JPS624860A - Manufacture of high tension alloyed hot dip galvanized steel sheet - Google Patents

Manufacture of high tension alloyed hot dip galvanized steel sheet

Info

Publication number
JPS624860A
JPS624860A JP14243085A JP14243085A JPS624860A JP S624860 A JPS624860 A JP S624860A JP 14243085 A JP14243085 A JP 14243085A JP 14243085 A JP14243085 A JP 14243085A JP S624860 A JPS624860 A JP S624860A
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
dip galvanized
hot dip
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14243085A
Other languages
Japanese (ja)
Other versions
JPH0627315B2 (en
Inventor
Ensuke Ishibashi
石橋 延介
Junji Kawabe
川辺 順次
Koichi Hashiguchi
橋口 耕一
Shinobu Okano
岡野 忍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP60142430A priority Critical patent/JPH0627315B2/en
Publication of JPS624860A publication Critical patent/JPS624860A/en
Publication of JPH0627315B2 publication Critical patent/JPH0627315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a high tension alloyed hot dip galvanized steel sheet having superior corrosion resistance and workability by hot dip galvanizing a steel sheet contg. Si and Mn as essential components and by properly combining conditions during the alloying of the resulting Zn layer with conditions during cooling after the alloying. CONSTITUTION:The surface of a steel sheet having a composition contg. 0.02-0.30wt% C, <0.50wt% Si and 0.10-2.0wt% Mn is hot dip galvanized. The hot dip galvanized steel sheet is heated to 650-850 deg.C, held for >=1sec and cooled to >600 deg.C at <=20 deg.C/sec cooling rate or to <=500 deg.C at >=20 deg.C/sec cooling rate. The steel sheet is then held at >=200 deg.C for >=5sec or coiled at the temp. A high tension alloyed hot dip galvanized steel sheet having superior adhesion, corrosion resistance and workability is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 引張強さが35kg/mmz以上でかつ加工性、特に全
伸びの優れた高張力合金化溶融亜鉛めっき鋼板(以下H
S、 GA鋼板という)の有利な製造に関してこの明細
書では、ひずみ時効や自然時効その他パウダリングを起
す不利なしにめっき密着性を有利に改良することについ
ての開発研究の成果を開示しようとするものである。
Detailed Description of the Invention (Industrial Application Field) High tensile strength alloyed hot-dip galvanized steel sheet (hereinafter referred to as H
Regarding the advantageous production of steel sheets (S, GA steel sheets), this specification attempts to disclose the results of research and development to advantageously improve the plating adhesion without strain aging, natural aging, or other disadvantages of powdering. It is.

近年自動車の安全性、車体重量軽減、そして素材使用量
の削減などを目的として高張力鋼板が広(使われるよう
になってきた。これら高張力鋼板はその使用目的からし
て普通鋼を用いた時よりも薄い板厚で使用されることが
多いため、腐食に対して普通鋼よりはるかに深刻な状況
に置かれている。
In recent years, high-strength steel sheets have come into widespread use for the purpose of improving automobile safety, reducing vehicle weight, and reducing the amount of materials used. Because steel is often used in thinner sheets than normal steel, it is exposed to corrosion much more seriously than ordinary steel.

そこで耐食性、加工性の優れた高張力鋼板が大量生産方
式で製造されることが要望されるわけである。
Therefore, it is desired that high-strength steel sheets with excellent corrosion resistance and workability be manufactured by mass production.

鋼板に耐食性を付与する方法としては、たとえばCu、
 Crなど、鋼の耐食性を高める元素を鋼中に添加する
方法と鋼板表面に金属めっきを施こす方法とがあるが、
前者は塩害のような厳しい腐食状況下では効果があまり
顕著でない。
As a method of imparting corrosion resistance to steel sheets, for example, Cu,
There are two methods: adding elements such as Cr to improve the corrosion resistance of steel, and applying metal plating to the surface of the steel sheet.
The former is not very effective under severe corrosive conditions such as salt damage.

従ってこのような厳しい腐食に対しては金属めっき中で
もそれ自体耐食性に著しく優れ、かつ厚めつきができる
、溶融亜鉛めっきが有効で、しかも近年の高度な塗装後
耐食性、塗膜密着性およびスポット溶接性を考慮して、
溶融亜鉛めっき後に合金化加熱処理を施すことが是非と
も必要とされる。
Therefore, hot-dip galvanizing is effective against such severe corrosion, as it has excellent corrosion resistance among metal platings and can be applied thickly.Moreover, it is effective in recent years due to its advanced post-painting corrosion resistance, coating adhesion, and spot weldability. in view of,
It is absolutely necessary to perform alloying heat treatment after hot-dip galvanizing.

しかしながら強度、加工性およびめっき密着性という特
性値に対する要因の影響は、一般にそれぞれ相反してい
て、これら特性値を調和よく満たす鋼板は、はとんど皆
無であった。
However, the effects of factors on the characteristic values of strength, workability, and plating adhesion are generally contradictory, and there has been almost no steel sheet that satisfies these characteristic values in a harmonious manner.

