WO2012085248A2 - Method for forming and hardening coated steel sheets - Google Patents

Method for forming and hardening coated steel sheets Download PDF

Info

Publication number
WO2012085248A2
WO2012085248A2 PCT/EP2011/073882 EP2011073882W WO2012085248A2 WO 2012085248 A2 WO2012085248 A2 WO 2012085248A2 EP 2011073882 W EP2011073882 W EP 2011073882W WO 2012085248 A2 WO2012085248 A2 WO 2012085248A2
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
zinc
forming
degree
forming tool
Prior art date
Application number
PCT/EP2011/073882
Other languages
German (de)
French (fr)
Other versions
WO2012085248A3 (en
Inventor
Andreas Sommer
Siegfried Kolnberger
Gerald RABLER
Harald Schwinghammer
Original Assignee
Voestalpine Stahl Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/en
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/en
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/en
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/en
Application filed by Voestalpine Stahl Gmbh filed Critical Voestalpine Stahl Gmbh
Priority to ES11808645T priority Critical patent/ES2851176T3/en
Priority to CN201180068546.5A priority patent/CN103415630B/en
Priority to EP11808645.3A priority patent/EP2655674B1/en
Publication of WO2012085248A2 publication Critical patent/WO2012085248A2/en
Publication of WO2012085248A3 publication Critical patent/WO2012085248A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for forming and hardening coated steel sheets with the features of claim 1.
  • press-hardened components made of sheet steel are used.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components of the bodywork sector.
  • the use of these high-strength steel components makes it possible to reduce the material thickness compared to a normal-strength steel and thus to achieve low body weights.
  • a sheet steel plate is heated above the so-called austenitizing temperature and, if appropriate, kept at this temperature until a desired degree of austenitization is achieved. Subsequently, this heated board is transferred to a mold and in this mold in a one-step forming step for formed component and this cooled by the cooled mold simultaneously with a speed that is above the critical hardness speed. Thus, the hardened component is produced.
  • the component is first, if necessary, in a multi-stage forming process, the component formed almost completely finished. This formed component is then also heated to a temperature above the Austenitmaschinestempe- temperature and optionally held for a desired time required at this temperature.
  • this heated component is transferred to a mold and inserted, which already has the dimensions of the component or the final dimensions of the component, where appropriate, taking into account the thermal expansion of the preformed component.
  • the direct method is somewhat simpler to implement, but allows only shapes that are actually to be realized with a single forming step, i. relatively simple profile shapes.
  • the indirect process is a bit more complex, but it is also able to realize more complex shapes.
  • Zinc-coated steels are currently - with the exception of one component in the Asian region - in the direct process, i. the hot forming not used. Instead, steels with an aluminum-silicon coating are used here.
  • a method for hot forming a steel in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, kept at this temperature and then the heated one Steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a manner that the cooling rate to MS point at least the critical cooling rate and that the average cooling rate of the molded component from the MS Point at 200 ° C is in the range of 25 ° C / s to 150 ° C / s.
  • the object of the invention is to provide a method for forming and hardening of metal-coated steel sheets, in which the contamination of the tools is reduced to the inevitable due to abrasion measure sufficient corrosion protection is achieved and a reliable hardening of the steel sheet is brought about.
  • the inventors have recognized that metallic buildup such as Zn buildup on hot forming tools that go beyond the level of unavoidable wear greatly affects productivity in the direct process.
  • the reason presumed by the inventors probably lies mainly in evaporating liquid metallic phases, such as Zn phases during hot forming of steels with zinc coating.
  • the composition of the steel alloy is adjusted within the usual composition of drilling magnesium steel (22 MnB5) such that a quench hardening by a delayed transformation of austenite into martensite and thus the presence of austenite even at the lower temperature below 800 ° C or lower, so that the moment the steel is formed, no liquid Zinc phases are present, from which zinc could evaporate and precipitate on the tools.
  • the desired forming temperature is between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C.
  • FIG. 1 shows a highly schematized experimental setup
  • Figure 2 schematically the adhesion potential of a metallic coating on the tool using the example of zinc
  • FIG. 3 shows images of the tool during three successive forming experiments carried out without intermediate cooling
  • FIG. 4 shows images of the tool during three successive forming experiments which were carried out with intermediate cooling according to the invention before forming
  • Figure 5 An image showing the tool after the experiments without and with inventive intercooling and the tool in a cleaned initial state.
  • a conventional boron manganese steel for use as a press-hardening steel material is adjusted with respect to the transformation of the austenite into other phases so that the transformation shifts into deeper regions.
  • steels of general composition are suitable for the invention (all figures in% by mass)
  • the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion inhibitors in such steels.
  • Titanium (Ti) 0, 01-0, 05
  • Titanium (Ti) 0, 03-0, 04
  • FIG. 1 shows the experimental setup.
  • the steel sheet used is a 1.5 mm thick steel sheet of a previously described alloy which is coated with a Z140 layer.
  • the oven temperature for heating and austenitizing the sheet is about 910 ° C.
  • the oven residence time of the sheets is set so that the sheets reach a temperature of 870 ° C and then held for 45 seconds.
  • the sheets were then either placed in the forming tool and formed there, or removed from the oven after heating, fed to an intermediate cooling station and transferred after cooling as quickly as possible in the tool where it formed and quench hardened.
  • the intercooling is carried out so that a forming temperature between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C is realized.
  • FIG. 2 schematically shows the adhesion potential of a metallic coating on the tool, using the example of zinc. However, it also applies to other metallic coatings. It can be seen at the turning points, the temperature ranges in which convert liquid into solid phases and below which succeeds a transformation with less buildup.
  • Figure 3 shows the clearly visible contamination of the tool during a forming without intermediate cooling. Even after three forming steps, the degree of contamination is so high that an impairment of the surface quality of the hardened steel components is foreseeable in the case of continued forming steps.
  • the zinc components adhering to the tool by first evaporation and then adhesion and welding can tear out parts of the zinc layer of subsequent components by welding, which adversely affects the corrosion protection.
  • zinc constituents adhering to the tool can be transferred in the same way to the steel component, where they disturb the surface quality and the lability of the component.
  • FIGS. 4 and 5 show that the tool remains essentially unaffected except for absolutely insignificant and harmless low zinc abrasions in the tool.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Articles (AREA)
  • Coating With Molten Metal (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

