschaften analysiert. Beurteilungskriterien waren hierbei das Aussehen der geglühten Probe sowie die Schutzenergie. Die Schutzenergie ist das Maß für den elektrochemischen Schutz der Schicht, welcher durch galvanostatische Ablösung bestimmt wird.A profile component according to the invention with cathodic protection against corrosion was subsequently produced, as explained below, subsequently subjected to a heat treatment for hardening the profile component and rapid cooling. Subsequently, the sample was analyzed for optical and electrochemical properties. Assessment criteria were the appearance of the annealed sample and the protection energy. The protection energy is the measure for the electrochemical protection of the layer, which is determined by galvanostatic detachment.
Die elektrochemische Methode der galvanostatischen Auflösung der metallischen Oberflächenbeschichtungen eines Materials erlaubt den Mechanismus des Korrosionsschutzes der Schicht zu klassifizieren. Es wird das Potential-Zeitverhalten einer vor Korrosion schützenden Schicht bei einem vorgegebenen konstanten Stromfluss ermittelt. Für die Messungen wurde eine Stromdichte von 12,7 mA/cm2 vorgegeben. Die Messanordnung ist ein Drei-Elektrodensystem. Als Gegenelektrode wurde ein Platinnetz verwendet, wobei die Referenzelektrode aus Ag/AgCl(3M) besteht. Der Elektrolyt besteht aus 100 g/l ZnSO4*5H2O und 200 g/l NaCl gelöst in deionisiertem Wasser.The electrochemical method of galvanostatic dissolution of the metallic surface coatings of a material allows to classify the mechanism of corrosion protection of the layer. The potential-time behavior of a corrosion-protective layer is determined for a given constant current flow. For the measurements, a current density of 12.7 mA / cm 2 was specified. The measuring arrangement is a three-electrode system. The counterelectrode used was a platinum network, the reference electrode consisting of Ag / AgCl (3M). The electrolyte consists of 100 g / l ZnSO 4 .5H 2 O and 200 g / l NaCl dissolved in deionized water.
Ist das Potential, das zum Auflösen der Schicht benötigt wird, größer oder gleich dem Stahlpotential, welches leicht durch Abbeizen oder Abschleifen der Oberflächenbeschichtung ermittelt werden kann, spricht man von einem reinen Barriereschutz ohne einem aktiven kathodischen Korrosionsschutz. Der Barriereschutz zeichnet sich dadurch aus, dass er das Grundmaterial vom korrosiven Medium trennt.If the potential required for dissolving the layer is greater than or equal to the steel potential, which can be easily determined by pickling or abrading the surface coating, this is called pure barrier protection without active cathodic protection. The barrier protection is characterized by the fact that it separates the base material from the corrosive medium.
Ein Stahlblech wird mit einer Schmelze feuerverzinkt, die aus 95% Zink und 5% Aluminium besteht. Das beschichtete Stahlblech wird anschliessend in einer Profiliereinrichtung rollprofiliert. Nach dem Glühen zeigt das Blech eine silbrig-graue Oberfläche ohne Fehlstellen. Im Querschliff (
Bei der galvanostatischen Auflösung zeigt das Blech zu Beginn der Messung ein für die Auflösung erforderliches Potential von ca. -0,7 V. Dieser Wert liegt deutlich unter dem Potential des Stahls. Nach einer Messzeit von ca. 1.000 Sekunden stellt sich ein Potential von ca. -0,6 V ein. Auch dieses Potential liegt noch deutlich unter dem Stahlpotential. Nach einer Messzeit von ca. 3.500 Sekunden ist dieser Teil der Schicht aufgebraucht und das notwendige Potential zur Auflösung der Schicht nähert sich dem Stahlpotential. Diese Beschichtung bietet somit nach dem Glühen zusätzlich zum Barriereschutz einen kathodischen Korrosionsschutz. Das Potential liegt bis zu einer Messzeit von 3.500 Sekunden bei einem Wert von ≤ -0,6 V, so dass ein nennenswerter kathodischer Schutz über lange Zeit hinweg aufrecht erhalten wird, auch wenn das Blech der Austenitisierungstemperatur zugeführt wurde. Das Potentialzeitdiagramm ist in
Das Blech wird durch eine Schmelze bzw. durch ein Zinkbad geführt, mit einem Zinkanteil von 99,8% und einem Aluminiumgehalt von 0,2%. Das beschichtete Stahlblech wird anschließend in einer Profiliereinrichtung rollprofiliert. Im Zinküberzug vorhandenes Aluminium reagiert bei der Glühung mit Luftsauerstoff und bildet eine schützende Al2O3-Haut. Durch ständige Diffusion des sauerstoffaffinen Aluminiums an die Oberfläche wird diese Schutzhaut aufrecht erhalten und ausgebaut. Nach dem induktiven Erhitzen des Blechs zeigt sich eine silbrig-graue Oberfläche ohne Fehlstellen. Aus dem ursprünglich etwa 15 µm dicken Zinküberzug entwickelt sich bei der Glühung aufgrund Diffusion eine etwa 20 bis 25 µm dicke Schicht, wobei diese Schicht (
Zu Beginn der galvanostatischen Auflösung liegt das geglühte Material auf einem Potential von ca. -0,75 V. Nach einer Messzeit von ca. 1.500 Sekunden steigt das für die Auflösung notwendige Potential auf ≤ -0,6 V an. Die Phase hält bis zu einer Messzeit von ca. 2.800 Sekunden. Dann steigt das erforderliche Potential auf Stahlpotential. Auch in diesem Fall liegt zusätzlich zum Barriereschutz ein kathodischer Korrosionsschutz vor. Das Potential liegt bis zu einer Messzeit von 2.800 Sekunden bei einem Wert von ≤ -0,6 V. Auch ein derartiges Material besitzt somit über eine sehr lange Zeit einen kathodischen Korrosionsschutz. Das Potentialzeitdiagramm ist
Aus einem im Schmelz-Tauch-Verfahren verzinkten Blech wird in einer Rollprofiliereinrichtung ein Profilbauteil hergestellt. Bei dieser Korrosionsschutzschicht ist im Zinkbad etwas Aluminium enthalten, in einer Größenordnung von etwa 0,13%. Das Profilbauteil wird vor dem Austenitisieren auf eine Temperatur von etwa 500°C erhitzt. Hierbei wird die Zinkschicht vollständig in Zn-Fe-Phasen umgewandelt. Die Zinkschicht wird also zur Gänze, d.h. bis an die Oberfläche in Zn-Fe-Phasen umgewandelt. Hieraus resultieren auf dem Stahlblech zinkreiche Phasen, die alle mit einem Zn-Fe-Verhältnis von > 70% Zink ausgebildet sind. Bei dieser Korrosionsschutzschicht ist im Zinkbad etwas Aluminium enthalten, in einer Größenordnung von etwa 0,13%.From a galvanized in the melt-dip sheet metal a profile component is produced in a roll profiler. This anticorrosive layer contains some aluminum in the zinc bath, of the order of about 0.13%. The profile component is heated to a temperature of about 500 ° C prior to austenitizing. Here, the zinc layer is completely converted into Zn-Fe phases. The zinc layer is thus wholly, i. converted to Zn-Fe phases to the surface. This results in zinc-rich phases on the steel sheet, all of which are formed with a Zn-Fe ratio of> 70% zinc. This anticorrosive layer contains some aluminum in the zinc bath, of the order of about 0.13%.
Das Profilbauteil mit der genannten vollständig umgewandelten Beschichtung wird induktiv auf > 900°C aufgeheizt. Es resultiert eine gelb-grüne Oberfläche.The profile component with the aforementioned fully converted coating is inductively heated to> 900 ° C. The result is a yellow-green surface.
Die gelb-grüne Oberfläche deutet auf eine Oxidation der Zn-Fe-Phasen beim Glühen hin. Eine Aluminium-Oxid-Schutzschicht ist nicht nachweisbar. Der Grund für das Ausbleiben einer Aluminium-Oxid-Schutzschicht kann damit erklärt werden, dass bei der Glühbehandlung das Aluminium aufgrund fester Zn-Fe-Phasen nicht so rasch an die Oberfläche wandern und die Zn-Fe-Beschichtung vor Oxidation schützen kann. Beim Erhitzen dieses Materials liegt bei Temperaturen um 500°C noch keine flüssige zinkreiche Phase vor, denn diese bildet sich erst bei höheren Temperaturen von 782°C. Sind 782°C erreicht, liegt thermodynamisch eine flüssige zinkreiche Phase vor, in welcher das Aluminium frei verfügbar ist. Trotzdem wird die Oberflächenschicht nicht gegen Oxidation geschützt.The yellow-green surface indicates oxidation of the Zn-Fe phases during annealing. An aluminum oxide protective layer is undetectable. The reason for the absence of an aluminum oxide protective layer can be explained by the fact that in the annealing treatment the aluminum does not migrate as quickly to the surface due to solid Zn-Fe phases and can protect the Zn-Fe coating from oxidation. When heating this material at temperatures around 500 ° C is still no liquid zinc-rich phase, because this forms only at higher temperatures of 782 ° C. If 782 ° C are reached, thermodynamically there is a liquid zinc-rich phase in which the aluminum is freely available. Nevertheless, the surface layer is not protected against oxidation.
Möglicherweise liegt zu diesem Zeitpunkt die Korrosionsschutzschicht bereits teilweise oxidiert vor und es kann sich keine deckende Aluminium-Oxid-Haut mehr ausbilden. Die Schicht zeigt sich im Querschliff wellig zerklüftet und besteht aus Zn- und Zn-Fe-Oxiden (
Bei der galvanostatischen Auflösung dieses Materials wird für die Auflösung unter konstanten Stromfluss zu Beginn der Messung ein Potential von ca. +1V angelegt, dass sich dann auf einen Wert von ca. +0,7V einpendelt. Auch hier liegt das Potential während der gesamten Auflösung deutlich über dem Stahlpotential (
Ein Profilbauteil aus einem Blech mit einer Verzinkung wie in Beispiel 3 wird nach der Rollumformung einer insbesondere kurzen, induktiven Wärmebehandlung unterzogen, bei etwa 490°C bis 550°C, wobei die Zinkschicht nur teilweise in Zn-Fe-Phasen umgewandelt wird. Der Prozess wird hierbei so gefahren, dass die Phasenumwandlung nur teilweise durchgeführt wird und somit noch nicht umgewandeltes Zink mit Aluminium an der Oberfläche vorhanden ist und somit freies Aluminium als Oxidationsschutz für die Zinkschicht verfügbar ist.A profile component made of a sheet metal with a galvanizing as in Example 3 is subjected after the roll forming a particular short, inductive heat treatment, at about 490 ° C to 550 ° C, the zinc layer is only partially converted into Zn-Fe phases. The process is carried out in such a way that the phase transformation is only partially carried out and therefore not yet converted zinc with aluminum on the surface is present and thus free aluminum as oxidation protection for the zinc layer is available.