すなわち強度が上昇すると一般に全伸び(以下Elとい
う)が悪化する。さらに鋼板表面に付着させた亜鉛層が
鋼表面の塑性変形を阻害するためallはなお一層悪化
する。まためっき密着性については、一般に高張力鋼板
になる程鋼中に添加する元素の種類および量が増加する
ためめっき性にとって有害であることも知られていると
おりである。
That is, as the strength increases, the total elongation (hereinafter referred to as El) generally deteriorates. Furthermore, since the zinc layer attached to the surface of the steel sheet inhibits plastic deformation of the steel surface, all is further deteriorated. Regarding plating adhesion, it is also known that the higher the tensile strength of the steel sheet, the more types and amounts of elements added to the steel, which are harmful to the plating property.

(従来の技術) 引張強さく以下TSで示す)−El共良好な高張力鋼板
としては特開昭52−44720号公報のようにMn、
Pなどの固溶強化元素を添加した高張力鋼板があるが、
このような固溶強化型高張力鋼板に一般的なめっき処理
およびめっき合金化処理を施した場合、フェライト中の
固溶Cは完全には炭化物として析出せず、当然のことな
がらひずみ時効性、自然時効性が悪化する。
(Prior art) As a high tensile strength steel sheet with good tensile strength (hereinafter referred to as TS) and El, Mn,
There are high-strength steel sheets with solid solution strengthening elements such as P added,
When such solid solution strengthened high tensile strength steel sheets are subjected to general plating treatment and plating alloying treatment, the solid solution C in the ferrite does not completely precipitate as carbides, and naturally the strain aging properties and Natural aging deteriorates.

時効性を改善するためと強度を上昇させる目的で、特開
昭57−43974号公報の如(、Tiなどの炭化物生
成元素を添加する方法もあるが、これら析出強化型高張
力鋼板は一般に連続溶融亜鉛めっきライン(以下CGL
と略称する)で処理すると、鋼板表面の清浄化を目的と
するいわゆるガスクーリング工程にて弱酸化後に還元さ
れるが、このときTiのような酸化されやすい合金元素
の存在によって、還元が充分に行われ得ないので還元不
足となり、そのためしばしば不めっきが多発し実用に適
わない。
In order to improve aging properties and increase strength, there is a method of adding carbide-forming elements such as Ti (as described in Japanese Patent Application Laid-Open No. 57-43974), but these precipitation-strengthened high-strength steel sheets are generally Hot dip galvanizing line (hereinafter referred to as CGL)
(abbreviated as ), it is reduced after weak oxidation in a so-called gas cooling process aimed at cleaning the surface of the steel sheet, but at this time, due to the presence of alloying elements that are easily oxidized, such as Ti, the reduction is not sufficiently performed. Since this cannot be carried out, the reduction is insufficient, and as a result, unplated areas often occur, making it unsuitable for practical use.

加えて元来亜鉛めっきは、溶融亜鉛と地鉄とが反応して
合金層をまず形成し、この合金層が亜鉛層と地鉄層との
結合に役立つところ、この合金層はかたくて脆いために
厚く生長すると加工時のめっきはく離の原因となるので
、できるだけ薄いことがのぞまれるのに反し、上記Ti
添加鋼等では合金層の生長速度が速く、通常の操業条件
でも比較的厚く合金層が形成されて、加工時に粉化剥落
(以下パウダリングと称す)を起しやすいことも難点に
かぞえられる。
In addition, originally in galvanizing, molten zinc and base steel react to form an alloy layer, and this alloy layer serves to bond the zinc layer and base steel layer, but this alloy layer is hard and brittle. If the Ti grows thickly, it will cause the plating to peel off during processing, so it is desired that the Ti be as thin as possible.
With additive steel, etc., the growth rate of the alloy layer is fast, and even under normal operating conditions, a relatively thick alloy layer is formed, making it easy to cause powdering and flaking (hereinafter referred to as powdering) during processing.

(発明が解決しようとする問題点) 時効の問題や、不めっきさらにはパウダリングの如き不
利を来すことのないように、Si、 Mn添加を基本成
分とする鋼板に施した溶融亜鉛めっき層についての、合
金化条件と合金化後の冷却条件を組合わせることによっ
て、TS 35Kgf/mm”以上でひずみ時効や自然
時効が少なく、さらにめっき密着性の良好な、HS、 
GA鋼板の製造方法を与えることがこの発明の目的であ
る。
(Problems to be Solved by the Invention) A hot-dip galvanized layer is applied to a steel sheet containing Si and Mn as its basic components in order to avoid problems such as aging, non-coating, and even powdering. By combining the alloying conditions and post-alloying cooling conditions for HS, which has less strain aging and natural aging at TS 35Kgf/mm" or more, and has good plating adhesion,
It is an object of this invention to provide a method for manufacturing GA steel sheets.

(問題点を解決するための手段) 上記の目的は次の事項によって充足される。(Means for solving problems) The above objectives are met by:

C:O,(12〜Q、3Qwt% si : 0.50−t%以下、 ンn : 0.10〜2.0賀t% を含み、残余鉄及び不可避不純物からなる組成の鋼板に
、溶融亜鉛めっきを施したのち、650〜850℃の温
度に加熱し、その温度で1秒間以上保持すること、引続
き500℃以下まで20℃/sの冷却速度で冷却するこ
と、その後200℃以上の温度にて5秒間以上の保持を
行うか又は該温度にてコイリングを行うことの結合を特
徴とする、高張力合金溶融亜鉛めっき鋼板の製造方法(
第1発明)。
C: O, (12~Q, 3Q wt% si: 0.50-t% or less, After galvanizing, heat to a temperature of 650 to 850°C, hold at that temperature for 1 second or more, then cool at a cooling rate of 20°C/s to 500°C or less, then raise the temperature to 200°C or more. A method for producing a high tensile strength alloy hot-dip galvanized steel sheet, characterized by holding at a temperature for 5 seconds or more or coiling at said temperature (
1st invention).

c:o、o2〜0.30wt% Si : 0.50wt%以下、 Mn : 0.10〜2.0wt% を含み、残余鉄及び不可避不純物からなる組成の鋼板に
、溶融亜鉛めっきを施したのち、650〜850℃の温
度に加熱し、その温度で1秒間以上保持すること、引続
き600℃を下まわらぬ温度に至るまでは20℃/s未
満の冷却速度次いで500℃以下まで20℃/s以上の
冷却速度で冷却すること、その後200℃以上の温度に
て5秒間以上の保持を行うか又は該温度にてコイリング
を行うことの結合を特徴とする、高張力合金化溶融亜鉛
めっき鋼板の製造方法(第2発明)。
c: o, o2 ~ 0.30 wt% Si: 0.50 wt% or less, Mn: 0.10 ~ 2.0 wt%, after hot-dip galvanizing a steel sheet with a composition consisting of residual iron and unavoidable impurities. , heating to a temperature of 650 to 850°C and holding at that temperature for at least 1 second, followed by a cooling rate of less than 20°C/s until the temperature reaches no less than 600°C, then 20°C/s until below 500°C. A high-strength alloyed hot-dip galvanized steel sheet characterized by a combination of cooling at a cooling rate of 200°C or more, and then holding at a temperature of 200°C or more for 5 seconds or more, or coiling at that temperature. Manufacturing method (second invention).

何れの場合も熱延鋼板、冷延鋼板の双方に適合し、これ
らの鋼板を溶融亜鉛浴に浸漬して溶融亜鉛めっきを施し
、これに対して上記のように高温下の合金化処理を行い
ついで冷却制御を施すことが要諦である。
In either case, it is suitable for both hot-rolled steel sheets and cold-rolled steel sheets, and these steel sheets are immersed in a hot-dip zinc bath to be hot-dip galvanized, and then alloyed at high temperatures as described above. The key is then to perform cooling control.

なおこの発明においては通常冷延鋼板の亜鉛めっきに際
して一般に行われている、めっき前の再結晶のための加
熱は不要であり、この熱処理省略によるコストダウンも
注目に価する。
In addition, in the present invention, there is no need for heating for recrystallization before plating, which is generally performed when galvanizing cold-rolled steel sheets, and the cost reduction due to the omission of this heat treatment is also worth noting.

一般に溶融亜鉛めっきを施すには亜鉛浴に浸漬した鋼板
を450〜550℃の範囲の温度で1秒以上保持し、浴
から引・出すがこの後該鋼板をさらに加熱し、とくに6
50℃以上850℃以下の温度に加熱し、その温度で1
秒以上保持して合金化処理を行う。
Generally, to apply hot-dip galvanizing, a steel plate is immersed in a zinc bath and held at a temperature in the range of 450 to 550°C for 1 second or more, and then pulled out of the bath.
Heat to a temperature of 50°C or higher and 850°C or lower, and 1 at that temperature.
Hold for more than a second to perform alloying treatment.

これに対して通常の合金化処理温度は通常550〜60
0℃どまりでありこれによって形成されるめっき層は鉄
濃度が12wt%前後のδ、相である。このδ1相は塗
装耐食性、塗膜密着性およびスポット溶接性の面ですぐ
れているが、強い折り曲げ加工やプレス加工によればパ
ウダリングを生じ、折角の特性が生かされないばかりで
なく、プレス加工時にも星目などの欠陥の原因となる。
On the other hand, the normal alloying treatment temperature is usually 550 to 60
The temperature is only 0° C., and the plating layer formed thereby is a δ phase with an iron concentration of about 12 wt%. This δ1 phase is excellent in terms of paint corrosion resistance, paint film adhesion, and spot weldability, but if it is subjected to strong bending or press processing, it will cause powdering, which will not only prevent its properties from being utilized, but also cause problems during press processing. It also causes defects such as star spots.

