EP3655560B1 - Flat steel product with a high degree of aging resistance, and method for producing same - Google Patents

Flat steel product with a high degree of aging resistance, and method for producing same Download PDF

Info

Publication number
EP3655560B1
EP3655560B1 EP18736938.4A EP18736938A EP3655560B1 EP 3655560 B1 EP3655560 B1 EP 3655560B1 EP 18736938 A EP18736938 A EP 18736938A EP 3655560 B1 EP3655560 B1 EP 3655560B1
Authority
EP
European Patent Office
Prior art keywords
flat steel
steel product
weight
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18736938.4A
Other languages
German (de)
French (fr)
Other versions
EP3655560A1 (en
Inventor
Bernd Linke
Maria KÖYER
Manuela Ruthenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Original Assignee
ThyssenKrupp Steel Europe AG
ThyssenKrupp AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59564149&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3655560(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ThyssenKrupp Steel Europe AG, ThyssenKrupp AG filed Critical ThyssenKrupp Steel Europe AG
Priority to EP21196113.1A priority Critical patent/EP3974554A1/en
Publication of EP3655560A1 publication Critical patent/EP3655560A1/en
Application granted granted Critical
Publication of EP3655560B1 publication Critical patent/EP3655560B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a coated flat steel product which is suitable for press hardening and which has particularly good aging resistance, as well as a method for its production.
  • Blanks are generally understood to mean sheet metal, which can have more complex outlines than the steel strips or steel sheets from which they emerge.
  • Steels are used in body construction, which are subject to high requirements in terms of their mechanical properties but also in terms of their processing behavior.
  • a flat steel product which is formed into a steel component, goes through various manufacturing steps. Among other things, it is cold-formed. This can be done, for example, by straightening, cutting or reshaping. Good cold forming behavior can be seen, among other things, in good dimensional accuracy, quality of the cut edges and a more even surface of the cold-formed parts. Good cold forming behavior is favored by steels with a low yield point and high uniform elongation. Steels whose yield strength is ideally continuous or only weakly pronounced have proven to be particularly good for processing.
  • yield strengths are often referred to as yield strengths.
  • the aging of steel is caused by free carbon in the ferrite.
  • the solubility of carbon in ferrite is significantly greater than at room temperature, so that a certain free carbon content is established.
  • Temperatures of over 300 ° G are usually reached in coating processes such as hot dip coating. With the temperature and time profiles typical for coating processes, carbon can diffuse in the steel. The proportion of free carbon at room temperature is then significantly greater than the equilibrium content, since the approach to thermodynamic equilibrium requires a longer period of time than is available during the cooling to room temperature following the coating.
  • the ferrite is then very heavily oversaturated with carbon. As an interstitial alloying element, however, carbon can still diffuse very slowly even at room temperature and attach to defects such as dislocations.
  • This phenomenon is also known as aging and the interstitially dissolved atoms attached to the imperfections as Cottrell clouds.
  • the dislocations are blocked by the carbon, so that there is a pronounced yield point, which is very undesirable for cold forming.
  • straightening the flat steel product is made more difficult by the discontinuous deformation behavior.
  • the increased deformation resistance leads to increased tool wear when cutting blanks and a possible subsequent deep-drawing cold forming leads to an uneven, uneven surface.
  • aging of the steel due to free carbon should be prevented or at least mitigated as far as possible.
  • a flat steel product which is formed from a steel containing 0.2-0.5% by weight of C, 0.5-3.0% by weight of Mn, 0.002-0.004% by weight of B and optionally one or contains several elements of the group "Si, Cr, Al, Ti" in the following contents: 0.1-0.3% by weight Si, 0.1-0.5% by weight Cr, 0.02-0, 05% by weight Al, 0.025-0.04% by weight Ti.
  • the flat steel product is coated with an anti-corrosion coating made from an aluminum-zinc alloy.
  • the coated flat steel product is intended for the production of a component by means of press hardening.
  • Correspondingly designed flat steel products are only slightly resistant to aging and have a very pronounced yield point after coating and aging.
  • a steel sheet which, in% by mass, consists of 0.18-0.35% C, 1.0-3.0% Mn, 0.01-1.0% Si, 0.001-0.02 % P, 0.0005-0.01% S, 0.001-0.01% N, 0.01-1.0% Al, 0.005-0.2% Ti, 0.0002-0.005% B and 0.002-2 , 0% Cr and the remainder of Fe and unavoidable impurities, with a proportion of ferrite in the structure of this flat steel product being 50% or more and a proportion of non-recrystallized ferrite being 30% or less in volume%.
  • EP 2 703 511 A1 a steel sheet for a component obtained by hot press molding is known.
  • This steel sheet consists of, in% by mass, 0.10 - 0.35% C, 0.01 - 1.0% Si, 0.3 - 2.3% Mn, 0.01 - 0.5% Al, ⁇ 0.03% P, ⁇ 0.02% S, ⁇ 0.1% N, remainder Fe and unavoidable Impurities.
  • the standard deviation of the diameter of iron carbides that are present in the structure of the steel sheet in an area that extends from the surface to 1 ⁇ 4 of the thickness of the steel sheet should be 0.8 mm.
  • the sheets can be provided with an AlSi protective layer applied in the process.
  • this steel sheet contains, in% by mass, 0.15 to 0.45% C, 0.5 to 3.0% Mn + Cr, 0.05% P, 0.03% S, 0.5 % Si and ⁇ 1% Al.
  • this steel sheet has a structure in which carbides are dispersed in ferrite, the average grain diameter D ( ⁇ m) of the ferrite being 3 to 13 ⁇ m, the average opening intervals ⁇ ( ⁇ m) of the dispersed carbides being ⁇ 5 ⁇ m and at the same time the condition D. ⁇ 90 ⁇ 2 is fulfilled.
  • the steel sheet produced in this way should have a yield strength Rp0.2 of 310 to 400 MPa, a tensile strength ⁇ 400 MPa, a uniform elongation ⁇ 12% and a total elongation ⁇ 20%.
  • the invention is based on the object of providing a coated flat steel product which is suitable for press hardening and has good aging resistance, as well as a method for its production.
  • carbon has a retarding effect on the formation of ferrite and bainite. At the same time, austenite is stabilized and the Ac3 temperature is reduced.
  • the carbon content of the steel of a flat steel product according to the invention is limited to 0.10 and 0.4% by weight. A carbon content of at least 0.10% by weight is required to ensure the hardenability of the flat steel product and the tensile strength of the press-hardened product at least 1000 MPa. If a higher level of strength is to be aimed for, C contents of at least 0.15% by weight are preferred.
  • the hardenability can also be improved so that the flat steel product has a very good combination of hardenability and strength.
  • carbon contents greater than 0.4% by weight have a disadvantageous effect on the mechanical properties of the flat steel product, since C contents greater than 0.4% by weight promote the formation of brittle martensite during press hardening.
  • the weldability can also be adversely affected by high carbon contents.
  • the carbon content can preferably be set to 0.3 wt% or less.
  • Silicon is used to further increase the hardenability of the flat steel product and the strength of the press-hardened product via solid solution strengthening. Silicon also enables ferro-silicon-manganese to be used as an alloying agent, which has a positive effect on production costs.
  • a hardening effect occurs from an Si content of 0.05% by weight. From an Si content of at least 0.15% by weight, in particular at least 0.20% by weight, there is a significant increase in strength. Si contents above 0.5% by weight have a disadvantageous effect on the coating behavior, in particular in the case of Al-based coatings. Si contents of at most 0.4% by weight, in particular at most 0.30% by weight, are preferably set in order to improve the surface quality of the coated flat steel product.
  • Manganese acts as a hardening element by greatly delaying the formation of ferrite and bainite. If the manganese content is less than 0.5% by weight, ferrite and bainite are formed during press hardening, even at very fast cooling rates, which should be avoided. Mn contents of at least 0.9% by weight, in particular at least 1.10% by weight, are preferred if a martensitic structure is to be ensured, especially in areas of greater deformation. Manganese contents of more than 3.0% by weight have a disadvantageous effect on the processing properties, which is why the Mn content of flat steel products according to the invention is limited to a maximum of 3.0% by weight. Above all, the weldability is severely restricted, which is why the Mn content is preferably limited to a maximum of 1.6% by weight and in particular to 1.30% by weight. Manganese contents less than or equal to 1.6% by weight are also preferred for economic reasons.
  • Aluminum is used as a deoxidizer to bind oxygen.
  • aluminum inhibits the formation of cementite.
  • at least 0.01% by weight, in particular at least 0.02% by weight, of aluminum is required in the steel.
  • the Al content is limited to 0.2% by weight. From a content of 0.2% by weight, Al hampers the transformation into austenite too much before press hardening, so that austenitizing can no longer be carried out in a time and energy-efficient manner.
  • an Al content of at most 0.1% by weight, in particular at most 0.05% by weight, is preferably set to completely cover the steel to austenitize.
  • Chromium is added to the steel of a flat steel product according to the invention in contents of 0.005-1.0% by weight. Chromium influences the hardenability of the flat steel product by slowing down the diffusive transformation during press hardening. Chromium has a favorable effect on hardenability in steel flat products according to the invention from a content of 0.005% by weight, with a Cr content of at least 0.1% by weight, in particular at least 0.18% by weight, for reliable process management, in particular to prevent bainite formation, is preferred. If the steel contains more than 1.0% by weight of chromium, the coating behavior deteriorates. In order to obtain a good surface quality, the Cr content can preferably be limited to a maximum of 0.4% by weight, in particular to a maximum of 0.28% by weight.
  • Chromium is a carbide former and as such lowers the amount of dissolved carbon present in the flat steel product. This applies above all to slow cooling of the flat steel product with cooling rates of at most 25 K / s or at most 20 K / s, as occurs during cooling of the coated flat steel product to room temperature in the temperature range between 600 ° C and 450 ° C or in the temperature range between 400 ° C and 220 ° C.
  • the carbon atoms bound by chromium do not diffuse into dislocations and do not block them, so that the formation of a pronounced yield point is reduced or completely suppressed.
  • the Cr content is selected in such a way that when a coating process is carried out before coating, only a small amount of carbon is bound by chromium and the formation of chromium carbides takes place primarily during the cooling that takes place after the coating.
  • the chromium carbides represent preferred nucleation sites for other precipitates such as vanadium carbides and vice versa. This leads to a faster setting of the still free carbon, so that the formation of a pronounced yield point is further reduced or completely suppressed.
  • Vanadium (V) is of particular importance in the steel of a flat steel product according to the invention. Vanadium is a very carbon-affine element. When vanadium is free, that is, in the unbound or dissolved state, it can bind supersaturated dissolved carbon in the form of carbides or clusters or at least reduce its diffusion rate. It is crucial that V is in a dissolved state. Surprisingly, very low V contents in particular have proven to be particularly favorable for the aging resistance. With higher V contents, larger vanadium carbides can form even at higher temperatures, which then no longer dissolve at temperatures of 650-900 ° C, which are typical for continuous annealing in hot-dip coating systems.
  • vanadium of 0.001% by weight can prevent free carbon from attaching to dislocations. From a V content of 0.2% by weight, there is no longer any improvement in the aging resistance due to vanadium.
  • the anti-aging effect of vanadium is particularly pronounced at contents of up to 0.009% by weight, with a maximum effect starting from a preferred content of 0.002% by weight.
  • the vanadium content can in a preferred embodiment be restricted to a maximum of 0.004% by weight, in particular to a maximum of 0.003% by weight.
  • Vanadium carbides are increasingly formed at contents greater than 0.009% by weight.
  • vanadium carbides cannot be dissolved at temperatures of 700 to 900 ° C., which are typical for annealing temperatures in a hot-dip coating system, for example.
  • temperatures of 700 to 900 ° C. which are typical for annealing temperatures in a hot-dip coating system, for example.
  • vanadium carbides With an increasing vanadium content, there is not inevitably more free vanadium available, since the elimination kinetics of vanadium carbides are accelerated further and further, so that the vanadium carbides become larger and more stable, but the proportion of dissolved vanadium does not increase any further. This effect occurs in particular with contents of more than 0.030% by weight, which is why the content is preferably set to values of at most 0.030% by weight.
  • vanadium in addition to reducing aging effects, also contributes to increasing strength through precipitation strengthening, higher contents of up to 0.2% by weight can preferably be set to increase strength.
  • the vanadium content of the steel of a flat steel product according to the invention is limited to 0.002 to 0.009% by weight.
  • Phosphorus (P) and sulfur (S) are elements that are introduced into the steel as impurities by iron ore and cannot be completely eliminated in the large-scale steelworks process.
  • the P content and the S content should be kept as low as possible, since the mechanical properties, such as the impact energy, deteriorate with increasing P content or S content. From P content of 0.1% by weight, the martensite becomes increasingly brittle, which is why the P content of a flat steel product according to the invention is limited to at most 0.1% by weight, in particular at most 0.02% by weight.
  • the S content of a flat steel product according to the invention is limited to a maximum of 0.05% by weight, in particular a maximum of 0.003% by weight.
  • Nitrogen (N) is present in steel in small amounts due to the steel making process.
  • the N content is to be kept as low as possible and should be at most 0.02% by weight.
  • nitrogen is harmful, since it prevents the conversion-retarding effect of boron through the formation of boron nitrides, which is why the nitrogen content in this case is preferably at most 0.01% by weight, in particular at most 0.007% by weight, should be.
  • Boron, niobium, nickel, copper, molybdenum and tungsten can optionally be added to the steel of a flat steel product according to the invention individually or in combination with one another.
  • Boron can optionally be added to the alloy in order to improve the hardenability of the flat steel product, in that boron atoms or boron precipitates deposited on the austenite grain boundaries reduce the grain boundary energy, whereby the nucleation of ferrite is suppressed during press hardening.
  • a clear effect on the hardenability occurs at contents of at least 0.0005% by weight, in particular at least 0.0020% by weight.
  • boron carbides, boron nitrides or boron nitrocarbides are increasingly formed, which in turn represent preferred nucleation sites for the nucleation of ferrite and reduce the hardening effect again.
  • the boron content is limited to at most 0.01% by weight, in particular at most 0.0035% by weight.
  • titanium is also preferred to bind nitrogen alloyed.
  • the Ti content should preferably be at least 3.42 times the nitrogen content.
  • Titanium (Ti) is an essential micro-alloy element to contribute to grain refinement.
  • titanium forms coarse titanium nitrides with nitrogen, which is why the Ti content should be kept comparatively low.
  • Titanium binds nitrogen and enables boron to develop its strong ferrite-inhibiting effect.
  • For sufficient binding of nitrogen at least 3.42 times the nitrogen content is required, with at least 0.023% by weight of Ti being added according to the invention for sufficient availability. From 0.1% by weight Ti, the cold-rollability and recrystallizability deteriorate significantly, which is why larger Ti contents should be avoided. In order to improve cold rollability, the Ti content is limited to 0.038 wt%.
  • Niobium can optionally be added in order to contribute to grain refinement from a content of 0.001% by weight. However, niobium impairs the recrystallizability of the steel. If the Nb content exceeds 0.1% by weight, the steel can no longer be recrystallized in conventional continuous furnaces prior to hot-dip coating. In order to reduce the risk of deterioration in recrystallizability, the Nb content can preferably be restricted to 0.003% by weight.
  • Copper (Cu) can optionally be added in order to increase the hardenability with additions of at least 0.01% by weight.
  • copper improves the resistance to atmospheric corrosion of uncoated sheet metal or cut edges. From a content of 0.8% by weight, the hot-rollability deteriorates significantly due to low-melting Cu phases on the surface, which is why the Cu content is limited to a maximum of 0.8% by weight, preferably a maximum of 0.10% by weight is.
  • Nickel (Ni) stabilizes the austenitic phase and can optionally be added to it in order to reduce the Ac3 temperature and suppress the formation of ferrite and bainite. Nickel also has a positive influence on hot rollability, especially if the steel contains copper. Copper deteriorates hot rollability. To counteract the negative influence of copper on hot rollability, 0.01% by weight of nickel can be added to the steel. For economic reasons, the nickel content should remain limited to a maximum of 0.4% by weight, in particular a maximum of 0.10% by weight.
  • Molybdenum (Mo) can optionally be added to improve process stability, as it significantly slows down the formation of ferrite. From a content of 0.002% by weight, molybdenum-carbon clusters up to ultra-fine molybdenum carbides form dynamically on the grain boundaries, which significantly slow down the mobility of the grain boundary and thus diffusive phase transformations. In addition, molybdenum lowers the grain boundary energy, which lowers the rate of nucleation of ferrite. Because of the high costs associated with an alloy of molybdenum, the content should be at most 1.0% by weight, preferably at most 0.1% by weight.
  • Tungsten (W) can optionally be added in contents of 0.001-1.0% by weight to slow down the formation of ferrite. A positive effect on the hardenability already results with W contents of at least 0.001% by weight. For cost reasons, a maximum of 1.0% by weight of tungsten is added.
  • a flat steel product according to the invention has a high uniform elongation Ag of at least 11.5% after coating.
  • the yield point of a flat steel product according to the invention has a continuous profile or is only slightly pronounced. In the context of the invention, continuous course means that there is no pronounced yield point is present.
  • a yield point with a continuous curve can also be referred to as the yield point Rp0.2.
  • a low yield strength is understood to mean a pronounced yield strength at which the difference ⁇ Re between the upper yield limit value ReH and the lower yield limit value ReL is at most 45 MPa.
  • the method according to the invention for producing a coated flat steel product which is suitable for press hardening and which has particularly good aging resistance comprises the working steps mentioned in claim 5.
  • a semi-finished product composed according to the alloy specified according to the invention for the flat steel product is made available.
  • This can be a slab produced in conventional slab continuous casting or thin slab continuous casting.
  • step b) the semi-finished product is heated through at a temperature (T1) of 1100 - 1400 ° C. If the semifinished product has cooled down after casting, the semifinished product is first reheated to 1100 - 1400 ° C to heat it through.
  • the through-heating temperature should be at least 1100 ° C in order to ensure good deformability for the subsequent rolling process.
  • the soak temperature should not be more than 1400 ° C in order to avoid fractions of molten phases in the semi-finished product.
  • the semi-finished product is pre-rolled into an intermediate product.
  • Thin slabs are usually not subjected to roughing.
  • Thick slabs that are to be rolled into hot strip can, if necessary, be subjected to pre-rolling.
  • the temperature of the intermediate product (T2) at the end of the rough rolling should be at least 1000 ° C, so that the intermediate product contains enough heat for the subsequent work step of finish rolling.
  • high rolling temperatures can also promote grain growth during the rolling process, which has a detrimental effect on the mechanical properties of the flat steel product.
  • the temperature of the intermediate product should not be more than 1200 ° C. at the end of the roughing process.
  • step d) the slab or thin slab or, if step c) has been carried out, the intermediate product is rolled into a hot-rolled flat steel product. If step c) has been carried out, the intermediate product is finish-rolled immediately after roughing. Typically, finish rolling begins no later than 90 seconds after the end of roughing.
  • the slab, the thin slab or, if work step c) has been carried out, the intermediate product are rolled out at a final rolling temperature (T3).
  • the final rolling temperature i.e. the temperature of the finished hot-rolled flat steel product at the end of the hot-rolling process, is 750 - 1000 ° C. At final rolling temperatures below 750 ° C, the amount of free vanadium decreases because larger amounts of vanadium carbides are precipitated.
  • the vanadium carbides precipitated during finish rolling are very large. They typically have an average grain size of 30 nm or more and are no longer dissolved in subsequent annealing processes, such as those carried out before hot-dip coating, for example.
  • the final rolling temperature is limited to a maximum of 1000 ° C in order to prevent coarsening of the austenite grains.
  • final rolling temperatures of at most 1000 ° C are process-related relevant for setting reel temperatures (T4) below 700 ° C.
  • the flat steel product can be hot rolled as continuous hot strip rolling or as reversing rolling.
  • work step e) provides for an optional coiling of the hot-rolled flat steel product.
  • the hot strip is cooled to a coiling temperature (T4) within less than 50 s after hot rolling.
  • T4 a coiling temperature
  • the coiling temperature (T4) should not exceed 700 ° C in order to avoid the formation of large vanadium carbides. In principle, the coiling temperature is not restricted below. However, coiling temperatures of at least 500 ° C have proven to be favorable for cold rollability.
  • the coiled hot strip is then cooled to room temperature in the conventional manner in air.
  • step f the hot-rolled flat steel product is descaled in a conventional manner by pickling or by another suitable treatment.
  • the hot-rolled flat steel product which has been cleaned of scale, can optionally be subjected to cold rolling before the annealing treatment in step g) in order, for example, to meet higher demands on the thickness tolerances of the flat steel product.
  • the degree of cold rolling (KWG) should be at least 30% in order to introduce enough deformation energy into the flat steel product for rapid recrystallization.
  • the flat steel product before cold rolling is usually a hot strip with a thickness of d.
  • the flat steel product after cold rolling is usually also referred to as cold strip.
  • the degree of cold rolling can in principle assume very high values of over 90%. However, degrees of cold rolling of at most 80% have proven to be beneficial for avoiding strip tears.
  • step h) the flat steel product is subjected to an annealing treatment at annealing temperatures (T5) of 650 - 900 ° C.
  • T5 annealing temperatures
  • the flat steel product is first heated to the annealing temperature within 10 to 120 s and then held at the annealing temperature for 30 to 600 s.
  • the annealing temperature is at least 650 ° C., preferably at least 720 ° C., in order to keep vanadium in solution.
  • vanadium carbide separates out at V contents of 0.002% by weight and temperatures above 650 ° C. or vanadium carbides already formed no longer dissolve.
  • very fine vanadium carbides are thermodynamically unstable due to their high surface energy.
  • This effect is used in the present invention to bring vanadium into solution at temperatures of 650-900 ° C. or to keep vanadium already dissolved in solution, which has a positive effect on the aging resistance of the flat steel product.
  • annealing temperatures above 900 ° C there is no improvement in the Achieved aging resistance, which is why the annealing temperature is limited to 900 ° C for economic reasons.
  • step i) the flat steel product is cooled to a pre-cooling temperature (T6) after annealing in order to prepare it for the subsequent coating treatment.
  • the pre-cooling temperature is lower than the annealing temperature and is adjusted to the temperature of the coating bath.
  • the pre-cooling temperature is 600-800.degree. C., preferably at least 640.degree. C., particularly preferably at most 700.degree.
  • the duration of the cooling of the annealed flat steel product from the annealing temperature T5 to the pre-cooling temperature T6 is preferably 10-180 s.
  • the flat steel product is subjected to a coating treatment in step j).
  • the coating treatment is preferably carried out by means of continuous hot dip coating.
  • the coating can only be applied on one side, on both sides or on all sides of the flat steel product.
  • the coating treatment is preferably carried out as a hot-dip coating process, in particular as a continuous process.
  • the flat steel product usually comes into contact with the molten bath on all sides, so that it is coated on all sides.
  • the molten bath which contains the alloy to be applied to the flat steel product in liquid form, typically has a temperature (T7) of 640 - 720 ° C. Alloys based on aluminum have proven to be particularly suitable for coating aging-resistant flat steel products with an anti-corrosion coating.
  • the molten bath which contains the anti-corrosion coating to be applied to the flat steel product in liquid form, typically contains, in addition to aluminum, 3-15% by weight silicon, preferably 9-12% by weight silicon, up to 5% by weight iron and up to 0% , 5% by weight of unavoidable impurities, the sum of the constituents present being 100% by weight.
  • Inevitable Impurities can be, for example, unavoidable amounts of chromium, manganese, calcium or tin.
  • the coated flat steel product is cooled to room temperature in step k).
  • the cooling rate is set in such a way that the largest possible proportion of oversaturated, dissolved carbon can be bound by vanadium.
  • the mean cooling rate (CR1) should therefore be at most 25 K / s, preferably at most 18 K / s, in a temperature range which is optimal for the precipitation kinetics of vanadium and which for flat steel products with a composition according to the invention is between 600 ° C and 450 ° C , particularly preferably not more than 12 K / s.
  • the extent to which free carbon is bound by vanadium increases if the cooling takes place in a temperature range between 400 ° C and 220 ° C with a lower cooling rate than in the temperature range between 600 ° C and 450 ° C.
  • the mean cooling rate (CR2) is therefore between 400 ° C. and 220 ° C. at most 20 K / s, preferably 14 K / s, particularly preferably at most 9.5 K / s.
  • the free carbon of the flat steel product still has a diffusion rate sufficient for recombination with vanadium, which promotes the setting of free carbon.
  • the driving force for the growth of vanadium carbides is particularly high in this temperature range, which also binds free carbon. This applies in particular to V contents of 0.002-0.009% by weight.
  • the driving force for the formation of iron carbides which preferentially germinate on existing carbides of the micro-alloying elements such as vanadium, niobium or titanium, is particularly high.
  • iron carbides free carbon is also bound, which has a positive effect on aging behavior.
  • the cooling rate has no significant influence on the aging resistance.
  • an average cooling rate of at most 25 K / s is preferably set between the annealing temperature and 600 ° C and between 450 ° C and 400 ° C and an average cooling rate of at most 20 K / s between 220 ° C and room temperature.
  • the mean cooling rate is preferably at least 0.1 K / s in each of the individual temperature ranges.
  • the mean cooling rate is understood to mean the average cooling rate, which results purely arithmetically from the quotient of the temperature difference of the cooling temperature range under consideration by the time required for cooling in this temperature range. For example, for cooling from a temperature TX to a temperature TY: (TX-TY) / ⁇ t, where TX is the temperature at the beginning of cooling in K, TY is the temperature at the end of cooling in K and ⁇ t is the duration of cooling from TX are on TY in s.
  • the cooling can be carried out as slowly as desired, since the proportion of free carbon decreases continuously, which improves the tendency to aging. Due to technical conditions and for economic reasons, the cooling rate of the entire cooling process, i.e. the cooling of the coated flat steel product after exiting the coating bath until it reaches room temperature, can be limited to values of typically at least 0.1 K / s.
  • a corrosion protection coating lying on the steel substrate after cooling down typically contains 3-15% by weight silicon, preferably 9-12% by weight silicon, particularly preferably 9-10% by weight silicon, up to 5% by weight iron, up to 0.5% by weight unavoidable impurities and the remainder aluminum.
  • Unavoidable impurities can be, for example, unavoidable proportions of chromium, manganese, calcium or tin.
  • the coating composition can be determined, for example, with the aid of glow discharge spectroscopy (GDOES).
  • the coated flat steel product can optionally be subjected to skin passaging with a skin pass degree of up to 2% in order to improve the surface roughness of the flat steel product.
  • a flat steel product produced according to the invention is suitable for press hardening and has a corrosion protection coating, a high uniform elongation Ag of at least 11.5% and a continuous yield point or a pronounced yield point at which the difference between the upper and lower yield point is at most 45 MPa .
  • the continuous yield point or the lower yield point is at least 380 MPa, preferably at least 400 MPa, in particular more than 400 MPa, and particularly preferably at least 410 MPa and very particularly preferably at least 420 MPa.
  • the flat steel product has a tensile strength of at least 540 MPa, particularly preferably at least 550 MPa and very particularly preferably at least 560 MPa.
  • the slabs were first pre-rolled to an intermediate product with a thickness of 40 mm, the intermediate products, which can also be referred to as pre-strips in hot strip rolling, each having an intermediate product temperature T2 at the end of the pre-rolling phase.
  • the preliminary strips were fed to finish rolling immediately after roughing, so that the intermediate product temperature T2 corresponds to the rolling start temperature for the finish rolling phase.
  • the pre-strips were rolled into hot strips with a final thickness of 3-7 mm and the respective final rolling temperatures T3 given in Table 2, cooled to the respective coiling temperature and wound into coils at the respective coiling temperatures T4 and then cooled in still air.
  • the hot strips were descaled in a conventional manner by means of pickling before they were subjected to cold rolling with the cold rolling degrees indicated in Table 2.
  • the cold-rolled flat steel products were heated in a continuous annealing furnace to a respective annealing temperature T5 and held at annealing temperature for 100 s each before they were cooled to their respective pre-cooling temperature T6 at a cooling rate of 1 K / s.
  • the cold strips were passed through a molten coating bath at temperature T7 at their respective pre-cooling temperature T6.
  • the composition of the coating bath was as follows: 9% by weight Si, 2.9% by weight Fe, 87.8% by weight aluminum and the remainder unavoidable Impurities.
  • the coated strips were blown off in a conventional manner, whereby an application of the coating of 150 g / m 2 was produced.
  • the strips were initially cooled to 600 ° C. at an average cooling rate of 10-15 K / s.
  • the strips were each cooled at the cooling rates CR1 and CR2 indicated in Table 2.
  • the strips were cooled between 450 ° C. and 400 ° C. and below 220 ° C. at a cooling rate of 5-15 K / s.
  • the type of yield strength which is designated Re for a pronounced yield point and Rp for a continuous yield point, as well as the value for the yield strength Rp0.2 for a continuous yield point and the values for the lower yield point ReL, the upper yield point ReH and the difference between the upper and lower yield point ⁇ Re, the tensile strength Rm, the uniform elongation Ag and the elongation at break A80.
  • All samples have a continuous yield point Rp or an only slightly pronounced yield point with a difference ⁇ Re between the upper and lower yield point of no more than 41 MPa and a uniform elongation Ag of at least 11.5%.