Das Profilbauteil mit der erfindungsgemäßen wärmebehandelten und nur teilweise in Zn-Fe-Phasen umgewandelten Beschichtung wird anschließend induktiv rasch auf die notwendige Austenitisierungstemperatur aufgeheizt. Es ergibt sich eine Oberfläche, die grau und ohne Fehlstellen ist. Eine REM/EDX-Untersuchung des Querschliffs (
Bei der galvanostatischen Ablösung der Oberflächenbeschichtung einer schnell aufgeheizten Blechplatine mit der erfindungsgemäßen und im Gegensatz zu Beispiel 2 nur unvollständig vor dem Presshärten wärmebehandelten feuerverzinkten Schicht ergibt sich, da zu Beginn der Messung das für die Auflösung notwendige Potential bei ca. -0,94 V liegt und damit vergleichbar mit dem Potential ist, das für die Auflösung einer ungeglühten Zinkbeschichtung notwendig ist. Nach einer Messzeit von ca. 500 Sekunden steigt das Potential auf einen Wert von -0,79 V an und liegt damit weit unter dem Stahlpotential. Nach ca. 2.200 Sekunden Messzeit sind ≤ -0,6 V für die Ablösung notwendig, wobei das Potential anschließend auf -0,38V ansteigt und sich dann dem Stahlpotential nähert (
Die Beispiele zeigen, dass nur die erfindungsgemäß für das Rollumformen verwendeten, korrosionsgeschützten Bleche auch nach der Wärmebehandlung noch einen kathodischen Korrosionsschutz mit einer kathodischen Korrosionsschutzenergie > 4 J/cm2 bieten.The examples show that only the corrosion-protected metal sheets used according to the invention for roll forming still offer a cathodic corrosion protection with a cathodic corrosion protection energy> 4 J / cm 2 even after the heat treatment.
Für die Bewertung der Qualität des kathodischen Korrosionsschutzes darf nicht nur die Zeit, während der der kathodische Korrosionsschutz aufrecht erhalten werden kann, herangezogen werden, sondern muss auch die Differenz zwischen dem für die Auflösung notwendigen Potential und dem Stahlpotential berücksichtigt werden. Je größer diese Differenz ist, umso wirksamer ist der kathodische Korrosionsschutz auch bei schlecht leitenden Elektrolyten. Der kathodische Korrosionsschutz ist bei einer Spannungsdifferenz von 100 mV zum Stahlpotential in schlecht leitenden Elektrolyten vernachlässigbar gering. Zwar liegt auch bei einer kleineren Differenz zum Stahlpotential prinzipiell noch ein kathodischer Korrosionsschutz vor, sofern ein Stromschluss bei der Verwendung einer Stahlelektrode nachgewiesen wird, allerdings ist dieser vernachlässigbar gering für praktische Aspekte, da das korrosive Medium sehr gut leiten muss, damit dieser Beitrag zum kathodischem Korrosionsschutz genutzt werden kann. Dies ist unter atmosphärischen Bedingungen (Regenwasser, Luftfeuchtigkeit etc.) praktisch nicht der Fall. Es wurde daher für die Auswertung nicht die Differenz zwischen dem für die Auflösung benötigten Potential und Stahlpotential herangezogen, sondern ein Schwellenwert von 100 mV unter dem Stahlpotential verwendet. Nur die Differenz bis zu diesem Schwellenwert wurde für die Auswertung des kathodischen Schutzes berücksichtigt.For the evaluation of the quality of the cathodic corrosion protection, not only the time during which the cathodic corrosion protection can be maintained must be considered, but also the difference between the potential required for the dissolution and the steel potential must be considered. The larger this difference, the more effective is the cathodic protection against corrosion even with poorly conducting electrolytes. The cathodic corrosion protection is negligible with a voltage difference of 100 mV to the steel potential in poorly conducting electrolytes. Although there is still a cathodic corrosion protection even with a smaller difference to the steel potential, if a current is detected when using a steel electrode, but this is negligible for practical aspects, since the corrosive medium must conduct very well, so this contribution to the cathodic Corrosion protection can be used. This is practically not the case under atmospheric conditions (rainwater, humidity, etc.). Therefore, the difference between the potential required for the dissolution and the steel potential was not used for the evaluation, but a threshold value of 100 mV below the steel potential was used. Only the difference up to this threshold was taken into account for the evaluation of the cathodic protection.
Als Bewertungskriterium für den kathodischen Schutz der jeweiligen Oberflächenbeschichtung nach dem Glühen, wurde die Fläche zwischen der Potentialkurve bei der galvanostatischen Auflösung und dem festgelegten Schwellenwert von 100 mV unter dem Stahlpotential festgelegt (
Die so erhaltene Fläche entspricht, wird sie mit der Stromdichte multipliziert, der Schutzenergie pro Flächeneinheit mit der das Grundmaterial aktiv vor Korrosion geschützt werden kann. Je größer diese Energie ist, umso besser ist der kathodische Korrosionsschutz. Während ein Blech mit der bekannten Aluminium-Zink-Schicht aus 55% Aluminium und 44% Zink, wie diese auch aus dem Stand der Technik bekannt ist, nur eine Schutzenergie pro Flächeneinheit von ca. 1,8 J/cm2 aufweist, beträgt die Schutzenergie pro Flächeneinheit bei erfindungsgemäß beschichteten Profilbauteilen bis > 7J/cm2.The area thus obtained is multiplied by the current density, the protection energy per unit area with which the base material can be actively protected against corrosion. The greater this energy, the better the cathodic corrosion protection. While a sheet with the known aluminum-zinc layer of 55% aluminum and 44% zinc, as it is also known from the prior art, only a protection energy per unit area of about 1.8 J / cm 2 , which is Protection energy per unit area in accordance with the invention coated profile components to> 7J / cm 2 .
Als kathodischer Korrosionsschutz im Sinne der Erfindung wird nachfolgend festgelegt, dass bei 15 µm dicken Beschichtungen und den dargestellten Prozess- und Versuchsbedingungen zumindest eine kathodische Korrosionsschutzenergie von 4 J/cm2 vorhanden ist.As a cathodic corrosion protection in the context of the invention is subsequently determined that at 15 microns thick coatings and the process and experimental conditions described at least a cathodic corrosion protection energy of 4 J / cm 2 is present.
Typisch für die erfindungsgemäßen Beschichtungen ist, dass neben der oberflächlichen Schutzschicht aus einem Oxid des oder der eingesetzten sauerstoffaffinen Elemente, insbesondere Al2O3 nach der Aufheizbehandlung für das Presshärten die erfindungsgemäßen Schichten im Querschliff ein typisches "Leopardenmuster" zeigen, dass aus einer zinkreichen, intermetallischen Fe-Zn-Al-Phase und einer eisenreichen Fe-Zn-Al-Phase besteht, wobei die eisenreiche Phase ein Verhältnis Zink zu Eisen von höchstens 0,95 (Zn/Fe≤0,95), vorzugsweise von 0,20 bis 0,80 (Zn/Fe=0,20 bis 0,80) und die zinkreiche Phase ein Verhältnis Zink zu Eisen von mindestens 2,0 (Zn/Fe≥2,0), vorzugsweise von 2,3 bis 19,0 (Zn/Fe=2,3 bis 19,0) aufweist. Es konnte festgestellt werden, dass, nur wenn ein solcher zweiphasiger Aufbau erreicht wird, eine ausreichende kathodische Schutzwirkung noch vorhanden ist. Ein solcher zweiphasiger Aufbau stellt sich jedoch nur dann ein, wenn zuvor die Bildung eine Al2O3-Schutzschicht an der Oberfläche der Beschichtung stattgefunden hat. Im Gegensatz zu einer bekannten Beschichtung gemäß der
Eine Zinkschicht, die elektrolytisch auf der Stahlblechoberfläche abgeschieden wurde, ist für sich allein nicht in der Lage einen erfindungsgemäßen Korrosionsschutz, auch nach einem Erhitzungsschritt über die Austenitisierungstemperatur zu leisten.
Die erfindungsgemäßen Korrosionsschutzbeschichtungen wurden für das Profilieren eines Profilstranges bzw. für das Rollformen und das anschließende Härten eines derartigen Profilstranges oder Profilstrangabschnitten genannt.A zinc layer which has been deposited electrolytically on the steel sheet surface is not in itself capable of providing a corrosion protection according to the invention, even after a heating step above the austenitizing temperature.
The anticorrosive coatings according to the invention were mentioned for profiling a profiled strand or for roll forming and the subsequent hardening of such a profiled strand or profiled strand sections.
Dessen ungeachtet sind die erfindungsgemäßen Beschichtungen bzw. erfindungsgemäß für ein Blechbauteil, das einem Aufheizschritt unterworfen werden muss, ausgewählten Beschichtungen auch für andere Verfahren geeignet, bei denen ein Stahlblech zunächst mit einer Korrosionsschutzschicht versehen werden soll, und das derart beschichtete Stahlblech anschließend einem Aufheizschritt zum Härten desselben unterworfen wird und vor dem Aufheizen, bei dem Aufheizen oder nach dem Aufheizen eine Umformung des Blechs erfolgen soll. Der grundsätzliche Vorteil der Schicht ist, dass ein aufgeheiztes Bauteil nach dem Aufheizen nicht entzundert werden muss und zudem es eine sehr gute kathodische Korrosionsschutzschicht mit einer sehr hohen Korrosionsschutzenergie zur Verfügung steht.Nevertheless, the coatings according to the invention or, according to the invention, for a sheet-metal component which must be subjected to a heating step are also suitable for other processes in which a steel sheet should first be provided with a corrosion protection layer, and the thus coated steel sheet is then subjected to a heating step for curing the same and before the heating, in the heating or after heating, a deformation of the sheet is to take place. The fundamental advantage of the layer is that a heated component does not have to be descaled after heating and, moreover, that a very good cathodic corrosion protection layer with a very high corrosion protection energy is available.