塗装耐食性、塗膜密着性、スポット溶接性を損うことな
くパウダリングを軽減するためには、特願昭58−07
3498号や特願昭60−01737号明細書に開示し
たようにめっき層の鉄濃度を15〜35wt%にするこ
とが有効であって、このためには合金化温度を650〜
780℃に上昇させる必要がある。
In order to reduce powdering without impairing paint corrosion resistance, paint film adhesion, and spot weldability, the patent application No. 58-07
As disclosed in Japanese Patent Application No. 3498 and Japanese Patent Application No. 60-01737, it is effective to set the iron concentration in the plating layer to 15 to 35 wt%.
It is necessary to raise the temperature to 780°C.

発明者らの詳細な研究によれば、780°Cよりもさら
に高温で合金化処理を行ってもめっき層の特性は悪化し
ないことが明らかとなった。
According to detailed research conducted by the inventors, it has become clear that the properties of the plating layer do not deteriorate even if the alloying treatment is performed at a higher temperature than 780°C.

従って650℃〜850℃の範囲の温度に加熱しかつ供
給する高温の合金化処理を経たのちは、500℃以下ま
で20℃/s以上の冷却速度で冷却するか又はその途中
600°Cを下まわらぬ温度まではより低い冷却速度の
過程を含むような冷却を行い、その後該冷却制御温度よ
り低いが200℃以上の温度にて5秒間以上の保持又は
コイリングを行うことによる時効処理を行うことがとく
に重要である。
Therefore, after going through a high-temperature alloying process that involves heating and supplying to a temperature in the range of 650°C to 850°C, it should be cooled to below 500°C at a cooling rate of 20°C/s or more, or the temperature should be lowered to 600°C during the process. Cooling is performed including a process of lower cooling rate until the temperature reaches a point where the material does not deteriorate, and then aging treatment is performed by holding or coiling at a temperature lower than the cooling control temperature but 200°C or higher for 5 seconds or more. is particularly important.

(作 用) この発明の従うHS、 GA鋼板を現実のCGLで実施
可能な冷却速度で安価に得るためには、少なくともC:
 0 、02w t%以以上Mn : 0.10wt%
以上が必要である。また安価にしかも加工性を良好にす
るため、0 、5w t1以下でSiの添加が有効であ
る。しかしながら、C:0.30wt%、またMn:2
.0wt%そしてSi : 0.50wtχの限界をど
れか1種でも越えると加工性、スポット溶接性、塗膜密
着性の悪化を来す。
(Function) In order to obtain the HS and GA steel sheets according to the present invention at low cost at a cooling rate that can be implemented in actual CGL, at least C:
0.02wt% or more Mn: 0.10wt%
The above is necessary. In addition, in order to reduce the cost and improve workability, it is effective to add Si at 0.5wt1 or less. However, C: 0.30 wt% and Mn: 2
.. 0wt% and Si: Exceeding the limits of 0.50wtχ causes deterioration in workability, spot weldability, and coating film adhesion.

以上がこの発明の出発材について成分範囲を限定する理
由である。
The above is the reason for limiting the range of ingredients for the starting materials of this invention.

次に溶融亜鉛めっきの操業はすでにのべたとおり格別な
制限はないが、引続く合金化処理温度の下限を650℃
としてのは、上記のようにめっき層の鉄濃度を15〜3
5wt%にする目的と、合金化処理のための加熱時に、
鋼中に存在する固溶Cをその後の冷却過程により、フェ
ライト中に過飽和に存在させ、その冷却到達温度以下2
00℃以上で保持するか又はコイリングの際に、上記固
溶Cをすべて炭化物として析出させ、自然時効を軽減す
るために必要である。また合金化処理の温度上限を85
0℃としたのは、850℃をこえるとめっき相のFe濃
度が35%を越え、塗装耐食性が悪化するためである。
Next, as mentioned above, there are no particular restrictions on the operation of hot-dip galvanizing, but the lower limit of the subsequent alloying treatment temperature is 650°C.
As mentioned above, the iron concentration of the plating layer is 15 to 3.
For the purpose of making it 5 wt% and during heating for alloying treatment,
Through the subsequent cooling process, the solid solution C present in the steel is made to exist in the ferrite in a supersaturated state, and the temperature reaches 2 below the cooling temperature.
This is necessary to reduce natural aging by maintaining the temperature at 00° C. or higher or by precipitating all of the solid solution C as carbide during coiling. In addition, the upper temperature limit for alloying treatment was set at 85%.
The reason for setting the temperature to 0°C is that if the temperature exceeds 850°C, the Fe concentration in the plating phase will exceed 35%, and the corrosion resistance of the coating will deteriorate.

ここで表1に示す組成の熱延鋼板を用いて実験室にて溶
融亜鉛めっき、合金化処理実験を行った結果に触れる。
Here, we will discuss the results of hot-dip galvanizing and alloying treatment experiments conducted in a laboratory using hot-rolled steel sheets having the compositions shown in Table 1.

表I   11℃% 実験ヒートサイクルは次の通りである。Table I 11℃% The experimental heat cycle was as follows.

