JP4299560B2 - Method for producing high-strength galvannealed steel sheet with excellent workability - Google Patents

Method for producing high-strength galvannealed steel sheet with excellent workability Download PDF

Info

Publication number
JP4299560B2
JP4299560B2 JP2003077396A JP2003077396A JP4299560B2 JP 4299560 B2 JP4299560 B2 JP 4299560B2 JP 2003077396 A JP2003077396 A JP 2003077396A JP 2003077396 A JP2003077396 A JP 2003077396A JP 4299560 B2 JP4299560 B2 JP 4299560B2
Authority
JP
Japan
Prior art keywords
mass
steel sheet
less
plating
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003077396A
Other languages
Japanese (ja)
Other versions
JP2004285385A (en
Inventor
宏 田中
浩次 面迫
智郎 山本
進 藤原
和昭 細見
敦司 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2003077396A priority Critical patent/JP4299560B2/en
Publication of JP2004285385A publication Critical patent/JP2004285385A/en
Application granted granted Critical
Publication of JP4299560B2 publication Critical patent/JP4299560B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、自動車,建築,電気機器等の部材として有用な高強度鋼板、特に加工性に優れた高強度の合金化溶融亜鉛めっき鋼板の製造方法に関する。
【0002】
【従来の技術】
合金化溶融亜鉛めっき鋼板は、耐食性,塗装性,塗装後密着性,溶接性に優れていることから、自動車用車体,家電製品を始めとする種々の分野で防錆鋼板として汎用されている。このような用途では、通常プレス成形により必要形状に加工して使用されることから,耐食性に加えて加工性に優れていることも重要である。
合金化溶融亜鉛めっき鋼板は、溶融亜鉛めっきした後、加熱合金化処理することにより製造されている。加熱合金化処理には、一般にバーナ加熱方式,高周波誘導加熱方式,両者を併用する加熱方式等を採用した合金化処理炉が使用されている。
【0003】
特に、自動車車体を軽量化するため多用されるようになってきた合金化溶融亜鉛めっき高強度鋼板では、延性の小さな高張力鋼をめっき原板に使用していることから、プレス成形性に及ぼすめっき層表面の摺動性の影響が大きく、多量のζ相が残存するとめっき層の剥離だけでなく、板破断が発生し、プレス成形ができなくなることがある。
そこで、本発明者等は、特開2001−279409号公報で、合金化熱処理時にζ相を残存させず、しかもΓ相の成長を抑制して加工性に優れた合金化溶融亜鉛めっき鋼板を得るために、めっき原板の表面に実質的にFeからなる層を形成した後、溶融亜鉛めっきを施し、その後合金化熱処理することにより、δ1相,Γ1相及び層厚1μm以下のΓ相からなるめっき層を有する合金化溶融亜鉛めっき高強度鋼板を製造する方法を提案した。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の製造方法でζ相の生成・残存を防ぐためには、合金化熱処理を530℃以上の高い温度で行う必要があった。
ところで、自動車用車体,家電製品等に使用されるめっき鋼板には、加工性の他に強度も要求される。特に、近年、自動車の燃費節減の動向から、自動車ボディの軽量化が図られている。そして材料面では、肉薄化しても強度が確保できるように高強度化が進められている。一般に、低炭素鋼では、高強度化に有効な元素であるSiやMnが添加されている。そして亜鉛めっき用の原板にも多量のSi,Mnを含有させて高強度化を図っている。
多量のSi、Mnを含有させた鋼板に溶融亜鉛めっきした後、高温で合金加熱処理を施すと鋼板中にパーライトや炭化物を形成するために、鋼板自身の強度及び伸びは著しく低下する。
【0005】
【発明が解決しようとする課題】
本発明は、このような問題を解消すべく案出されたものであり、溶融亜鉛めっきを施す前のめっき原板の表面にプレFeめっき層を形成し、めっき後の合金化熱処理を省略するか、行うにしてもその処理温度を低下させて原板の機械的特性の低下を防ぐことにより、高強度でしかも加工性に優れた合金化溶融亜鉛めっき鋼板を製造する方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法は、その目的を達成するため、C:0.04〜0.25質量%,Si:0.2〜2.0質量%,Mn:0.5〜3.0質量%、P:0.015質量%以下,S:0.005質量%以下を含み、残部がFe及び不可避的不純物からなる組成をもつ鋼板に、付着量3〜15g/mのFe系めっき層を形成した後、ガス還元焼鈍し、420℃以上490℃未満の溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきを施し、再加熱なしに、又は溶融めっき後に530℃未満に加熱して合金化処理を行い、鋼板表面に合金化溶融亜鉛めっき層を形成したことを特徴とする。
具体的には、製造条件としては、Fe系めっきを施した鋼板を、700〜900℃で焼鈍した後、2〜200℃/秒の平均冷却速度で350〜490℃まで冷却し、その温度域に1〜20分保持した後、溶融亜鉛めっきを施し、直ちに、又は430℃以上530℃未満の温度に2秒〜2分保持後、5℃/秒以上の冷却速度で250℃以下に冷却して、鋼中の残留オーステナイト量を3体積%以上にする。
【0007】
鋼板としては、鋼中にさらにTi:0.04〜0.2質量%,Nb:0.003〜0.2質量%の少なくとも1種又は2種、或いはB:0.01質量%以下,Mo:1.0質量%以下,Cr:1.0質量%以下,V:0.5質量%以下,Ni:2.0質量%以下,Co:1.0質量%以下の少なくとも1種又は2種以上を含むものでも良い。
さらにまた、上記鋼板は、0.02〜0.15質量%のCuをCu/S≧5の範囲で含有したものでも良い。
【0008】
【作用】
本発明者等は、先に特開2001−279409号で提案した加工性に優れた合金化溶融亜鉛めっき高張力鋼板の製造方法では、溶融亜鉛めっき後の合金化熱処理として高い温度を必要とするため、その熱処理時に、鋼中にパーライトや炭化物が生成し、鋼板の強度及び延性が低下することを確認した。
そこで、さらに検討を重ねる過程で、溶融Znめっきを施す前のプレめっきとしてFe系のめっき層を形成しておくと、溶融亜鉛めっき後、合金化が容易に行えるので、合金化処理温度を低く、あるいは溶融亜鉛めっき時に合金化が行えて、鋼材自身の機械的特性、特に延性の低下を抑えることができることを見出したものである。
【0009】
そして、合金化処理温度を下げることができた理由を次の様に推測した。
鋼中のMn,Si濃度が高い場合、通常はMn,Siがバリアとなり、FeとZnの相互拡散を抑制するため、合金加熱処理温度を高くしないと合金化が行われない。これに対して、Feプレめっき層を形成しておくと、表層に合金化を抑制するMnやSiが存在しない層が存在することとなり、合金化温度が低くても合金化処理が可能となる。
【0010】
【実施の態様】