Wenn nachfolgend von Profilen oder Rohren die Rede ist, sind hiermit immer auch Rohre, offene Profile und ganz allgemein Walzprofile gemeint.Whenever profiles or tubes are mentioned below, this also always refers to tubes, open profiles and generally rolled profiles.
Bei einer Ausführungsform des erfindungsgemäßen Verfahrens wird das erfindungsgemäße Profilbauteil dadurch hergestellt, dass ein Band zunächst durch eine Vorlaufstanze geführt wird und anschließend in die Profiliermaschine eingefügt wird. In der Profiliermaschine wird das Band zu einem gewünschten Profil gebogen. Nach dem Biegen in der Profiliermaschine wird in einer Schweißeinrichtung die notwendige Verschweißung durchgeführt. Nachdem das Profil in dieser Weise inline gebildet wurde, wird es anschließend durch eine Heizeinrichtung durchgeführt, wobei die Heizeinrichtung beispielsweise eine Induktionsspule ist. Mit der Induktionsspule beziehungsweise der Heizeinrichtung wird das Profil zumindest Teilbereichsweise auf eine zum Härten notwendige Austenitisierungstemperatur erhitzt. Anschließend erfolgt die Kühlung. Als Kühlung wird hierbei eine spezielle Kühlung verwendet die verhindert, dass die teilweise flüssige Oberflächenschicht verschwemmt wird. Dieses bewirkt hohe Abkühlraten bei geringem Flüssigkeitsdruck. Die spezielle Kühlung ahmt das Eintauchen des Profils in einer Wasserbad nach, wobei eine sehr große Menge Wasser mit geringem Druck allseitig auf das Profil geführt. Um eine erfindungsgemäße Oberflächenbehandlung des Blechs durchzuführen kann der Induktionserhitzungseinrichtung die dem Erhitzen des Blechs auf die Austenitisierungstemperatur dient eine weitere Heizeinrichtung vorgeschaltet sein, die das Blech auf die erste Heizstufe bei circa 550°C führt. Dies kann beispielsweise eine Induktionserhitzungseinrichtung sein an die sich - um die notwendigen Zeiträume einzuhalten - ein isolierter Bereich beispielsweise ein isolierter Tunnelbereich anschließt.In one embodiment of the method according to the invention, the profile component according to the invention is produced in that a band is first passed through a forward punch and then inserted into the profiling machine. In the profiling machine, the strip is bent to a desired profile. After bending in the profiling machine, the necessary welding is carried out in a welding device. After the profile has been formed in-line in this way, it is subsequently carried out by a heating device, the heating device being, for example, an induction coil. With the induction coil or the heating device, the profile is heated at least partially to an austenitizing temperature necessary for hardening. Subsequently, the cooling takes place. As cooling in this case a special cooling is used which prevents the partially liquid surface layer is fused. This causes high cooling rates with low fluid pressure. The special cooling mimics the immersion of the profile in a water bath, with a very large amount of water at low pressure on all sides led to the profile. To one The surface treatment of the sheet according to the invention can be preceded by an additional heating device for the induction heating device which serves to heat the sheet to the austenitizing temperature, which leads the sheet to the first heating stage at approximately 550 ° C. This can be, for example, an induction heating device to which - in order to comply with the necessary periods of time - an isolated region, for example an insulated tunnel region, is connected.
An die Kühlung schließt sich eine Kalibriereinrichtung an, die den erhitzten und abgeschreckten Profilstrang einer Kalibrierung unterzieht worauf der Profilstrang anschließend mit einer Ablängeinheit auf die entsprechenden Längen abgelängt wird.The cooling is followed by a calibration device, which subjects the heated and quenched profile strand to a calibration, whereupon the profile strand is then cut to length using a cutting unit.
Bei einer weiteren vorteilhaften Ausführungsform wird von einem Bandvorbereitungsteil Band abgezogen und in einer Vorlaufstanze in weichem Zustand gelocht und anschließend in einer Profiliermaschine entsprechend profiliert beziehungsweise gebogen und geformt. An die Profilierung schließt sich gegebenenfalls ebenfalls eine Schweißeinrichtung an. Der derart vorgeformte Profilstrang wird anschließend mit einer Ablängeinheit beziehungsweise Ablängeinrichtung auf die entsprechenden Längen geschnitten und in einen Profilspeicher mit Vereinzelung überführt. In dem Profilspeicher werden eine Vielzahl von Profilen insbesondere eine Vielzahl von auch unterschiedlich ausgebildeten Profilen unterschiedlichen Querschnitts gespeichert. Aus dem Profilspeicher mit Vereinzelung werden die gewünschten Profile abgezogen und über ein Treibrollensatz der Härtestufe zugeführt. Insbesondere werden die einzelnen Profile mit einer bereits beschriebenen induktiven Beheizung auf die zum Härten notwendige Temperatur aufgeheizt und anschlieβend in der bereits beschriebenen Form, das heißt schonend abgeschreckt. Nachträglich können die gehärteten Profile auf einem Richtgerüst nachgerüstet werden. Bei einer vorteilhaften Ausführungsform wird vor dem Aufheizen auf die zum Härten notwendige Temperatur eine Wärmebehandlung der Beschichtung durchgeführt. Für diese Wärmebehandlung wird das Profil zunächst auf eine für die Wärmebehandlung notwendige Temperatur insbesondere 550°C aufgeheizt. Dieses Aufheizen kann relativ schnell in einer induktiven Aufheizstufe geschehen, wobei, wenn dies notwendig wird die Wärme des Bauteils für eine bestimmte Zeit in einem Isolierbereich beispielsweise einen isolierten Tunnel durch den die Profile durchgeführt werden, gehalten wird.In a further advantageous embodiment, band is drawn off from a strip preparation section and punched in a forward punch in a soft state and then profiled or bent and shaped accordingly in a profiling machine. Optionally, a welding device may also follow the profiling. The thus preformed profile strand is then cut with a cutting unit or cutting device to the appropriate lengths and transferred to a profile memory with separation. In the profile memory, a multiplicity of profiles, in particular a multiplicity of profiles of different cross sections which are also formed differently, are stored. From the profile memory with separation the desired profiles are subtracted and fed via a drive roller set the hardness level. In particular, the individual profiles are heated with an inductive heating already described to the temperature necessary for curing and subsequently quenched in the form already described, that is gently. Subsequently, the cured profiles can be retrofitted on a straightening scaffold. In an advantageous Embodiment, a heat treatment of the coating is performed prior to heating to the temperature required for curing. For this heat treatment, the profile is first heated to a temperature necessary for the heat treatment in particular 550 ° C. This heating can be done relatively quickly in an inductive heating stage, wherein, if necessary, the heat of the component for a certain time in an insulating region, for example, an insulated tunnel through which the profiles are performed is maintained.
Bei einer weiteren vorteilhaften Ausführungsform dieses Verfahrens werden die profilierten und fertig geformten Profilstränge auf Standardprofillängen geschnitten und anschließend in den Profilspeicher mit Vereinzelung überführt, wobei der Profilspeicher dort ausschließlich Rohre und Profile einer gewissen Länge beispielsweise 6m speichert. Je nach benötigtem Profil werden die Profile dann entsprechend einzeln entnommen und der entsprechenden Weiterbehandlung zugeführt. Auch bei diesen Profilen kann gegebenenfalls schon ein Lochbild angeordnet werden.In a further advantageous embodiment of this method, the profiled and finished molded profile strands are cut to standard profile lengths and then transferred to the profile memory with separation, the profile memory stores there exclusively tubes and profiles of a certain length, for example 6m. Depending on the required profile, the profiles are then removed individually and fed to the appropriate further treatment. Even with these profiles, if necessary, a hole pattern can already be arranged.
Bei allen genannten erfindungsgemäßen Verfahren kann die Profilierung und insbesondere die Anordnung des Lochbildes so erfolgen, dass die Wärmedehnung während der Wärmebehandlung und/oder des Aufheizens auf die zum Härten notwendige Temperatur vollständig berücksichtigt wird, so dass das Bauteil nach dem Abschrecken bezüglich der Maß- und Lagetoleranzen genau gefertigt ist.In all the above-mentioned inventive method, the profiling and in particular the arrangement of the hole pattern can be such that the thermal expansion is fully taken into account during the heat treatment and / or heating to the temperature necessary for curing, so that the component after quenching with respect to the dimensional and Position tolerances is made accurately.
Bei der Erfindung ist von Vorteil, dass ein Profilbauteil aus Stahlblech geschaffen wird, welches einen kathodischen Korrosionsschutz besitzt, der zuverlässig auch beim Aufheizen des Bleches über die Austenitisierungstemperatur erhalten bleibt. Ferner ist von Vorteil, dass die Bauteile nach dem Härten nicht mehr nachbearbeitet werden müssen.In the invention, it is advantageous that a profile component made of sheet steel is provided, which has a cathodic protection against corrosion, which reliably remains even when the sheet is heated above the austenitizing temperature. It is also advantageous that the components do not have to be reworked after curing.
Claims (34)
- Method for producing a hardened profiled component from a hardenable steel alloy with galvanic protection, wherein:a) a coating is applied to a sheet of a hardenable steel alloy, whereinb) the coating substantially consists of zinc, andc) the coating further contains one or more oxygen-affine elements totalling 0.1 % by weight to 15 % by weight of the total coating, andd) the coated sheet steel is then roll profiled in a profiling apparatus, so that the sheet metal strip is formed to produce a roll formed profiled strip, ande) the coated sheet steel is then brought at least regionally, with the addition of atmospheric oxygen, to an austenitising temperature required for hardening and heated up to a structural change required for hardening, whereinf) a surface skin is formed on the coating from an oxide of the oxygen-affine element(s), andg) following the required heating, the sheet metal is cooled, the cooling rate being chosen such that a hardening of the sheet metal alloy is obtained, whereinh) the profiled strip is cut to length into profiled strip sections before or after the hardening process,i) holes, recesses, punchings and/or a required hole pattern is/are produced in the profiled strip before the profiling and cutting-to-length process and before the heating to the temperature required for hardening, whereinj) the cooling process is carried out with water, wherein a large volume of water is applied to the component to be hardened at a low pressure.
