EP3585917B1 - Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom - Google Patents

Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom Download PDF

Info

Publication number
EP3585917B1
EP3585917B1 EP18714124.7A EP18714124A EP3585917B1 EP 3585917 B1 EP3585917 B1 EP 3585917B1 EP 18714124 A EP18714124 A EP 18714124A EP 3585917 B1 EP3585917 B1 EP 3585917B1
Authority
EP
European Patent Office
Prior art keywords
aluminum
steel
coating
iron
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18714124.7A
Other languages
German (de)
French (fr)
Other versions
EP3585917A1 (en
Inventor
Frank Beier
Kerstin Körner
Marc Debeaux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP3585917A1 publication Critical patent/EP3585917A1/en
Application granted granted Critical
Publication of EP3585917B1 publication Critical patent/EP3585917B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the invention relates to a method for coating a steel sheet or steel strip, to which an aluminum-based coating is applied in the hot-dip process and the surface of the coating is freed from a native aluminum oxide layer.
  • the invention also relates to a method for producing press-hardened components from these steel sheets or steel strips with an aluminum-based coating.
  • aluminum-based coatings are understood to mean metallic coatings in which aluminum is the main component in percent by mass.
  • examples of possible aluminum-based coatings are aluminum, aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements such as magnesium, manganese, titanium and rare earths.
  • press hardening can be used to produce high-strength components that are primarily used in the bodywork area.
  • Press hardening can in principle be carried out using two different method variants, namely using the direct or indirect method. While the process steps of forming and hardening run separately in indirect processes, they take place together in one tool in the direct process. In the following, however, only the direct method is considered.
  • a sheet steel blank is heated to the so-called austenitizing temperature (Ac3), then the heated blank is transferred to a molding tool and formed in a one-step forming step to form the finished component, and the cooled molding tool at the same time at a speed that is above the critical cooling rate of the steel is cooled, so that a hardened component is produced.
  • Ac3 austenitizing temperature
  • Well-known hot-formable steels for this area of application are, for example Manganese-boron steel "22MnB5" and recently also air-hardenable steels according to the European patent EP 2 449 138 B1 .
  • steel sheets with anti-scaling protection are also used in the automotive industry for press hardening.
  • the advantages here are that the blanks or components do not scale in the furnace, which reduces wear on the press tools due to flaked scale and the components do not have to be blasted before further processing.
  • the following (alloy) coatings applied by hot dipping are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / galvannealed), zinc-magnesium-aluminum-iron (ZM), as well as electrolytically deposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming.
  • AS aluminum-silicon
  • Z zinc-aluminum
  • ZF / galvannealed zinc-magnesium-aluminum-iron
  • ZM zinc-magnesium-aluminum-iron
  • the coating comprises an aluminum-based coating that is applied in a hot-dip process. Subsequently, a randomly formed layer created by atmospheric oxidation is removed in an upstream alkaline pretreatment with subsequent acidic pickling in some cases.
  • a cover layer which contains aluminum oxide and / or hydroxide and is produced by means of anodic oxidation, plasma oxidation or hot water treatment, is in turn applied to the coating freed from the randomly formed layer.
  • the mean thickness of the top layer is less than 4 ⁇ m and more than 0.1 ⁇ m.
  • EP 2 045 360 A1 discloses a method for producing a steel component which is coated with an aluminum coating, which is then provided with a zinc coating.
  • the aluminum coating contains at least 85% by weight Al and optionally up to 15% by weight Si; the zinc coating is at least 90% by weight Zn.
  • the flat steel product provided with the aluminum coating can advantageously be masked in order to improve the surface roughness of the aluminum coating.
  • a method for producing a steel component which is provided with an aluminum coating and then with an aluminum coating.
  • the flat steel product provided with the aluminum coating and the aluminum coating is additionally coated with a top layer which contains at least one metallic salt of phosphoric acid as its main component.
  • Possible metals for metal phosphate formation include Fe, Mn, Ti, Co and V, from which group only Mn is described as being particularly advantageous.
  • the layer to be coated or the flat steel product can be cleaned between the individual coating steps.
  • the advantage of aluminum-based coatings is that, in addition to a larger process window (e.g. with regard to the heating parameters), the finished components do not have to be blasted before further processing.
  • the alloying of the coating with iron and the formation of a corrosion-resistant surface require a correspondingly long dwell time in the roller hearth furnace which is usually used, which means that long furnaces are necessary in order to enable sufficient cycle times.
  • the profitability of press mold hardening is thus reduced. Longer ovens are more expensive to buy and operate, and they also take up a lot of space.
  • the minimum dwell time is thus determined by the coating and not by the base material, for which only the required austenitizing temperature would be required.
  • the corrosion resistance is reduced by the stronger alloying with iron, since the aluminum content in the Alloy layer decreases with furnace dwell time and the iron content increases.
  • a method for hot forming a steel component which is heated in a heat treatment step to an area of complete or partial austenitization, and the heated steel component is both hot formed and quench hardened in a forming step, the heat treatment step being preceded by a first pretreatment step in which in one the steel component is provided with a corrosion-resistant protective layer to protect against scaling in the heat treatment step.
  • a surface oxidation takes place in a second pretreatment step, in which a non-reactive, corrosion-resistant oxidation layer is formed on the scale protection layer, by means of which abrasive tool wear is reduced in the forming step.
  • surface oxidation can take place, for example, by pickling passivation.
  • the aluminum-silicon coating results in a rough, hard surface structure of the steel component, which leads to severe tool wear during press hardening.
  • the roughness of the metal surface of the steel component should be reduced by means of the additional oxidation layer, which should reduce the abrasive tool wear in the forming step.
  • the disadvantage here is that a surface oxidation before the heat treatment due to the reduction in the surface roughness does not improve the paint adhesion on the press-molded component and the weldability.
  • the additional step of surface oxidation is time-consuming and energy-consuming and thus increases manufacturing costs considerably.
  • the object of the invention is therefore to provide a cost-effective method for coating steel sheets or steel strips which provides excellent suitability of the steel sheets or steel strips for the production of components by means of press hardening and their further processing.
  • the dwell time in the furnace should be reduced and, nevertheless, good WP weldability and corrosion resistance on the press-hardened component should be guaranteed after painting.
  • a method for the production of press-hardened components from such steel sheets or steel strips is to be specified.
  • the teaching of the invention comprises the coating of a steel sheet or steel strip to which an aluminum-based coating is applied in the hot-dip process and the removal of a native aluminum oxide layer from the surface of the coating, characterized in that transition metals or transition metal compounds are then formed on the liberated surface of the coating be deposited in an edition.
  • exempt is to be understood in the sense of, as far as technically possible, exempt from the native aluminum oxide layer.
  • the overlay is preferably an areal deposit. Accordingly, there can be an overlay over the entire surface or an overlay that is not necessarily covering.
  • the covering overlay can be network-like with an ordered or disordered structure or distribution, which is then a layer of point-like overlay and imperfections.
  • a coating with a layer weight - based on iron - is deposited in the range from 7 to 25 mg / m 2 , preferably 10 to 15 mg / m 2.
  • the teaching of the invention comprises a method for the production of press-hardened components from steel sheets or steel strips with an aluminum-based coating, the steel sheets or steel strips treated according to the invention being heated to a temperature above Ac3 at least in some areas with the aim of hardening, then at this temperature reshaped and then cooled with the aim of hardening at a rate that is at least partially above the critical cooling rate.
  • An aluminum oxide layer with mixed oxides of the metals and / or their compounds is advantageously formed on the coating with the applied metals and / or their compounds under an atmosphere with oxygen or under water vapor.
  • certain metals or their compounds preferably Fe and its compounds
  • Al 2 O 3 e.g. corundum, eskolaite , Hematite, karelianite, tistarite, ilmenite, perovskite and / or spinel
  • the aluminum oxide layer with the mixed oxides is preferably formed in a furnace with a temperature> 750 ° C., preferably from 850 to 950 ° C., and an oven dwell time> 90 s, preferably 120 to 180 s.
  • an aluminum-rich oxide layer is formed, which is doped with cations from the previously deposited substances. These cations suppress the self-limitation of the oxide layer growth described above and thus enable the growth of significantly thicker aluminum oxide layers during the heat treatment, whereby oxide layer thicknesses of over 80 nm can be achieved, which, compared to thinner aluminum oxide layers, result in significantly better resistance spot weldability and better corrosion behavior in the KT-coated state .
  • the essence of the invention is that the Al-based metallic coating is chemically treated, especially before the heat treatment, so that it is freed from its native oxide layer and certain metals or their compounds that can form mixed oxides with Al 2 O 3 deposited on the surface of the coating. These prevent the formation of a pure aluminum oxide layer during the heat treatment prior to press hardening. Instead, the deposited substances are partially or completely incorporated into the newly formed oxide layer.
  • the oxide layer grows in the course of the heat treatment to a much greater thickness (> 80 nm) than with untreated Al-based coatings ( ⁇ 10 nm). A self-limitation of the aluminum oxide growth is avoided.
  • the core property-improving modification of the AS surface namely the creation or formation of a thick aluminum oxide layer
  • the core property-improving modification of the AS surface is not carried out before the heat treatment, but in-situ, in the course of the heat treatment for press hardening.
  • the thick aluminum oxide layer that determines the properties only grows in the course of the heat treatment in the furnace.
  • the technical advantage is that the in-situ generation of the oxide layer saves resources and energy and can be implemented highly efficiently with simple and existing system technology.
  • the treatment according to the invention consists of the application of transition metals or transition metal compounds from the group consisting of titanium, vanadium, chromium, iron and manganese and / or their compounds, almost completely iron and / or its compounds on the Al-based metallic coating by means of chemical deposition, preferably in a wet chemical process.
  • This consists at least of the application of a solution of compounds of the elements listed above, which react in an external current-free reaction with the Al-based metallic coating.
  • the term no external current is used in the sense of not electrolytic.
  • Chemical deposition is preferably carried out by means of a spray, dip, or roller application.
  • the two treatment steps can be carried out in a continuously operating coating system that is connected downstream of a hot dip coating system or is separate from the hot dip coating system.
  • This treatment is preferably carried out in the presence of compounds of other metals, for example from the group consisting of cobalt, molybdenum and tungsten and / or their compounds.
  • compounds of other metals for example from the group consisting of cobalt, molybdenum and tungsten and / or their compounds.
  • molybates, tungstates or cobalt nitrate noticeably accelerate the deposition of iron, but are only deposited to a small extent themselves, which makes the method according to the invention even more efficient.
  • iron or its compounds are preferably deposited because iron or iron compounds are readily available, inexpensive and non-toxic. In addition, iron is already contained in the base material.
  • the removal of the native oxide layer and deposition of the substances according to the invention can advantageously also be carried out simultaneously in a single wet-chemical step when using alkaline media.
  • Such deposition processes can be carried out in continuously operating systems at belt speeds of up to 120 m / min or more.
  • the amount of active ingredient required can be less than 100 mg / m 2 .
  • the metals and their chemical compounds can also be applied by electrolytic deposition.
  • the native oxide layer of the Al-based coating eg AS
  • the metal or the chemical compound is electrochemically deposited from an electrolyte.
  • electrochemical Aftertreatment in aqueous media is advantageously maintained at an electrolyte temperature of 20 ° C. to 85 ° C. and current densities between 0.05 and 150 A / dm 2 are used .
  • electrolyte temperatures greater than or equal to 85 ° C. can also be used.
  • the treatment of the metal strip can be carried out in a continuous strip line with process speeds of up to 120 m / min or more.
  • the inventive treatment of the aluminum-based coating consisting of the removal of the native oxide layer and subsequent treatment of the AS surface with metal-containing solutions, can also shorten the minimum dwell time in the furnace during the subsequent further processing of the steel sheet by hot forming or press hardening which significantly increases productivity.
  • the minimum dwell time in the furnace for the oxide layer to grow is determined by the weldability requirements in resistance spot welding and the corrosion resistance in the KT-lacquered state.
  • the Figures 1 and 2 show the depth profile for the elements Al, Fe and O after press hardening of sheet metal with an AS coating with a treatment according to the invention with an iron-containing solution ( Figure 2 ) compared to an untreated sheet ( Figure 1 ) with an oven dwell time of 6 minutes and an oven temperature of 950 ° C in an air atmosphere.
  • Figure 2 The deeper introduction of oxygen in the sample treated according to the invention is clearly recognizable, which indicates a significantly thicker oxide layer compared to the untreated sample.
  • the accumulation of iron in the oxide layer can be clearly seen.
  • the inventive treatment of the surface of the coated steel strip can advantageously be carried out in a treatment part downstream of the process part of a continuously producing hot dip coating system or in a separate system, for example via spray bars with nozzles, in a dipping process and by means of electrolytic deposition or spray electrolysis, in each case also in combination.
  • the separate system can be, for example, a coil coating or an electrolytic coil finishing system.
  • the surface can be treated over the entire surface of the belt or only partially or on one or both sides.
  • the concentration of the feed solution, its temperature, the spray pressure, the shear of the sprayed solution relative to the surface of the metal strip to be treated and the volume brought into contact with the surface can change the molar amount of the deposited metal species.
  • the molar amount of metal species deposited is determined by the composition of the electrolyte, flow conditions, temperature, current density and treatment time.
  • Pre-treatments of the samples according to the invention are, for example, as follows:
  • the AS-coated sheet is subjected to an immersion treatment in an alkaline solution containing metal cations at a temperature of 50 ° C. for a few seconds.
  • the native oxide layer is removed and the iron-containing layer is applied.
  • the AS-coated sheet metal is subjected to an immersion treatment in a 20% sodium hydroxide solution at room temperature for 30 s to remove the native oxide layer. This is followed by rinsing with fully demineralized water Water. This is followed by the electrolytic deposition of an iron-containing layer at an electrolyte temperature of 50 ° C. The deposition takes place for 1 or 10 s at a current density of 23 A / dm 2 .
  • Table 1 shows for the purely wet-chemical pretreatment of the samples that the thickness of the aluminum oxide layers increases significantly with increasing active ingredient coverage (Fe) and the length of time in the furnace. Without treatment according to the invention, the layer thickness of the oxide layer is less than 10 nm. With an iron deposition of about 7 mg / m 2 and a residence time of 2, 3 or 4 minutes, no significant layer formation is achieved. This also applies to an iron application of approx. 11 mg / m 2 and a residence time of 2 minutes. Table 1: Layer formation on the sample surface depending on the iron layer and the duration of the furnace Iron level / mg / m 2 Oven dwell time / min 2 3 4th 6th Layer thickness of the top layer / nm approx. 7 no significant stratification 170 approx. 11 140 200 230 approx. 15 150 220 230 250
  • Table 2 shows that the pretreated and press-hardened AS specimens with an iron-containing coating already show a pronounced weld area even after short annealing times. Without treatment according to the invention, there is no measurable welding area with short annealing times.
  • Table 2 Welding area according to SEP1220-2 depending on the iron layer and annealing time Iron level / mg / m 2 Oven dwell time / min 2 3 4th 6th Welding area / n / a approx. 7 2.2 2.1 2.1 1.2 approx. 11 2.2 2 1.7 1.7 approx. 15 2.5 2.1 1.7 1.6
  • Figure 3 shows an example of a cross-section on a sheet metal section with AS coating and treatment according to the invention, deposited without external current, with an iron coating of approx. 15 mg / m 2 after press hardening.
  • the oven dwell time was 3 minutes at an oven temperature of 950 ° C. under an air atmosphere.
  • A denotes the base material
  • B the diffusion zone consisting of a Matrix of the base material into which Al and Si have diffused from the coating
  • C a layer rich in Fe-Al phases
  • D the alloy zone consisting of different Al-Fe, Al-Fe-Si phases
  • E the oxide layer made of aluminum and iron oxide
  • F the investment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Beschichten eines Stahlbleches oder Stahlbandes, auf das ein aluminiumbasierter Überzug im Schmelztauchverfahren aufgebracht wird und die Oberfläche des Überzugs von einer nativ entstandenen Aluminiumoxidschicht befreit wird. Des Weiteren betrifft die Erfindung ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus diesen Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung.The invention relates to a method for coating a steel sheet or steel strip, to which an aluminum-based coating is applied in the hot-dip process and the surface of the coating is freed from a native aluminum oxide layer. The invention also relates to a method for producing press-hardened components from these steel sheets or steel strips with an aluminum-based coating.

