JPH0627315B2 - Method for producing high-strength alloyed hot-dip galvanized steel sheet - Google Patents

Method for producing high-strength alloyed hot-dip galvanized steel sheet

Info

Publication number
JPH0627315B2
JPH0627315B2 JP60142430A JP14243085A JPH0627315B2 JP H0627315 B2 JPH0627315 B2 JP H0627315B2 JP 60142430 A JP60142430 A JP 60142430A JP 14243085 A JP14243085 A JP 14243085A JP H0627315 B2 JPH0627315 B2 JP H0627315B2
Authority
JP
Japan
Prior art keywords
temperature
cooling
steel sheet
hot
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60142430A
Other languages
Japanese (ja)
Other versions
JPS624860A (en
Inventor
延介 石橋
順次 川辺
耕一 橋口
忍 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60142430A priority Critical patent/JPH0627315B2/en
Publication of JPS624860A publication Critical patent/JPS624860A/en
Publication of JPH0627315B2 publication Critical patent/JPH0627315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 引張強さが35kg/mm2以上でかつ加工性、特に全伸びの優
れた高張力合金化溶融亜鉛めっき鋼板(以下HS.GA鋼板
という)の有利な製造に関してこの明細書では、ひずみ
時効や自然時効その他パウダリングを起す不利なしにめ
っき密着性を有利に改良することについての開発研究の
成果を開示しようとするものである。
[Detailed Description of the Invention] (Industrial field of application) High-strength galvannealed steel sheet (hereinafter referred to as HS.GA steel sheet) with a tensile strength of 35 kg / mm 2 or more and excellent workability, especially total elongation. With respect to the advantageous production of the present invention, this specification intends to disclose the results of the developmental research on the advantageous improvement of the plating adhesion without the disadvantages of strain aging, natural aging and other powdering.

近年自動車の安全性、車体重量軽減、そして素材使用量
の削減などを目的として高張力鋼板が広く使われるよう
になってきた。これら高張力鋼板はその使用目的からし
て普通鋼を用いた時よりも薄い板厚で使用されることが
多いため、腐食に対して普通鋼よりはるかに深刻な状況
に置かれている。
In recent years, high-strength steel sheets have been widely used for the purposes of safety of automobiles, reduction of vehicle body weight, and reduction of material usage. These high-strength steel sheets are often used in a thinner plate thickness than the case of using the ordinary steel due to the purpose of use, and thus are in a situation much more serious than the ordinary steel with respect to corrosion.

そこで耐食性、加工性の優れた高張力鋼板が大量生産方
式で製造されることが要望されるわけである。
Therefore, it is required that high-strength steel sheets having excellent corrosion resistance and workability be manufactured by a mass production method.

鋼板に耐食性を付与する方法としては、たとえばCu,Cr
など、鋼の耐食性を高める元素を鋼中に添加する方法と
鋼板表面に金属めっきを施こす方法とがあるが、前者は
塩害のような厳しい腐食状況下では効果があまり顕著で
ない。
Examples of methods for imparting corrosion resistance to steel sheets include Cu and Cr
There is a method of adding an element that enhances the corrosion resistance of steel into the steel and a method of applying metal plating to the surface of the steel sheet, but the former is not so effective under severe corrosion conditions such as salt damage.

従ってこのような厳しい腐食に対しては金属めっき中で
もそれ自体耐食性に著しく優れ、かつ厚めっきができ
る、溶融亜鉛めっきが有効で、しかも近年の高度な塗装
後耐食性、塗膜密着性およびスポット溶接性を考慮し
て、溶融亜鉛めっき後に合金化加熱処理を施すことが是
非とも必要とされる。
Therefore, against such severe corrosion, hot-dip galvanizing is extremely effective even in metal plating, and it is possible to perform thick plating. Moreover, in recent years, high post-coating corrosion resistance, coating adhesion and spot weldability have been achieved. In consideration of the above, it is absolutely necessary to perform an alloying heat treatment after hot dip galvanizing.

しかしながら強度、加工性およびめっき密着性という特
性値に対する要因の影響は、一般にそれぞれ相反してい
て、これら特性値を調和よく満たす鋼板は、ほとんど皆
無であった。
However, the influences of the factors such as strength, workability, and plating adhesion on the characteristic values are generally contradictory, and almost no steel sheet satisfies these characteristic values in good harmony.

すなわち強度が上昇すると一般に全伸び(以下 El とい
う)が悪化する。さらに鋼板表面に付着させた亜鉛層が
鋼表面の塑性変形を阻害するため El はなお一層悪化す
る。まためっき密着性については、一般に高張力鋼板に
なる程鋼中に添加する元素の種類および量が増加するた
めめっき性にとって有害であることも知られているとお
りである。
That is, as the strength increases, the total elongation (hereinafter referred to as El) generally deteriorates. Furthermore, the zinc layer attached to the steel plate surface hinders the plastic deformation of the steel surface, making El even worse. Regarding the plating adhesion, it is also known that the higher the strength of the steel plate, the more the kinds and amounts of the elements added to the steel generally increase, which is harmful to the plating property.