- Method according to claim 1, characterised in that the profiled strip profiled in the profiling apparatus is welded in a downstream welding apparatus.
- Method according to any of the preceding claims, characterised in that the profiled strip or the profiled strip sections is/are, prior to being heated to the temperature required for hardening, heated in a heating-up step to and held at a temperature which allows the partial formation of iron-zinc phases in the coating.
- Method according to any of the preceding claims, characterised in that the profiled strip or the profiled strip sections is/are heated to a temperature of 850°C to 950°C at a heating rate of 50°C to 100°C per second, held at this temperature for at least 5 seconds and cooled at a cooling rate of 25°C to 45°C per second.
- Method according to any of the preceding claims, characterised in that in the heating process the profiled strip or the profiled strip sections is/are held for at least 10 seconds at 500°C to 600°C, in particular 530°C to 580°C, followed by further heating.
- Method according to any of the preceding claims, characterised in that the profiled strip and/or the profiled strip sections is/are heated inductively and/or by means of radiation.
- Method according to any of the preceding claims, characterised in that magnesium and/or silicon and/or titanium and/or calcium and/or aluminium and/or manganese and/or boron is/are used as oxygen-affine elements in the mixture.
- Method according to any of the preceding claims, characterised in that the coating is applied in a hot dipping process, using a mixture containing substantially zinc together with the oxygen-affine element(s).
- Method according to claim 1 and/or 2, characterised in that 0.2 % by weight to 5 % by weight of the oxygen-affine elements are used.
- Method according to any of the preceding claims, characterised in that 0.26 % by weight to 2.5 % by weight of the oxygen-affine elements are used.
- Method according to any of the preceding claims, characterised in that aluminium is substantially used as oxygen-affine element.
- Method according to any of the preceding claims, characterised in that the coating mixture is chosen such that the layer forms in the heating process a surface oxide skin of oxides of the oxygen-affine element(s) and the coating forms at least two phases, these being a zinc-rich phase and an iron-rich phase.
- Method according to any of the preceding claims, characterised in that the iron-rich phase has a maximum zinc-to-iron ratio of 0.95 (Zn/Fe ≤ 0.95), preferably of 0.20 t0 0.80 (Zn/Fe = 0.20 to 0.80), and the zinc-rich phase has a zinc-to-iron ratio of at least 2.0 (Zn/Fe > 2.0), preferably of 2.3 to 19.0 (Zn/Fe = 2.3 to 19.0).
- Method according to any of the preceding claims, characterised in that the iron-rich phase has a zinc-to-iron ratio of approximately 30 : 70 and the zinc-rich phase is formed with a zinc-to-iron ratio of approximately 80 : 20.
- Method according to any of the preceding claims, characterised in that the layer further contains individual regions with zinc contents > 90 %.
- Method according to any of the preceding claims, characterised in that the coating is formed such that it develops a cathodic protection effect of at least 4 J/cm2 at a thickness of 15 µm following the heating process.
- Method according to any of the preceding claims, characterised in that the coating process is carried out with the mixture of zinc and the oxygen-affine element(s) in a continuous pass through a liquid metal bath at a temperature of 425°C to 690°C, followed by the cooling of the coated sheet metal.
- Method according to any of the preceding claims, characterised in that the coating process is carried out with the mixture of zinc and the oxygen-affine elements in a continuous pass through a liquid metal bath at a temperature of 440°C to 495°C, followed by the cooling of the coated sheet metal.
- Method according to any of the preceding claims, characterised in that the sheet metal is heated inductively.
- Method according to any of the preceding claims, characterised in that the sheet metal is heated in the radiation furnace.
- Method according to any of the preceding claims, characterised in that the forming and hardening of the component is carried out by means of a roll forming apparatus, wherein the coated sheet metal is at least partially heated to the austenitising temperature and roll-formed before, during and/or after this process and is, following the roll-forming process, cooled at a cooling rate which causes a hardening of the sheet metal alloy.
- Corrosion protection layer for roll-formed sheet steel profiles subjected to a hardening step, wherein the corrosion protection layer, following its application to the sheet steel, is subjected to a heat treatment with the addition of oxygen, wherein in the heating process the profiled strip or the profiled strip sections is/are held for at least 10 seconds at 500°C to 600°C, in particular 530°C to 580°C, followed by further heating, wherein the coating substantially consists of zinc, and the coating further contains one or more oxygen-affine elements totalling 0.1 % by weight to 15 % by weight of the total coating, wherein the corrosion protection layer has a surface oxide skin of oxides of the oxygen-affine element(s) and the coating forms at least two phases, these being a zinc-rich phase and an iron-rich phase.
- Corrosion protection layer according to claim 26, characterised in that the corrosion protection layer contains magnesium and/or silicon and/or titanium and/or calcium and/or aluminium and/or manganese and/or boron as oxygen-affine elements in the mixture.
- Corrosion protection layer according to claim 26 and/or 27, characterised in that the corrosion protection layer is a corrosion protection layer applied in a hot dipping process.
- Corrosion protection layer according to any of claims 26 to 31, characterised in that the oxygen-affine elements are present in a total quantity of 0.1 to 15.0 % by weight.
- Corrosion protection layer according to any of claims 26 to 31, characterised in that these oxygen-affine elements are present in a total quantity of 0.02 to 0.5 % by weight of the total coating.
- Corrosion protection layer according to any of claims 26 to 33, characterised in that the oxygen-affine elements are present in a total quantity of 0.6 to 2.5 % by weight.
- Corrosion protection layer according to any of claims 26 to 34, characterised in that aluminium is substantially present as an oxygen-affine element.
- Corrosion protection layer according to any of claims 26 to 35, characterised in that the iron-rich phase has a maximum zinc-to-iron ratio of 0.95 (Zn/Fe ≤ 0.95), preferably of 0.20 t0 0.80 (Zn/Fe = 0.20 to 0.80), and the zinc-rich phase has a zinc-to-iron ration of at least 2.0 (Zn/Fe > 2.0), preferably of 2.3 to 19.0 (Zn/Fe = 2.3 to 19.0).
- Corrosion protection layer according to any of claims 26 to 36, characterised in that the iron-rich phase has a zinc-to-iron ratio of approximately 30 : 70 and the zinc-rich phase has a zinc-to-iron ratio of approximately 80 : 20.
- Corrosion protection layer according to any of claims 26 to 37, characterised in that the corrosion protection layer further contains individual regions with zinc contents > 90 %.
- Corrosion protection layer according to any of claims 26 to 38, characterised in that the corrosion protection layer has a cathodic protection energy of at least 4 J/cm2 at a thickness of 15 µm.
- Hardened profiled component from a hardenable steel alloy with galvanic protection, wherein:a) a coating is applied to a sheet of a hardenable steel alloy, whereinb) the coating substantially consists of zinc, andc) the coating further contains one or more oxygen-affine elements totalling 0.1 % by weight to 15 % by weight of the total coating, andd) the coated sheet steel is then roll profiled in a profiling apparatus, so that the sheet metal strip is formed to produce a roll formed profiled strip, ande) the coated sheet steel is then brought at least regionally, with the addition of atmospheric oxygen, to an austenitising temperature required for hardening and heated up to a structural change required for hardening, whereinf) a surface skin is formed on the coating from an oxide of the oxygen-affine element(s), andg) following the required heating, the sheet metal is cooled, the cooling rate being chosen such that a hardening of the sheet metal alloy is obtained, whereinh) the profiled strip is cut to length into profiled strip sections before or after the hardening process,i) holes, recesses, punchings and/or a required hole pattern is/are produced in the profiled strip before the profiling and cutting-to-length process and before the heating to the temperature required for hardening, whereinj) the cooling process is carried out with water, wherein a large volume of water is applied to the component to be hardened at a low pressure,k) wherein the corrosion protection layer has a cathodic protection energy of at least 4 J/cm2 at a thickness of 15 µm.
