EP3415646B1 - High-strength steel sheet having enhanced formability - Google Patents

High-strength steel sheet having enhanced formability Download PDF

Info

Publication number
EP3415646B1
EP3415646B1 EP18176405.1A EP18176405A EP3415646B1 EP 3415646 B1 EP3415646 B1 EP 3415646B1 EP 18176405 A EP18176405 A EP 18176405A EP 3415646 B1 EP3415646 B1 EP 3415646B1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
hot
strip
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18176405.1A
Other languages
German (de)
French (fr)
Other versions
EP3415646A1 (en
Inventor
Fabian Nowara
Ekaterina Bocharova
Andreas Bongards
Roland Sebald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Publication of EP3415646A1 publication Critical patent/EP3415646A1/en
Application granted granted Critical
Publication of EP3415646B1 publication Critical patent/EP3415646B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0405Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Definitions

  • the present invention relates to a method for producing a flat steel product, a corresponding flat steel product, components made from such flat steel product, and the use of the flat steel product.
  • Dual-phase steels are characterized by a good combination of properties of high strength and formability.
  • the structure of conventional DP steels consists of 70 to 90 vol .-% ferrite, the rest of martensite.
  • the hard martensite is embedded in the island in the soft ferritic matrix.
  • other carbon-rich transformation structures such as bainite and / or thermodynamically metastable residual austenite can be present in small quantities. Metastable residual austenite improves the forming properties during cold forming.
  • dual-phase steels combine different properties. Compared to conventional high-strength steel grades, they combine a low, continuous yield strength with high tensile strength while at the same time good elongation at break and elongation or high work hardening capacity. The high tensile strength combined with a low yield strength leads to a low yield strength ratio.
  • DP steels are preferred in vehicle construction. Due to the low yield strength ratio and the high work hardening potential, they are particularly suitable for complex-shaped, safety-relevant body components that require a high level of energy absorption. These components include Reinforcements, roof frames, B-pillars as well as longitudinal and cross members. With the high possible strengths, there is also great potential for lightweight construction by reducing the thickness of the sheets. DP steels therefore make a contribution to weight-optimized construction, especially from the point of view of energy saving and passive safety.
  • EP 0 796 928 A1 discloses a multi-phase steel and a method for its manufacture.
  • the multiphase steel is in the form of cold-rolled sheets containing 0.05 to 0.3% by weight of C, 0.8 to 3.0 wt% Mn, 0.4 to 2.5 wt% Al, 0.01 to 0.2 wt% Si, balance Fe and unavoidable impurities.
  • the cold-rolled sheet has high strength and good ductility.
  • the cold rolled sheet can also be surface coated.
  • EP 1 642 990 A1 discloses a high-strength steel sheet with a dual-phase structure, containing 0.03 to 0.2% by weight of C, 0.005 to 0.3% by weight of Si, 1.0 to 3.1% by weight of Mn, 0.001 to 0, 06 wt% P, 0.001 to 0.01 wt% S, 0.0005 to 0.01 wt% N, 0.2 to 1.2 wt% Al, less than 0.5 wt .-% Mo, rest Fe and unavoidable impurities.
  • This steel sheet has good ductility and can be surface coated.
  • High-strength steels are particularly suitable for use in vehicle construction, especially in automobile construction. Both uncoated and coated steel sheets are used for this, depending on the susceptibility to corrosion of the product and the location or environment in which they are used. In order to meet growing requirements with regard to lightweight construction (climate protection, resource efficiency, cost optimization) and crash safety in body and chassis construction due to more complex component structures, there is a need for high-strength flat steel products with improved forming properties.
  • the object of the present invention is to provide flat steel products and processes for their production which meet the above-mentioned requirements, in particular improved forming properties, which among other things. can be quantified in an increased elasticity compared to comparable products.
  • a flat steel product according to the invention obtainable by the method according to the invention, by a flat steel product made from a special steel, by a component made from the flat steel product according to the invention, and by the use of the flat steel product according to the invention in vehicle construction, in particular in body construction, for Safety-relevant components, which include, for example, longitudinal and cross members.
  • the alloying elements for adjusting the mechanical properties of the steel according to the invention are essentially C, Si, Mn, Al and Cr.
  • the present invention preferably relates to the flat steel product according to the invention, containing (in% by weight) 0.070 to 0.15 C, max. 0.50 Si, 1.0 to 2.0 Mn, 0.6 to 1.5 Al and 0.2 to 1.0 Cr, balance Fe and unavoidable impurities.
  • carbon is alloyed in a range from 0.070% by weight to 0.15% by weight, preferably 0.095% by weight to 0.13% by weight.
  • the minimum content is necessary in order to be able to achieve the desired strength reliably by forming a sufficient amount of martensite.
  • the carbon is also required to stabilize the remaining austenite.
  • the formability is improved by using the TRIP effect. Levels above 0.15% by weight often lead to restrictions in welding and are therefore undesirable.
  • Silicon is inventively up to max. 0.50% by weight, preferably max. 0.40% by weight, alloyed. Silicon is required to stabilize the residual austenite by suppressing the precipitation of cementite during cooling after annealing and to increase the strength. Silicon contents above the specified amount make coating difficult due to the formation of silicon oxide on the strip surface during annealing.
  • manganese is alloyed in a range from 1.0% by weight to 2.0% by weight, preferably 1.2% by weight to 1.7% by weight.
  • the specified lower limit is determined by ensuring the strength of the steel sheet. Higher levels of Mn above the specified upper limit make production more difficult, since manganese tends to form segregations and higher process temperatures would be necessary for steel production.
  • Aluminum is required to stabilize the residual austenite and is used according to the invention in a range from 0.6% by weight to 1.5% by weight, preferably 0.7% by weight to 1.3% by weight. Levels above the specified upper limit, like silicon, make coating difficult.
  • Chromium also increases strength and is therefore alloyed according to the invention in a range from 0.2% by weight to 1.0% by weight, preferably 0.2% by weight to 0.7% by weight. With chrome contents above the specified upper limit, the elongation can be greatly reduced.
  • the elements C, Si, Mn, Al and Cr essentially have a strength-increasing effect. Therefore, according to the invention, the sum of the amounts of C, Si, Mn, Al and Cr is preferably 2.8 to 3.5% by weight.
  • the present invention therefore preferably relates to the method according to the invention, the sum of the amounts of C, Si, Mn, Al and Cr being 2.8 to 3.5% by weight.
  • the present invention therefore preferably also relates to the flat steel product according to the invention, the sum of the amounts of C, Si, Mn, Al and Cr being 2.8 to 3.5% by weight. According to this preferred embodiment, a preferred combination of tensile strength and minimum elongation at break is obtained.
  • the sum of the amounts of Si and Al is more preferably at most 1.5% by weight.
  • an advantageous surface finish is obtained, since there are no negative effects with regard to zinc adhesion due to detachment of the upper grain layers, deteriorated formability due to grain boundary oxidation at high reel and annealing temperatures.
  • alloying elements are preferably not added in a targeted manner. Therefore, the upper limit for the other explicitly specified elements is preferably: P 0,0 0.03% by weight, sulfur 0,00 0.005% by weight, Mo, Cu and Ni in each case 0,2 0.2% by weight, N and Ti in each case ⁇ 0.01%. All other possible elements are considered inevitable impurities.
  • the flat steel product according to the invention contains (in area%) 60 to 85, preferably 70 to 80, ferrite (F), 10 to 30, preferably 10 to 20, martensite (M), 5 to 12, preferably 7 to 11 , Residual austenite (RA) and at most 8, preferably at most 3, for example 0 to 8, others selected from pearlite, bainite, cementite and / or carbides.
  • the martensite content of 10 to 30% by area preferred according to the invention ensures the necessary strength, but at the same time it is so limited that there is no drop in elongation at break due to excessive strength.
  • Residual austenite contributes to the elongation at break. Too much residual austenite is at the expense of the martensite component, which would lead to a decrease in strength.
  • the sum of the other structural components is so small that there is no significant influence on the mechanical properties.
  • the present invention therefore preferably relates to the flat steel product according to the invention, it (in area%) 60 to 85, preferably 70 to 80, ferrite (F), 10 to 30, preferably 10 to 20, martensite (M), 5 to 12, preferably 7 to 11, residual austenite (RA) and at most 8, preferably at most 3, for example 0 to 8, others selected from pearlite, bainite, cementite and / or carbides, the sum of the components present being 100.
  • the present invention further preferably relates to the flat steel product according to the invention, the tensile strength Rm being 580 MPa to 710 MPa.
  • the present invention further preferably relates to the flat steel product according to the invention, the elongation at break A80 being at least 23%.
  • the method according to the invention comprises, as step (A), the production of a hot-rolled strip.
  • step (A) the production of a hot-rolled strip.
  • all methods or process steps known to the person skilled in the art can be used according to the invention in order to obtain a hot-rolled strip with the above-mentioned alloy elements according to the invention in the appropriate amounts.
  • Step (A) is preferably carried out by casting a corresponding preliminary product, a slab or a thin slab, from a steel melt from a steel which has the above-mentioned analysis.
  • the casting can be carried out by all methods known to the person skilled in the art.
  • the preliminary product obtained in this way is then kept at a temperature of 1100 to 1300 ° C. or reheated to this temperature and then optionally descaled and pre-rolled.
  • the heating of the preliminary product according to the invention can be carried out in all devices known to the person skilled in the art, for example in a walking beam or pusher furnace.
  • the temperature is preferably 1050 to 1150 ° C.
  • the actual hot rolling can be carried out by all methods known to the person skilled in the art.
  • the hot rolling according to the invention is preferably carried out in such a way that a final rolling temperature (ET) of 820 to 900 ° C., particularly preferably 840 to 880 ° C., is obtained at the end of the hot rolling.
  • a hot strip with a thickness of 1 to 10 mm, preferably 2 to 7 mm, is preferably obtained according to the invention.
  • step (A) of the process according to the invention is then transferred to step (B).
  • step (A) comprising the production of a preliminary product, in particular a slab or a thin slab, by casting a steel with appropriate analysis, and hot rolling the obtained preliminary product.
  • Step (B) of the method according to the invention comprises cooling the hot-rolled strip from the final rolling temperature to the coiling temperature and coiling this strip, the coiling taking place at a temperature of 540 to 620 ° C. Maintaining the reel temperature is crucial.
  • step (B) can be carried out by methods known to the person skilled in the art, it being necessary to ensure that the reeling temperature of 540 to 620 ° C. is maintained.
  • the cooling from the final rolling temperature (ET) from step (A) to the reel temperature (HT) preferably takes place in air and / or with water. It is particularly preferred if after leaving the hot rolling mill, i.e. after step (A), a holding time in air of at least 1 s is observed before water cooling begins. According to the invention, this leads to an advantageous, uniform recrystallization state in the hot strip and, associated therewith, uniform mechanical properties and a high strip flatness being obtained.
  • the method according to the invention can be carried out particularly advantageously and makes a particularly advantageous product accessible if the reel temperature according to the invention is maintained in step (B).
  • a reel temperature below the range according to the invention leads to a high tensile strength according to the invention and to low elongation at break in the annealed cold strip.
  • an undesirably high strength of the hot strip is obtained, which is disadvantageous for the subsequent cold rolling.
  • a reel temperature above the range according to the invention causes the tensile strength in the annealed cold strip to be too high according to the invention.
  • the risk of grain boundary oxidation and grain coarsening is promoted, which can lead to poor and / or uneven mechanical properties in the annealed cold strip.
  • Step (B) of the process according to the invention is particularly preferably carried out at a reel temperature of 560 to 600 ° C.
  • the present invention therefore preferably relates to the invention Process in which the reeling is carried out at a temperature of 560 to 600 ° C.
  • the hot strip is then cooled down to room temperature in the coiled state by methods known to those skilled in the art.
  • the hot strip obtained is fed to a pickling step after step (B) of the method according to the invention.
  • the present invention therefore preferably relates to the method according to the invention, the hot strip obtained in step (B) being fed to a pickling step.
  • the strip can be pickled both in a process step which is separate from the cold rolling subsequently carried out or in a system combined with a cold rolling unit.
  • the hot strip for pickling is preferably passed through a pickling tank known to the person skilled in the art.
  • the pickling agent used is preferably sulfuric acid H 2 SO 4 , preferably with a concentration of 15 to 40% by weight, for example 25% by weight, or hydrochloric acid HCl.
  • the temperature in the pickling step according to the invention is preferably 70 ° C to 100 ° C.
  • the person skilled in the art knows how to measure the pickling time, scale residues and / or grain boundary oxidation remaining on the strip surface if the pickling time is too short, and uneven removal of the surface may result if the pickling time is too long, which may result in a fluctuating strip thickness with possibly different mechanical properties can result.
  • the hot strip obtained after the pickling step according to the invention is then cold rolled in a preferred embodiment of the method according to the invention.
  • the present invention therefore preferably relates to the method according to the invention, the hot strip obtained after the pickling step being fed to a cold rolling step.
  • the method according to the invention therefore preferably comprises a step (C), comprising cold rolling and subsequent annealing, preferably in a continuous continuous furnace, with an optionally following coating.
  • the thickness of the strip after cold rolling is preferably between 0.6 mm and 3.0 mm.
  • the cold strip is preferably further treated after the cold rolling in a continuous annealing process, optionally with a subsequent coating of the strip (metallic coatings such as Zn, Mg or alumina coatings).
  • the present invention therefore preferably relates to the method according to the invention, the cold strip obtained in the cold rolling step being fed to an annealing step.
  • the strip is brought to a temperature GT of 780 to 880 ° C. in one or more steps.
  • the heating rate to these temperatures is preferably up to 20K / s.
  • the throughput speed is preferably between 40 and 125 m / min.
  • the holding time in the annealing furnace which is preferably between 20 and 340 s, depends on the throughput speed.
  • the holding time and holding temperature according to the invention should preferably not be fallen short of according to the invention, so that sufficient austenite is formed and the recrystallization can be ensured.
  • this is preferably relevant for the strength due to the formation of martensite
  • stable residual austenite is preferably required at room temperature in order to be able to achieve the required elongation at break.
  • an incomplete recrystallization or incomplete heating in the annealing step in particular in the case of thicker dimensions, could lead to different microstructures across the strip width and strip thickness, which is reflected in undesirable, scattering mechanical properties.
  • the cold strip is preferably cooled according to the invention to an intermediate temperature of 400 to 530 ° C., for example at a cooling rate greater than 5K / s.
  • the cooling can take place in one or more steps.
  • a hot-dip coating can optionally be carried out according to the invention.
  • Processes for hot-dip coating are known per se to the person skilled in the art. Coating baths with a proportion of at least 75% by weight of zinc or aluminum are preferably used here. After coating, there is a cooling to a temperature ⁇ 100 ° C. with an average cooling rate> 5K / s, whereby this cooling can be designed in one or more steps.
  • a cooling rate of at least 5K / s and at most 100K / s is maintained in a temperature range from 680 to 530 ° C. This prevents the formation of pearlite, which leads to a lowering of the strength. If the cooling rate is too high, for example more than 100K / s, too much martensite can be formed and the elongation at break can be reduced.
  • a galvannealing process can be carried out after coating, whereby a reheating to max. 650 ° C takes place.
  • the sheet can be cooled according to the invention below the above-mentioned intermediate temperature without a coating treatment continuously at a cooling rate of, for example, 0.1 to 50 K / s in one or more step (s) to room temperature.
  • An electrolytic coating is optionally available after cooling to room temperature.
  • the steel sheet can be optionally dressed, the degree of skin-pass should preferably be a maximum of 1.5%. If a higher degree of skin-pass is used, the yield strength can increase according to the invention with an undesirable loss of elongation at break and loss of n value. If the optional skin pass step is carried out, a skin pass degree of at least 0.3% is necessary to ensure a defined surface structure.
  • step (C) comprising a pickling step, a cold rolling step, an annealing step, optionally a hot-dip coating, optionally an electrolytic coating and / or a skin pass step.
  • the present invention also relates to a component containing the flat steel product according to the invention or the flat steel product obtained by the method according to the invention.
  • the component according to the invention particularly preferably consists of the flat steel product according to the invention or of the flat steel product obtained by the method according to the invention.
  • Components of this type are preferably safety-relevant components, for example longitudinal and cross members, A-pillars or B-pillars.
  • the present invention also relates to the use of a flat steel product according to the invention or a flat steel product obtained by the method according to the invention, for use in vehicle construction, preferably in body construction, for example as longitudinal or transverse beams, A-pillars or B-pillars.
  • a steel from the analyzes given in Table 1 is cast into a preliminary product (slab) and reheated to a temperature VT of 1100 to 1300 ° C. and then pre-rolled. To heat slabs, they are heated in a walking beam furnace. The entrance to the finishing train takes place at a temperature of 1050 to 1150 ° C.
  • the slabs are rolled to the final hot strip thickness in at least five passes.
  • the final rolling temperature ET is between 820 and 900 ° C, see Table 2.
  • the hot strip with a thickness according to Table 2 is cooled at a cooling rate of 30 - 300 K / s to a coiling temperature HT of 540 to 620 ° C and then coiled.
  • the cooling from ET to HT takes place with water.
  • the hot strip is cooled in the coiled state in air to room temperature.
  • the hot strip is pickled to remove the scale layer and rolled with a KWG cold rolling degree between 50 and 73%.
  • the cold strip thickness is between 0.8 and 2.8 mm, see Table 2.
  • the strip is passed through a pickling tank containing 25% sulfuric acid H 2 SO 4 at a temperature of approx. 95 ° C.
  • the cold strip is processed further with a continuous annealing process.
  • the strip is brought to a temperature GT in accordance with Table 2 in one or more steps and kept at this temperature for a time t_glow.
  • the mixture is cooled to an intermediate temperature ZT in accordance with Table 2.
  • An optional coating is carried out here.
  • the strip is cooled to a temperature ⁇ 100 ° C and then subjected to skin pass rolling (skin pass degree D °).
  • Tables 1 and 2 show the alloys of the respective processed preliminary products as well as the respective manufacturing parameters for tests 1 to 32. Experiments 1 to 24 were carried out in the manner according to the invention both with regard to the alloy of the respectively processed slabs and with regard to the production parameters, while in experiments 25 to 32 either the alloy or the production parameters were not in accordance with the invention.
  • the mechanical properties are determined in tests on longitudinal samples (DIN EN ISO 6892-1, sample form 2 according to DIN EN ISO 6892-1, measuring length 80 mm, sample width 20 mm).
  • the longitudinal samples are taken from the strip axis, ie from a position in the middle of the strip width.
  • the n values were also determined in accordance with DIN ISO 10275 in conjunction with DIN EN ISO 6892-1 as n 10-20 / Ag values.
  • the details of the structural components relate to area percent.
  • the cut is etched with alcoholic nitric acid, which contains 3% by volume of nitric acid (so-called nital).
  • the sample position is considered in 1/3 or 2/3 of the thickness of the steel sheet at 1000x magnification in a reflected light microscope.
  • the residual austenite content is determined using a microdiffractometer on the same longitudinal section. During the measurement, the acceleration voltage is 35kV and the current is 30 mA. The lower detection limit is 1% residual austenite.
  • Table 1 Analyzes of the steel compositions used ⁇ /u> ⁇ /b> analysis C.
  • Rp0.2 Rm A80 n 10-20 / Ag value structure MPa MPa % - F M RA Other M + RA A 1 369 637 28 0.21 70 20 8.0 2.0 28.0 A 2nd 355 609 32 0.22 75 15 8.0 2.0 23.0 A 3rd 357 632 29 0.22 70 20 7.5 2.5 27.5 A 4th 354 624 30th 0.20 70 20 7.5 2.5 27.5 B 5 343 626 27 0.21 70 20 8.5 1.5 28.5 B 6 361 625 30th 0.22 70 20 9.0 1.0 29.0 B 7 367 615 31 0.22 75 15 10.0 0.0 25.0 B 8th 360 612 30th 0.22 75 15 8.5 1.5 23.5 C. 9 347 607 29 0.25 75 15 8.0 2.0 23.0 C.
  • the flat steel product according to the invention can advantageously be used in vehicle construction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Stahlflachproduktes, ein entsprechendes Stahlflachprodukt, Bauteile aus dem solchen Stahlflachprodukt, sowie die Verwendung des Stahlflachproduktes.The present invention relates to a method for producing a flat steel product, a corresponding flat steel product, components made from such flat steel product, and the use of the flat steel product.