Description

Die Erfindung betrifft ein für ein Presshärten geeignetes beschichtetes Stahlflachprodukt, welches eine besonders gute Alterungsbeständigkeit aufweist, sowie ein Verfahren zu seiner Herstellung.The invention relates to a coated flat steel product which is suitable for press hardening and which has particularly good aging resistance, as well as a method for its production.

Wenn vorliegend von "Stahlflachprodukten" die Rede ist, so sind damit Stahlbänder, Stahlbleche oder daraus gewonnene Platinen und desgleichen gemeint. Unter Platinen werden in der Regel Blechtafeln verstanden, die komplexere Umrisse als die Stahlbänder oder Stahlbleche, aus denen sie hervorgehen, aufweisen können.When "flat steel products" are mentioned in the present case, this refers to steel strips, steel sheets or blanks obtained therefrom and the like. Blanks are generally understood to mean sheet metal, which can have more complex outlines than the steel strips or steel sheets from which they emerge.

Im Karosseriebau werden Stähle eingesetzt, an die hohe Anforderungen hinsichtlich ihrer mechanischen Eigenschaften aber auch hinsichtlich ihres Verarbeitungsverhaltens gestellt werden. Ein Stahlflachprodukt, welches zu einem Stahlbauteil umgeformt wird, durchläuft verschiedene Fertigungsschritte. Unter anderem wird es kaltverformt. Dies kann zum Beispiel durch Richten, Schneiden oder Umformen geschehen. Ein gutes Kaltumformverhalten zeigt sich unter anderem in einer guten Maßhaltigkeit, Qualität der Schnittkanten und ebenmäßigere Oberfläche der kaltverformten Teile. Ein gutes Kaltumformverhalten wird durch Stähle mit einer niedrigen Streckgrenze und einer hohen Gleichmaßdehnung begünstigt. Als besonders günstig in der Verarbeitung erweisen sich dabei Stähle, deren Streckgrenze idealerweise kontinuierlich verläuft oder nur schwach ausgeprägt ist.Steels are used in body construction, which are subject to high requirements in terms of their mechanical properties but also in terms of their processing behavior. A flat steel product, which is formed into a steel component, goes through various manufacturing steps. Among other things, it is cold-formed. This can be done, for example, by straightening, cutting or reshaping. Good cold forming behavior can be seen, among other things, in good dimensional accuracy, quality of the cut edges and a more even surface of the cold-formed parts. Good cold forming behavior is favored by steels with a low yield point and high uniform elongation. Steels whose yield strength is ideally continuous or only weakly pronounced have proven to be particularly good for processing.

Kontinuierlich verlaufende Streckgrenzen werden oftmals auch als Dehngrenzen bezeichnet.Continuously running yield strengths are often referred to as yield strengths.

Die Alterung von Stahl wird durch freien Kohlenstoff im Ferrit hervorgerufen. Bei Temperaturen von über 300 °C ist die Löslichkeit von Kohlenstoff in Ferrit deutlich größer als bei Raumtemperatur, sodass sich ein gewisser freier Kohlenstoffgehalt einstellt. Temperaturen von über 300 °G werden in der Regel bei Beschichtungsprozessen wie zum Beispiel beim Schmelztauchbeschichten erreicht. Bei den für Beschichtungsprozesse typischen Temperatur- und Zeitverläufen kann somit Kohlenstoff im Stahl diffundieren. Der Anteil freien Kohlenstoffs bei Raumtemperatur ist dann deutlich größer als der Gleichgewichtsgehalt, da die Annäherung an das thermodynamische Gleichgewicht eine längere Zeitspanne benötigt, als während der auf die Beschichtung folgenden Abkühlung auf Raumtemperatur zur Verfügung stehen. Bei Raumtemperatur ist der Ferrit dann sehr stark mit Kohlenstoff übersättigt. Als interstitielles Legierungselement kann Kohlenstoff allerdings auch bei Raumtemperatur noch sehr langsam diffundieren und lagert sich an Fehlstellen, wie unter anderem auch an Versetzungen an. Dieses Phänomen wird auch als Alterung und die an den Fehlstellen angelagerten interstitiell gelösten Atome als Cottrell-Wolken bezeichnet. Die Versetzungen werden durch den Kohlenstoff blockiert, sodass sich eine ausgeprägte Streckgrenze ergibt, welche für eine Kaltumformung sehr unerwünscht ist. Unter anderem wird ein Richten des Stahlflachprodukts durch das diskontinuierliche Verformungsverhalten erschwert. Der erhöhte Verformungswiderstand führt zu einem erhöhten Werkzeugverschleiß beim Platinenbeschnitt und eine mögliche anschließende tiefziehende Kaltumformung führt zu einer unebenen, ungleichmäßigen Oberfläche. Insofern sollte eine Alterung des Stahls durch freien Kohlenstoff nach Möglichkeit verhindert oder zumindest abgemildert werden.The aging of steel is caused by free carbon in the ferrite. At temperatures of over 300 ° C, the solubility of carbon in ferrite is significantly greater than at room temperature, so that a certain free carbon content is established. Temperatures of over 300 ° G are usually reached in coating processes such as hot dip coating. With the temperature and time profiles typical for coating processes, carbon can diffuse in the steel. The proportion of free carbon at room temperature is then significantly greater than the equilibrium content, since the approach to thermodynamic equilibrium requires a longer period of time than is available during the cooling to room temperature following the coating. At room temperature, the ferrite is then very heavily oversaturated with carbon. As an interstitial alloying element, however, carbon can still diffuse very slowly even at room temperature and attach to defects such as dislocations. This phenomenon is also known as aging and the interstitially dissolved atoms attached to the imperfections as Cottrell clouds. The dislocations are blocked by the carbon, so that there is a pronounced yield point, which is very undesirable for cold forming. Among other things, straightening the flat steel product is made more difficult by the discontinuous deformation behavior. The increased deformation resistance leads to increased tool wear when cutting blanks and a possible subsequent deep-drawing cold forming leads to an uneven, uneven surface. In this respect, aging of the steel due to free carbon should be prevented or at least mitigated as far as possible.

Aus EP 2848709 A1 ist ein Stahlflachprodukt bekannt, das aus einem Stahl gebildet wird, der 0,2-0,5 Gew.-% C, 0,5-3,0 Gew.-% Mn, 0,002-0,004 Gew.-% B sowie optional eines oder mehrere Elemente der Gruppe "Si, Cr, Al, Ti" in folgenden Gehalten enthält: 0,1-0,3 Gew.% Si, 0,1-0,5 Gew.-% Cr, 0,02-0,05 Gew.-% Al, 0,025-0,04 Gew.-% Ti. Das Stahlflachprodukt wird mit einem Korrosionsschutzüberzug beschichtet, der aus einer Aluminium-ZinkLegierung gebildet ist. Das beschichtete Stahlflachprodukt ist zur Herstellung eines Bauteils mittels Presshärten vorgesehen. Entsprechend beschaffene Stahlflachprodukte sind nur in geringem Maße alterungsbeständig und weisen nach dem Beschichten und Altern eine stark ausgeprägte Streckgrenze auf.the end EP 2848709 A1 a flat steel product is known which is formed from a steel containing 0.2-0.5% by weight of C, 0.5-3.0% by weight of Mn, 0.002-0.004% by weight of B and optionally one or contains several elements of the group "Si, Cr, Al, Ti" in the following contents: 0.1-0.3% by weight Si, 0.1-0.5% by weight Cr, 0.02-0, 05% by weight Al, 0.025-0.04% by weight Ti. The flat steel product is coated with an anti-corrosion coating made from an aluminum-zinc alloy. The coated flat steel product is intended for the production of a component by means of press hardening. Correspondingly designed flat steel products are only slightly resistant to aging and have a very pronounced yield point after coating and aging.