(従来の技術) 引張強さ(以下TSで示す) -El共良好な高張力鋼板とし
ては特開昭52-44720号公報のようにMn,Pなどの固溶強化
元素を添加した高張力鋼板があるが、このような固溶強
化型高張力鋼板に一般的なめっき処理およびめっき合金
化処理を施した場合、フェライト中の固溶Cは完全には
炭化物として析出せず、当然のことながらひずみ時効
性、自然時効性が悪化する。
(Prior art) Tensile strength (hereinafter referred to as TS) -El is a good high-strength steel sheet in which solid solution strengthening elements such as Mn and P are added as disclosed in JP-A-52-44720. However, when such solid solution strengthened high-strength steel sheet is subjected to general plating treatment and plating alloying treatment, the solid solution C in the ferrite is not completely precipitated as a carbide, and as a matter of course, Strain aging and natural aging deteriorate.

時効性を改善するためと強度を上昇させる目的で、特開
昭57-43974号公報の如く、Tiなどの炭化物生成元素を添
加する方法もあるが、これら析出強化型高張力鋼板は一
般に連続亜鉛めっきライン(以下CGL と略称する)で処
理すると、鋼板表面の清浄化を目的とするいわゆるガス
クーリング工程にて弱酸化後に還元されるが、このとき
Tiのような酸化されやすい合金元素の存在によって、還
元が充分に行われ得ないので還元不足となり、そのため
しばしば不めっきが多発し実用に適わない。
For the purpose of improving the aging property and increasing the strength, there is a method of adding a carbide-forming element such as Ti as disclosed in JP-A-57-43974, but these precipitation-strengthened high-strength steel sheets are generally continuous zinc. When treated in a plating line (hereinafter abbreviated as CGL), it is reduced after weak oxidation in the so-called gas cooling process for cleaning the surface of the steel sheet.
Due to the presence of an easily oxidizable alloying element such as Ti, reduction cannot be sufficiently performed, resulting in insufficient reduction, which often causes non-plating and is not suitable for practical use.

加えて元来亜鉛めっきは、溶融亜鉛と地鉄とが反応して
合金層をまず形成し、この合金層が亜鉛層と地鉄層との
結合に役立つところ、この合金層はかたくて脆いために
厚く生長すると加工時のめっきはく離の原因となるの
で、できるだけ薄いことがのぞまれるのに反し、上記Ti
添加鋼等では合金層の生長速度が速く、通常の操業条件
でも比較的厚く合金層が形成されて、加工時に粉化剥落
(以下パウダリングと称す)を起しやすいことも難点に
かぞえられる。
In addition, originally, in galvanizing, molten zinc reacts with base iron to form an alloy layer first, and this alloy layer serves to bond the zinc layer and the base iron layer, but this alloy layer is hard and brittle. If it grows thicker, it will cause the peeling of the plating during processing.
In addition steel and the like, the growth rate of the alloy layer is high, the alloy layer is formed relatively thick even under normal operating conditions, and it is easy to cause powder flaking (hereinafter referred to as powdering) during processing.

(発明が解決しようとする問題点) 時効の問題や、不めっきさらにはパウダリングの如き不
利を来すことのないように、Si,Mn添加を基本成分とす
る鋼板に施した溶融亜鉛めっき層についての、合金化条
件と合金化後の冷却条件を組合わせることによって、TS
35kgf/mm2以上でひずみ時効や自然時効が少なく、さら
にめっき密着性の良好な、HS.GA鋼板の製造方法を与え
ることがこの発明の目的である。
(Problems to be solved by the invention) Hot dip galvanized layer applied to a steel sheet containing Si and Mn as basic components so as not to cause problems such as aging and non-plating and powdering. By combining the alloying conditions with the post-alloying cooling conditions for
HS. With 35 kgf / mm 2 or more, less strain aging and natural aging, and good plating adhesion. It is an object of this invention to provide a method for manufacturing GA steel sheet.

(問題点を解決するための手段) 上記の目的は次の事項によって充足される。(Means for Solving Problems) The above objectives are satisfied by the following matters.

C :0.02〜0.03wt% Si:0.50wt%以下、 Mn:0.10〜2.0 wt% を含み、残余鉄及び不可避不純物からなる組成の鋼板
に、溶融亜鉛めっきを施したのち、 650 〜 850℃の温度に加熱し、その温度で1秒間以上保
持すること、引続き500 ℃以下かつ300 ℃をこえる温度
まで20℃/s以上の冷却速度で冷却すること、その後30
0 ℃をこえ500 ℃以下の温度にて5秒間以上の保持を行
うか又は該温度にてコイリングを行うことの結合を特徴
とする、高張力合金化溶融亜鉛めっき鋼板の製造方法
(第1発明)。
C: 0.02-0.03wt% Si: 0.50wt% or less, Mn: 0.10-2.0wt%, hot-dip galvanizing a steel sheet with a composition consisting of residual iron and unavoidable impurities, then 650-850 ℃ And keep it at that temperature for 1 second or longer, and then cool it to a temperature below 500 ℃ and above 300 ℃ at a cooling rate of 20 ℃ / s or more, then 30
A method for producing a high-strength hot-dip galvanized steel sheet characterized by the combination of holding at a temperature of more than 0 ° C and 500 ° C or less for 5 seconds or more or coiling at that temperature (first invention) ).

C :0.02〜0.03wt% Si:0.50wt%以下、 Mn:0.10〜2.0wt% を含み、残余鉄及び不可避不純物からなる組成の鋼板
に、溶融亜鉛めっきを施したのち、650 〜 850℃の温度
に加熱し、その温度で1秒間以上保持すること、引続き
600℃を下まわらぬ温度に至るまでは20℃/s未満の冷却
速度次いで 500℃以下まで20℃/s以上の冷却速度で冷却
すること、その後 200℃以上の温度にて5秒間以上の保
持を行うか又は該温度にてコイリングを行うことの結合
を特徴とする、高張力合金化溶融亜鉛めっき鋼板の製造
方法(第2発明)。
C: 0.02-0.03wt% Si: 0.50wt% or less, Mn: 0.10-2.0wt%, hot-dip galvanizing a steel sheet with a composition consisting of residual iron and unavoidable impurities, then 650-850 ℃ Heat it for 1 second and keep it at that temperature for more than 1 second.
Cooling rate below 20 ° C / s until reaching a temperature below 600 ° C, then cooling to below 500 ° C at a cooling rate above 20 ° C / s, and then holding at a temperature above 200 ° C for 5 seconds or longer. A method for producing a high-strength hot-dip galvanized steel sheet (second invention), which is characterized by the combination of carrying out or coiling at the temperature.

何れの場合も熱延鋼板、冷延鋼板の双方に適合し、これ
らの鋼板を溶融亜鉛浴に浸漬して溶融亜鉛めっきを施
し、これに対して上記のように高温下の合金化処理を行
いついで冷却制御を施すことが要締である。
In any case, it is compatible with both hot-rolled steel sheets and cold-rolled steel sheets, and these steel sheets are immersed in a hot-dip zinc bath for hot-dip galvanizing, which is then alloyed at high temperature as described above. Next, it is essential to apply cooling control.

なおこの発明においては通常冷延鋼板の亜鉛めっきに際
して一般に行われている、めっき前の再結晶のための加
熱は不要であり、この熱処理省略によるコストダウンも
注目に価する。
In the present invention, heating for recrystallization before plating, which is generally performed when galvanizing a cold-rolled steel sheet, is not required, and the cost reduction by omitting this heat treatment is also worth noting.

一般に溶融亜鉛めっきを施すには亜鉛浴に浸漬した鋼板
を450 〜 550℃の範囲の温度で1秒以上保持し、浴から
引出すがこの後該鋼板をさらに加熱し、とくに 650℃以
上 850℃以下の温度に加熱し、その温度で1秒以上保持
して合金化処理を行う。
Generally, hot-dip galvanizing is performed by holding a steel sheet immersed in a zinc bath at a temperature in the range of 450 to 550 ° C for 1 second or longer and then pulling it out of the bath. The temperature is maintained at that temperature for 1 second or longer to carry out the alloying treatment.

これに対して通常の合金化処理温度は通常 550℃〜 600
℃どまりでありこれによって形成されるめっき層は鉄濃
度が12wt%前後のδ相である。このδ相は塗装耐食
性、塗膜密着性およびスポット溶接性の面ですぐれてい
るが、強い折り曲げ加工やプレス加工によればパウダリ
ングを生じ、折角の特性が生かされないばかりでなく、
プレス加工時にも星目などの欠陥の原因となる。
On the other hand, the normal alloying treatment temperature is usually 550 ℃ ~ 600
It is only at ℃ and the plating layer formed by this is a δ 1 phase with an iron concentration of around 12 wt%. This δ 1 phase is excellent in terms of coating corrosion resistance, coating adhesion and spot weldability, but strong bending and pressing cause powdering, and not only the characteristics of bending angle are not utilized, but
It causes defects such as stars even during press working.

塗装耐食性、塗膜密着性、スポット溶接性を損うことな
くパウダリングを軽減するためには、特願昭58−073498
号や特願昭60-01737号明細書に開示したようにめっき層
の鉄濃度を15〜35wt%にすることが有効であって、この
ためには合金化温度を650 〜 780℃に上昇させる必要が
ある。
To reduce powdering without impairing coating corrosion resistance, coating adhesion, and spot weldability, Japanese Patent Application No. 58-073498 is used.
As disclosed in Japanese Patent Application No. 60-01737 and Japanese Patent Application No. 60-01737, it is effective to set the iron concentration of the plating layer to 15 to 35 wt%. For this purpose, the alloying temperature is raised to 650 to 780 ° C. There is a need.