Technischer HintergrundTechnical background

Dualphasenstähle, kurz "DP-Stähle", zeichnen sich durch eine gute Eigenschaftskombination aus hoher Festigkeit und Umformbarkeit aus. Das Gefüge üblicher DP-Stähle besteht zu 70 bis 90 Vol.-% aus Ferrit, Rest Martensit. Der harte Martensit ist inselförmig in der weichen ferritischen Matrix eingelagert. Neben Martensit können in geringen Mengen weitere kohlenstoffreiche Umwandlungsgefüge wie Bainit und/oder thermodynamisch metastabiler Restaustenit vorhanden sein. Metastabiler Restaustenit verbessert die Umformeigenschaften bei der Kaltformgebung.Dual-phase steels, or "DP steels" for short, are characterized by a good combination of properties of high strength and formability. The structure of conventional DP steels consists of 70 to 90 vol .-% ferrite, the rest of martensite. The hard martensite is embedded in the island in the soft ferritic matrix. In addition to martensite, other carbon-rich transformation structures such as bainite and / or thermodynamically metastable residual austenite can be present in small quantities. Metastable residual austenite improves the forming properties during cold forming.

Dualphasenstähle verbinden aufgrund ihrer Mikrostruktur unterschiedliche Eigenschaften. So kombinieren sie gegenüber konventionellen höherfesten Stahlgüten eine niedrige, kontinuierliche Streckgrenze mit hoher Zugfestigkeit bei gleichzeitig guter Gleichmaß- und Bruchdehnung bzw. hohem Kaltverfestigungsvermögen. Die hohe Zugfestigkeit bei zugleich niedriger Streckgrenze führt zu einem niedrigen Streckgrenzenverhältnis.Due to their microstructure, dual-phase steels combine different properties. Compared to conventional high-strength steel grades, they combine a low, continuous yield strength with high tensile strength while at the same time good elongation at break and elongation or high work hardening capacity. The high tensile strength combined with a low yield strength leads to a low yield strength ratio.

Wegen ihrer günstigen Verarbeitungseigenschaften werden DP-Stähle bevorzugt im Fahrzeugbau verwendet. Aufgrund des niedrigen Streckgrenzenverhältnisses sowie des hohen Kaltverfestigungspotentials sind sie insbesondere für komplex geformte, sicherheitsrelevante Karosseriebauteile, die ein hohes Energieabsorptionsvermögen fordern, geeignet. Zu diesen Bauteilen zählen u.a. Verstärkungen, Dachrahmen, B-Säulen sowie Längs- und Querträger. Mit den hohen möglichen Festigkeiten, geht auch ein großes Potential für Leichtbau durch Dickenreduktion der Bleche einher. DP-Stähle stellen somit vor allem unter den Gesichtspunkten Energieeinsparung und passive Sicherheit einen Beitrag zur gewichtsoptimierten Konstruktion dar.Because of their favorable processing properties, DP steels are preferred in vehicle construction. Due to the low yield strength ratio and the high work hardening potential, they are particularly suitable for complex-shaped, safety-relevant body components that require a high level of energy absorption. These components include Reinforcements, roof frames, B-pillars as well as longitudinal and cross members. With the high possible strengths, there is also great potential for lightweight construction by reducing the thickness of the sheets. DP steels therefore make a contribution to weight-optimized construction, especially from the point of view of energy saving and passive safety.

Flachprodukte aus DP-Stählen und Verfahren zu ihrer Herstellung sind aus dem Stand der Technik bereits bekannt.Flat products made of DP steels and processes for their production are already known from the prior art.

EP 0 796 928 A1 offenbart einen Mehrphasenstahl und ein Verfahren zu seiner Herstellung. Der Mehrphasenstahl liegt in der Form kaltgewalzter Bleche vor enthaltend 0,05 bis 0,3 Gew.-% C, 0,8 bis 3,0 Gew.-% Mn, 0,4 bis 2,5 Gew.-% Al, 0,01 bis 0,2 Gew.-% Si, Rest Fe und unvermeidbare Verunreinigungen. Gemäß diesem Dokument weist das kaltgewalzte Blech eine hohe Festigkeit und eine gute Duktilität auf. Das kaltgewalzte Blech kann auch oberflächenbeschichtet sein. EP 0 796 928 A1 discloses a multi-phase steel and a method for its manufacture. The multiphase steel is in the form of cold-rolled sheets containing 0.05 to 0.3% by weight of C, 0.8 to 3.0 wt% Mn, 0.4 to 2.5 wt% Al, 0.01 to 0.2 wt% Si, balance Fe and unavoidable impurities. According to this document, the cold-rolled sheet has high strength and good ductility. The cold rolled sheet can also be surface coated.

