EP3585917A1 - Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom - Google Patents

Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom

Info

Publication number
EP3585917A1
EP3585917A1 EP18714124.7A EP18714124A EP3585917A1 EP 3585917 A1 EP3585917 A1 EP 3585917A1 EP 18714124 A EP18714124 A EP 18714124A EP 3585917 A1 EP3585917 A1 EP 3585917A1
Authority
EP
European Patent Office
Prior art keywords
coating
steel
aluminum
oxide layer
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18714124.7A
Other languages
German (de)
French (fr)
Other versions
EP3585917B1 (en
Inventor
Frank Beier
Kerstin Körner
Marc Debeaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP3585917A1 publication Critical patent/EP3585917A1/en
Application granted granted Critical
Publication of EP3585917B1 publication Critical patent/EP3585917B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching

Definitions

  • the invention relates to a method for coating a steel sheet or steel strip, to which an aluminum-based coating is applied by the hot dip method and the surface of the coating is freed from a natively formed aluminum oxide layer. Furthermore, the invention relates to a method for producing press-hardened components from these steel sheets or steel strips with an aluminum-based coating.
  • Examples of possible aluminum-based coatings are aluminum, aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with
  • Admixtures of additional elements e.g. Magnesium, manganese, titanium and rare earths.
  • press hardening enables the production of high-strength components, which are mainly used in the bodywork area.
  • the press-hardening can basically be carried out by means of two different process variants, namely by means of the direct or indirect process. While in indirect processes, the process steps of forming and hardening run separately from each other, they take place together in direct process in a tool. In the following, however, only the direct method is considered.
  • thermoformable steels for this application are, for example, the Manganese-boron steel "22MnB5" and recently also air-temperable steels according to the European patent EP 2 449 138 B1.
  • Scaling protection for press hardening used by the automotive industry.
  • the advantages here are in addition to the increased corrosion resistance of the finished component in that the boards or components do not scale in the oven, whereby the wear of the press tools is reduced by chipped scale and the components must not be laboriously blasted before further processing.
  • hot-dip (alloy) coatings are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / galvannealed), zinc-magnesium-aluminum-iron (ZM), as well as electrodeposited coatings of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot-forming.
  • AS aluminum-silicon
  • Z zinc-aluminum
  • ZF / galvannealed zinc-magnesium-aluminum-iron
  • ZM zinc-magnesium-aluminum-iron
  • electrodeposited coatings of zinc-nickel or zinc the latter being converted into an iron-zinc alloy layer before hot-forming.
  • Press-hardenable steels by hot forming in a forming tool is known from German patent DE 601 19 826 T2.
  • Cooling rate cools down.
  • the coating comprises an aluminum-based coating applied in a hot-dip process.
  • a randomly formed by atmospheric oxidation, arbitrarily formed layer is removed in a preceding alkaline pretreatment with case wise subsequent acid pickling.
  • a covering layer is again applied which contains aluminum oxide and / or hydroxide and is produced by means of anodic oxidation, plasma oxidation or hot water treatment.
  • the average thickness of the cover layer is less than 4 ⁇ and more than 0.1 ⁇ .
  • the published patent application EP 2 045 360 A1 discloses a method for the production of a steel component which is coated with an aluminum coating which is subsequently provided with a zinc coating.
  • the aluminum coating contains at least 85% by weight of Al and optionally up to 15% by weight of Si; the zinc coating at least 90 wt .-% Zn. Between aluminum and zinc coating can advantageously a Dekapieren provided with the aluminum coating
  • the provided with the aluminum coating and the aluminum coating are provided with the aluminum coating and the aluminum coating
  • Main component contains at least one metallic salt of phosphoric acid.
  • Possible metals for the formation of metal phosphate include Fe, Mn, Ti, Co and V, with only Mn being described as particularly advantageous from this group.
  • a cleaning of the layer to be coated or of the flat steel product can take place between the individual coating steps.
  • the advantage of the aluminum-based coatings is that in addition to a larger process window (eg with regard to the heating parameters), the finished components do not have to be blasted prior to further processing.
  • aluminum-based coatings over zinc-based coatings there is no risk of liquid metal embrittlement and no microcracks in the near-surface substrate area can form on the former Austenitkornskyn, which may have a negative effect on the fatigue strength at depths over 10 ⁇ .
  • AS Aluminum-silicon
  • KTL cathodic dip coating
  • aluminum-based coatings can not or only insufficiently phosphating and thus can not be achieved by the phosphating step improvement in corrosion resistance. For these reasons, so far in the processing of boards with
  • the minimum length of stay is thus determined by the coating and not by the basic material, for which only the achievement of the necessary
  • a further disadvantage of known AS coatings is that, with very short annealing times, that is to say when no alloying of the coating with the base material has taken place, the weldability in the resistance spot welding (WP) method of the press-formed component is extremely poor. This is expressed, e.g. in a very small area of sweat.
  • WP resistance spot welding
  • Austenitmaschine is heated, and the heated steel component is both hot-formed and quench-hardened in a forming step, wherein the
  • Heat treatment step is a first pre-treatment step process technology upstream, in which the steel component is provided to protect against scaling in the heat treatment step with a corrosion-resistant protective layer.
  • a surface oxidation takes place in which an inert, corrosion-resistant oxidation layer is formed on the scale protection layer by means of which an abrasive tool wear in the forming step is reduced.
  • a disadvantage of the prior art described therein, inter alia, is that the aluminum-silicon coating results in a rough, hard surface structure of the steel component, which leads to severe tool wear during press hardening. By means of the additional oxidation layer, the roughness of the metal surface of the steel component is to be reduced, whereby the abrasive tool wear should be reduced in the forming step.
  • the object of the invention is therefore an inexpensive method for
  • the teaching of the invention comprises coating a steel sheet or
  • Transition metal compounds are deposited to form a support.
  • the term used above is exempted in the sense of being technically possible to be exempt from the native aluminum oxide layer.
  • the support is a flat precipitate. Accordingly, there may be a full-surface edition or not necessarily covering edition.
  • the opaque overlay may be net-like with ordered or disordered structure or distribution, which is then a layer of punctiform overlays and voids.
  • teaching of the invention comprises a method for producing press-hardened components from steel sheets or steel strips with a
  • the aluminum oxide layer is formed with the mixed oxides in an oven with a temperature> 750 ° C, preferably from 850 to 950 ° C, and a furnace residence time> 90 s, preferably 120 to 180 s.
  • an aluminum-rich oxide layer is formed, which is doped with cations of the previously deposited substances. These cations suppress the above
  • the deposited substances are partially or completely incorporated into the newly forming oxide layer.
  • this doping with metal or transition metal cations grows the
  • the modification of the AS surface improving the core namely the formation or formation of a thick aluminum oxide layer, is not carried out before the heat treatment, but in-situ during the heat treatment achieved for press hardening.
  • the property-determining, thick grows
  • the technical advantage is that the in-situ generation of the oxide layer saves resources and energy and can be implemented highly efficiently with simple and existing systems engineering.
  • the treatment according to the invention consists of the application of
  • Transition metals or transition metal compounds for example, from the group titanium, vanadium, chromium, iron, and manganese and / or their compounds, preferably almost completely iron and / or its compounds, on the Al-based metallic coating by means of a chemical deposition, preferably in a wet-chemical process. This consists at least of the application of a solution of compounds of the above-mentioned elements, which in
  • chemical deposition takes place by means of an injection, dipping or rolling application. It is also preferably provided that the removal of the atmospheric native oxide layer and the chemical deposition take place in a single process step. For this, the two treatment steps in one at a
  • Hot dip coating system downstream or to the
  • Hot dip coating plant separate continuous
  • Coating system to be performed is carried out in the presence of compounds of other metals, for example from the group cobalt, molybdenum and tungsten and / or their compounds.
  • compounds of other metals for example from the group cobalt, molybdenum and tungsten and / or their compounds.
  • molybates, tungstates or cobalt nitrate significantly accelerate the deposition of iron, but are self-deposited only to a small extent, thereby making the process of the invention even more efficient.
  • iron or iron compounds are readily available, inexpensive and non-toxic.
  • iron is already included in the base material.
  • Substances according to the invention can advantageously also be carried out simultaneously in a single wet-chemical step when using alkaline media. Such deposition processes can be used in continuous systems
  • Belt speeds of up to 120 m / min or more are performed.
  • the required drug cost can be less than 100 mg / m 2 .
  • the metals and their chemical compounds can also be applied by electrolytic deposition.
  • the natively-formed oxide layer of the Al-based coating e.g., AS
  • the inventive treatment of the aluminum-based coating consisting of the removal of the initially formed native oxide layer and subsequent treatment of the AS surface with metal-containing solutions, can also in the subsequent further processing of the steel sheet by
  • the minimum residence time in the furnace for the growth of the oxide layer is determined by the requirement for weldability in resistance spot welding and the corrosion resistance in the KT-coated state.
  • Figures 1 and 2 show the depth profile for the elements AI, Fe and O after the press-hardening of sheets with an AS coating with a treatment according to the invention with an iron-containing solution (Figure 2) compared to an untreated sheet ( Figure 1) in a Oven residence time of 6 min and a furnace temperature of 950 ° C in an air atmosphere.
  • Figure 2 is clearly visible the deeper oxygen input in the inventive treated sample, indicating a significantly thicker oxide layer compared to the untreated sample.
  • the accumulation of iron in the oxide layer is clearly visible.
  • the treatment according to the invention of the surface of the coated steel strip can advantageously be carried out in a process part of a continuously producing
  • Hot dip coating system downstream treatment part or a separate system for example via spray bars with nozzles, in a dipping process and by means of an electrolytic deposition or spray electrolysis, in each case also in combination.
  • a separate plant for example via spray bars with nozzles, in a dipping process and by means of an electrolytic deposition or spray electrolysis, in each case also in combination.
  • the separate plant it may be e.g. one
  • Band coating or an electrolytic strip finishing plant act.
  • An alkaline cleaning prior to the treatment according to the invention and subsequent rinsing of the steel sheet or steel strip provided with an aluminum-based coating advantageously eliminates the (native) oxide layer formed by atmospheric oxidation and thereby creates a defined initial state for the deposition of metallic species according to the invention.
  • the treatment of the surface can according to the invention over the entire
  • the molar amount of the deposited metal species can be varied.
  • electrolytic deposition the deposited molar amount of the metal species is determined by electrolyte composition, flow conditions, temperature, current density and treatment time.
  • the AS-coated sheet is immersed in a metal cation-containing alkaline solution at a temperature of 50 ° C for a few seconds.
  • the natively formed oxide layer is removed and the iron-containing layer is applied.
  • AS-coated sheet to remove the natively formed oxide layer in a 20% sodium hydroxide solution for 30 seconds at room temperature
  • oven residence time (with sheet thickness up to 1.5 mm): 2, 3, 4, 6 min
  • Table 1 shows, for the purely wet-chemical pretreatment of the samples, that the thickness of the aluminum oxide layers increases significantly with increasing drug occupancy (Fe) and residence time in the oven. Without treatment according to the invention is the
  • Layer thickness of the oxide layer less than 10 nm. With an iron support of about 7 mg / m 2 and residence time of 2, 3 or 4 min. no significant stratification is achieved yet. This also applies to an iron coating of about 1 1 mg / m 2 and a residence time of 2 min.
  • Table 1 Layer formation on the sample surface as a function of
  • Table 2 illustrates that the pretreated and in air atmosphere
  • Treatment according to the invention is not measurable with short annealing times
  • Table 3 Infiltration after 12 weeks Volkswagen PV 1210 on KT-coated samples depending on iron deposit and annealing time
  • FIG. 3 shows, by way of example, a cross-section on a sheet-metal section with AS coating and treatment according to the invention, deposited with no external current, with an iron deposit of about 15 mg / m 2 after press-hardening.
  • the oven residence time was 3 minutes at a furnace temperature of 950 ° C under air atmosphere.
  • A denotes the base material
  • B is the diffusion zone consisting of a Matrix of the base material into which Al and Si have diffused out of the coating
  • C layer rich in Fe-Al phases is the alloying zone consisting of different Al-Fe, Al-Fe-Si phases
  • E is the oxide layer of aluminum and iron oxide
  • F the investment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