発明者らの詳細な研究によれば、 780℃よりもさらに高
温で合金化処理を行ってもめっき層の特性は悪化しない
ことが明らかとなった。
Detailed studies by the inventors have revealed that the characteristics of the plating layer do not deteriorate even if the alloying treatment is performed at a temperature higher than 780 ° C.

従って650 〜850 ℃の範囲の温度に加熱しかつ保持する
高温の合金化処理を経たのちは、500 ℃以下かつ300 ℃
をこえる温度まで20℃/s以上の冷却速度で冷却し、そ
の後該冷却到達温度以下で300 ℃をこえる温度に5秒間
以上の保持又はコイリングを行うか、あるいは上記冷却
工程の途中600 ℃を下まわらぬ温度まではより低い冷却
速度の過程を経て500 ℃以下まで20℃/s以上の冷却速
度で冷却し、その後該冷却到達温度以下で200 ℃以上の
温度で5秒間以上の保持又はコイリングを行うことが、
とくに重要である。
Therefore, after high-temperature alloying treatment of heating and holding at a temperature in the range of 650 to 850 ℃, 500 ℃ or less and 300 ℃
At a cooling rate of 20 ° C / s or more to a temperature exceeding 300 ° C, and then holding or coiling at a temperature below 300 ° C for 5 seconds or more at a temperature below the cooling reaching temperature, or lowering 600 ° C during the cooling process. It is cooled at a cooling rate of 20 ° C / s or more to 500 ° C or less through a process of a lower cooling rate up to a certain temperature, and then held or coiled for 5 seconds or more at a temperature of 200 ° C or more below the ultimate cooling temperature. To do,
Especially important.

(作 用) この発明の従うHS.GA鋼板を現実のCGL で実施可能な冷
却速度で安価に得るためには、少なくともC:0.02wt%以
上、Mn:0.10wt%以上が必要である。また安価にしかも
加工性を良好にするため、0.5wt%以下でSiの添加が有効
である。しかしながら、C:0.30wt%、またMn:2.0wt%そ
してSi:0.50wt%の限界をどれか1種でも越えると加工
性、スポット溶接性、塗膜密着性の悪化を来す。
(Operation) HS. In order to obtain a GA steel sheet at a cooling rate that can be implemented by an actual CGL at low cost, at least C: 0.02 wt% or more and Mn: 0.10 wt% or more are required. In addition, in order to improve the workability at low cost, it is effective to add Si at 0.5 wt% or less. However, if any one of the limits of C: 0.30 wt%, Mn: 2.0 wt% and Si: 0.50 wt% is exceeded, workability, spot weldability and coating adhesion deteriorate.

以上がこの発明の出発材について成分範囲を限定する理
由である。
The above is the reason for limiting the component range of the starting material of the present invention.

次に溶融亜鉛めっきの操業はすでにのべたとおり格別な
制限はないが、引続く合金化処理温度の下限を 650℃と
したのは、上記のようにめっき層の鉄濃度を15〜35wt%
にする目的と、合金化処理のための加熱時に、鋼中に存
在する固溶Cをその後の冷却過程により、フェライト中
に過飽和に存在させ、その冷却到達温度以下300 ℃をこ
える温度で保持するか又はコイリングの際に、上記固溶
Cをすべて炭化物として析出させ、自然時効を軽減する
ために必要である。また合金化処理の温度上限を 850℃
としたのは、 850℃をこえるとめっき相のFe濃度が35%
を越え、塗装耐食性が悪化するためである。
Next, the hot dip galvanizing operation is not particularly limited as already mentioned, but the lower limit of the subsequent alloying treatment temperature was set to 650 ° C because the iron concentration in the plating layer was 15 to 35 wt% as described above.
For the purpose of, and at the time of heating for alloying treatment, the solid solution C present in the steel is supersaturated in the ferrite by the subsequent cooling process, and is maintained at a temperature of 300 ° C. or less, which is below the temperature reached by cooling. Alternatively, it is necessary in order to reduce the natural aging by precipitating all the solid solution C as a carbide during coiling. The upper limit of alloying temperature is 850 ℃
The reason is that if the temperature exceeds 850 ℃, the Fe concentration in the plating phase will be 35%.
This is because the coating corrosion resistance deteriorates.

ここで表1に示す組成の熱延鋼板を用いて実験室にて溶
融亜鉛めっき、合金化処理実験を行った結果に触れる。
Here, the results of hot dip galvanizing and alloying treatment experiments conducted in the laboratory using the hot rolled steel sheets having the compositions shown in Table 1 will be touched upon.

実験ヒートサイクルは次の通りである。 The experimental heat cycle is as follows.