Als aluminiumbasierte Überzüge werden nachfolgend metallische Überzüge verstanden, bei denen Aluminium der Hauptbestandteil in Massenprozent ist. Beispiele für mögliche aluminiumbasierte Überzüge sind Aluminium, Aluminium-Silizium (AS), Aluminium-Zink-Silizium (AZ), sowie dieselben Überzüge mit Beimischungen zusätzlicher Elemente, wie z.B. Magnesium, Mangan, Titan und seltenen Erden.In the following, aluminum-based coatings are understood to mean metallic coatings in which aluminum is the main component in percent by mass. Examples of possible aluminum-based coatings are aluminum, aluminum-silicon (AS), aluminum-zinc-silicon (AZ), as well as the same coatings with admixtures of additional elements such as magnesium, manganese, titanium and rare earths.

Es ist bekannt, dass warmumgeformte Stahlbleche insbesondere im Automobilbau immer häufiger Verwendung finden. Durch den auch als Presshärten bezeichneten Prozess können hochfeste Bauteile erzeugt werden, die vorwiegend im Bereich der Karosserie eingesetzt werden. Das Presshärten kann grundsätzlich mittels zwei verschiedener Verfahrensvarianten durchgeführt werden, nämlich mittels des direkten oder indirekten Verfahrens. Während bei indirekten Verfahren die Prozessschritte des Umformens und Härtens getrennt voneinander ablaufen, finden sie beim direkten Verfahren in einem Werkzeug gemeinsam statt. Im Folgenden wird aber nur das direkte Verfahren betrachtet.It is known that hot-formed steel sheets are being used more and more, especially in automobile construction. The process, also known as press hardening, can be used to produce high-strength components that are primarily used in the bodywork area. Press hardening can in principle be carried out using two different method variants, namely using the direct or indirect method. While the process steps of forming and hardening run separately in indirect processes, they take place together in one tool in the direct process. In the following, however, only the direct method is considered.

Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannte Austenitisierungstemperatur (Ac3) aufgeheizt, anschließend wird die so erhitzte Platine in ein Formwerkzeug überführt und in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Abkühlgeschwindigkeit des Stahls liegt, abgekühlt, so dass ein gehärtetes Bauteil erzeugt wird.In the direct process, a sheet steel blank is heated to the so-called austenitizing temperature (Ac3), then the heated blank is transferred to a molding tool and formed in a one-step forming step to form the finished component, and the cooled molding tool at the same time at a speed that is above the critical cooling rate of the steel is cooled, so that a hardened component is produced.

Bekannte warmumformbare Stähle für diesen Einsatzbereich sind zum Beispiel der Mangan-Bor-Stahl "22MnB5" und neuerdings auch luftvergütbare Stähle gemäß des europäischen Patentes EP 2 449 138 B1 .Well-known hot-formable steels for this area of application are, for example Manganese-boron steel "22MnB5" and recently also air-hardenable steels according to the European patent EP 2 449 138 B1 .