The invention relates to a method for coating a steel sheet or steel strip to which an aluminium-based coating is applied in a dip-coating process and the surface of the coating is freed of a naturally occurring aluminium oxide layer. In order to provide a low-cost method for coating steel sheets or steel strips that makes the steel sheets or steel strips outstandingly suitable for the production of components by means of press hardening and for the further processing thereof, it is proposed that transition metals or transition metal compounds are subsequently deposited on the freed surface of the coating to form a top layer. The invention also relates to a method for producing press-hardened components from the aforementioned steel sheets or steel strips with an aluminium-based coating.

Description

Verfahren zum Beschichten von Stahlblechen oder Stahlbändern und Verfahren zur Herstellung von pressgehärteten Bauteilen hieraus  Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom
Die Erfindung betrifft ein Verfahren zum Beschichten eines Stahlbleches oder Stahlbandes, auf das ein aluminiumbasierter Überzug im Schmelztauchverfahren aufgebracht wird und die Oberfläche des Überzugs von einer nativ entstandenen Aluminiumoxidschicht befreit wird. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus diesen Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung. The invention relates to a method for coating a steel sheet or steel strip, to which an aluminum-based coating is applied by the hot dip method and the surface of the coating is freed from a natively formed aluminum oxide layer. Furthermore, the invention relates to a method for producing press-hardened components from these steel sheets or steel strips with an aluminum-based coating.
Als aluminiumbasierte Überzüge werden nachfolgend metallische Überzüge verstanden, bei denen Aluminium der Hauptbestandteil in Massen prozent ist. As aluminum-based coatings are hereinafter understood metallic coatings in which aluminum is the main component in mass percent.
Beispiele für mögliche aluminiumbasierte Überzüge sind Aluminium, Aluminium- Silizium (AS), Aluminium-Zink-Silizium (AZ), sowie dieselben Überzüge mit Examples of possible aluminum-based coatings are aluminum, aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with
Beimischungen zusätzlicher Elemente, wie z.B. Magnesium, Mangan, Titan und seltenen Erden. Admixtures of additional elements, e.g. Magnesium, manganese, titanium and rare earths.
Es ist bekannt, dass warmumgeformte Stahlbleche insbesondere im Automobilbau immer häufiger Verwendung finden. Durch den auch als Presshärten bezeichneten Prozess können hochfeste Bauteile erzeugt werden, die vorwiegend im Bereich der Karosserie eingesetzt werden. Das Presshärten kann grundsätzlich mittels zwei verschiedener Verfahrensvarianten durchgeführt werden, nämlich mittels des direkten oder indirekten Verfahrens. Während bei indirekten Verfahren die Prozessschritte des Umformens und Härtens getrennt voneinander ablaufen, finden sie beim direkten Verfahren in einem Werkzeug gemeinsam statt. Im Folgenden wird aber nur das direkte Verfahren betrachtet. It is known that hot-formed steel sheets are used more and more frequently, especially in the automotive industry. The process, also known as press hardening, enables the production of high-strength components, which are mainly used in the bodywork area. The press-hardening can basically be carried out by means of two different process variants, namely by means of the direct or indirect process. While in indirect processes, the process steps of forming and hardening run separately from each other, they take place together in direct process in a tool. In the following, however, only the direct method is considered.
Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannte In the direct process, a sheet steel plate on the so-called
Austenitisierungstemperatur (Ac3) aufgeheizt, anschließend wird die so erhitzte Platine in ein Formwerkzeug überführt und in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Abkühlgeschwindigkeit des Stahls liegt, abgekühlt, so dass ein gehärtetes Bauteil erzeugt wird. Bekannte warmumformbare Stähle für diesen Einsatzbereich sind zum Beispiel der Mangan-Bor-Stahl„22MnB5" und neuerdings auch luftvergütbare Stähle gemäß des europäischen Patentes EP 2 449 138 B1 . Austenitisierungstemperatur (Ac3) heated, then the so-heated board is transferred to a mold and formed in a one-step forming step to the finished component and thereby cooled by the cooled mold simultaneously with a speed that is above the critical cooling rate of the steel, so that a hardened component is generated. Known thermoformable steels for this application are, for example, the Manganese-boron steel "22MnB5" and recently also air-temperable steels according to the European patent EP 2 449 138 B1.
Neben unbeschichteten Stahlblechen werden auch Stahlbleche mit einem In addition to uncoated steel sheets are also steel sheets with a
Verzunderungsschutz für das Presshärten von der Automobilindustrie eingesetzt. Die Vorteile liegen hier neben der erhöhten Korrosionsbeständigkeit des fertigen Bauteils darin, dass die Platinen oder Bauteile im Ofen nicht verzundern, wodurch der Verschleiß der Pressenwerkzeuge durch abgeplatzten Zunder reduziert wird und die Bauteile vor der Weiterverarbeitung nicht aufwendig gestrahlt werden müssen. Scaling protection for press hardening used by the automotive industry. The advantages here are in addition to the increased corrosion resistance of the finished component in that the boards or components do not scale in the oven, whereby the wear of the press tools is reduced by chipped scale and the components must not be laboriously blasted before further processing.
Für das Presshärten sind derzeit die folgenden, durch Schmelztauchen aufgebrachten (Legierungs-) Beschichtungen bekannt: Aluminium-Silizium (AS), Zink-Aluminium (Z), Zink-Aluminium-Eisen (ZF/ Galvannealed), Zink-Magnesium-Aluminium-Eisen (ZM), sowie elektrolytisch abgeschiedene Beschichtungen aus Zink-Nickel oder Zink, wobei letztere vor der Warmumformung in eine Eisen-Zink-Legierungsschicht umgewandelt wird. Diese Korrosionsschutzbeschichtungen werden üblicherweise in kontinuierlichen Durchlaufverfahren auf das Warm- oder Kaltband aufgebracht. For press hardening, the following hot-dip (alloy) coatings are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / galvannealed), zinc-magnesium-aluminum-iron (ZM), as well as electrodeposited coatings of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot-forming. These anticorrosion coatings are usually applied to the hot or cold strip in continuous flow processes.
Die Herstellung von Bauteilen mittels Abschrecken von Vorprodukten aus The manufacture of components by quenching precursors
presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 601 19 826 T2 bekannt. Hier wird eine zuvor oberhalb der Austenitisierungstemperatur auf 800 - 1200 °C erwärmte und ggf. mit einem metallischen Überzug aus Zink oder auf Basis von Zink versehene Blechplatine in einem fallweise gekühlten Werkzeug durch Warmumformung zu einem Bauteil umgeformt, wobei während des Umformens durch schnellen Wärmeentzug das Blech bzw. Bauteil im Umformwerkzeug eine Abschreckhärtung (Presshärtung) erfährt und durch das entstehende martensitische Härtegefüge die geforderten Press-hardenable steels by hot forming in a forming tool is known from German patent DE 601 19 826 T2. Here is a previously heated above the Austenitisierungstemperatur to 800 - 1200 ° C and possibly provided with a metallic coating of zinc or based on zinc sheet metal blank formed in a case by case cooled tool by hot forming into a component, during the forming by rapid heat removal the Sheet metal or component undergoes a quench hardening (press hardening) in the forming tool and the required martensitic hardness structure
Festigkeitseigenschaften erreicht. Die Herstellung von Bauteilen mittels Abschrecken von mit einer Aluminiumlegierung beschichteten Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 699 33 751 T2 bekannt. Hier wird ein mit einer Aluminiumlegierung beschichtetes Blech vor einem Umformen auf über 700 °C erwärmt, wobei eine intermetallisch legierte Verbindung auf Basis von Eisen, Aluminium und Silizium auf der Oberfläche entsteht und nachfolgend das Blech umgeformt und mit einer Geschwindigkeit oberhalb der kritischen Strength properties achieved. The production of components by quenching of aluminum alloy-coated precursors of press-hardenable steels by hot forming in a forming tool is known from German Patent DE 699 33 751 T2. Here, a coated with an aluminum alloy sheet is heated to above 700 ° C before forming, with an intermetallic alloyed compound based on iron, aluminum and silicon is formed on the surface and subsequently the Sheet formed and at a speed above the critical
Abkühlgeschwindigkeit abkühlt. Cooling rate cools down.
Aus der deutschen Offenlegungsschrift DE 10 2016 102 504 A1 ist eine From the German patent application DE 10 2016 102 504 A1 is a
aluminiumbasierte Beschichtung für Stahlbleche und -bänder sowie ein Verfahren zu deren Herstellung bekannt. Die Beschichtung umfasst einen aluminiumbasierten Überzug, der in einem Schmelztauchverfahren aufgebracht wird. Anschließend wird eine durch atmosphärische Oxidation entstandene, willkürlich ausgebildete Schicht in einer vorgeschalteten alkalischen Vorbehandlung mit sich fallweiser anschließender saurer Dekapierung entfernt. Auf den von der willkürlich ausgebildeten Schicht befreiten Überzug wird wiederrum eine Deckschicht aufgebracht, die Aluminiumoxid und/oder -hydroxid enthält und mittels anodischer Oxidation, Plasmaoxidation oder Heißwasserbehandlung hergestellt wird. Die mittlere Dicke der Deckschicht beträgt weniger als 4 μηη und mehr als 0,1 μηη. Aluminum-based coating for steel sheets and strips and a method for their production known. The coating comprises an aluminum-based coating applied in a hot-dip process. Subsequently, a randomly formed by atmospheric oxidation, arbitrarily formed layer is removed in a preceding alkaline pretreatment with case wise subsequent acid pickling. On the coating freed from the arbitrarily formed layer, a covering layer is again applied which contains aluminum oxide and / or hydroxide and is produced by means of anodic oxidation, plasma oxidation or hot water treatment. The average thickness of the cover layer is less than 4 μηη and more than 0.1 μηη.
Die Offenlegungsschrift EP 2 045 360 A1 offenbart ein Verfahren zur Herstellung eines Stahlbauteils, welches mit einem Aluminiumüberzug beschichtet wird, der anschließend noch mit einem Zinküberzug versehen wird. Der Aluminiumüberzug enthält mindestens 85 Gew.-% AI und optional bis zu 15 Gew.-% Si; der Zinküberzug mindestens 90 Gew.-% Zn. Zwischen Aluminium- und Zinkbeschichtung kann vorteilhaft ein Dekapieren des mit dem Aluminiumüberzug versehenen The published patent application EP 2 045 360 A1 discloses a method for the production of a steel component which is coated with an aluminum coating which is subsequently provided with a zinc coating. The aluminum coating contains at least 85% by weight of Al and optionally up to 15% by weight of Si; the zinc coating at least 90 wt .-% Zn. Between aluminum and zinc coating can advantageously a Dekapieren provided with the aluminum coating
Stahlflach produkts vorgenommen werden, um die Oberflächenrauigkeit des Flat steel products are made to the surface roughness of the
Aluminium-Überzuges zu verbessern. Auch in der deutschen Offenlegungsschrift DE 10 2009 007 909 A1 wird ein Aluminum coating to improve. Also in the German patent application DE 10 2009 007 909 A1 is a
Verfahren zur Herstellung eines Stahlbauteils offenbart, welches gleichsam mit einem Aluminiumüberzug und anschließend mit einem Aluminiumüberzug versehen wird. Das mit dem Aluminiumüberzug und dem Aluminiumüberzug versehene  Discloses a method for producing a steel component, which is provided as it were with an aluminum coating and then with an aluminum coating. The provided with the aluminum coating and the aluminum coating
Stahlflach produkt wird zusätzlich mit einer Deckschicht beschichtet, die als Flat steel product is additionally coated with a topcoat, which as
Hauptbestandteil mindestens ein metallisches Salz der Phosphorsäure enthält. Main component contains at least one metallic salt of phosphoric acid.
Mögliche Metalle für die Metallphosphatbildung sind unter anderem Fe, Mn, Ti, Co und V, wobei aus dieser Gruppe einzig Mn als besonders vorteilhaft beschrieben wird. Zwischen den einzelnen Beschichtungsschritten kann jeweils eine Reinigung der zu beschichteten Schicht oder des Stahlflachproduktes erfolgen. Der Vorteil bei den aluminiumbasierten Überzügen liegt darin, dass neben einem größeren Prozessfenster (z.B. hinsichtlich der Erwärmungsparameter) die fertigen Bauteile vor der Weiterverarbeitung nicht gestrahlt werden müssen. Darüber hinaus besteht bei aluminiumbasierten Überzügen gegenüber zinkbasierten Überzügen nicht die Gefahr von Flüssigmetallversprödung und es können sich keine Mikrorisse im oberflächennahen Substratbereich an den ehemaligen Austenitkorngrenzen ausbilden, die bei Tiefen über 10 μηη einen negativen Effekt auf die Dauerfestigkeit haben können. Nachteilig bei der Verwendung von aluminiumbasierten Überzügen z.B. aus Possible metals for the formation of metal phosphate include Fe, Mn, Ti, Co and V, with only Mn being described as particularly advantageous from this group. In each case, a cleaning of the layer to be coated or of the flat steel product can take place between the individual coating steps. The advantage of the aluminum-based coatings is that in addition to a larger process window (eg with regard to the heating parameters), the finished components do not have to be blasted prior to further processing. In addition, with aluminum-based coatings over zinc-based coatings there is no risk of liquid metal embrittlement and no microcracks in the near-surface substrate area can form on the former Austenitkorngrenzen, which may have a negative effect on the fatigue strength at depths over 10 μηη. A disadvantage of the use of aluminum-based coatings, for example
Aluminium-Silizium (AS), ist jedoch die mangelhafte Lackiereignung des umgeformten Bauteils bei der automobiltypischen kathodischen Tauchlackierung (KTL), wenn eine zu kurze Erwärmungszeit beim Presshärten verwendet wurde. Bei kurzen  Aluminum-silicon (AS), however, is the inadequate paintability of the formed component in the automotive-typical cathodic dip coating (KTL), when too short a heating time was used in press hardening. In short
Erwärmungszeiten weist das KT-Iackierte Substrat eine unzureichende Heating times are insufficient for the KT-coated substrate
Korrosionsbeständigkeit auf. Corrosion resistance on.
Im Gegensatz zu den zinkbasierten Überzügen lassen sich aluminiumbasierte Überzüge nicht oder nur unzureichend Phosphatieren und somit kann durch den Phosphatierschritt keine Verbesserung der Korrosionsbeständigkeit erzielt werden. Aus diesen Gründen müssen bisher bei der Verarbeitung von Platinen mit In contrast to the zinc-based coatings, aluminum-based coatings can not or only insufficiently phosphating and thus can not be achieved by the phosphating step improvement in corrosion resistance. For these reasons, so far in the processing of boards with
aluminiumbasierten Überzügen mittels Presshärtung Mindesterwärmzeiten der Platine eingehalten werden, wodurch der Überzug mit Eisen durchlegiert und sich eine Oberfläche ausbildet, die eine ausreichende Korrosionsbeständigkeit des lackierten Bauteils bewirkt. aluminum-based coatings by means of press hardening minimum heat-up times of the board are maintained, whereby the coating is ironed with iron and forms a surface that causes sufficient corrosion resistance of the painted component.
Das Durchlegieren des Überzugs mit Eisen und die Ausbildung einer The alloying of the coating with iron and the formation of a
korrosionsbeständigen Oberfläche erfordern allerdings eine entsprechend lange Verweildauer im üblicherweise verwendeten Rollenherdofen, wodurch lange Öfen notwendig sind, um hinreichende Taktzeiten zu ermöglichen. Die Wirtschaftlichkeit des Pressformhärtens wird damit reduziert. Längere Öfen sind teurer in der corrosion-resistant surface, however, require a correspondingly long residence time in the roller hearth furnace commonly used, whereby long furnaces are necessary to allow sufficient cycle times. The efficiency of the press molding is thus reduced. Longer ovens are more expensive in the
Anschaffung und im Betrieb und haben zudem einen sehr großen Platzbedarf. Die Mindestverweildauer wird somit durch den Überzug bestimmt und nicht durch das Grundmaterial, für das lediglich die Erreichung der notwendigen  Acquisition and operation and also have a very large footprint. The minimum length of stay is thus determined by the coating and not by the basic material, for which only the achievement of the necessary
Austenitisierungstemperatur notwendig wäre. Zudem wird die Korrosionsbeständigkeit durch das stärkere Auflegieren mit Eisen verringert, da der Aluminiumgehalt in der Legierungsschicht mit der Ofenverweilzeit abnimmt und der Eisengehalt ansteigt. Austenitizing temperature would be necessary. In addition, the corrosion resistance is reduced by the stronger alloying with iron, since the aluminum content in the Alloy layer decreases with the Ofenverweilzeit and the iron content increases.