Aus der EP 2 631 307 A1 ist darüber hinaus ein Stahlblech bekannt, das, in Masse-%, aus 0,18 - 0,35 % C, 1,0 - 3,0 % Mn, 0,01 - 1,0 % Si, 0,001 - 0,02 % P, 0,0005 - 0,01 % S, 0,001 - 0,01 % N, 0,01 - 1,0 % Al, 0,005 - 0,2 % Ti, 0,0002 - 0,005 % B und 0,002 - 2,0 % Cr und als Rest aus Fe und unvermeidbaren Verunreinigungen besteht, wobei, in Volumen-%, beim Gefüge dieses Stahlflachprodukts ein Anteil des Ferrits 50 % oder mehr und ein Anteil eines nicht rekristallisierten Ferrits 30 % oder weniger beträgt. Dabei gilt, dass ein Verhältnis CrΘ/CrM ≤ 2 ist, wobei CrΘ eine Konzentration von Cr ist, die in einer festen Lösung in Eisencarbid ist, und CrM eine Konzentration von Cr in einer festen Lösung in einem Basismaterial ist, oder dass MnΘ/MnM Mn ≤ 10 ist, wobei hier MnΘ eine Konzentration von Mn ist, die in einer festen Lösung in einem Eisencarbid vorliegt, und MnM eine Konzentration von Mn ist, die einer festen Lösung in einem Basismaterial ausgesetzt ist.From the EP 2 631 307 A1 In addition, a steel sheet is known which, in% by mass, consists of 0.18-0.35% C, 1.0-3.0% Mn, 0.01-1.0% Si, 0.001-0.02 % P, 0.0005-0.01% S, 0.001-0.01% N, 0.01-1.0% Al, 0.005-0.2% Ti, 0.0002-0.005% B and 0.002-2 , 0% Cr and the remainder of Fe and unavoidable impurities, with a proportion of ferrite in the structure of this flat steel product being 50% or more and a proportion of non-recrystallized ferrite being 30% or less in volume%. It holds that a ratio of Cr Θ / Cr M 2, where Cr Θ is a concentration of Cr which is in a solid solution in iron carbide, and Cr M is a concentration of Cr in a solid solution in a base material, or that Mn Θ / Mn M Mn 10, where Mn Θ is a concentration of Mn that is present in a solid solution in an iron carbide, and Mn M is a concentration of Mn that is exposed to a solid solution in a base material.

Ebenso ist aus D2: EP 2 703 511 A1 ein Stahlblech für ein durch Heißpressformen erhaltenes Bauteil bekannt. Dieses Stahlblech besteht aus, in Masse-%, 0,10 - 0,35 % C, 0,01 - 1,0 % Si, 0,3 - 2,3 % Mn, 0,01 - 0,5 % Al, ≤ 0,03 % P, ≤ 0,02 % S, ≤ 0,1 % N, Rest Fe und unvermeidbaren Verunreinigungen. Dabei soll die Standardabweichung der Durchmesser von Eisenkarbiden, die im Gefüge des Stahlblechs in einem Bereich, der von der Oberfläche bis zu einem ¼ der Dicke des Stahlblechs reicht, ≤ 0,8 mm sein. Zum Schutz vor Korrosion können die Bleche mit einer im Durchlauf aufgetragenen AlSi-Schutzschicht versehen sein.Likewise from D2: EP 2 703 511 A1 a steel sheet for a component obtained by hot press molding is known. This steel sheet consists of, in% by mass, 0.10 - 0.35% C, 0.01 - 1.0% Si, 0.3 - 2.3% Mn, 0.01 - 0.5% Al, ≤ 0.03% P, ≤ 0.02% S, ≤ 0.1% N, remainder Fe and unavoidable Impurities. The standard deviation of the diameter of iron carbides that are present in the structure of the steel sheet in an area that extends from the surface to ¼ of the thickness of the steel sheet should be 0.8 mm. To protect against corrosion, the sheets can be provided with an AlSi protective layer applied in the process.

Schließlich ist aus der JP 53-87073 B2 ein Stahlblech für ein Warmpressen bekannt, das eine ausreichende Festigkeit und hohe Duktilität aufweist und daher für Maschinenstrukturkomponenten, wie Karosseriestrukturkomponenten und Rahmenverkleidungsteile, geeignet sein soll. Hierzu enthält dieses Stahlblech, in Masse-%, 0,15 bis 0,45 % C, 0,5 bis 3,0 % Mn+Cr, ≤ 0,05 % P, ≤ 0,03 % S, ≤ 0,5 % Si und ≤ 1 % Al. Gleichzeitig weist es ein Gefüge auf, in dem Karbide in Ferrit dispergiert sind, wobei der durchschnittliche Korndurchmesser D (µm) des Ferrits 3 bis 13 µm beträgt, die durchschnittlichen Öffnungsintervalle λ (µm) der dispergierten Karbide ≤ 5 µm sind und gleichzeitig die Bedingung D < 90 λ2 erfüllt ist. Das so beschaffene Stahlblech soll eine Dehngrenze Rp0,2 von 310 bis 400 MPa, eine Zugfestigkeit ≥ 400 MPa, eine Gleichmaßdehnung ≥ 12 % und eine Gesamtdehnung ≥ 20 % besitzen.Finally from the JP 53-87073 B2 a steel sheet for hot pressing is known which has sufficient strength and high ductility and is therefore said to be suitable for machine structural components such as body structural components and frame trim parts. For this purpose, this steel sheet contains, in% by mass, 0.15 to 0.45% C, 0.5 to 3.0% Mn + Cr, 0.05% P, 0.03% S, 0.5 % Si and ≤ 1% Al. At the same time, it has a structure in which carbides are dispersed in ferrite, the average grain diameter D (µm) of the ferrite being 3 to 13 µm, the average opening intervals λ (µm) of the dispersed carbides being ≤ 5 µm and at the same time the condition D. <90 λ 2 is fulfilled. The steel sheet produced in this way should have a yield strength Rp0.2 of 310 to 400 MPa, a tensile strength ≥ 400 MPa, a uniform elongation ≥ 12% and a total elongation ≥ 20%.

Der Erfindung liegt die Aufgabe zu Grunde, ein für ein Presshärten geeignetes, beschichtetes Stahlflachprodukt mit einer guten Alterungsbeständigkeit sowie ein Verfahren zu dessen Herstellung zur Verfügung zu stellen.The invention is based on the object of providing a coated flat steel product which is suitable for press hardening and has good aging resistance, as well as a method for its production.

Hinsichtlich des Stahlflachprodukts wird diese Aufgabe durch ein Stahlflachprodukt mit den in Anspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte und bevorzugte Ausgestaltungen des erfindungsgemäßen Stahlflachprodukts sind in den auf Anspruch 1 rückbezogenen Ansprüchen angegeben.With regard to the flat steel product, this object is achieved by a flat steel product with the features specified in claim 1. Advantageous and preferred embodiments of the flat steel product according to the invention are specified in the claims which refer back to claim 1.

Hinsichtlich des Verfahrens ist die Aufgabe durch ein Verfahren mit den in Anspruch 5 genannten Merkmalen gelöst. Vorteilhafte und bevorzugte Ausgestaltungen des erfindungsgemäßen Verfahrens sind in den auf Anspruch 5 rückbezogenen Ansprüchen angegeben.With regard to the method, the object is achieved by a method having the features mentioned in claim 5. Advantageous and preferred embodiments of the method according to the invention are specified in the claims referring back to claim 5.

Wenn vorliegend Angaben zu Legierungsgehalten und Zusammensetzungen gemacht werden, beziehen sich diese auf das Gewicht beziehungsweise die Masse, sofern nichts anderes ausdrücklich angegeben ist.If information on alloy contents and compositions is given here, these relate to weight or mass, unless otherwise expressly stated.

Kohlenstoff wirkt in erfindungsgemäßen Stahlflachprodukten verzögernd auf die Bildung von Ferrit und Bainit. Gleichzeitig wird Austenit stabilisiert und die Ac3-Temperatur verringert. Der Kohlenstoffgehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts ist auf 0,10 und 0,4 Gew.-% beschränkt. Ein Kohlenstoffgehalt von mindestens 0,10 Gew.-% ist erforderlich, um die Härtbarkeit des Stahlflachprodukts und die Zugfestigkeit des pressgehärteten Produkts mindestens 1000 MPa zu gewährleisten. Soll ein höheres Festigkeitsniveau angestrebt werden, so werden bevorzugt C-Gehalte von mindestens 0,15 Gew.-% eingestellt. Wird der C-Gehalt weiter angehoben auf Werte von mindestens 0,19 Gew.-%, insbesondere mindestens 0,205 Gew.-%, so kann überdies die Härtbarkeit verbessert werden, sodass das Stahlflachprodukt eine sehr gute Kombination aus Härtbarkeit und Festigkeit aufweist. Kohlenstoffgehalte größer 0,4 Gew.-% wirken sich jedoch nachteilig auf die mechanischen Eigenschaften des Stahlflachprodukts aus, da C-Gehalte größer 0,4 Gew.-% während des Presshärtens die Bildung spröden Martensits fördern. Durch hohe C-Gehalte kann darüber hinaus die Schweißbarkeit negativ beeinflusst werden. Um die Schweißbarkeit zu verbessern, kann der Kohlenstoffgehalt bevorzugt auf höchstens 0,3 Gew.-% eingestellt werden. Bei C-Gehalten von höchstens 0,25 Gew.-%, insbesondere höchstens 0,235 Gew.-% kann die Schweißbarkeit nochmals deutlich verbessert und zusätzlich ein gutes Verhältnis von Kraftaufnahme und maximalem Biegewinkel im Biegeversuch nach VDA238-100 im pressgehärteten Zustand erreicht werden.In flat steel products according to the invention, carbon has a retarding effect on the formation of ferrite and bainite. At the same time, austenite is stabilized and the Ac3 temperature is reduced. The carbon content of the steel of a flat steel product according to the invention is limited to 0.10 and 0.4% by weight. A carbon content of at least 0.10% by weight is required to ensure the hardenability of the flat steel product and the tensile strength of the press-hardened product at least 1000 MPa. If a higher level of strength is to be aimed for, C contents of at least 0.15% by weight are preferred. If the C content is increased further to values of at least 0.19% by weight, in particular at least 0.205% by weight, the hardenability can also be improved so that the flat steel product has a very good combination of hardenability and strength. However, carbon contents greater than 0.4% by weight have a disadvantageous effect on the mechanical properties of the flat steel product, since C contents greater than 0.4% by weight promote the formation of brittle martensite during press hardening. The weldability can also be adversely affected by high carbon contents. In order to improve weldability, the carbon content can preferably be set to 0.3 wt% or less. With C contents of at most 0.25% by weight, in particular at most 0.235% by weight, the weldability can again be significantly improved and, in addition, a good one Ratio of force absorption and maximum bending angle can be achieved in the bending test according to VDA238-100 in the press-hardened state.

Silizium wird zur weiteren Erhöhung der Härtbarkeit des Stahlflachprodukts sowie der Festigkeit des pressgehärteten Produkts über Mischkristallverfestigung verwendet. Silizium ermöglicht außerdem den Einsatz von Ferro-Silizio-Mangan als Legierungsmittel, was sich begünstigend auf die Produktionskosten auswirkt. Ab einem Si-Gehalt von 0,05 Gew.-% stellt sich bereits ein Härtungseffekt ein. Ab einem Si-Gehalt von mindestens 0,15 Gew.-%, insbesondere mindestens 0,20 Gew.-% tritt ein signifikanter Anstieg der Festigkeit auf. Si-Gehalte oberhalb von 0,5 Gew.-% wirken sich nachteilig auf das Beschichtungsverhalten aus, insbesondere bei Al-basierten Beschichtungen. Si-Gehalte von höchstens 0,4 Gew.-%, insbesondere höchstens 0,30 Gew.-% werden bevorzugt eingestellt, um die Oberflächenqualität des beschichteten Stahlflachprodukts zu verbessern.Silicon is used to further increase the hardenability of the flat steel product and the strength of the press-hardened product via solid solution strengthening. Silicon also enables ferro-silicon-manganese to be used as an alloying agent, which has a positive effect on production costs. A hardening effect occurs from an Si content of 0.05% by weight. From an Si content of at least 0.15% by weight, in particular at least 0.20% by weight, there is a significant increase in strength. Si contents above 0.5% by weight have a disadvantageous effect on the coating behavior, in particular in the case of Al-based coatings. Si contents of at most 0.4% by weight, in particular at most 0.30% by weight, are preferably set in order to improve the surface quality of the coated flat steel product.

Mangan wirkt als härtendes Element, indem es die Ferrit- und die Bainitbildung stark verzögert. Bei Mangangehalten kleiner 0,5 Gew.-% werden während des Presshärtens selbst bei sehr schnellen Abkühlgeschwindigkeiten Ferrit und Bainit gebildet, was vermieden werden sollte. Mn-Gehalte von mindestens 0,9 Gew.-%, insbesondere mindestens 1,10 Gew.-%, sind bevorzugt, wenn ein martensitisches Gefüge insbesondere in Bereichen größerer Umformung gewährleistet werden soll. Mangangehalte von mehr als 3,0 Gew.-% wirken sich nachteilig auf die Verarbeitungseigenschaften aus, weshalb der Mn-Gehalt erfindungsgemäßer Stahlflachprodukte auf höchstens 3,0 Gew.-% beschränkt ist. Vor allem die Schweißbarkeit ist stark eingeschränkt, weshalb der Mn-Gehalt bevorzugt auf höchstens 1,6 Gew.-% und insbesondere auf 1,30 Gew.-% beschränkt ist. Mangangehalte kleiner oder gleich 1,6 Gew.-% werden darüber hinaus auch aus ökonomischen Gründen bevorzugt.Manganese acts as a hardening element by greatly delaying the formation of ferrite and bainite. If the manganese content is less than 0.5% by weight, ferrite and bainite are formed during press hardening, even at very fast cooling rates, which should be avoided. Mn contents of at least 0.9% by weight, in particular at least 1.10% by weight, are preferred if a martensitic structure is to be ensured, especially in areas of greater deformation. Manganese contents of more than 3.0% by weight have a disadvantageous effect on the processing properties, which is why the Mn content of flat steel products according to the invention is limited to a maximum of 3.0% by weight. Above all, the weldability is severely restricted, which is why the Mn content is preferably limited to a maximum of 1.6% by weight and in particular to 1.30% by weight. Manganese contents less than or equal to 1.6% by weight are also preferred for economic reasons.

Aluminium wird als Desoxidationsmittel zur Abbindung von Sauerstoff eingesetzt. Zudem hemmt Aluminium die Zementitbildung. Zur sicheren Abbindung von Sauerstoff werden mindestens 0,01 Gew.-%, insbesondere mindestens 0,02 Gew.-%, Aluminium im Stahl benötigt. Da allerdings auch die Ac3-Temperatur deutlich mit steigendem AI-Legierungsgehalt nach oben verschoben wird, ist der Al-Gehalt auf 0,2 Gew.-% begrenzt. Ab einem Gehalt von 0,2 Gew.-% behindert Al die Umwandlung in den Austenit vor dem Presshärten zu stark, sodass die Austenitisierung nicht mehr zeit- und energieeffizient durchgeführt werden kann. Für übliche Ofentemperaturen zwischen 850 und 950°C, welche zum Austenitisieren vor dem Presshärten eingestellt werden, wird bevorzugt ein Al-Gehalt von höchstens 0,1 Gew.-%, insbesondere höchstens 0,05 Gew.-% eingestellt, um den Stahl vollständig zu austenitisieren.Aluminum is used as a deoxidizer to bind oxygen. In addition, aluminum inhibits the formation of cementite. For reliable binding of oxygen, at least 0.01% by weight, in particular at least 0.02% by weight, of aluminum is required in the steel. However, since the Ac3 temperature is also shifted upwards significantly with increasing Al alloy content, the Al content is limited to 0.2% by weight. From a content of 0.2% by weight, Al hampers the transformation into austenite too much before press hardening, so that austenitizing can no longer be carried out in a time and energy-efficient manner. For normal furnace temperatures between 850 and 950 ° C., which are set for austenitizing before press hardening, an Al content of at most 0.1% by weight, in particular at most 0.05% by weight, is preferably set to completely cover the steel to austenitize.

Chrom wird dem Stahl eines erfindungsgemäßen Stahlflachprodukts in Gehalten von 0,005 - 1,0 Gew.-% zugegeben. Chrom beeinflusst die Härtbarkeit des Stahlflachprodukts, indem es die diffusive Umwandlung während des Presshärtens verlangsamt. Chrom wirkt in erfindungsgemäßen Stahlflachprodukten ab einem Gehalt von 0,005 Gew.-% günstig auf die Härtbarkeit, wobei ein Cr-Gehalt von mindestens 0,1 Gew.-%, insbesondere mindestens 0,18 Gew.-% für eine sichere Prozessführung, vor allem zur Verhinderung der Bainitbildung, bevorzugt wird. Enthält der Stahl mehr als 1,0 Gew.-% Chrom, so verschlechtert sich das Beschichtungsverhalten. Um eine gute Oberflächenqualität zu erhalten, kann der Cr-Gehalt bevorzugt auf höchstens 0,4 Gew.-%, insbesondere auf höchstens 0,28 Gew.-%, begrenzt sein.Chromium is added to the steel of a flat steel product according to the invention in contents of 0.005-1.0% by weight. Chromium influences the hardenability of the flat steel product by slowing down the diffusive transformation during press hardening. Chromium has a favorable effect on hardenability in steel flat products according to the invention from a content of 0.005% by weight, with a Cr content of at least 0.1% by weight, in particular at least 0.18% by weight, for reliable process management, in particular to prevent bainite formation, is preferred. If the steel contains more than 1.0% by weight of chromium, the coating behavior deteriorates. In order to obtain a good surface quality, the Cr content can preferably be limited to a maximum of 0.4% by weight, in particular to a maximum of 0.28% by weight.