本発明で使用されるめっき原板としては、C:0.04〜0.25質量%,Si:0.2〜2.0質量%,Mn:0.5〜3.0質量%を含み、P:0.015質量%以下,S:0.005質量%以下に規制され、さらに必要に応じてTi:0.04〜0.2質量%,Nb:0.003〜0.2質量%の少なくとも1種又は2種、或いはB:0.01質量%以下,Mo:1.0質量%以下,Cr:1.0質量%以下,V:0.5質量%以下,Ni:2.0質量%以下,Co:1.0質量%以下の少なくとも1種又は2種以上を含むものが使用される。
さらに必要に応じてCu:0.02〜0.15質量%をCu/S≧5の範囲で含むものでもよい。
以下にその詳細を説明する。なお、「%」表示は、特に示さない限り「質量%」を意味する。
【0011】
C:0.04〜0.25%
Cは高強度化に有効である。0.04%未満ではその効果が得られない。またCは溶接性に大きな影響を与える元素でもあり、0.25%を超えると、鋼板のスポット溶接性が著しく低下する。
Si:0.2〜2.0%
Siは高強度化に有効な他、セメンタイトの析出を抑制する作用を有しており、鋼中のパーライト等の生成を抑える効果がある元素である。0.2%未満ではその効果が発揮されない。また、2.0%を超える濃度にした場合、その効果が飽和するとともに、焼鈍時におけるSiの拡散現象が著しくなってFe−Bめっきを施しても表層にSi酸化膜層が形成してしまい、めっき密着性が低下する。
【0012】
Mn:0.5〜3.0%
Mnは焼入れ性を向上させ、高強度化に有効な元素である。0.5%未満ではその効果が発揮されない。また、3.0%を超える濃度では、多量のマルテンサイト組織となり、伸びを著しく低下させる。
Ti:0.003〜0.2%
Nb:0.003〜0.2%
Ti,Nbは組織を微細化し、高強度化に有効である他、鋼板の穴拡げ性を向上させる作用を有している。Ti,Nbいずれの場合も、0.003%未満ではその効果がされない。また、0.2%を超えると効果が飽和し、製造上のコストが高くなるだけである。
【0013】
B:0.01%以下
Mo:1.0%以下
Cr:1.0%以下
V:0.5%以下
Ni:2.0%以下
Co:1.0%以下
これらは、焼入れ性を向上させて高強度化するのに有効な元素である。しかし、B:0.01%,Mo:1.0%,Cr:1.0%,V:0.5%,Ni:2.0%,Co:1.0%を超えて添加してもかえって延性の低下が大きくなり、製造上のコストが高くなるだけである。
【0014】
P:0.015%以下
S:0.005%以下
P,Sは鋼板の溶接性に有害な元素であるから、Pは0.015%以下に、Sは0.005%以下にする。
Cu:0.02〜0.15%,Cu/S≧5
Cuは、鋼中の固溶SをCuSの形で固定するため、スポット溶接性や耐食性を向上させる作用を有している。十分な効果を得るためには0.02%以上でCu/S≧5とする必要がある。しかし、0.15%を超えて添加してもその効果は飽和し、製造上のコストが高くなるだけである。
【0015】
Fe系のプレめっきは付着量3〜15g/m2の範囲で形成しておく。メッキ付着量が3g/m2に満たないとFe系プレめっき層中だけで十分に合金化が進行しないため、Mn,Siが存在する鋼中からの拡散が必要となり、530℃未満での合金加熱処理ができなくなる。逆に15g/m2を超えると、Fe系めっき層を多くしても合金化に使用されないFeめっき層が生じ、製造上のコスト上昇になるだけである。5g/m2以上のFe系めっきにより合金化なしでも合金層の形成が可能である。
【0016】
Fe系プレめっき層としては、純Feの他に、Fe−B,Fe−C,Fe−P,Fe−N,Fe−O等のめっき層が使用できる。Fe系プレめっき層に含まれる微量のB,C,P,N,Oは、Si,Mnの濃化を抑制する作用を呈する。
Fe系プレめっき層は、電気めっき法で形成されるが、片面当り3〜15g/m2の付着量が得られる限り電気めっき液の種類,浴組成,めっき条件等に特段の制約が加わるものではない。Fe系プレめっきは、電気めっきラインで実施できるが、溶融めっきラインのガス還元焼鈍炉の前に電気めっき設備を付設してFe系プレめっき及び溶融亜鉛めっきを連続化することが生産性,コスト的に有利である。
【0017】
溶融亜鉛めっき前のプレめっき鋼板の焼鈍条件によっても、合金化溶融亜鉛めっき鋼板の機械的特性は変化する。より高延性で高強度を得るための焼鈍条件について以下に説明する。
焼鈍の温度は700〜900℃の範囲にする。700℃未満では、再結晶が十分に行われず、初期オーステナイト量が少なくなって、最終的に残留するオーステナイト量が3体積%未満になってしまう。900℃を超えると鋼中の炭素が均一に分散し、オーステナイト中の炭素が濃化し難いことから、マルテンサイト変態が生じ、残留オーステナイトが3%未満になってしまう。
焼鈍の雰囲気は還元雰囲気とする。ガス還元雰囲気とする。
ガス還元雰囲気であると、プレめっきされたFe−Bが部分的に酸化されていても、ガス還元されて活性な表面状態になり、その後の溶融亜鉛めっきの際めっき層が付着しやすくなる。さらにその後の合金化反応速度も大きくなる。
【0018】
次に均熱後の平均冷却速度は2〜200℃/秒とする。平均冷却速度が2℃/秒に満たないと、パーライト変態が生じ強度−延性のバランスを劣化させる。逆に200℃/秒を超える平均冷却速度では、鋼板の幅方向,長手方向でのズレが大きくなり、均一な組織を得ることができなくなる。
また、冷却の終点温度は350〜490℃の範囲にする。冷却の終点が490℃を超える場合、その温度で保持し続けてもベイナイト変態が進行しないため、3体積%以上のオーステナイトが残留できなくなる。350℃未満では、マルテンサイトが大量に生成するため、強度は向上するものの伸びが著しく低下し、成形性等が悪くなる。また3体積%以上の残留オーステナイトが得られなくなる。
【0019】
保持時間については、短すぎるとベイナイトの生成が不十分で3体積%以上の残留オーステナイトが得られず、マルテンサイト量が多い組織となる。逆に長すぎるとセメンタイトが生成して残留オーステナイト量が少なくなる。このようなことから、保持時間は1〜20分の範囲とする
このような製法により、鋼中の残留オーステナイト量を3体積%以上にすることができ、残留オーステナイトのTRIP効果による高延性型の高強度合金化溶融亜鉛めっき鋼板とすることが可能となる。
【0020】
ガス還元焼鈍しためっき原板は、溶融亜鉛めっき浴に導入される。
溶融Znめっき浴としては、浴温を420以上490℃未満に設定したものを使用する。420℃はめっき浴の凝固点であり、また490℃以上になると、めっき浴を入れている槽が激しく浸食され、頻繁な交換が必要となるなど、経済的に不利である。
溶融亜鉛めっき浴から引き上げられためっき原板に付着している溶融めっき金属の片面当りめっき付着量をガスワイピングで調整することが好ましい。めっき付着量が多すぎると合金化反応の進行が遅くなって効率的でないので、ガスワイピングでめっき付着量を90g/m2以下にすることが好ましい。なお、めっき付着量の調整に採用されるガスワイピング法では絞れる下限が30g/m2である。
【0021】
ガスワイピング後、鋼板を430℃以上530℃未満の温度に2〜120秒加熱することにより合金化反応を進行させる。加熱温度が430℃未満だったり2秒に満たないと合金化が不十分でη−Zn層が残存することになる。530℃以上では、鋼中にパーライトが生成し、残留オーステナイト量が少なくなり、延性の低下につながる。また合金化温度が530℃未満であっても、その温度が高いほど残留オーステナイト量は少なくなる傾向であることから、合金化温度は490℃未満にすることが好ましい。120秒までには合金化は十分に行われ、それ以上の加熱は無意味である。また、Fe系めっきの付着量が多い場合には、めっき後の加熱なしでも合金層が可能である。
430℃以上530℃未満×2〜120秒の加熱条件が満足される限り、加熱方式は特に制約されるものではなく、バーナー加熱方式,高周波誘導加熱方式,両者を併用した加熱方式等を採用した合金化処理炉が使用される。
合金化処理された鋼板は、板温が250℃に到達するまで鋼板を5℃/秒以上の冷却速度で冷却する。
【0022】
【実施例】
実施例1:
表1に示した組成をもつ低炭素鋼を溶製し、熱延,酸洗,冷延工程を経て板厚1.0mm,板幅1000mmの冷延鋼板を製造した。この冷延鋼板の表面に、次の表2に示すめっき条件で、B含有量20ppmのFe−Bプレめっき層を電気めっき法により形成した。
【0023】

Figure 0004299560
【0024】
Figure 0004299560
【0025】
次いで表3に示す条件で焼鈍と溶融亜鉛めっきを施した。亜鉛付着量は45g/m2に統一し、(450〜550℃)×20秒の合金化熱処理を施した。
得られた合金化溶融亜鉛めっき鋼板について、残留オーステナイト量を測定するとともに、引張試験とスポット溶接性の評価試験を行った。
残留オーステナイト量は、鋼板を板厚中心面まで研磨し、回折X線強度測定によって求めた。
めっき層の合金化状態は、断面観察によりめっき層中にη−Zn層がない場合を○とし、η−Zn層が認められたものを×と判定した。
引張試験は、圧延方向に垂直にJIS−5号試験片を採取し、引張試験した。
スポット溶接性については、供試鋼板を2枚重ねしてダイレクト法でスポット溶接して引張せん断試験試験片を作製し、引張せん断試験を行って、その破断形態によりスポット溶接性の良否を評価した。評価は、健全な破断形態であるボタン破断(母材破断)を○(合格),ナゲット内破断を×(不合格)とした。
なお、スポット溶接条件は、電極;ドームラジアス型,φ6mm(先端径)、加圧力;3.4kN、通電時間;10サイクル、溶接電流値;〔散りが発生する最小電流値+0.5kA〕、とした。
その評価結果を表4に示す。
【0026】
Figure 0004299560
【0027】
Figure 0004299560
【0028】
表4に示す結果から、合金化温度を530℃以上にすると、残留オーステナイト量が少なくなって、延性が低下している。
合金化温度が530℃未満であっても、その温度がより低いほど残留オーステナイト量は多くなっており、それに伴って延性も向上し、引張強度と伸びのバランスがよい合金化溶融亜鉛めっき鋼板が得られている。
【0029】
実施例2:
表5に示した組成をもつ低炭素鋼を素材として、実施例1と全く同じ方法により、B含有量20ppmのFe−Bプレめっき層を、Fe−B付着量5.5g/m2で形成した溶融亜鉛めっき原板を用意した。
このプレめっき鋼板に、表6に示す条件の熱処理と溶融亜鉛めっき、並びに合金化熱処理を施した。
得られた合金化溶融亜鉛めっき鋼板について、実施例1と全く同じ手法で、残留オーステナイト量,引張強度,スポット溶接性を評価した。
その評価結果を表7に示す。
【0030】
Figure 0004299560
【0031】
Figure 0004299560
【0032】
Figure 0004299560
【0033】
表7に示す結果から、請求項の記載で特定した合金組成を有する鋼種a〜lを用いた試験No.11〜22では、合金化熱処理後の合金化状態はいずれも良好で、いずれも3体積%以上の残留オーステナイトを有し、引張強度と伸びのバランスがよい合金化溶融亜鉛めっき鋼板が得られている。
これに対して、C含有量の少ない鋼種mを使用した試験No.23では、所望の引張強度が得られない。逆にC含有量が多い鋼種nを使用した試験No.24では、スポット溶接性が劣っている。Si含有量が少ない鋼種oを使用した試験No.25では、残留オーステナイト量が少なくなって、延性が低下している。逆にSi含有量が多い鋼種pを使用した試験No.26では、表層にSiの酸化物が形成され合金化状態が悪くなっている。Mn含有量が少ない鋼種qを使用した試験No.27では、所望の引張強度が得られない。逆にMn含有量が多い鋼種rを用いた試験No.28では、多量のマルテンサイトが形成されて引張強度は上昇しているが、伸びが著しく低下している。
【0034】
実施例3:
表1に示した鋼種aの組成をもつ低炭素鋼を素材として、実施例1と全く同じ方法により、B含有量20ppmのFe−Bプレめっき層を、表8に示すようにFe−B付着量を種々変えて形成した溶融亜鉛めっき原板を用意した。
このプレめっき鋼板に、表8に示すような熱処理条件と溶融亜鉛めっき条件、並びに合金化熱処理条件を施した。
得られた合金化溶融亜鉛めっき鋼板について、実施例1と全く同じ手法で、残留オーステナイト量,引張強度,スポット溶接性を評価した。
その評価結果を表9に示す。
【0035】
Figure 0004299560
【0036】
Figure 0004299560
【0037】
表9に示す結果からわかるように、プレめっきとして施したFe−B層の付着量が少ない試験No.38では、合金化が不十分であった。
所定付着量のFe−B層を形成したものにあっても、プレめっき後の焼鈍処理条件をより適切なものとすれば、残留オーステナイト量が多くなって、引張強度と伸びのバランスが良いめっき鋼板が得られている。すなわち700〜900℃で焼鈍した後、350〜490℃まで冷却・保持した後に溶融めっきとそれに続く合金化処理を施したものは、上記焼鈍条件を外れたものよりも確実に残留オーステナイト量が多いものが得やすくなっている。引張強度と伸びのバランスが良い高強度合金化溶融亜鉛めっき鋼板が得られる。
【0038】
【発明の効果】
以上に説明したように、本発明においては、Mn,Siを含有する鋼板に合金化溶融亜鉛めっきを施す際に、予めFe系のプレめっきを施したものに溶融亜鉛めっきを施すと、めっき後の合金化熱処理を省略、または行うにしてもその温度を低下させることができる。この結果、めっき原板の機械的特性の低下を防ぐことができ、高強度でしかも加工性に優れた合金化溶融亜鉛めっき鋼板を製造することができた。[0001]
[Industrial application fields]
The present invention relates to a method for producing a high-strength steel sheet useful as a member for automobiles, buildings, electrical equipment, and the like, particularly a high-strength galvannealed steel sheet having excellent workability.
[0002]
[Prior art]
Alloyed hot-dip galvanized steel sheets are widely used as rust-proof steel sheets in various fields including automobile bodies and home appliances because they are excellent in corrosion resistance, paintability, adhesion after coating, and weldability. In such an application, since it is usually processed into a required shape by press molding, it is important to have excellent workability in addition to corrosion resistance.
Alloyed hot dip galvanized steel sheets are manufactured by hot galvanizing and then heat alloying. For the heat alloying treatment, an alloying treatment furnace employing a burner heating method, a high frequency induction heating method, a heating method using both in combination, or the like is generally used.
[0003]