- Hardened steel component according to claim 40, wherein the component is formed from a hot- or cold-rolled steel strip with a thickness of > 0.15 mm and with a concentration range of at least one of the alloying elements within the following limits in % by weight:
carbon up to 0.4, preferably 0.15 to 0.3 silicon up to 1.9, preferably 0.11 to 1.5 manganese up to 3.0, preferably 0.8 to 2.5 chromium up to 1.5, preferably 0.1 to 0.9 molybdenum up to 0.9, preferably 0.1 to 0.5 nickel up to 0.9 titanium up to 0.2, preferably 0.02 to 0.1 vanadium up to 0.2 tungsten up to 0.2 aluminium up to 0.2, preferably 0.02 to 0,07 boron up to 0.01, preferably 0.0005 to 0.005 sulphur max. 0.01, preferably max. 0.008 phosphorus max. 0.025, preferably max. 0.01 rest iron and impurities.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT12022003A AT412403B (en) | 2003-07-29 | 2003-07-29 | Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements |
AT0120303A AT412878B (en) | 2003-07-29 | 2003-07-29 | Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection useful in the production of hardened steel sections, e.g. for automobile construction |
PCT/EP2004/006250 WO2005021820A1 (en) | 2003-07-29 | 2004-06-09 | Method for producing a hardened profile part |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1660693A1 EP1660693A1 (en) | 2006-05-31 |
EP1660693B1 true EP1660693B1 (en) | 2014-09-17 |
Family
ID=34275147
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04739755.9A Expired - Lifetime EP1658390B1 (en) | 2003-07-29 | 2004-06-09 | Method for producing a hardened steel part |
EP20090015813 Expired - Lifetime EP2177641B1 (en) | 2003-07-29 | 2004-06-09 | Steel plate having a galvanized corrosion protection layer |
EP20040739756 Expired - Lifetime EP1651789B1 (en) | 2003-07-29 | 2004-06-09 | Method for producing hardened parts from sheet steel |
EP04736386.6A Expired - Lifetime EP1660693B1 (en) | 2003-07-29 | 2004-06-09 | Method for producing a hardened profile part |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04739755.9A Expired - Lifetime EP1658390B1 (en) | 2003-07-29 | 2004-06-09 | Method for producing a hardened steel part |
EP20090015813 Expired - Lifetime EP2177641B1 (en) | 2003-07-29 | 2004-06-09 | Steel plate having a galvanized corrosion protection layer |
EP20040739756 Expired - Lifetime EP1651789B1 (en) | 2003-07-29 | 2004-06-09 | Method for producing hardened parts from sheet steel |
Country Status (14)
Country | Link |
---|---|
US (4) | US8181331B2 (en) |
EP (4) | EP1658390B1 (en) |
JP (2) | JP5054378B2 (en) |
KR (2) | KR100834555B1 (en) |
CN (3) | CN104372278A (en) |
AT (1) | ATE478971T1 (en) |
BR (2) | BRPI0412599B1 (en) |
CA (2) | CA2533633C (en) |
DE (1) | DE502004011583D1 (en) |
ES (4) | ES2350931T3 (en) |
MX (2) | MXPA06000825A (en) |
PL (2) | PL2177641T3 (en) |
PT (2) | PT1660693E (en) |
WO (3) | WO2005021822A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3159419A1 (en) | 2015-10-21 | 2017-04-26 | Voestalpine Krems Gmbh | Method of fabrication of roll formed partly hardened profiles |
Families Citing this family (110)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10333165A1 (en) * | 2003-07-22 | 2005-02-24 | Daimlerchrysler Ag | Production of press-quenched components, especially chassis parts, made from a semi-finished product made from sheet steel comprises molding a component blank, cutting, heating, press-quenching, and coating with a corrosion-protection layer |
KR100834555B1 (en) * | 2003-07-29 | 2008-06-02 | 뵈스트알파인 스탈 게엠베하 | Method for producing hardened parts from sheet steel |
US20100199738A1 (en) * | 2004-08-13 | 2010-08-12 | Vip Tooling, Inc., (An Indiana Corporation) | Modular extrusion die tools |
US7685907B2 (en) * | 2004-08-13 | 2010-03-30 | Vip Tooling, Inc. | Method for manufacturing extrusion die tools |
DE102005041741B4 (en) * | 2005-09-02 | 2010-03-18 | Daimler Ag | Method for producing a press-hardened component |
JP4690848B2 (en) * | 2005-10-13 | 2011-06-01 | 新日本製鐵株式会社 | High-tensile hot-dip Zn-plated steel material excellent in appearance, workability, and weldability, and its manufacturing method |
WO2007048883A1 (en) * | 2005-10-27 | 2007-05-03 | Usinor | Method of producing a part with very high mechanical properties from a rolled coated sheet |
US20100057254A1 (en) * | 2006-11-13 | 2010-03-04 | Salamanca Hugo P | Methods for using robotics in mining and post-mining processing |
DE102005059614A1 (en) * | 2005-12-12 | 2007-06-14 | Nano-X Gmbh | Anti-corrosion and/or anti-scaling coating for metals (especially steel) is applied by wet methods and heat treated to give a weldable coating |
SE531379C2 (en) * | 2006-06-08 | 2009-03-17 | Nord Lock Ab | Method for hardening and coating steel washers for locking and steel lock washer |
KR101504370B1 (en) * | 2007-02-23 | 2015-03-19 | 타타 스틸 이즈무이덴 베.뷔. | Method of thermomechanical shaping a final product with very high strength and a product produced thereby |
DE102007013739B3 (en) * | 2007-03-22 | 2008-09-04 | Voestalpine Stahl Gmbh | Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment |
DE102007022174B3 (en) * | 2007-05-11 | 2008-09-18 | Voestalpine Stahl Gmbh | Method for creating and removing a temporary protective layer for a cathodic coating |
EP2171102B1 (en) * | 2007-07-19 | 2017-09-13 | Muhr und Bender KG | A strip of steel having a variable thickness in length direction |
JP2010533788A (en) * | 2007-07-19 | 2010-10-28 | コラス・スタール・ベー・ブイ | Method for annealing steel strips of varying thickness in the length direction |
DE102007038214A1 (en) | 2007-08-13 | 2009-02-19 | Volkswagen Ag | Method for corrosion protection of body, chassis, engine components or exhaust systems |
DE102007038215A1 (en) | 2007-08-13 | 2009-02-19 | Nano-X Gmbh | Process for producing an active corrosion protection coating on steel components |
EP2025771A1 (en) * | 2007-08-15 | 2009-02-18 | Corus Staal BV | Method for producing a coated steel strip for producing taylored blanks suitable for thermomechanical shaping, strip thus produced, and use of such a coated strip |
JP2009061473A (en) * | 2007-09-06 | 2009-03-26 | Sumitomo Metal Ind Ltd | Method for manufacturing high-strength component |
DE102007043154B4 (en) * | 2007-09-11 | 2017-01-26 | Voestalpine Krems Gmbh | Method and device for hardening profiles |
DE102007048504B4 (en) | 2007-10-10 | 2013-11-07 | Voestalpine Stahl Gmbh | Anti-corrosion coating for steel sheets and method of conditioning a corrosion protection coating |
DE102007050907A1 (en) * | 2007-10-23 | 2009-04-30 | Benteler Automobiltechnik Gmbh | Process for producing a hardened sheet metal profile |
SE531689C2 (en) * | 2007-11-26 | 2009-07-07 | Gestamp Hardtech Ab | Ways to make a lacquered high-strength product |
DE102007061489A1 (en) | 2007-12-20 | 2009-06-25 | Voestalpine Stahl Gmbh | Process for producing hardened hardenable steel components and hardenable steel strip therefor |
KR101140530B1 (en) * | 2007-12-28 | 2012-05-22 | 그레이트포인트 에너지, 인크. | Petroleum coke compositions for catalytic gasification |
WO2009131233A1 (en) * | 2008-04-22 | 2009-10-29 | 新日本製鐵株式会社 | Plated steel sheet and method of hot-pressing plated steel sheet |
DE102008037442B3 (en) * | 2008-10-13 | 2010-02-25 | Thyssenkrupp Steel Ag | Method for determining changes in shape of a workpiece |
JP2012512747A (en) * | 2008-12-19 | 2012-06-07 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップ | Method for manufacturing coated parts using hot forming technology |
JP4825882B2 (en) * | 2009-02-03 | 2011-11-30 | トヨタ自動車株式会社 | High-strength quenched molded body and method for producing the same |
DE102009007909A1 (en) | 2009-02-06 | 2010-08-12 | Thyssenkrupp Steel Europe Ag | A method of producing a steel component by thermoforming and by hot working steel component |
DE102009016852A1 (en) * | 2009-04-08 | 2010-10-14 | Bayerische Motoren Werke Aktiengesellschaft | Process for the preparation of heat-treated sheet metal parts from a steel sheet material with a corrosion protection coating and such sheet metal part |
CN101985199B (en) * | 2009-07-29 | 2012-09-05 | 比亚迪股份有限公司 | Method for preparing shell of electronics |
PT2290133E (en) | 2009-08-25 | 2012-06-19 | Thyssenkrupp Steel Europe Ag | Method for producing a steel component with an anti-corrosive metal coating and steel component |
DE102009051673B3 (en) * | 2009-11-03 | 2011-04-14 | Voestalpine Stahl Gmbh | Production of galvannealed sheets by heat treatment of electrolytically finished sheets |
CN101935789B (en) * | 2009-11-19 | 2012-03-07 | 江苏麟龙新材料股份有限公司 | Hot-dipped cast aluminum alloy containing Al-Zn-Si-Mg-RE-Ti-Ni and manufacturing method thereof |
DE102009056443A1 (en) * | 2009-12-02 | 2011-06-09 | Benteler Automobiltechnik Gmbh | Crashbox and method for its production |
KR101171450B1 (en) | 2009-12-29 | 2012-08-06 | 주식회사 포스코 | Method for hot press forming of coated steel and hot press formed prodicts using the same |
DE102010004823B4 (en) * | 2010-01-15 | 2013-05-16 | Benteler Automobiltechnik Gmbh | Method for producing a metallic molded component for motor vehicle components |
EP2536857B1 (en) | 2010-02-19 | 2019-08-21 | Tata Steel Nederland Technology B.V. | Strip, sheet or blank suitable for hot forming and process for the production thereof |
DE102010017354A1 (en) * | 2010-06-14 | 2011-12-15 | Thyssenkrupp Steel Europe Ag | Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product |
DE102010037077B4 (en) | 2010-08-19 | 2014-03-13 | Voestalpine Stahl Gmbh | Process for conditioning the surface of hardened corrosion-protected steel sheet components |
US9127329B2 (en) | 2010-08-31 | 2015-09-08 | Tata Steel Ijmuiden B.V. | Method for hot forming a coated metal part and formed part |
US9315876B2 (en) | 2010-09-30 | 2016-04-19 | Kobe Steel, Ltd. | Press-formed product and method for producing same |