供試鋼板を 480℃まで10℃/sの加熱速度で昇温し、 480
℃にて5S保持する間に溶融亜鉛めっきを行った後、10℃
/sの加熱速度で合金化温度(T1℃)まで昇温し、この温度
で20秒保持により合金化処理を行い、その後冷却終了温
度T3℃まで冷却速度v℃/sで冷却するか又は第1段階の
冷却終了温度(T2℃)まで冷却速度υ1℃/sで冷却しさら
に第2段階の冷却終了温度(T3℃)まで冷却速度υ2℃/
sで冷却し、ついで冷却終了温度T3でt秒間保持後空冷
した(第1図参照)。
Heat the test steel plate to 480 ℃ at a heating rate of 10 ℃ / s,
After hot dip galvanizing while holding 5S at 10 ℃, 10 ℃
Is the temperature increased to the alloying temperature (T 1 ℃) at a heating rate of / s, held at this temperature for 20 seconds for alloying, and then cooled to the cooling end temperature T 3 ℃ at a cooling rate of v ℃ / s? Alternatively, cooling is performed at the cooling rate υ 1 ℃ / s to the first stage cooling end temperature (T 2 ℃), and further to the second stage cooling end temperature (T 3 ℃) Cooling rate υ 2 ℃ /
It was cooled at s, then kept at the cooling end temperature T 3 for t seconds and then air cooled (see FIG. 1).

ここで、T1,T2,T3,υ,υ1,υ2,tを様々に変化さ
せ引張特性のチェックを行った。
Here, the tensile properties were checked by variously changing T 1 , T 2 , T 3 , υ, υ 1 , υ 2 , and t.

この結果を表2(1)〜(3)(1段冷却),表3(2段冷
却)に示す。
The results are shown in Tables 2 (1) to (3) (first-stage cooling) and Table 3 (second-stage cooling).

表2における冷却過程は合金化温度(T1℃)から上記し
た冷却終了温度(T3℃)まで一定速度で冷却し、この冷
却速度をυ℃/sで示ししたがって上記した第1段階冷却
終了温度T2は存在しない。
In the cooling process in Table 2, the alloying temperature (T 1 ° C) is cooled at a constant rate from the above cooling end temperature (T 3 ° C), and this cooling rate is shown in υ ° C / s. There is no temperature T 2 .

材質試験値として、TS,Elの他に、自然時効を表わす因
子として、AI(エージング、インデックス)を採用し
た。A.I 値は引張試験において7.5%の歪を与えた時の強
度をSo(kgf/mm2) とし、7.5%の歪を与えた後 100℃で30
分間加熱した後、再び引張試験を行い、その時の下降伏
点をS(kgf/mm2)とすれば次の(1)式 A.I=S-S0 (kgf/mm2) …(1) で与えられる。 A.I値は、固溶Cにピンニングされてい
た転位が引張応力により固溶Cからはずれ自由転位とな
るが、加熱されることにより、再び固溶Cにピンニング
されることにより降伏点の上昇につながることから生じ
る。一般的にA.I≦3kgf/mm2を満足すれば、実用上加工
時、ストレッチャーストレインなどの欠陥は発生しない
ものとされている。
In addition to TS and El as material test values, AI (aging, index) was adopted as a factor representing natural aging. The AI value is So (kgf / mm 2 ), which is the strength when 7.5% strain is applied in the tensile test, and 30% at 100 ℃ after applying 7.5% strain.
After heating for a minute, the tensile test is conducted again, and if the descending yield point at that time is S (kgf / mm 2 ), it is given by the following formula (1) AI = SS 0 (kgf / mm 2 )… (1) . Regarding the AI value, the dislocations pinned to solid solution C become free dislocations that deviate from solid solution C due to tensile stress, but when heated, they become pinned to solid solution C again, leading to an increase in the yield point. Arises from that. Generally, if AI ≦ 3 kgf / mm 2 is satisfied, it is considered that defects such as stretcher strain will not occur during processing in practical use.

表2および表3よりTS35kgf/mm以上を有する鋼はサン
プルNo.2〜4であることが分る。また、上記したA.I≦
3kgf/mm2を満足する鋼は、表2よりT1>650℃,υ≧20℃
/s,T3≦500℃でかつt≧5Sかあるいは、表3よりT1>65
0℃,υ≦20℃/s,T2≧600℃,υ〉20℃/s,T3≦500
℃でかつt≧5Sのものであることが分る。この現象は一
般にオーステナイト中の固溶C量も含めて、固溶C量は
温度が高い程上昇するが、 500℃以下への冷却により、
フェライト中に十分に過飽和固溶Cを存在させるために
は冷却前に 650℃以上の温度が必要であるということで
ある。
From Tables 2 and 3, it can be seen that the steels having TS of 35 kgf / mm 2 or more are sample Nos. 2 to 4. In addition, AI ≤
For steels satisfying 3kgf / mm 2 , from Table 2, T 1 > 650 ℃, υ ≧ 20 ℃
/ s, T 3 ≤500 ° C and t ≥5S, or from Table 3 T 1 > 65
0 ℃, υ 1 ≤20 ℃ / s, T 2 ≧ 600 ℃, υ〉 20 ℃ / s, T 3 ≦ 500
It can be seen that at tC and t≥5S. This phenomenon generally increases as the temperature increases, including the amount of solute C in austenite, but by cooling to below 500 ° C,
This means that a temperature of 650 ° C. or higher is required before cooling in order to allow the supersaturated solid solution C to sufficiently exist in the ferrite.