In particular, alloyed hot-dip galvanized high-strength steel sheets that have come to be used frequently to reduce the weight of automobile bodies are made of high-tensile steel with low ductility. The effect of the slidability of the layer surface is great, and if a large amount of ζ phase remains, not only peeling of the plating layer but also plate breakage may occur, and press molding may not be possible.
In view of this, the present inventors disclosed in JP-A-2001-279409 an alloyed hot-dip galvanized steel sheet that does not leave the ζ phase during the alloying heat treatment and that suppresses the growth of the Γ phase and has excellent workability. Therefore, after forming a layer consisting essentially of Fe on the surface of the plating original plate, hot dip galvanizing is performed, and then alloying heat treatment is performed, so that the δ 1 phase, the Γ 1 phase, and the Γ phase having a layer thickness of 1 μm or less are obtained. A method for producing an alloyed hot-dip galvanized high-strength steel sheet having a plating layer is proposed.
[0004]
[Problems to be solved by the invention]
However, in order to prevent the formation and remaining of the ζ phase in the above production method, it is necessary to perform the alloying heat treatment at a high temperature of 530 ° C. or higher.
By the way, in addition to workability, strength is required for plated steel sheets used for automobile bodies, home appliances, and the like. In particular, in recent years, the weight of automobile bodies has been reduced due to the trend of reducing fuel consumption of automobiles. In terms of materials, higher strength is being promoted so that strength can be secured even if the thickness is reduced. Generally, in low carbon steel, Si and Mn which are elements effective for increasing the strength are added. Further, a large amount of Si and Mn is also contained in the galvanizing plate so as to increase the strength.
After hot dip galvanizing on a steel sheet containing a large amount of Si and Mn, when alloy heat treatment is performed at a high temperature, pearlite and carbides are formed in the steel sheet, so that the strength and elongation of the steel sheet itself are significantly reduced.
[0005]
[Problems to be solved by the invention]
The present invention has been devised to solve such a problem, and is it possible to form a pre-Fe plating layer on the surface of the plating original plate before hot dip galvanizing and omit the alloying heat treatment after plating? The purpose of the present invention is to provide a method for producing an alloyed hot-dip galvanized steel sheet having high strength and excellent workability by lowering the processing temperature by preventing the deterioration of the mechanical properties of the original sheet. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the object, the method for producing a high-strength galvannealed steel sheet excellent in workability according to the present invention has C: 0.04 to 0.25 mass%, Si: 0.2 to 2.0 mass. %, Mn: 0.5 to 3.0% by mass, P: 0.015% by mass or less, S: 0.005% by mass or less, and the balance adheres to a steel plate having a composition composed of Fe and inevitable impurities. After forming an Fe-based plating layer with an amount of 3 to 15 g / m 2 , gas reduction annealing is performed and immersed in a hot dip galvanizing bath at 420 ° C. or higher and lower than 490 ° C. to perform hot dip galvanizing, without reheating or melting After the plating, the alloying treatment is performed by heating to less than 530 ° C., and an alloying hot-dip galvanized layer is formed on the steel sheet surface.