The invention relates to a method for forming and hardening coated steel sheets. According to the method, a blank is stamped out from sheet metal that is coated with the zinc or zinc alloy, the stamped-out blank is heated to a temperature ≥Ac3 and optionally held at this temperature for a predetermined time to allow the formation of austenite, and the heated blank is then transferred to a forming tool, is formed in the forming tool and cooled in the forming tool at a rate above the critical quenching rate, thereby being hardened. In order to keep zinc from adhering to the forming tool, the steel material is adjusted to delay conversion such that the steel material is quench-hardened by the conversion of austenite to martensite at a forming temperature in the range of 500°C to 800°C, particularly 500°C to 600°C and more particularly below the peritectic temperature of the zinc-iron phase diagram.

Description

Verfahren zum Umformen und Härten von beschichteten Stahlblechen Process for forming and hardening coated steel sheets
Die Erfindung betrifft ein Verfahren zum Umformen und Härten von beschichteten Stahlblechen mit den Merkmalen des Anspruchs 1. The invention relates to a method for forming and hardening coated steel sheets with the features of claim 1.
Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen. It is known that especially in automobiles so-called press-hardened components made of sheet steel are used. These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components of the bodywork sector. The use of these high-strength steel components makes it possible to reduce the material thickness compared to a normal-strength steel and thus to achieve low body weights.
Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren. In press hardening, there are basically two different ways of producing such components. A distinction is made in the so-called direct and indirect procedure.
Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannten Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt. In the direct method, a sheet steel plate is heated above the so-called austenitizing temperature and, if appropriate, kept at this temperature until a desired degree of austenitization is achieved. Subsequently, this heated board is transferred to a mold and in this mold in a one-step forming step for formed component and this cooled by the cooled mold simultaneously with a speed that is above the critical hardness speed. Thus, the hardened component is produced.
Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess , das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstempe- ratur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten. In the indirect process, the component is first, if necessary, in a multi-stage forming process, the component formed almost completely finished. This formed component is then also heated to a temperature above the Austenitisierungstempe- temperature and optionally held for a desired time required at this temperature.
Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet . Subsequently, this heated component is transferred to a mold and inserted, which already has the dimensions of the component or the final dimensions of the component, where appropriate, taking into account the thermal expansion of the preformed component. After closing the particular cooled tool thus the preformed component is cooled only in this tool at a speed above the critical hardness and hardened thereby.
Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen. The direct method is somewhat simpler to implement, but allows only shapes that are actually to be realized with a single forming step, i. relatively simple profile shapes.
Das indirekte Verfahren ist etwas aufwendiger, dafür aber in der Lage auch komplexere Formen zu realisieren. The indirect process is a bit more complex, but it is also able to realize more complex shapes.
Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen. Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendeter Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden. In addition to the demand for press-hardened components, there has been a demand not to produce such components from uncoated sheet steel, but to provide such components with a corrosion protection layer. In automotive engineering, only the aluminum or aluminum alloys that are used to a lesser extent may be used as a corrosion protection layer, or else the coatings based on zinc, which are required much more frequently. Zinc has the advantage here that zinc not only provides a barrier protection layer such as aluminum, but cathodic corrosion protection. In addition, zinc-coated press-hardened components fit better into the overall corrosion protection concept of vehicle bodies, since they are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or eliminated.
Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu einer wesentlichen Verschmutzung der Umformwerkzeuge . Dies beruht offenbar nicht nur auf Abrieb sondern viel mehr auf der Sublimation von Zinkdämpfen die aus den flüssigen Zinkphasen beim Umformen ausdampfen. Die Folgen von sich im Umformwerkzeug aufbauenden Zinkablagerungen reichen von Oberflächenbeschädigungen des warmumgeformten Bauteils in Form von Riefen bis hin zur Anlagenstillständen aufgrund festklemmender Bauteile im Umformwerkzeug bzw. der Gefahr von Werkzeugbruch durch Dop- pelteilabpressung falls festklemmende Bauteile nicht rechtzeitig erkannt werden. Das erforderliche regelmäßige Entfernen der Zinkablagerungen verringert aufgrund des erforderlichen Produktionsstillstands die Produktivität der Warmumformanlage. In the direct method, i. The hot forming of press-hardening steels with zinc coating leads to a significant contamination of the forming tools. This is evidently not only based on abrasion, but also much more on the sublimation of zinc fumes which evaporate out of the liquid zinc phases during forming. The consequences of zinc deposits forming in the forming tool range from surface damage of the hot-formed component in the form of grooves to plant downtimes due to jamming components in the forming tool or the risk of tool breakage due to double-part stamping if clamping components are not detected in time. The required periodic removal of zinc deposits reduces the productivity of the hot forming plant due to the need for production downtime.
Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt. Zinc-coated steels are currently - with the exception of one component in the Asian region - in the direct process, i. the hot forming not used. Instead, steels with an aluminum-silicon coating are used here.
Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez . In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumform- prozess einen aluminierten Bor-Mangan-Stahl ergibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbe- schichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor Gl mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält und ein sogenannter gal- vanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält. An overview can be found in the publication "Corrosion resistance of different metallic coatings on press hardened steels for automotive ", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez In this publication it is stated that for the hot forming process there is an aluminized boron-manganese steel commercially available under the name Usibor 1500P In addition, for the purposes of cathodic corrosion protection, zinc-coated steels are sold for the hot forming process, namely the zinc-plated Usibor Gl with a zinc coating containing small amounts of aluminum and a so-called galvealed coated Usibor GA which contains a 10% zinc layer. Contains iron.
Aus der EP 1 439 240 Bl ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf einen Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen. From EP 1 439 240 B1 a method for hot forming a coated steel product is known, wherein steel material has a zinc or zinc alloy coating formed on the surface of the steel material and the steel base material with the coating to a temperature of 700 ° C to 1000 ° C is heated and hot formed, wherein the coating has an oxide layer, which consists mainly of zinc oxide, before the steel base material is heated with the zinc or zinc alloy layer, then to prevent evaporation of the zinc during heating. For this purpose, a special procedure is provided.
Aus der EP 1 642 991 Bl ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS- Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet . From EP 1 642 991 B1 a method for hot forming a steel is known in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, kept at this temperature and then the heated one Steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a manner that the cooling rate to MS point at least the critical cooling rate and that the average cooling rate of the molded component from the MS Point at 200 ° C is in the range of 25 ° C / s to 150 ° C / s.
Aufgabe der Erfindung ist es, ein Verfahren zum Umformen und Härten von metallisch beschichteten Stahlblechen zu schaffen, bei dem die Verschmutzung der Werkzeuge auf das aufgrund Abrieb unvermeidliche Maß reduziert wird, ein ausreichender Korrosionsschutz erzielt wird und eine zuverlässige Härtung des Stahlblechs herbeigeführt wird. The object of the invention is to provide a method for forming and hardening of metal-coated steel sheets, in which the contamination of the tools is reduced to the inevitable due to abrasion measure sufficient corrosion protection is achieved and a reliable hardening of the steel sheet is brought about.
Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. The object is achieved with the features of claim 1.
Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet . Advantageous developments are characterized in the subclaims.
Die Erfinder haben erkannt, dass metallische Anhaftungen wie Zn-Anhaftungen auf Warmumformwerkzeugen, die über das Maß des unvermeidlichen Abriebs hinaus gehen die Produktivität im direkten Prozess stark beeinträchtigen. Die von den Erfindern vermutete Ursache liegt wohl hauptsächlich in ausdampfenden flüssigen metallischen Phasen, wie Zn-Phasen beim Warmumformen von Stählen mit Zinkbeschichtung . The inventors have recognized that metallic buildup such as Zn buildup on hot forming tools that go beyond the level of unavoidable wear greatly affects productivity in the direct process. The reason presumed by the inventors probably lies mainly in evaporating liquid metallic phases, such as Zn phases during hot forming of steels with zinc coating.
Erfindungsgemäß wird daher vorgesehen, die Warmumformung von Stählen mit Zinkbeschichtung unter der peritektischen Temperatur des Systems Eisen-Zink (Schmelze, Ferrit, Gamma-Phase) durchzuführen. Um hierbei eine Abschreckhärtung noch gewährleisten zu können wird die Zusammensetzung der Stahllegierung im Rahmen der üblichen Zusammensetzung Bohr-Magnesiumstahles (22 MnB5) so eingestellt, dass eine Abschreckhärtung durch eine verzögerte Umwandlung des Austenits in Martensit und damit das Vorhandensein von Austenit auch bei der tieferen Temperatur unterhalb von 800°C oder tiefer durchgeführt wird, so dass in dem Moment in dem der Stahl umgeformt wird, keine flüssigen Zinkphasen vorhanden sind, aus welchen Zink ausdampfen und sich an den Werkzeugen niederschlagen könnte. According to the invention, it is therefore provided to carry out the hot forming of steels with zinc coating below the peritectic temperature of the iron-zinc system (melt, ferrite, gamma phase). In order to be able to guarantee a quench hardening, the composition of the steel alloy is adjusted within the usual composition of drilling magnesium steel (22 MnB5) such that a quench hardening by a delayed transformation of austenite into martensite and thus the presence of austenite even at the lower temperature below 800 ° C or lower, so that the moment the steel is formed, no liquid Zinc phases are present, from which zinc could evaporate and precipitate on the tools.
Die angestrebte Umformtemperatur liegt zwischen 450 °C und 800°C, vorzugsweise zwischen 450°C und 700°C und weiter bevorzugt zwischen 450°C und 600°C. The desired forming temperature is between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C.
Die Erfindung wird anhand einer Zeichnung erläutert, es zeigen dabei : The invention will be explained with reference to a drawing, in which:
Figur 1: stark schematisiert einen Versuchsaufbau; FIG. 1 shows a highly schematized experimental setup;
Figur 2: schematisch das Anhaftungspotential einer metallischen Beschichtung am Werkzeug am Beispiel Zink; Figure 2: schematically the adhesion potential of a metallic coating on the tool using the example of zinc;
Figur 3: Bilder zeigend das Werkzeug bei drei aufeinanderfolgende Umformversuchen die ohne Zwischenkühlung erfolgten; FIG. 3 shows images of the tool during three successive forming experiments carried out without intermediate cooling;
Figur 4: Bilder zeigend das Werkzeug bei drei aufeinanderfolgende Umformversuchen die mit erfindungsgemäßer Zwischenkühlung vor dem Umformen erfolgten; FIG. 4 shows images of the tool during three successive forming experiments which were carried out with intermediate cooling according to the invention before forming;
Figur 5 : Ein Bild zeigend das Werkzeug nach den Versuchen ohne und mit erfindungsgemäßer Zwischenkühlung und das Werkzeug in gereinigtem Ausgangszustand. Figure 5: An image showing the tool after the experiments without and with inventive intercooling and the tool in a cleaned initial state.
Erfindungsgemäß wird ein üblicher Bor-Manganstahl zur Verwendung als presshärtender Stahlwerkstoff bezüglich der Umwandlung des Austenits in andere Phasen so eingestellt, dass sich die Umwandlung in tiefere Bereiche verschiebt. Für die Erfindung sind somit Stähle der allgemeinen rungs zusammenset zung geeignet (alle Angaben in Masse-%) According to the invention, a conventional boron manganese steel for use as a press-hardening steel material is adjusted with respect to the transformation of the austenite into other phases so that the transformation shifts into deeper regions. Thus, steels of general composition are suitable for the invention (all figures in% by mass)
Si Mn AI Cr Ti B N Si Mn Al Cr Ti B N
0,22 0,19 1,22 0,0066 0,001 0,053 0,26 0,031 0,0025 0,0042 Rest Eisen und erschmel zungsbedingte Verunreinigungen 0.22 0.19 1.22 0.0066 0.001 0.053 0.26 0.031 0.0025 0.0042 remainder iron and impurities caused by melting
Wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden. In particular, the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as conversion inhibitors in such steels.
Für die Erfindung sind somit Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%) : Steels of the general alloy composition are therefore suitable for the invention (all figures in% by mass):
Kohlenstoff (C) 0,08-0,6 Carbon (C) 0.08-0.6
Mangan (Mn) 0,8-3,0 Manganese (Mn) 0.8-3.0
Aluminium (AI) 0, 01-0, 07 Aluminum (AI) 0, 01-0, 07
Silizium (Si) 0, 01-0,5 Silicon (Si) 0, 01-0.5
Chrom (Cr) 0,02-0,6 Chromium (Cr) 0.02-0.6
Titan (Ti) 0, 01-0, 05 Titanium (Ti) 0, 01-0, 05
Stickstoff (N) 0, 003-0, 1 Nitrogen (N) 0, 003-0, 1
Bor (B) 0, 005-0, 06 Boron (B) 0, 005-0, 06
Phosphor (P) < 0,01 Phosphorus (P) <0.01
Schwefel (S) < 0,01 Sulfur (S) <0.01
Molybdän (Mo) < 1 Molybdenum (Mo) <1
Rest Eisen und erschmel zungsbedingte Verunreinigungen  Remaining iron and impurities due to melting
Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Masse-%) : Steel arrangements have been found to be particularly suitable as follows (all figures in% by mass):
Kohlenstoff (C) 0,08-0,30 Carbon (C) 0.08-0.30
Mangan (Mn) 1, 00-3, 00 Manganese (Mn) 1, 00-3, 00
Aluminium (AI) 0, 03-0, 06 Silizium (Si) 0, 15-0,20 Aluminum (AI) 0, 03-0, 06 Silicon (Si) 0, 15-0.20
Chrom (Cr) 0,2-0,3  Chromium (Cr) 0.2-0.3
Titan (Ti) 0, 03-0, 04  Titanium (Ti) 0, 03-0, 04
Stickstoff (N) 0,004-0,006  Nitrogen (N) 0.004-0.006
Bor (B) 0, 001-0, 06  Boron (B) 0, 001-0, 06
Phosphor (P) < 0,01  Phosphorus (P) <0.01
Schwefel (S) < 0,01  Sulfur (S) <0.01
Molybdän (Mo) < 1  Molybdenum (Mo) <1
Rest Eisen und erschmel zungsbedingte Verunreinigungen  Remaining iron and impurities due to melting
Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. eine rasche Abkühlung mit einer über der kritischen Härtegeschwindigkeit liegenden Abkühlgeschwindigkeit auch noch unter 780°C sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums umgeformt wird. Dies bedeutet ferner, dass in dem Moment in dem das umzuformende Blech mit dem Werkzeug in Kontakt tritt, keine flüssigen Zinkphasen mehr vorhanden sind welche sich an der Werkzeugoberfläche niederschlagen können. By adjusting the alloying elements acting as conversion retarders, quench hardening, i. H. a rapid cooling with a cooling rate above the critical curing speed even under 780 ° C safely reached. This means that in this case, below the peritectic system of the zinc-iron system is used, i. H. is transformed only below the peritectic. This also means that the moment in which the sheet to be formed comes into contact with the tool, there are no longer any liquid zinc phases which can be deposited on the tool surface.
In Figur 1 erkennt man den Versuchsaufbau . Das verwendete Stahlblech ist ein 1,5 mm dickes Stahlblech aus einer zuvor beschriebenen Legierung welches mit einer Z140 Schicht beschichtet ist. Die Ofentemperatur zum Aufheizen und Austeniti- sieren des Blechs beträgt etwa 910°C. Die Ofenverweildauer der Bleche ist so eingestellt, dass die Bleche eine Temperatur von 870 °C erreichen und dann für 45 Sekunden gehalten werden. Für die Versuche wurden die Bleche dann entweder in das Umform- werkzeug verbracht und dort umgeformt, oder nach dem Aufheizen dem Ofen entnommen, einer Zwischenkühlstation zugeführt und nach der Abkühlung schnellstmöglich in das Werkzeug überführt und dort Umgeformt und abschreckgehärtet. Die Zwischenkühlung wird dabei so durchgeführt, dass eine Umformtemperatur zwischen 450°C und 800°C, vorzugsweise zwischen 450°C und 700°C und weiter bevorzugt zwischen 450°C und 600°C verwirklicht wird . FIG. 1 shows the experimental setup. The steel sheet used is a 1.5 mm thick steel sheet of a previously described alloy which is coated with a Z140 layer. The oven temperature for heating and austenitizing the sheet is about 910 ° C. The oven residence time of the sheets is set so that the sheets reach a temperature of 870 ° C and then held for 45 seconds. For the tests, the sheets were then either placed in the forming tool and formed there, or removed from the oven after heating, fed to an intermediate cooling station and transferred after cooling as quickly as possible in the tool where it formed and quench hardened. The intercooling is carried out so that a forming temperature between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C is realized.
In Figur 2 erkennt man schematisch das Anhaftungspotential einer metallischen Beschichtung am Werkzeug am Beispiel Zink. Sie gilt entsprechend aber auch für andere metallische Be- schichtungen . Man erkennt an den Wendepunkten die Temperaturbereiche, in denen sich flüssige in feste Phasen umwandeln und unterhalb derer eine Umformung mit weniger Anhaftungen gelingt . FIG. 2 schematically shows the adhesion potential of a metallic coating on the tool, using the example of zinc. However, it also applies to other metallic coatings. It can be seen at the turning points, the temperature ranges in which convert liquid into solid phases and below which succeeds a transformation with less buildup.
Figur 3 zeigt die deutlich sichtbare Verschmutzung des Werkzeugs bei einer Umformung ohne Zwischenkühlung. Schon nach drei Umformschritten ist der Verunreinigungsgrad derart hoch, dass eine Beeinträchtigung der Oberflächengüte der gehärteten Stahlbauteile bei fortgesetzten Umformschritten absehbar ist. Hierbei können die am Werkzeug durch zunächst Abdampfung und dann Adhäsion und Verschweißung haftenden Zinkbestandteile aus der Zinkschicht nachfolgender Bauteile durch Verschweißung Teile herausreißen, was den Korrosionsschutz negativ beeinflusst. Umgekehrt können am Werkzeug anhaftende Zinkbestandteile in gleicher Weise auf das Stahlbauteil übertragen werden und stören dort die Oberflächengüte und die La- ckierbarkeit des Bauteils. Figure 3 shows the clearly visible contamination of the tool during a forming without intermediate cooling. Even after three forming steps, the degree of contamination is so high that an impairment of the surface quality of the hardened steel components is foreseeable in the case of continued forming steps. In this case, the zinc components adhering to the tool by first evaporation and then adhesion and welding can tear out parts of the zinc layer of subsequent components by welding, which adversely affects the corrosion protection. Conversely, zinc constituents adhering to the tool can be transferred in the same way to the steel component, where they disturb the surface quality and the lability of the component.
In den Figuren 4 und 5 erkennt man demgegenüber, dass das Werkzeug bis auf absolut unbedeutende und unschädliche geringe Zinkabriebe im Werkzeug im Wesentlichen unbeeinflußt bleibt. In contrast, FIGS. 4 and 5 show that the tool remains essentially unaffected except for absolutely insignificant and harmless low zinc abrasions in the tool.
Ergänzend kann man nach dem Aufheizen der Platine erfindungsgemäß im Temperaturbereich des Peritektikums eine Haltephase vorsehen, so dass die Erstarrung der Zinkbeschichtung gefördert und vorangetrieben wird bevor umgeformt wird. In addition, after heating the board according to the invention in the temperature range of the peritectic a holding phase so that the solidification of the zinc coating is promoted and advanced before being reshaped.
Mit der Erfindung gelingt es somit, zuverlässig ein kostengünstiges Warmumformverfahren für mit metallischen Beschich- tungen wie Zink oder Zinklegierungen oder Aluminium oder Aluminiumregierungen beschichteter Stahlbleche zu erreichen bei dem einerseits eine Abschreckhärtung herbeigeführt wird und andererseits Anhaftungen am Werkzeug vermindert oder vermieden werden . With the invention, it is thus possible to reliably achieve a cost-effective hot forming process for steel sheets coated with metallic coatings such as zinc or zinc alloys or aluminum or aluminum alloys in which, on the one hand, quench hardening is brought about and, on the other hand, adhesions to the tool are reduced or avoided.

Claims

Patentansprüche claims
1. Verfahren zum Umformen und Härten von beschichteten 1. Process for forming and curing of coated
Stahlblechen, wobei aus einem mit einer metallischen Be- schichtung versehenen beschichteten Blech, insbesondere einem Blech welches mit Zink oder einer Zinklegierung o- der Aluminium oder einer Aluminiumlegierung beschichtet ist, eine Platine ausgestanzt wird, die ausgestanzte Platine auf eine Temperatur zumindest ^Aci, insbesondere ^Ac3 erhitzt und ggf. bei dieser Temperatur für eine vorbestimmte Zeit gehalten wird um die teilweise oder vollständige Austenitbildung durchzuführen und anschließend die aufgeheizte Platine in ein Umformwerkzeug überführt wird, in dem Umformwerkzeug umgeformt wird und in dem Um- formwerkzeug mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt und dadurch gehärtet wird, dadurch gekennzeichnet, dass zur Vermeidung von metallischen Anhaftungen wie Zink- oder Aluminiumanhaftungen auf dem Umformwerkzeug der Stahlwerkstoff derart umwandlungsverzögert eingestellt ist, dass unter der peritektischen Temperatur der jeweiligen metallischen Beschichtung umgeformt wird und insbesondere bei einer Umformtemperatur die im Bereich von 450°C bis 800°C, insbesondere 500°C bis 600°C umgeformt wird. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Stahlwerkstoff als Umwandlungsverzögerer die Elemente Bor, Mangan und Kohlenstoff und optional Chrom und Molybdän enthält . Steel sheets, wherein from a provided with a metallic coating coated sheet metal, in particular a sheet which is coated with zinc or a zinc alloy o- aluminum or aluminum alloy, a board is punched out, the punched board to a temperature at least ^ Aci, in particular ^ Ac 3 is heated and optionally held at this temperature for a predetermined time to perform the partial or complete Austenitbildung and then the heated board is transferred to a forming tool, is formed in the forming tool and in the forming tool at a speed, the is above the critical hardening speed, cooled and thereby hardened, characterized in that, in order to avoid metallic buildup such as zinc or aluminum buildup on the forming tool, the steel material is adjusted in a conversion-retarded manner such that below the peritectic temperature the j eweiligen metallic coating is formed and in particular at a forming temperature in the range of 450 ° C to 800 ° C, in particular 500 ° C to 600 ° C is formed. A method according to claim 1, characterized in that the steel material contains as conversion retarders the elements boron, manganese and carbon and optionally chromium and molybdenum.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Stahlwerkstoff mit folgender Analyse verwendet wird (alle Angaben in Masse-%) : A method according to claim 1 or 2, characterized in that a steel material is used with the following analysis (all figures in% by mass):
Kohlenstoff (C) 0,08-0,6 Carbon (C) 0.08-0.6
Mangan (Mn) 0,8-3,0 Manganese (Mn) 0.8-3.0
Aluminium (AI) 0, 01-0, 07 Aluminum (AI) 0, 01-0, 07
Silizium (Si) 0, 01-0,5 Silicon (Si) 0, 01-0.5
Chrom (Cr) 0,02-0,6 Chromium (Cr) 0.02-0.6
Titan (Ti) 0, 01-0, 05 Titanium (Ti) 0, 01-0, 05
Stickstoff (N) 0, 003-0, 1 Nitrogen (N) 0, 003-0, 1
Bor (B) 0, 005-0, 06 Boron (B) 0, 005-0, 06
Phosphor (P) < 0,01 Phosphorus (P) <0.01
Schwefel (S) < 0,01 Sulfur (S) <0.01
Molybdän (Mo) < 1 Molybdenum (Mo) <1
Rest Eisen und erschmel zungsbedingte Verunreinigungen  Remaining iron and impurities due to melting
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Stahlwerkstoff mit folgender Analyse verwendet wird (alle Angaben in Masse-%) : A method according to claim 1 or 2, characterized in that a steel material is used with the following analysis (all figures in% by mass):
Kohlenstoff (C) 0,08-0,30 Carbon (C) 0.08-0.30
Mangan (Mn) 1, 00-3, 00 Manganese (Mn) 1, 00-3, 00
Aluminium (AI) 0, 03-0, 06 Aluminum (AI) 0, 03-0, 06
Silizium (Si) 0, 15-0,20 Silicon (Si) 0, 15-0.20
Chrom (Cr) 0,2-0,3 Chromium (Cr) 0.2-0.3
Titan (Ti) 0, 03-0, 04 Titanium (Ti) 0, 03-0, 04
Stickstoff (N) 0,004-0,006 Nitrogen (N) 0.004-0.006
Bor (B) 0, 001-0, 06 Phosphor (P) < 0,01 Boron (B) 0, 001-0, 06 Phosphorus (P) <0.01
Schwefel (S) < 0,01  Sulfur (S) <0.01
Molybdän (Mo) < 1  Molybdenum (Mo) <1
Rest Eisen und erschmel zungsbedingte Verunreinigungen  Remaining iron and impurities due to melting
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Platine in einem Ofen auf eine Temperatur ^Aci, insbesondere ^Ac3 aufgeheizt wird und für eine vorbestimmte Zeit gehalten wird und anschließend die Platine auf eine Temperatur zwischen 450°C bis 800°C, insbesondere 450°C bis 600°C gebracht wird und auf dieser Temperatur gehalten wird, um eine Verfestigung der metallischen Beschichtung zu erzielen und nach einer vorbestimmten Haltezeit bei 450°C bis 800°C und insbesondere 450°C bis 600°C umgeformt wird. 5. The method according to any one of the preceding claims, characterized in that the board is heated in an oven to a temperature ^ Aci, in particular ^ Ac 3 and is held for a predetermined time and then the board to a temperature between 450 ° C to 800 C., in particular 450.degree. C. to 600.degree. C., and is kept at this temperature in order to achieve solidification of the metallic coating and after a predetermined holding time at 450.degree. C. to 800.degree. C. and in particular 450.degree. C. to 600.degree is transformed.
PCT/EP2011/073882 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets WO2012085248A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES11808645T ES2851176T3 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
CN201180068546.5A CN103415630B (en) 2010-12-24 2011-12-22 Shaping and the method for the steel plate of hard-coating
EP11808645.3A EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE102010056264.5 2010-12-24
DE102010056264.5A DE102010056264C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102010056265.3 2010-12-24
DE102010056265.3A DE102010056265C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102011053939.5A DE102011053939B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components
DE102011053941.7A DE102011053941B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components with regions of different hardness and / or ductility
DE102011053941.7 2011-09-26
DE102011053939.5 2011-09-26

Publications (2)

Publication Number Publication Date
WO2012085248A2 true WO2012085248A2 (en) 2012-06-28
WO2012085248A3 WO2012085248A3 (en) 2012-08-16

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
PCT/EP2011/073882 WO2012085248A2 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
PCT/EP2011/073887 WO2012085251A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
PCT/EP2011/073880 WO2012085247A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
PCT/EP2011/073889 WO2012085253A2 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
PCT/EP2011/073892 WO2012085256A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Family Applications After (4)

Application Number Title Priority Date Filing Date
PCT/EP2011/073887 WO2012085251A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
PCT/EP2011/073880 WO2012085247A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
PCT/EP2011/073889 WO2012085253A2 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
PCT/EP2011/073892 WO2012085256A2 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Country Status (8)

Country Link
US (2) US10640838B2 (en)
EP (5) EP2655675B1 (en)
JP (2) JP5727037B2 (en)
KR (3) KR20130132566A (en)
CN (5) CN103415630B (en)
ES (5) ES2829950T3 (en)
HU (5) HUE055049T2 (en)
WO (5) WO2012085248A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122383A1 (en) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Process for the production of a hot-formed and press-hardened sheet steel component

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (en) * 2012-10-31 2015-11-10 アイシン高丘株式会社 Die quench apparatus and die quench method for aluminum alloy material
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
US10167530B2 (en) 2013-08-29 2019-01-01 Jfe Steel Corporation Method of manufacturing hot press formed part, and hot press formed part
DE102013015032A1 (en) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
CN109023136A (en) * 2013-09-19 2018-12-18 塔塔钢铁艾默伊登有限责任公司 For hot formed steel
JP6167814B2 (en) * 2013-09-30 2017-07-26 マツダ株式会社 Automatic transmission
DE102014000969A1 (en) * 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motor vehicle component
DE102014101159B4 (en) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Process for the surface treatment of workpieces
WO2015144318A1 (en) * 2014-03-28 2015-10-01 Tata Steel Ijmuiden B.V. Method for hot forming a coated steel blank
JP6260411B2 (en) * 2014-03-31 2018-01-17 新日鐵住金株式会社 Slow cooling steel
JP5825413B1 (en) * 2014-04-23 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed product
WO2016046593A1 (en) * 2014-09-22 2016-03-31 Arcelormittal Reinforcement element for a vehicle, method for producing the same and door assembly
JP6152836B2 (en) * 2014-09-25 2017-06-28 Jfeスチール株式会社 Manufacturing method of hot press-formed product
JP6056826B2 (en) * 2014-09-30 2017-01-11 Jfeスチール株式会社 Manufacturing method of hot press-formed product
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (en) * 2014-12-12 2017-08-09 Jfeスチール株式会社 Manufacturing method of hot press-formed product
CN105772584B (en) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 Improve the thermoforming process and molding machine of forming parts performance
CN104668326B (en) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
EP3505265B1 (en) 2015-03-09 2023-11-29 Autotech Engineering S.L. Mechanical press and a method for using it
EP3067129A1 (en) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Press systems and methods
JP7141828B2 (en) * 2015-05-29 2022-09-26 フォエスタルピネ スタール ゲーエムベーハー Uniform non-contact temperature control method and apparatus for non-endless surface to be temperature controlled
MX2017014559A (en) * 2015-06-03 2018-03-15 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components.
WO2017017484A1 (en) 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
DE102016114658B4 (en) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Process for forming and hardening steel materials
CN106334875A (en) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 Steel welding component with aluminum or aluminum alloy coating and manufacturing method thereof
CN106424280B (en) * 2016-11-30 2017-09-29 华中科技大学 A kind of high-strength steel hot forming differentiation mechanical property distribution flexible control method
DE102017115755A1 (en) 2017-07-13 2019-01-17 Schwartz Gmbh Method and device for heat treatment of a metallic component
EP3437750A1 (en) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Press method for coated steels
DE102017131247A1 (en) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
DE102017131253A1 (en) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
US11613789B2 (en) 2018-05-24 2023-03-28 GM Global Technology Operations LLC Method for improving both strength and ductility of a press-hardening steel
CN112534078A (en) 2018-06-19 2021-03-19 通用汽车环球科技运作有限责任公司 Low density press hardened steel with enhanced mechanical properties
CN109433960A (en) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system
EP3712292B1 (en) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
EP4045205B1 (en) 2019-10-14 2023-03-08 Autotech Engineering, S.L. Press systems and methods
EP3872230A1 (en) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
JP7303475B2 (en) * 2020-04-20 2023-07-05 日本製鉄株式会社 HOT PRESS-FORMED PRODUCT MANUFACTURING METHOD AND HOT PRESS-FORMED PRODUCT
CN111822571A (en) * 2020-07-12 2020-10-27 首钢集团有限公司 Hot stamping method capable of customizing organization performance subareas of parts
KR102553226B1 (en) * 2020-12-21 2023-07-07 주식회사 포스코 Electro-magnetic Test Device
CN113182374A (en) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 Thermal forming method of high-strength structural member
WO2023074114A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642991B1 (en) 2003-05-28 2009-02-18 Sumitomo Metal Industries, Ltd. Method for hot forming and hot formed member
EP1439240B1 (en) 2001-10-23 2010-05-19 Sumitomo Metal Industries, Ltd. Method for hot-press forming a plated steel product

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (en) * 1991-11-04 1994-03-04 Isoform DEVICE FOR STAMPING SHEET MATERIALS, PARTICULARLY SHEET SHEET.
DE19838332A1 (en) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Quality monitoring of galvannealed coating of steel strip involves determining the visual appearance of the coating as a variable relevant to its quality and using it for controlling the annealing furnace
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
JP4085876B2 (en) * 2003-04-23 2008-05-14 住友金属工業株式会社 Hot press-formed product and method for producing the same
BRPI0412599B1 (en) 2003-07-29 2016-05-17 Voestalpine Automotive Gmbh method for producing hardened structural parts made of sheet steel plate.
AT412403B (en) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
CN100355928C (en) * 2003-09-29 2007-12-19 杰富意钢铁株式会社 Steel parts for machine structure, material therefor, and method for manufacture thereof
JP2005177805A (en) 2003-12-19 2005-07-07 Nippon Steel Corp Hot press forming method
JP4131715B2 (en) * 2004-05-18 2008-08-13 トピー工業株式会社 Method and apparatus for partial heat treatment of heat treatment member
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP4329639B2 (en) * 2004-07-23 2009-09-09 住友金属工業株式会社 Steel plate for heat treatment with excellent liquid metal brittleness resistance
DE102005003551B4 (en) 2005-01-26 2015-01-22 Volkswagen Ag Method for hot forming and hardening a steel sheet
JP2007016296A (en) * 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
JP4733522B2 (en) * 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4681492B2 (en) 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
JP5092523B2 (en) * 2007-04-20 2012-12-05 新日本製鐵株式会社 Manufacturing method of high-strength parts and high-strength parts
KR20100019500A (en) * 2007-06-15 2010-02-18 수미도모 메탈 인더스트리즈, 리미티드 Process for manufacturing shaped article
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP4890416B2 (en) 2007-10-18 2012-03-07 アイシン高丘株式会社 Press working apparatus and press working method in die quench method
US20110236719A1 (en) * 2008-12-19 2011-09-29 Tata Steel Ijmuiden Bv Method for Manufacturing a Coated Part Using Hot Forming Techniques
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009015013B4 (en) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Process for producing partially hardened steel components
DE102009017326A1 (en) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Process for producing press-hardened components
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
KR101171450B1 (en) * 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
JP5740099B2 (en) * 2010-04-23 2015-06-24 東プレ株式会社 Manufacturing method of hot press products

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1439240B1 (en) 2001-10-23 2010-05-19 Sumitomo Metal Industries, Ltd. Method for hot-press forming a plated steel product
EP1642991B1 (en) 2003-05-28 2009-02-18 Sumitomo Metal Industries, Ltd. Method for hot forming and hot formed member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122383A1 (en) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Process for the production of a hot-formed and press-hardened sheet steel component

Also Published As

Publication number Publication date
JP2014507556A (en) 2014-03-27
JP5727037B2 (en) 2015-06-03
KR20130126962A (en) 2013-11-21
WO2012085256A2 (en) 2012-06-28
CN103392014B (en) 2016-01-27
JP2014505791A (en) 2014-03-06
EP2655674A2 (en) 2013-10-30
HUE054867T2 (en) 2021-10-28
ES2858225T8 (en) 2022-01-05
EP2655675A2 (en) 2013-10-30
HUE054465T2 (en) 2021-09-28
CN103547686B (en) 2016-11-23
US20140027026A1 (en) 2014-01-30
CN103384726B (en) 2016-11-23
EP2655675B1 (en) 2021-03-10
US10640838B2 (en) 2020-05-05
ES2858225T3 (en) 2021-09-29
WO2012085256A3 (en) 2012-08-16
EP2656187A2 (en) 2013-10-30
CN103415630B (en) 2015-09-23
KR20130132566A (en) 2013-12-04
EP2655673A2 (en) 2013-10-30
WO2012085251A3 (en) 2012-08-16
ES2851176T3 (en) 2021-09-03
WO2012085251A2 (en) 2012-06-28
CN103384726A (en) 2013-11-06
CN103547687A (en) 2014-01-29
WO2012085253A2 (en) 2012-06-28
WO2012085247A3 (en) 2012-08-16
CN103547686A (en) 2014-01-29
ES2853207T3 (en) 2021-09-15
ES2829950T8 (en) 2021-06-10
US20140020795A1 (en) 2014-01-23
EP2655673B1 (en) 2021-02-03
WO2012085253A3 (en) 2012-08-16
HUE055049T2 (en) 2021-10-28
EP2655672A2 (en) 2013-10-30
CN103415630A (en) 2013-11-27
WO2012085247A2 (en) 2012-06-28
WO2012085248A3 (en) 2012-08-16
KR101582922B1 (en) 2016-01-07
ES2848159T3 (en) 2021-08-05
EP2655672B1 (en) 2020-12-16
EP2655674B1 (en) 2021-02-03
CN103392014A (en) 2013-11-13
ES2829950T3 (en) 2021-06-02
EP2656187B1 (en) 2020-09-09
HUE052381T2 (en) 2021-04-28
HUE053150T2 (en) 2021-06-28
KR20130132565A (en) 2013-12-04

Similar Documents

Publication Publication Date Title
EP2655674B1 (en) Method for forming and hardening coated steel sheets
DE102011053939B4 (en) Method for producing hardened components
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
EP2848709A1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
DE102013100682B3 (en) A method of producing cured components and a structural component made by the method
EP3250727B2 (en) Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet
DE102011053941B4 (en) Method for producing hardened components with regions of different hardness and / or ductility
DE102010056264B4 (en) Method for producing hardened components
DE102010056265B3 (en) Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating
EP2944710B1 (en) Method for producing a hot-formed steel component made from press-hardenable steel provided with a metallic, corrosion-protective coating
EP2987889A1 (en) Surface finished steel sheet and method for the production thereof
WO2020020644A1 (en) Method for producing a hardened steel product
EP3303647B1 (en) Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components
WO2021063899A1 (en) Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom
EP4247992A1 (en) Steel material and method for production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11808645

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011808645

Country of ref document: EP