供試鋼板を480℃まで10℃への加熱速度で昇温し、
480℃にて5S保持する間に溶融亜鉛めっきを行った
後、10℃/sの加熱速度で合金化温度(T、℃)まで
昇温し、この温度で20秒保持により合金化処理を行い
、その後冷却終了温度13℃まで冷却速度V’C15で
冷却するか又は第1段階の冷却終了温度(7g℃)まで
冷却速度υ、”C/sで冷却しさらに第2段階の冷却終
了温度(73℃)まで冷却速度02℃/sで冷却し、つ
いで冷却終了温度T3でt秒間保持後空冷した(第1図
参照)。
The temperature of the test steel plate was raised to 480°C at a heating rate of 10°C,
After hot-dip galvanizing at 480°C while holding for 5S, the temperature was raised to the alloying temperature (T,°C) at a heating rate of 10°C/s, and alloying treatment was performed by holding at this temperature for 20 seconds. , and then cooled at a cooling rate of V'C15 to the cooling end temperature of 13°C, or cooled at a cooling rate of υ,"C/s to the cooling end temperature of the first stage (7g°C), and then cooled to the cooling end temperature of the second stage (7 g°C). 73° C.) at a cooling rate of 02° C./s, and then held at the cooling end temperature T3 for t seconds, followed by air cooling (see FIG. 1).

ここで、T++Tz43+υ+’l+’2+tを様々に
変化させ引張特性のチェックを行った。
Here, the tensile properties were checked by varying T++Tz43+υ+'l+'2+t.

この結果を表2(1)〜(31(1段冷却)1表3(2
段冷却)に示す。
The results are shown in Tables 2 (1) to (31 (1 stage cooling) 1 Table 3 (2
(stage cooling).

表2における冷却過程は合金化温度(Tl’C)から上
記した冷却終了温度(’ri”c)まで一定速度で冷却
し、この冷却速度をυ’C/sで示ししたがって上記し
た第1段階冷却終了温度T2は存在しない。
The cooling process in Table 2 is cooling at a constant rate from the alloying temperature (Tl'C) to the above-mentioned cooling end temperature ('ri'c), and this cooling rate is expressed as υ'C/s. Therefore, the above-mentioned first stage There is no cooling end temperature T2.

材質試験値として、TS、 E Jの他に、自然時効を
表わす因子として、AI(エージング、インデックス)
を採用した。^、■値は引張試験において7.5χの歪
を与えた時の強度をSo (Kgf/mm”)とし、7
.5χの歪を与えた後100℃で30分間加熱した後、
再び引張試験を行い、その時の下降状点をS(kgf/
mm”)とすれば次の(11式 %式%(1) で与えられる。^、■値は、固溶Cにピンニングされて
いた転位が引張応力により固溶Cからはずれ自由転位と
なるが、加熱されることにより、再び固溶Cにピンニン
グされることにより降伏点の上昇につながることから生
じる。一般的にA、I≦3Kgf/mmzを満足すれば
、実用上加工時、ストレッチャーストレインなどの欠陥
は発生しないものとされている。
In addition to TS, E, and J as material test values, AI (aging, index) is a factor representing natural aging.
It was adopted. ^, ■The value is the strength when a strain of 7.5χ is applied in a tensile test, So (Kgf/mm"), 7
.. After applying a strain of 5χ and heating at 100°C for 30 minutes,
Perform the tensile test again, and the descending point at that time is S (kgf/
mm”), then it is given by the following (11 formula % formula % (1). ^, ■ The value is that dislocations pinned to solid solution C detach from solid solution C due to tensile stress and become free dislocations. This occurs because heating causes pinning to the solid solution C again, leading to an increase in the yield point.Generally, if A,I≦3Kgf/mmz is satisfied, stretcher strain is reduced during practical processing. It is assumed that such defects will not occur.

表2および表3よりTS35kgf/mm”以上を有す
る鋼はサンプル魚2〜4であることが分る。また、上記
したA、I≦3Kgf/mmzを満足する鋼は、表2よ
りTI>650℃、υ≧20℃/s+rz≦500℃で
かつt≧53かあるいは、表3よりT、>650℃、υ
1≦20℃/s。
From Tables 2 and 3, it can be seen that steels with a TS of 35kgf/mm" or more are sample fish 2 to 4. Also, from Table 2, steels that satisfy the above A and I≦3Kgf/mmz have a TI>650 ℃, υ≧20℃/s+rz≦500℃ and t≧53, or from Table 3, T, >650℃, υ
1≦20°C/s.

Tt≧600℃、υ2≧20℃八+73≦へ00℃でか
つt≧53のものであることが分る。この現象は一般に
オーステナイト中の固溶C量も含めて、固溶C量は温度
が高い程上昇するが、500℃以下への冷却により、フ
ェライト中に十分に過飽和固溶Cを存在させるためには
冷却前に650℃以上の温度が必要であるということで
ある。
It can be seen that Tt≧600°C, υ2≧20°C, 8+73≦ to 00°C, and t≧53. This phenomenon generally includes the amount of solid solute C in austenite, and the amount of solid solute C increases as the temperature increases. This means that a temperature of 650° C. or higher is required before cooling.