Specifically, as a manufacturing condition, after annealing a steel plate subjected to Fe-based plating at 700 to 900 ° C., the steel plate is cooled to 350 to 490 ° C. at an average cooling rate of 2 to 200 ° C./second, and its temperature range. After holding for 1 to 20 minutes, apply hot dip galvanizing and immediately or hold at a temperature of 430 ° C. or higher and lower than 530 ° C. for 2 seconds to 2 minutes, then cool to 250 ° C. or lower at a cooling rate of 5 ° C./second or higher. Thus, the amount of retained austenite in the steel is set to 3% by volume or more.
[0007]
As a steel plate, at least one or two of Ti: 0.04 to 0.2% by mass, Nb: 0.003 to 0.2% by mass, or B: 0.01% by mass or less, and Mo in steel. : 1.0% by mass or less, Cr: 1.0% by mass or less, V: 0.5% by mass or less, Ni: 2.0% by mass or less, Co: 1.0% by mass or less also not good as it contains more than.
Furthermore, the steel sheet is also not good but the 0.02 to 0.15 mass% of Cu was contained in an amount of Cu / S ≧ 5.
[0008]
[Action]
The present inventors require a high temperature as an alloying heat treatment after hot dip galvanization in the method for producing an alloyed hot dip galvanized high strength steel sheet excellent in workability previously proposed in JP-A-2001-279409. Therefore, during the heat treatment, it was confirmed that pearlite and carbide were generated in the steel, and the strength and ductility of the steel sheet were reduced.
Therefore, in the process of further examination, if an Fe-based plating layer is formed as a pre-plating before hot-dip Zn plating, alloying can be easily performed after hot-dip galvanization, so the alloying temperature can be lowered. It has also been found that alloying can be performed at the time of hot dip galvanizing, and deterioration of mechanical properties of the steel material itself, particularly ductility, can be suppressed.
[0009]
The reason why the alloying treatment temperature could be lowered was estimated as follows.
When the Mn and Si concentrations in steel are high, Mn and Si usually serve as a barrier, and in order to suppress mutual diffusion of Fe and Zn, alloying is not performed unless the alloy heat treatment temperature is increased. On the other hand, when the Fe pre-plated layer is formed, a layer that does not contain Mn or Si that suppresses alloying exists on the surface layer, and alloying treatment is possible even at a low alloying temperature. .
[0010]
Embodiment
The plating base plate used in the present invention includes C: 0.04 to 0.25% by mass, Si: 0.2 to 2.0% by mass, Mn: 0.5 to 3.0% by mass, P : 0.015% by mass or less, S: 0.005% by mass or less, and if necessary, at least Ti: 0.04 to 0.2% by mass, Nb: 0.003 to 0.2% by mass 1 type or 2 types, or B: 0.01 mass% or less, Mo: 1.0 mass% or less, Cr: 1.0 mass% or less, V: 0.5 mass% or less, Ni: 2.0 mass% hereinafter, Co: also the is used 1.0 wt% or less of at least one or more.
Furthermore, Cu: 0.02-0.15 mass% may be included in the range of Cu / S> = 5 as needed.
Details will be described below. The “%” display means “mass%” unless otherwise specified.
[0011]
C: 0.04 to 0.25%
C is effective for increasing the strength. If it is less than 0.04%, the effect cannot be obtained. C is also an element having a great influence on weldability, and if it exceeds 0.25%, the spot weldability of the steel sheet is significantly lowered.
Si: 0.2-2.0%
In addition to being effective for increasing the strength, Si has an effect of suppressing the precipitation of cementite and is an element that has the effect of suppressing the formation of pearlite and the like in steel. If it is less than 0.2%, the effect is not exhibited. In addition, when the concentration exceeds 2.0%, the effect is saturated, and the Si diffusion phenomenon is remarkable during annealing, and even if Fe-B plating is applied, a Si oxide film layer is formed on the surface layer. , Plating adhesion decreases.
[0012]
Mn: 0.5 to 3.0%
Mn is an element that improves hardenability and is effective in increasing strength. If it is less than 0.5%, the effect is not exhibited. On the other hand, if the concentration exceeds 3.0%, a large amount of martensite structure is formed, and the elongation is significantly reduced.
Ti: 0.003-0.2%
Nb: 0.003 to 0.2%
Ti and Nb are effective in making the structure finer and higher in strength, and improving the hole expandability of the steel sheet. In both cases of Ti and Nb, the effect is not achieved at less than 0.003%. On the other hand, if it exceeds 0.2%, the effect is saturated and the production cost is increased.
[0013]
B: 0.01% or less
Mo: 1.0% or less
Cr: 1.0% or less
V: 0.5% or less
Ni: 2.0% or less
Co: 1.0% or less These are effective elements for improving the hardenability and increasing the strength. However, B: 0.01%, Mo: 1.0%, Cr: 1.0%, V: 0.5%, Ni: 2.0%, Co: exceeding 1.0% On the contrary, the decrease in ductility is increased and the manufacturing cost is increased.
[0014]
P: 0.015% or less
S: 0.005% or less P, since S is a harmful element for the welding of the steel sheet, P is below 0.015%, S is you 0.005% or less.
Cu: 0.02-0.15%, Cu / S ≧ 5
Cu fixes the solid solution S in the steel in the form of CuS, and thus has an effect of improving spot weldability and corrosion resistance. In order to obtain a sufficient effect, it is necessary that Cu / S ≧ 5 at 0.02% or more. However, even if added over 0.15%, the effect is saturated and only the manufacturing cost is increased.
[0015]
The Fe-based pre-plating is formed in the range of 3 to 15 g / m 2 of adhesion amount. If the amount of plating is less than 3 g / m 2 , alloying does not proceed sufficiently only in the Fe-based pre-plated layer, so diffusion from steel in which Mn and Si are present is necessary, and alloys at temperatures below 530 ° C. Heat treatment cannot be performed. On the other hand, if it exceeds 15 g / m 2 , an Fe plating layer that is not used for alloying is generated even if the Fe-based plating layer is increased, which only increases the manufacturing cost. An alloy layer can be formed without alloying by Fe-based plating of 5 g / m 2 or more.
[0016]
As the Fe-based pre-plated layer, a plated layer of Fe-B, Fe-C, Fe-P, Fe-N, Fe-O or the like can be used in addition to pure Fe. A trace amount of B, C, P, N, and O contained in the Fe-based pre-plated layer exhibits an action of suppressing concentration of Si and Mn.