EP 1 642 990 A1 offenbart ein hochfestes Stahlblech mit einer Dualphasenstruktur, enthaltend 0,03 bis 0,2 Gew.-% C, 0,005 bis 0,3 Gew.-% Si, 1,0 bis 3,1 Gew.-% Mn, 0,001 bis 0,06 Gew.-% P, 0,001 bis 0,01 Gew.-% S, 0,0005 bis 0,01 Gew.-% N, 0,2 bis 1,2 Gew.-% Al, weniger als 0,5 Gew.-% Mo, Rest Fe und unvermeidbare Verunreinigungen. Dieses Stahlblech weist eine gute Verformbarkeit auf und kann oberflächenbeschichtet werden. EP 1 642 990 A1 discloses a high-strength steel sheet with a dual-phase structure, containing 0.03 to 0.2% by weight of C, 0.005 to 0.3% by weight of Si, 1.0 to 3.1% by weight of Mn, 0.001 to 0, 06 wt% P, 0.001 to 0.01 wt% S, 0.0005 to 0.01 wt% N, 0.2 to 1.2 wt% Al, less than 0.5 wt .-% Mo, rest Fe and unavoidable impurities. This steel sheet has good ductility and can be surface coated.

Hochfeste Stähle eignen sich besonders für einen Einsatz im Fahrzeugbau, insbesondere im Automobilbau. Hierfür werden sowohl unbeschichtete als auch beschichtete Stahlfeinbleche eingesetzt je nach Korrosionsanfälligkeit des Produkts und Einsatzort bzw. Umgebung, in der sie eingesetzt werden. Um wachsenden Anforderungen hinsichtlich Leichtbau (Klimaschutz, Ressourceneffizienz, Kostenoptimierung) und Crash-Sicherheit im Karosserie- und Fahrwerksbau durch komplexere Bauteilstrukturen gerecht zu werden, besteht daher ein Bedarf nach hochfesten Stahlflachprodukten mit verbesserten Umformeigenschaften.High-strength steels are particularly suitable for use in vehicle construction, especially in automobile construction. Both uncoated and coated steel sheets are used for this, depending on the susceptibility to corrosion of the product and the location or environment in which they are used. In order to meet growing requirements with regard to lightweight construction (climate protection, resource efficiency, cost optimization) and crash safety in body and chassis construction due to more complex component structures, there is a need for high-strength flat steel products with improved forming properties.

Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, Stahlflachprodukte und Verfahren zu ihrer Herstellung bereitzustellen, die die oben genannten Anforderungen, insbesondere verbesserte Umformeigenschaften, welche u.a. in einer erhöhten Dehnfähigkeit gegenüber vergleichbaren Produkten quantifizierbar sind, erfüllen können.The object of the present invention is to provide flat steel products and processes for their production which meet the above-mentioned requirements, in particular improved forming properties, which among other things. can be quantified in an increased elasticity compared to comparable products.

Gelöst wird diese Aufgabe durch das erfindungsgemäße Verfahren zur Herstellung eines Stahlflachproduktes aus einem Stahl, enthaltend (in Gew.-%):

  • 0,070 bis 0,15 C,
  • max. 0,50 Si,
  • 1,0 bis 2,0 Mn,
  • 0,6 bis 1,5 Al und
  • 0,2 bis 1,0 Cr,
  • Rest Fe und unvermeidbare Verunreinigungen,
This object is achieved by the method according to the invention for producing a flat steel product from a steel, containing (in% by weight):
  • 0.070 to 0.15 C,
  • Max. 0.50 Si,
  • 1.0 to 2.0 Mn,
  • 0.6 to 1.5 Al and
  • 0.2 to 1.0 Cr,
  • Balance Fe and unavoidable impurities,

umfassend wenigstens die Schritte:

  1. (A) Herstellen eines warmgewalzten Bandes,
  2. (B) Haspeln des warmgewalzten Bandes, wobei das Haspeln bei einer Temperatur von 540 bis 620 °C erfolgt, und
  3. (C) Gegebenenfalls Kaltwalzen sowie anschließendes Glühen in einem kontinuierlichen Durchlaufofen mit einer optional folgenden Beschichtung.
comprising at least the steps:
  1. (A) making a hot rolled strip,
  2. (B) coiling the hot rolled strip, the coiling being at a temperature of 540 to 620 ° C, and
  3. (C) If necessary, cold rolling and subsequent annealing in a continuous continuous furnace with an optionally following coating.

Des Weiteren werden diese Aufgaben auch gelöst durch ein erfindungsgemäßes Stahlflachprodukt, erhältlich durch das erfindungsgemäße Verfahren, durch ein Stahlflachprodukt aus einem speziellen Stahl, durch ein Bauteil hergestellt aus dem erfindungsgemäßen Stahlflachprodukt, sowie durch die Verwendung des erfindungsgemäßen Stahlflachproduktes im Fahrzeugbau, insbesondere im Karosseriebau, für sicherheitsrelevante Bauteile zu denen beispielsweise Längs- und Querträger zählen.Furthermore, these objects are also achieved by a flat steel product according to the invention, obtainable by the method according to the invention, by a flat steel product made from a special steel, by a component made from the flat steel product according to the invention, and by the use of the flat steel product according to the invention in vehicle construction, in particular in body construction, for Safety-relevant components, which include, for example, longitudinal and cross members.

Die Legierungselemente zur Einstellung der mechanischen Eigenschaften des erfindungsgemäßen Stahls sind im Wesentlichen C, Si, Mn, Al und Cr. Durch die Anwesenheit dieser Legierungselemente in bestimmten Mengen, bevorzugt in Verbindung mit der erfindungsgemäßen Haspeltemperatur, werden die erfindungsgemäß beobachteten Vorteile erhalten.The alloying elements for adjusting the mechanical properties of the steel according to the invention are essentially C, Si, Mn, Al and Cr. The presence of these alloying elements in certain amounts, preferably in connection with the reel temperature according to the invention, gives the advantages observed according to the invention.

Die vorliegende Erfindung betrifft auch ein Stahlflachprodukt, enthaltend als Legierungselemente C, Si, Mn, Al und Cr, Rest Fe und unvermeidbare Verunreinigungen, wobei die folgende Gleichung (I) erfüllt ist: 3,5 A 8,8

Figure imgb0001
wobei A = 74,96 + 8039,1 * C 1498,98 * Si 121,63 * Mn 408,97 * AI + 1093,38 * Cr / 100
Figure imgb0002
und

C:
C-Gehalt in Gew.-%,
Si:
Si-Gehalt in Gew.-%,
Mn:
Mn-Gehalt in Gew.-%,
Al:
Al-Gehalt in Gew.-% und
Cr:
Cr-Gehalt in Gew.-% bedeuten.
The present invention also relates to a flat steel product containing as alloying elements C, Si, Mn, Al and Cr, the rest Fe and unavoidable impurities, the following equation (I) being fulfilled: 3.5 A 8.8
Figure imgb0001
in which A = 74.96 + 8039.1 * C. - 1498.98 * Si - 121.63 * Mn - 408.97 * AI + 1093.38 * Cr / 100
Figure imgb0002
and
C:
C content in% by weight,
Si:
Si content in% by weight,
Mn:
Mn content in% by weight,
Al:
Al content in% by weight and
Cr:
Cr content in wt .-% mean.

Bevorzugt betrifft die vorliegende Erfindung das erfindungsgemäße Stahlflachprodukt, enthaltend (in Gew.-%) 0,070 bis 0,15 C, max. 0,50 Si, 1,0 bis 2,0 Mn, 0,6 bis 1,5 Al und 0,2 bis 1,0 Cr, Rest Fe und unvermeidbare Verunreinigungen.The present invention preferably relates to the flat steel product according to the invention, containing (in% by weight) 0.070 to 0.15 C, max. 0.50 Si, 1.0 to 2.0 Mn, 0.6 to 1.5 Al and 0.2 to 1.0 Cr, balance Fe and unavoidable impurities.

Kohlenstoff wird erfindungsgemäß in einem Bereich von 0,070 Gew.-% bis 0,15 Gew.-%, bevorzugt 0,095 Gew.-% bis 0,13 Gew.-% legiert. Der minimale Gehalt ist erforderlich, um die gewünschte Festigkeit über die Bildung einer ausreichenden Menge an Martensit sicher erreichen zu können. Weiterhin wird der Kohlenstoff zur Stabilisierung des Restaustenits benötigt. Durch Nutzung des TRIP-Effekts wird die Umformbarkeit verbessert. Gehalte oberhalb von 0,15 Gew.-% führen häufig zu Einschränkungen beim Schweißen und sind daher unerwünscht.According to the invention, carbon is alloyed in a range from 0.070% by weight to 0.15% by weight, preferably 0.095% by weight to 0.13% by weight. The minimum content is necessary in order to be able to achieve the desired strength reliably by forming a sufficient amount of martensite. The carbon is also required to stabilize the remaining austenite. The formability is improved by using the TRIP effect. Levels above 0.15% by weight often lead to restrictions in welding and are therefore undesirable.

Silizium wird erfindungsgemäß bis max. 0,50 Gew.-%, bevorzugt max. 0,40 Gew.-%, legiert. Silizium wird zur Stabilisierung des Restaustenits durch Unterdrückung der Ausscheidung von Zementit bei der Kühlung nach der Glühung, sowie zur Festigkeitssteigerung benötigt. Gehalte an Silizium oberhalb der angegebenen Menge erschweren die Beschichtbarkeit durch die Bildung von Siliziumoxid an der Bandoberfläche während der Glühung.Silicon is inventively up to max. 0.50% by weight, preferably max. 0.40% by weight, alloyed. Silicon is required to stabilize the residual austenite by suppressing the precipitation of cementite during cooling after annealing and to increase the strength. Silicon contents above the specified amount make coating difficult due to the formation of silicon oxide on the strip surface during annealing.

Mangan wird erfindungsgemäß in einem Bereich von 1,0 Gew.-% bis 2,0 Gew.-%, bevorzugt 1,2 Gew.-% bis 1,7 Gew.-%, legiert. Die genannte Untergrenze wird durch die Sicherstellung der Festigkeit des Stahlblechs bestimmt. Höhere Gehalte an Mn oberhalb der angegebenen Obergrenze führen zu einer erschwerten Erzeugung, da Mangan zur Bildung von Seigerungen neigt und bei der Stahlerzeugung höhere Prozesstemperaturen notwendig wären.According to the invention, manganese is alloyed in a range from 1.0% by weight to 2.0% by weight, preferably 1.2% by weight to 1.7% by weight. The specified lower limit is determined by ensuring the strength of the steel sheet. Higher levels of Mn above the specified upper limit make production more difficult, since manganese tends to form segregations and higher process temperatures would be necessary for steel production.

Aluminium wird zur Stabilisierung des Restaustenits benötigt und erfindungsgemäß in einem Bereich von 0,6 Gew.-% bis 1,5 Gew.-%, bevorzugt 0,7 Gew.-% bis 1,3 Gew.-%, eingesetzt. Gehalte oberhalb der angegebenen Obergrenze führen, wie bei Silizium, zu einer erschwerten Beschichtbarkeit.Aluminum is required to stabilize the residual austenite and is used according to the invention in a range from 0.6% by weight to 1.5% by weight, preferably 0.7% by weight to 1.3% by weight. Levels above the specified upper limit, like silicon, make coating difficult.

Chrom wirkt ebenfalls festigkeitssteigernd und wird daher erfindungsgemäß in einem Bereich von 0,2 Gew.-% bis 1,0 Gew.-%, bevorzugt 0,2 Gew.-% bis 0,7 Gew.-%, legiert. Bei Chromgehalten oberhalb der angegebenen Obergrenze kann die Dehnung stark herabgesetzt werden. Die Elemente C, Si, Mn, Al und Cr haben im Wesentlichen eine festigkeitssteigernde Wirkung. Daher liegt erfindungsgemäß bevorzugt die Summe der Mengen an C, Si, Mn, Al und Cr bei 2,8 bis 3,5 Gew.-%.Chromium also increases strength and is therefore alloyed according to the invention in a range from 0.2% by weight to 1.0% by weight, preferably 0.2% by weight to 0.7% by weight. With chrome contents above the specified upper limit, the elongation can be greatly reduced. The elements C, Si, Mn, Al and Cr essentially have a strength-increasing effect. Therefore, according to the invention, the sum of the amounts of C, Si, Mn, Al and Cr is preferably 2.8 to 3.5% by weight.