DE102011053939B4 (en) | 2011-09-26 | 2015-10-29 | Voestalpine Stahl Gmbh | Method for producing hardened components |
ES2858225T3 (en) * | 2010-12-24 | 2021-09-29 | Voestalpine Stahl Gmbh | Procedure for producing tempered structural elements |
DE102011053941B4 (en) | 2011-09-26 | 2015-11-05 | Voestalpine Stahl Gmbh | Method for producing hardened components with regions of different hardness and / or ductility |
DE102011001140A1 (en) * | 2011-03-08 | 2012-09-13 | Thyssenkrupp Steel Europe Ag | Flat steel product, method for producing a flat steel product and method for producing a component |
WO2012128225A1 (en) * | 2011-03-18 | 2012-09-27 | 新日本製鐵株式会社 | Steel sheet for hot-stamped member and process for producing same |
ES2389188B1 (en) * | 2011-03-29 | 2013-09-02 | Rovalma Sa | CATHODIC PROTECTION THROUGH COATING FOR COOLING CIRCUITS OR OTHER HOLES OR CHANNELS. |
DE202011107125U1 (en) | 2011-04-13 | 2011-11-30 | Tata Steel Ijmuiden Bv | Thermoformable strip, sheet or blank and thermoformed product |
JP5472531B2 (en) * | 2011-04-27 | 2014-04-16 | 新日鐵住金株式会社 | Steel sheet for hot stamp member and manufacturing method thereof |
EP2718027A1 (en) * | 2011-06-07 | 2014-04-16 | Tata Steel IJmuiden BV | Hot formable strip, sheet or blank, process for the production thereof, method for hot forming a product and hot formed product |
DE102011108162B4 (en) * | 2011-07-20 | 2013-02-21 | Salzgitter Flachstahl Gmbh | Process for producing a component by hot forming a precursor of steel |
US9677145B2 (en) * | 2011-08-12 | 2017-06-13 | GM Global Technology Operations LLC | Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel |
DE102011056444C5 (en) | 2011-12-14 | 2015-10-15 | Voestalpine Metal Forming Gmbh | Method and device for partial hardening of sheet metal components |
CN104080568A (en) * | 2011-12-20 | 2014-10-01 | Skf公司 | Method for manufacturing a steel component by flash butt welding and a component made by using the method |
DE102012101018B3 (en) | 2012-02-08 | 2013-03-14 | Thyssenkrupp Nirosta Gmbh | Process for hot dip coating a flat steel product |
CA2868956C (en) | 2012-03-30 | 2020-04-14 | Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) | Hot-dip galvanized steel sheet for stamping having excellent cold workability, die hardenability, and surface quality, and producing method thereof |
DE102012024616A1 (en) | 2012-12-17 | 2014-06-18 | GM Global Technology Operations LLC (n. d. Gesetzen des Staates Delaware) | Sheet steel and molded part thereof |
DE102013100682B3 (en) * | 2013-01-23 | 2014-06-05 | Voestalpine Metal Forming Gmbh | A method of producing cured components and a structural component made by the method |
DE102013204449A1 (en) * | 2013-03-14 | 2014-09-18 | Zf Friedrichshafen Ag | Method for producing a corrosion-protected sheet-metal part |
TWI613325B (en) | 2013-05-17 | 2018-02-01 | Ak鋼鐵資產公司 | Zinc-coated steel for press hardening applications and method of production |
CN103342012B (en) * | 2013-07-08 | 2015-12-02 | 湖北交投四优钢科技有限公司 | A kind of alumetized steel expanded metals and preparation method |
CN103320745B (en) * | 2013-07-08 | 2014-01-08 | 湖北交投四优钢科技有限公司 | Aluminized steel and preparation method thereof |
DE102013108046A1 (en) * | 2013-07-26 | 2015-01-29 | Thyssenkrupp Steel Europe Ag | Method and device for partial hardening of semi-finished products |
CN105018923B (en) * | 2014-04-29 | 2018-10-02 | 宝山钢铁股份有限公司 | One kind covering titanium low-carbon steel composite board preparation method |
DE102014210008A1 (en) * | 2014-05-26 | 2015-11-26 | Muhr Und Bender Kg | Method and plant for producing a hardened molded part |
DE102014109315C5 (en) | 2014-07-03 | 2022-02-24 | Thyssenkrupp Ag | Process for manufacturing metal profiles |
DE102014109553A1 (en) * | 2014-07-08 | 2016-01-14 | Thyssenkrupp Ag | Hardening tool and method for producing hardened profile moldings |
US9850553B2 (en) | 2014-07-22 | 2017-12-26 | Roll Forming Corporation | System and method for producing a hardened and tempered structural member |
DE102014110415B4 (en) | 2014-07-23 | 2016-10-20 | Voestalpine Stahl Gmbh | Method for heating steel sheets and apparatus for carrying out the method |
DE102014110564B4 (en) * | 2014-07-25 | 2016-12-22 | Thyssenkrupp Ag | Method for producing a profile and a production line for producing a profile |
EP3215656B1 (en) * | 2014-11-04 | 2019-10-16 | Voestalpine Stahl GmbH | Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets |
CN104635748B (en) * | 2014-12-18 | 2017-11-17 | 温州泓呈祥科技有限公司 | Punching type solar power generation tracking rotary table |
CN104651728A (en) * | 2015-02-10 | 2015-05-27 | 苏州科胜仓储物流设备有限公司 | Anticorrosion steel sheet for storing equipment and preparation method of steel sheet |
CN105296862A (en) * | 2015-02-10 | 2016-02-03 | 苏州科胜仓储物流设备有限公司 | High-strength antiseptic steel plate for shuttle car shelf and machining process thereof |
ES2808779T3 (en) | 2015-05-29 | 2021-03-01 | Voestalpine Stahl Gmbh | Method for homogeneous and non-contact cooling of non-continuous hot surfaces and device for it |
DE102015113056B4 (en) | 2015-08-07 | 2018-07-26 | Voestalpine Metal Forming Gmbh | Method for the contactless cooling of steel sheets and device therefor |
KR20180016980A (en) | 2015-06-03 | 2018-02-20 | 잘쯔기터 플래시슈탈 게엠베하 | Deformation-hardened parts made of galvanized steel, method for making the same, and deformation of parts - Method for manufacturing steel strip suitable for hardening |
WO2017017483A1 (en) | 2015-07-30 | 2017-02-02 | Arcelormittal | Steel sheet coated with a metallic coating based on aluminum |
WO2017017485A1 (en) | 2015-07-30 | 2017-02-02 | Arcelormittal | A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium |
WO2017017484A1 (en) * | 2015-07-30 | 2017-02-02 | Arcelormittal | Method for the manufacture of a hardened part which does not have lme issues |
EP3162558A1 (en) | 2015-10-30 | 2017-05-03 | Outokumpu Oyj | Component made of metallic composite material and method for the manufacture of the component by hot forming |
DE102015016656A1 (en) | 2015-12-19 | 2017-06-22 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | A method of making a coated hot worked cured body and a body made by the method |
DE102016102504A1 (en) * | 2016-02-08 | 2017-08-10 | Salzgitter Flachstahl Gmbh | Aluminum-based coating for steel sheets or steel strips and method of making same |
DE102016102344B4 (en) * | 2016-02-10 | 2020-09-24 | Voestalpine Metal Forming Gmbh | Method and device for producing hardened steel components |
DE102016102322B4 (en) * | 2016-02-10 | 2017-10-12 | Voestalpine Metal Forming Gmbh | Method and device for producing hardened steel components |
DE102016102324B4 (en) * | 2016-02-10 | 2020-09-17 | Voestalpine Metal Forming Gmbh | Method and device for producing hardened steel components |
TWI601849B (en) * | 2016-06-08 | 2017-10-11 | China Steel Corp | Method for manufacturing thermoformed zinc-based plated steel sheet and hot stamping method thereof |
US10837072B2 (en) | 2016-08-29 | 2020-11-17 | Magna Powertrain Inc. | Splined power transmission components made using heat-assisted calibration process and method of forming such splined power transmission components |
DE102017214561B4 (en) | 2016-08-29 | 2019-05-16 | Magna Powertrain Inc. | A method of forming a spline in a component using ultra high strength steel |
US10371646B2 (en) * | 2016-09-19 | 2019-08-06 | The Boeing Company | Method and system for automated data collection and part validation |
DE102016122323A1 (en) * | 2016-11-21 | 2018-05-24 | Illinois Tool Works Inc. | Weldable threaded plate |
PT3360981T (en) | 2017-02-10 | 2020-10-08 | Outokumpu Oy | Steel for manufacturing a component by hot forming and use of the component |
DE102017110864B3 (en) | 2017-05-18 | 2018-10-18 | Voestalpine Metal Forming Gmbh | Method and device for producing hardened sheet steel components with different sheet thicknesses |
US11913118B2 (en) * | 2018-03-01 | 2024-02-27 | Nucor Corporation | Zinc alloy coated press-hardenable steels and method of manufacturing the same |
US10481052B2 (en) | 2018-03-28 | 2019-11-19 | Ford Global Technologies, Llc | Quality control process to assess the aluminized coating characteristics of hot stamped parts |
US11084169B2 (en) * | 2018-05-23 | 2021-08-10 | General Electric Company | System and method for controlling a robotic arm |
KR102176342B1 (en) * | 2018-09-28 | 2020-11-09 | 주식회사 포스코 | Method for manufacturing the electrical steel sheet product |
EP3726206B1 (en) | 2019-03-26 | 2022-11-02 | FEI Company | Methods and systems for inclusion analysis |
US11149327B2 (en) | 2019-05-24 | 2021-10-19 | voestalpine Automotive Components Cartersville Inc. | Method and device for heating a steel blank for hardening purposes |
EP4077741A1 (en) * | 2019-12-20 | 2022-10-26 | Autotech Engineering S.L. | Process and production line for forming objects |
WO2021154240A1 (en) * | 2020-01-29 | 2021-08-05 | Nucor Corporation | Zinc alloy coating layer of press-hardenable steel |
TWI741613B (en) * | 2020-05-21 | 2021-10-01 | 元大興企業有限公司 | Weather-resistant steel material and its manufacturing equipment |
CN112011752B (en) * | 2020-08-20 | 2022-06-21 | 马鞍山钢铁股份有限公司 | High-corrosion-resistance hot-formed steel part and manufacturing method thereof |
CN112846665A (en) * | 2021-01-06 | 2021-05-28 | 王志刚 | Production method of axial metal sealing ring |
EP4029964A1 (en) | 2021-01-14 | 2022-07-20 | Hilti Aktiengesellschaft | Hardening of a zinc coated screw body |
DE102021123279A1 (en) | 2021-09-08 | 2023-03-09 | Voestalpine Metal Forming Gmbh | Process for producing hardened sheet steel components |
DE102022107131A1 (en) | 2022-03-25 | 2023-09-28 | Voestalpine Metal Forming Gmbh | Method and device for producing hardened steel sheet components |
WO2024165168A1 (en) * | 2023-02-10 | 2024-08-15 | Voestalpine Metal Forming Gmbh | Method for producing hardened steel components |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3630792A (en) * | 1969-04-28 | 1971-12-28 | Cominco Ltd | Process for the production of colored coatings |
JPH05148606A (en) * | 1991-11-28 | 1993-06-15 | Nkk Corp | Manufacture of galvannealed steel sheet excellent in press formability and spot weldability |
JPH0754127A (en) * | 1993-08-09 | 1995-02-28 | Shinto Kogyo Kk | Galvannealing equipment material for |
EP0508479B1 (en) * | 1991-04-10 | 1995-10-25 | Kawasaki Steel Corporation | Corrosion resistant Zn or part-Zn plated steel sheet and method of producing the same |
DE10039375A1 (en) * | 2000-08-11 | 2002-03-28 | Fraunhofer Ges Forschung | Corrosion-protected steel sheet and process for its manufacture |
EP1288325A1 (en) * | 2000-04-24 | 2003-03-05 | Nkk Corporation | Galvannealed sheet steel and method for production thereof |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3791801A (en) * | 1971-07-23 | 1974-02-12 | Toyo Kohan Co Ltd | Electroplated steel sheet |
SE435527B (en) * | 1973-11-06 | 1984-10-01 | Plannja Ab | PROCEDURE FOR PREPARING A PART OF Hardened Steel |
JPS52120252A (en) * | 1976-04-02 | 1977-10-08 | Honda Motor Co Ltd | Method and device for forging thin plate member |
JPS55110783A (en) * | 1979-02-15 | 1980-08-26 | Sumitomo Metal Ind Ltd | Surface treated steel plate with excellent spot weldability |
JPS569386A (en) * | 1979-07-02 | 1981-01-30 | Nippon Kokan Kk <Nkk> | Production of electro-zinc plated steel plate |
JPS58189363A (en) * | 1982-04-26 | 1983-11-05 | Nisshin Steel Co Ltd | Manufacture of steel plate coated with alloyed zinc by galvanization |
FR2534161B1 (en) | 1982-10-06 | 1985-08-30 | Maubeuge Fer | PROCESS AND DEVICE FOR THE CONTINUOUS PRODUCTION OF A GALVANIZED AND PROFILED METAL STRIP |
JPS61119693A (en) * | 1984-11-14 | 1986-06-06 | Sumitomo Metal Ind Ltd | Laminated plate steel sheet |
JPS62142755A (en) * | 1985-12-17 | 1987-06-26 | Nippon Steel Corp | Alloyed hot dip galvanized steel sheet and its manufacture |
JPS6362855A (en) * | 1986-09-03 | 1988-03-19 | Toyota Motor Corp | Production of differential thickness alloyed hot dip zinc coated steel sheet |
EP0269005B1 (en) * | 1986-11-21 | 1993-09-08 | NIPPON MINING & METALS COMPANY, LIMITED | Colored zinc coating |
US4830683A (en) * | 1987-03-27 | 1989-05-16 | Mre Corporation | Apparatus for forming variable strength materials through rapid deformation and methods for use therein |
BE1001029A3 (en) * | 1987-10-22 | 1989-06-13 | Bekaert Sa Nv | STEEL SUBSTRATE WITH METAL COATINGS TO STRENGTHEN vulcanisable elastomers. |
JPH01242714A (en) * | 1988-03-25 | 1989-09-27 | Mitsubishi Heavy Ind Ltd | Heat treatment of steel part |
US4913746A (en) * | 1988-08-29 | 1990-04-03 | Lehigh University | Method of producing a Zn-Fe galvanneal on a steel substrate |
JPH02190483A (en) * | 1989-01-19 | 1990-07-26 | Nippon Steel Corp | Galvanized steel sheet having superior press formability |
JPH042758A (en) | 1990-04-18 | 1992-01-07 | Nippon Steel Corp | Production of hot-dip zinc alloy coated steel sheet excellent in press formability and corrosion resistance after coating |
JPH05214544A (en) * | 1991-04-10 | 1993-08-24 | Kawasaki Steel Corp | Highly corrosion-resistant galvanized steel sheet and its production |
AT402032B (en) * | 1991-07-17 | 1997-01-27 | Evg Entwicklung Verwert Ges | MACHINE FOR THE PROCESSING OF GRID MATS FROM LENGTHED AND CROSSWIRE WELDED TOGETHER |
JPH05171491A (en) * | 1991-12-26 | 1993-07-09 | Sumitomo Metal Ind Ltd | Double layer plated steel excellent in corrosion resistance after coating |
AT397815B (en) * | 1992-03-31 | 1994-07-25 | Voest Alpine Ind Anlagen | METHOD FOR GALVANIZING A TAPE AND SYSTEM FOR IMPLEMENTING THE METHOD |
JPH06256925A (en) * | 1993-03-08 | 1994-09-13 | Nippon Steel Corp | Zinc-iron hot dip galvannealed steel excellent in press formability |
JPH08325689A (en) | 1995-05-30 | 1996-12-10 | Nippon Steel Corp | Equipment for manufacturing hot dip galvanized hot rolled steel sheet excellent in lubricity and chemical conversion |
JP3345219B2 (en) | 1995-06-15 | 2002-11-18 | 酒井医療株式会社 | Standing training bed |
SE9602257L (en) * | 1996-06-07 | 1997-12-08 | Plannja Hardtech Ab | Ways to produce steel detail |
JP3400289B2 (en) * | 1997-03-26 | 2003-04-28 | 川崎製鉄株式会社 | Manufacturing method of galvannealed steel sheet with excellent plating adhesion |
IT1291883B1 (en) * | 1997-04-18 | 1999-01-21 | Sviluppo Materiali Spa | PROCEDURE FOR THE CONTINUOUS PRODUCTION, THROUGH PHYSICAL DEPOSITION FROM THE STEAM PHASE, OF METALLIC TAPES COATED WITH HIGH |
US6178800B1 (en) * | 1998-07-14 | 2001-01-30 | Msp Industries Corporation | Zone heating methods and apparatuses for metal workpieces for forging |
FR2787735B1 (en) | 1998-12-24 | 2001-02-02 | Lorraine Laminage | PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED |
JP2000336467A (en) * | 1999-03-24 | 2000-12-05 | Kawasaki Steel Corp | Galvanized steel sheet and production thereof |
US6465114B1 (en) * | 1999-05-24 | 2002-10-15 | Nippon Steel Corporation | -Zn coated steel material, ZN coated steel sheet and painted steel sheet excellent in corrosion resistance, and method of producing the same |
JP3675313B2 (en) * | 1999-07-15 | 2005-07-27 | Jfeスチール株式会社 | Method for producing alloyed hot-dip galvanized steel sheet with excellent slidability |
JP2001109121A (en) | 1999-10-06 | 2001-04-20 | Konica Corp | Automatic developing device for silver halide photographic sensitive material |
KR20010039405A (en) * | 1999-10-30 | 2001-05-15 | 이계안 | Manufacturing method of coating steel using Zn-Fe alloy |
TW504519B (en) * | 1999-11-08 | 2002-10-01 | Kawasaki Steel Co | Hot dip galvanized steel plate excellent in balance of strength and ductility and in adhesiveness between steel and plating layer, and method for producing the same |
JP2001295015A (en) * | 2000-02-09 | 2001-10-26 | Nisshin Steel Co Ltd | HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET |
JP2001264591A (en) | 2000-03-22 | 2001-09-26 | Yasuhiro Koike | Light emitting composite parts for optical communication |
FR2807447B1 (en) * | 2000-04-07 | 2002-10-11 | Usinor | METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET |
DE10023312C1 (en) * | 2000-05-15 | 2001-08-23 | Thyssenkrupp Stahl Ag | Galvannealed sheet and method of making such sheet |
JP2001329352A (en) * | 2000-05-19 | 2001-11-27 | Sumitomo Metal Ind Ltd | Galvannealed steel sheet excellent in slidability |
JP4489273B2 (en) * | 2000-10-02 | 2010-06-23 | 本田技研工業株式会社 | Body panel manufacturing method |
DE10049660B4 (en) | 2000-10-07 | 2005-02-24 | Daimlerchrysler Ag | Method for producing locally reinforced sheet-metal formed parts |
EP1355866A1 (en) * | 2000-12-19 | 2003-10-29 | Posco | Powers which have an antibacterial and a far infrared ray radiating property and a bio-wave steel plate which is coated with resin containing the same |
KR100455083B1 (en) * | 2000-12-22 | 2004-11-08 | 주식회사 포스코 | Zn-Co-W alloy electroplated steel sheet with excellent corrosion resistance and welding property and electrolyte therefor |
DE10065495C2 (en) | 2000-12-28 | 2002-11-14 | Semikron Elektronik Gmbh | The power semiconductor module |
DE10120063C2 (en) | 2001-04-24 | 2003-03-27 | Benteler Automobiltechnik Gmbh | Process for the production of metallic profile components for motor vehicles |
DE10120919A1 (en) | 2001-04-27 | 2002-10-31 | Benteler Automobiltechnik Gmbh | Process for producing a hardened sheet metal profile |
JP3582504B2 (en) * | 2001-08-31 | 2004-10-27 | 住友金属工業株式会社 | Hot-press plated steel sheet |
CN100434564C (en) | 2001-10-23 | 2008-11-19 | 住友金属工业株式会社 | Hot press forming method, and a plated steel material therefor and its manufacturing method |
JP3582512B2 (en) * | 2001-11-07 | 2004-10-27 | 住友金属工業株式会社 | Steel plate for hot pressing and method for producing the same |
DE10209264B4 (en) * | 2002-03-01 | 2005-06-02 | Ab Skf | Method for producing a metal component |
DE10254695B3 (en) | 2002-09-13 | 2004-04-15 | Daimlerchrysler Ag | Production of a metallic component, especially a vehicle body component, from a semifinished product made of non-hardened heat-deformable sheet steel comprises cold-forming, trimming, hot-forming and press-hardening processes |
DE10246614A1 (en) | 2002-10-07 | 2004-04-15 | Benteler Automobiltechnik Gmbh | Method of making vehicle component with metallic coating from steel sheet or strip, involves coating metal from non-aqueous organic solution before cold forming, hot forming and hardening |
DE10257737B3 (en) * | 2002-12-10 | 2004-02-26 | Thyssenkrupp Stahl Ag | Electrolytic magnesium deposition on a substrate made from sheet metal with a zinc (alloy) coating, used in the automobile industry, using a solvent for the deposition and heat treating the coated substrate |
KR100834555B1 (en) * | 2003-07-29 | 2008-06-02 | 뵈스트알파인 스탈 게엠베하 | Method for producing hardened parts from sheet steel |
-
2004
- 2004-06-09 KR KR1020067002212A patent/KR100834555B1/en active IP Right Grant
- 2004-06-09 EP EP04739755.9A patent/EP1658390B1/en not_active Expired - Lifetime
- 2004-06-09 EP EP20090015813 patent/EP2177641B1/en not_active Expired - Lifetime
- 2004-06-09 BR BRPI0412599A patent/BRPI0412599B1/en active IP Right Grant
- 2004-06-09 WO PCT/EP2004/006251 patent/WO2005021822A1/en active Application Filing
- 2004-06-09 WO PCT/EP2004/006250 patent/WO2005021820A1/en active Application Filing
- 2004-06-09 DE DE200450011583 patent/DE502004011583D1/en not_active Expired - Lifetime
- 2004-06-09 WO PCT/EP2004/006252 patent/WO2005021821A1/en active Application Filing
- 2004-06-09 EP EP20040739756 patent/EP1651789B1/en not_active Expired - Lifetime
- 2004-06-09 BR BRPI0412601 patent/BRPI0412601B1/en active IP Right Grant
- 2004-06-09 ES ES04739756T patent/ES2350931T3/en not_active Expired - Lifetime
- 2004-06-09 US US10/566,219 patent/US8181331B2/en active Active
- 2004-06-09 US US10/566,069 patent/US7832242B2/en active Active
- 2004-06-09 MX MXPA06000825A patent/MXPA06000825A/en active IP Right Grant
- 2004-06-09 CA CA 2533633 patent/CA2533633C/en not_active Expired - Fee Related
- 2004-06-09 CN CN201410444698.6A patent/CN104372278A/en active Pending
- 2004-06-09 PL PL09015813T patent/PL2177641T3/en unknown
- 2004-06-09 JP JP2006521404A patent/JP5054378B2/en not_active Expired - Lifetime
- 2004-06-09 PT PT47363866T patent/PT1660693E/en unknown
- 2004-06-09 CN CNA2004800221723A patent/CN1829816A/en active Pending
- 2004-06-09 EP EP04736386.6A patent/EP1660693B1/en not_active Expired - Lifetime
- 2004-06-09 CA CA 2533327 patent/CA2533327C/en not_active Expired - Lifetime
- 2004-06-09 US US10/566,059 patent/US8021497B2/en active Active
- 2004-06-09 AT AT04739756T patent/ATE478971T1/en active
- 2004-06-09 JP JP2006521403A patent/JP5113385B2/en not_active Expired - Lifetime
- 2004-06-09 MX MXPA06000826A patent/MXPA06000826A/en active IP Right Grant
- 2004-06-09 KR KR1020067002210A patent/KR100825975B1/en active IP Right Grant
- 2004-06-09 ES ES04739755.9T patent/ES2525731T3/en not_active Expired - Lifetime
- 2004-06-09 ES ES09015813T patent/ES2421182T3/en not_active Expired - Lifetime
- 2004-06-09 ES ES04736386.6T patent/ES2524324T3/en not_active Expired - Lifetime
- 2004-06-09 PL PL04739756T patent/PL1651789T3/en unknown
- 2004-06-09 PT PT04739756T patent/PT1651789E/en unknown
- 2004-06-09 CN CN200480022188.4A patent/CN1829817B/en not_active Expired - Lifetime
-
2010
- 2010-11-01 US US12/917,109 patent/US7938949B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3630792A (en) * | 1969-04-28 | 1971-12-28 | Cominco Ltd | Process for the production of colored coatings |
EP0508479B1 (en) * | 1991-04-10 | 1995-10-25 | Kawasaki Steel Corporation | Corrosion resistant Zn or part-Zn plated steel sheet and method of producing the same |
JPH05148606A (en) * | 1991-11-28 | 1993-06-15 | Nkk Corp | Manufacture of galvannealed steel sheet excellent in press formability and spot weldability |
JPH0754127A (en) * | 1993-08-09 | 1995-02-28 | Shinto Kogyo Kk | Galvannealing equipment material for |
EP1288325A1 (en) * | 2000-04-24 | 2003-03-05 | Nkk Corporation | Galvannealed sheet steel and method for production thereof |
DE10039375A1 (en) * | 2000-08-11 | 2002-03-28 | Fraunhofer Ges Forschung | Corrosion-protected steel sheet and process for its manufacture |
Non-Patent Citations (2)
Title |
---|
SHIH H C ET AL: "The lifetime assessment of hot-dip 5% Al-Zn coatings in chloride environments", SURFACE AND COATINGS TECHNOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 150, 1 February 2002 (2002-02-01), pages 70 - 75, XP002569257, ISSN: 0257-8972, DOI: 10.1016/S0257-8972(01)01508-0 * |
WEINBERG F ET AL: "SEGREGATION IN GALFAN HOT DIPPED SHEET STEEL", CANADIAN METALLURGICAL QUARTERLY, TARRYTOWN, NY, US, vol. 29, no. 2, 1 April 1990 (1990-04-01), pages 163 - 166, XP008050261 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3159419A1 (en) | 2015-10-21 | 2017-04-26 | Voestalpine Krems Gmbh | Method of fabrication of roll formed partly hardened profiles |
WO2017067827A1 (en) | 2015-10-21 | 2017-04-27 | Voestalpine Krems Gmbh | Method for creating roll-formed partly hardened profiles |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1660693B1 (en) | Method for producing a hardened profile part | |
EP2848709B1 (en) | Method for producing a steel component with an anti-corrosive metal coating and steel component | |
DE60119826T2 (en) | Process for the production of a component with very good mechanical properties, forming by deep-drawing, of rolled, in particular hot-rolled and coated steel sheet | |
DE60006068T2 (en) | HOT-DIP GALVANIZED STEEL SHEET WITH EXCELLENT BALANCE BETWEEN STRENGTH AND STRENGTH AND ADHESION BETWEEN STEEL AND COATING | |
EP2414562B1 (en) | Method for producing a steel component provided with a metal coating protecting against corrosion and steel component | |
EP2054536B1 (en) | Process for coating a hot- or cold-rolled steel strip containing 6 - 30% by weight of mn with a metallic protective layer | |
EP3215656B1 (en) | Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets | |
DE60220191T2 (en) | HIGH-FIXED FIRE-GRAINED GALVANIZED STEEL PLATE AND FIRE-PLATED BLEED STEEL PLATE WITH RESISTANCE TO FATIGUE, CORROSION RESISTANCE, DUCTILITY AND PLATING RESILIENCE, TO STRONG DEFORMATION, AND METHOD FOR THE PRODUCTION THEREOF | |
DE202004021264U1 (en) | Corrosion layer and hardened steel component | |
WO2009047183A1 (en) | Method for the production of a steel component by thermoforming, and steel component produced by thermoforming | |
EP3250727B1 (en) | Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component | |
DE102020131993A1 (en) | PRESS-HARDENED HIGH PERFORMANCE STEEL | |
DE69201881T2 (en) | Steel sheet clad with a nickel alloy with excellent properties in terms of pressability and phosphating as well as processes for its production. | |
EP2987889B1 (en) | Surface finished steel sheet and method for the production thereof | |
DE69701070T2 (en) | Hot-dip galvanized steel sheet and manufacturing process therefor | |
EP3947753B1 (en) | Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings | |
EP3872230A1 (en) | Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer | |
DE69110513T2 (en) | Process for hot metallizing steel strip. | |
EP3947754B1 (en) | Method for producing a steel sheet with improved adhesion of metallic hot-dip coatings | |
EP4038215B1 (en) | Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom | |
DE69224630T2 (en) | METHOD FOR PRODUCING STEEL PANELS COATED WITH LIQUID ZINC WITH UNCOATED AREAS | |
EP3415646B1 (en) | High-strength steel sheet having enhanced formability | |
DE69407496T2 (en) | Process for producing a galvanized sheet | |
DE102020204356A1 (en) | Hardened sheet metal component, produced by hot forming a flat steel product and process for its production | |
DE102020120580A1 (en) | METHOD OF MAKING COATED STEEL STRIP, AND METHOD OF MAKING A HARDENED STEEL PRODUCT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060227 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KOLBERGER, SIEGFRIED Inventor name: LANDL, SIEGFRIED Inventor name: RAAB, ANNA, ELISABETH Inventor name: BRANDSTAETTER, WERNER Inventor name: EIBENSTEINER, HERBERT Inventor name: FLEISCHANDERL, MARTIN Inventor name: FADERL, JOSEF |
|
17Q | First examination report despatched |
Effective date: 20090402 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: VOESTALPINE KREMS GMBH |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20131202 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KOLBERGER, SIEGFRIED Inventor name: FADERL, JOSEF Inventor name: FLEISCHANDERL, MARTIN Inventor name: RAAB, ANNA, ELISABETH Inventor name: EIBENSTEINER, HERBERT Inventor name: BRANDSTAETTER, WERNER Inventor name: LANDL, GERALD |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140127 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 687753 Country of ref document: AT Kind code of ref document: T Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502004014719 Country of ref document: DE Effective date: 20141023 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2524324 Country of ref document: ES Kind code of ref document: T3 Effective date: 20141205 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20141217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141218 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140917 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 18084 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502004014719 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
26N | No opposition filed |
Effective date: 20150618 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E024038 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150609 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150609 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140917 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20170531 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20200522 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20200527 Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211209 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180609 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230626 Year of fee payment: 20 Ref country code: DE Payment date: 20230626 Year of fee payment: 20 Ref country code: CZ Payment date: 20230525 Year of fee payment: 20 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230706 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20230518 Year of fee payment: 20 Ref country code: SE Payment date: 20230627 Year of fee payment: 20 Ref country code: AT Payment date: 20230519 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230620 Year of fee payment: 20 Ref country code: GB Payment date: 20230627 Year of fee payment: 20 Ref country code: ES Payment date: 20230703 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 502004014719 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20240628 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240608 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 687753 Country of ref document: AT Kind code of ref document: T Effective date: 20240609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240610 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240609 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240609 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240609 Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240608 Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240610 Ref country code: CZ Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20240609 |