Neben unbeschichteten Stahlblechen werden auch Stahlbleche mit einem Verzunderungsschutz für das Presshärten von der Automobilindustrie eingesetzt. Die Vorteile liegen hier neben der erhöhten Korrosionsbeständigkeit des fertigen Bauteils darin, dass die Platinen oder Bauteile im Ofen nicht verzundern, wodurch der Verschleiß der Pressenwerkzeuge durch abgeplatzten Zunder reduziert wird und die Bauteile vor der Weiterverarbeitung nicht aufwendig gestrahlt werden müssen.In addition to uncoated steel sheets, steel sheets with anti-scaling protection are also used in the automotive industry for press hardening. In addition to the increased corrosion resistance of the finished component, the advantages here are that the blanks or components do not scale in the furnace, which reduces wear on the press tools due to flaked scale and the components do not have to be blasted before further processing.

Für das Presshärten sind derzeit die folgenden, durch Schmelztauchen aufgebrachten (Legierungs-) Beschichtungen bekannt: Aluminium-Silizium (AS), Zink-Aluminium (Z), Zink-Aluminium-Eisen (ZF/ Galvannealed), Zink-Magnesium-Aluminium-Eisen (ZM), sowie elektrolytisch abgeschiedene Beschichtungen aus Zink-Nickel oder Zink, wobei letztere vor der Warmumformung in eine Eisen-Zink-Legierungsschicht umgewandelt wird. Diese Korrosionsschutzbeschichtungen werden üblicherweise in kontinuierlichen Durchlaufverfahren auf das Warm- oder Kaltband aufgebracht.For press hardening, the following (alloy) coatings applied by hot dipping are currently known: aluminum-silicon (AS), zinc-aluminum (Z), zinc-aluminum-iron (ZF / galvannealed), zinc-magnesium-aluminum-iron (ZM), as well as electrolytically deposited coatings made of zinc-nickel or zinc, the latter being converted into an iron-zinc alloy layer before hot forming. These anti-corrosion coatings are usually applied to the hot or cold strip in a continuous process.

Die Herstellung von Bauteilen mittels Abschrecken von Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 601 19 826 T2 bekannt. Hier wird eine zuvor oberhalb der Austenitisierungstemperatur auf 800 - 1200 °C erwärmte und ggf. mit einem metallischen Überzug aus Zink oder auf Basis von Zink versehene Blechplatine in einem fallweise gekühlten Werkzeug durch Warmumformung zu einem Bauteil umgeformt, wobei während des Umformens durch schnellen Wärmeentzug das Blech bzw. Bauteil im Umformwerkzeug eine Abschreckhärtung (Presshärtung) erfährt und durch das entstehende martensitische Härtegefüge die geforderten Festigkeitseigenschaften erreicht.The production of components by quenching preliminary products made of press-hardenable steels by hot forming in a forming tool is out of the German patent DE 601 19 826 T2 known. Here, a sheet metal blank previously heated above the austenitizing temperature to 800 - 1200 ° C and possibly provided with a metallic coating made of zinc or based on zinc is formed into a component in a tool that is cooled in some cases by hot forming, with rapid heat extraction during the forming process The sheet metal or component in the forming tool undergoes quench hardening (press hardening) and the required strength properties are achieved through the resulting martensitic hardening structure.

Die Herstellung von Bauteilen mittels Abschrecken von mit einer Aluminiumlegierung beschichteten Vorprodukten aus presshärtbaren Stählen durch Warmumformen in einem Umformwerkzeug ist aus dem deutschen Patent DE 699 33 751 T2 bekannt. Hier wird ein mit einer Aluminiumlegierung beschichtetes Blech vor einem Umformen auf über 700 °C erwärmt, wobei eine intermetallisch legierte Verbindung auf Basis von Eisen, Aluminium und Silizium auf der Oberfläche entsteht und nachfolgend das Blech umgeformt und mit einer Geschwindigkeit oberhalb der kritischen Abkühlgeschwindigkeit abkühlt.The production of components by quenching precursors made of press-hardenable steels coated with an aluminum alloy by hot forming in a forming tool is out of the German patent DE 699 33 751 T2 known. Here, a sheet metal coated with an aluminum alloy is heated to over 700 ° C before forming, with an intermetallic alloyed compound based on iron, aluminum and silicon being formed on the surface, followed by the Sheet metal formed and cooled at a rate above the critical cooling rate.

Aus der deutschen Offenlegungsschrift DE 10 2016 102 504 A1 ist eine aluminiumbasierte Beschichtung für Stahlbleche und -bänder sowie ein Verfahren zu deren Herstellung bekannt. Die Beschichtung umfasst einen aluminiumbasierten Überzug, der in einem Schmelztauchverfahren aufgebracht wird. Anschließend wird eine durch atmosphärische Oxidation entstandene, willkürlich ausgebildete Schicht in einer vorgeschalteten alkalischen Vorbehandlung mit sich fallweiser anschließender saurer Dekapierung entfernt. Auf den von der willkürlich ausgebildeten Schicht befreiten Überzug wird wiederrum eine Deckschicht aufgebracht, die Aluminiumoxid und/oder -hydroxid enthält und mittels anodischer Oxidation, Plasmaoxidation oder Heißwasserbehandlung hergestellt wird. Die mittlere Dicke der Deckschicht beträgt weniger als 4 µm und mehr als 0,1µm.From the German Offenlegungsschrift DE 10 2016 102 504 A1 an aluminum-based coating for steel sheets and strips and a method for their production is known. The coating comprises an aluminum-based coating that is applied in a hot-dip process. Subsequently, a randomly formed layer created by atmospheric oxidation is removed in an upstream alkaline pretreatment with subsequent acidic pickling in some cases. A cover layer, which contains aluminum oxide and / or hydroxide and is produced by means of anodic oxidation, plasma oxidation or hot water treatment, is in turn applied to the coating freed from the randomly formed layer. The mean thickness of the top layer is less than 4 µm and more than 0.1 µm.

Die Offenlegungsschrift EP 2 045 360 A1 offenbart ein Verfahren zur Herstellung eines Stahlbauteils, welches mit einem Aluminiumüberzug beschichtet wird, der anschließend noch mit einem Zinküberzug versehen wird. Der Aluminiumüberzug enthält mindestens 85 Gew.-% Al und optional bis zu 15 Gew.-% Si; der Zinküberzug mindestens 90 Gew.-% Zn. Zwischen Aluminium- und Zinkbeschichtung kann vorteilhaft ein Dekapieren des mit dem Aluminiumüberzug versehenen Stahlflachprodukts vorgenommen werden, um die Oberflächenrauigkeit des Aluminium-Überzuges zu verbessern.The disclosure document EP 2 045 360 A1 discloses a method for producing a steel component which is coated with an aluminum coating, which is then provided with a zinc coating. The aluminum coating contains at least 85% by weight Al and optionally up to 15% by weight Si; the zinc coating is at least 90% by weight Zn. Between the aluminum and zinc coating, the flat steel product provided with the aluminum coating can advantageously be masked in order to improve the surface roughness of the aluminum coating.

Auch in der deutschen Offenlegungsschrift DE 10 2009 007 909 A1 wird ein Verfahren zur Herstellung eines Stahlbauteils offenbart, welches gleichsam mit einem Aluminiumüberzug und anschließend mit einem Aluminiumüberzug versehen wird. Das mit dem Aluminiumüberzug und dem Aluminiumüberzug versehene Stahlflachprodukt wird zusätzlich mit einer Deckschicht beschichtet, die als Hauptbestandteil mindestens ein metallisches Salz der Phosphorsäure enthält. Mögliche Metalle für die Metallphosphatbildung sind unter anderem Fe, Mn, Ti, Co und V, wobei aus dieser Gruppe einzig Mn als besonders vorteilhaft beschrieben wird. Zwischen den einzelnen Beschichtungsschritten kann jeweils eine Reinigung der zu beschichteten Schicht oder des Stahlflachproduktes erfolgen.Also in the German patent application DE 10 2009 007 909 A1 a method for producing a steel component is disclosed which is provided with an aluminum coating and then with an aluminum coating. The flat steel product provided with the aluminum coating and the aluminum coating is additionally coated with a top layer which contains at least one metallic salt of phosphoric acid as its main component. Possible metals for metal phosphate formation include Fe, Mn, Ti, Co and V, from which group only Mn is described as being particularly advantageous. The layer to be coated or the flat steel product can be cleaned between the individual coating steps.

Der Vorteil bei den aluminiumbasierten Überzügen liegt darin, dass neben einem größeren Prozessfenster (z.B. hinsichtlich der Erwärmungsparameter) die fertigen Bauteile vor der Weiterverarbeitung nicht gestrahlt werden müssen. Darüber hinaus besteht bei aluminiumbasierten Überzügen gegenüber zinkbasierten Überzügen nicht die Gefahr von Flüssigmetallversprödung und es können sich keine Mikrorisse im oberflächennahen Substratbereich an den ehemaligen Austenitkorngrenzen ausbilden, die bei Tiefen über 10 µm einen negativen Effekt auf die Dauerfestigkeit haben können.The advantage of aluminum-based coatings is that, in addition to a larger process window (e.g. with regard to the heating parameters), the finished components do not have to be blasted before further processing. In addition, there is no risk of liquid metal embrittlement with aluminum-based coatings compared to zinc-based coatings and no microcracks can form in the near-surface substrate area at the former austenite grain boundaries, which can have a negative effect on the fatigue strength at depths of more than 10 µm.

Nachteilig bei der Verwendung von aluminiumbasierten Überzügen z.B. aus Aluminium-Silizium (AS), ist jedoch die mangelhafte Lackiereignung des umgeformten Bauteils bei der automobiltypischen kathodischen Tauchlackierung (KTL), wenn eine zu kurze Erwärmungszeit beim Presshärten verwendet wurde. Bei kurzen Erwärmungszeiten weist das KT-Iackierte Substrat eine unzureichende Korrosionsbeständigkeit auf.The disadvantage of using aluminum-based coatings, e.g. made of aluminum-silicon (AS), is, however, the inadequate paintability of the formed component in the cathodic dip painting (KTL) typical of automobiles if too short a heating time was used for press hardening. In the case of short heating times, the KT-lacquered substrate shows insufficient corrosion resistance.