Chrom ist ein Karbidbildner und senkt als solcher den Anteil an im Stahlflachprodukt vorhandenem gelöstem Kohlenstoff. Dies trifft vor allem bei einer langsamen Abkühlung des Stahlflachprodukts mit Abkühlraten von höchstens 25 K/s oder höchstens 20 K/s zu, wie sie während des Abkühlens des beschichteten Stahlflachprodukts auf Raumtemperatur im Temperaturbereich zwischen 600 °C und 450 °C oder im Temperaturbereich zwischen 400 °C und 220 °C erfolgt. Die durch Chrom abgebundenen Kohlenstoffatome diffundieren nicht zu Versetzungen und blockieren diese nicht, sodass die Bildung einer ausgeprägten Streckgrenze reduziert oder ganz unterdrückt ist. Der Cr-Gehalt ist dabei so gewählt, dass bei Durchführung eines Beschichtungsprozesses vor dem Beschichten nur wenig Kohlenstoff durch Chrom abgebunden wird und die Bildung von Chromkarbiden vor allem während der nach dem Beschichten erfolgenden Abkühlung erfolgt. Die Chromkarbide stellen bevorzugte Keimstellen für andere Ausscheidungen wie zum Beispiel Vanadiumkarbide dar und umgekehrt. Dies führt zu einer schnelleren Abbindung des noch freien Kohlenstoffs, sodass die Bildung einer ausgeprägten Streckgrenze weiter reduziert oder ganz unterdrückt ist.Chromium is a carbide former and as such lowers the amount of dissolved carbon present in the flat steel product. This applies above all to slow cooling of the flat steel product with cooling rates of at most 25 K / s or at most 20 K / s, as occurs during cooling of the coated flat steel product to room temperature in the temperature range between 600 ° C and 450 ° C or in the temperature range between 400 ° C and 220 ° C. The carbon atoms bound by chromium do not diffuse into dislocations and do not block them, so that the formation of a pronounced yield point is reduced or completely suppressed. The Cr content is selected in such a way that when a coating process is carried out before coating, only a small amount of carbon is bound by chromium and the formation of chromium carbides takes place primarily during the cooling that takes place after the coating. The chromium carbides represent preferred nucleation sites for other precipitates such as vanadium carbides and vice versa. This leads to a faster setting of the still free carbon, so that the formation of a pronounced yield point is further reduced or completely suppressed.

Vanadium (V) kommt im Stahl eines erfindungsgemäßen Stahlflachprodukts eine besondere Bedeutung zu. Vanadium ist ein sehr kohlenstoffaffines Element. Wenn Vanadium frei, das heißt in ungebundenem oder gelöstem Zustand, vorliegt, kann es übersättigt gelösten Kohlenstoff in Form von Karbiden oder Clustern binden oder zumindest seine Diffusionsgeschwindigkeit verringern. Entscheidend ist dabei, dass V in gelöstem Zustand vorliegt. Überraschenderweise haben sich insbesondere sehr geringe V-Gehalte als besonders günstig für die Alterungsbeständigkeit erwiesen. Bei höheren V-Gehalten können sich schon bei höheren Temperaturen größere Vanadiumkarbide bilden, welche sich dann bei Temperaturen von 650-900°C, welche typisch für Durchlaufglühen von Schmelztauchbeschichtungsanlagen sind, nicht mehr auflösen. Schon kleinste Mengen Vanadium von 0,001 Gew.-% können bereits freien Kohlenstoff bei der Anlagerung an Versetzungen behindern. Ab einem V-Gehalt von 0,2 Gew.-% tritt keine Verbesserung der Alterungsbeständigkeit mehr durch Vanadium auf. Die alterungshemmende Wirkung von Vanadium ist bei Gehalten bis zu 0,009 Gew.-% besonders ausgeprägt, wobei sich ein maximaler Effekt ab einem bevorzugten Gehalt von 0,002 Gew.-% einstellt. Um die alterungshemmende Wirkung von Vanadium besonders sicher zu nutzen, kann der Vanadiumgehalt in einer bevorzugten Ausführung auf höchstens 0,004 Gew.-%, insbesondere auf höchstens 0,003 Gew.-% eingeschränkt werden. Bei Gehalten größer 0,009 Gew.-% bilden sich vermehrt Vanadiumkarbide. Vanadiumkarbide können ab einem Vanadiumgehalt im Stahl von 0,009 Gew.-% nicht bei Temperaturen von 700 bis 900 °C, welche zum Beispiel typisch für Glühtemperaturen in einer Schmelztauchbeschichtungsanlage sind, aufgelöst werden. Mit zunehmendem Vanadiumgehalt steht nicht unweigerlich mehr freies Vanadium zur Verfügung, da die Ausscheidungskinetik von Vanadiumkarbiden immer weiter beschleunigt wird, sodass die Vanadiumkarbide zwar größer und stabiler werden, der Anteil gelösten Vanadiums aber nicht weiter zunimmt. Dieser Effekt tritt insbesondere bei Gehalten von mehr als 0,030 Gew.-% auf, weshalb der Gehalt bevorzugt auf Werte von höchstens 0,030 Gew.-% eingestellt wird. Da Vanadium neben der Verringerung von Alterungseffekten auch zur Steigerung der Festigkeit durch Ausscheidungsverfestigung beiträgt, können höhere Gehalte von bis zu 0,2 Gew.-% bevorzugt zur Festigkeitssteigerung eingestellt werden. Der Vanadiumgehalt des Stahls eines erfindungsgemäßen Stahlflachprodukts ist auf 0,002 bis 0,009 Gew.-% beschränkt.Vanadium (V) is of particular importance in the steel of a flat steel product according to the invention. Vanadium is a very carbon-affine element. When vanadium is free, that is, in the unbound or dissolved state, it can bind supersaturated dissolved carbon in the form of carbides or clusters or at least reduce its diffusion rate. It is crucial that V is in a dissolved state. Surprisingly, very low V contents in particular have proven to be particularly favorable for the aging resistance. With higher V contents, larger vanadium carbides can form even at higher temperatures, which then no longer dissolve at temperatures of 650-900 ° C, which are typical for continuous annealing in hot-dip coating systems. Even the smallest amounts of vanadium of 0.001% by weight can prevent free carbon from attaching to dislocations. From a V content of 0.2% by weight, there is no longer any improvement in the aging resistance due to vanadium. The anti-aging effect of vanadium is particularly pronounced at contents of up to 0.009% by weight, with a maximum effect starting from a preferred content of 0.002% by weight. In order to use the aging-inhibiting effect of vanadium particularly reliably, the vanadium content can in a preferred embodiment be restricted to a maximum of 0.004% by weight, in particular to a maximum of 0.003% by weight. Vanadium carbides are increasingly formed at contents greater than 0.009% by weight. From a vanadium content of 0.009% by weight in the steel, vanadium carbides cannot be dissolved at temperatures of 700 to 900 ° C., which are typical for annealing temperatures in a hot-dip coating system, for example. With an increasing vanadium content, there is not inevitably more free vanadium available, since the elimination kinetics of vanadium carbides are accelerated further and further, so that the vanadium carbides become larger and more stable, but the proportion of dissolved vanadium does not increase any further. This effect occurs in particular with contents of more than 0.030% by weight, which is why the content is preferably set to values of at most 0.030% by weight. Since vanadium, in addition to reducing aging effects, also contributes to increasing strength through precipitation strengthening, higher contents of up to 0.2% by weight can preferably be set to increase strength. The vanadium content of the steel of a flat steel product according to the invention is limited to 0.002 to 0.009% by weight.

Phosphor (P) und Schwefel (S) sind Elemente, die als Verunreinigungen durch Eisenerz in den Stahl eingeschleppt werden und nicht vollständig im großtechnischen Stahlwerksprozess beseitigt werden können. Der P-Gehalt und der S-Gehalt sollten so gering wie möglich gehalten werden, da sich die mechanischen Eigenschaften wie zum Beispiel die Kerbschlagarbeit mit zunehmendem P-Gehalt bzw. S-Gehalt verschlechtern. Ab P-Gehalten von 0,1 Gew.-% tritt zudem eine zunehmende Versprödung des Martensits auf, weshalb der P-Gehalt eines erfindungsgemäßen Stahlflachprodukts auf höchstens 0,1 Gew.-%, insbesondere höchstens 0,02 Gew.-%, begrenzt ist. Der S-Gehalt eines erfindungsgemäßen Stahlflachprodukts ist auf höchstens 0,05 Gew.-%, insbesondere höchstens 0,003 Gew.-%, begrenzt.Phosphorus (P) and sulfur (S) are elements that are introduced into the steel as impurities by iron ore and cannot be completely eliminated in the large-scale steelworks process. The P content and the S content should be kept as low as possible, since the mechanical properties, such as the impact energy, deteriorate with increasing P content or S content. From P content of 0.1% by weight, the martensite becomes increasingly brittle, which is why the P content of a flat steel product according to the invention is limited to at most 0.1% by weight, in particular at most 0.02% by weight. The S content of a flat steel product according to the invention is limited to a maximum of 0.05% by weight, in particular a maximum of 0.003% by weight.

Stickstoff (N) ist aufgrund des Stahlfertigungsprozesses in geringen Mengen im Stahl vorhanden. Der N-Gehalt ist möglichst gering zu halten und sollte höchstens 0,02 Gew.-% betragen. Insbesondere bei Legierungen, die Bor enthalten, ist Stickstoff schädlich, da es durch die Bildung von Bornitriden den umwandlungsverzögernden Effekt von Bor verhindert, weshalb der Stickstoffgehalt in diesem Fall bevorzugt höchstens 0,01 Gew.-%, insbesondere höchstens 0,007 Gew.-%, betragen sollte.Nitrogen (N) is present in steel in small amounts due to the steel making process. The N content is to be kept as low as possible and should be at most 0.02% by weight. In the case of alloys containing boron in particular, nitrogen is harmful, since it prevents the conversion-retarding effect of boron through the formation of boron nitrides, which is why the nitrogen content in this case is preferably at most 0.01% by weight, in particular at most 0.007% by weight, should be.

Bor, Niob, Nickel, Kupfer, Molybdän und Wolfram können dem Stahl eines erfindungsgemäßen Stahlflachprodukts jeweils einzeln oder in Kombination miteinander optional hinzulegiert werden.Boron, niobium, nickel, copper, molybdenum and tungsten can optionally be added to the steel of a flat steel product according to the invention individually or in combination with one another.

Bor kann optional hinzulegiert werden, um die Härtbarkeit des Stahlflachprodukts zu verbessern, indem auf den Austenitkorngrenzen angelagerte Boratome oder Borausscheidungen die Korngrenzenenergie verringern, wodurch die Nukleation von Ferrit während des Presshärtens unterdrückt wird. Ein deutlicher Effekt auf die Härtbarkeit tritt bei Gehalten von mindestens 0,0005 Gew.-%, insbesondere mindestens 0,0020 Gew.-% auf. Bei Gehalten über 0,01 Gew.-% bilden sich hingegen vermehrt Borkarbide, Bornitride oder Bornitrokarbide, welche wiederum bevorzugte Keimstellen für die Nukleation von Ferrit darstellen und den härtenden Effekt wieder absenken. Aus diesem Grund wird der Borgehalt auf höchstens 0,01 Gew.-%, insbesondere höchstens 0,0035 Gew.-% beschränkt. Bei einer Zulegierung von Bor wird bevorzugt auch Titan zur Abbindung von Stickstoff hinzulegiert. Der Ti-Gehalt sollte in diesem Fall bevorzugt mindestens das 3,42-fache des Gehalts an Stickstoff betragen.Boron can optionally be added to the alloy in order to improve the hardenability of the flat steel product, in that boron atoms or boron precipitates deposited on the austenite grain boundaries reduce the grain boundary energy, whereby the nucleation of ferrite is suppressed during press hardening. A clear effect on the hardenability occurs at contents of at least 0.0005% by weight, in particular at least 0.0020% by weight. In contrast, at contents above 0.01% by weight, boron carbides, boron nitrides or boron nitrocarbides are increasingly formed, which in turn represent preferred nucleation sites for the nucleation of ferrite and reduce the hardening effect again. For this reason, the boron content is limited to at most 0.01% by weight, in particular at most 0.0035% by weight. When adding boron as an alloy, titanium is also preferred to bind nitrogen alloyed. In this case, the Ti content should preferably be at least 3.42 times the nitrogen content.

Titan (Ti) ist ein wesentliches Mikrolegierungselement um zur Kornfeinung beizutragen. Außerdem bildet Titan mit Stickstoff grobe Titannitride, weshalb der Ti-Gehalt vergleichsweise gering gehalten werden soll. Titan bindet Stickstoff ab und ermöglicht Bor so, seine stark ferrithemmende Wirkung zu entfalten. Für eine ausreichende Abbindung von Stickstoff wird mindestens das 3,42-fache des Stickstoffgehalts benötigt, wobei erfindungsgemäß mindestens 0,023 Gew.-% Ti, für eine ausreichende Verfügbarkeit hinzugegeben werden. Ab 0,1 Gew.-% Ti verschlechtert sich die Kaltwalzbarkeit und Rekristallisierbarkeit deutlich, weshalb größere Ti-Gehalte vermieden werden sollten. Um die Kaltwalzbarkeit zu verbessern, ist der Ti-Gehalt auf 0,038 Gew.-% beschränkt.Titanium (Ti) is an essential micro-alloy element to contribute to grain refinement. In addition, titanium forms coarse titanium nitrides with nitrogen, which is why the Ti content should be kept comparatively low. Titanium binds nitrogen and enables boron to develop its strong ferrite-inhibiting effect. For sufficient binding of nitrogen, at least 3.42 times the nitrogen content is required, with at least 0.023% by weight of Ti being added according to the invention for sufficient availability. From 0.1% by weight Ti, the cold-rollability and recrystallizability deteriorate significantly, which is why larger Ti contents should be avoided. In order to improve cold rollability, the Ti content is limited to 0.038 wt%.

Niob (Nb) kann optional hinzulegiert werden, um ab einem Gehalt von 0,001 Gew.-% zur Kornfeinung beizutragen. Allerdings verschlechtert Niob die Rekristallisierbarkeit des Stahls. Bei einem Nb-Gehalt von über 0,1 Gew.-% lässt sich der Stahl nicht mehr in üblichen Durchlauföfen vor der Feuerbeschichtung rekristallisieren. Um das Risiko einer Verschlechterung der Rekristallisierbarkeit zu reduzieren, kann der Nb-Gehalt bevorzugt auf 0,003 Gew.-% beschränkt werden.Niobium (Nb) can optionally be added in order to contribute to grain refinement from a content of 0.001% by weight. However, niobium impairs the recrystallizability of the steel. If the Nb content exceeds 0.1% by weight, the steel can no longer be recrystallized in conventional continuous furnaces prior to hot-dip coating. In order to reduce the risk of deterioration in recrystallizability, the Nb content can preferably be restricted to 0.003% by weight.

Kupfer (Cu) kann optional hinzulegiert werden, um bei Zugaben von mindestens 0,01 Gew.-% die Härtbarkeit zu erhöhen. Darüber hinaus verbessert Kupfer den Widerstand gegen atmosphärische Korrosion unbeschichteter Bleche oder Schnittkanten. Ab einem Gehalt von 0,8 Gew.-% verschlechtert sich die Warmwalzbarkeit aufgrund niedrigschmelzender Cu-Phasen an der Oberfläche deutlich, weshalb der Cu-Gehalt auf höchstens 0,8 Gew.-%, bevorzugt höchstens 0,10 Gew.-% beschränkt ist.Copper (Cu) can optionally be added in order to increase the hardenability with additions of at least 0.01% by weight. In addition, copper improves the resistance to atmospheric corrosion of uncoated sheet metal or cut edges. From a content of 0.8% by weight, the hot-rollability deteriorates significantly due to low-melting Cu phases on the surface, which is why the Cu content is limited to a maximum of 0.8% by weight, preferably a maximum of 0.10% by weight is.

Nickel (Ni) stabilisiert die austenitische Phase und kann optional hinzulegiert werden, um die Ac3-Temperatur zu verringern und die Bildung von Ferrit und Bainit zu unterdrücken. Nickel hat darüber hinaus einen positiven Einfluss auf die Warmwalzbarkeit, insbesondere, wenn der Stahl Kupfer enthält. Kupfer verschlechtert die Warmwalzbarkeit. Um dem negativen Einfluss von Kupfer auf die Warmwalzbarkeit entgegenzuwirken, können dem Stahl 0,01 Gew.-% Nickel hinzulegiert werden. Aus ökonomischen Gründen sollte der Nickelgehalt auf höchstens 0,4 Gew.-%, insbesondere höchstens 0,10 Gew.-%, beschränkt bleiben.Nickel (Ni) stabilizes the austenitic phase and can optionally be added to it in order to reduce the Ac3 temperature and suppress the formation of ferrite and bainite. Nickel also has a positive influence on hot rollability, especially if the steel contains copper. Copper deteriorates hot rollability. To counteract the negative influence of copper on hot rollability, 0.01% by weight of nickel can be added to the steel. For economic reasons, the nickel content should remain limited to a maximum of 0.4% by weight, in particular a maximum of 0.10% by weight.

Molybdän (Mo) kann zur Verbesserung der Prozessstabilität optional hinzugegeben werden, da es die Ferritbildung deutlich verlangsamt. Ab Gehalten von 0,002 Gew.-% bilden sich dynamisch Molybdän-Kohlenstoff Cluster bis hin zu ultrafeinen Molybdänkarbiden auf den Korngrenzen, welche die Beweglichkeit der Korngrenze und somit diffusive Phasenumwandlungen deutlich verlangsamen. Außerdem wird durch Molybdän die Korngrenzenenergie verringert, was die Nukleationsrate von Ferrit verringert. Aufgrund der hohen Kosten, welche mit einer Legierung von Molybdän verbunden sind, sollte der Gehalt höchstens 1,0 Gew.-%, bevorzugt höchstens 0,1 Gew.-% betragen.Molybdenum (Mo) can optionally be added to improve process stability, as it significantly slows down the formation of ferrite. From a content of 0.002% by weight, molybdenum-carbon clusters up to ultra-fine molybdenum carbides form dynamically on the grain boundaries, which significantly slow down the mobility of the grain boundary and thus diffusive phase transformations. In addition, molybdenum lowers the grain boundary energy, which lowers the rate of nucleation of ferrite. Because of the high costs associated with an alloy of molybdenum, the content should be at most 1.0% by weight, preferably at most 0.1% by weight.