この後の 500℃以下の冷却到達温度での保持により、セ
メンタイトの析出が急速に起り、最終的に固溶C量は激
減する。T1が 650℃より低い場合、冷却後の固溶炭素の
過飽和度が低いため、セメンタイトとして析出する駆動
力小さく最終的には完全に析出せず、固溶Cのまま多量
に残りA.I 上昇の原因となる。
After that, by holding at a cooling ultimate temperature of 500 ° C. or less, precipitation of cementite occurs rapidly, and finally the amount of dissolved C is drastically reduced. When T 1 is lower than 650 ° C, the degree of supersaturation of solid solution carbon after cooling is low, so the driving force to precipitate as cementite is small and it does not precipitate completely in the end, but a large amount of solid solution C remains and AI rises. Cause.

表2と表3を比較した場合、2段階冷却過程である表3
の鋼の方がA.I の低いことがわかる。
When comparing Table 2 and Table 3, Table 3 is a two-stage cooling process.
It can be seen that the steel of has a lower AI.

これは、2段階冷却過程の第1段階の20℃/s以下の冷却
過程でフェライト中の固溶Cがオーステナイト中に拡散
し第2段階冷却後フェライトの粒界にセメンタイトとし
てほぼ完全に析出するためである。
This is because solid solution C in ferrite diffuses into austenite during the cooling process of 20 ° C / s or less in the first stage of the two-stage cooling process, and almost completely precipitates as cementite at the grain boundaries of the ferrite after the second stage cooling. This is because.

これに対して、1段階で冷却を行う場合は、炭化物の析
出をより厳密に制御するために、冷却到達温度を高温側
にシフトするのが有利であり、従って1段階冷却におい
ては、500 ℃以下かつ300 ℃をこえる温度域で冷却を制
御することとした。
On the other hand, in the case of performing cooling in one step, it is advantageous to shift the reached cooling temperature to the high temperature side in order to more strictly control the precipitation of carbides. It was decided to control cooling in the temperature range below 300 ° C.

以上のような結果により、合金化処理後の冷却過程を以
下のように制御しなければならない。
Based on the above results, the cooling process after the alloying process should be controlled as follows.

1. 合金化処理後、20℃/sの冷却速度で500 ℃以下かつ
300 ℃をこえる温度まで冷却し、この冷却到達温度以下
300 ℃をこえる温度にて5秒以上保持する。
1. After alloying, at a cooling rate of 20 ° C / s and below 500 ° C and
Cool down to a temperature over 300 ° C, below this temperature
Hold at a temperature above 300 ° C for 5 seconds or longer.

2. 合金化処理後、20℃/sの冷却速度で600 ℃を下まわ
らぬ温度まで冷却しさらに20℃/sをこえる冷却速度で 5
00℃以下に冷却し、この冷却到達温度以下200 ℃以上の
温度に保持する。
2. After alloying, cool at a cooling rate of 20 ° C / s to a temperature below 600 ° C, and then cool at a cooling rate of more than 20 ° C / s.
Cool to below 00 ° C and maintain at a temperature below this ultimate temperature of 200 ° C.

なお、 500℃以下に冷却した後の5秒以上にわたる保持
を行うかわりにコイリングをしても上記したと同様な挙
動がもたらされるのでこのコイリングは、冷却制御後の
時効処理としての保持と均等である。
Even if coiling is performed instead of holding for 5 seconds or more after cooling to 500 ° C or less, the same behavior as described above is brought about. Therefore, this coiling is equivalent to holding as aging treatment after cooling control. is there.

この時効処理温度は、 200℃未満のとき、セメンタイト
として析出をさせようとするα相中の固溶Cの拡散が不
十分なため、A.I が高くなり、また冷却到達温度がその
最高温度である 500℃より高いと、α相中に固溶する平
衡C量が高く充分に固溶Cを下げ得ないのでA.I が劣化
する。
When the aging temperature is less than 200 ° C, AI is high because the solid solution C in the α phase, which is to be precipitated as cementite, is insufficiently diffused, and the maximum temperature is the ultimate cooling temperature. If the temperature is higher than 500 ° C, the amount of equilibrium C dissolved in the α phase is high and the amount of dissolved C cannot be lowered sufficiently, so that AI deteriorates.

(実施例) 実施例に用いた鋼スラブの化学組成を表4に示す。(Example) Table 4 shows the chemical composition of the steel slab used in the examples.

鋼スラブは転炉で溶製し、連続鋳造、熱間圧延を経て板
厚 3.0mmに仕上げた。
The steel slab was melted in a converter, continuously cast, and hot-rolled to a plate thickness of 3.0 mm.

さらにこの熱延板の一部を板厚0.95mmに冷間圧延した。
これら熱延板、および冷延板を様々なCGLヒートサイク
ルでめっきとその合金化処理を施し、引張特性、めっき
密着性を調査した。
Furthermore, a part of this hot-rolled sheet was cold-rolled to a sheet thickness of 0.95 mm.
These hot-rolled sheets and cold-rolled sheets were plated and alloyed by various CGL heat cycles, and the tensile properties and plating adhesion were investigated.

実施例に用いたヒートサイクルは次のとおりである。The heat cycle used in the examples is as follows.

すなわち、CGL において 480℃のめっき浴温度まで15℃
/sで加熱後、5秒保持により溶融亜鉛めっきを施した
後、種々な合金化温度まで昇温し、該温度で10秒保持後
30℃/sの冷却速度で 350℃まで冷却直ちにコイリングし
た。
That is, in CGL up to 480 ℃ plating bath temperature 15 ℃
After heating at / s, hot-dip galvanizing by holding for 5 seconds, then raising the temperature to various alloying temperatures, and holding at that temperature for 10 seconds
It was cooled to 350 ° C at a cooling rate of 30 ° C / s and immediately coiled.

第2図にこれらの鋼のA.I を示す。図中白丸および白四
角にあたる発明鋼は A.I≦3.0kgf/mm2を満足している。
Figure 2 shows the AI of these steels. The invention steels corresponding to the white circles and white squares in the figure satisfy AI ≦ 3.0 kgf / mm 2 .

次にめっき密着性および耐パウダリング性試験結果を表
6に示す。
Next, Table 6 shows the plating adhesion and powdering resistance test results.

ここでめっき密着性の判定は半鋼球12.7mmφ、重さ12.2
kgの重錘を、高さ500mm から落下させダイス(21mmφ)
側の面のはく離状況を90%以上はく離なしを○印、50%
以上はく離なしを△、それ以外を×として判定した。
Here, the judgment of plating adhesion is half steel ball 12.7 mmφ, weight 12.2
Drop a weight of 500 kg from a height of 500 mm and die (21 mmφ).
90% or more of the peeling condition of the side surface, ○ indicates no peeling, 50%
The peeling was judged as Δ and the other cases were judged as ×.

また耐パウダリング性評価方法としては試験面を内側と
して90゜曲げを行い、これにセロテープをはりつけはが
してテープ上に付着しためっきはく離粉の量を下記の基
準で作成した限度見本と比較評価した。
In addition, as a method for evaluating the powdering resistance, the test surface was bent at 90 °, the cellophane tape was adhered to this, and the amount of plating release powder adhering to the tape was compared and evaluated with a limit sample prepared according to the following criteria. .

5.はく離粉の付着なし 4.はく離粉の付着微量 3.はく離粉の付着少量 2.はく離粉の付着多量 1.はく離粉の付着極めて多量 表6より、めっき密着性、耐パウダリング性とも合金化
処理を施していない場合または合金化温度が低い場合に
極めて劣ることが分る。
5. No release powder adhered 4. Amount of release powder adhering 3. Amount of release powder adhering 2. Amount of release powder adhering 1. Excessive amount of release powder adhering From Table 6, both plating adhesion and powdering resistance are alloys. It can be seen that it is extremely inferior when no chemical treatment is applied or when the alloying temperature is low.