Bevorzugt betrifft die vorliegende Erfindung daher das erfindungsgemäße Verfahren, wobei die Summe der Mengen an C, Si, Mn, Al und Cr 2,8 bis 3,5 Gew.-% beträgt. Die vorliegende Erfindung betrifft daher auch bevorzugt das erfindungsgemäße Stahlflachprodukt, wobei die Summe der Mengen an C, Si, Mn, Al und Cr 2,8 bis 3,5 Gew.-% beträgt. Gemäß dieser bevorzugten Ausführungsform wird eine bevorzugte Kombination von Zugfestigkeit und Mindestbruchdehnung erhalten.The present invention therefore preferably relates to the method according to the invention, the sum of the amounts of C, Si, Mn, Al and Cr being 2.8 to 3.5% by weight. The present invention therefore preferably also relates to the flat steel product according to the invention, the sum of the amounts of C, Si, Mn, Al and Cr being 2.8 to 3.5% by weight. According to this preferred embodiment, a preferred combination of tensile strength and minimum elongation at break is obtained.

Weiter bevorzugt liegt die Summe der Mengen an Si und Al bei höchstens 1,5 Gew.-%. In dieser bevorzugten Ausführungsform wird eine vorteilhafte Oberflächenbeschaffenheit erhalten, da negative Effekte bezüglich Zinkhaftung durch Ablösung der oberen Kornlagen, verschlechterte Umformbarkeit aufgrund von Korngrenzenoxidation bei hohen Haspel- sowie Glühtemperaturen, ausbleiben.The sum of the amounts of Si and Al is more preferably at most 1.5% by weight. In this preferred embodiment, an advantageous surface finish is obtained, since there are no negative effects with regard to zinc adhesion due to detachment of the upper grain layers, deteriorated formability due to grain boundary oxidation at high reel and annealing temperatures.

Weitere Legierungselemente werden erfindungsgemäß bevorzugt nicht gezielt hinzugegeben. Daher gilt bevorzugt für die weiteren explizit angegebenen Elemente jeweils als Obergrenze: P ≤ 0,03 Gew.-%, Schwefel ≤ 0,005 Gew.-%, Mo, Cu und Ni jeweils ≤ 0,2 Gew.-%, N und Ti jeweils ≤0,01%. Alle weiteren möglichen Elemente gelten als unvermeidbare Verunreinigungen.According to the invention, further alloying elements are preferably not added in a targeted manner. Therefore, the upper limit for the other explicitly specified elements is preferably: P 0,0 0.03% by weight, sulfur 0,00 0.005% by weight, Mo, Cu and Ni in each case 0,2 0.2% by weight, N and Ti in each case ≤0.01%. All other possible elements are considered inevitable impurities.

Das erfindungsgemäße Stahlflachprodukt enthält in einer bevorzugten Ausführungsform (in Flächen-%) 60 bis 85, bevorzugt 70 bis 80, Ferrit (F), 10 bis 30, bevorzugt 10 bis 20, Martensit (M), 5 bis 12, bevorzugt 7 bis 11, Restaustenit (RA) und höchstens 8, bevorzugt höchstens 3, beispielsweise 0 bis 8, Sonstige ausgewählt aus Perlit, Bainit, Zementit und/oder Karbide. Der erfindungsgemäß bevorzugte Martensitanteil von 10 bis 30 Flächen-% stellt die notwendige Festigkeit sicher, gleichzeitig ist er aber so beschränkt, dass es zu keinem Abfall der Bruchdehnung durch eine zu hohe Festigkeit kommt. Restaustenit trägt zum Erreichen der Bruchdehnung bei. Ein zu hoher Restaustenitanteil geht allerdings auf Kosten des Martensitanteils, was zu einer Festigkeitsabnahme führen würde. Die Summe der sonstigen Gefügebestandteile ist so gering, dass es zu keiner wesentlichen Beeinflussung der mechanischen Eigenschaften kommt.In a preferred embodiment, the flat steel product according to the invention contains (in area%) 60 to 85, preferably 70 to 80, ferrite (F), 10 to 30, preferably 10 to 20, martensite (M), 5 to 12, preferably 7 to 11 , Residual austenite (RA) and at most 8, preferably at most 3, for example 0 to 8, others selected from pearlite, bainite, cementite and / or carbides. The martensite content of 10 to 30% by area preferred according to the invention ensures the necessary strength, but at the same time it is so limited that there is no drop in elongation at break due to excessive strength. Residual austenite contributes to the elongation at break. Too much residual austenite is at the expense of the martensite component, which would lead to a decrease in strength. The sum of the other structural components is so small that there is no significant influence on the mechanical properties.

Die vorliegende Erfindung betrifft daher bevorzugt das erfindungsgemäße Stahlflachprodukt, wobei es (in Flächen-%) 60 bis 85, bevorzugt 70 bis 80, Ferrit (F), 10 bis 30, bevorzugt 10 bis 20, Martensit (M), 5 bis 12, bevorzugt 7 bis 11, Restaustenit (RA) und höchstens 8, bevorzugt höchstens 3, beispielsweise 0 bis 8, Sonstige ausgewählt aus Perlit, Bainit, Zementit und/oder Karbide, enthält, wobei die Summe der vorliegenden Komponenten 100 ergibt.The present invention therefore preferably relates to the flat steel product according to the invention, it (in area%) 60 to 85, preferably 70 to 80, ferrite (F), 10 to 30, preferably 10 to 20, martensite (M), 5 to 12, preferably 7 to 11, residual austenite (RA) and at most 8, preferably at most 3, for example 0 to 8, others selected from pearlite, bainite, cementite and / or carbides, the sum of the components present being 100.

Weiter bevorzugt betrifft die vorliegende Erfindung das erfindungsgemäße Stahlflachprodukt, wobei die Zugfestigkeit Rm 580 MPa bis 710 MPa beträgt.The present invention further preferably relates to the flat steel product according to the invention, the tensile strength Rm being 580 MPa to 710 MPa.

Weiter bevorzugt betrifft die vorliegende Erfindung das erfindungsgemäße Stahlflachprodukt, wobei die Bruchdehnung A80 mindestens 23% beträgt.The present invention further preferably relates to the flat steel product according to the invention, the elongation at break A80 being at least 23%.

Verfahren zur Bestimmung der Zugfestigkeit Rm und der Bruchdehnung A80 sind dem Fachmann an sich bekannt.Methods for determining the tensile strength Rm and the elongation at break A80 are known per se to the person skilled in the art.

Das erfindungsgemäße Verfahren zur Herstellung eines Stahlflachproduktes aus einem Stahl, enthaltend (in Gew.-%):

  • 0,070 bis 0,15 C,
  • max. 0,50 Si,
  • 1,0 bis 2,0 Mn,
  • 0,6 bis 1,5 Al und
  • 0,2 bis 1,0 Cr,
  • Rest Fe und unvermeidbare Verunreinigungen,
umfasst wenigstens die Schritte:
  1. (A) Herstellen eines warmgewalzten Bandes,
  2. (B) Haspeln des warmgewalzten Bandes, wobei das Haspeln bei einer Temperatur von 540 bis 620 °C erfolgt, und
  3. (C) Gegebenenfalls Kaltwalzen sowie anschließendes Glühen, bevorzugt in einem kontinuierlichen Durchlaufofen, mit einer optional folgenden Beschichtung.
The process according to the invention for producing a flat steel product from a steel, comprising (in% by weight):
  • 0.070 to 0.15 C,
  • Max. 0.50 Si,
  • 1.0 to 2.0 Mn,
  • 0.6 to 1.5 Al and
  • 0.2 to 1.0 Cr,
  • Balance Fe and unavoidable impurities,
includes at least the steps:
  1. (A) making a hot rolled strip,
  2. (B) coiling the hot rolled strip, the coiling being at a temperature of 540 to 620 ° C, and
  3. (C) If necessary, cold rolling and subsequent annealing, preferably in a continuous continuous furnace, with an optionally following coating.

Das bezüglich des erfindungsgemäßen Stahlflachproduktes Gesagte gilt entsprechend auch für das erfindungsgemäße Verfahren, das erfindungsgemäße Bauteil und die erfindungsgemäße Verwendung.The statements made with regard to the flat steel product according to the invention also apply accordingly to the method according to the invention, the component according to the invention and the use according to the invention.

Das erfindungsgemäße Verfahren umfasst als Schritt (A) das Herstellen eines warmgewalzten Bandes. Im Prinzip können erfindungsgemäß alle dem Fachmann bekannten Verfahren bzw. Verfahrensschritte eingesetzt werden, um ein warmgewalztes Band mit den oben genannten erfindungsgemäßen Legierungselementen in den entsprechenden Mengen zu erhalten.The method according to the invention comprises, as step (A), the production of a hot-rolled strip. In principle, all methods or process steps known to the person skilled in the art can be used according to the invention in order to obtain a hot-rolled strip with the above-mentioned alloy elements according to the invention in the appropriate amounts.

Bevorzugt wird Schritt (A) durchgeführt, indem aus einem Stahl, der die oben genannte Analyse aufweist, ein entsprechendes Vorprodukt, eine Bramme oder eine Dünnbramme, aus einer Stahlschmelze vergossen wird. Das Gießen kann nach allen dem Fachmann bekannten Verfahren erfolgen.Step (A) is preferably carried out by casting a corresponding preliminary product, a slab or a thin slab, from a steel melt from a steel which has the above-mentioned analysis. The casting can be carried out by all methods known to the person skilled in the art.

Das so erhaltene Vorprodukt wird anschließend auf einer Temperatur von 1100 bis 1300 °C gehalten oder auf diese Temperatur wiedererwärmt und anschließend ggf. entzundert und vorgewalzt. Das erfindungsgemäße Erwärmen des Vorproduktes kann dabei in allen dem Fachmann bekannten Vorrichtungen erfolgen, beispielsweise in einem Hubbalken- oder Stoßofen. Beim Übergang in den eigentlichen Warmwalzschritt beträgt die Temperatur bevorzugt 1050 bis 1150 °C.The preliminary product obtained in this way is then kept at a temperature of 1100 to 1300 ° C. or reheated to this temperature and then optionally descaled and pre-rolled. The heating of the preliminary product according to the invention can be carried out in all devices known to the person skilled in the art, for example in a walking beam or pusher furnace. At the transition to the actual hot rolling step, the temperature is preferably 1050 to 1150 ° C.

Das eigentliche Warmwalzen kann nach allen dem Fachmann bekannten Verfahren erfolgen. Das erfindungsgemäße Warmwalzen erfolgt bevorzugt derart, dass am Ende des Warmwalzens eine Endwalztemperatur (ET) von 820 bis 900 °C, besonders bevorzugt 840 bis 880 °C, erhalten wird. Nach dem Warmwalzen wird erfindungsgemäß bevorzugt ein Warmband mit einer Dicke von 1 bis 10 mm, bevorzugt 2 bis 7 mm, erhalten.The actual hot rolling can be carried out by all methods known to the person skilled in the art. The hot rolling according to the invention is preferably carried out in such a way that a final rolling temperature (ET) of 820 to 900 ° C., particularly preferably 840 to 880 ° C., is obtained at the end of the hot rolling. After hot rolling, a hot strip with a thickness of 1 to 10 mm, preferably 2 to 7 mm, is preferably obtained according to the invention.

Das in Schritt (A) des erfindungsgemäßen Verfahrens erhaltene Warmband wird anschließend in Schritt (B) überführt.The hot strip obtained in step (A) of the process according to the invention is then transferred to step (B).

Die vorliegende Erfindung betrifft daher bevorzugt das erfindungsgemäße Verfahren, wobei Schritt (A) das Herstellen eines Vorproduktes, insbesondere einer Bramme oder einer Dünnbramme, durch Vergießen eines Stahls mit entsprechender Analyse, und Warmwalzen des erhaltenen Vorproduktes umfasst.The present invention therefore preferably relates to the method according to the invention, step (A) comprising the production of a preliminary product, in particular a slab or a thin slab, by casting a steel with appropriate analysis, and hot rolling the obtained preliminary product.