Ein weiterer Nachteil von bekannten AS-Überzügen besteht darin, dass bei sehr kurzen Glühzeiten, das heißt, wenn keine Durchlegierung des Überzugs mit dem Grundmaterial erfolgt ist, die Schweißbarkeit im Widerstandspunktschweißverfahren (WP-Schweißen) des pressformgehärteten Bauteils äußerst schlecht ist. Dies drückt sich z.B. in einem nur sehr kleinen Schweißbereich aus. Ursächlich hierfür ist unter anderem ein sehr geringer Übergangswiderstand bei kurzen Glühzeiten. Aus der Offenlegungsschrift DE 10 2015 210 459 A1 ist ein Verfahren zur A further disadvantage of known AS coatings is that, with very short annealing times, that is to say when no alloying of the coating with the base material has taken place, the weldability in the resistance spot welding (WP) method of the press-formed component is extremely poor. This is expressed, e.g. in a very small area of sweat. One of the reasons for this is a very low contact resistance with short annealing times. The published patent application DE 10 2015 210 459 A1 discloses a method for
Warmumformung eines Stahlbauteils bekannt, welches in einem Hot forming of a steel component known which in a
Wärmebehandlungsschritt in einen Bereich vollständiger oder teilweiser Heat treatment step in a range of complete or partial
Austenitisierung erwärmt wird, und das erwärmte Stahlbauteil in einem Umformschritt sowohl warmumgeformt als auch abschreckgehärtet wird, wobei dem Austenitisierung is heated, and the heated steel component is both hot-formed and quench-hardened in a forming step, wherein the
Wärmebehandlungsschritt ein erster Vorbehandlungsschritt prozesstechnisch vorgelagert ist, in dem in einem das Stahlbauteil zum Schutz vor Verzunderung im Wärmebehandlungsschritt mit einer korrosionsfesten Schutzschicht versehen wird. Dabei erfolgt vor der Durchführung des Wärmebehandlungsschritts in einem zweiten Vorbehandlungsschritt eine Oberflächenoxidation, in der eine reaktionsträge, korrosionsfeste Oxidationsschicht auf der Zunderschutzschicht gebildet wird, mittels derer ein abrasiver Werkzeugverschleiß im Umformschritt reduziert wird. Die Heat treatment step is a first pre-treatment step process technology upstream, in which the steel component is provided to protect against scaling in the heat treatment step with a corrosion-resistant protective layer. In this case, before the heat treatment step is carried out in a second pretreatment step, a surface oxidation takes place in which an inert, corrosion-resistant oxidation layer is formed on the scale protection layer by means of which an abrasive tool wear in the forming step is reduced. The
Oberflächenoxidation kann prozesstechnisch beispielsweise durch eine Surface oxidation can process technically, for example by a
Beizpassivierung erfolgen. Als nachteilig aus dem dort beschriebenen Stand der Technik wird unter anderem angesehen, dass sich durch die Aluminium-Silizium-Beschichtung eine raue harte Oberflächenstruktur des Stahlbauteils ergibt, was beim Presshärten zu einem starken Werkzeugverschleiß führt. Mittels der zusätzlichen Oxidationsschicht soll die Rauheit der Metalloberfläche des Stahlbauteils reduziert werden, wodurch sich der abrasive Werkzeugverschleiß im Umformschritt reduzieren soll. Beizpassivierung done. A disadvantage of the prior art described therein, inter alia, is that the aluminum-silicon coating results in a rough, hard surface structure of the steel component, which leads to severe tool wear during press hardening. By means of the additional oxidation layer, the roughness of the metal surface of the steel component is to be reduced, whereby the abrasive tool wear should be reduced in the forming step.
Nachteilig ist hierbei allerdings, dass durch eine Oberflächenoxidation vor der Wärmebehandlung bedingt durch die Reduzierung der Oberflächenrauheit, die Lackhaftung auf dem pressformgehärteten Bauteil und die Schweißbarkeit nicht verbessert wird. Zudem ist der zusätzliche Schritt der Oberflächenoxidation zeit- und energieaufwändig und steigert damit die Herstellkosten erheblich. The disadvantage here, however, that is not improved by a surface oxidation before the heat treatment due to the reduction of the surface roughness, the paint adhesion to the press-form hardened component and the weldability. In addition, the additional step of surface oxidation is time- and energy-consuming and thus increases the production costs considerably.
Aufgabe der Erfindung ist es deshalb, ein kostengünstiges Verfahren zum The object of the invention is therefore an inexpensive method for
Beschichten von Stahlblechen oder Stahlbändern anzugeben, welches eine hervorragende Eignung der Stahlbleche oder Stahlbänder zur Herstellung von Bauteilen mittels Presshärtung und deren Weiterverarbeitung liefert. Insbesondere soll die Ofenverweildauer reduziert und trotzdem eine gute WP-Schweißbarkeit und Korrosionsbeständigkeit am pressformgehärteten Bauteil nach dem Lackieren gewährleistet werden. Des Weiteren soll ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus derartigen Stahlblechen oder Stahlbändern Specify coating of steel sheets or steel strips, which provides an excellent suitability of the steel sheets or steel strips for the production of components by means of press hardening and their further processing. In particular, the Ofenverweingauer should be reduced while still ensuring good WP weldability and corrosion resistance on pressformhardened component after painting. Furthermore, a method for the production of press-hardened components from such steel sheets or steel strips
angegeben werden. be specified.
Die Lehre der Erfindung umfasst das Beschichten eines Stahlbleches oder The teaching of the invention comprises coating a steel sheet or
Stahlbandes, auf das ein aluminiumbasierter Überzug im Schmelztauchverfahren aufgebracht wird und das Befreien der Oberfläche des Überzugs von einer nativ entstandenen Aluminiumoxidschicht, dadurch gekennzeichnet, dass anschließend auf der befreiten Oberfläche des Überzugs Übergangsmetalle oder Steel strip on which an aluminum-based coating is applied by the hot dip method and liberating the surface of the coating of a natively formed aluminum oxide layer, characterized in that subsequently on the liberated surface of the coating transition metals or
Übergangsmetallverbindungen zur Bildung einer Auflage abgeschieden werden. Der zuvor verwendete Begriff befreit ist im Sinne von soweit technisch möglich von der nativ entstandenen Aluminiumoxidschicht befreit zu verstehen. Transition metal compounds are deposited to form a support. The term used above is exempted in the sense of being technically possible to be exempt from the native aluminum oxide layer.
Vorzugsweise ist hierbei die Auflage ein flächiger Niederschlag. Demnach kann eine vollflächige Auflage vorliegen oder eine nicht notwendigerweise deckende Auflage. Die deckende Auflage kann netzartig mit geordneter oder ungeordneter Struktur beziehungsweise Verteilung sein, die dann eine Schicht aus punktförmigen Auflagen und Fehlstellen ist. Preferably, in this case, the support is a flat precipitate. Accordingly, there may be a full-surface edition or not necessarily covering edition. The opaque overlay may be net-like with ordered or disordered structure or distribution, which is then a layer of punctiform overlays and voids.
Bevorzugt wird eine Auflage mit einem Schichtgewicht - bezogen auf Eisen - im Bereich von 7 bis 25 mg/m2, vorzugsweise 10 bis 15 mg/m2, abgeschieden. Preferably, a support with a coating weight - based on iron - in the range of 7 to 25 mg / m 2 , preferably 10 to 15 mg / m 2 deposited.
Des weiteren umfasst die Lehre der Erfindung ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus Stahlblechen oder Stahlbändern mit einer Furthermore, the teaching of the invention comprises a method for producing press-hardened components from steel sheets or steel strips with a
aluminiumbasierten Beschichtung, wobei die erfindungsgemäß behandelten aluminum-based coating, wherein the treated according to the invention
Stahlbleche oder Stahlbänder mit dem Ziel einer Härtung zumindest bereichsweise auf eine Temperatur über Ac3 erhitzt werden, anschließend bei dieser Temperatur umgeformt und danach mit dem Ziel einer Härtung mit einer Geschwindigkeit abgekühlt werden, die zumindest bereichsweise oberhalb der kritischen Steel sheets or steel strips with the aim of curing at least partially heated to a temperature above Ac3, then at this temperature be formed and then cooled with the aim of curing at a speed that at least partially above the critical