その後の500℃以下の冷却到達温度での保持により、
セメンタイトの析出が急速に起り、最終的に固溶C量は
激減する。T、が65θ℃より低い場合、冷却後の固溶
炭素の過飽和度が低いため、セメンタイトとして析出す
る駆動力が小さく最終的には完全に析出せず、固溶Cの
まま多量に残りA、I上昇の原因となる。
By subsequently maintaining the cooling temperature below 500℃,
Precipitation of cementite occurs rapidly, and finally the amount of solid solute C is drastically reduced. When T is lower than 65θ℃, the degree of supersaturation of solid solute carbon after cooling is low, so the driving force for precipitation as cementite is small and ultimately it does not precipitate completely, and a large amount of solid solute C remains A, It causes an increase in I.

表2と表3を比較した場合、2段階冷却過程である表3
の鋼の方がA、Iの低いことがわかる。
When comparing Tables 2 and 3, Table 3 shows a two-stage cooling process.
It can be seen that the steel has lower A and I values.

これは、2段階冷却過程の第1段階の20℃/s以下の
冷却過程でフェライト中の固溶Cがオーステナイト中に
拡散し第2段階冷却後フェライトの粒界にセメンタイト
としてほぼ完全に析出するためである。
This is because solid solution C in ferrite diffuses into austenite during the cooling process of 20°C/s or less in the first stage of the two-stage cooling process, and almost completely precipitates as cementite at the grain boundaries of ferrite after the second stage cooling process. It's for a reason.

以上のような結果により、合金化処理後の冷却過程を以
下のように制御しなければならない。
Based on the above results, the cooling process after alloying treatment must be controlled as follows.

1、合金化処理後、20℃/s以上の冷却速度で500
℃以下に冷却し、この冷却到達温度よりは低いが200
℃以上の温度にて5秒以上保持する。
1. After alloying treatment, cooling rate of 20℃/s or more is 500℃.
℃ or below, but lower than this cooling temperature, 200℃
Hold at a temperature of ℃ or higher for 5 seconds or more.

2、合金化処理後、20℃/s未満の冷却速度で600
℃を下まわらぬ温度まで冷却しさらに20℃/s以上の
冷却速度で500℃以下に冷却し、この冷却到達温度よ
りは低いが200℃以上の温度以上保持する。
2. After alloying treatment, cooling rate of less than 20°C/s is 600°C.
It is cooled to a temperature of no less than 200° C., further cooled to 500° C. or less at a cooling rate of 20° C./s or more, and maintained at a temperature of 200° C. or more, which is lower than the reached cooling temperature.

なお、500℃以下に冷却した後の5秒以上にわたる保
持を行うかわりにコイリングをしても上記したと同様な
挙動がもたらされるのでこのコイリングは、冷却制御後
の時効処理としての保持と均等である。
Note that even if coiling is performed instead of holding for 5 seconds or more after cooling to 500°C or less, the same behavior as described above will result, so this coiling is equivalent to holding as aging treatment after cooling control. be.

この時効処理温度は、200℃未満のとき、セメンタイ
トとして析出をさせようとするα相中の固溶Cの拡散が
不十分なため、A、Iが高くなり、また冷却到達温度が
その最高温度である500℃より高いと、α相中に固溶
する平衡C量が高く充分に固溶Cを下げ得ないのでA、
Iが劣化する。
When the temperature of this aging treatment is lower than 200°C, A and I become high due to insufficient diffusion of solid solution C in the α phase that is intended to precipitate as cementite, and the temperature reached by cooling is the highest temperature. If the temperature is higher than 500°C, the equilibrium amount of C dissolved in solid solution in the α phase is high and the solid solute C cannot be lowered sufficiently.
I deteriorates.

(実施例) 実施例に用いた鋼スラブの化学組成を表4に示す。(Example) Table 4 shows the chemical composition of the steel slab used in the examples.

表4   wt% 鋼スラブは転炉で溶製し、連続鋳造、熱間圧延を経て板
厚3.0mmに仕上げた。
Table 4 wt% Steel slabs were melted in a converter, and finished to a thickness of 3.0 mm through continuous casting and hot rolling.

さらにこの熱延板の一部を板厚0.95mmに冷間圧延
した。これら熱延板、および冷延板を様々なCGLヒー
トサイクルでめっきとその合金化処理を施し、引張特性
、めっき密着性を調査した。
Further, a part of this hot rolled sheet was cold rolled to a thickness of 0.95 mm. These hot-rolled sheets and cold-rolled sheets were plated and alloyed using various CGL heat cycles, and their tensile properties and plating adhesion were investigated.

実施例に用いたヒートサイクルは次のとおりである。The heat cycle used in the examples is as follows.

すなわち、CGLにおいて480°Cのめっき浴温度ま
で15℃/sで加熱後、5秒保持により溶融亜鉛めっき
を施した後、種々な合金化温度まで昇温し、該温度で1
0秒保持後30℃/sの冷却速度で350℃まで冷却直
ちにコイリングした。
That is, after heating at 15°C/s to a plating bath temperature of 480°C in CGL, hot-dip galvanizing was performed by holding for 5 seconds, the temperature was raised to various alloying temperatures, and 1
After holding for 0 seconds, it was cooled to 350°C at a cooling rate of 30°C/s and immediately coiled.

第2図にこれらの鋼のA、1を示す。図中白丸および白
画角にあたる発明鋼はA、■≦3.0Kgf/mm2を
満足している。
Figure 2 shows A, 1 of these steels. The invention steel corresponding to the white circle and white angle of view in the figure satisfies A, ■≦3.0Kgf/mm2.

次にめっき密着性および耐パウダリング性試験結果を表
6に示す。
Next, Table 6 shows the results of plating adhesion and powdering resistance tests.

ここでめっき密着性の判定は半調理12.7mmφ、重
さ12.2kgの重錘を、高さ500mmから落下させ
ダイス(21mmφ)側の面のはく離状況を90%以上
はく離なしを○印、50%以上はく離なしを△、それ以
外を×として判定した。
Here, the plating adhesion is judged by dropping a half-cooked weight of 12.7 mmφ and weighing 12.2 kg from a height of 500 mm, and marking 90% or more of peeling on the side of the die (21 mmφ) as ○. No peeling of 50% or more was judged as △, and other cases were judged as ×.

また耐パウダリング性評価方法としては試験面を内側と
して90″曲げを行い、これにセロテープをはりつけは
がしてテープ上に付着しためっきはく離粉の量を下記の
基準で作成した限度見本と比較評価した。
In addition, as a method for evaluating powdering resistance, the test surface was bent 90'' with the test surface inside, cellophane tape was applied and peeled off, and the amount of plating flaking powder adhering to the tape was evaluated by comparing it with a limit sample prepared according to the following criteria. .

5、はく離粉の付着なし 4、はく離粉の付着微量 3、はく離粉の付着少量 2、はく離粉の付着多量 1、はく離粉の付着極めて多量 表6より、めっき密着性、耐パウダリング性とも合金化
処理を施していない場合または合金化温度が低い場合に
掻めて劣ることが分る。
5. No flaking powder attached 4. Very small amount of flaking powder attached 3. Small amount of flaking powder attached 2. Large amount of flaking powder attached 1. Extremely large amount of flaking powder attached. From Table 6, the alloy has both plating adhesion and powdering resistance. It can be seen that the alloying properties are significantly inferior when no alloying treatment is performed or when the alloying temperature is low.

(発明の効果) この発明により、TSが35Kgf/mm”以上、A、
I≦3.0Kgf/mm”を確保し、しかもめっき密着
性および耐パウダリング性とも良好なHS、 GA鋼板
を安定に製造し得る。
(Effect of the invention) According to this invention, the TS is 35Kgf/mm” or more, A,
It is possible to stably produce HS and GA steel sheets that ensure I≦3.0 Kgf/mm'' and have good plating adhesion and powdering resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はヒートサイクル線図、 第2図は実施例のAI−T相関グラフである。 Figure 1 is a heat cycle diagram, FIG. 2 is an AI-T correlation graph of the example.

Claims (1)

【特許請求の範囲】 1、C:0.02〜0.30wt% Si:0.50wt%以下、 Mn:0.10〜2.0wt% を含み、残余鉄及び不可避不純物からなる組成の鋼板に
、溶融亜鉛めっきを施したのち、650〜850℃の温
度に加熱し、その温度で1秒間以上保持すること、 引続き500℃以下まで20℃/s以上の冷却速度で冷
却すること、 その後200℃以上の温度にて5秒間以上の保持を行う
か又は該温度にてコイリングを行うこと の結合を特徴とする、高張力合金化溶融亜鉛めっき綱板
の製造方法。 2、C:0.02〜0.30wt% Si:0.50wt%以下、 Mn:0.10〜2.0wt% を含み、残余鉄及び不可避不純物からなる組成の鋼板に
、溶融亜鉛めっきを施したのち、650〜850℃の温
度に加熱し、その温度で1秒間以上保持すること、 引続き600℃を下まわらぬ温度に至るまでは20℃/
s未満の冷却速度、ついで500℃以下まで20℃/s
以上の冷却速度で冷却すること、その後200℃以上の
温度にて5秒間以上の保持を行うか又は該温度にてコイ
リングを行うこと の結合を特徴とする、高張力合金化溶融亜鉛めっき鋼板
の製造方法。
[Claims] 1. A steel plate having a composition containing C: 0.02 to 0.30 wt%, Si: 0.50 wt% or less, Mn: 0.10 to 2.0 wt%, and consisting of residual iron and inevitable impurities. , After hot-dip galvanizing, heat to a temperature of 650 to 850°C and hold at that temperature for 1 second or more, then cool to 500°C or less at a cooling rate of 20°C/s or more, then 200°C A method for producing a high tensile strength alloyed hot-dip galvanized steel sheet, characterized by holding the above temperature for 5 seconds or more or coiling at the above temperature. 2. Hot-dip galvanizing is applied to a steel sheet with a composition containing C: 0.02 to 0.30 wt%, Si: 0.50 wt% or less, Mn: 0.10 to 2.0 wt%, residual iron and unavoidable impurities. After that, heat it to a temperature of 650 to 850℃ and hold it at that temperature for more than 1 second, then continue to heat it at 20℃/20℃ until the temperature reaches no less than 600℃.
Cooling rate below 500°C, then 20°C/s to below 500°C
A high-strength alloyed hot-dip galvanized steel sheet characterized by a combination of cooling at a cooling rate of 200°C or more, and then holding at a temperature of 200°C or more for 5 seconds or more, or coiling at that temperature. Production method.
JP60142430A 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet Expired - Lifetime JPH0627315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60142430A JPH0627315B2 (en) 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60142430A JPH0627315B2 (en) 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet

Publications (2)

Publication Number Publication Date
JPS624860A true JPS624860A (en) 1987-01-10
JPH0627315B2 JPH0627315B2 (en) 1994-04-13

Family

ID=15315135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60142430A Expired - Lifetime JPH0627315B2 (en) 1985-07-01 1985-07-01 Method for producing high-strength alloyed hot-dip galvanized steel sheet

Country Status (1)

Country Link
JP (1) JPH0627315B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074924A (en) * 1989-06-21 1991-12-24 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line
JP2011508824A (en) * 2007-12-20 2011-03-17 フェストアルピネ シュタール ゲーエムベーハー Method of manufacturing a coated and hardened component of steel and a coated and hardened steel strip for this method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122820A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Manufacture of alloyed zinc-plated high tensile steel sheet with superior workability

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55122820A (en) * 1979-03-13 1980-09-20 Kawasaki Steel Corp Manufacture of alloyed zinc-plated high tensile steel sheet with superior workability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074924A (en) * 1989-06-21 1991-12-24 Nippon Steel Corporation Process for producing galvanized, non-aging cold rolled steel sheets having good formability in a continuous galvanizing line
JP2011508824A (en) * 2007-12-20 2011-03-17 フェストアルピネ シュタール ゲーエムベーハー Method of manufacturing a coated and hardened component of steel and a coated and hardened steel strip for this method

Also Published As

Publication number Publication date
JPH0627315B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
JP3527092B2 (en) High-strength galvannealed steel sheet with good workability and method for producing the same
EP2009130B1 (en) Process for producing alloyed hot-dip zinc-coated steel sheet satisfactory in processability, non-powdering property, and sliding property
US10287440B2 (en) Steel product with an anticorrosive coating of aluminum alloy and method for the production thereof
WO2005068676A1 (en) Hot dip zinc plated high strength steel sheet excellent in plating adhesiveness and hole expanding characteristics
JPWO2003074751A1 (en) Surface-treated steel sheet and manufacturing method thereof
JP4000943B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
WO2004061137A1 (en) Alloyed-molten-zinc-plated steel sheet with excellent processability and high strength and process for producing the same
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP4940813B2 (en) Method for producing hot-dip galvanized steel sheet having a value of TS × El of 21000 MPa ·% or more
KR20160077594A (en) High manganese steel sheet having excellent hot dip aluminium coatability, and method for manufacturing the same
JP4702974B2 (en) Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same
JPH09176815A (en) High strength hot dip galvanized steel sheet excellent in plating adhesion
JPS6223975A (en) Alloyed hot dip galvanized high-tension hot-rolled steel sheet and its manufacture
JPS62133059A (en) Alloyed zinc hot dipped hot rolled high tensile steel sheet and its production
JP4415579B2 (en) Method for producing hot-dip galvanized steel sheet
JPS624860A (en) Manufacture of high tension alloyed hot dip galvanized steel sheet
JP3347152B2 (en) Method for producing cold-rolled high-strength hot-dip galvanized steel sheet with excellent resistance to pitting corrosion
JP3758584B2 (en) Hot-dip galvanized steel sheet with excellent strain age hardening characteristics
JPH075971B2 (en) Method for producing alloy electroplated steel sheet for deep drawing with excellent impact peel resistance after painting
JPH04301060A (en) High strength alloyed galvanized steel sheet having seizing hardenability and excellent in powdering resistance and its production
JPS62260046A (en) High-strength alloyed hot dip zinc coated steel sheet having excellent deep drawability and its production
JP3058911B2 (en) Method for producing hot-dip galvanized steel sheet with good workability and excellent perforation corrosion resistance
JPS62188768A (en) Alloying hot dip galvanized high tension cold rolled steel sheet and its manufacture
JPH04173925A (en) Production of hot-dip galvanized steel sheet for high-degree working excellent in baking hardenability and pitting corrosion resistance
KR20110000424A (en) Hot-rolled steel sheet having excellent galvanized coating quality and the method for manufacturing the same