Im Gegensatz zu den zinkbasierten Überzügen lassen sich aluminiumbasierte Überzüge nicht oder nur unzureichend phosphatieren und somit kann durch den Phosphatierschritt keine Verbesserung der Korrosionsbeständigkeit erzielt werden. Aus diesen Gründen müssen bisher bei der Verarbeitung von Platinen mit aluminiumbasierten Überzügen mittels Presshärtung Mindesterwärmzeiten der Platine eingehalten werden, wodurch der Überzug mit Eisen durchlegiert und sich eine Oberfläche ausbildet, die eine ausreichende Korrosionsbeständigkeit des lackierten Bauteils bewirkt.In contrast to the zinc-based coatings, aluminum-based coatings cannot be phosphated or can only be phosphated insufficiently and thus no improvement in the corrosion resistance can be achieved by the phosphating step. For these reasons, so far, when processing boards with aluminum-based coatings by means of press hardening, minimum heating times of the board have to be observed, as a result of which the coating is alloyed with iron and a surface is formed that causes the painted component to be sufficiently resistant to corrosion.

Das Durchlegieren des Überzugs mit Eisen und die Ausbildung einer korrosionsbeständigen Oberfläche erfordern allerdings eine entsprechend lange Verweildauer im üblicherweise verwendeten Rollenherdofen, wodurch lange Öfen notwendig sind, um hinreichende Taktzeiten zu ermöglichen. Die Wirtschaftlichkeit des Pressformhärtens wird damit reduziert. Längere Öfen sind teurer in der Anschaffung und im Betrieb und haben zudem einen sehr großen Platzbedarf. Die Mindestverweildauer wird somit durch den Überzug bestimmt und nicht durch das Grundmaterial, für das lediglich die Erreichung der notwendigen Austenitisierungstemperatur notwendig wäre. Zudem wird die Korrosionsbeständigkeit durch das stärkere Auflegieren mit Eisen verringert, da der Aluminiumgehalt in der Legierungsschicht mit der Ofenverweilzeit abnimmt und der Eisengehalt ansteigt.The alloying of the coating with iron and the formation of a corrosion-resistant surface, however, require a correspondingly long dwell time in the roller hearth furnace which is usually used, which means that long furnaces are necessary in order to enable sufficient cycle times. The profitability of press mold hardening is thus reduced. Longer ovens are more expensive to buy and operate, and they also take up a lot of space. The minimum dwell time is thus determined by the coating and not by the base material, for which only the required austenitizing temperature would be required. In addition, the corrosion resistance is reduced by the stronger alloying with iron, since the aluminum content in the Alloy layer decreases with furnace dwell time and the iron content increases.

Ein weiterer Nachteil von bekannten AS-Überzügen besteht darin, dass bei sehr kurzen Glühzeiten, das heißt, wenn keine Durchlegierung des Überzugs mit dem Grundmaterial erfolgt ist, die Schweißbarkeit im Widerstandspunktschweißverfahren (WP-Schweißen) des pressformgehärteten Bauteils äußerst schlecht ist. Dies drückt sich z.B. in einem nur sehr kleinen Schweißbereich aus. Ursächlich hierfür ist unter anderem ein sehr geringer Übergangswiderstand bei kurzen Glühzeiten.Another disadvantage of known AS coatings is that with very short annealing times, that is, when the coating is not alloyed with the base material, the resistance spot welding process (WP welding) of the press-hardened component is extremely poor. This is expressed, for example, in only a very small welding area. One of the reasons for this is a very low contact resistance with short glow times.

Aus der Offenlegungsschrift DE 10 2015 210 459 A1 ist ein Verfahren zur Warmumformung eines Stahlbauteils bekannt, welches in einem Wärmebehandlungsschritt in einen Bereich vollständiger oder teilweiser Austenitisierung erwärmt wird, und das erwärmte Stahlbauteil in einem Umformschritt sowohl warmumgeformt als auch abschreckgehärtet wird, wobei dem Wärmebehandlungsschritt ein erster Vorbehandlungsschritt prozesstechnisch vorgelagert ist, in dem in einem das Stahlbauteil zum Schutz vor Verzunderung im Wärmebehandlungsschritt mit einer korrosionsfesten Schutzschicht versehen wird. Dabei erfolgt vor der Durchführung des Wärmebehandlungsschritts in einem zweiten Vorbehandlungsschritt eine Oberflächenoxidation, in der eine reaktionsträge, korrosionsfeste Oxidationsschicht auf der Zunderschutzschicht gebildet wird, mittels derer ein abrasiver Werkzeugverschleiß im Umformschritt reduziert wird. Die Oberflächenoxidation kann prozesstechnisch beispielsweise durch eine Beizpassivierung erfolgen.From the published patent application DE 10 2015 210 459 A1 a method for hot forming a steel component is known, which is heated in a heat treatment step to an area of complete or partial austenitization, and the heated steel component is both hot formed and quench hardened in a forming step, the heat treatment step being preceded by a first pretreatment step in which in one the steel component is provided with a corrosion-resistant protective layer to protect against scaling in the heat treatment step. Before the heat treatment step is carried out, a surface oxidation takes place in a second pretreatment step, in which a non-reactive, corrosion-resistant oxidation layer is formed on the scale protection layer, by means of which abrasive tool wear is reduced in the forming step. In terms of process technology, surface oxidation can take place, for example, by pickling passivation.

Als nachteilig aus dem dort beschriebenen Stand der Technik wird unter anderem angesehen, dass sich durch die Aluminium-Silizium-Beschichtung eine raue harte Oberflächenstruktur des Stahlbauteils ergibt, was beim Presshärten zu einem starken Werkzeugverschleiß führt. Mittels der zusätzlichen Oxidationsschicht soll die Rauheit der Metalloberfläche des Stahlbauteils reduziert werden, wodurch sich der abrasive Werkzeugverschleiß im Umformschritt reduzieren soll.One of the disadvantages of the prior art described there is that the aluminum-silicon coating results in a rough, hard surface structure of the steel component, which leads to severe tool wear during press hardening. The roughness of the metal surface of the steel component should be reduced by means of the additional oxidation layer, which should reduce the abrasive tool wear in the forming step.

Nachteilig ist hierbei allerdings, dass durch eine Oberflächenoxidation vor der Wärmebehandlung bedingt durch die Reduzierung der Oberflächenrauheit, die Lackhaftung auf dem pressformgehärteten Bauteil und die Schweißbarkeit nicht verbessert wird. Zudem ist der zusätzliche Schritt der Oberflächenoxidation zeit- und energieaufwändig und steigert damit die Herstellkosten erheblich.The disadvantage here, however, is that a surface oxidation before the heat treatment due to the reduction in the surface roughness does not improve the paint adhesion on the press-molded component and the weldability. In addition, the additional step of surface oxidation is time-consuming and energy-consuming and thus increases manufacturing costs considerably.

Aufgabe der Erfindung ist es deshalb, ein kostengünstiges Verfahren zum Beschichten von Stahlblechen oder Stahlbändern anzugeben, welches eine hervorragende Eignung der Stahlbleche oder Stahlbänder zur Herstellung von Bauteilen mittels Presshärtung und deren Weiterverarbeitung liefert. Insbesondere soll die Ofenverweildauer reduziert und trotzdem eine gute WP-Schweißbarkeit und Korrosionsbeständigkeit am pressformgehärteten Bauteil nach dem Lackieren gewährleistet werden. Des Weiteren soll ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus derartigen Stahlblechen oder Stahlbändern angegeben werden.The object of the invention is therefore to provide a cost-effective method for coating steel sheets or steel strips which provides excellent suitability of the steel sheets or steel strips for the production of components by means of press hardening and their further processing. In particular, the dwell time in the furnace should be reduced and, nevertheless, good WP weldability and corrosion resistance on the press-hardened component should be guaranteed after painting. Furthermore, a method for the production of press-hardened components from such steel sheets or steel strips is to be specified.

Die Lehre der Erfindung umfasst das Beschichten eines Stahlbleches oder Stahlbandes, auf das ein aluminiumbasierter Überzug im Schmelztauchverfahren aufgebracht wird und das Befreien der Oberfläche des Überzugs von einer nativ entstandenen Aluminiumoxidschicht, dadurch gekennzeichnet, dass anschließend auf der befreiten Oberfläche des Überzugs Übergangsmetalle oder Übergangsmetallverbindungen zur Bildung einer Auflage abgeschieden werden.The teaching of the invention comprises the coating of a steel sheet or steel strip to which an aluminum-based coating is applied in the hot-dip process and the removal of a native aluminum oxide layer from the surface of the coating, characterized in that transition metals or transition metal compounds are then formed on the liberated surface of the coating be deposited in an edition.

Der zuvor verwendete Begriff befreit ist im Sinne von soweit technisch möglich von der nativ entstandenen Aluminiumoxidschicht befreit zu verstehen.The previously used term exempt is to be understood in the sense of, as far as technically possible, exempt from the native aluminum oxide layer.

Vorzugsweise ist hierbei die Auflage ein flächiger Niederschlag. Demnach kann eine vollflächige Auflage vorliegen oder eine nicht notwendigerweise deckende Auflage. Die deckende Auflage kann netzartig mit geordneter oder ungeordneter Struktur beziehungsweise Verteilung sein, die dann eine Schicht aus punktförmigen Auflagen und Fehlstellen ist.In this case, the overlay is preferably an areal deposit. Accordingly, there can be an overlay over the entire surface or an overlay that is not necessarily covering. The covering overlay can be network-like with an ordered or disordered structure or distribution, which is then a layer of point-like overlay and imperfections.

Eine Auflage mit einem Schichtgewicht - bezogen auf Eisen - wird im Bereich von 7 bis 25 mg/m2, vorzugsweise 10 bis 15 mg/m2, abgeschieden.A coating with a layer weight - based on iron - is deposited in the range from 7 to 25 mg / m 2 , preferably 10 to 15 mg / m 2.

Des weiteren umfasst die Lehre der Erfindung ein Verfahren zur Herstellung von pressgehärteten Bauteilen aus Stahlblechen oder Stahlbändern mit einer aluminiumbasierten Beschichtung, wobei die erfindungsgemäß behandelten Stahlbleche oder Stahlbänder mit dem Ziel einer Härtung zumindest bereichsweise auf eine Temperatur über Ac3 erhitzt werden, anschließend bei dieser Temperatur umgeformt und danach mit dem Ziel einer Härtung mit einer Geschwindigkeit abgekühlt werden, die zumindest bereichsweise oberhalb der kritischen Abkühlgeschwindigkeit liegt.Furthermore, the teaching of the invention comprises a method for the production of press-hardened components from steel sheets or steel strips with an aluminum-based coating, the steel sheets or steel strips treated according to the invention being heated to a temperature above Ac3 at least in some areas with the aim of hardening, then at this temperature reshaped and then cooled with the aim of hardening at a rate that is at least partially above the critical cooling rate.

Bekannt ist, dass reines Al2O3 ein nahezu optimales Pilling-Bedworth-Verhältnis aufweist, was die Ausbildung wirkungsstarker Passivschichten fördert. Bei umfangreichen Untersuchungen wurde erkannt, dass dadurch die insbesondere während der Wärmebehandlung im Zuge der Pressformhärtung unbehandelter AS-Überzüge gebildeten Aluminiumoxidschichten mit in der Regel unter 10 nm extrem dünn bleiben und damit bezüglich der geforderten Verbesserung der Widerstandspunktschweißbarkeit und Korrosionsbeständigkeit unwirksam sind.It is known that pure Al 2 O 3 has an almost optimal Pilling-Bedworth ratio, which promotes the formation of effective passive layers. Extensive investigations have shown that the aluminum oxide layers formed during the heat treatment in the course of the press mold hardening of untreated AS coatings, usually less than 10 nm, remain extremely thin and are therefore ineffective with regard to the required improvement in resistance spot weldability and corrosion resistance.

Vorteilhafter Weise wird auf dem Überzug mit den aufgebrachten Metallen und/oder deren Verbindungen unter einer Atmosphäre mit Sauerstoff oder unter Wasserdampf eine Aluminiumoxidschicht mit Mischoxiden aus den Metallen und/oder deren Verbindungen gebildet. Überraschend wurde bei den Untersuchungen festgestellt, dass durch Entfernen der nativ entstandenen Oxidschicht eines AS-Überzugs, gefolgt von der Abscheidung bestimmter Metalle oder deren Verbindungen (vorzugsweise Fe und seine Verbindungen), die mit Al2O3 Mischoxide bilden können (z.B. Korund, Eskolait, Hämatit, Karelianit, Tistarit, Ilmenite, Perowskite und/oder Spinelle), die erneute Ausbildung einer dünnen Aluminiumoxidschicht vor und während der Wärmebehandlung verhindert wird. Vorzugsweise wird die Aluminiumoxidschicht mit den Mischoxiden in einem Ofen mit einer Temperatur > 750 °C, vorzugsweise von 850 bis 950 °C, und einer Ofenverweildauer > 90 s, vorzugsweise 120 bis 180 s, gebildet.An aluminum oxide layer with mixed oxides of the metals and / or their compounds is advantageously formed on the coating with the applied metals and / or their compounds under an atmosphere with oxygen or under water vapor. Surprisingly, the investigations found that by removing the native oxide layer of an AS coating, followed by the deposition of certain metals or their compounds (preferably Fe and its compounds), which can form mixed oxides with Al 2 O 3 (e.g. corundum, eskolaite , Hematite, karelianite, tistarite, ilmenite, perovskite and / or spinel), the renewed formation of a thin aluminum oxide layer is prevented before and during the heat treatment. The aluminum oxide layer with the mixed oxides is preferably formed in a furnace with a temperature> 750 ° C., preferably from 850 to 950 ° C., and an oven dwell time> 90 s, preferably 120 to 180 s.

Stattdessen bildet sich eine aluminiumreiche Oxidschicht, die mit Kationen der zuvor abgeschiedenen Stoffe dotiert ist. Diese Kationen unterdrücken die oben beschriebene Selbstbegrenzung des Oxidschichtwachstums und ermöglichen somit das Wachstum wesentlich dickerer Aluminiumoxidschichten während der Wärmebehandlung, wobei Oxidschichtdicken von über 80 nm erreicht werden können, die im Vergleich zu dünneren Aluminiumoxidschichten eine deutlich bessere Widerstandpunktschweißbarkeit und besseres Korrosionsverhalten im KT-Iackierten Zustand bewirken.Instead, an aluminum-rich oxide layer is formed, which is doped with cations from the previously deposited substances. These cations suppress the self-limitation of the oxide layer growth described above and thus enable the growth of significantly thicker aluminum oxide layers during the heat treatment, whereby oxide layer thicknesses of over 80 nm can be achieved, which, compared to thinner aluminum oxide layers, result in significantly better resistance spot weldability and better corrosion behavior in the KT-coated state .

Der Kern der Erfindung besteht also darin, dass der Al-basierte metallische Überzug insbesondere vor der Wärmebehandlung chemisch so behandelt wird, dass er von seiner nativ entstandenen Oxidschicht befreit und bestimmte Metalle oder deren Verbindungen, die mit Al2O3 Mischoxide bilden können, auf der Oberfläche des Überzugs abgeschieden werden. Diese verhindern die Bildung einer reinen Aluminiumoxidschicht während der Wärmebehandlung vor dem Presshärten. Stattdessen werden die abgeschiedenen Stoffe teilweise oder vollständig in die sich neu bildende Oxidschicht eingebaut.The essence of the invention is that the Al-based metallic coating is chemically treated, especially before the heat treatment, so that it is freed from its native oxide layer and certain metals or their compounds that can form mixed oxides with Al 2 O 3 deposited on the surface of the coating. These prevent the formation of a pure aluminum oxide layer during the heat treatment prior to press hardening. Instead, the deposited substances are partially or completely incorporated into the newly formed oxide layer.

Durch diese Dotierung mit Metall- oder Übergangsmetallkationen wächst die Oxidschicht im Zuge der Wärmebehandlung auf sehr viel größere Dicken (>80 nm) an als bei unbehandelten Al-basierten Überzügen (<10 nm). Eine Selbstbegrenzung des Aluminiumoxidwachstums wird vermieden.As a result of this doping with metal or transition metal cations, the oxide layer grows in the course of the heat treatment to a much greater thickness (> 80 nm) than with untreated Al-based coatings (<10 nm). A self-limitation of the aluminum oxide growth is avoided.

Anders als in der Offenlegungsschrift DE 10 2015 210 459 A1 beschrieben, wird die im Kern eigenschaftsverbessernde Modifikation der AS-Oberfläche, nämlich die Entstehung bzw. die Ausbildung einer dicken Aluminiumoxidschicht, nicht vor der Wärmebehandlung vollzogen, sondern in-situ, im Zuge der Wärmebehandlung für die Presshärtung erreicht. Hierbei wächst die eigenschaftsbestimmende, dicke Aluminiumoxidschicht erst im Zuge der Wärmebehandlung im Ofen.Unlike in the Offenlegungsschrift DE 10 2015 210 459 A1 described, the core property-improving modification of the AS surface, namely the creation or formation of a thick aluminum oxide layer, is not carried out before the heat treatment, but in-situ, in the course of the heat treatment for press hardening. The thick aluminum oxide layer that determines the properties only grows in the course of the heat treatment in the furnace.

Der technische Vorteil ist, dass die In-situ-Erzeugung der Oxidschicht, Ressourcen und Energie spart und mit einfacher und bestehender Anlagentechnik hocheffizient umgesetzt werden kann.The technical advantage is that the in-situ generation of the oxide layer saves resources and energy and can be implemented highly efficiently with simple and existing system technology.

Im erfindungsgemäßen Verfahren entstehen unter den in Tabelle 1 beschriebenen Ofenverweildauern bei 950 °C Ofentemperatur sehr dicke Oxidschichten von bis zu 250 nm. Erfindungsgemäß erzeugte Bauteile weisen die in Tabelle 2 beschriebenen großen Schweißbereiche im Widerstandpunktschweißen sowie eine sehr gute Korrosionsbeständigkeit im KT-Iackierten Zustand auf Tabelle 3, wenn sie im Korrosionswechseltest gemäß Volkswagen PV1210 geprüft werden.In the process according to the invention, very thick oxide layers of up to 250 nm are formed under the furnace dwell times described in Table 1 at an furnace temperature of 950 ° C. Components produced according to the invention have the large welding areas in resistance spot welding described in Table 2 and very good corrosion resistance in the KT-lacquered state 3, if they are tested in the alternating corrosion test in accordance with Volkswagen PV1210.

Die erfindungsgemäße Behandlung besteht aus dem Aufbringen von Übergangsmetallen oder Übergangsmetallverbindungen aus der Gruppe Titan, Vanadium, Chrom, Eisen, und Mangan und/oder deren Verbindungen, nahezu vollständig Eisen und/oder dessen Verbindungen, auf den Al-basierten metallischen Überzug mittels einer chemischen Abscheidung, vorzugsweise in einem nasschemischen Prozess. Dieser besteht mindestens aus dem Aufbringen einer Lösung von Verbindungen der oben angeführten Elemente, die in außenstromloser Reaktion mit dem Al-basierten metallischen Überzug reagieren. Der Begriff außenstromlos wird im Sinne von nicht elektrolytisch verwendet. Vorzugsweise erfolgt chemische Abscheidung mittels einer Spritz-, Tauch-, oder Rollapplikation.The treatment according to the invention consists of the application of transition metals or transition metal compounds from the group consisting of titanium, vanadium, chromium, iron and manganese and / or their compounds, almost completely iron and / or its compounds on the Al-based metallic coating by means of chemical deposition, preferably in a wet chemical process. This consists at least of the application of a solution of compounds of the elements listed above, which react in an external current-free reaction with the Al-based metallic coating. The term no external current is used in the sense of not electrolytic. Chemical deposition is preferably carried out by means of a spray, dip, or roller application.