Abkühlgeschwindigkeit liegt. Bekannt ist, dass reines AI2O3 ein nahezu optimales Pilling-Bedworth-Verhältnis aufweist, was die Ausbildung wirkungsstarker Passivschichten fördert. Bei umfangreichen Untersuchungen wurde erkannt, dass dadurch die insbesondere während der Wärmebehandlung im Zuge der Pressformhärtung unbehandelter AS- Überzüge gebildeten Aluminiumoxidschichten mit in der Regel unter 10 nm extrem dünn bleiben und damit bezüglich der geforderten Verbesserung der Cooling speed is. It is known that pure Al 2 O 3 has an almost optimal Pilling-Bedworth ratio, which promotes the formation of effective passive layers. Extensive investigations have shown that this means that the aluminum oxide layers formed, in particular, during the heat treatment in the course of the press-form hardening of untreated AS coatings remain extremely thin, generally below 10 nm, and thus with respect to the required improvement of the
Widerstandspunktschweißbarkeit und Korrosionsbeständigkeit unwirksam sind.  Resistance point weldability and corrosion resistance are ineffective.
Vorteilhafter Weise wird auf dem Überzug mit den aufgebrachten Metallen und/oder deren Verbindungen unter einer Atmosphäre mit Sauerstoff oder unter Wasserdampf eine Aluminiumoxidschicht mit Mischoxiden aus den Metallen und/oder deren Advantageously, on the coating with the deposited metals and / or their compounds under an atmosphere with oxygen or water vapor, an aluminum oxide layer with mixed oxides of the metals and / or their
Verbindungen gebildet. Überraschend wurde bei den Untersuchungen festgestellt, dass durch Entfernen der nativ entstandenen Oxidschicht eines AS-Überzugs, gefolgt von der Abscheidung bestimmter Metalle oder deren Verbindungen (vorzugsweise Fe und seine Verbindungen), die mit AI2O3 Mischoxide bilden können (z.B. Korund, Eskolait, Hämatit, Karelianit, Tistarit, llmenite, Perowskite und/oder Spinelle), die erneute Ausbildung einer dünnen Aluminiumoxidschicht vor und während der Wärmebehandlung verhindert wird. Vorzugsweise wird die Aluminiumoxidschicht mit den Mischoxiden in einem Ofen mit einer Temperatur > 750 °C, vorzugsweise von 850 bis 950 °C, und einer Ofenverweildauer > 90 s, vorzugsweise 120 bis 180 s, gebildet.  Formed connections. Surprisingly, it was found in the investigations that by removing the natively formed oxide layer of an AS coating, followed by the deposition of certain metals or their compounds (preferably Fe and its compounds) which can form mixed oxides with Al 2 O 3 (eg corundum, eskolait, hematite, Karelianite, tistarite, ilmenite, perovskites and / or spinels), the reformation of a thin alumina layer before and during the heat treatment is prevented. Preferably, the aluminum oxide layer is formed with the mixed oxides in an oven with a temperature> 750 ° C, preferably from 850 to 950 ° C, and a furnace residence time> 90 s, preferably 120 to 180 s.
Stattdessen bildet sich eine aluminiumreiche Oxidschicht, die mit Kationen der zuvor abgeschiedenen Stoffe dotiert ist. Diese Kationen unterdrücken die oben Instead, an aluminum-rich oxide layer is formed, which is doped with cations of the previously deposited substances. These cations suppress the above
beschriebene Selbstbegrenzung des Oxidschichtwachstums und ermöglichen somit das Wachstum wesentlich dickerer Aluminiumoxidschichten während der described self-limiting oxide layer growth and thus allow the growth of much thicker alumina layers during the
Wärmebehandlung, wobei Oxidschichtdicken von über 80 nm erreicht werden können, die im Vergleich zu dünneren Aluminiumoxidschichten eine deutlich bessere Widerstandpunktschweißbarkeit und besseres Korrosionsverhalten im KT-Iackierten Zustand bewirken. Der Kern der Erfindung besteht also darin, dass der Al-basierte metallische Überzug insbesondere vor der Wärmebehandlung chemisch so behandelt wird, dass er von seiner nativ entstandenen Oxidschicht befreit und bestimmte Metalle oder deren Verbindungen, die mit AI2O3 Mischoxide bilden können, auf der Oberfläche des Überzugs abgeschieden werden. Diese verhindern die Bildung einer reinen Heat treatment, wherein oxide layer thicknesses of over 80 nm can be achieved, which cause a much better resistance spot weldability and better corrosion behavior in the KT-coated state compared to thinner aluminum oxide layers. The essence of the invention is therefore that the Al-based metallic coating is chemically treated in particular before the heat treatment so that it freed from its native oxide layer and certain metals or their compounds which can form mixed oxides with Al2O3, on the surface of the Coating be deposited. These prevent the formation of a pure
Aluminiumoxidschicht während der Wärmebehandlung vor dem Presshärten. Aluminum oxide layer during heat treatment before press hardening.
Stattdessen werden die abgeschiedenen Stoffe teilweise oder vollständig in die sich neu bildende Oxidschicht eingebaut. Durch diese Dotierung mit Metall- oder Übergangsmetallkationen wächst die Instead, the deposited substances are partially or completely incorporated into the newly forming oxide layer. By this doping with metal or transition metal cations grows the
Oxidschicht im Zuge der Wärmebehandlung auf sehr viel größere Dicken (>80 nm) an als bei unbehandelten Al-basierten Überzügen (<10 nm). Eine Selbstbegrenzung des Aluminiumoxidwachstums wird vermieden. Anders als in der Offenlegungsschrift DE 10 2015 210 459 A1 beschrieben, wird die im Kern eigenschaftsverbessernde Modifikation der AS-Oberfläche, nämlich die Entstehung bzw. die Ausbildung einer dicken Aluminiumoxidschicht, nicht vor der Wärmebehandlung vollzogen, sondern in-situ, im Zuge der Wärmebehandlung für die Presshärtung erreicht. Hierbei wächst die eigenschaftsbestimmende, dicke  Oxide layer in the course of heat treatment to much larger thicknesses (> 80 nm) than untreated Al-based coatings (<10 nm). Self-limiting alumina growth is avoided. Unlike in the published patent application DE 10 2015 210 459 A1, the modification of the AS surface improving the core, namely the formation or formation of a thick aluminum oxide layer, is not carried out before the heat treatment, but in-situ during the heat treatment achieved for press hardening. Here, the property-determining, thick grows
Aluminiumoxidschicht erst im Zuge der Wärmebehandlung im Ofen. Aluminum oxide layer only in the course of heat treatment in the oven.
Der technische Vorteil ist, dass die In-situ-Erzeugung der Oxidschicht, Ressourcen und Energie spart und mit einfacher und bestehender Anlagentechnik hocheffizient umgesetzt werden kann. The technical advantage is that the in-situ generation of the oxide layer saves resources and energy and can be implemented highly efficiently with simple and existing systems engineering.
Im erfindungsgemäßen Verfahren entstehen unter den in Tabelle 1 beschriebenen Ofenverweildauern bei 950 °C Ofentemperatur sehr dicke Oxidschichten von bis zu 250 nm. Erfindungsgemäß erzeugte Bauteile weisen die in Tabelle 2 beschriebenen großen Schweißbereiche im Widerstandpunktschweißen sowie eine sehr gute Korrosionsbeständigkeit im KT-Iackierten Zustand auf Tabelle 3, wenn sie im In the process according to the invention, very thick oxide layers of up to 250 nm are formed under the furnace residence times described in Table 1 at 950 ° C. oven temperature. Components produced according to the invention have the large welding ranges described in Table 2 in resistance spot welding and very good corrosion resistance in the KT-coated state on the table 3, when in the
Korrosionswechseltest gemäß Volkswagen PV1210 geprüft werden. Corrosion change test to be tested in accordance with Volkswagen PV1210.
Die erfindungsgemäße Behandlung besteht aus dem Aufbringen von The treatment according to the invention consists of the application of
Übergangsmetallen oder Übergangsmetallverbindungen beispielsweise aus der Gruppe Titan, Vanadium, Chrom, Eisen, und Mangan und/oder deren Verbindungen, vorzugsweise nahezu vollständig Eisen und/oder dessen Verbindungen, auf den Al- basierten metallischen Überzug mittels einer chemischen Abscheidung, vorzugsweise in einem nasschemischen Prozess. Dieser besteht mindestens aus dem Aufbringen einer Lösung von Verbindungen der oben angeführten Elemente, die in Transition metals or transition metal compounds, for example, from the group titanium, vanadium, chromium, iron, and manganese and / or their compounds, preferably almost completely iron and / or its compounds, on the Al-based metallic coating by means of a chemical deposition, preferably in a wet-chemical process. This consists at least of the application of a solution of compounds of the above-mentioned elements, which in
außenstromloser Reaktion mit dem Al-basierten metallischen Überzug reagieren. Der Begriff außenstromlos wird im Sinne von nicht elektrolytisch verwendet. Vorzugsweise erfolgt chemische Abscheidung mittels einer Spritz-, Tauch-, oder Rollapplikation. Auch ist bevorzugt vorgesehen, dass die Entfernung der atmosphärisch entstandenen nativen Oxidschicht und die chemische Abscheidung in einem einzigen Prozessschritt erfolgen. Hierfür können die beiden Behandlungsschritte in einer an eine electroless reaction with the Al-based metallic coating. The term without external power is used in the sense of non-electrolytic. Preferably, chemical deposition takes place by means of an injection, dipping or rolling application. It is also preferably provided that the removal of the atmospheric native oxide layer and the chemical deposition take place in a single process step. For this, the two treatment steps in one at a
Schmelztauchbeschichtungsanlage nachgeschalteten oder zu der Hot dip coating system downstream or to the
Schmelztauchbeschichtungsanlage separaten kontinuierlich arbeitenden Hot dip coating plant separate continuous
Beschichtungsanlage durchgeführt werden. Vorzugsweise wird diese Behandlung in Gegenwart von Verbindungen anderer Metalle beispielsweise aus der Gruppe Cobalt, Molybdän und Wolfram und/oder deren Verbindungen durchgeführt. Zum Beispiel beschleunigen Molybate, Wolframate oder Cobaltnitrat die Abscheidung des Eisens merklich, werden aber nur in geringem Umfang selbst abgeschieden, wodurch das erfindungsgemäße Verfahren noch effizienter wird. Bevorzugt werden jedoch Eisen oder seine Verbindungen Coating system to be performed. Preferably, this treatment is carried out in the presence of compounds of other metals, for example from the group cobalt, molybdenum and tungsten and / or their compounds. For example, molybates, tungstates or cobalt nitrate significantly accelerate the deposition of iron, but are self-deposited only to a small extent, thereby making the process of the invention even more efficient. However, preference is given to iron or its compounds
abgeschieden, weil Eisen bzw. Eisenverbindungen leicht verfügbar, preisgünstig und nicht toxisch sind. Außerdem ist Eisen bereits im Grundwerkstoff enthalten. deposited because iron or iron compounds are readily available, inexpensive and non-toxic. In addition, iron is already included in the base material.
Die Entfernung der nativ entstandenen Oxidschicht und Abscheidung der The removal of the natively formed oxide layer and deposition of the
erfindungsgemäßen Stoffe kann bei Verwendung alkalischer Medien vorteilhaft auch simultan in einem einzigen nasschemischen Schritt durchgeführt werden. Derartige Abscheideprozesse können in kontinuierlich arbeitenden Anlagen bei Substances according to the invention can advantageously also be carried out simultaneously in a single wet-chemical step when using alkaline media. Such deposition processes can be used in continuous systems
Bandgeschwindigkeiten von bis zu 120 m/min oder mehr durchgeführt werden. Der erforderliche Wirkstoffaufwand kann dabei weniger als 100 mg/m2 betragen. Belt speeds of up to 120 m / min or more are performed. The required drug cost can be less than 100 mg / m 2 .
Die Metalle und deren chemische Verbindungen können erfindungsgemäß auch durch elektrolytische Abscheidung aufgebracht werden. Dazu wird die nativ entstandene Oxidschicht des Al-basierten Überzugs (z.B. AS) mit alkalischer According to the invention, the metals and their chemical compounds can also be applied by electrolytic deposition. To this end, the natively-formed oxide layer of the Al-based coating (e.g., AS) with alkaline
Dekapierung entfernt, gespült und das Metall oder die chemische Verbindung aus einem Elektrolyten elektrochemisch abgeschieden. Bei der elektrochemischen Nachbehandlung in wässrigen Medien wird vorteilhaft eine Elektrolyttemperatur von 20 °C bis 85 °C eingehalten und bei Stromdichten zwischen 0,05 und 150 A/dm2 gearbeitet. Bei der Verwendung ionischer Flüssigkeiten zur Metallabscheidung können auch Elektrolyttemperaturen größer oder gleich 85 °C angewendet werden. Die Behandlung des Metallbandes kann in einer kontinuierlichen Bandanlage mit Prozessgeschwindigkeiten von bis zu 120 m/min oder mehr durchgeführt werden. Pickling removed, rinsed and electrochemically deposited the metal or chemical compound from an electrolyte. In the electrochemical Aftertreatment in aqueous media is advantageously maintained at an electrolyte temperature of 20 ° C to 85 ° C and worked at current densities between 0.05 and 150 A / dm 2 . When using ionic liquids for metal deposition also electrolyte temperatures greater than or equal to 85 ° C can be applied. The treatment of the metal strip can be carried out in a continuous belt line with process speeds of up to 120 m / min or more.
Durch die erfindungsgemäße Behandlung der aluminiumbasierten Beschichtung, bestehend aus der Entfernung der zunächst entstanden nativen Oxidschicht und anschließender Behandlung der AS-Oberfläche mit metallhaltigen Lösungen, kann zudem bei der nachfolgenden Weiterverarbeitung des Stahlbleches durch The inventive treatment of the aluminum-based coating, consisting of the removal of the initially formed native oxide layer and subsequent treatment of the AS surface with metal-containing solutions, can also in the subsequent further processing of the steel sheet by
Warmumformung bzw. Presshärtung, eine Verkürzung der Mindestverweilzeit im Ofen erreicht werden, was die Produktivität erheblich steigert. Bei unbehandelten AS- Überzügen wird die Mindestverweilzeit im Ofen für das Wachsen der Oxidschicht durch die Anforderung an die Schweißbarkeit im Widerstandpunktschweißen und die Korrosionsbeständigkeit im KT-Iackierten Zustand bestimmt. Hot reduction or press hardening, a reduction of the minimum residence time can be achieved in the furnace, which significantly increases the productivity. For untreated AS coatings, the minimum residence time in the furnace for the growth of the oxide layer is determined by the requirement for weldability in resistance spot welding and the corrosion resistance in the KT-coated state.
Bei den Untersuchungen wurde festgestellt, dass ab einem Schichtgewicht von ca. 10 mg/m2 auf der AS-Oberfläche aufgebrachten Wirkstoff, bezogen auf das Leitelement Eisen, sich eine deutliche Verkürzung der Mindesthaltezeit in der Wärmebehandlung zeigt. Konkret wies ein 1 ,2 mm dickes Substrat einer für das Pressformhärten geeigneten Stahllegierung (22MnB5) mit AS-Überzug (150g/m2) mit einer In the investigations, it was found that from a layer weight of about 10 mg / m 2 applied to the AS surface active ingredient, based on the guide element iron, shows a significant reduction in the minimum holding time in the heat treatment. Specifically, a 1.2 mm thick substrate of a mild steel alloy (22MnB5) with AS coating (150 g / m 2 ) suitable for press-forming had one
Eisenauflage von ca. 15 mg/m2 bereits nach einer Ofenverweildauer von 3 min bei 950 °C Ofentemperatur Eigenschaften auf, die bei unbehandelten Proben gleicher Blechdicke erst nach 6 min Ofenverweildauer erreicht werden. Die notwendigeIron deposit of about 15 mg / m 2 already after a furnace residence time of 3 min at 950 ° C oven temperature properties that can be achieved in untreated samples of the same sheet thickness after 6 min oven residence time. The necessary
Ofenverweildauer konnte damit im Vergleich zum Standardprozess halbiert werden. Oven residence time was halved compared to the standard process.
Die Figuren 1 und 2 zeigen das Tiefenprofil für die Elemente AI, Fe und O nach dem Presshärten von Blechen mit einem AS-Überzug mit einer erfindungsgemäßen Behandlung mit einer eisenhaltigen Lösung (Figur 2) im Vergleich zu einem unbehandelten Blech (Figur 1 ) bei einer Ofenverweildauer von 6 min und einer Ofentemperatur von 950 °C an Luftatmosphäre. In Figur 2 deutlich erkennbar ist der tiefergehende Sauerstoffeintrag bei der erfindungsgemäß behandelten Probe, was auf eine deutlich dickere Oxidschicht im Vergleich zur unbehandelten Probe hinweist. Zudem ist die Anreicherung von Eisen in der Oxidschicht deutlich zu erkennen. Die erfindungsgemäße Behandlung der Oberfläche des beschichteten Stahlbandes kann vorteilhaft in einem dem Prozessteil einer kontinuierlich produzierenden Figures 1 and 2 show the depth profile for the elements AI, Fe and O after the press-hardening of sheets with an AS coating with a treatment according to the invention with an iron-containing solution (Figure 2) compared to an untreated sheet (Figure 1) in a Oven residence time of 6 min and a furnace temperature of 950 ° C in an air atmosphere. In Figure 2 is clearly visible the deeper oxygen input in the inventive treated sample, indicating a significantly thicker oxide layer compared to the untreated sample. In addition, the accumulation of iron in the oxide layer is clearly visible. The treatment according to the invention of the surface of the coated steel strip can advantageously be carried out in a process part of a continuously producing
Schmelztauchbeschichtungsanlage nachgeschalteten Behandlungsteil oder einer separaten Anlage, zum Beispiel über Spritzbalken mit Düsen, in einem Tauchprozess sowie mittels einer elektrolytischen Abscheidung oder Sprayelektrolyse, jeweils auch in Kombination, erfolgen. Bei der separaten Anlage kann es sich z.B. um eine Hot dip coating system downstream treatment part or a separate system, for example via spray bars with nozzles, in a dipping process and by means of an electrolytic deposition or spray electrolysis, in each case also in combination. For the separate plant, it may be e.g. one
Bandbeschichtungs- oder eine elektrolytische Bandveredelungsanlage handeln. Eine der erfindungsgemäßen Behandlung vorgeschaltete alkalische Reinigung und abschließendem Spülen des mit einer aluminiumbasierten Beschichtung versehenen Stahlbleches oder Stahlbandes, beseitigt dabei vorteilhaft, die durch atmosphärische Oxidation entstandene (native) Oxidschicht und schafft dadurch einen definierten Ausgangszustand für die erfindungsgemäße Abscheidung metallischer Spezies. Die Behandlung der Oberfläche kann erfindungsgemäß über die gesamte Band coating or an electrolytic strip finishing plant act. An alkaline cleaning prior to the treatment according to the invention and subsequent rinsing of the steel sheet or steel strip provided with an aluminum-based coating advantageously eliminates the (native) oxide layer formed by atmospheric oxidation and thereby creates a defined initial state for the deposition of metallic species according to the invention. The treatment of the surface can according to the invention over the entire
Bandoberfläche oder auch nur partiell bzw. ein- oder beidseitig erfolgen. Im Falle der außenstromlosen Behandlung kann durch Konzentration der Einsatzlösung, deren Temperatur, den Spritzdruck, die Scherung der aufgespritzten Lösung relativ zur Oberfläche des zu behandelnden Metallbandes sowie dem mit der Oberfläche in Kontakt gebrachten Volumens die molare Menge der abgeschiedenen Metallspezies verändert werden. Bei elektrolytischer Abscheidung wird die abgeschiedene molare Menge der Metallspezies durch Elektrolytzusammensetzung, Strömungsverhältnisse, Temperatur, Stromdichte und Behandlungszeit bestimmt. Ausführungsbeispiele:  Ribbon surface or even partially or on one or both sides done. In the case of electroless treatment, by concentrating the feed solution, its temperature, the injection pressure, the shear of the sprayed solution relative to the surface of the metal strip to be treated, and the volume contacted with the surface, the molar amount of the deposited metal species can be varied. In electrolytic deposition, the deposited molar amount of the metal species is determined by electrolyte composition, flow conditions, temperature, current density and treatment time. EXAMPLES
Erfindungsgemäße Vorbehandlungen der Proben sind beispielsweise wie folgt: Examples of pretreatments of the samples according to the invention are as follows:
Das AS-beschichtete Blech wird in einer metallkationenhaltigen alkalischen Lösung bei einer Temperatur von 50 °C einige Sekunden einer Tauchbehandlung unterzogen. Dabei wird die nativ entstandene Oxidschicht entfernt und die eisenhaltige Schicht aufgebracht. The AS-coated sheet is immersed in a metal cation-containing alkaline solution at a temperature of 50 ° C for a few seconds. The natively formed oxide layer is removed and the iron-containing layer is applied.
Alternativ wird das AS-beschichtete Blech zur Entfernung der nativ entstandenen Oxidschicht in einer 20%igen Natronlauge 30 s bei Raumtemperatur einer Alternatively, the AS-coated sheet to remove the natively formed oxide layer in a 20% sodium hydroxide solution for 30 seconds at room temperature one
Tauchbehandlung unterzogen. Anschließend erfolgt Spülen mit vollentsalztem Wasser. Daran schließt sich die elektrolytische Abscheidung einer eisenhaltigen Schicht bei einer Elektrolyttemperatur von 50 °C an. Die Abscheidung erfolgt für jeweils 1 bzw. 10 s bei einer Stromdichte von 23 A dm2. Subjected to immersion treatment. This is followed by rinsing with demineralized Water. This is followed by the electrolytic deposition of an iron-containing layer at an electrolyte temperature of 50 ° C. The deposition takes place for 1 or 10 s at a current density of 23 A dm 2 .
Versuchsparameter zum Presshärten Test parameters for press hardening
• Ofentemperatur für die Wärmebehandlung: 950 °C  • Oven temperature for heat treatment: 950 ° C
• Atmosphäre: Umgebungsluft  • Atmosphere: ambient air
• Ofenverweildauer (bei Blechdicke bis 1 ,5 mm): 2, 3, 4, 6 min  • oven residence time (with sheet thickness up to 1.5 mm): 2, 3, 4, 6 min
• danach Abkühlen im gekühlten Flachwerkzeug auf <200°C  • Then cool down to <200 ° C in the cooled flat tool
Tabelle 1 zeigt für die rein nasschemische Vorbehandlung der Proben, dass die Dicke der Aluminiumoxidschichten signifikant mit zunehmender Wirkstoffbelegung (Fe) und Verweildauer im Ofen zunimmt. Ohne erfindungsgemäße Behandlung ist die Table 1 shows, for the purely wet-chemical pretreatment of the samples, that the thickness of the aluminum oxide layers increases significantly with increasing drug occupancy (Fe) and residence time in the oven. Without treatment according to the invention is the
Schichtdicke der Oxidschicht kleiner 10 nm. Bei einer Eisen-Auflage von ca. 7 mg/m2 und Verweildauer von 2, 3 oder 4 min. wird noch keine signifikante Schichtausbildung erreicht. Dies gilt auch für eine Eisen-Auflage von ca. 1 1 mg/m2 und ein Verweildauer von 2 min. Layer thickness of the oxide layer less than 10 nm. With an iron support of about 7 mg / m 2 and residence time of 2, 3 or 4 min. no significant stratification is achieved yet. This also applies to an iron coating of about 1 1 mg / m 2 and a residence time of 2 min.
Tabelle 1 : Schichtausbildung an der Probenoberfläche in Abhängigkeit der Table 1: Layer formation on the sample surface as a function of
Eisenauflage und Ofenverweildauer Iron pad and oven dwell time
Tabelle 2 verdeutlicht, dass die vorbehandelten und an Luftatmosphäre Table 2 illustrates that the pretreated and in air atmosphere
pressgehärteten AS-Proben mit eisenhaltiger Beschichtung auch nach kurzen Glühzeiten schon einen ausgeprägten Schweißbereich aufweisen. Ohne Press-hardened AS samples with an iron-containing coating have a pronounced weld area even after short annealing times. Without
erfindungsgemäße Behandlung ist bei kurzen Glühzeiten kein messbarer Treatment according to the invention is not measurable with short annealing times
Schweißbereich vorhanden. Welding area available.
Tabelle 2: Schweißbereich nach SEP1220-2 in Abhängigkeit der Eisenauflage und Glühzeit Table 2: Welding range according to SEP1220-2 depending on the iron support and annealing
Die Unterwanderung am Ritz nach 12 Wochen im Korrosionstest Volkswagen PV 1210 ist an Proben mit erfindungsgemäßer Behandlung geringer als an The infiltration of the Ritz after 12 weeks in the corrosion test Volkswagen PV 1210 is less than on samples with treatment according to the invention
unbehandelten Proben wie in Tabelle 3 dargestellt. untreated samples as shown in Table 3.
Tabelle 3: Unterwanderung nach 12 Wochen Volkswagen PV 1210 an KT-Iackierten Proben in Abhängigkeit der Eisenauflage und Glühzeit Table 3: Infiltration after 12 weeks Volkswagen PV 1210 on KT-coated samples depending on iron deposit and annealing time
Figur 3 zeigt beispielhaft einen Querschliff an einem Blechabschnitt mit AS- Beschichtung und erfindungsgemäßer, außenstromlos abgeschiedener Behandlung mit einer Eisenauflage von ca. 15 mg/m2 nach Presshärten. Die Ofenverweildauer betrug 3 min bei einer Ofentemperatur von 950 °C unter Luftatmosphäre. FIG. 3 shows, by way of example, a cross-section on a sheet-metal section with AS coating and treatment according to the invention, deposited with no external current, with an iron deposit of about 15 mg / m 2 after press-hardening. The oven residence time was 3 minutes at a furnace temperature of 950 ° C under air atmosphere.
Hierbei bezeichnet A den Grundwerkstoff; B die Diffusionszone bestehend aus einer Matrix des Grundwerkstoffs in die AI und Si aus dem Uberzug diffundiert sind; C Schicht die reich an Fe-Al-Phasen ist; D die Legierungszone, bestehend aus verschiedenen Al-Fe, Al-Fe-Si-Phasen; E die Oxidschicht aus Aluminium- und Eisenoxid; F die Einbettmasse. Here, A denotes the base material; B is the diffusion zone consisting of a Matrix of the base material into which Al and Si have diffused out of the coating; C layer rich in Fe-Al phases; D is the alloying zone consisting of different Al-Fe, Al-Fe-Si phases; E is the oxide layer of aluminum and iron oxide; F the investment.