Schritt (B) des erfindungsgemäßen Verfahrens umfasst das Abkühlen des warmgewalzten Bandes von Endwalz- auf Haspeltemperatur sowie das Haspeln dieses Bandes, wobei das Haspeln bei einer Temperatur von 540 bis 620 °C erfolgt. Entscheidend ist hierbei das Einhalten der Haspeltemperatur.Step (B) of the method according to the invention comprises cooling the hot-rolled strip from the final rolling temperature to the coiling temperature and coiling this strip, the coiling taking place at a temperature of 540 to 620 ° C. Maintaining the reel temperature is crucial.

Das Abkühlen und Haspeln gemäß Schritt (B) kann nach dem Fachmann bekannten Verfahren erfolgen, wobei beachtet werden muss, dass die Haspeltemperatur von 540 bis 620 °C eingehalten wird. Erfindungsgemäß bevorzugt erfolgt die Abkühlung von der Endwalztemperatur (ET) aus Schritt (A) auf die Haspeltemperatur (HT) an Luft und/oder mit Wasser. Dabei ist besonders bevorzugt, wenn nach Verlassen der Warmwalzstraße, d.h. nach Schritt (A), eine Haltezeit an Luft von mindestens 1 s eingehalten wird, bevor eine Wasserkühlung einsetzt. Dies führt erfindungsgemäß dazu, dass ein vorteilhafter gleichmäßiger Rekristallisationszustand im Warmband und damit verbunden gleichmäßige mechanische Eigenschaften und eine hohe Bandebenheit erhalten werden.The cooling and reeling according to step (B) can be carried out by methods known to the person skilled in the art, it being necessary to ensure that the reeling temperature of 540 to 620 ° C. is maintained. According to the invention, the cooling from the final rolling temperature (ET) from step (A) to the reel temperature (HT) preferably takes place in air and / or with water. It is particularly preferred if after leaving the hot rolling mill, i.e. after step (A), a holding time in air of at least 1 s is observed before water cooling begins. According to the invention, this leads to an advantageous, uniform recrystallization state in the hot strip and, associated therewith, uniform mechanical properties and a high strip flatness being obtained.

Vorliegend wurde überraschenderweise gefunden, dass das erfindungsgemäße Verfahren besonders vorteilhaft durchgeführt werden kann und ein besonders vorteilhaftes Produkt zugänglich macht, wenn in Schritt (B) die erfindungsgemäße Haspeltemperatur eingehalten wird. Eine Haspeltemperatur unterhalb des erfindungsgemäßen Bereichs führt zu einer erfindungsgemäß zu hohen Zugfestigkeit sowie zu geringen Bruchdehnung im geglühten Kaltband. Außerdem wird eine unerwünscht hohe Festigkeit des Warmbandes erhalten, was für das anschließende Kaltwalzen unvorteilhaft ist. Eine Haspeltemperatur oberhalb des erfindungsgemäßen Bereichs ruft eine erfindungsgemäß zu hohe Zugfestigkeit im geglühten Kaltband hervor. Weiterhin steigt die Gefahr von Korngrenzenoxidation und Kornvergröberung wird gefördert, die zu schlechten und/oder ungleichmäßigen mechanischen Eigenschaften beim geglühten Kaltband führen kann.It has surprisingly been found in the present case that the method according to the invention can be carried out particularly advantageously and makes a particularly advantageous product accessible if the reel temperature according to the invention is maintained in step (B). A reel temperature below the range according to the invention leads to a high tensile strength according to the invention and to low elongation at break in the annealed cold strip. In addition, an undesirably high strength of the hot strip is obtained, which is disadvantageous for the subsequent cold rolling. A reel temperature above the range according to the invention causes the tensile strength in the annealed cold strip to be too high according to the invention. Furthermore, the risk of grain boundary oxidation and grain coarsening is promoted, which can lead to poor and / or uneven mechanical properties in the annealed cold strip.

Besonders bevorzugt erfolgt Schritt (B) des erfindungsgemäßen Verfahrens bei einer Haspeltemperatur von 560 bis 600 °C. Die vorliegende Erfindung betrifft daher bevorzugt das erfindungsgemäße Verfahren, wobei das Haspeln bei einer Temperatur von 560 bis 600 °C erfolgt. Anschließend wird das Warmband im gehaspelten Zustand nach dem Fachmann bekannten Verfahren bis auf Raumtemperatur abgekühlt.Step (B) of the process according to the invention is particularly preferably carried out at a reel temperature of 560 to 600 ° C. The present invention therefore preferably relates to the invention Process in which the reeling is carried out at a temperature of 560 to 600 ° C. The hot strip is then cooled down to room temperature in the coiled state by methods known to those skilled in the art.

Die weiteren Verfahrensschritte sind dem Fachmann an sich bekannt. In einer bevorzugten Ausführungsform wird das erhaltene Warmband nach Schritt (B) des erfindungsgemäßen Verfahrens einem Beizschritt zugeführt.The further process steps are known per se to the person skilled in the art. In a preferred embodiment, the hot strip obtained is fed to a pickling step after step (B) of the method according to the invention.

Die vorliegende Erfindung betrifft daher bevorzugt das erfindungsgemäße Verfahren, wobei das in Schritt (B) erhaltene Warmband einem Beizschritt zugeführt wird.The present invention therefore preferably relates to the method according to the invention, the hot strip obtained in step (B) being fed to a pickling step.

Verfahren zum Beizen des erfindungsgemäß erhaltenen Warmbandes sind dem Fachmann an sich bekannt. Erfindungsgemäß kann das Beizen des Bandes sowohl in einem vom anschließend bevorzugt durchgeführten Kaltwalzen getrennten Prozessschritt oder in einer mit einem Kaltwalzaggregat kombinierten Anlage durchgeführt werden.Processes for pickling the hot strip obtained according to the invention are known per se to the person skilled in the art. According to the invention, the strip can be pickled both in a process step which is separate from the cold rolling subsequently carried out or in a system combined with a cold rolling unit.

Bevorzugt wird das Warmband zum Beizen durch ein dem Fachmann bekanntes Beizbecken geführt. Als Beizmittel wird erfindungsgemäß bevorzugt Schwefelsäure H2SO4, bevorzugt mit einer Konzentration von 15 bis 40 Gew.-%, beispielsweise 25 Gew.-%, oder Salzsäure HCl eingesetzt. Die Temperatur in dem erfindungsgemäßen Beizschritt beträgt bevorzugt 70 °C bis 100 °C. Der Fachmann weiß, wie die Beizzeit zu bemessen ist, wobei bei einer zu kurzen Beizzeit Zunderreste und/oder Korngrenzenoxidation auf der Bandoberfläche verbleiben und bei einer zu langen Beizzeit ein ungleichmäßiger Abtrag der Oberfläche die Folge sein kann, was zu einer schwankenden Banddicke mit ggf. unterschiedlichen mechanischen Eigenschaften führen kann.The hot strip for pickling is preferably passed through a pickling tank known to the person skilled in the art. According to the invention, the pickling agent used is preferably sulfuric acid H 2 SO 4 , preferably with a concentration of 15 to 40% by weight, for example 25% by weight, or hydrochloric acid HCl. The temperature in the pickling step according to the invention is preferably 70 ° C to 100 ° C. The person skilled in the art knows how to measure the pickling time, scale residues and / or grain boundary oxidation remaining on the strip surface if the pickling time is too short, and uneven removal of the surface may result if the pickling time is too long, which may result in a fluctuating strip thickness with possibly different mechanical properties can result.

Das nach dem erfindungsgemäßen Beizschritt erhaltene Warmband wird in einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens anschließend kaltgewalzt.The hot strip obtained after the pickling step according to the invention is then cold rolled in a preferred embodiment of the method according to the invention.

Die vorliegende Erfindung betrifft daher bevorzugt das erfindungsgemäße Verfahren, wobei das nach dem Beizschritt erhaltene Warmband einem Kaltwalzschritt zugeführt wird.The present invention therefore preferably relates to the method according to the invention, the hot strip obtained after the pickling step being fed to a cold rolling step.

Daher umfasst das erfindungsgemäße Verfahren bevorzugt einen Schritt (C), umfassend das Kaltwalzen sowie anschließendes Glühen, bevorzugt in einem kontinuierlichen Durchlaufofen, mit einer optional folgenden Beschichtung.The method according to the invention therefore preferably comprises a step (C), comprising cold rolling and subsequent annealing, preferably in a continuous continuous furnace, with an optionally following coating.

Erfindungsgemäß bevorzugt wird dabei mit einem Kaltwalzgrad KWG zwischen 40% und 80% gewalzt (KWG = (WB-KB)/WB100% mit WB = Banddicke vor dem Kaltwalzen und KB = Banddicke nach dem Kaltwalzen). Erfindungsgemäß bevorzugt liegt die Dicke des Bandes nach dem Kaltwalzen (Kaltbanddicke) zwischen 0,6 mm und 3,0 mm.According to the invention preference is given to a cold rolling degree KWG between 40% and 80% rolled (KWG = (WB-KB) / WB * 100% with WB = strip thickness before cold rolling and KB = strip thickness after cold rolling). According to the invention, the thickness of the strip after cold rolling (cold strip thickness) is preferably between 0.6 mm and 3.0 mm.

Bevorzugt wird das Kaltband nach dem Kaltwalzen in einem kontinuierlichen Glühprozess, ggf. mit anschließender Beschichtung des Bandes (metallische Überzüge wie Zn-, Mg- oder Albasierte Beschichtungen), weiterbehandelt.The cold strip is preferably further treated after the cold rolling in a continuous annealing process, optionally with a subsequent coating of the strip (metallic coatings such as Zn, Mg or alumina coatings).

Die vorliegende Erfindung betrifft daher bevorzugt das erfindungsgemäße Verfahren, wobei das in dem Kaltwalzschritt erhaltene Kaltband einem Glühschritt zugeführt wird.The present invention therefore preferably relates to the method according to the invention, the cold strip obtained in the cold rolling step being fed to an annealing step.

Bei dem erfindungsgemäß bevorzugten Glühschritt wird das Band in einem oder mehreren Schritten auf eine Temperatur GT von 780 bis 880 °C gebracht. Die Aufheizrate auf diese Temperaturen beträgt bevorzugt bis zu 20K/s. Die Durchsatzgeschwindigkeit beträgt banddickenabhängig bevorzugt zwischen 40 und 125 m/min. Von der Durchsatzgeschwindigkeit ist erfindungsgemäß die Haltedauer im Glühofen abhängig, die bevorzugt zwischen 20 und 340 s liegt.In the annealing step preferred according to the invention, the strip is brought to a temperature GT of 780 to 880 ° C. in one or more steps. The heating rate to these temperatures is preferably up to 20K / s. Depending on the strip thickness, the throughput speed is preferably between 40 and 125 m / min. The holding time in the annealing furnace, which is preferably between 20 and 340 s, depends on the throughput speed.

Die erfindungsgemäße Haltezeit und Haltetemperatur sollten erfindungsgemäß bevorzugt nicht unterschritten werden, damit genügend Austenit gebildet wird und die Rekristallisation sichergestellt werden kann. Dies ist zum einen bevorzugt für die Festigkeit durch die Bildung von Martensit relevant, zum anderen wird erfindungsgemäß bevorzugt stabiler Restaustenit bei Raumtemperatur benötigt, um die erforderliche Bruchdehnung erreichen zu können. Weiterhin könnte eine unvollständige Rekristallisation oder unvollständige Durchwärmung im Glühschritt insbesondere bei dickeren Abmessungen zu unterschiedlicher Gefügeausbildung über Bandbreite und Banddicke führen, was sich in unerwünschten, streuenden mechanischen Eigenschaften zeigt.The holding time and holding temperature according to the invention should preferably not be fallen short of according to the invention, so that sufficient austenite is formed and the recrystallization can be ensured. On the one hand, this is preferably relevant for the strength due to the formation of martensite, on the other hand, according to the invention, stable residual austenite is preferably required at room temperature in order to be able to achieve the required elongation at break. Furthermore, an incomplete recrystallization or incomplete heating in the annealing step, in particular in the case of thicker dimensions, could lead to different microstructures across the strip width and strip thickness, which is reflected in undesirable, scattering mechanical properties.

Bei Überschreitung der Glühtemperatur und/oder zu langsamer Fahrweise besteht die Gefahr unerwünschter Oxidbildung an der Bandoberfläche. Weiterhin kann ein grobes Korn im Gefüge die Folge sein, was zu einer Verschlechterung der mechanischen Eigenschaften führen kann. Nach dem Glühen erfolgt erfindungsgemäß bevorzugt eine Abkühlung des Kaltbandes auf eine Zwischentemperatur von 400 bis 530 °C, beispielsweise mit einer Abkühlrate größer 5K/s. Die Abkühlung kann in einem oder mehreren Schritten erfolgen.If the annealing temperature is exceeded and / or the driving style is too slow, there is a risk of undesirable oxide formation on the strip surface. Furthermore, a coarse grain in the structure can result, which can lead to a deterioration in the mechanical properties. After annealing, the cold strip is preferably cooled according to the invention to an intermediate temperature of 400 to 530 ° C., for example at a cooling rate greater than 5K / s. The cooling can take place in one or more steps.

In dem nach dem Abkühlen erreichten Temperaturbereich, bevorzugt bei 400 bis 530 °C, kann erfindungsgemäß optional eine Schmelztauchbeschichtung durchgeführt werden. Verfahren zur Schmelztauchbeschichtung sind dem Fachmann an sich bekannt. Bevorzugt werden hier Beschichtungsbäder mit einem Anteil von mindestens 75 Gew.-% Zink oder Aluminium verwendet. Nach dem Beschichten folgt eine Abkühlung auf eine Temperatur ≤ 100 °C mit einer durchschnittlichen Kühlrate > 5K/s, wobei diese Abkühlung ein- oder mehrschrittig ausgebildet sein kann.In the temperature range reached after cooling, preferably at 400 to 530 ° C., a hot-dip coating can optionally be carried out according to the invention. Processes for hot-dip coating are known per se to the person skilled in the art. Coating baths with a proportion of at least 75% by weight of zinc or aluminum are preferably used here. After coating, there is a cooling to a temperature ≤ 100 ° C. with an average cooling rate> 5K / s, whereby this cooling can be designed in one or more steps.

Erfindungsgemäß bevorzugt ist, dass in einem Temperaturbereich von 680 bis 530 °C eine Abkühlrate von mindestens 5K/s und maximal 100K/s eingehalten wird. Dadurch kann die Bildung von Perlit vermieden werden, der zu einem Absenken der Festigkeit führt. Bei zu hoher Abkühlgeschwindigkeit von beispielsweise mehr als 100K/s kann ein zu hoher Anteil Martensit gebildet und die Bruchdehnung herabgesetzt werden.It is preferred according to the invention that a cooling rate of at least 5K / s and at most 100K / s is maintained in a temperature range from 680 to 530 ° C. This prevents the formation of pearlite, which leads to a lowering of the strength. If the cooling rate is too high, for example more than 100K / s, too much martensite can be formed and the elongation at break can be reduced.

Optional kann nach dem Beschichten ein Galvannealing-Prozess durchgeführt werden, wobei dabei eine Wiedererwärmung auf max. 650 °C erfolgt.Optionally, a galvannealing process can be carried out after coating, whereby a reheating to max. 650 ° C takes place.

Alternativ kann das Blech erfindungsgemäß unterhalb der oben genannten Zwischentemperatur ohne eine Beschichtungsbehandlung kontinuierlich mit Abkühlgeschwindigkeiten von beispielsweise 0,1 bis 50 K/s in einem oder mehreren Schritt(en) auf Raumtemperatur abgekühlt werden. Optional ist im Anschluss an die Abkühlung auf Raumtemperatur ein elektrolytisches Beschichten möglich.Alternatively, the sheet can be cooled according to the invention below the above-mentioned intermediate temperature without a coating treatment continuously at a cooling rate of, for example, 0.1 to 50 K / s in one or more step (s) to room temperature. An electrolytic coating is optionally available after cooling to room temperature.

Des Weiteren kann das Stahlblech optional dressiert werden, wobei der Dressiergrad bevorzugt maximal 1,5% betragen sollte. Wird ein höherer Dressiergrad angewendet, kann sich erfindungsgemäß die Streckgrenze bei gleichzeitig unerwünschtem Bruchdehnungs- sowie n-Wertverlust erhöhen. Wird der optionale Dressierschritt durchgeführt, ist ein Dressiergrad von mindestens 0,3% notwendig, um eine definierte Oberflächenstruktur sicherzustellen.Furthermore, the steel sheet can be optionally dressed, the degree of skin-pass should preferably be a maximum of 1.5%. If a higher degree of skin-pass is used, the yield strength can increase according to the invention with an undesirable loss of elongation at break and loss of n value. If the optional skin pass step is carried out, a skin pass degree of at least 0.3% is necessary to ensure a defined surface structure.

Die vorliegende Erfindung betrifft daher bevorzugt das erfindungsgemäße Verfahren, wobei Schritt (C) einen Beizschritt, einen Kaltwalzschritt, einen Glühschritt, gegebenenfalls eine Schmelztauchbeschichtung, gegebenenfalls ein elektrolytisches Beschichten und/oder einen Dressierschritt umfasst.The present invention therefore preferably relates to the method according to the invention, step (C) comprising a pickling step, a cold rolling step, an annealing step, optionally a hot-dip coating, optionally an electrolytic coating and / or a skin pass step.

Die vorliegende Erfindung betrifft auch ein Bauteil enthaltend das erfindungsgemäße Stahlflachprodukt oder das Stahlflachprodukt, erhalten durch das erfindungsgemäße Verfahren. Besonders bevorzugt besteht das erfindungsgemäße Bauteil aus dem erfindungsgemäßen Stahlflachprodukt oder aus dem Stahlflachprodukt, erhalten durch das erfindungsgemäße Verfahren. Derartige Bauteile sind bevorzugt sicherheitsrelevante Bauteile, beispielsweise Längs- und Querträger, A-Säulen oder B-Säulen.The present invention also relates to a component containing the flat steel product according to the invention or the flat steel product obtained by the method according to the invention. The component according to the invention particularly preferably consists of the flat steel product according to the invention or of the flat steel product obtained by the method according to the invention. Components of this type are preferably safety-relevant components, for example longitudinal and cross members, A-pillars or B-pillars.

Die vorliegende Erfindung betrifft auch die Verwendung eines erfindungsgemäßen Stahlflachproduktes oder eines Stahlflachproduktes, erhalten durch das erfindungsgemäße Verfahren, zur Verwendung im Fahrzeugbau, bevorzugt im Karosseriebau als beispielsweise Längs- oder Querträger, A-Säulen oder B-Säulen.The present invention also relates to the use of a flat steel product according to the invention or a flat steel product obtained by the method according to the invention, for use in vehicle construction, preferably in body construction, for example as longitudinal or transverse beams, A-pillars or B-pillars.

BeispieleExamples

Die nachfolgenden Ausführungsbeispiele dienen der näheren Erläuterung der Erfindung.The following exemplary embodiments serve to explain the invention in more detail.

Zur Herstellung der Kaltbänder wird ein Stahl der in Tabelle 1 angegebenen Analysen zu einem Vorprodukt (Bramme) vergossen und auf eine Temperatur VT von 1100 bis 1300 °C wiedererwärmt und anschließend vorgewalzt. Zum Erwärmen von Brammen werden diese in einem Hubbalkenofen aufgeheizt. Der Eintritt in die Fertigstraße erfolgt bei einer Temperatur von 1050 bis 1150 °C.To produce the cold strips, a steel from the analyzes given in Table 1 is cast into a preliminary product (slab) and reheated to a temperature VT of 1100 to 1300 ° C. and then pre-rolled. To heat slabs, they are heated in a walking beam furnace. The entrance to the finishing train takes place at a temperature of 1050 to 1150 ° C.

In der Fertigstraße werden die Brammen in mindestens fünf Stichen auf die endgültige Warmbanddicke gewalzt. Die Endwalztemperatur ET liegt zwischen 820 und 900 °C, siehe Tabelle 2. Das Warmband mit einer Dicke gemäß Tabelle 2 wird nach dem Warmwalzen mit einer Abkühlrate von 30 - 300 K/s auf eine Haspeltemperatur HT von 540 bis 620 °C abgekühlt und anschließend gehaspelt. Die Abkühlung von ET auf HT erfolgt dabei mit Wasser. Das Warmband wird im gehaspelten Zustand an Luft bis auf Raumtemperatur abgekühlt.In the finishing train, the slabs are rolled to the final hot strip thickness in at least five passes. The final rolling temperature ET is between 820 and 900 ° C, see Table 2. After hot rolling, the hot strip with a thickness according to Table 2 is cooled at a cooling rate of 30 - 300 K / s to a coiling temperature HT of 540 to 620 ° C and then coiled. The cooling from ET to HT takes place with water. The hot strip is cooled in the coiled state in air to room temperature.

Das Warmband wird zum Entfernen der Zunderschicht gebeizt und mit einem Kaltwalzgrad KWG zwischen 50 und 73% gewalzt. Die Kaltbanddicke liegt zwischen 0,8 und 2,8 mm, siehe Tabelle 2. Zum Beizen wird das Band durch ein Beizbecken geführt, enthaltend 25%-ige Schwefelsäure H2SO4 bei einer Temperatur von ca. 95°C.The hot strip is pickled to remove the scale layer and rolled with a KWG cold rolling degree between 50 and 73%. The cold strip thickness is between 0.8 and 2.8 mm, see Table 2. For pickling, the strip is passed through a pickling tank containing 25% sulfuric acid H 2 SO 4 at a temperature of approx. 95 ° C.

Nach dem Kaltwalzen wird das Kaltband mit einem kontinuierlichen Glühprozess weiterbehandelt. Hierbei wird das Band in einem oder mehreren Schritten auf eine Temperatur GT gemäß Tabelle 2 gebracht und für eine Zeit t_Glüh auf dieser Temperatur gehalten.After the cold rolling, the cold strip is processed further with a continuous annealing process. Here, the strip is brought to a temperature GT in accordance with Table 2 in one or more steps and kept at this temperature for a time t_glow.

Nach dem Glühen erfolgt eine Abkühlung auf eine Zwischentemperatur ZT gemäß Tabelle 2. Hier erfolgt optional eine Beschichtung. Von ZT ausgehend wird das Band auf eine Temperatur ≤ 100°C abgekühlt und anschließend einem Dressierwalzen (Dressiergrad D°) unterzogen.After the annealing, the mixture is cooled to an intermediate temperature ZT in accordance with Table 2. An optional coating is carried out here. Starting from ZT, the strip is cooled to a temperature ≤ 100 ° C and then subjected to skin pass rolling (skin pass degree D °).

In den Tabellen 1 und 2 sind für die Versuche 1 bis 32 die Legierungen der jeweils verarbeiteten Vorprodukte sowie die jeweiligen Fertigungsparameter angegeben. Die Versuche 1 bis 24 sind dabei sowohl hinsichtlich der Legierung der jeweils verarbeiteten Brammen als auch hinsichtlich der Fertigungsparameter in erfindungsgemäßer Weise durchgeführt, während bei den Versuchen 25 bis 32 entweder die Legierung oder die Fertigungsparameter nicht erfindungsgemäß sind.Tables 1 and 2 show the alloys of the respective processed preliminary products as well as the respective manufacturing parameters for tests 1 to 32. Experiments 1 to 24 were carried out in the manner according to the invention both with regard to the alloy of the respectively processed slabs and with regard to the production parameters, while in experiments 25 to 32 either the alloy or the production parameters were not in accordance with the invention.

Die Ergebnisse der mechanischen Prüfung sowie der Gefügeuntersuchungen sind in Tab. 3 dargestellt. Die Ergebnisse zeigen, dass die erfindungsgemäß durchgeführten Versuche 1 bis 24 die mechanischen Eigenschaften laut Anspruch erreichen, während bei Abweichung von der erfindungsgemäßen Legierung und/oder dem Herstellverfahren die mechanischen Eigenschaften nicht mehr erzielt werden.The results of the mechanical test and the structural tests are shown in Tab. 3. The results show that tests 1 to 24 carried out according to the invention achieve the mechanical properties according to the claim, while the mechanical properties are no longer achieved if there is a deviation from the alloy according to the invention and / or the manufacturing process.

Eigenschaften:Properties:

Die mechanischen Eigenschaften werden in Prüfungen an Längsproben ermittelt (DIN EN ISO 6892-1, Probenform 2 nach DIN EN ISO 6892-1, Messlänge 80 mm, Probenbreite 20 mm). Die Längsproben werden aus der Bandachse entnommen, d.h. aus einer Lage in der Mitte der Bandbreite. Die Bestimmung der n-Werte erfolgte ebenfalls gemäß DIN ISO 10275 in Verbindung mit DIN EN ISO 6892-1 als n10-20/Ag-Werte.The mechanical properties are determined in tests on longitudinal samples (DIN EN ISO 6892-1, sample form 2 according to DIN EN ISO 6892-1, measuring length 80 mm, sample width 20 mm). The longitudinal samples are taken from the strip axis, ie from a position in the middle of the strip width. The n values were also determined in accordance with DIN ISO 10275 in conjunction with DIN EN ISO 6892-1 as n 10-20 / Ag values.