Auch ist bevorzugt vorgesehen, dass die Entfernung der atmosphärisch entstandenen nativen Oxidschicht und die chemische Abscheidung in einem einzigen Prozessschritt erfolgen. Hierfür können die beiden Behandlungsschritte in einer an eine Schmelztauchbeschichtungsanlage nachgeschalteten oder zu der Schmelztauchbeschichtungsanlage separaten kontinuierlich arbeitenden Beschichtungsanlage durchgeführt werden.Provision is also preferably made for the removal of the native oxide layer formed in the atmosphere and the chemical deposition to take place in a single process step. For this purpose, the two treatment steps can be carried out in a continuously operating coating system that is connected downstream of a hot dip coating system or is separate from the hot dip coating system.

Vorzugsweise wird diese Behandlung in Gegenwart von Verbindungen anderer Metalle beispielsweise aus der Gruppe Cobalt, Molybdän und Wolfram und/oder deren Verbindungen durchgeführt. Zum Beispiel beschleunigen Molybate, Wolframate oder Cobaltnitrat die Abscheidung des Eisens merklich, werden aber nur in geringem Umfang selbst abgeschieden, wodurch das erfindungsgemäße Verfahren noch effizienter wird. Bevorzugt werden jedoch Eisen oder seine Verbindungen abgeschieden, weil Eisen bzw. Eisenverbindungen leicht verfügbar, preisgünstig und nicht toxisch sind. Außerdem ist Eisen bereits im Grundwerkstoff enthalten.This treatment is preferably carried out in the presence of compounds of other metals, for example from the group consisting of cobalt, molybdenum and tungsten and / or their compounds. For example, molybates, tungstates or cobalt nitrate noticeably accelerate the deposition of iron, but are only deposited to a small extent themselves, which makes the method according to the invention even more efficient. However, iron or its compounds are preferably deposited because iron or iron compounds are readily available, inexpensive and non-toxic. In addition, iron is already contained in the base material.

Die Entfernung der nativ entstandenen Oxidschicht und Abscheidung der erfindungsgemäßen Stoffe kann bei Verwendung alkalischer Medien vorteilhaft auch simultan in einem einzigen nasschemischen Schritt durchgeführt werden. Derartige Abscheideprozesse können in kontinuierlich arbeitenden Anlagen bei Bandgeschwindigkeiten von bis zu 120 m/min oder mehr durchgeführt werden. Der erforderliche Wirkstoffaufwand kann dabei weniger als 100 mg/m2 betragen.The removal of the native oxide layer and deposition of the substances according to the invention can advantageously also be carried out simultaneously in a single wet-chemical step when using alkaline media. Such deposition processes can be carried out in continuously operating systems at belt speeds of up to 120 m / min or more. The amount of active ingredient required can be less than 100 mg / m 2 .

Die Metalle und deren chemische Verbindungen können erfindungsgemäß auch durch elektrolytische Abscheidung aufgebracht werden. Dazu wird die nativ entstandene Oxidschicht des Al-basierten Überzugs (z.B. AS) mit alkalischer Dekapierung entfernt, gespült und das Metall oder die chemische Verbindung aus einem Elektrolyten elektrochemisch abgeschieden. Bei der elektrochemischen Nachbehandlung in wässrigen Medien wird vorteilhaft eine Elektrolyttemperatur von 20 °C bis 85 °C eingehalten und bei Stromdichten zwischen 0,05 und 150 A/dm2 gearbeitet. Bei der Verwendung ionischer Flüssigkeiten zur Metallabscheidung können auch Elektrolyttemperaturen größer oder gleich 85 °C angewendet werden. Die Behandlung des Metallbandes kann in einer kontinuierlichen Bandanlage mit Prozessgeschwindigkeiten von bis zu 120 m/min oder mehr durchgeführt werden.According to the invention, the metals and their chemical compounds can also be applied by electrolytic deposition. For this purpose, the native oxide layer of the Al-based coating (eg AS) is removed with alkaline pickling, rinsed and the metal or the chemical compound is electrochemically deposited from an electrolyte. In the case of the electrochemical Aftertreatment in aqueous media is advantageously maintained at an electrolyte temperature of 20 ° C. to 85 ° C. and current densities between 0.05 and 150 A / dm 2 are used . When using ionic liquids for metal deposition, electrolyte temperatures greater than or equal to 85 ° C. can also be used. The treatment of the metal strip can be carried out in a continuous strip line with process speeds of up to 120 m / min or more.

Durch die erfindungsgemäße Behandlung der aluminiumbasierten Beschichtung, bestehend aus der Entfernung der zunächst entstanden nativen Oxidschicht und anschließender Behandlung der AS-Oberfläche mit metallhaltigen Lösungen, kann zudem bei der nachfolgenden Weiterverarbeitung des Stahlbleches durch Warmumformung bzw. Presshärtung, eine Verkürzung der Mindestverweilzeit im Ofen erreicht werden, was die Produktivität erheblich steigert. Bei unbehandelten AS-Überzügen wird die Mindestverweilzeit im Ofen für das Wachsen der Oxidschicht durch die Anforderung an die Schweißbarkeit im Widerstandpunktschweißen und die Korrosionsbeständigkeit im KT-Iackierten Zustand bestimmt.The inventive treatment of the aluminum-based coating, consisting of the removal of the native oxide layer and subsequent treatment of the AS surface with metal-containing solutions, can also shorten the minimum dwell time in the furnace during the subsequent further processing of the steel sheet by hot forming or press hardening which significantly increases productivity. In the case of untreated AS coatings, the minimum dwell time in the furnace for the oxide layer to grow is determined by the weldability requirements in resistance spot welding and the corrosion resistance in the KT-lacquered state.

Bei den Untersuchungen wurde festgestellt, dass ab einem Schichtgewicht von ca. 10 mg/m2 auf der AS-Oberfläche aufgebrachten Wirkstoff, bezogen auf das Leitelement Eisen, sich eine deutliche Verkürzung der Mindesthaltezeit in der Wärmebehandlung zeigt. Konkret wies ein 1,2 mm dickes Substrat einer für das Pressformhärten geeigneten Stahllegierung (22MnB5) mit AS-Überzug (150g/m2) mit einer Eisenauflage von ca. 15 mg/m2 bereits nach einer Ofenverweildauer von 3 min bei 950 °C Ofentemperatur Eigenschaften auf, die bei unbehandelten Proben gleicher Blechdicke erst nach 6 min Ofenverweildauer erreicht werden. Die notwendige Ofenverweildauer konnte damit im Vergleich zum Standardprozess halbiert werden.During the investigations it was found that from a layer weight of approx. 10 mg / m 2 the active ingredient applied to the AS surface, based on the guiding element iron, shows a significant shortening of the minimum holding time in the heat treatment. Specifically, a 1.2 mm thick substrate of a steel alloy suitable for press form hardening (22MnB5) with an AS coating (150g / m 2 ) with an iron layer of approx. 15 mg / m 2 exhibited after an oven dwell time of 3 minutes at 950 ° C Oven temperature properties which, in the case of untreated specimens of the same sheet thickness, are only reached after 6 minutes in the oven. The necessary oven dwell time could thus be halved compared to the standard process.

Die Figuren 1 und 2 zeigen das Tiefenprofil für die Elemente Al, Fe und O nach dem Presshärten von Blechen mit einem AS-Überzug mit einer erfindungsgemäßen Behandlung mit einer eisenhaltigen Lösung (Figur 2) im Vergleich zu einem unbehandelten Blech (Figur 1) bei einer Ofenverweildauer von 6 min und einer Ofentemperatur von 950 °C an Luftatmosphäre. In Figur 2 deutlich erkennbar ist der tiefergehende Sauerstoffeintrag bei der erfindungsgemäß behandelten Probe, was auf eine deutlich dickere Oxidschicht im Vergleich zur unbehandelten Probe hinweist. Zudem ist die Anreicherung von Eisen in der Oxidschicht deutlich zu erkennen.the Figures 1 and 2 show the depth profile for the elements Al, Fe and O after press hardening of sheet metal with an AS coating with a treatment according to the invention with an iron-containing solution ( Figure 2 ) compared to an untreated sheet ( Figure 1 ) with an oven dwell time of 6 minutes and an oven temperature of 950 ° C in an air atmosphere. In Figure 2 The deeper introduction of oxygen in the sample treated according to the invention is clearly recognizable, which indicates a significantly thicker oxide layer compared to the untreated sample. In addition, the accumulation of iron in the oxide layer can be clearly seen.