Wolfram (W) kann optional in Gehalten von 0,001 - 1,0 Gew.-% zur Verlangsamung der Ferritbildung hinzulegiert werden. Ein positiver Effekt auf die Härtbarkeit ergibt sich bereits bei W-Gehalten von mindestens 0,001 Gew.-%. Aus Kostengründen wird maximal 1,0 Gew.-% Wolfram hinzulegiert.Tungsten (W) can optionally be added in contents of 0.001-1.0% by weight to slow down the formation of ferrite. A positive effect on the hardenability already results with W contents of at least 0.001% by weight. For cost reasons, a maximum of 1.0% by weight of tungsten is added.

Ein erfindungsgemäßes Stahlflachprodukt weist nach dem Beschichten eine hohe Gleichmaßdehnung Ag von mindestens 11,5% auf. Die Streckgrenze eines erfindungsgemäßen Stahlflachprodukts weist einen kontinuierlichen Verlauf oder nur eine geringe Ausprägung auf. Kontinuierlicher Verlauf bedeutet im Sinne der Erfindung, dass keine ausgeprägte Streckgrenze vorliegt. Eine Streckgrenze mit kontinuierlichem Verlauf kann auch als Dehngrenze Rp0,2 bezeichnet werden. Unter einer Streckgrenze mit geringer Ausprägung wird vorliegend eine ausgeprägte Streckgrenze verstanden, bei welcher die Differenz ΔRe zwischen oberem Streckgrenzenwert ReH und unterem Streckgrenzenwert ReL höchstens 45 MPa beträgt. Es gilt: Δ Re = ReH ReL 45 MPa mit ReH = obere Streckgrenze in MPa und ReL = untere Streckgrenze in MPa .

Figure imgb0001
A flat steel product according to the invention has a high uniform elongation Ag of at least 11.5% after coating. The yield point of a flat steel product according to the invention has a continuous profile or is only slightly pronounced. In the context of the invention, continuous course means that there is no pronounced yield point is present. A yield point with a continuous curve can also be referred to as the yield point Rp0.2. In the present case, a low yield strength is understood to mean a pronounced yield strength at which the difference ΔRe between the upper yield limit value ReH and the lower yield limit value ReL is at most 45 MPa. The following applies: Δ re = Deer - ReL 45 MPa with Deer = upper Stretch limit in MPa and ReL = lower Stretch limit in MPa .
Figure imgb0001

Eine besonders gute Alterungsbeständigkeit lässt sich bei Stahlflachprodukten erzielen, für die die Differenz ΔRe höchstens 25 MPa beträgt.Particularly good aging resistance can be achieved with flat steel products for which the difference ΔRe is at most 25 MPa.

Das erfindungsgemäße Verfahren zur Herstellung eines für ein Presshärten geeigneten beschichteten Stahlflachprodukts, welches eine besonders gute Alterungsbeständigkeit aufweist, umfasst die im Anspruch 5 genannten Arbeitsschritte.The method according to the invention for producing a coated flat steel product which is suitable for press hardening and which has particularly good aging resistance comprises the working steps mentioned in claim 5.

In Arbeitsschritt a) wird ein entsprechend der erfindungsgemäß für das Stahlflachprodukt vorgegebenen Legierung zusammengesetztes Halbzeug zur Verfügung gestellt. Dies kann eine im konventionellen Brammenstrangguss oder im Dünnbrammenstrangguss erzeugte Bramme sein.In work step a), a semi-finished product composed according to the alloy specified according to the invention for the flat steel product is made available. This can be a slab produced in conventional slab continuous casting or thin slab continuous casting.

In Arbeitsschritt b) wird das Halbzeug bei einer Temperatur (T1) von 1100 - 1400 °C durcherwärmt. Sollte das Halbzeug nach dem Vergießen abgekühlt sein, so wird das Halbzeug zum Durcherwärmen zunächst auf 1100 - 1400 °C wiedererwärmt. Die Durcherwärmungstemperatur sollte mindestens 1100 °C betragen, um eine gute Verformbarkeit für den nachfolgenden Walzprozess sicherzustellen. Die Durcherwärmungstemperatur sollte nicht mehr als 1400 °C betragen, um Anteile schmelzflüssiger Phasen im Halbzeug zu vermeiden.In step b) the semi-finished product is heated through at a temperature (T1) of 1100 - 1400 ° C. If the semifinished product has cooled down after casting, the semifinished product is first reheated to 1100 - 1400 ° C to heat it through. The through-heating temperature should be at least 1100 ° C in order to ensure good deformability for the subsequent rolling process. The soak temperature should not be more than 1400 ° C in order to avoid fractions of molten phases in the semi-finished product.

Im optionalen Arbeitsschritt c) wird das Halbzeug zu einem Zwischenprodukt vorgewalzt. Dünnbrammen werden üblicherweise keiner Vorwalzung unterzogen. Dickbrammen, die zu Warmbändern ausgewalzt werden sollen, können bei Bedarf einer Vorwalzung unterzogen werden. In diesem Fall sollte die Temperatur des Zwischenprodukts (T2) am Ende des Vorwalzens mindestens 1000 °C betragen, damit das Zwischenprodukt genügend Wärme für den nachfolgenden Arbeitsschritt des Fertigwalzens enthält. Hohe Walztemperaturen können jedoch auch ein Kornwachstum während des Walzvorgangs fördern, was sich nachteilig auf die mechanischen Eigenschaften des Stahlflachprodukts auswirkt. Um das Kornwachstum während des Walzvorgangs gering zu halten, soll die Temperatur des Zwischenprodukts am Ende des Vorwalzens nicht mehr als 1200 °C betragen.In the optional work step c), the semi-finished product is pre-rolled into an intermediate product. Thin slabs are usually not subjected to roughing. Thick slabs that are to be rolled into hot strip can, if necessary, be subjected to pre-rolling. In this case, the temperature of the intermediate product (T2) at the end of the rough rolling should be at least 1000 ° C, so that the intermediate product contains enough heat for the subsequent work step of finish rolling. However, high rolling temperatures can also promote grain growth during the rolling process, which has a detrimental effect on the mechanical properties of the flat steel product. In order to keep the grain growth low during the rolling process, the temperature of the intermediate product should not be more than 1200 ° C. at the end of the roughing process.

In Arbeitsschritt d) wird die Bramme oder Dünnbramme oder, wenn Arbeitsschritt c) ausgeführt wurde, das Zwischenprodukt zu einem warmgewalzten Stahlflachprodukt gewalzt. Wurde Arbeitsschritt c) ausgeführt, so wird das Zwischenprodukt unmittelbar nach dem Vorwalzen fertiggewalzt. Typischerweise beginnt das Fertigwalzen spätestens 90 s nach dem Ende des Vorwalzens. Die Bramme, die Dünnbramme oder, wenn Arbeitsschritt c) ausgeführt wurde, das Zwischenprodukt werden bei einer Endwalztemperatur (T3) ausgewalzt. Die Endwalztemperatur, das heißt die Temperatur des fertig warmgewalzten Stahlflachprodukts am Ende des Warmwalzvorgangs, beträgt 750 - 1000 °C. Bei Endwalztemperaturen kleiner 750 °C nimmt die Menge an freiem Vanadium ab, da größere Mengen an Vanadiumkarbiden ausgeschieden werden. Die beim Fertigwalzen ausgeschiedenen Vanadiumkarbide sind sehr groß. Sie weisen typischerweise eine mittlere Korngröße von 30 nm oder mehr auf und werden in nachfolgenden Glühprozessen, wie sie zum Beispiel vor dem Schmelztauchbeschichten durchgeführt werden, nicht mehr aufgelöst. Die Endwalztemperatur ist auf Werte von höchstens 1000 °C begrenzt, um einer Vergröberung der Austenitkörner vorzubeugen. Außerdem sind Endwalztemperaturen von höchstens 1000 °C prozesstechnisch relevant zur Einstellung von Haspeltemperaturen (T4) kleiner 700°C.In step d) the slab or thin slab or, if step c) has been carried out, the intermediate product is rolled into a hot-rolled flat steel product. If step c) has been carried out, the intermediate product is finish-rolled immediately after roughing. Typically, finish rolling begins no later than 90 seconds after the end of roughing. The slab, the thin slab or, if work step c) has been carried out, the intermediate product are rolled out at a final rolling temperature (T3). The final rolling temperature, i.e. the temperature of the finished hot-rolled flat steel product at the end of the hot-rolling process, is 750 - 1000 ° C. At final rolling temperatures below 750 ° C, the amount of free vanadium decreases because larger amounts of vanadium carbides are precipitated. The vanadium carbides precipitated during finish rolling are very large. They typically have an average grain size of 30 nm or more and are no longer dissolved in subsequent annealing processes, such as those carried out before hot-dip coating, for example. The final rolling temperature is limited to a maximum of 1000 ° C in order to prevent coarsening of the austenite grains. In addition, final rolling temperatures of at most 1000 ° C are process-related relevant for setting reel temperatures (T4) below 700 ° C.

Das Warmwalzen des Stahlflachprodukts kann als kontinuierliches Warmbandwalzen oder als reversierendes Walzen erfolgen. Arbeitsschritt e) sieht für den Fall des kontinuierlichen Warmbandwalzens ein optionales Haspeln des warmgewalzten Stahlflachprodukts vor. Dazu wird das Warmband nach dem Warmwalzen innerhalb von weniger als 50 s auf eine Haspeltemperatur (T4) abgekühlt. Als Kühlmedium kann hierfür beispielsweise Wasser, Luft oder eine Kombination aus beidem verwendet werden. Die Haspeltemperatur (T4) sollte höchstens 700 °C betragen, um die Bildung großer Vanadiumkarbide zu vermeiden. Die Haspeltemperatur ist prinzipiell nicht nach unten beschränkt. Allerdings haben sich Haspeltemperaturen von mindestens 500 °C als günstig für die Kaltwalzbarkeit erwiesen. Anschließend wird das gehaspelte Warmband in konventioneller Weise an Luft auf Raumtemperatur abgekühlt.The flat steel product can be hot rolled as continuous hot strip rolling or as reversing rolling. In the case of continuous hot strip rolling, work step e) provides for an optional coiling of the hot-rolled flat steel product. For this purpose, the hot strip is cooled to a coiling temperature (T4) within less than 50 s after hot rolling. For example, water, air or a combination of both can be used as the cooling medium. The coiling temperature (T4) should not exceed 700 ° C in order to avoid the formation of large vanadium carbides. In principle, the coiling temperature is not restricted below. However, coiling temperatures of at least 500 ° C have proven to be favorable for cold rollability. The coiled hot strip is then cooled to room temperature in the conventional manner in air.

In Arbeitsschritt f) wird das warmgewalzte Stahlflachprodukt in konventioneller Weise durch Beizen oder durch eine andere geeignete Behandlung entzundert.In step f), the hot-rolled flat steel product is descaled in a conventional manner by pickling or by another suitable treatment.

Das von Zunder gereinigte warmgewalzte Stahlflachprodukt kann vor der Glühbehandlung in Arbeitsschritt g) optional einem Kaltwalzen unterzogen werden, um beispielsweise höhere Anforderungen an die Dickentoleranzen des Stahlflachprodukts zu erfüllen. Der Kaltwalzgrad (KWG) sollte dabei mindestens 30 % betragen, um in das Stahlflachprodukt genügend Verformungsenergie für eine schnelle Rekristallisation einzubringen. Unter dem Kaltwalzgrad KWG wird dabei der Quotient aus der Dickenabnahme beim Kaltwalzen ΔdKW durch die Warmbanddicke d verstanden: KWG = Δ dKW/d

Figure imgb0002
mit ΔdKW = Dickenabnahme beim Kaltwalzen in mm und d = Warmbanddicke in mm, wobei sich die Dickenabnahme ΔdKW aus der Differenz der Dicke des Stahlflachprodukts vor dem Kaltwalzen zur Dicke des Stahlflachprodukts nach dem Kaltwalzen ergibt. Beim Stahlflachprodukt vor dem Kaltwalzen handelt es sich üblicherweise um ein Warmband der Warmbanddicke d. Das Stahlflachprodukt nach dem Kaltwalzen wird üblicherweise auch als Kaltband bezeichnet. Der Kaltwalzgrad kann prinzipiell sehr hohe Werte von über 90 % annehmen. Allerdings haben sich Kaltwalzgrade von höchstens 80 % als günstig zur Vermeidung von Bandrissen erwiesen.The hot-rolled flat steel product, which has been cleaned of scale, can optionally be subjected to cold rolling before the annealing treatment in step g) in order, for example, to meet higher demands on the thickness tolerances of the flat steel product. The degree of cold rolling (KWG) should be at least 30% in order to introduce enough deformation energy into the flat steel product for rapid recrystallization. Under the cold rolling degree KWG is understood as the quotient of the thickness decrease during cold rolling ΔdKW through the hot strip thickness d: KWG = Δ dKW / d
Figure imgb0002
with ΔdKW = thickness decrease during cold rolling in mm and d = hot strip thickness in mm, whereby the thickness decrease ΔdKW results from the difference between the thickness of the flat steel product before cold rolling and the thickness of the flat steel product after cold rolling. The flat steel product before cold rolling is usually a hot strip with a thickness of d. The flat steel product after cold rolling is usually also referred to as cold strip. The degree of cold rolling can in principle assume very high values of over 90%. However, degrees of cold rolling of at most 80% have proven to be beneficial for avoiding strip tears.

In Arbeitsschritt h) wird das Stahlflachprodukt einer Glühbehandlung bei Glühtemperaturen (T5) von 650 - 900 °C unterzogen. Dazu wird das Stahlflachprodukt zunächst innerhalb von 10 bis 120 s auf die Glühtemperatur erwärmt und dann 30 bis 600 s bei der Glühtemperatur gehalten. Die Glühtemperatur beträgt mindestens 650 °C, bevorzugt mindestens 720 °C, um Vanadium in Lösung zu halten. Thermodynamisch betrachtet scheidet sich bei V-Gehalten von 0,002 Gew.-% und Temperaturen oberhalb von 650 °C Vanadiumkarbid aus oder bereits gebildete Vanadiumkarbide lösen sich nicht mehr auf. Allerdings sind sehr feine Vanadiumkarbide aufgrund ihrer hohen Oberflächenenergie thermodynamisch instabil. Dieser Effekt wird in der vorliegenden Erfindung genutzt, um bei Temperaturen von 650 - 900 °C Vanadium in Lösung zu bringen oder bereits gelöstes Vanadium in Lösung zu halten, was sich positiv auf die Alterungsbeständigkeit des Stahlflachprodukts auswirkt. Bei Glühtemperaturen oberhalb von 900 °C wird keine Verbesserung der Alterungsbeständigkeit erreicht, weshalb die Glühtemperatur auch aus ökonomischen Gründen auf 900 °C beschränkt ist.In step h), the flat steel product is subjected to an annealing treatment at annealing temperatures (T5) of 650 - 900 ° C. For this purpose, the flat steel product is first heated to the annealing temperature within 10 to 120 s and then held at the annealing temperature for 30 to 600 s. The annealing temperature is at least 650 ° C., preferably at least 720 ° C., in order to keep vanadium in solution. From a thermodynamic point of view, vanadium carbide separates out at V contents of 0.002% by weight and temperatures above 650 ° C. or vanadium carbides already formed no longer dissolve. However, very fine vanadium carbides are thermodynamically unstable due to their high surface energy. This effect is used in the present invention to bring vanadium into solution at temperatures of 650-900 ° C. or to keep vanadium already dissolved in solution, which has a positive effect on the aging resistance of the flat steel product. At annealing temperatures above 900 ° C there is no improvement in the Achieved aging resistance, which is why the annealing temperature is limited to 900 ° C for economic reasons.

In Arbeitsschritt i) wird das Stahlflachprodukt nach dem Glühen auf eine Vorkühltemperatur (T6) abgekühlt, um es für die anschließende Beschichtungsbehandlung vorzubereiten. Die Vörkühltemperatur ist kleiner als die Glühtemperatur und wird auf die Temperatur des Beschichtungsbads abgestimmt. Die Vorkühltemperatur beträgt 600 - 800 °C, bevorzugt mindestens 640 °C, besonders bevorzugt höchstens 700 °C. Die Dauer der Abkühlung des geglühten Stahlflachprodukts von der Glühtemperatur T5 auf die Vorkühltemperatur T6 beträgt bevorzugt 10 - 180 s.In step i) the flat steel product is cooled to a pre-cooling temperature (T6) after annealing in order to prepare it for the subsequent coating treatment. The pre-cooling temperature is lower than the annealing temperature and is adjusted to the temperature of the coating bath. The pre-cooling temperature is 600-800.degree. C., preferably at least 640.degree. C., particularly preferably at most 700.degree. The duration of the cooling of the annealed flat steel product from the annealing temperature T5 to the pre-cooling temperature T6 is preferably 10-180 s.