Die Angaben zu den Gefügebestandteilen beziehen sich auf Flächenprozent. Für die Bestimmung der Gefügebestandteile wird der Schliff mit alkoholischer Salpetersäure, die einen Salpetersäureanteil von 3 Vol-% enthält (sog. Nital), geätzt. Betrachtet wird hierbei die Probenlage in 1/3 bzw. 2/3 der Dicke des Stahlblechs bei 1000-facher Vergrößerung im Auflichtmikroskop. Die Bestimmung des Restaustenitgehalts erfolgt mittels Mikrodiffraktometer an demselben Längsschliff. Während der Messung beträgt die Beschleunigungsspannung 35kV und die Stromstärke 30 mA. Die untere Nachweisgrenze liegt hier bei 1% Restaustenit. Tabelle 1: Analysen der eingesetzten Stahlzusammensetzungen Analyse C Si Mn Al Cr P S Cu Nb Mo N Ti V Ni B A aus Gleichung (I) A 0,116 0,186 1,44 0,955 0,419 0,016 0,0012 0,011 0,001 0,003 0,0036 0,003 0,001 0,017 0,0002 6,2 B 0,081 0,128 1,83 0,850 0,476 0,009 0,0008 0,020 0,001 0,003 0,0044 0,005 0,002 0,018 0,0002 4,8 C 0,112 0,182 1,41 0,956 0,429 0,015 0,0007 0,017 0,001 0,002 0,0025 0,003 0,002 0,016 0,0002 6,1 D 0,141 0,423 1,28 0,720 0,394 0,011 0,0030 0,019 0,002 0,003 0,0039 0,003 0,004 0,006 0,0003 5,6 E 0,135 0,161 1,65 1,113 0,320 0,015 0,0010 0,016 0,001 0,002 0,0029 0,006 0,001 0,018 0,0002 6,1 F 0,087 0,104 1,33 1,390 0,875 0,011 0,0012 0,015 0,001 0,002 0,0030 0,002 0,001 0,021 0,0005 8,5 G (V) 0,131 0,190 1,52 0,830 0,541 0,013 0,0026 0,017 0,001 0,002 0,0028 0,005 0,001 0,008 0,0002 9,1 H (V) 0,098 0,214 1,62 1,120 0,387 0,008 0,0009 0,009 0,004 0,001 0,0045 0,004 0,002 0,017 0,0001 3,1 Alle Angaben in Gew.-%, Rest Fe und unvermeidbare Verunreinigungen, V bedeutet Vergleichsversuch Tabelle 2: Verfahrensparameter Analyse Nr. Warmwalzen Kaltwalzen Glühung VT ET HT Dicke WB KWG Dicke KB GT Geschw. t_Güh. Abkühlrate ZT Do °C °C °C mm % mm °C m/min s K/s °C % A 1 1250 870 620 4,3 65 1,5 860 70 218 -9 500 0,7 A 2 1250 870 600 4,3 65 1,5 860 61 96 -28 470 0,8 A 3 1300 880 570 3,3 70 1,0 850 87 68 -43 475 0,7 A 4 1250 860 600 5,0 50 2,5 850 45 130 -16 505 0,7 B 5 1250 880 580 4,3 65 1,5 835 62 95 -25 475 0,7 B 6 1175 870 570 4,5 56 2,0 865 52 113 -22 500 0,6 B 7 1250 870 570 4,5 56 2,0 845 48 122 -21 475 0,6 B 8 1225 870 580 4,6 50 2,3 835 43 137 -16 490 0,6 C 9 1250 860 600 3,0 73 0,8 820 85 70 -40 450 0,8 C 10 1300 880 580 4,6 50 2,3 870 43 137 -16 510 0,9 C 11 1200 840 570 5,0 50 2,5 845 50 305 -7 485 0,6 C 12 1250 860 560 5,0 50 2,5 835 43 137 -16 490 0,6 D 13 1250 870 550 3,0 73 0,8 855 112 52 -50 475 0,6 D 14 1250 860 570 4,3 65 1,5 855 65 91 -29 475 0,6 D 15 1250 900 590 4,3 65 1,5 860 64 92 -30 475 0,7 D 16 1250 850 580 4,6 50 2,3 845 40 151 -15 490 0,6 E 17 1175 860 540 3,0 73 0,8 855 99 59 -44 480 0,6 E 18 1250 870 580 5,0 50 2,5 840 49 312 -7 530 0,9 E 19 1250 860 580 5,6 50 2,8 845 49 120 -18 505 0,7 E 20 1225 910 600 4,3 65 1,5 845 64 92 -28 470 0,7 F 21 1225 870 580 3,3 70 1,0 850 90 65 -40 465 0,7 F 22 1300 880 540 4,3 65 1,5 830 60 98 -24 475 0,4 F 23 1300 860 580 4,5 56 2,0 870 43 137 -19 475 0,8 F 24 1175 860 610 5,6 50 2,8 835 40 147 -15 485 0,6 A (V) 25 (V) 1250 880 510 4,3 65 1,5 850 77 76 -36 470 0,7 A (V) 26 (V) 1200 870 680 4,3 65 1,5 860 75 78 -34 475 0,7 C (V) 27 (V) 1200 880 680 4,3 65 1,5 855 77 76 -38 460 0,7 C (V) 28 (V) 1300 880 500 4,3 65 1,5 840 77 76 -35 480 0,7 G (V) 29 (V) 1225 860 580 5,0 50 2,5 835 62 95 -22 515 0,9 G (V) 30 (V) 1250 870 570 4,3 65 1,5 840 62 95 -22 515 0,9 H (V) 31 (V) 1225 860 580 4,3 65 1,5 850 62 95 -28 480 0,6 H (V) 32 (V) 1250 880 580 5,0 50 2,5 835 53 111 -20 480 0,7 V bedeutet Vergleichsversuch Tabelle 3: mechanische Eigenschaften Analyse Nr. Rp0,2 Rm A80 n10-20/Ag-Wert Gefüge MPa MPa % - F M RA Sonstige M+RA A 1 369 637 28 0,21 70 20 8,0 2,0 28,0 A 2 355 609 32 0,22 75 15 8,0 2,0 23,0 A 3 357 632 29 0,22 70 20 7,5 2,5 27,5 A 4 354 624 30 0,20 70 20 7,5 2,5 27,5 B 5 343 626 27 0,21 70 20 8,5 1,5 28,5 B 6 361 625 30 0,22 70 20 9,0 1,0 29,0 B 7 367 615 31 0,22 75 15 10,0 0,0 25,0 B 8 360 612 30 0,22 75 15 8,5 1,5 23,5 C 9 347 607 29 0,25 75 15 8,0 2,0 23,0 C 10 348 613 29 0,20 75 15 8,5 1,5 23,5 C 11 360 596 30 0,22 80 10 10,0 0,0 20,0 C 12 347 595 32 0,22 75 15 9,0 1,0 24,0 D 13 352 634 27 0,21 70 20 7,0 3,0 27,0 D 14 341 628 30 0,23 70 20 9,0 1,0 29,0 D 15 363 608 31 0,22 75 15 9,0 1,0 24,0 D 16 376 610 31 0,21 80 10 8,0 2,0 18,0 E 17 344 643 27 0,22 75 15 10,0 0,0 25,0 E 18 376 648 28 0,18 70 20 7,5 2,5 27,5 E 19 360 613 30 0,21 75 15 8,5 1,5 23,5 E 20 354 609 31 0,21 80 10 9,5 0,5 19,5 F 21 358 618 28 0,22 75 15 8,5 1,5 23,5 F 22 347 613 30 0,23 80 10 7,5 2,5 17,5 F 23 366 619 29 0,21 80 10 8,5 1,5 18,5 F 24 365 605 31 0,21 80 10 9,0 1,0 19,0 A (V) 25 (V) 395 718 21 0,16 60 25 9,5 5,5 34,5 A (V) 26 (V) 351 565 30 0,21 85 5 8,5 1,5 13,5 C (V) 27 (V) 365 572 34 0,22 80 10 6,5 3,5 16,5 C (V) 28 (V) 335 715 19 0,17 55 35 10,0 0,0 45,0 G (V) 25 (V) 373 730 20 0,16 55 35 8,5 1,5 43,5 G (V) 28 (V) 386 745 18 0,16 65 25 9,5 0,5 34,5 H (V) 29 (V) 361 559 30 0,22 80 10 6,0 4,0 16,0 H (V) 32 (V) 357 555 29 0,22 80 10 6,5 3,5 16,5 V bedeutet Vergleichsversuch The details of the structural components relate to area percent. To determine the structural components, the cut is etched with alcoholic nitric acid, which contains 3% by volume of nitric acid (so-called nital). The sample position is considered in 1/3 or 2/3 of the thickness of the steel sheet at 1000x magnification in a reflected light microscope. The residual austenite content is determined using a microdiffractometer on the same longitudinal section. During the measurement, the acceleration voltage is 35kV and the current is 30 mA. The lower detection limit is 1% residual austenite. <b><u> Table 1: Analyzes of the steel compositions used </u></b> analysis C. Si Mn Al Cr P S Cu Nb Mon N Ti V Ni B A from equation (I) A 0.116 0.186 1.44 0.955 0.419 0.016 0.0012 0.011 0.001 0.003 0.0036 0.003 0.001 0.017 0.0002 6.2 B 0.081 0.128 1.83 0.850 0.476 0.009 0.0008 0.020 0.001 0.003 0.0044 0.005 0.002 0.018 0.0002 4.8 C. 0.112 0.182 1.41 0.956 0.429 0.015 0.0007 0.017 0.001 0.002 0.0025 0.003 0.002 0.016 0.0002 6.1 D 0.141 0.423 1.28 0.720 0.394 0.011 0.0030 0.019 0.002 0.003 0.0039 0.003 0.004 0.006 0.0003 5.6 E 0.135 0.161 1.65 1,113 0.320 0.015 0.0010 0.016 0.001 0.002 0.0029 0.006 0.001 0.018 0.0002 6.1 F 0.087 0.104 1.33 1,390 0.875 0.011 0.0012 0.015 0.001 0.002 0.0030 0.002 0.001 0.021 0.0005 8.5 G (V) 0.131 0.190 1.52 0.830 0.541 0.013 0.0026 0.017 0.001 0.002 0.0028 0.005 0.001 0.008 0.0002 9.1 H (V) 0.098 0.214 1.62 1,120 0.387 0.008 0.0009 0.009 0.004 0.001 0.0045 0.004 0.002 0.017 0.0001 3.1 All figures in% by weight, remainder Fe and unavoidable impurities, V means comparison test analysis No. Hot rolling Cold rolling Annealing VT ET HT Thick WB KWG Thickness KB GT Speed t_Güh. Cooling rate ZT do ° C ° C ° C mm % mm ° C m / min s K / s ° C % A 1 1250 870 620 4.3 65 1.5 860 70 218 -9 500 0.7 A 2nd 1250 870 600 4.3 65 1.5 860 61 96 -28 470 0.8 A 3rd 1300 880 570 3.3 70 1.0 850 87 68 -43 475 0.7 A 4th 1250 860 600 5.0 50 2.5 850 45 130 -16 505 0.7 B 5 1250 880 580 4.3 65 1.5 835 62 95 -25 475 0.7 B 6 1175 870 570 4.5 56 2.0 865 52 113 -22 500 0.6 B 7 1250 870 570 4.5 56 2.0 845 48 122 -21 475 0.6 B 8th 1225 870 580 4.6 50 2.3 835 43 137 -16 490 0.6 C. 9 1250 860 600 3.0 73 0.8 820 85 70 -40 450 0.8 C. 10th 1300 880 580 4.6 50 2.3 870 43 137 -16 510 0.9 C. 11 1200 840 570 5.0 50 2.5 845 50 305 -7 485 0.6 C. 12th 1250 860 560 5.0 50 2.5 835 43 137 -16 490 0.6 D 13 1250 870 550 3.0 73 0.8 855 112 52 -50 475 0.6 D 14 1250 860 570 4.3 65 1.5 855 65 91 -29 475 0.6 D 15 1250 900 590 4.3 65 1.5 860 64 92 -30 475 0.7 D 16 1250 850 580 4.6 50 2.3 845 40 151 -15 490 0.6 E 17th 1175 860 540 3.0 73 0.8 855 99 59 -44 480 0.6 E 18th 1250 870 580 5.0 50 2.5 840 49 312 -7 530 0.9 E 19th 1250 860 580 5.6 50 2.8 845 49 120 -18 505 0.7 E 20 1225 910 600 4.3 65 1.5 845 64 92 -28 470 0.7 F 21 1225 870 580 3.3 70 1.0 850 90 65 -40 465 0.7 F 22 1300 880 540 4.3 65 1.5 830 60 98 -24 475 0.4 F 23 1300 860 580 4.5 56 2.0 870 43 137 -19 475 0.8 F 24th 1175 860 610 5.6 50 2.8 835 40 147 -15 485 0.6 A (V) 25 (V) 1250 880 510 4.3 65 1.5 850 77 76 -36 470 0.7 A (V) 26 (V) 1200 870 680 4.3 65 1.5 860 75 78 -34 475 0.7 C (V) 27 (V) 1200 880 680 4.3 65 1.5 855 77 76 -38 460 0.7 C (V) 28 (V) 1300 880 500 4.3 65 1.5 840 77 76 -35 480 0.7 G (V) 29 (V) 1225 860 580 5.0 50 2.5 835 62 95 -22 515 0.9 G (V) 30 (V) 1250 870 570 4.3 65 1.5 840 62 95 -22 515 0.9 H (V) 31 (V) 1225 860 580 4.3 65 1.5 850 62 95 -28 480 0.6 H (V) 32 (V) 1250 880 580 5.0 50 2.5 835 53 111 -20 480 0.7 V means comparison test analysis No. Rp0.2 Rm A80 n 10-20 / Ag value structure MPa MPa % - F M RA Other M + RA A 1 369 637 28 0.21 70 20 8.0 2.0 28.0 A 2nd 355 609 32 0.22 75 15 8.0 2.0 23.0 A 3rd 357 632 29 0.22 70 20 7.5 2.5 27.5 A 4th 354 624 30th 0.20 70 20 7.5 2.5 27.5 B 5 343 626 27 0.21 70 20 8.5 1.5 28.5 B 6 361 625 30th 0.22 70 20 9.0 1.0 29.0 B 7 367 615 31 0.22 75 15 10.0 0.0 25.0 B 8th 360 612 30th 0.22 75 15 8.5 1.5 23.5 C. 9 347 607 29 0.25 75 15 8.0 2.0 23.0 C. 10th 348 613 29 0.20 75 15 8.5 1.5 23.5 C. 11 360 596 30th 0.22 80 10th 10.0 0.0 20.0 C. 12th 347 595 32 0.22 75 15 9.0 1.0 24.0 D 13 352 634 27 0.21 70 20 7.0 3.0 27.0 D 14 341 628 30th 0.23 70 20 9.0 1.0 29.0 D 15 363 608 31 0.22 75 15 9.0 1.0 24.0 D 16 376 610 31 0.21 80 10th 8.0 2.0 18.0 E 17th 344 643 27 0.22 75 15 10.0 0.0 25.0 E 18th 376 648 28 0.18 70 20 7.5 2.5 27.5 E 19th 360 613 30th 0.21 75 15 8.5 1.5 23.5 E 20 354 609 31 0.21 80 10th 9.5 0.5 19.5 F 21 358 618 28 0.22 75 15 8.5 1.5 23.5 F 22 347 613 30th 0.23 80 10th 7.5 2.5 17.5 F 23 366 619 29 0.21 80 10th 8.5 1.5 18.5 F 24th 365 605 31 0.21 80 10th 9.0 1.0 19.0 A (V) 25 (V) 395 718 21 0.16 60 25th 9.5 5.5 34.5 A (V) 26 (V) 351 565 30th 0.21 85 5 8.5 1.5 13.5 C (V) 27 (V) 365 572 34 0.22 80 10th 6.5 3.5 16.5 C (V) 28 (V) 335 715 19th 0.17 55 35 10.0 0.0 45.0 G (V) 25 (V) 373 730 20 0.16 55 35 8.5 1.5 43.5 G (V) 28 (V) 386 745 18th 0.16 65 25th 9.5 0.5 34.5 H (V) 29 (V) 361 559 30th 0.22 80 10th 6.0 4.0 16.0 H (V) 32 (V) 357 555 29 0.22 80 10th 6.5 3.5 16.5 V means comparison test

Gewerbliche AnwendbarkeitIndustrial applicability

Das erfindungsgemäße Stahlflachprodukt kann vorteilhaft im Fahrzeugbau verwendet werden.The flat steel product according to the invention can advantageously be used in vehicle construction.

Claims (12)

  1. A method for producing a flat steel product made of a steel comprising (in % by wt):
    0.070 to 0.15 C,
    max 0.50 Si,
    1.0 to 2.0 Mn,
    0.6 to 1.5 Al and
    0.2 to 1.0 Cr,
    residual Fe and unavoidable impurities,
    comprising at least the following steps:
    (A) production of a hot-rolled strip,
    (B) winding of the hot-rolled strip, wherein the winding takes place at a temperature of 540 to 620 °C and
    (C) where appropriate, cold-rolling and subsequent annealing with an optional following coating.
  2. The method according to claim 1, characterized in that step (A) comprises the production of a preliminary product, in particular a slab or a thin slab, by casting steel with the corresponding analysis and hot-rolling the preliminary product obtained.
  3. The method according to claim 1 or 2, characterized in that the winding takes place at a temperature of 560 to 600 °C.
  4. The method according to one of claims 1 to 3, characterized in that step (C) comprises a pickling step, a cold-rolling step, an annealing step, possibly a hot-dip coating, possibly an electrolytic coating and/or a tempering step.
  5. The method according to one of claims 1 to 4, characterized in that the total amounts of C, Si, Mn, Al and Cr is 2.8 to 3.5 % by wt.
  6. A flat steel product containing C, Si, Mn, Al and Cr as alloy elements, residual Fe and unavoidable impurities, characterized in that the following equation (I) is satisfied: 3.5 A 8.8
    Figure imgb0004
    wherein A = (74.96 + 8039.1 C - 1498.18 Si - 121.63 Mn - 408.97 Al + 1093.38 Cr) / 100
    and
    C: means C content in % by wt,
    Si: means Si content in % by wt,
    Mn: means Mn content in % by wt,
    Al : means Al content in % by wt and
    Cr: means Cr content in % by wt,
    wherein the steel in the flat steel product comprises (in % by wt) :
    0.070 to 0.15 C,
    max 0.50 Si,
    1.0 to 2.0 Mn,
    0.6 to 1.5 Al and
    0.2 to 1.0 Cr,
    residual Fe and unavoidable impurities.
  7. The flat steel product according to claim 6, characterized in that the total of quantities of C, Si, Mn, Al and Cr is 2.8 to 3.5 % by wt.
  8. The flat steel product according to one of claims 6 and 7, characterized in that it contains 60 to 85 % area % ferrite (F), 10 to 30 % martensite (M), 5 to 12 % residual austenite (RA) and maximum 8 % other selected from perlite, bainite, cementite and/or carbide, wherein the total of the present components equals 100 %.
  9. The flat steel product according to one of claims 6 to 8, characterized in that the tensile strength is Rm 580 MPa to 710 MPa.
  10. The flat steel product according to one of claims 6 to 9, characterized in that the elongation at break A80 is at least 23 %.
  11. A component containing a flat steel product according to one of claims 6 to 10.
  12. Use of the flat steel product according to one of claims 6 to 10 in vehicle manufacture.
EP18176405.1A 2017-06-13 2018-06-07 High-strength steel sheet having enhanced formability Active EP3415646B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017209982.8A DE102017209982A1 (en) 2017-06-13 2017-06-13 High strength steel sheet with improved formability

Publications (2)

Publication Number Publication Date
EP3415646A1 EP3415646A1 (en) 2018-12-19
EP3415646B1 true EP3415646B1 (en) 2020-08-05

Family

ID=62563040

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18176405.1A Active EP3415646B1 (en) 2017-06-13 2018-06-07 High-strength steel sheet having enhanced formability

Country Status (2)

Country Link
EP (1) EP3415646B1 (en)
DE (1) DE102017209982A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021213647A1 (en) * 2020-04-22 2021-10-28 Thyssenkrupp Steel Europe Ag Hot-rolled flat steel product and method for the production thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19610675C1 (en) 1996-03-19 1997-02-13 Thyssen Stahl Ag Dual phase steel for cold rolled sheet or strip - contg. manganese@, aluminium@ and silicon
DE10161465C1 (en) * 2001-12-13 2003-02-13 Thyssenkrupp Stahl Ag Production of hot strip used in vehicle chassis comprises casting steel into pre-material, hot rolling to form hot strip, cooling in first cooling step, and cooling in second cooling step after pause to coiling temperature
EP1396550A1 (en) * 2002-08-28 2004-03-10 ThyssenKrupp Stahl AG Method for manufacturing hot strip
JP4214006B2 (en) 2003-06-19 2009-01-28 新日本製鐵株式会社 High strength steel sheet with excellent formability and method for producing the same
PL1918406T3 (en) * 2006-10-30 2009-10-30 Thyssenkrupp Steel Ag Process for manufacturing steel flat products from boron microalloyed multi phase steel
EP2690184B1 (en) * 2012-07-27 2020-09-02 ThyssenKrupp Steel Europe AG Produit plat en acier laminé à froid et son procédé de fabrication
EP2924141B1 (en) * 2014-03-25 2017-11-15 ThyssenKrupp Steel Europe AG Cold rolled steel flat product and method for its production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3415646A1 (en) 2018-12-19
DE102017209982A1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
EP2864517B1 (en) High-strength multiphase steel and method for producing a strip made from this steel with a minimum tensile strength of 580 mpa
EP2710158B1 (en) High strength steel flat product and method for its production
EP2366035B1 (en) Manganese steel strip having an increased phosphorus content and process for producing the same
EP3655560B1 (en) Flat steel product with a high degree of aging resistance, and method for producing same
DE60125253T2 (en) High strength hot rolled steel sheet with excellent stretch aging properties
EP2855717B1 (en) Steel sheet and method to manufacture it
EP2924141B1 (en) Cold rolled steel flat product and method for its production
EP3027784B1 (en) Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 mpa and improved properties and method for producing a strip from said steel
EP3221484B1 (en) Method for manufacturing a high-strength air-hardening multiphase steel strip having excellent processing properties
EP2905348B1 (en) High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
EP3221483B1 (en) High strength air hardenable multi phase steel with excellent workability and sheet manufacturing process thereof
EP3221478A1 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
WO2018036918A1 (en) Method for producing a high-strength steel strip with improved properties for further processing, and a steel strip of this type
DE112017003173T5 (en) HIGH-FIXED COLD-ROLLED STEEL PLATE WITH EXCELLENT WORKABILITY AND MANUFACTURING METHOD THEREFOR
EP3692178B1 (en) Method for producing a steel strip from an ultrahigh strength multiphase steel
EP3415646B1 (en) High-strength steel sheet having enhanced formability
EP1399598A1 (en) Method for producing high-strength cold-formed steel products from a hot rolled strip, said products exhibiting good malleability
EP3771746A1 (en) Steel, steel sheet product, method for producing steel sheet product and use thereof
DE102024104377A1 (en) Sheet metal part with improved cathodic corrosion protection
WO2021213647A1 (en) Hot-rolled flat steel product and method for the production thereof
EP4324950A1 (en) Steel with improved processing properties for forming at elevated temperatures
EP4301885A1 (en) Flat steel product, method for producing same, and use of such a flat steel product
WO2019185108A1 (en) Cold-rolled flat steel product, use and method for producing such a flat steel product

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190619

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190911

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200305

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEBALD, ROLAND

Inventor name: BOCHAROVA, EKATERINA

Inventor name: NOWARA, FABIAN

Inventor name: BONGARDS, ANDREAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1298793

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018002081

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201207

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018002081

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

26N No opposition filed

Effective date: 20210507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210607

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200805

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230620

Year of fee payment: 6

Ref country code: FR

Payment date: 20230630

Year of fee payment: 6

Ref country code: DE

Payment date: 20230620

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230620

Year of fee payment: 6

Ref country code: AT

Payment date: 20230621

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230620

Year of fee payment: 6