Claims

Patentansprüche claims
1. Verfahren zum Beschichten eines Stahlbleches oder Stahlbandes, auf das ein aluminiumbasierter Überzug im Schmelztauchverfahren aufgebracht wird und die Oberfläche des Überzugs von einer nativ entstandenen Aluminiumoxidschicht befreit wird, dadurch gekennzeichnet, dass anschließend auf der befreiten Oberfläche des Überzugs Übergangsmetalle oder Übergangsmetallverbindungen zur Bildung einer Auflage abgeschieden werden. A process for coating a steel sheet or steel strip to which an aluminum-based hot dip coating is applied and the surface of the coating is freed of a natively formed aluminum oxide layer, characterized in that subsequently on the liberated surface of the coating transition metals or transition metal compounds to form a support be deposited.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Auflage als flächiger Niederschlag abgeschieden wird. 2. The method according to claim 1, characterized in that the support is deposited as a surface precipitate.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die 3. The method according to claim 1 or 2, characterized in that the
Übergangsmetalle oder die Übergangsmetallverbindungen mindestens ein Transition metals or the transition metal compounds at least one
chemisches Element aus der Gruppe Titan, Vanadium, Chrom, Mangan oder Eisen und/oder dessen Verbindungen umfassen. Chemical element selected from the group titanium, vanadium, chromium, manganese or iron and / or its compounds.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Übergangsmetalle oder die Übergangsmetallverbindungen überwiegend beziehungsweise nahezu vollständig Eisen oder dessen Verbindungen umfassen. 4. The method according to claim 3, characterized in that the transition metals or transition metal compounds predominantly or almost completely comprise iron or its compounds.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Auflage mit einem Schichtgewicht - bezogen auf Eisen - im Bereich von 7 bis 25 mg/m2, vorzugsweise 10 bis 15 mg/m2, abgeschieden wird. 5. The method according to at least one of claims 1 to 4, characterized in that a support with a layer weight - based on iron - in the range of 7 to 25 mg / m 2 , preferably 10 to 15 mg / m 2 , is deposited.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Abscheiden der Übergangsmetalle oder der Übergangsmetallverbindungen in Gegenwart von mindestens einem weiteren chemischen Element aus der Gruppe Cobalt, Molybdän, Wolfram und/oder deren Verbindungen erfolgt. 6. The method according to at least one of claims 1 to 5, characterized in that the deposition of the transition metals or the transition metal compounds in the presence of at least one further chemical element from the group cobalt, molybdenum, tungsten and / or their compounds.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Abscheiden der Übergangsmetalle oder der Übergangsmetallverbindungen durch eine chemische Abscheidung erfolgt. 7. The method according to at least one of claims 1 to 6, characterized in that deposition of the transition metals or the transition metal compounds takes place by a chemical deposition.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die chemische Abscheidung mittels einer Spritz-, Tauch-, oder Rollapplikation erfolgt. 8. The method according to claim 7, characterized in that the chemical Separation by means of a spray, dipping, or rolling application takes place.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Entfernung der atmosphärisch entstandenen nativen Oxidschicht und die chemische Abscheidung in einem einzigen Prozessschritt erfolgen. 9. The method according to at least one of claims 1 to 8, characterized in that the removal of the atmospheric native oxide layer and the chemical deposition take place in a single process step.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die beiden 10. The method according to claim 9, characterized in that the two
Behandlungsschritte in einer an eine Schmelztauchbeschichtungsanlage Treatment steps in one of a hot dip coating plant
nachgeschalteten oder zu der Schmelztauchbeschichtungsanlage separaten kontinuierlich arbeitenden Beschichtungsanlage durchgeführt werden. downstream or to the hot dip coating plant separate continuous coating system can be performed.
1 1 . Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch 1 1. Method according to at least one of claims 1 to 7, characterized
gekennzeichnet, dass das Abscheiden der Übergangsmetalle oder der characterized in that the deposition of the transition metals or the
Übergangsmetallverbindungen elektrolytisch erfolgt. Transition metal compounds takes place electrolytically.
12. Verfahren nach Anspruch 1 1 , dadurch gekennzeichnet, dass das elektrolytische Aufbringen der Übergangsmetalle oder Übergangsmetallverbindungen in einem wässrigem Medium als Elektrolyt erfolgt mit einer Elektrolyttemperatur von 25 °C bis 85 °C, bei Stromdichten zwischen 0,05 und 150 A/dm2. 12. The method according to claim 1 1, characterized in that the electrolytic application of the transition metals or transition metal compounds in an aqueous medium as the electrolyte is carried out with an electrolyte temperature of 25 ° C to 85 ° C, at current densities between 0.05 and 150 A / dm second ,
13. Verfahren nach mindestens einem der Ansprüche 1 bis 12, dadurch 13. The method according to at least one of claims 1 to 12, characterized
gekennzeichnet, dass auf dem Überzug mit der Auflage unter einer Atmosphäre mit Sauerstoff oder unter Wasserdampf eine Aluminiumoxidschicht mit Mischoxiden aus der Auflage gebildet wird. characterized in that an aluminum oxide layer with mixed oxides is formed from the support on the coating with the support under an atmosphere with oxygen or under steam.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die 14. The method according to claim 13, characterized in that the
Aluminiumoxidschicht mit den Mischoxiden in einem Ofen mit einer Temperatur > 750 °C, vorzugsweise von 850 bis 950 °C, und einer Ofenverweildauer > 90 s, Aluminum oxide layer with the mixed oxides in an oven with a temperature> 750 ° C, preferably 850 to 950 ° C, and a furnace residence time> 90 s,
vorzugsweise 120 bis 180 s, gebildet wird. preferably 120 to 180 s, is formed.
15. Verfahren nach mindestens einem der Ansprüche 1 bis 14, dadurch 15. The method according to at least one of claims 1 to 14, characterized
gekennzeichnet, dass durch eine Bildung der Mischoxide eine Selbstbegrenzung des Schichtwachstums des Aluminiumoxids vermieden wird. characterized in that a formation of the mixed oxides, a self-limiting the layer growth of the alumina is avoided.
16. Verfahren nach mindestens einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass als Mischoxide Korund, Eskolait, Hämatit, Karelianit, Tistarit, llmenite, Perowskite und/oder Spinelle gebildet werden. 16. The method according to at least one of claims 13 to 15, characterized in that corundum, eskolait, hematite, karelianite, tistarite, ilmenite, perovskite and / or spinel are formed as mixed oxides.
17. Verfahren nach mindestens einem der Ansprüche 1 bis 16, dadurch 17. The method according to at least one of claims 1 to 16, characterized
gekennzeichnet, dass als aluminiumbasierter Überzug Aluminium, Aluminium-Silizium (AS) oder Aluminium-Zink-Silizium (AZ) mit optionalen Beimischungen zusätzlicher Elemente, wie beispielsweise Magnesium, Mangan, Titan und seltenen Erden, auf das Stahlblech oder Stahlband aufgebracht wird. characterized in that the aluminum-based coating aluminum, aluminum-silicon (AS) or aluminum-zinc-silicon (AZ) with optional admixtures of additional elements, such as magnesium, manganese, titanium and rare earth, is applied to the steel sheet or steel strip.
18. Verfahren zur Herstellung von pressgehärteten Bauteilen aus Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung hergestellt nach mindestens einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass die Stahlbleche oder Stahlbänder zumindest bereichsweise auf eine Temperatur über Ac3 erhitzt werden, anschließend bei dieser Temperatur umgeformt und danach mit dem Ziel einer Härtung mit einer Geschwindigkeit abgekühlt werden, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt. 18. A method for producing press-hardened components from steel sheets or steel strips with an aluminum-based coating prepared according to at least one of claims 1 to 17, characterized in that the steel sheets or steel strips are at least partially heated to a temperature above Ac3, then formed at this temperature and are then cooled with the aim of curing at a rate that is at least partially above the critical cooling rate.
19. Verfahren nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, dass für die Stahlbleche oder Stahlbänder ein durch Wärmebehandlung härtbarer Stahl verwendet wird. 19. The method according to any one of claims 1 to 18, characterized in that a hardenable by heat treatment steel is used for the steel sheets or steel strips.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass ein mit Mangan und Bor legierter Vergütungsstahl verwendet wird. 20. The method according to claim 19, characterized in that a manganese and boron alloyed tempering steel is used.
21 . Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass als Vergütungsstahl ein 22MnB5 verwendet wird. 21. A method according to claim 20, characterized in that a 22MnB5 is used as the quenching steel.
EP18714124.7A 2017-02-21 2018-02-14 Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom Active EP3585917B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017103492 2017-02-21
PCT/EP2018/053702 WO2018153755A1 (en) 2017-02-21 2018-02-14 Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom

Publications (2)

Publication Number Publication Date
EP3585917A1 true EP3585917A1 (en) 2020-01-01
EP3585917B1 EP3585917B1 (en) 2021-09-29

Family

ID=61827666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18714124.7A Active EP3585917B1 (en) 2017-02-21 2018-02-14 Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom

Country Status (5)

Country Link
US (1) US11613791B2 (en)
EP (1) EP3585917B1 (en)
KR (1) KR102285532B1 (en)
RU (1) RU2729674C1 (en)
WO (1) WO2018153755A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100140A1 (en) * 2019-01-04 2020-07-09 Salzgitter Flachstahl Gmbh Aluminum-based coating for flat steel products for press-hardening components and processes for the production thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619542B2 (en) 1989-12-01 1997-06-11 川崎製鉄株式会社 Method for producing hot-dip zinc-based two-layer plated steel sheet excellent in uniformity of upper iron-based electroplating
FR2787735B1 (en) 1998-12-24 2001-02-02 Lorraine Laminage PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED
FR2807447B1 (en) 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
ATE535631T1 (en) * 2007-10-02 2011-12-15 Thyssenkrupp Steel Europe Ag METHOD FOR PRODUCING A STEEL COMPONENT BY HOT FORMING AND STEEL COMPONENT PRODUCED BY HOT FORMING
DE102007048504B4 (en) * 2007-10-10 2013-11-07 Voestalpine Stahl Gmbh Anti-corrosion coating for steel sheets and method of conditioning a corrosion protection coating
CA2721266C (en) 2008-04-22 2015-05-26 Nippon Steel Corporation Plated steel sheet and method of hot-stamping plated steel sheet
DE102009007909A1 (en) * 2009-02-06 2010-08-12 Thyssenkrupp Steel Europe Ag A method of producing a steel component by thermoforming and by hot working steel component
DE102010024664A1 (en) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Method for producing a component made of an air-hardenable steel and a component produced therewith
DE102012112109B4 (en) * 2012-12-11 2016-03-24 Thyssenkrupp Steel Europe Ag Surface-finished steel sheet and process for its production
DE102015210459B4 (en) 2015-06-08 2021-03-04 Volkswagen Aktiengesellschaft Process for hot forming a steel component
DE102016102504A1 (en) 2016-02-08 2017-08-10 Salzgitter Flachstahl Gmbh Aluminum-based coating for steel sheets or steel strips and method of making same

Also Published As

Publication number Publication date
WO2018153755A1 (en) 2018-08-30
EP3585917B1 (en) 2021-09-29
KR102285532B1 (en) 2021-08-04
KR20190115001A (en) 2019-10-10
RU2729674C1 (en) 2020-08-11
US20200232057A1 (en) 2020-07-23
US11613791B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
DE102012110972B3 (en) A method of making a product from flexibly rolled strip material and product from flexibly rolled strip material
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
EP2045360B1 (en) Method for manufacturing a steel part by hot forming and steel part manufactured by hot forming
EP2848715B1 (en) Method for producing a steel component with an anti-corrosive metal coating
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
EP3489386A1 (en) Coated steel substrate and method for producing a hardened component from a coated steel substrate
EP2656187A2 (en) Method for producing hardened structural elements
WO2011157690A1 (en) Method for producing a hot-formed and heat-treated steel component that is coated with a metal anti-corrosion coating from a sheet steel product
DE102010056265B3 (en) Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating
EP3906328B1 (en) Aluminum-based coating for flat steel products for press mold hardening components, and method for producing same
EP3585917B1 (en) Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom
EP3872230A1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
EP4038215B1 (en) Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom
WO2021170862A1 (en) Method for producing hardened steel components with a conditioned zinc alloy anti-corrosive layer
EP3872231A1 (en) Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 7/06 20060101ALI20210428BHEP

Ipc: C25D 5/50 20060101ALI20210428BHEP

Ipc: C25D 5/44 20060101ALI20210428BHEP

Ipc: C23C 18/18 20060101ALI20210428BHEP

Ipc: C23C 18/16 20060101ALI20210428BHEP

Ipc: C21D 1/673 20060101ALI20210428BHEP

Ipc: C25D 5/48 20060101ALI20210428BHEP

Ipc: C23C 28/00 20060101ALI20210428BHEP

Ipc: C23C 2/28 20060101ALI20210428BHEP

Ipc: C23C 2/26 20060101ALI20210428BHEP

Ipc: C21D 7/13 20060101ALI20210428BHEP

Ipc: C23C 2/12 20060101AFI20210428BHEP

INTG Intention to grant announced

Effective date: 20210517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007263

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007263

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1434251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240222

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929