Das Stahlflachprodukt wird in Arbeitsschritt j) einer Beschichtungsbehandlung unterzogen. Die Beschichtungsbehandlung erfolgt bevorzugt mittels kontinuierlichem Schmelztauchbeschichten. Die Beschichtung kann nur auf einer Seite, auf beiden Seiten oder auf allen Seiten des Stahlflachprodukts aufgebracht werden. Die Beschichtungsbehandlung erfolgt bevorzugt als Schmelztauchbeschichtungsprozess, insbesondere als kontinuierlicher Prozess. Dabei kommt das Stahlflachprodukt üblicherweise auf allen Seiten mit dem Schmelzenbad in Kontakt, sodass es allseits beschichtet wird. Das Schmelzenbad, das die auf das Stahlflachprodukt aufzubringende Legierung in flüssiger Form enthält, weist typischerweise eine Temperatur (T7) von 640 - 720 °C auf. Als zum Beschichten alterungsbeständiger Stahlflachprodukte mit einem Korrosionsschutzüberzug besonders geeignet haben sich Legierungen auf Aluminiumbasis erwiesen. Das Schmelzenbad, das den auf das Stahlflachprodukt aufzubringenden Korrosionsschutzüberzug in flüssiger Form enthält, enthält typischerweise neben Aluminium 3 - 15 Gew.-% Silizium, bevorzugt 9 - 12 Gew.-% Silizium, bis zu 5 Gew.-% Eisen und bis zu 0,5 Gew.-% unvermeidbare Verunreinigungen, wobei die Summe der vorliegenden Bestandteile 100 Gew.-% beträgt. Unvermeidbare Verunreinigungen können dabei beispielsweise unvermeidbare Anteile an Chrom, Mangan, Kalzium oder Zinn sein.The flat steel product is subjected to a coating treatment in step j). The coating treatment is preferably carried out by means of continuous hot dip coating. The coating can only be applied on one side, on both sides or on all sides of the flat steel product. The coating treatment is preferably carried out as a hot-dip coating process, in particular as a continuous process. The flat steel product usually comes into contact with the molten bath on all sides, so that it is coated on all sides. The molten bath, which contains the alloy to be applied to the flat steel product in liquid form, typically has a temperature (T7) of 640 - 720 ° C. Alloys based on aluminum have proven to be particularly suitable for coating aging-resistant flat steel products with an anti-corrosion coating. The molten bath, which contains the anti-corrosion coating to be applied to the flat steel product in liquid form, typically contains, in addition to aluminum, 3-15% by weight silicon, preferably 9-12% by weight silicon, up to 5% by weight iron and up to 0% , 5% by weight of unavoidable impurities, the sum of the constituents present being 100% by weight. Inevitable Impurities can be, for example, unavoidable amounts of chromium, manganese, calcium or tin.

Nach der Beschichtungsbehandlung wird das beschichtete Stahlflachprodukt in Arbeitsschritt k) auf Raumtemperatur abgekühlt. Die Abkühlrate wird dabei derart eingestellt, dass ein möglichst großer Anteil übersättigt gelösten Kohlenstoffs durch Vanadium abgebunden werden kann. Darum soll die mittlere Abkühlrate (CR1) in einem Temperaturbereich, welcher optimal für die Ausscheidungskinetik von Vanadium ist, und welcher bei Stahlflachprodukten mit erfindungsgemäßer Zusammensetzung zwischen 600 °C und 450 °C liegt, höchstens 25 K/s, bevorzugt höchstens 18 K/s, besonders bevorzugt höchstens 12 K/s betragen.After the coating treatment, the coated flat steel product is cooled to room temperature in step k). The cooling rate is set in such a way that the largest possible proportion of oversaturated, dissolved carbon can be bound by vanadium. The mean cooling rate (CR1) should therefore be at most 25 K / s, preferably at most 18 K / s, in a temperature range which is optimal for the precipitation kinetics of vanadium and which for flat steel products with a composition according to the invention is between 600 ° C and 450 ° C , particularly preferably not more than 12 K / s.

Der Umfang, in welchem freier Kohlenstoff durch Vanadium abgebunden wird, nimmt zu, wenn die Abkühlung in einem Temperaturbereich zwischen 400 °C und 220 °C mit einer geringeren Abkühlrate erfolgt als im Temperaturbereich zwischen 600 °C und 450 °C. Die mittlere Abkühlrate (CR2) beträgt deshalb zwischen 400 °C und 220 °C höchstens 20 K/s, bevorzugt 14 K/s, besonders bevorzugt höchstens 9,5 K/s. Im Temperaturbereich zwischen 400 °C und 220 °C besitzt der freie Kohlenstoff des Stahlflachprodukts noch eine zur Rekombination mit Vanadium ausreichende Diffusionsgeschwindigkeit, was das Abbinden freien Kohlenstoffs begünstigt. Außerdem ist in diesem Temperaturbereich die Triebkraft für das Wachstum von Vanadiumkarbiden besonders hoch, wodurch ebenfalls freier Kohlenstoff gebunden wird. Dies gilt insbesondere für V-Gehalte von 0,002-0,009 Gew.-%.The extent to which free carbon is bound by vanadium increases if the cooling takes place in a temperature range between 400 ° C and 220 ° C with a lower cooling rate than in the temperature range between 600 ° C and 450 ° C. The mean cooling rate (CR2) is therefore between 400 ° C. and 220 ° C. at most 20 K / s, preferably 14 K / s, particularly preferably at most 9.5 K / s. In the temperature range between 400 ° C and 220 ° C, the free carbon of the flat steel product still has a diffusion rate sufficient for recombination with vanadium, which promotes the setting of free carbon. In addition, the driving force for the growth of vanadium carbides is particularly high in this temperature range, which also binds free carbon. This applies in particular to V contents of 0.002-0.009% by weight.

Darüber hinaus ist im Temperaturbereich zwischen 400 °C und 220 °C die Triebkraft für die Bildung von Eisenkarbiden, welche bevorzugt an bereits vorhandenen Karbiden der Mikrolegierungselemente wie Vanadium, Niob oder Titan keimen, besonders hoch. Durch die Bildung von Eisenkarbiden wird ebenfalls freier Kohlenstoff gebunden, was sich günstig auf das Alterungsverhalten auswirkt.In addition, in the temperature range between 400 ° C and 220 ° C, the driving force for the formation of iron carbides, which preferentially germinate on existing carbides of the micro-alloying elements such as vanadium, niobium or titanium, is particularly high. Through the formation of iron carbides free carbon is also bound, which has a positive effect on aging behavior.

Im Temperaturbereich zwischen der Glühtemperatur und 600 °C, zwischen 450°C und 400°C sowie zwischen 220°C und Raumtemperatur hat die Abkühlrate keinen wesentlichen Einfluss auf die Alterungsbeständigkeit. Aus prozesstechnischen Gründen wird zwischen der Glühtemperatur und 600 °C sowie zwischen 450°C und 400°C bevorzugt eine mittlere Abkühlrate von höchstens 25 K/s und zwischen 220 °C und Raumtemperatur eine mittlere Abkühlrate von höchstens 20 K/s eingestellt. Aus ökonomischen Gründen beträgt die mittlere Abkühlrate bevorzugt in den einzelnen Temperaturbereichen jeweils mindestens 0,1 K/s. Unter der mittleren Abkühlrate wird vorliegend die durchschnittliche Abkühlrate verstanden, die sich rein rechnerisch aus dem Quotienten der Temperaturdifferenz des betrachteten Abkühltemperaturbereichs durch die für die Abkühlung in diesem Temperaturbereich benötigte Zeit ergibt. Dies ist beispielsweise für eine Abkühlung von einer Temperatur TX auf eine Temperatur TY: (TX-TY)/Δt, wobei TX die Temperatur zu Beginn der Abkühlung in K, TY die Temperatur am Ende der Abkühlung in K und Δt die Dauer der Abkühlung von TX auf TY in s sind.In the temperature range between the annealing temperature and 600 ° C, between 450 ° C and 400 ° C and between 220 ° C and room temperature, the cooling rate has no significant influence on the aging resistance. For process engineering reasons, an average cooling rate of at most 25 K / s is preferably set between the annealing temperature and 600 ° C and between 450 ° C and 400 ° C and an average cooling rate of at most 20 K / s between 220 ° C and room temperature. For economic reasons, the mean cooling rate is preferably at least 0.1 K / s in each of the individual temperature ranges. In the present case, the mean cooling rate is understood to mean the average cooling rate, which results purely arithmetically from the quotient of the temperature difference of the cooling temperature range under consideration by the time required for cooling in this temperature range. For example, for cooling from a temperature TX to a temperature TY: (TX-TY) / Δt, where TX is the temperature at the beginning of cooling in K, TY is the temperature at the end of cooling in K and Δt is the duration of cooling from TX are on TY in s.

Prinzipiell kann die Abkühlung beliebig langsam durchgeführt werden, da der Anteil freien Kohlenstoffs kontinuierlich abnimmt, was die Alterungsneigung verbessert. Aufgrund technischer Gegebenheiten und aus wirtschaftlichen Gründen kann die Abkühlrate des gesamten Abkühlprozesses, das heißt der Abkühlung des beschichteten Stahlflachprodukts nach Austritt aus dem Beschichtungsbad bis zum Erreichen der Raumtemperatur, nach unten begrenzt werden auf Werte von typischerweise mindestens 0,1 K/s.In principle, the cooling can be carried out as slowly as desired, since the proportion of free carbon decreases continuously, which improves the tendency to aging. Due to technical conditions and for economic reasons, the cooling rate of the entire cooling process, i.e. the cooling of the coated flat steel product after exiting the coating bath until it reaches room temperature, can be limited to values of typically at least 0.1 K / s.

Ein nach erfolgter Abkühlung auf dem Stahlsubstrat aufliegender Korrosionsschutzüberzug enthält typischerweise 3 - 15 Gew.-% Silizium, bevorzugt 9 - 12 Gew.-% Silizium, besonders bevorzugt 9 - 10 Gew.-% Silizium, bis zu 5 Gew.-% Eisen, bis zu 0,5 Gew.-% unvermeidbare Verunreinigungen und Rest Aluminium. Unvermeidbare Verunreinigungen können dabei beispielsweise unvermeidbare Anteile an Chrom, Mangan, Kalzium oder Zinn sein. Die Überzugszusammensetzung kann beispielsweise mit Hilfe der Glimmentladungsspektroskopie (GDOES) bestimmt werden.A corrosion protection coating lying on the steel substrate after cooling down typically contains 3-15% by weight silicon, preferably 9-12% by weight silicon, particularly preferably 9-10% by weight silicon, up to 5% by weight iron, up to 0.5% by weight unavoidable impurities and the remainder aluminum. Unavoidable impurities can be, for example, unavoidable proportions of chromium, manganese, calcium or tin. The coating composition can be determined, for example, with the aid of glow discharge spectroscopy (GDOES).

Das beschichtete Stahlflachprodukt kann optional einem Dressieren mit einem Dressiergrad von bis zu 2% unterzogen werden, um die Oberflächenrauhigkeit des Stahlflachprodukts zu verbessern.The coated flat steel product can optionally be subjected to skin passaging with a skin pass degree of up to 2% in order to improve the surface roughness of the flat steel product.

Ein erfindungsgemäß erzeugtes Stahlflachprodukt ist für ein Presshärten geeignet und weist einen Korrosionsschutzüberzug, eine hohe Gleichmaßdehnung Ag von mindestens 11,5% sowie eine kontinuierliche Streckgrenze oder eine ausgeprägte Streckgrenze, bei welcher die Differenz zwischen der oberen und der unteren Streckgrenze höchstens 45 MPa beträgt, auf.A flat steel product produced according to the invention is suitable for press hardening and has a corrosion protection coating, a high uniform elongation Ag of at least 11.5% and a continuous yield point or a pronounced yield point at which the difference between the upper and lower yield point is at most 45 MPa .

In einer bevorzugten Ausführung beträgt die kontinuierliche Streckgrenze beziehungsweise die untere Streckgrenze mindestens 380 MPa, bevorzugt mindestens 400 MPa, insbesondere mehr als 400 MPa, und besonders bevorzugt mindestens 410 MPa und ganz besonders bevorzugt mindestens 420 MPa.In a preferred embodiment, the continuous yield point or the lower yield point is at least 380 MPa, preferably at least 400 MPa, in particular more than 400 MPa, and particularly preferably at least 410 MPa and very particularly preferably at least 420 MPa.

In einer weiteren bevorzugten Ausführung weist das Stahlflachprodukt eine Zugfestigkeit von mindestens 540 MPa, besonders bevorzugt mindestens 550 MPa und ganz besonders bevorzugt mindestens 560 MPa auf.In a further preferred embodiment, the flat steel product has a tensile strength of at least 540 MPa, particularly preferably at least 550 MPa and very particularly preferably at least 560 MPa.

Im Folgenden wird die Erfindung anhand von Ausführungs-beispielen näher erläutert.The invention is explained in more detail below with the aid of exemplary embodiments.

Zum Nachweis der Wirkung der Erfindung wurden mehrere Versuche durchgeführt. Dafür wurden Brammen mit den in Tabelle 1 angegebenen Zusammensetzungen mit einer Dicke von 200-280 mm und Breite von 1000-1200 mm erzeugt, in einem Stoßofen auf eine jeweilige Temperatur T1 aufgeheizt und zwischen 30 und 450 min auf T1 gehalten, bis die Temperatur T1 im Kern der Brammen erreicht war und die Brammen somit durcherwärmt waren. Die Herstellungsparameter sind in Tabelle 2 angegeben. Die Brammen wurden mit ihrer jeweiligen Durcherwärmungstemperatur T1 aus dem Stoßofen ausgetragen und einem Warmwalzen unterzogen. Die Versuche wurden als kontinuierliche Warmbandwalzung ausgeführt. Dazu wurden die Brammen zunächst zu einem Zwischenprodukt der Dicke 40 mm vorgewalzt, wobei die Zwischenprodukte, welche bei der Warmbandwalzung auch als Vorbänder bezeichnet werden können, am Ende der Vorwalzphase jeweils eine Zwischenprodukttemperatur T2 aufwiesen. Die Vorbänder wurden unmittelbar nach der Vorwalzung dem Fertigwalzen zugeführt, sodass die Zwischenprodukttemperatur T2 der Walzanfangstemperatur für die Fertigwalzphase entspricht. Die Vorbänder wurden zu Warmbänder mit einer Enddicke von 3-7 mm und den in Tabelle 2 angegebenen jeweiligen Endwalztemperaturen T3 ausgewalzt, auf die jeweilige Haspeltemperatur abgekühlt und bei den jeweiligen Haspeltemperaturen T4 zu Coils aufgewickelt und dann in ruhender Luft abgekühlt. Die Warmbänder wurden in konventioneller Weise mittels Beizen entzundert, bevor sie einem Kaltwalzen mit den in Tabelle 2 angegebenen Kaltwalzgraden unterzogen wurden. Die kaltgewalzten Stahlflachprodukte wurden in einem Durchlaufglühofen auf eine jeweilige Glühtemperatur T5 erwärmt und für jeweils 100 s auf Glühtemperatur gehalten, bevor sie mit einer Abkühlrate von 1 K/s auf ihre jeweilige Vorkühltemperatur T6 abgekühlt wurden. Die Kaltbänder wurden mit ihrer jeweiligen Vorkühltemperatur T6 durch ein schmelzflüssiges Beschichtungsbad der Temperatur T7 geführt. Die Zusammensetzung des Beschichtungsbads war dabei folgende: 9 Gew.-% Si, 2,9 Gew.-% Fe, 87,8 Gew.-% Aluminium und Rest unvermeidbare Verunreinigungen. Nach dem Beschichten wurden die beschichteten Bänder auf konventionelle Weise abgeblasen, wodurch eine Auflage der Beschichtung von 150g/m2 erzeugt wurde. Die Bänder wurden zunächst mit einer mittleren Abkühlrate von 10-15 K/s auf 600 °C abgekühlt. Im weiteren Abkühlverlauf zwischen 600 °C und 450 °C und zwischen 400 °C und 220 °C wurden die Bänder jeweils mit den in Tabelle 2 angegebenen Abkühlraten CR1 und CR2 abgekühlt. Zwischen 450 °C und 400 °C und unterhalb von 220 °C wurden die Bänder mit einer Abkühlrate von jeweils 5 - 15 K/s abgekühlt.Several tests were carried out to demonstrate the effect of the invention. For this purpose, slabs with the compositions given in Table 1 with a thickness of 200-280 mm and a width of 1000-1200 mm were produced, heated in a pusher furnace to a respective temperature T1 and held at T1 for between 30 and 450 minutes until temperature T1 was reached in the core of the slabs and the slabs were thus heated through. The production parameters are given in Table 2. The slabs were discharged from the pusher furnace at their respective soaking temperatures T1 and subjected to hot rolling. The tests were carried out as continuous hot strip rolling. For this purpose, the slabs were first pre-rolled to an intermediate product with a thickness of 40 mm, the intermediate products, which can also be referred to as pre-strips in hot strip rolling, each having an intermediate product temperature T2 at the end of the pre-rolling phase. The preliminary strips were fed to finish rolling immediately after roughing, so that the intermediate product temperature T2 corresponds to the rolling start temperature for the finish rolling phase. The pre-strips were rolled into hot strips with a final thickness of 3-7 mm and the respective final rolling temperatures T3 given in Table 2, cooled to the respective coiling temperature and wound into coils at the respective coiling temperatures T4 and then cooled in still air. The hot strips were descaled in a conventional manner by means of pickling before they were subjected to cold rolling with the cold rolling degrees indicated in Table 2. The cold-rolled flat steel products were heated in a continuous annealing furnace to a respective annealing temperature T5 and held at annealing temperature for 100 s each before they were cooled to their respective pre-cooling temperature T6 at a cooling rate of 1 K / s. The cold strips were passed through a molten coating bath at temperature T7 at their respective pre-cooling temperature T6. The composition of the coating bath was as follows: 9% by weight Si, 2.9% by weight Fe, 87.8% by weight aluminum and the remainder unavoidable Impurities. After coating, the coated strips were blown off in a conventional manner, whereby an application of the coating of 150 g / m 2 was produced. The strips were initially cooled to 600 ° C. at an average cooling rate of 10-15 K / s. In the further course of cooling between 600 ° C. and 450 ° C. and between 400 ° C. and 220 ° C., the strips were each cooled at the cooling rates CR1 and CR2 indicated in Table 2. The strips were cooled between 450 ° C. and 400 ° C. and below 220 ° C. at a cooling rate of 5-15 K / s.