The Fe-based pre-plated layer is formed by electroplating, but it imposes special restrictions on the type of electroplating solution, bath composition, plating conditions, etc. as long as an adhesion amount of 3 to 15 g / m 2 per side can be obtained. is not. Fe-based pre-plating can be carried out in the electroplating line, but it is necessary to install an electroplating facility in front of the gas reduction annealing furnace in the hot-dip plating line to make Fe-based pre-plating and hot-dip galvanizing continuous. Is advantageous.
[0017]
The mechanical properties of the alloyed hot-dip galvanized steel sheet also change depending on the annealing conditions of the pre-plated steel sheet before hot-dip galvanizing. The annealing conditions for obtaining higher strength with higher ductility will be described below.
Temperature of annealing that be in the range of 700~900 ℃. If it is less than 700 degreeC, recrystallization will not fully be performed, the amount of initial austenite will decrease, and the amount of austenite which remains finally will be less than 3 volume%. When the temperature exceeds 900 ° C., carbon in the steel is uniformly dispersed, and carbon in the austenite is difficult to concentrate. Therefore, martensitic transformation occurs and the retained austenite becomes less than 3%.
The annealing atmosphere is a reducing atmosphere. It shall be the gas reducing atmosphere.
In the gas reducing atmosphere, even if the pre-plated Fe-B is partially oxidized, it is gas reduced to an active surface state, and the plating layer tends to adhere during subsequent hot dip galvanizing. Furthermore, the subsequent alloying reaction rate also increases.
[0018]
Then the average cooling rate after soaking is you and 2 to 200 ° C. / sec. If the average cooling rate is less than 2 ° C./second, pearlite transformation occurs and the balance between strength and ductility is deteriorated. On the contrary, when the average cooling rate exceeds 200 ° C./second, the deviation in the width direction and the longitudinal direction of the steel sheet becomes large, and a uniform structure cannot be obtained.
Moreover, endpoint temperature of the cooling you in the range of from 350 to 490 ° C.. When the end point of cooling exceeds 490 ° C., bainite transformation does not proceed even if the temperature is kept at that temperature, so that 3% by volume or more of austenite cannot remain. If it is less than 350 ° C., a large amount of martensite is generated, so that the strength is improved, but the elongation is remarkably lowered, and the moldability and the like are deteriorated. Also, 3% by volume or more of retained austenite cannot be obtained.
[0019]
If the holding time is too short, the formation of bainite is insufficient, 3% by volume or more of retained austenite cannot be obtained, and the structure has a large amount of martensite. On the other hand, if it is too long, cementite is generated and the amount of retained austenite decreases. For this reason, the retention time is in the range of 1 to 20 minutes.
By such a manufacturing method, the amount of retained austenite in the steel can be 3% by volume or more, and it becomes possible to obtain a high ductility type high strength alloyed hot-dip galvanized steel sheet by the TRIP effect of retained austenite.
[0020]
The plating original plate subjected to gas reduction annealing is introduced into a hot dip galvanizing bath.
As the hot dip Zn plating bath, one having a bath temperature set to 420 or higher and lower than 490 ° C. is used. 420 ° C. is the freezing point of the plating bath, and if it exceeds 490 ° C., the bath containing the plating bath is eroded violently and requires frequent replacement, which is economically disadvantageous.
It is preferable to adjust the amount of plating deposition per one side of the hot-plated metal adhering to the original plating plate pulled up from the hot-dip galvanizing bath by gas wiping. If the plating adhesion amount is too large, the progress of the alloying reaction is slowed and it is not efficient. Therefore, the plating adhesion amount is preferably 90 g / m 2 or less by gas wiping. In the gas wiping method adopted for adjusting the plating adhesion amount, the lower limit of squeezing is 30 g / m 2 .
[0021]
After gas wiping, the steel sheet is heated to a temperature of 430 ° C. or higher and lower than 530 ° C. for 2 to 120 seconds to advance the alloying reaction. If the heating temperature is less than 430 ° C. or less than 2 seconds, alloying is insufficient and the η-Zn layer remains. When the temperature is 530 ° C. or higher, pearlite is generated in the steel, the amount of retained austenite is reduced, and ductility is reduced. Even if the alloying temperature is less than 530 ° C, the amount of retained austenite tends to decrease as the temperature increases, so the alloying temperature is preferably less than 490 ° C. By 120 seconds, alloying is sufficiently performed, and further heating is meaningless. Further, when the amount of Fe-based plating is large, an alloy layer can be formed without heating after plating.
As long as the heating condition of 430 ° C. or more and less than 530 ° C. × 2 to 120 seconds is satisfied, the heating method is not particularly limited, and a burner heating method, a high frequency induction heating method, a heating method using both of them is adopted, etc. An alloying furnace is used.
The alloyed steel sheet is cooled at a cooling rate of 5 ° C./second or more until the plate temperature reaches 250 ° C.
[0022]
【Example】
Example 1:
A low carbon steel having the composition shown in Table 1 was melted, and a cold rolled steel sheet having a sheet thickness of 1.0 mm and a sheet width of 1000 mm was manufactured through hot rolling, pickling and cold rolling processes. On the surface of this cold-rolled steel sheet, an Fe—B pre-plated layer having a B content of 20 ppm was formed by electroplating under the plating conditions shown in Table 2 below.
[0023]
Figure 0004299560
[0024]
Figure 0004299560
[0025]
Next, annealing and hot dip galvanizing were performed under the conditions shown in Table 3. The zinc adhesion amount was unified to 45 g / m 2, and an alloying heat treatment of (450 to 550 ° C.) × 20 seconds was performed.
The obtained galvannealed steel sheet was measured for the amount of retained austenite and subjected to a tensile test and an evaluation test for spot weldability.
The amount of retained austenite was determined by polishing the steel plate to the center surface of the plate thickness and measuring the diffraction X-ray intensity.
As for the alloyed state of the plating layer, the case where there was no η-Zn layer in the plating layer by cross-sectional observation was evaluated as ◯, and the case where the η-Zn layer was observed was determined as x.
In the tensile test, a JIS-5 test piece was sampled perpendicularly to the rolling direction and subjected to a tensile test.