Die erfindungsgemäße Behandlung der Oberfläche des beschichteten Stahlbandes kann vorteilhaft in einem dem Prozessteil einer kontinuierlich produzierenden Schmelztauchbeschichtungsanlage nachgeschalteten Behandlungsteil oder einer separaten Anlage, zum Beispiel über Spritzbalken mit Düsen, in einem Tauchprozess sowie mittels einer elektrolytischen Abscheidung oder Sprayelektrolyse, jeweils auch in Kombination, erfolgen. Bei der separaten Anlage kann es sich z.B. um eine Bandbeschichtungs- oder eine elektrolytische Bandveredelungsanlage handeln. Eine der erfindungsgemäßen Behandlung vorgeschaltete alkalische Reinigung und abschließendem Spülen des mit einer aluminiumbasierten Beschichtung versehenen Stahlbleches oder Stahlbandes, beseitigt dabei vorteilhaft, die durch atmosphärische Oxidation entstandene (native) Oxidschicht und schafft dadurch einen definierten Ausgangszustand für die erfindungsgemäße Abscheidung metallischer Spezies.The inventive treatment of the surface of the coated steel strip can advantageously be carried out in a treatment part downstream of the process part of a continuously producing hot dip coating system or in a separate system, for example via spray bars with nozzles, in a dipping process and by means of electrolytic deposition or spray electrolysis, in each case also in combination. The separate system can be, for example, a coil coating or an electrolytic coil finishing system. An alkaline cleaning prior to the treatment according to the invention and subsequent rinsing of the steel sheet or steel strip provided with an aluminum-based coating advantageously removes the (native) oxide layer created by atmospheric oxidation and thus creates a defined initial state for the deposition of metallic species according to the invention.

Die Behandlung der Oberfläche kann erfindungsgemäß über die gesamte Bandoberfläche oder auch nur partiell bzw. ein- oder beidseitig erfolgen. Im Falle der außenstromlosen Behandlung kann durch Konzentration der Einsatzlösung, deren Temperatur, den Spritzdruck, die Scherung der aufgespritzten Lösung relativ zur Oberfläche des zu behandelnden Metallbandes sowie dem mit der Oberfläche in Kontakt gebrachten Volumens die molare Menge der abgeschiedenen Metallspezies verändert werden. Bei elektrolytischer Abscheidung wird die abgeschiedene molare Menge der Metallspezies durch Elektrolytzusammensetzung, Strömungsverhältnisse, Temperatur, Stromdichte und Behandlungszeit bestimmt.According to the invention, the surface can be treated over the entire surface of the belt or only partially or on one or both sides. In the case of the electroless treatment, the concentration of the feed solution, its temperature, the spray pressure, the shear of the sprayed solution relative to the surface of the metal strip to be treated and the volume brought into contact with the surface can change the molar amount of the deposited metal species. In the case of electrolytic deposition, the molar amount of metal species deposited is determined by the composition of the electrolyte, flow conditions, temperature, current density and treatment time.

Ausführungsbeispiele:Embodiments:

Erfindungsgemäße Vorbehandlungen der Proben sind beispielsweise wie folgt: Das AS-beschichtete Blech wird in einer metallkationenhaltigen alkalischen Lösung bei einer Temperatur von 50 °C einige Sekunden einer Tauchbehandlung unterzogen. Dabei wird die nativ entstandene Oxidschicht entfernt und die eisenhaltige Schicht aufgebracht.Pre-treatments of the samples according to the invention are, for example, as follows: The AS-coated sheet is subjected to an immersion treatment in an alkaline solution containing metal cations at a temperature of 50 ° C. for a few seconds. The native oxide layer is removed and the iron-containing layer is applied.

Alternativ wird das AS-beschichtete Blech zur Entfernung der nativ entstandenen Oxidschicht in einer 20%igen Natronlauge 30 s bei Raumtemperatur einer Tauchbehandlung unterzogen. Anschließend erfolgt Spülen mit vollentsalztem Wasser. Daran schließt sich die elektrolytische Abscheidung einer eisenhaltigen Schicht bei einer Elektrolyttemperatur von 50 °C an. Die Abscheidung erfolgt für jeweils 1 bzw. 10 s bei einer Stromdichte von 23 A/dm2.Alternatively, the AS-coated sheet metal is subjected to an immersion treatment in a 20% sodium hydroxide solution at room temperature for 30 s to remove the native oxide layer. This is followed by rinsing with fully demineralized water Water. This is followed by the electrolytic deposition of an iron-containing layer at an electrolyte temperature of 50 ° C. The deposition takes place for 1 or 10 s at a current density of 23 A / dm 2 .

Versuchsparameter zum Presshärten

  • Ofentemperatur für die Wärmebehandlung: 950 °C
  • Atmosphäre: Umgebungsluft
  • Ofenverweildauer (bei Blechdicke bis 1,5 mm): 2, 3, 4, 6 min
  • danach Abkühlen im gekühlten Flachwerkzeug auf <200°C
Test parameters for press hardening
  • Oven temperature for heat treatment: 950 ° C
  • Atmosphere: ambient air
  • Oven dwell time (for sheet thicknesses up to 1.5 mm): 2, 3, 4, 6 min
  • then cooling in the cooled flat tool to <200 ° C

Tabelle 1 zeigt für die rein nasschemische Vorbehandlung der Proben, dass die Dicke der Aluminiumoxidschichten signifikant mit zunehmender Wirkstoffbelegung (Fe) und Verweildauer im Ofen zunimmt. Ohne erfindungsgemäße Behandlung ist die Schichtdicke der Oxidschicht kleiner 10 nm. Bei einer Eisen-Auflage von ca. 7 mg/m2 und Verweildauer von 2, 3 oder 4 min. wird noch keine signifikante Schichtausbildung erreicht. Dies gilt auch für eine Eisen-Auflage von ca. 11 mg/m2 und ein Verweildauer von 2 min. Tabelle 1: Schichtausbildung an der Probenoberfläche in Abhängigkeit der Eisenauflage und Ofenverweildauer Auflage Eisen / mg/m2 Ofenverweildauer/ min 2 3 4 6 Schichtdicke oberste Schicht / nm ca. 7 keine signifikante Schichtausbildung 170 ca. 11 140 200 230 ca. 15 150 220 230 250 Table 1 shows for the purely wet-chemical pretreatment of the samples that the thickness of the aluminum oxide layers increases significantly with increasing active ingredient coverage (Fe) and the length of time in the furnace. Without treatment according to the invention, the layer thickness of the oxide layer is less than 10 nm. With an iron deposition of about 7 mg / m 2 and a residence time of 2, 3 or 4 minutes, no significant layer formation is achieved. This also applies to an iron application of approx. 11 mg / m 2 and a residence time of 2 minutes. Table 1: Layer formation on the sample surface depending on the iron layer and the duration of the furnace Iron level / mg / m 2 Oven dwell time / min 2 3 4th 6th Layer thickness of the top layer / nm approx. 7 no significant stratification 170 approx. 11 140 200 230 approx. 15 150 220 230 250

Tabelle 2 verdeutlicht, dass die vorbehandelten und an Luftatmosphäre pressgehärteten AS-Proben mit eisenhaltiger Beschichtung auch nach kurzen Glühzeiten schon einen ausgeprägten Schweißbereich aufweisen. Ohne erfindungsgemäße Behandlung ist bei kurzen Glühzeiten kein messbarer Schweißbereich vorhanden. Tabelle 2: Schweißbereich nach SEP1220-2 in Abhängigkeit der Eisenauflage und Glühzeit Auflage Eisen / mg/m2 Ofenverweildauer/ min 2 3 4 6 Schweißbereich / kA ca. 7 2,2 2,1 2,1 1,2 ca. 11 2,2 2 1,7 1,7 ca. 15 2,5 2,1 1,7 1,6 Table 2 shows that the pretreated and press-hardened AS specimens with an iron-containing coating already show a pronounced weld area even after short annealing times. Without treatment according to the invention, there is no measurable welding area with short annealing times. Table 2: Welding area according to SEP1220-2 depending on the iron layer and annealing time Iron level / mg / m 2 Oven dwell time / min 2 3 4th 6th Welding area / n / a approx. 7 2.2 2.1 2.1 1.2 approx. 11 2.2 2 1.7 1.7 approx. 15 2.5 2.1 1.7 1.6

Die Unterwanderung am Ritz nach 12 Wochen im Korrosionstest Volkswagen PV 1210 ist an Proben mit erfindungsgemäßer Behandlung geringer als an unbehandelten Proben wie in Tabelle 3 dargestellt. Tabelle 3: Unterwanderung nach 12 Wochen Volkswagen PV 1210 an KT-Iackierten Proben in Abhängigkeit der Eisenauflage und Glühzeit Ofenverweildauer / min Eisenauflage / mg/m2 Unterwanderung (UW) am Ritz / mm nach 12. Wochen VW PV1210 2 ca. 11 UW < 1 ca. 15 UW < 1 3 ca. 7 UW < 1 ca. 11 UW < 1 ca. 15 UW < 1 4 ca. 7 UW < 1 ca. 11 UW < 1 ca. 15 UW < 1 6 ca. 7 UW < 1 ca. 11 UW < 1,5 ca. 15 UW < 1,5 ohne erfindungsgemäße Behandlung 2,5 0 UW > 2 oder starke Filiformkorrosion 6 0 1,5 < UW < 2 The infiltration of the scratch after 12 weeks in the Volkswagen PV 1210 corrosion test is lower on samples with the treatment according to the invention than on untreated samples, as shown in Table 3. Table 3: Infiltration after 12 weeks of Volkswagen PV 1210 on KT-lacquered samples depending on the iron coating and annealing time Oven dwell time / min Iron coverage / mg / m 2 Infiltration (UW) at the scratch / mm after 12 weeks VW PV1210 2 approx. 11 UW <1 approx. 15 UW <1 3 approx. 7 UW <1 approx. 11 UW <1 approx. 15 UW <1 4th approx. 7 UW <1 approx. 11 UW <1 approx. 15 UW <1 6th approx. 7 UW <1 approx. 11 UW <1.5 approx. 15 UW <1.5 without treatment according to the invention 2.5 0 UW> 2 or severe filiform corrosion 6th 0 1.5 <UW <2

Figur 3 zeigt beispielhaft einen Querschliff an einem Blechabschnitt mit AS-Beschichtung und erfindungsgemäßer, außenstromlos abgeschiedener Behandlung mit einer Eisenauflage von ca. 15 mg/m2 nach Presshärten. Die Ofenverweildauer betrug 3 min bei einer Ofentemperatur von 950 °C unter Luftatmosphäre. Figure 3 shows an example of a cross-section on a sheet metal section with AS coating and treatment according to the invention, deposited without external current, with an iron coating of approx. 15 mg / m 2 after press hardening. The oven dwell time was 3 minutes at an oven temperature of 950 ° C. under an air atmosphere.

Hierbei bezeichnet A den Grundwerkstoff; B die Diffusionszone bestehend aus einer Matrix des Grundwerkstoffs in die Al und Si aus dem Überzug diffundiert sind; C eine Schicht die reich an Fe-Al-Phasen ist; D die Legierungszone, bestehend aus verschiedenen Al-Fe, Al-Fe-Si-Phasen; E die Oxidschicht aus Aluminium- und Eisenoxid; F die Einbettmasse.Here A denotes the base material; B the diffusion zone consisting of a Matrix of the base material into which Al and Si have diffused from the coating; C a layer rich in Fe-Al phases; D the alloy zone consisting of different Al-Fe, Al-Fe-Si phases; E the oxide layer made of aluminum and iron oxide; F the investment.

Claims (14)

  1. Method for coating a steel sheet or steel strip, to which an aluminum-based coat is applied in a hot-dip process, the surface of the coat being freed from a naturally occurring aluminum oxide layer and then transition metals or transition metal compounds being deposited on the freed surface of the coat in order to form a top layer, characterized in that the top layer is deposited as a planar deposit and having a layer weight-based on iron-in the range of 7 to 25 mg/m2, preferably 10 to 15 mg/m2, the transition metals or the transition metal compounds comprising at least one chemical element from the group of titanium, vanadium, chromium, manganese, or iron and/or the compounds thereof and the transition metals or the transition metal compounds predominantly or almost completely comprising iron or the compounds thereof.
  2. Method according to claim 1, characterized in that the transition metals or the transition metal compounds are deposited in the presence of at least one further chemical element from the group of cobalt, molybdenum, tungsten, and/or the compounds thereof.
  3. Method according to either claim 1 or claim 2, characterized in that the transition metals or the transition metal compounds are deposited by a chemical deposition, in particular by means of a spraying, dipping, or rolling application.
  4. Method according to at least one of claims 1 to 3, characterized in that the removal of the atmospherically occurring, natural oxide layer and the chemical deposition are performed in a single method step.
  5. Method according to claim 4, characterized in that the two treatment steps are performed in a continuously operating coating installation which is located downstream of a hot-dip coating installation or is separate from the hot-dip coating installation.
  6. Method according to at least one of claims 1 to 3, characterized in that the transition metals or the transition metal compounds are deposited electrolytically.
  7. Method according to claim 6, characterized in that the transition metals or transition metal compounds are applied electrolytically in an aqueous medium as the electrolyte at an electrolyte temperature of 25°C to 85°C and current densities between 0.05 and 150 A/dm2.
  8. Method according to at least one of claims 1 to 7, characterized in that an aluminum oxide layer having mixed oxides from the top layer is formed on the coat with the top layer when exposed to an oxygen atmosphere or when exposed to steam.
  9. Method according to claim 8, characterized in that the aluminum oxide layer with the mixed oxides is formed in a furnace at a temperature of >750°C, preferably from 850 to 950°C, and a furnace dwell time of >90 s, preferably 120 to 180 s.
  10. Method according to at least one of claims 1 to 9, characterized in that the formation of the mixed oxides prevents self-limitation of the layer growth of the aluminum oxide.
  11. Method according to at least one of claims 8 to 10, characterized in that corundum, eskolaite, hematite, karelianite, tistarite, ilmenite, perovskite, and/or spinel are formed as mixed oxides.
  12. Method according to at least one of claims 1 to 11, characterized in that aluminum, aluminum-silicon (AS), or aluminum-zinc-silicon (AZ) with optional admixtures of additional elements, such as magnesium, manganese, titanium, and rare earths, is applied to the sheet steel or steel strip as an aluminum-based coat.
  13. Method for producing press-hardened components consisting of steel sheets or steel strips having an aluminum-based coat produced according to at least one of claims 1 to 12, characterized in that the steel sheets or steel strips are heated at least in regions to a temperature above Ac3, are subsequently formed at this temperature and thereafter are cooled, with the aim of hardening, at a rate which is above the critical cooling rate at least in regions.
  14. Method according to any of claims 1 to 13, characterized in that a steel that can be hardened by heat treatment, preferably a heat-treatable steel alloyed with manganese and boron, particularly preferably 22MnB5, is used for the steel sheets or steel strips.
EP18714124.7A 2017-02-21 2018-02-14 Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom Active EP3585917B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017103492 2017-02-21
PCT/EP2018/053702 WO2018153755A1 (en) 2017-02-21 2018-02-14 Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom

Publications (2)

Publication Number Publication Date
EP3585917A1 EP3585917A1 (en) 2020-01-01
EP3585917B1 true EP3585917B1 (en) 2021-09-29

Family

ID=61827666

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18714124.7A Active EP3585917B1 (en) 2017-02-21 2018-02-14 Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom

Country Status (5)

Country Link
US (1) US11613791B2 (en)
EP (1) EP3585917B1 (en)
KR (1) KR102285532B1 (en)
RU (1) RU2729674C1 (en)
WO (1) WO2018153755A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019100140A1 (en) 2019-01-04 2020-07-09 Salzgitter Flachstahl Gmbh Aluminum-based coating for flat steel products for press-hardening components and processes for the production thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2619542B2 (en) * 1989-12-01 1997-06-11 川崎製鉄株式会社 Method for producing hot-dip zinc-based two-layer plated steel sheet excellent in uniformity of upper iron-based electroplating
FR2787735B1 (en) 1998-12-24 2001-02-02 Lorraine Laminage PROCESS FOR PRODUCING A WORKPIECE FROM A STRIP OF ROLLED STEEL SHEET AND ESPECIALLY HOT ROLLED
FR2807447B1 (en) 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
ATE535631T1 (en) * 2007-10-02 2011-12-15 Thyssenkrupp Steel Europe Ag METHOD FOR PRODUCING A STEEL COMPONENT BY HOT FORMING AND STEEL COMPONENT PRODUCED BY HOT FORMING
DE102007048504B4 (en) * 2007-10-10 2013-11-07 Voestalpine Stahl Gmbh Anti-corrosion coating for steel sheets and method of conditioning a corrosion protection coating
CN104149411B (en) * 2008-04-22 2017-08-08 新日铁住金株式会社 The hot-press method of plated steel sheet and plated steel sheet
DE102009007909A1 (en) * 2009-02-06 2010-08-12 Thyssenkrupp Steel Europe Ag A method of producing a steel component by thermoforming and by hot working steel component
DE102010024664A1 (en) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Method for producing a component made of an air-hardenable steel and a component produced therewith
DE102012112109B4 (en) * 2012-12-11 2016-03-24 Thyssenkrupp Steel Europe Ag Surface-finished steel sheet and process for its production
DE102015210459B4 (en) * 2015-06-08 2021-03-04 Volkswagen Aktiengesellschaft Process for hot forming a steel component
DE102016102504A1 (en) 2016-02-08 2017-08-10 Salzgitter Flachstahl Gmbh Aluminum-based coating for steel sheets or steel strips and method of making same

Also Published As

Publication number Publication date
EP3585917A1 (en) 2020-01-01
US20200232057A1 (en) 2020-07-23
US11613791B2 (en) 2023-03-28
KR20190115001A (en) 2019-10-10
KR102285532B1 (en) 2021-08-04
RU2729674C1 (en) 2020-08-11
WO2018153755A1 (en) 2018-08-30

Similar Documents

Publication Publication Date Title
EP2848709B1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
EP3011081B1 (en) Method for producing a product from rolled strip material
EP2414562B1 (en) Method for producing a steel component provided with a metal coating protecting against corrosion and steel component
EP2393953B1 (en) Method for producing a coated steel component by means of hot forming and steel component produced by means of hot forming
EP2045360B1 (en) Method for manufacturing a steel part by hot forming and steel part manufactured by hot forming
EP2848715B1 (en) Method for producing a steel component with an anti-corrosive metal coating
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
DE102017127987A1 (en) Coated steel substrate and method for producing a hardened component from a coated steel substrate
DE102010017354A1 (en) Process for producing a hot-formed and hardened steel component coated with a metallic anti-corrosion coating from a flat steel product
EP3906328B1 (en) Aluminum-based coating for flat steel products for press mold hardening components, and method for producing same
EP3585917B1 (en) Method for coating steel sheets or steel strips and method for producing press-hardened components therefrom
EP4038215B1 (en) Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom
EP3872230A1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
EP4110972B1 (en) Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
EP3872231A1 (en) Method for conditioning the surface of a metal strip coated with a zinc alloy corrosion protection layer

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C25D 7/06 20060101ALI20210428BHEP

Ipc: C25D 5/50 20060101ALI20210428BHEP

Ipc: C25D 5/44 20060101ALI20210428BHEP

Ipc: C23C 18/18 20060101ALI20210428BHEP

Ipc: C23C 18/16 20060101ALI20210428BHEP

Ipc: C21D 1/673 20060101ALI20210428BHEP

Ipc: C25D 5/48 20060101ALI20210428BHEP

Ipc: C23C 28/00 20060101ALI20210428BHEP

Ipc: C23C 2/28 20060101ALI20210428BHEP

Ipc: C23C 2/26 20060101ALI20210428BHEP

Ipc: C21D 7/13 20060101ALI20210428BHEP

Ipc: C23C 2/12 20060101AFI20210428BHEP

INTG Intention to grant announced

Effective date: 20210517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1434251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007263

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211229

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220131

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007263

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220214

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230221

Year of fee payment: 6

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1434251

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210929

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230214

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 7