Nach dem Abkühlen auf Raumtemperatur wurden aus den abgekühlten Stahlbändern gemäß DIN EN ISO 6892-1:2009-12 Proben quer zur Walzrichtung entnommen. Die Proben wurden gemäß DIN EN ISO 6892-1:2009-12 einer Zugprüfung unterzogen. In Tabelle 3 sind die Ergebnisse der Zugprüfung angegeben. Im Rahmen der Zugprüfung wurden folgende Materialkennwerte ermittelt: die Streckgrenzenart, welche mit Re für eine ausgeprägte Streckgrenze und mit Rp für eine kontinuierliche Streckgrenze bezeichnet ist, sowie bei einer kontinuierlichen Streckgrenze der Wert für die Dehngrenze Rp0,2, bei einer ausgeprägten Streckgrenze die Werte für die untere Streckgrenze ReL, die obere Streckgrenze ReH und die Differenz von oberer und unterer Streckgrenze ΔRe, die Zugfestigkeit Rm, die Gleichmaßdehnung Ag und die Bruchdehnung A80. Alle Proben weisen eine kontinuierliche Streckgrenze Rp oder eine nur geringfügig ausgeprägte Streckgrenze mit einem Unterschied ΔRe zwischen oberer und unterer Streckgrenze von höchstens 41 MPa und einer Gleichmaßdehnung Ag von mindestens 11,5 % auf. Dabei liegt für die Proben 8, 12 - 17, 19, 21, 22 und 24 eine kontinuierliche Streckgrenze Rp und für die Proben 1 - 7, 9 - 11, 18, 20 und 23 eine ausgeprägte Streckgrenze Re vor. Der in Tabelle 3 für die Proben 1 - 7, 9 - 11, 18, 20 und 23 mit ausgeprägter Streckgrenze angegebene Streckgrenzenwert ist der im Rahmen der Zugprüfung ermittelte Wert für die untere Streckgrenze ReL. Der in Tabelle 3 für die Proben 8, 12 - 17, 19, 21, 22 und 24 mit kontinuierlicher Streckgrenze angegebene Wert ist der im Rahmen der Zugprüfung ermittelte Wert für die Dehngrenze Rp0,2. Tabelle 1, Teil 1 Stahl C Si Mn P S Al Cr Ti N V B Andere A 0,21 0,22 1,11 0,015 0,0029 0,038 0,19 0,026 0,0045 0,002 0,0022 - B 0,21 0,22 1,12 0,011 0,0044 0,044 0,19 0,029 0,0032 0,002 0,0022 - C 0,22 0,23 1,12 0,014 0,0022 0,044 0,23 0,030 0,0039 0,001 0,0027 - D 0,22 0,23 1,14 0,018 0,0024 0,041 0,20 0,031 0,0036 0,003 0,0029 - E 0,22 0,25 1,12 0,012 0,0022 0,038 0,22 0,027 0,0044 0,001 0,0024 - F 0,24 0,27 1,15 0,015 0,0034 0,039 0,23 0,036 0,0044 0,001 0,0026 - G 0,21 0,24 1,11 0,013 0,0015 0,036 0,20 0,033 0,0051 0,001 0,0024 Mo: 0,0036 H 0,22 0,24 1,13 0,011 0,0030 0,037 0,21 0,028 0,0047 0,002 0,0032 W: 0,002 I 0,22 0,22 1,15 0,011 0,0025 0,032 0,19 0,030 0,0042 0,002 0,0028 - J 0,21 0,23 1,12 0,015 0,0028 0,036 0,19 0,027 0,0051 0,002 0,0025 - K 0,21 0,22 1,14 0,018 0,0025 0,038 0,19 0,029 0,0027 0,001 0,0026 - L 0,22 0,23 1,13 0,017 0,0030 0,036 0,19 0,030 0,0033 0,002 0,0027 Ni: 0,023 Cu: 0,015 Rest Eisen und unvermeidbare Verunreinigungen. Angaben jeweils in Gew.-% Tabelle 1, Teil 2 Stahl C Si Mn P S Al Cr Ti N V B Andere M 0,21 0,22 1,11 0,015 0,0026 0,035 0,19 0,026 0,0024 0,002 0,0023 - N 0,21 0,24 1,11 0,016 0,0020 0,036 0,20 0,026 0,0031 0,002 0,0024 - O 0,22 0,22 1,19 0,017 0,0014 0,039 0,19 0,029 0,0038 0,001 0,0025 - P 0,21 0,22 1,11 0,013 0,0030 0,034 0,19 0,028 0,0033 0,001 0,0026 - Q 0,24 0,27 1,15 0,015 0,0034 0,039 0,23 0,036 0,0044 0,001 0,0026 - R 0,22 0,23 1,13 0,016 0,0020 0,039 0,20 0,030 0,0031 0,003 0,0029 - S 0,23 0,25 1,14 0,016 0,0029 0,037 0,21 0,033 0,0056 0,002 0,0034 - T 0,22 0,23 1,14 0,014 0,0032 0,049 0,21 0,028 0,0035 0,003 0,0025 - U 0,22 0,23 1,16 0,015 0,0032 0,037 0,20 0,031 0,0048 0,003 0,0029 - V 0,22 0,23 1,13 0,017 0,0021 0,043 0,22 0,026 0,0033 0,003 0,0027 - W 0,22 0,23 1,12 0,015 0,0026 0,037 0,20 0,027 0,0044 0,002 0,0027 - X 0,21 0,23 1,13 0,012 0,0024 0,044 0,22 0,028 0,0042 0,001 0,0030 - Rest Eisen und unvermeidbare Verunreinigungen. Angaben jeweils in Gew.-% Tabelle 2, Tell 1 Versuch Nr. Stahl T1 [°C] T2 [°C] T3 [°C] T4 [°C] KWG [%] T5 [°C] T6 [°C] T7 [°C] CR1 [K/s] CR2 [K/s] 1 A 1250 1100 850 600 50 750 700 675 16,43 11,19 2 B 1250 1100 850 600 60 750 700 675 14,87 10,12 3 C 1250 1150 800 600 60 750 700 675 15,45 10,52 4 D 1250 1100 850 600 60 775 700 675 15,45 10,52 5 E 1250 1100 850 600 50 750 700 675 16,43 11,19 6 F 1250 1100 850 600 50 750 700 675 16,43 11,19 7 G 1250 1100 800 600 55 750 700 675 16,65 10,66 8 H 1250 1100 800 650 50 750 700 675 6,99 3,11 9 I 1250 1100 850 600 60 750 700 675 14,87 10,12 10 J 1250 1100 800 650 60 750 700 675 14,87 10,12 11 K 1250 1100 800 600 60 750 700 675 8,23 3,66 12 L 1300 1100 800 600 60 750 700 675 10,41 4,63 Tabelle 2, Teil 2 Versuch Nr. Stahl T1 [°C] T2 [°C] T3 [°C] T4 [°G] KWG [%] T5 [°C] T6 [°C] T7 [°C] CR1 [K/s] CR2 [K/s] 13 M 1300 1150 800 650 60 750 700 675 10,88 4,84 14 N 1300 1100 800 650 60 750 700 675 12,74 5,67 15 O 1250 1100 850 600 50 750 700 675 13,67 6,08 16 P 1250 1100 800 650 50 775 700 675 9,98 6,79 17 Q 1250 1100 825 600 50 775 700 675 11,54 7,86 18 R 1250 1100 850 600 55 725 700 675 15,84 10,79 19 S 1250 1100 825 600 50 750 700. 675 11,54 7,86 20 T 1250 1100 850 600 50 750 675 675 11,54 7,86 21 U 1250 1100 825 600 60 725 675 675 12,71 8,66 22 V 1250 1150 850 600 60 725 675 675 13,11 8,92 23 W 1250 1100 850 600 60 725 675 675 14,67 9,99 24 X 1250 1100 850 600 50 725 700 675 13,89 9,46 Tabelle 3. Teil 1 Versuch Nr. Streckgrenzenart Rp0,2 oder ReL [MPa] ReH [MPa] ΔRe [MPa] Rm [MPa] Gleichmaßdehnung Ag [MPa] Bruchdehnung A80 [MPa] 1 Re 425 445 20 592 14,5 24 2 Re 401 413 12 577 14,5 26 3 Re 492 533 41 594 12,9 19,6 4 Re 439 445 6 578 13,8 23 5 Re 446 473 27 600 14,2 25,6 6 Re 455 474 19 609 12,8 24,8 7 Re 418 427 9 581 13,4 24,7 8 Rp 422 624 12,7 20,5 9 Re 420 423 3 627 13,8 21 10 Re 409 414 5 542 15,3 25 11 Re 436 460 24 598 14,4 24,2 12 Rp 399 636 12,5 19,7 Rp=kontinuierliche Streckgrenze, Re= ausgeprägte Streckgrenze Tabelle 3, Teil 2 Versuch Nr. Streckgrenzenart Rp0,2 oder ReL [MPa] ReH [MPa] ΔRe [MPa] Rm [MPa] Gleichmaßdehnung Ag [MPa] Bruchdehnung A80 [MPa] 13 Rp 403 611 13,1 22,7 14 Rp 402 597 12,9 24,7 15 Rp 400 623 12,2 19 16 Rp 413 617 13,6 21,3 17 Rp 419 618 11,5 17,8 18 Re 446 463 17 588 12,6 21 19 Rp 413 601 13 19,4 20 Re 417 426 9 581 14,4 24,5 21 Rp 406 586 13,4 22 22 Rp 392 596 13,5 20,5 23 Re 422 433 11 560 14 24 24 Rp 389 585 13,1 21,5 Rp=kontinuierliche Streckgrenze, Re= ausgeprägte Streckgrenze After cooling to room temperature, samples were taken transversely to the rolling direction from the cooled steel strips in accordance with DIN EN ISO 6892-1: 2009-12. The samples were subjected to a tensile test in accordance with DIN EN ISO 6892-1: 2009-12. Table 3 shows the results of the tensile test. In the course of the tensile test, the following material parameters were determined: the type of yield strength, which is designated Re for a pronounced yield point and Rp for a continuous yield point, as well as the value for the yield strength Rp0.2 for a continuous yield point and the values for the lower yield point ReL, the upper yield point ReH and the difference between the upper and lower yield point ΔRe, the tensile strength Rm, the uniform elongation Ag and the elongation at break A80. All samples have a continuous yield point Rp or an only slightly pronounced yield point with a difference ΔRe between the upper and lower yield point of no more than 41 MPa and a uniform elongation Ag of at least 11.5%. There is a continuous yield point Rp for samples 8, 12-17, 19, 21, 22 and 24 and a pronounced yield point Re for samples 1-7, 9-11, 18, 20 and 23. The yield strength value given in Table 3 for samples 1 - 7, 9 - 11, 18, 20 and 23 with a pronounced yield point is the value for the lower yield point ReL determined in the course of the tensile test. The table 3 for samples 8, 12 - 17, 19, 21, 22 and 24 with continuous yield strength is the value determined in the course of the tensile test for the yield strength Rp0.2. <b><u> Table 1, Part 1 </u></b> stole C. Si Mn P. S. Al Cr Ti N V B. Other A. 0.21 0.22 1.11 0.015 0.0029 0.038 0.19 0.026 0.0045 0.002 0.0022 - B. 0.21 0.22 1.12 0.011 0.0044 0.044 0.19 0.029 0.0032 0.002 0.0022 - C. 0.22 0.23 1.12 0.014 0.0022 0.044 0.23 0.030 0.0039 0.001 0.0027 - D. 0.22 0.23 1.14 0.018 0.0024 0.041 0.20 0.031 0.0036 0.003 0.0029 - E. 0.22 0.25 1.12 0.012 0.0022 0.038 0.22 0.027 0.0044 0.001 0.0024 - F. 0.24 0.27 1.15 0.015 0.0034 0.039 0.23 0.036 0.0044 0.001 0.0026 - G 0.21 0.24 1.11 0.013 0.0015 0.036 0.20 0.033 0.0051 0.001 0.0024 Mo: 0.0036 H 0.22 0.24 1.13 0.011 0.0030 0.037 0.21 0.028 0.0047 0.002 0.0032 W: 0.002 I. 0.22 0.22 1.15 0.011 0.0025 0.032 0.19 0.030 0.0042 0.002 0.0028 - J 0.21 0.23 1.12 0.015 0.0028 0.036 0.19 0.027 0.0051 0.002 0.0025 - K 0.21 0.22 1.14 0.018 0.0025 0.038 0.19 0.029 0.0027 0.001 0.0026 - L. 0.22 0.23 1.13 0.017 0.0030 0.036 0.19 0.030 0.0033 0.002 0.0027 Ni: 0.023 Cu: 0.015 Remainder iron and unavoidable impurities. Details in% by weight stole C. Si Mn P. S. Al Cr Ti N V B. Other M. 0.21 0.22 1.11 0.015 0.0026 0.035 0.19 0.026 0.0024 0.002 0.0023 - N 0.21 0.24 1.11 0.016 0.0020 0.036 0.20 0.026 0.0031 0.002 0.0024 - O 0.22 0.22 1.19 0.017 0.0014 0.039 0.19 0.029 0.0038 0.001 0.0025 - P. 0.21 0.22 1.11 0.013 0.0030 0.034 0.19 0.028 0.0033 0.001 0.0026 - Q 0.24 0.27 1.15 0.015 0.0034 0.039 0.23 0.036 0.0044 0.001 0.0026 - R. 0.22 0.23 1.13 0.016 0.0020 0.039 0.20 0.030 0.0031 0.003 0.0029 - S. 0.23 0.25 1.14 0.016 0.0029 0.037 0.21 0.033 0.0056 0.002 0.0034 - T 0.22 0.23 1.14 0.014 0.0032 0.049 0.21 0.028 0.0035 0.003 0.0025 - U 0.22 0.23 1.16 0.015 0.0032 0.037 0.20 0.031 0.0048 0.003 0.0029 - V 0.22 0.23 1.13 0.017 0.0021 0.043 0.22 0.026 0.0033 0.003 0.0027 - W. 0.22 0.23 1.12 0.015 0.0026 0.037 0.20 0.027 0.0044 0.002 0.0027 - X 0.21 0.23 1.13 0.012 0.0024 0.044 0.22 0.028 0.0042 0.001 0.0030 - Remainder iron and unavoidable impurities. Details in% by weight Attempt no. stole T1 [° C] T2 [° C] T3 [° C] T4 [° C] KWG [%] T5 [° C] T6 [° C] T7 [° C] CR1 [K / s] CR2 [K / s] 1 A. 1250 1100 850 600 50 750 700 675 16.43 11.19 2 B. 1250 1100 850 600 60 750 700 675 14.87 10.12 3 C. 1250 1150 800 600 60 750 700 675 15.45 10.52 4th D. 1250 1100 850 600 60 775 700 675 15.45 10.52 5 E. 1250 1100 850 600 50 750 700 675 16.43 11.19 6th F. 1250 1100 850 600 50 750 700 675 16.43 11.19 7th G 1250 1100 800 600 55 750 700 675 16.65 10.66 8th H 1250 1100 800 650 50 750 700 675 6.99 3.11 9 I. 1250 1100 850 600 60 750 700 675 14.87 10.12 10 J 1250 1100 800 650 60 750 700 675 14.87 10.12 11 K 1250 1100 800 600 60 750 700 675 8.23 3.66 12th L. 1300 1100 800 600 60 750 700 675 10.41 4.63 Attempt no. stole T1 [° C] T2 [° C] T3 [° C] T4 [° G] KWG [%] T5 [° C] T6 [° C] T7 [° C] CR1 [K / s] CR2 [K / s] 13th M. 1300 1150 800 650 60 750 700 675 10.88 4.84 14th N 1300 1100 800 650 60 750 700 675 12.74 5.67 15th O 1250 1100 850 600 50 750 700 675 13.67 6.08 16 P. 1250 1100 800 650 50 775 700 675 9.98 6.79 17th Q 1250 1100 825 600 50 775 700 675 11.54 7.86 18th R. 1250 1100 850 600 55 725 700 675 15.84 10.79 19th S. 1250 1100 825 600 50 750 700. 675 11.54 7.86 20th T 1250 1100 850 600 50 750 675 675 11.54 7.86 21 U 1250 1100 825 600 60 725 675 675 12.71 8.66 22nd V 1250 1150 850 600 60 725 675 675 13.11 8.92 23 W. 1250 1100 850 600 60 725 675 675 14.67 9.99 24 X 1250 1100 850 600 50 725 700 675 13.89 9.46 Attempt no. Yield strength type Rp0.2 or ReL [MPa] ReH [MPa] ΔRe [MPa] Rm [MPa] Uniform elongation Ag [MPa] Elongation at break A80 [MPa] 1 re 425 445 20th 592 14.5 24 2 re 401 413 12th 577 14.5 26th 3 re 492 533 41 594 12.9 19.6 4th re 439 445 6th 578 13.8 23 5 re 446 473 27 600 14.2 25.6 6th re 455 474 19th 609 12.8 24.8 7th re 418 427 9 581 13.4 24.7 8th Rp 422 624 12.7 20.5 9 re 420 423 3 627 13.8 21 10 re 409 414 5 542 15.3 25th 11 re 436 460 24 598 14.4 24.2 12th Rp 399 636 12.5 19.7 Rp = continuous yield point, Re = pronounced yield point Attempt no. Yield strength type Rp0.2 or ReL [MPa] ReH [MPa] ΔRe [MPa] Rm [MPa] Uniform elongation Ag [MPa] Elongation at break A80 [MPa] 13th Rp 403 611 13.1 22.7 14th Rp 402 597 12.9 24.7 15th Rp 400 623 12.2 19th 16 Rp 413 617 13.6 21.3 17th Rp 419 618 11.5 17.8 18th re 446 463 17th 588 12.6 21 19th Rp 413 601 13th 19.4 20th re 417 426 9 581 14.4 24.5 21 Rp 406 586 13.4 22nd 22nd Rp 392 596 13.5 20.5 23 re 422 433 11 560 14th 24 24 Rp 389 585 13.1 21.5 Rp = continuous yield point, Re = pronounced yield point

Claims (10)

  1. Flat steel product suitable for press hardening and coated with an aluminium-based alloy,
    - wherein the steel substrate of the flat steel product consists of a steel, which, in % by weight, consists of C: 0.10 - 0.4%, Si: 0.05 - 0.5%, Mn: 0.5 - 3.0%, Al: 0.01 - 0.2%, Cr: 0.005 - 1.0%, V: 0.002 - 0.009%, Ti: 0.023 - 0.038%, P: ≤ 0.1%, S: ≤ 0.05%, N: ≤ 0.02%,
    as well as optionally one or a plurality of the elements "B, Nb, Ni, Cu, Mo, W" in the following contents B: 0.0005 - 0.01%, Nb: 0.001 - 0.1%, Ni: 0.01 - 0.4%, Cu: 0.01 - 0.8%, Mo: 0.002 - 1.0%, W: 0.001 - 1.0%,
    and as the remainder consists of iron and unavoidable impurities, and
    - wherein the flat steel product has a yield strength with continuous course (Rp0.2) or a yield strength with a difference (ΔRe) between upper yield strength value (ReH) and lower yield strength value (ReL) of at most 45 MPa according to DIN EN ISO 6892-1:2009-12.
  2. Flat steel product according to claim 1, characterised in that the flat steel product has a uniform elongation Ag of at least 11.5% according to DIN EN ISO 6892-1:2009-12.
  3. Flat steel product according to any one of the preceding claims, characterised in that the carbon content of the steel of the flat steel product is at most 0.3% by weight.
  4. Flat steel product according to any one of the preceding claims, characterised in that the corrosion protection coat applied on the steel substrate contains 3 to 15% by weight silicon, up to 5% by weight iron, up to 0.5% by weight unavoidable impurities, and remainder aluminium.
  5. Method for producing a flat steel product suitable for hot forming, comprising the following work steps:
    a. providing a slab or a thin slab consisting of (in % by weight) 0.10 - 0.4% C, 0.05 - 0.5% Si, 0.5 - 3.0% Mn, 0.01 - 0.2% Al, 0.005 - 1.0% Cr, 0.002 - 0.009% V, 0.023 - 0.038% Ti, ≤ 0.1% P, ≤ 0.05% S, ≤ 0.02% N as well as optionally one or a plurality of the elements "B, Nb, Ni, Cu, Mo, W" in the following contents B: 0.0005 - 0.01%, Nb: 0.001 - 0.1%, Ni: 0.01 - 0.4%, Cu: 0.01 - 0.8%, Mo: 0.002 - 1.0%, W: 0.001 - 1.0% and remainder of iron and unavoidable impurities;
    b. heating the slab or thin slab at a temperature (T1) of 1100 - 1400°C;
    c. optionally pre-rolling the heated slab or thin slab into an intermediate product with an intermediate product temperature (T2) of 1000 - 1200°C;
    d. hot rolling into a hot-rolled flat steel product, wherein the final rolling temperature (T3) is 750 - 1000°C;
    e. optionally coiling the hot-rolled flat steel product, wherein the coiling temperature (T4) is at most 700°C;
    f. igniting the hot-rolled flat steel product;
    g. optionally cold rolling the flat steel product, wherein the cold rolling degree is at least 30%;
    h. annealing the flat steel product at an annealing temperature (T5) of 650 - 900°C;
    i. cooling the flat steel product to a pre-cooling temperature (T6), which is 600 - 800°C;
    j. coating the flat steel product with a corrosion protection coat by means of continuous hot dip coating with an aluminium-based alloy;
    k. cooling the coated flat steel product to ambient temperature, wherein the cooling in the temperature range of between 600°C and 450°C takes place at an average cooling rate (CR1) of at most 25 K/s and in the temperature range of between 400°C and 220°C at an average cooling rate (CR2) of at most 20 K/s and the cooling in the temperature range of between 400°C and 220°C takes place at a lower cooling rate than in the temperature range of between 600°C and 450°C;
    l. optionally dressing the coated flat steel product.
  6. Method according to claim 5, characterised in that the annealing temperature (T5) in work step h) is at least 720°C.
  7. Method according to claim 5 or 6, characterised in that the average cooling rate (CR1) between 600°C and 450°C is at most 18 K/s.
  8. Method according to any one of claims 5 to 7, characterised in that the average cooling rate (CR2) between 400°C and 220°C is at most 14 K/s.
  9. Method according to claim 8, characterised in that the average cooling rate (CR2) between 400°C and 220°C is at most 9.5 K/s.
  10. Method according to any one of claims 5 to 9, characterised in that the melt bath containing the corrosion protection in fluid form to be applied to the flat steel product contains, in addition to aluminium, 3 - 15% by weight silicon, up to 5% by weight iron and up to 0.5% by weight unavoidable impurities, wherein the sum of the constituents present is 100% by weight.
EP18736938.4A 2017-07-21 2018-07-11 Flat steel product with a high degree of aging resistance, and method for producing same Active EP3655560B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21196113.1A EP3974554A1 (en) 2017-07-21 2018-07-11 Flat steel product with good ageing resistance and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP2017068522 2017-07-21
PCT/EP2018/068767 WO2019016041A1 (en) 2017-07-21 2018-07-11 Flat steel product with a high degree of aging resistance, and method for producing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21196113.1A Division EP3974554A1 (en) 2017-07-21 2018-07-11 Flat steel product with good ageing resistance and method for producing the same

Publications (2)

Publication Number Publication Date
EP3655560A1 EP3655560A1 (en) 2020-05-27
EP3655560B1 true EP3655560B1 (en) 2021-09-15

Family

ID=59564149

Family Applications (2)

Application Number Title Priority Date Filing Date
EP21196113.1A Pending EP3974554A1 (en) 2017-07-21 2018-07-11 Flat steel product with good ageing resistance and method for producing the same
EP18736938.4A Active EP3655560B1 (en) 2017-07-21 2018-07-11 Flat steel product with a high degree of aging resistance, and method for producing same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP21196113.1A Pending EP3974554A1 (en) 2017-07-21 2018-07-11 Flat steel product with good ageing resistance and method for producing the same

Country Status (4)

Country Link
EP (2) EP3974554A1 (en)
CN (3) CN109280861A (en)
ES (1) ES2899657T3 (en)
WO (1) WO2019016041A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3719147A1 (en) * 2019-04-01 2020-10-07 ThyssenKrupp Steel Europe AG Hot-rolled flat steel product and method for its production
EP4063525B1 (en) * 2019-11-22 2023-11-01 Nippon Steel Corporation Coated steel member, coated steel sheet, and methods for producing same
EP3964591A1 (en) * 2020-09-07 2022-03-09 ThyssenKrupp Steel Europe AG Hot-rolled steel sheet product and method for producing a hot-rolled steel sheet product
CN113414545A (en) * 2021-03-31 2021-09-21 常州鱼跃金属制品有限公司 Fine and bright flat steel processing method
WO2023020932A1 (en) * 2021-08-19 2023-02-23 Thyssenkrupp Steel Europe Ag Steel having improved processing properties for working at elevated temperatures
WO2023020931A1 (en) * 2021-08-19 2023-02-23 Thyssenkrupp Steel Europe Ag Steel having improved processing properties for working at elevated temperatures
EP4174207A1 (en) * 2021-11-02 2023-05-03 ThyssenKrupp Steel Europe AG Flat steel product having improved processing properties
EP4283003A1 (en) * 2022-05-24 2023-11-29 ThyssenKrupp Steel Europe AG Method for producing a sheet metal part
DE102022115400A1 (en) 2022-06-21 2023-12-21 Thyssenkrupp Steel Europe Ag Sheet metal part with improved welding properties
CN117305716B (en) * 2023-11-10 2024-03-15 常熟市龙腾特种钢有限公司 Preparation method of anti-seismic corrosion-resistant flat bulb steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546534A1 (en) 1983-05-24 1984-11-30 Usinor PROCESS AND INSTALLATION FOR CONTINUOUS MANUFACTURING OF A SURFACE STEEL STRIP CARRYING A COATING OF ZN, AL OR ALLOY ZN-AL
WO2004104254A1 (en) 2003-05-19 2004-12-02 Usinor High-resistant sheet metal which is cold rolled and aluminized in dual phase steel for an anti-implosion belt for a television and method for the manufacture thereof
US20090238715A1 (en) 2008-03-24 2009-09-24 Posco Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
JP5387073B2 (en) 2009-03-16 2014-01-15 新日鐵住金株式会社 Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
EP2703511A1 (en) 2011-04-27 2014-03-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping members and method for producing same
WO2017103138A1 (en) 2015-12-18 2017-06-22 Autotech Engineering A.I.E. B-pillar central beam and method for manufacturing

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3464289B2 (en) * 1994-10-03 2003-11-05 日新製鋼株式会社 Method for producing hot-dip Zn-Al alloy-plated steel sheet for fire-resistant structure with excellent corrosion resistance
CN101316942A (en) * 2005-12-01 2008-12-03 Posco公司 Steel sheet for hot press forming having excellent heat treatment and impact property, hot press parts made of it and the method for manufacturing thereof
KR101513378B1 (en) * 2010-10-22 2015-04-17 신닛테츠스미킨 카부시키카이샤 Steel sheet for hot stamping and method for producing steel sheet for hot stamping
JP5141811B2 (en) * 2010-11-12 2013-02-13 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in uniform elongation and plating property and method for producing the same
KR101253893B1 (en) * 2010-12-27 2013-04-16 포스코강판 주식회사 Aluminium coated steel sheet having excellent in oxidization resistence and heat resistence
EP2524970A1 (en) * 2011-05-18 2012-11-21 ThyssenKrupp Steel Europe AG Extremely stable steel flat product and method for its production
EP2848709B1 (en) 2013-09-13 2020-03-04 ThyssenKrupp Steel Europe AG Method for producing a steel component with an anti-corrosive metal coating and steel component
JP6062353B2 (en) * 2013-12-12 2017-01-18 株式会社神戸製鋼所 Steel sheet for hot press

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2546534A1 (en) 1983-05-24 1984-11-30 Usinor PROCESS AND INSTALLATION FOR CONTINUOUS MANUFACTURING OF A SURFACE STEEL STRIP CARRYING A COATING OF ZN, AL OR ALLOY ZN-AL
WO2004104254A1 (en) 2003-05-19 2004-12-02 Usinor High-resistant sheet metal which is cold rolled and aluminized in dual phase steel for an anti-implosion belt for a television and method for the manufacture thereof
US20090238715A1 (en) 2008-03-24 2009-09-24 Posco Steel sheet for hot press forming having low-temperature heat treatment property, method of manufacturing the same, method of manufacturing parts using the same, and parts manufactured by the same
JP5387073B2 (en) 2009-03-16 2014-01-15 新日鐵住金株式会社 Steel plate for hot pressing, method for manufacturing the same, and method for manufacturing steel plate member for hot pressing
EP2703511A1 (en) 2011-04-27 2014-03-05 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping members and method for producing same
WO2017103138A1 (en) 2015-12-18 2017-06-22 Autotech Engineering A.I.E. B-pillar central beam and method for manufacturing

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "22MnB5 Boron alloyed quenched and tempered steel", SALZGITTER FLACHSTAHL, 1 January 2014 (2014-01-01), pages 1 - 3, XP055811926
ANONYMOUS: "Metallic materials - Tensile testing Part 1: Method of test at ambient temperature", EUROPEAN STANDARD EN 10002-1, 1 July 2001 (2001-07-01), XP055488243
DAIGO ICHIRO, ET AL: "Potential Influences of Impurities on Properties of Recycled Carbon Steel", ISIJ INTERNATIONAL, 9 September 2020 (2020-09-09), pages 1 - 8, XP055939767
DR LACHMANN, ET AL.: "Legierter Vergü- tungsstahl 22MnB5 unbeschichtet oder vorbeschichtet", TECHNISCHE LIEFERSPEZIFIKATION TL VW 4225-2006:5, 1 May 2006 (2006-05-01), pages 1 - 11, XP055518195, [retrieved on 20181023]
FEUER PETER SEBASTIAN: "Ein Ansatz zur Herstellung von pressgehaerteten Karosseriekomponenten mit massgeschneiderten mechanischen Eigenschaften: Temperierte Umformwerkzeuge. Prozessfenster, Prozesssimulation und funktionale Untersuchung", FERTIGUNGSTECHNIK- ERLANGEN, 1 January 2012 (2012-01-01), pages 1 - 226, XP055811916
GEIGER, ET AL: "Auslegung des Prozessfensters für die Blechumformung höchstfester Vergütungsstähle bei erhöhten Temperaturen, Determination of the process window for hot stamping", 1 January 2006 (2006-01-01), pages 1 - 76, XP055939098
GRUMBACH MARC: "Vieillissement des aciers", TECHNIQUES DE L'INGÉNIEUR, vol. M235, 1 January 2015 (2015-01-01), pages 1 - 21, XP055939771
J. J. DUFRANE: ""Why do we Need to Measure Trace Elements in Steel ?"", JOURNAL DE PHYSIQUE IV, EDITIONS DE PHYSIQUE, vol. 05, no. C7, 1 November 1995 (1995-11-01), FR , pages C7-23 - C7-31, XP055628990, ISSN: 1155-4339, DOI: 10.1051/jp4:1995702
KEELER (ED.): "Advanced high-strength steels Application Guidelines Version 6.0", WORLD AUTO STEEL, April 2017 (2017-04-01), pages 1 - 314
LECHLER JÜRGEN: "Beschreibung und Modellierung des Werkstoffverhaltens von presshärtbaren Bor-Manganstählen", 1 January 2009, MEISENBACH VERLAG, Bamberg, ISBN: 978-3-87525-286-6, pages: 1 - 176, XP055939775
LIANG WEIKANG; TAO WENJIE; ZHU BIN; ZHANG YISHENG: "Influence of heating parameters on properties of the Al-Si coating applied to hot stamping", SCIENCE CHINA TECHNOLOGICAL SCIENCES, vol. 60, no. 7, 3 May 2017 (2017-05-03), Heidelberg , pages 1088 - 1102, XP036270055, ISSN: 1674-7321, DOI: 10.1007/s11431-016-0231-y
RASERA JOSHUA: "Development of a novel technology for rapidly Austenitizing Usibor® 1500 P steel", THESIS UNIVERSITY OF WATERLOO, ONTARIO, CANADA, 1 January 2015 (2015-01-01), pages 1 - 92, XP055939761
THYSSENKRUPP: "Manganese-boron steels MBW® For hot forming", 1 November 2014 (2014-11-01), pages 1 - 15, XP055939145
XIAO GANG, ET AL: "Heat transfer during the solidification of hot dip aluminizing coating", CHINESE JOURNAL OF MECHANICAL ENGINEERING, vol. 24, no. 3, 1 January 2011 (2011-01-01), pages 460 - 465, XP055939102
ZHONG-XIANG ET AL.: "Thermo-mechanical behavior of the Al-Si alloy coated hot stamping boron steel", MATERIALS AND DESIGN, vol. 60, 2014, pages 26 - 33, XP029028754, DOI: 10.1016/j.matdes.2014.03.011

Also Published As

Publication number Publication date
CN114686777B (en) 2024-02-23
EP3655560A1 (en) 2020-05-27
CN114686777A (en) 2022-07-01
CN110959049B (en) 2022-04-08
WO2019016041A1 (en) 2019-01-24
ES2899657T3 (en) 2022-03-14
EP3974554A1 (en) 2022-03-30
CN109280861A (en) 2019-01-29
CN110959049A (en) 2020-04-03

Similar Documents

Publication Publication Date Title
EP3655560B1 (en) Flat steel product with a high degree of aging resistance, and method for producing same
DE60125253T2 (en) High strength hot rolled steel sheet with excellent stretch aging properties
DE102008035714B4 (en) Hot stamping steel sheet having low-temperature tempering property, methods for producing the same, methods of producing parts using the same, and parts made therewith
EP2028282B1 (en) Dual-phase steel, flat product made of such dual-phase steel and method for manufacturing a flat product
EP2809819B1 (en) Ultrahigh-strength multiphase steel having improved properties during production and processing
EP2710158B1 (en) High strength steel flat product and method for its production
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
DE60121233T2 (en) High strength cold rolled steel sheet with high r-value, excellent strain aging properties and aging resistance, and process for its production
EP3332047B1 (en) Production method of a flexibly-rolled steel sheet product and its use
DE60133493T2 (en) Hot-dip galvanized steel sheet and process for its production
EP2668302B1 (en) Method for manufacturing a strip from a high strength multi-phase steel having excellent forming properties
EP2905348B1 (en) High strength flat steel product with bainitic-martensitic structure and method for manufacturing such a flat steel product
EP3221484B1 (en) Method for manufacturing a high-strength air-hardening multiphase steel strip having excellent processing properties
EP3320120A1 (en) Ultrahigh strength multiphase steel and method for producing a cold-rolled steel strip therefrom
WO2015014333A2 (en) Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 mpa and improved properties and method for producing a strip from said steel
EP2840159B1 (en) Method for producing a steel component
WO2016078642A9 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
EP3221483A1 (en) Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
EP3724359B1 (en) High-strength, hot-rolled flat steel product with high edge crack resistance and simultaneously high bake-hardening potential and method for producing a flat steel product of this kind
EP3692178B1 (en) Method for producing a steel strip from an ultrahigh strength multiphase steel
EP1865086B1 (en) Use of a steel flat product produced from a manganese boron steel and method of its production
EP1399598B2 (en) Method for producing high-strength cold-formed steel products from a hot rolled strip, said products exhibiting good malleability
EP3415646B1 (en) High-strength steel sheet having enhanced formability
EP3964591A1 (en) Hot-rolled steel sheet product and method for producing a hot-rolled steel sheet product
EP4168597A1 (en) Method for producing a sheet steel product, sheet steel product, and use of such a sheet steel product

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C23C 2/28 20060101ALI20210319BHEP

Ipc: C21D 9/46 20060101ALI20210319BHEP

Ipc: C23C 2/12 20060101ALI20210319BHEP

Ipc: C22C 38/32 20060101ALI20210319BHEP

Ipc: C22C 38/28 20060101ALI20210319BHEP

Ipc: C22C 38/24 20060101ALI20210319BHEP

Ipc: C22C 38/12 20060101ALI20210319BHEP

Ipc: C22C 38/06 20060101ALI20210319BHEP

Ipc: C22C 38/04 20060101ALI20210319BHEP

Ipc: C22C 38/02 20060101ALI20210319BHEP

Ipc: C21D 8/02 20060101ALI20210319BHEP

Ipc: C22C 38/00 20060101AFI20210319BHEP

INTG Intention to grant announced

Effective date: 20210415

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007101

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1430585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2899657

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220314

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 39088

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220115

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502018007101

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: ARCELORMITTAL

Effective date: 20220609

R26 Opposition filed (corrected)

Opponent name: ARCELORMITTAL

Effective date: 20220609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210915

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220711

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220711

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220711

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230719

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230711

Year of fee payment: 6

Ref country code: IT

Payment date: 20230724

Year of fee payment: 6

Ref country code: ES

Payment date: 20230927

Year of fee payment: 6

Ref country code: AT

Payment date: 20230720

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230704

Year of fee payment: 6

Ref country code: SE

Payment date: 20230719

Year of fee payment: 6

Ref country code: FR

Payment date: 20230726

Year of fee payment: 6

Ref country code: DE

Payment date: 20230719

Year of fee payment: 6