For spot weldability, two test steel sheets were stacked and spot welded by the direct method to produce a tensile shear test specimen, a tensile shear test was performed, and the quality of the spot weldability was evaluated by its fracture form. . In the evaluation, button breakage (base material breakage), which is a sound breakage form, was evaluated as ○ (passed), and the nugget breakage was evaluated as × (failed).
The spot welding conditions were as follows: electrode: dome radius type, φ6 mm (tip diameter), applied pressure: 3.4 kN, energization time: 10 cycles, welding current value; [minimum current value at which scattering occurs +0.5 kA] did.
The evaluation results are shown in Table 4.
[0026]
Figure 0004299560
[0027]
Figure 0004299560
[0028]
From the results shown in Table 4, when the alloying temperature is set to 530 ° C. or higher, the amount of retained austenite decreases and the ductility decreases.
Even if the alloying temperature is less than 530 ° C., the lower the temperature, the greater the amount of retained austenite, and accordingly, the ductility is improved, and the galvannealed steel sheet having a good balance between tensile strength and elongation is obtained. Has been obtained.
[0029]
Example 2:
Using a low carbon steel having the composition shown in Table 5 as a raw material, an Fe—B pre-plated layer having a B content of 20 ppm is formed at the Fe—B adhesion amount of 5.5 g / m 2 by the same method as in Example 1. A prepared hot-dip galvanized plate was prepared.
This pre-plated steel sheet was subjected to heat treatment, hot dip galvanizing, and alloying heat treatment under the conditions shown in Table 6.
About the obtained alloyed hot-dip galvanized steel sheet, the amount of retained austenite, tensile strength, and spot weldability were evaluated in exactly the same manner as in Example 1.
The evaluation results are shown in Table 7.
[0030]
Figure 0004299560
[0031]
Figure 0004299560
[0032]
Figure 0004299560
[0033]
From the results shown in Table 7, test Nos. Using steel types a to l having the alloy composition specified in the claims. 11-22, the alloyed hot-dip galvanized steel sheet having a good balance of tensile strength and elongation is obtained, all having good alloying state after the alloying heat treatment, and having 3% by volume or more of retained austenite. Yes.
On the other hand, test No. using a steel type m having a low C content. In 23, a desired tensile strength cannot be obtained. Conversely, test No. using steel type n with a high C content. In 24, spot weldability is inferior. Test No. using steel type o with low Si content. In No. 25, the amount of retained austenite is reduced and ductility is reduced. Conversely, test No. using a steel type p having a high Si content. In No. 26, an oxide of Si is formed on the surface layer and the alloyed state is deteriorated. Test No. using steel type q with low Mn content. In 27, the desired tensile strength cannot be obtained. On the contrary, test No. using a steel type r having a high Mn content. In No. 28, a large amount of martensite is formed and the tensile strength is increased, but the elongation is significantly decreased.
[0034]
Example 3:
Using a low-carbon steel having the composition of steel type a shown in Table 1 as a raw material, an Fe—B pre-plated layer having a B content of 20 ppm was adhered to Fe—B as shown in Table 8 in exactly the same manner as in Example 1. Hot dip galvanized original plates formed in various amounts were prepared.
The pre-plated steel sheet was subjected to heat treatment conditions, hot dip galvanizing conditions, and alloying heat treatment conditions as shown in Table 8.
About the obtained alloyed hot-dip galvanized steel sheet, the amount of retained austenite, tensile strength, and spot weldability were evaluated in exactly the same manner as in Example 1.
The evaluation results are shown in Table 9.
[0035]
Figure 0004299560
[0036]
Figure 0004299560
[0037]
As can be seen from the results shown in Table 9, test No. 1 with a small amount of Fe—B layer applied as pre-plating is small. In No. 38, alloying was insufficient.
Even if a predetermined amount of Fe-B layer is formed, if the annealing conditions after pre-plating are made more appropriate, the amount of retained austenite increases, and the balance between tensile strength and elongation is good. A steel plate is obtained. That is, after annealing at 700 to 900 ° C., cooling and holding to 350 to 490 ° C., and then subjecting to hot dip plating and subsequent alloying treatment, the amount of retained austenite is surely larger than that outside the above annealing conditions Things are getting easier. A high-strength galvannealed steel sheet with a good balance between tensile strength and elongation can be obtained.
[0038]
【The invention's effect】
As explained above, in the present invention, when alloyed hot dip galvanizing is performed on a steel sheet containing Mn and Si, if hot dip galvanizing is performed on a pre-plated Fe-based plating, Even if the alloying heat treatment is omitted or performed, the temperature can be lowered. As a result, it was possible to prevent deterioration of the mechanical properties of the original plating plate, and to produce an galvannealed steel plate having high strength and excellent workability.