(発明の効果) この発明により、TSが35kgf/mm以上、 A.I≦3.0kgf/m
m2を確保し、しかもめっき密着性および耐パウダリング
性とも良好なHS,GA鋼板を安定に製造し得る。
(Effect of the Invention) According to the present invention, TS is 35 kgf / mm 2 or more, AI ≦ 3.0 kgf / m
It is possible to stably manufacture HS and GA steel sheets that secure m 2 and have good plating adhesion and powdering resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図はヒートサイクル線図、 第2図は実施例のAI-T相関グラフである。 FIG. 1 is a heat cycle diagram, and FIG. 2 is an AI-T correlation graph of the example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡野 忍 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 (56)参考文献 特開 昭55−122820(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinobu Okano 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division (56) References JP-A-55-122820 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C :0.02〜0.03wt% Si:0.50wt%以下、 Mn:0.10〜2.0 wt% を含み、残余鉄及び不可避不純物からなる組成の鋼板
に、溶融亜鉛めっきを施したのち、 650 〜850 ℃の温度に加熱し、その温度で1秒間以上保
持すること、 引続き500 ℃以下かつ300 ℃をこえる温度まで20℃/s
以上の冷却速度で冷却すること、 その後300 ℃をこえ500 ℃以下の温度にて5秒間以上の
保持を行うか又は該温度にてコイリングを行うこと の結合を特徴とする、高張力合金化溶融亜鉛めっき鋼板
の製造方法。
1. A hot-dip galvanized steel sheet containing C: 0.02-0.03 wt% Si: 0.50 wt% or less and Mn: 0.10-2.0 wt% and consisting of residual iron and unavoidable impurities. Heat to a temperature of ~ 850 ℃, hold at that temperature for 1 second or longer, and continue to 20 ℃ / s below 500 ℃ and over 300 ℃.
High tension alloying melting characterized by the combination of cooling at the above cooling rate, and then holding at a temperature of more than 300 ° C and 500 ° C or less for 5 seconds or more or coiling at that temperature. Manufacturing method of galvanized steel sheet.
【請求項2】C :0.02〜0.03wt% Si:0.50wt%以下、 Mn:0.10〜2.0 wt% を含み、残余鉄及び不可避不純物からなる組成の鋼板
に、溶融亜鉛めっきを施したのち、 650 〜850 ℃の温度に加熱し、その温度で1秒間以上保
持すること、 引続き600 ℃を下まわらぬ温度に至るまでは20℃/s以
下の冷却速度、ついで500 ℃以下まで20℃/sをこえる
冷却速度で冷却すること、 その後200 ℃以上の温度にて5秒間以上の保持を行うか
又は該温度にてコイリングを行うこと の結合を特徴とする、高張力合金化溶融亜鉛めっき鋼板
の製造方法。
2. A steel sheet containing C: 0.02 to 0.03 wt% Si: 0.50 wt% or less and Mn: 0.10 to 2.0 wt% and composed of residual iron and unavoidable impurities, after hot dip galvanizing. Heat to a temperature of ~ 850 ℃ and hold at that temperature for 1 second or longer. Continue to cool at a rate of 20 ℃ / s or less until the temperature does not drop below 600 ℃, then 20 ℃ / s to 500 ℃ or less. Manufacture of a high-strength hot-dip galvanized steel sheet characterized by a combination of cooling at a cooling rate exceeding 200 ° C., then holding at a temperature of 200 ° C. or more for 5 seconds or more, or performing coiling at that temperature. Method.
JP60142430A 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet Expired - Lifetime JPH0627315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142430A JPH0627315B2 (en) 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142430A JPH0627315B2 (en) 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPS624860A JPS624860A (en) 1987-01-10
JPH0627315B2 true JPH0627315B2 (en) 1994-04-13

Family

ID=15315135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142430A Expired - Lifetime JPH0627315B2 (en) 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPH0627315B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0406619A1 (en) * 1989-06-21 1991-01-09 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line
DE102007061489A1 (en) * 2007-12-20 2009-06-25 Voestalpine Stahl Gmbh Process for producing hardened hardenable steel components and hardenable steel strip therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122820A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Manufacture of alloyed zinc-plated high tensile steel sheet with superior workability

Also Published As

Publication number Publication date
JPS624860A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
CN101627142B (en) Cold rolled and continuously annealed high strength steel strip and method for producing said steel
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
US10287440B2 (en) Steel product with an anticorrosive coating of aluminum alloy and method for the production thereof
JP5504737B2 (en) High-strength hot-dip galvanized steel strip excellent in formability with small variations in material within the steel strip and method for producing the same
KR20010085282A (en) High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof
WO2010011790A2 (en) Cold rolled dual phase steel sheet having high formability and method of making the same
JP2004124187A (en) High strength galvanized steel sheet with excellent adhesion and weldability
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2004061137A1 (en) Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JP2002080931A (en) High strength cold rolled steel sheet and high strength plated steel sheet having excellent workability and spot weldability and method for producing the same
JP4150277B2 (en) High strength galvannealed steel sheet excellent in press formability and method for producing the same
JP4299560B2 (en) Method for producing high-strength galvannealed steel sheet with excellent workability
JP3823613B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet
HUE029890T2 (en) Cold-rolled steel sheet excellent in coating curability in baking and cold slow-aging property and process for producing the same
CN113166837B (en) High-strength steel sheet and method for producing same
JPH0627315B2 (en) Method for producing high-strength alloyed hot-dip galvanized steel sheet
JPS6223975A (en) Alloyed hot dip galvanized high-tension hot-rolled steel sheet and its manufacture
JPS62133059A (en) Alloyed zinc hot dipped hot rolled high tensile steel sheet and its production
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JPH05117834A (en) Manufacture of hot dip galvannealed steel sheet having excellent stretch-flanging property using high strength hot-rolled original sheet
JP3602263B2 (en) Manufacturing method of high strength hot-dip galvanized steel sheet with excellent deep drawability
JP3293015B2 (en) Cold rolled steel sheet with excellent workability uniformity
JP3291639B2 (en) Cold rolled steel sheet excellent in workability uniformity and method for producing the same
JP3758584B2 (en) Hot-dip galvanized steel sheet with excellent strain age hardening characteristics