Claims (4)

C:0.04〜0.25質量%,Si:0.2〜2.0質量%,Mn:0.5〜3.0質量%、P:0.015質量%以下,S:0.005質量%以下を含み、残部がFe及び不可避的不純物からなる組成をもつ鋼板に、付着量3〜15g/mのFe系めっき層を形成した後、700〜900℃でガス還元焼鈍し、2〜200℃/秒の平均冷却速度で350〜490℃まで冷却し、その温度域に1〜20分保持した後、420℃以上490℃未満の溶融亜鉛めっき浴に浸漬して溶融亜鉛めっきを施し、直ちに、又は430℃以上530℃未満の温度に2秒〜2分保持後、5℃/秒以上の冷却速度で250℃以下に冷却して、鋼中の残留オーステナイト量を3体積%以上にする、鋼板表面に合金化溶融亜鉛めっき層を形成することを特徴とする加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。C: 0.04 to 0.25 mass%, Si: 0.2 to 2.0 mass%, Mn: 0.5 to 3.0 mass%, P: 0.015 mass% or less, S: 0.005 includes the following mass%, the steel sheet having the balance consisting of Fe and unavoidable impurities, after forming the Fe-based plating layer of the deposited amount 3 to 15 g / m 2, gas reduction annealing at 700 to 900 ° C., 2 After cooling to 350 to 490 ° C at an average cooling rate of ~ 200 ° C / second and holding in that temperature range for 1 to 20 minutes, it is immersed in a hot dip galvanizing bath at 420 ° C or higher and lower than 490 ° C to perform hot dip galvanizing. , Immediately or held at a temperature of 430 ° C. or more and less than 530 ° C. for 2 seconds to 2 minutes, and then cooled to 250 ° C. or less at a cooling rate of 5 ° C./second or more to increase the amount of retained austenite in the steel to 3% by volume or more. to, characterized in that to form a galvannealed layer on the surface of the steel sheet Method of producing a high strength galvannealed steel sheet excellent in workability that. 鋼板が、さらにTi:0.04〜0.2質量%,Nb:0.003〜0.2質量%の少なくとも1種又は2種を含むものである請求項1に記載の加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。  The high strength excellent in workability according to claim 1, wherein the steel sheet further contains at least one or two of Ti: 0.04 to 0.2 mass% and Nb: 0.003 to 0.2 mass%. A method for producing a galvannealed steel sheet. 鋼板が、さらにB:0.01質量%以下,Mo:1.0質量%以下,Cr:1.0質量%以下,V:0.5質量%以下,Ni:2.0質量%以下,Co:1.0質量%以下の少なくとも1種又は2種以上を含むものである請求項1又は2に記載の加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。  Steel sheet is further B: 0.01% by mass or less, Mo: 1.0% by mass or less, Cr: 1.0% by mass or less, V: 0.5% by mass or less, Ni: 2.0% by mass or less, Co The method for producing a high-strength galvannealed steel sheet excellent in workability according to claim 1 or 2, comprising at least one or more of 1.0% by mass or less. 鋼板が、さらにCu:0.02〜0.15質量%を、Cu/S≧5の範囲で含有したものである請求項1に記載の加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法。  The steel sheet further contains Cu: 0.02 to 0.15 mass% in a range of Cu / S ≧ 5. The high-strength galvannealed steel sheet excellent in workability according to claim 1. Production method.
JP2003077396A 2003-03-20 2003-03-20 Method for producing high-strength galvannealed steel sheet with excellent workability Expired - Fee Related JP4299560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003077396A JP4299560B2 (en) 2003-03-20 2003-03-20 Method for producing high-strength galvannealed steel sheet with excellent workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003077396A JP4299560B2 (en) 2003-03-20 2003-03-20 Method for producing high-strength galvannealed steel sheet with excellent workability

Publications (2)

Publication Number Publication Date
JP2004285385A JP2004285385A (en) 2004-10-14
JP4299560B2 true JP4299560B2 (en) 2009-07-22

Family

ID=33292156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003077396A Expired - Fee Related JP4299560B2 (en) 2003-03-20 2003-03-20 Method for producing high-strength galvannealed steel sheet with excellent workability

Country Status (1)

Country Link
JP (1) JP4299560B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131802B2 (en) * 2005-11-29 2013-01-30 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet with excellent spot weldability and formability
JP4732962B2 (en) * 2006-06-09 2011-07-27 株式会社神戸製鋼所 Method for improving variation in strength-ductility balance of galvannealed steel sheet
ATE432375T1 (en) * 2006-10-30 2009-06-15 Thyssenkrupp Steel Ag METHOD FOR PRODUCING FLAT STEEL PRODUCTS FROM A MULTIPHASE STEEL ALLOYED WITH SILICON
JP7247946B2 (en) * 2020-04-24 2023-03-29 Jfeスチール株式会社 Hot-dip galvanized steel sheet and its manufacturing method
CN117062928A (en) * 2021-03-23 2023-11-14 杰富意钢铁株式会社 Galvanized steel sheet, component, and method for producing same
WO2023007833A1 (en) * 2021-07-28 2023-02-02 Jfeスチール株式会社 Galvanized steel sheet and member, and method for manufacturing same
JP7197062B1 (en) * 2021-07-28 2022-12-27 Jfeスチール株式会社 Galvanized steel sheet and member, and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004285385A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
JP5162836B2 (en) High-strength cold-rolled steel sheet excellent in hydrogen embrittlement resistance of welds and method for producing the same
EP2803747B1 (en) Cold-rolled steel sheet and method for producing cold-rolled steel sheet
CN103827341B (en) Hot-dip galvanized steel sheet and manufacture method thereof
JP6504323B1 (en) Hot pressed member, method for producing the same, cold rolled steel sheet for hot pressing, and method for producing the same
US11654653B2 (en) Method for the manufacturing of liquid metal embrittlement resistant galvannealed steel sheet
JPWO2019106895A1 (en) High strength galvanized steel sheet and manufacturing method thereof
CN111386358A (en) High-strength galvanized steel sheet and method for producing same
WO2008123267A1 (en) High-strength hot dip zinc plated steel sheet having excellent moldability, and method for production thereof
EP2527484B1 (en) Method for manufacturing a high-strength galvanized steel sheet having excellent formability and spot weldability
JP3956550B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility
JP2006265671A (en) High tensile galvannealed steel sheet having excellent workability and molten metal embrittlement crack reistance
JP2007211279A (en) Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet
KR20180133508A (en) Plated steel sheet and manufacturing method thereof
JP2022133281A (en) Method of producing galvanized steel sheet resistant to liquid metal embrittlement
KR101650665B1 (en) High strength hot dip galvannealed steel sheet of excellent phosphatability and ductility, and a production process therefor
JP2019504205A (en) Austenitic hot-dip aluminized steel sheet with excellent plating properties and weldability and method for producing the same
JP4299560B2 (en) Method for producing high-strength galvannealed steel sheet with excellent workability
JP5315795B2 (en) High-strength hot-dip galvanized steel sheet, high-strength alloyed hot-dip galvanized steel sheet, and a method for producing the same
JP3501748B2 (en) High-strength hot-dip galvanized steel sheet with excellent workability and its manufacturing method
JP4947565B2 (en) A method for producing a high-strength hot-dip galvanized steel sheet excellent in plating adhesion and press formability.
JP6870338B2 (en) Zn-Al plated steel sheet with excellent phosphate chemical conversion treatment and its manufacturing method
JP4702974B2 (en) Alloyed hot-dip galvanized high-tensile steel plate with excellent workability and method for producing the same
JP4592000B2 (en) Manufacturing method of high-strength galvannealed steel sheet with excellent workability
JP3577930B2 (en) High-strength, high-ductility hot-dip galvanized steel sheet and alloyed hot-dip galvanized steel sheet
JP4817749B2 (en) Method for producing high-strength galvannealed steel sheet with excellent workability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070417

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090414

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4299560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees