EP2655674B1 - Method for forming and hardening coated steel sheets - Google Patents

Method for forming and hardening coated steel sheets Download PDF

Info

Publication number
EP2655674B1
EP2655674B1 EP11808645.3A EP11808645A EP2655674B1 EP 2655674 B1 EP2655674 B1 EP 2655674B1 EP 11808645 A EP11808645 A EP 11808645A EP 2655674 B1 EP2655674 B1 EP 2655674B1
Authority
EP
European Patent Office
Prior art keywords
temperature
zinc
forming
blank
forming tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11808645.3A
Other languages
German (de)
French (fr)
Other versions
EP2655674A2 (en
Inventor
Andreas Sommer
Siegfried Kolnberger
Gerald RABLER
Harald Schwinghammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/en
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/en
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/en
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/en
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Publication of EP2655674A2 publication Critical patent/EP2655674A2/en
Application granted granted Critical
Publication of EP2655674B1 publication Critical patent/EP2655674B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Definitions

  • the invention relates to a method for forming and hardening coated steel sheets with the features of claim 1.
  • press-hardened components made of sheet steel are used, particularly in automobiles.
  • These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area.
  • a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached. Then this heated blank is transferred to a molding tool and in this molding tool in a single-stage forming step The finished component is reshaped and at the same time cooled by the cooled molding tool at a speed that is above the critical hardening speed. The hardened component is thus produced.
  • the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.
  • This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed, and thereby hardened.
  • the direct method is a bit easier to implement here, but only allows shapes that can actually be created with a single forming step, i.e. relatively simple profile shapes.
  • Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion.
  • zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, as these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.
  • the forming tools are significantly soiled. This is apparently not only due to abrasion but much more to the sublimation of zinc vapors that evaporate from the liquid zinc phases during forming.
  • the consequences of zinc deposits building up in the forming tool range from surface damage to the hot-formed component in the form of grooves to system downtimes due to jammed components in the forming tool or the risk of tool breakage due to double-part press-off if jammed components are not detected in time.
  • the required regular removal of zinc deposits reduces the productivity of the hot forming plant due to the necessary production downtime.
  • the steel material having a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot formed, wherein the coating has an oxide layer, which consists mainly of zinc oxide, before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated.
  • a special procedure is provided for this.
  • a method for hot forming a steel in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a way that the cooling rate to the MS point is at least equal to the critical cooling rate and that the average cooling rate of the molded component from the MS point at 200 ° C is in the range of 25 ° C / s to 150 ° C / s.
  • JP 2007 182 608 discloses a method for hot forming coated boron-manganese steels.
  • the object of the invention is to create a method for reshaping and hardening metal-coated steel sheets in which the contamination of the tools is reduced to the level that is inevitable due to abrasion.
  • the inventors have recognized that metallic buildup, such as Zn buildup on hot forming tools, which goes beyond the level of inevitable abrasion, has a severe adverse effect on productivity in the direct process.
  • the cause suspected by the inventors is mainly due to evaporating liquid metallic phases, such as Zn phases in the hot forming of steels with a zinc coating.
  • the hot forming of steels with zinc coating is carried out below the peritectic temperature of the iron-zinc system (melt, ferrite, gamma phase).
  • the composition of the steel alloy is set within the scope of the usual composition of Bohr magnesium steel (22 MnB5) in such a way that quench hardening is achieved through a delayed conversion of the austenite into martensite and thus the presence of austenite even at the lower temperature is carried out below 800 ° C or lower, so that at the moment in which the steel is formed, no liquid Zinc phases are present, from which zinc could evaporate and deposit on the tools.
  • the desired forming temperature is between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C.
  • a conventional boron-manganese steel for use as a press-hardening steel material is adjusted with regard to the conversion of the austenite into other phases in such a way that the conversion shifts into deeper ranges.
  • Steels of the general alloy composition are therefore suitable for the invention (all data in% by mass): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] B [%] N [%] 0.22 0.19 1.22 0.0066 0.001 0.053 0.26 0.031 0.0025 0.0042
  • the remainder is iron and impurities from the melting process
  • the alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as transformation retarders in such steels.
  • quench hardening i.e. H. rapid cooling with a cooling rate above the critical hardening rate can be safely achieved even below 780 ° C.
  • work is carried out below the peritectic of the zinc-iron system, i.e. H. is only transformed below the peritectic.
  • This also means that at the moment when the sheet metal to be formed comes into contact with the tool, there are no longer any liquid zinc phases that can be deposited on the tool surface.
  • the steel sheet used is a 1.5 mm thick steel sheet made of an alloy described above which is coated with a Z140 layer.
  • the furnace temperature for heating and austenitizing the sheet is around 910 ° C.
  • the baking time of the trays is set so that the trays reach a temperature of 870 ° C and are then held for 45 seconds.
  • the sheets were either brought into the forming tool and formed there, or removed from the furnace after heating, fed to an intermediate cooling station and, after cooling, transferred to the tool as quickly as possible, where they were formed and quench-hardened.
  • the intercooling is carried out so that a forming temperature between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C is achieved.
  • Figure 3 shows the clearly visible contamination of the tool during forming without intermediate cooling. After just three forming steps, the degree of contamination is so high that an impairment of the surface quality of the hardened steel components is foreseeable with continued forming steps.
  • the zinc components adhering to the tool through first evaporation and then adhesion and welding can tear parts out of the zinc layer of the following components by welding, which has a negative effect on the corrosion protection.
  • zinc components adhering to the tool can be transferred in the same way to the steel component and there impair the surface quality and the paintability of the component.
  • a holding phase can be carried out in the temperature range of the peritectic Provide so that the solidification of the zinc coating is promoted and promoted before it is formed.

Description

Die Erfindung betrifft ein Verfahren zum Umformen und Härten von beschichteten Stahlblechen mit den Merkmalen des Anspruchs 1.The invention relates to a method for forming and hardening coated steel sheets with the features of claim 1.

Es ist bekannt, dass insbesondere in Automobilen sogenannte pressgehärtete Bauteile aus Stahlblech eingesetzt werden. Diese pressgehärteten Bauteile aus Stahlblech sind hochfeste Bauteile, die insbesondere als Sicherheitsbauteile des Karosseriebereichs verwendet werden. Hierbei ist es durch die Verwendung dieser hochfesten Stahlbauteile möglich, die Materialdicke gegenüber einem normalfesten Stahl zu reduzieren und somit geringe Karosseriegewichte zu erzielen.It is known that so-called press-hardened components made of sheet steel are used, particularly in automobiles. These press-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the bodywork area. By using these high-strength steel components, it is possible to reduce the material thickness compared to normal-strength steel and thus to achieve low body weights.

Beim Presshärten gibt es grundsätzlich zwei verschiedene Möglichkeiten zur Herstellung derartiger Bauteile. Unterschieden wird in das sogenannte direkte und indirekte Verfahren.In press hardening, there are basically two different ways of producing such components. A distinction is made between the so-called direct and indirect method.

Beim direkten Verfahren wird eine Stahlblechplatine über die sogenannten Austenitisierungstemperatur aufgeheizt und gegebenenfalls so lange auf dieser Temperatur gehalten, bis ein gewünschter Austenitisierungsgrad erreicht ist. Anschließend wird diese erhitzte Platine in ein Formwerkzeug überführt und in diesem Formwerkzeug in einem einstufigen Umformschritt zum fertigen Bauteil umgeformt und hierbei durch das gekühlte Formwerkzeug gleichzeitig mit einer Geschwindigkeit, die über der kritischen Härtegeschwindigkeit liegt, abgekühlt. Somit wird das gehärtete Bauteil erzeugt.In the direct method, a sheet steel blank is heated above the so-called austenitizing temperature and, if necessary, kept at this temperature until a desired degree of austenitizing is reached. Then this heated blank is transferred to a molding tool and in this molding tool in a single-stage forming step The finished component is reshaped and at the same time cooled by the cooled molding tool at a speed that is above the critical hardening speed. The hardened component is thus produced.

Beim indirekten Verfahren wird zunächst, gegebenenfalls in einem mehrstufigen Umformprozess, das Bauteil fast vollständig fertig umgeformt. Dieses umgeformte Bauteil wird anschließend ebenfalls auf eine Temperatur über die Austenitisierungstemperatur erhitzt und gegebenenfalls für eine gewünschte erforderliche Zeit auf dieser Temperatur gehalten.In the case of the indirect process, the component is first formed almost completely, if necessary in a multi-stage forming process. This formed component is then likewise heated to a temperature above the austenitizing temperature and, if necessary, kept at this temperature for a required time.

Anschließend wird dieses erhitzte Bauteil in ein Formwerkzeug überführt und eingelegt, welches schon die Abmessungen des Bauteils bzw. die Endabmessungen des Bauteils gegebenenfalls unter Berücksichtigung der Wärmedehnung des vorgeformten Bauteils besitzt. Nach dem Schließen des insbesondere gekühlten Werkzeuges wird somit das vorgeformte Bauteil lediglich in diesem Werkzeug mit einer Geschwindigkeit über der kritischen Härtegeschwindigkeit abgekühlt und dadurch gehärtet.This heated component is then transferred and inserted into a molding tool which already has the dimensions of the component or the final dimensions of the component, possibly taking into account the thermal expansion of the preformed component. After the particularly cooled tool has been closed, the preformed component is therefore only cooled in this tool at a speed above the critical hardening speed, and thereby hardened.

Das direkte Verfahren ist hierbei etwas einfacher zu realisieren, ermöglicht jedoch nur Formen, die tatsächlich mit einem einzigen Umformschritt zu realisieren sind, d.h. relativ einfache Profilformen.The direct method is a bit easier to implement here, but only allows shapes that can actually be created with a single forming step, i.e. relatively simple profile shapes.

Das indirekte Verfahren ist etwas aufwendiger, dafür aber in der Lage auch komplexere Formen zu realisieren.The indirect process is somewhat more complex, but it is also able to produce more complex shapes.

Zusätzlich zum Bedarf an pressgehärteten Bauteilen entstand der Bedarf, derartige Bauteile nicht aus unbeschichtetem Stahlblech zu erzeugen, sondern derartige Bauteile mit einer Korrosionsschutzschicht zu versehen.In addition to the need for press-hardened components, the need arose not to produce such components from uncoated sheet steel, but to provide such components with a corrosion protection layer.

Als Korrosionsschutzschicht kommen im Automobilbau lediglich das eher in geringem Maße verwendeter Aluminium oder Aluminiumlegierungen in Frage oder aber die erheblich häufiger verlangten Beschichtungen auf der Basis von Zink. Zink hat hierbei den Vorteil, dass Zink nicht nur eine Barriereschutzschicht wie Aluminium leistet, sondern einen kathodischen Korrosionsschutz. Zudem passen sich zinkbeschichtete pressgehärtete Bauteile besser in das Gesamtkorrosionsschutzkonzept der Fahrzeugkarosserien ein, da diese in heute gängiger Bauweise voll verzinkt sind. Insofern kann Kontaktkorrosion vermindert oder ausgeschlossen werden.Only aluminum or aluminum alloys, which are used to a lesser extent, or the much more frequently required coatings based on zinc are considered as a corrosion protection layer in automobile construction. Zinc has the advantage that zinc not only provides a barrier protection layer like aluminum, but also a cathodic protection against corrosion. In addition, zinc-coated press-hardened components fit better into the overall corrosion protection concept of the vehicle body, as these are fully galvanized in today's common construction. In this respect, contact corrosion can be reduced or excluded.

Bei dem direkten Verfahren, d.h. der Warmumformung von presshärtenden Stählen mit Zinkbeschichtung kommt es zu einer wesentlichen Verschmutzung der Umformwerkzeuge. Dies beruht offenbar nicht nur auf Abrieb sondern viel mehr auf der Sublimation von Zinkdämpfen die aus den flüssigen Zinkphasen beim Umformen ausdampfen. Die Folgen von sich im Umformwerkzeug aufbauenden Zinkablagerungen reichen von Oberflächenbeschädigungen des warmumgeformten Bauteils in Form von Riefen bis hin zur Anlagenstillständen aufgrund festklemmender Bauteile im Umformwerkzeug bzw. der Gefahr von Werkzeugbruch durch Doppelteilabpressung falls festklemmende Bauteile nicht rechtzeitig erkannt werden. Das erforderliche regelmäßige Entfernen der Zinkablagerungen verringert aufgrund des erforderlichen Produktionsstillstands die Produktivität der Warmumformanlage.In the direct process, i.e. hot forming of press-hardening steels with zinc coating, the forming tools are significantly soiled. This is apparently not only due to abrasion but much more to the sublimation of zinc vapors that evaporate from the liquid zinc phases during forming. The consequences of zinc deposits building up in the forming tool range from surface damage to the hot-formed component in the form of grooves to system downtimes due to jammed components in the forming tool or the risk of tool breakage due to double-part press-off if jammed components are not detected in time. The required regular removal of zinc deposits reduces the productivity of the hot forming plant due to the necessary production downtime.

Zinkbeschichtete Stähle werden bislang - bis auf ein Bauteil im asiatischen Raum - im direkten Verfahren, d.h. der Warmumformung nicht eingesetzt. Hier werden vielmehr Stähle mit einer Aluminium-Silizium-Beschichtung eingesetzt.With the exception of one component in Asia, zinc-coated steels have so far not been used in the direct process, i.e. hot forming. Rather, steels with an aluminum-silicon coating are used here.

Einen Überblick erhält man in der Veröffentlichung "Corrosion resistance of different metallic coatings on press hardened steels for automotive", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. In dieser Veröffentlichung wird ausgeführt, dass es für den Warmumformprozess einen aluminierten Bor-Mangan-Stahl ergibt, der unter dem Namen Usibor 1500P kommerziell vertrieben wird. Zudem werden zum Zwecke des kathodischen Korrosionsschutzes zinkvorbeschichtete Stähle für das Warmumformverfahren vertrieben, nämlich der verzinkte Usibor GI mit einer Zinkbeschichtung, die geringe Anteile von Aluminium enthält und ein sogenannter galvanealed beschichteter Usibor GA, der eine Zinkschicht mit 10 % Eisen enthält.An overview is given in the publication "Corrosion resistance of different metallic coatings on press hardened steels for automotive ", Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. This publication states that it results in an aluminized boron-manganese steel for the hot forming process, which is sold commercially under the name Usibor 1500P In addition, for the purpose of cathodic corrosion protection, steels precoated with zinc are sold for the hot forming process, namely the galvanized Usibor GI with a zinc coating that contains a small amount of aluminum and a so-called galvanealed coated Usibor GA, which contains a zinc layer with 10% iron.

Aus der EP 1 439 240 B1 ist ein Verfahren zum Warmumformen eines beschichteten Stahlproduktes bekannt, wobei Stahlmaterial eine Zink- oder Zinklegierungsbeschichtung aufweist, die auf der Oberfläche des Stahlmaterials ausgebildet ist und das Stahlbasismaterial mit der Beschichtung auf einen Temperatur von 700°C bis 1000°C erwärmt und warm umgeformt wird, wobei die Beschichtung eine Oxidschicht besitzt, die hauptsächlich aus Zinkoxid besteht, bevor das Stahlbasismaterial mit der Zink- oder Zinklegierungsschicht erwärmt wird, um dann ein Verdampfen des Zinks beim Erwärmen zu verhindern. Hierfür wird ein spezieller Verfahrensablauf vorgesehen.From the EP 1 439 240 B1 a method for hot forming a coated steel product is known, the steel material having a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 700 ° C to 1000 ° C and hot formed, wherein the coating has an oxide layer, which consists mainly of zinc oxide, before the steel base material with the zinc or zinc alloy layer is heated in order to then prevent the zinc from evaporating when heated. A special procedure is provided for this.

Aus der EP 1 642 991 B1 ist ein Verfahren zum Warmumformen eines Stahles bekannt, bei dem ein Bauteil aus einem gegebenen Bor-Mangan-Stahl auf eine Temperatur am Ac3-Punkt oder höher erhitzt wird, bei dieser Temperatur gehalten wird und dann das erhitzte Stahlblech zum fertigen Bauteil umgeformt wird, wobei das geformte Bauteil durch Kühlung von der Formgebungstemperatur während des Formens oder nach dem Formen in einer solchen Weise abgeschreckt wird, dass die Abkühlrate zum MS-Punkt zumindest der kritischen Abkühlrate entspricht und dass die durchschnittliche Abkühlrate des geformten Bauteils vom MS-Punkt zu 200°C sich im Bereich von 25°C/s bis 150°C/s befindet. Auch JP 2007 182 608 offenbart ein Verfahren zum Warmumformen von beschichteten Bor-Mangan-Stählen.From the EP 1 642 991 B1 a method for hot forming a steel is known in which a component made of a given boron-manganese steel is heated to a temperature at the Ac 3 point or higher, is kept at this temperature and then the heated steel sheet is formed into the finished component, wherein the molded component is quenched by cooling from the molding temperature during molding or after molding in such a way that the cooling rate to the MS point is at least equal to the critical cooling rate and that the average cooling rate of the molded component from the MS point at 200 ° C is in the range of 25 ° C / s to 150 ° C / s. Also JP 2007 182 608 discloses a method for hot forming coated boron-manganese steels.

Aufgabe der Erfindung ist es, ein Verfahren zum Umformen und Härten von metallisch beschichteten Stahlblechen zu schaffen, bei dem die Verschmutzung der Werkzeuge auf das aufgrund Abrieb unvermeidliche Maß reduziert wird.The object of the invention is to create a method for reshaping and hardening metal-coated steel sheets in which the contamination of the tools is reduced to the level that is inevitable due to abrasion.

Die Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.The object is achieved with the features of claim 1. Advantageous further developments are characterized in the subclaims.

Die Erfinder haben erkannt, dass metallische Anhaftungen wie Zn-Anhaftungen auf Warmumformwerkzeugen, die über das Maß des unvermeidlichen Abriebs hinaus gehen die Produktivität im direkten Prozess stark beeinträchtigen. Die von den Erfindern vermutete Ursache liegt wohl hauptsächlich in ausdampfenden flüssigen metallischen Phasen, wie Zn-Phasen beim Warmumformen von Stählen mit Zinkbeschichtung.The inventors have recognized that metallic buildup, such as Zn buildup on hot forming tools, which goes beyond the level of inevitable abrasion, has a severe adverse effect on productivity in the direct process. The cause suspected by the inventors is mainly due to evaporating liquid metallic phases, such as Zn phases in the hot forming of steels with a zinc coating.

Erfindungsgemäß wird daher vorgesehen, die Warmumformung von Stählen mit Zinkbeschichtung unter der peritektischen Temperatur des Systems Eisen-Zink (Schmelze, Ferrit, Gamma-Phase) durchzuführen. Um hierbei eine Abschreckhärtung noch gewährleisten zu können wird die Zusammensetzung der Stahllegierung im Rahmen der üblichen Zusammensetzung Bohr-Magnesiumstahles (22 MnB5) so eingestellt, dass eine Abschreckhärtung durch eine verzögerte Umwandlung des Austenits in Martensit und damit das Vorhandensein von Austenit auch bei der tieferen Temperatur unterhalb von 800°C oder tiefer durchgeführt wird, so dass in dem Moment in dem der Stahl umgeformt wird, keine flüssigen Zinkphasen vorhanden sind, aus welchen Zink ausdampfen und sich an den Werkzeugen niederschlagen könnte.According to the invention, it is therefore provided that the hot forming of steels with zinc coating is carried out below the peritectic temperature of the iron-zinc system (melt, ferrite, gamma phase). In order to still be able to guarantee quench hardening, the composition of the steel alloy is set within the scope of the usual composition of Bohr magnesium steel (22 MnB5) in such a way that quench hardening is achieved through a delayed conversion of the austenite into martensite and thus the presence of austenite even at the lower temperature is carried out below 800 ° C or lower, so that at the moment in which the steel is formed, no liquid Zinc phases are present, from which zinc could evaporate and deposit on the tools.

Die angestrebte Umformtemperatur liegt zwischen 450°C und 800°C, vorzugsweise zwischen 450°C und 700°C und weiter bevorzugt zwischen 450°C und 600°C.The desired forming temperature is between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C.

Die Erfindung wird anhand einer Zeichnung erläutert, es zeigen dabei:

Figur 1:
stark schematisiert einen Versuchsaufbau;
Figur 2:
schematisch das Anhaftungspotential einer metallischen Beschichtung am Werkzeug am Beispiel Zink;
Figur 3:
Bilder zeigend das Werkzeug bei drei aufeinanderfolgende Umformversuchen die ohne Zwischenkühlung erfolgten;
Figur 4:
Bilder zeigend das Werkzeug bei drei aufeinanderfolgende Umformversuchen die mit erfindungsgemäßer Zwischenkühlung vor dem Umformen erfolgten;
Figur 5:
Ein Bild zeigend das Werkzeug nach den Versuchen ohne und mit erfindungsgemäßer Zwischenkühlung und das Werkzeug in gereinigtem Ausgangszustand.
The invention is explained with reference to a drawing, it shows:
Figure 1:
an experimental setup;
Figure 2:
schematically the adhesion potential of a metallic coating on the tool using zinc as an example;
Figure 3:
Pictures show the tool in three successive forming attempts that were carried out without intermediate cooling;
Figure 4:
Pictures show the tool in three successive forming attempts which were carried out with intermediate cooling according to the invention before forming;
Figure 5:
A picture shows the tool after the tests with and without intermediate cooling according to the invention and the tool in a cleaned initial state.

Erfindungsgemäß wird ein üblicher Bor-Manganstahl zur Verwendung als presshärtender Stahlwerkstoff bezüglich der Umwandlung des Austenits in andere Phasen so eingestellt, dass sich die Umwandlung in tiefere Bereiche verschiebt.According to the invention, a conventional boron-manganese steel for use as a press-hardening steel material is adjusted with regard to the conversion of the austenite into other phases in such a way that the conversion shifts into deeper ranges.

Für die Erfindung sind somit Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] B [%] N [%] 0,22 0,19 1,22 0,0066 0,001 0,053 0,26 0,031 0,0025 0,0042 Rest Eisen und erschmelzungsbedingte Verunreinigungen
Wobei als Umwandlungsverzögerer in derartigen Stählen insbesondere die Legierungselemente Bor, Mangan, Kohlenstoff und optional Chrom und Molybdän verwendet werden.
Steels of the general alloy composition are therefore suitable for the invention (all data in% by mass): C [%] Si [%] Mn [%] P [%] S [%] Al [%] Cr [%] Ti [%] B [%] N [%] 0.22 0.19 1.22 0.0066 0.001 0.053 0.26 0.031 0.0025 0.0042 The remainder is iron and impurities from the melting process
The alloying elements boron, manganese, carbon and optionally chromium and molybdenum are used as transformation retarders in such steels.

Für die Erfindung sind somit Stähle der allgemeinen Legierungszusammensetzung geeignet (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,6 Mangan (Mn) 0,8-3,0 Aluminium (Al) 0,01-0,07 Silizium (Si) 0,01-0,5 Chrom (Cr) 0,02-0,6 Titan (Ti) 0,01-0,05 Stickstoff (N) 0,003-0,1 Bor (B) 0,001-0,06 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Steels of the general alloy composition are therefore suitable for the invention (all data in% by mass): Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0.02-0.6 Titanium (Ti) 0.01-0.05 Nitrogen (N) 0.003-0.1 Boron (B) 0.001-0.06 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1

Rest Eisen und erschmelzungsbedingte Verunreinigungen Insbesondere als geeignet erwiesen haben sich Stahlanordnungen wie folgt (alle Angaben in Masse-%): Kohlenstoff (C) 0,08-0,30 Mangan (Mn) 1,00-3,00 Aluminium (Al) 0,03-0,06 Silizium (Si) 0,15-0,20 Chrom (Cr) 0,2-0,3 Titan (Ti) 0,03-0,04 Stickstoff (N) 0,004-0,006 Bor (B) 0,001-0,06 Phosphor (P) < 0,01 Schwefel (S) < 0,01 Molybdän (Mo) < 1 Rest Eisen und erschmelzungsbedingte VerunreinigungenRemaining iron and impurities caused by the melting process, steel arrangements as follows have proven particularly suitable (all data in% by mass): Carbon (C) 0.08-0.30 Manganese (Mn) 1.00-3.00 Aluminum (Al) 0.03-0.06 Silicon (Si) 0.15-0.20 Chromium (Cr) 0.2-0.3 Titanium (Ti) 0.03-0.04 Nitrogen (N) 0.004-0.006 Boron (B) 0.001-0.06 Phosphorus (P) <0.01 Sulfur (S) <0.01 Molybdenum (Mo) <1 The remainder is iron and impurities from the melting process

Durch die Einstellung der als Umwandlungsverzögerer wirkenden Legierungselemente wird eine Abschreckhärtung, d. h. eine rasche Abkühlung mit einer über der kritischen Härtegeschwindigkeit liegenden Abkühlgeschwindigkeit auch noch unter 780°C sicher erreicht. Dies bedeutet, dass in diesem Fall unterhalb des Peritektikums des Systems Zink-Eisen gearbeitet wird, d. h. erst unterhalb des Peritektikums umgeformt wird. Dies bedeutet ferner, dass in dem Moment in dem das umzuformende Blech mit dem Werkzeug in Kontakt tritt, keine flüssigen Zinkphasen mehr vorhanden sind welche sich an der Werkzeugoberfläche niederschlagen können.By adjusting the alloying elements acting as conversion retarders, quench hardening, i.e. H. rapid cooling with a cooling rate above the critical hardening rate can be safely achieved even below 780 ° C. This means that in this case work is carried out below the peritectic of the zinc-iron system, i.e. H. is only transformed below the peritectic. This also means that at the moment when the sheet metal to be formed comes into contact with the tool, there are no longer any liquid zinc phases that can be deposited on the tool surface.

In Figur 1 erkennt man den Versuchsaufbau. Das verwendete Stahlblech ist ein 1,5 mm dickes Stahlblech aus einer zuvor beschriebenen Legierung welches mit einer Z140 Schicht beschichtet ist. Die Ofentemperatur zum Aufheizen und Austenitisieren des Blechs beträgt etwa 910°C. Die Ofenverweildauer der Bleche ist so eingestellt, dass die Bleche eine Temperatur von 870°C erreichen und dann für 45 Sekunden gehalten werden. Für die Versuche wurden die Bleche dann entweder in das Umformwerkzeug verbracht und dort umgeformt, oder nach dem Aufheizen dem Ofen entnommen, einer Zwischenkühlstation zugeführt und nach der Abkühlung schnellstmöglich in das Werkzeug überführt und dort Umgeformt und abschreckgehärtet. Die Zwischenkühlung wird dabei so durchgeführt, dass eine Umformtemperatur zwischen 450°C und 800°C, vorzugsweise zwischen 450°C und 700°C und weiter bevorzugt zwischen 450°C und 600°C verwirklicht wird.In Figure 1 you can see the experimental setup. The steel sheet used is a 1.5 mm thick steel sheet made of an alloy described above which is coated with a Z140 layer. The furnace temperature for heating and austenitizing the sheet is around 910 ° C. The baking time of the trays is set so that the trays reach a temperature of 870 ° C and are then held for 45 seconds. For the tests, the sheets were either brought into the forming tool and formed there, or removed from the furnace after heating, fed to an intermediate cooling station and, after cooling, transferred to the tool as quickly as possible, where they were formed and quench-hardened. The intercooling is carried out so that a forming temperature between 450 ° C and 800 ° C, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C is achieved.

In Figur 2 erkennt man schematisch das Anhaftungspotential einer metallischen Beschichtung am Werkzeug am Beispiel Zink. Sie gilt entsprechend aber auch für andere metallische Beschichtungen. Man erkennt an den Wendepunkten die Temperaturbereiche, in denen sich flüssige in feste Phasen umwandeln und unterhalb derer eine Umformung mit weniger Anhaftungen gelingt.In Figure 2 one can see schematically the adhesion potential of a metallic coating on the tool using zinc as an example. However, it also applies accordingly to other metallic coatings. At the turning points you can see the temperature ranges in which liquid phases are transformed into solid phases and below which transformation is possible with less adherence.

Figur 3 zeigt die deutlich sichtbare Verschmutzung des Werkzeugs bei einer Umformung ohne Zwischenkühlung. Schon nach drei Umformschritten ist der Verunreinigungsgrad derart hoch, dass eine Beeinträchtigung der Oberflächengüte der gehärteten Stahlbauteile bei fortgesetzten Umformschritten absehbar ist. Hierbei können die am Werkzeug durch zunächst Abdampfung und dann Adhäsion und Verschweißung haftenden Zinkbestandteile aus der Zinkschicht nachfolgender Bauteile durch Verschweißung Teile herausreißen, was den Korrosionsschutz negativ beeinflusst. Umgekehrt können am Werkzeug anhaftende Zinkbestandteile in gleicher Weise auf das Stahlbauteil übertragen werden und stören dort die Oberflächengüte und die Lackierbarkeit des Bauteils. Figure 3 shows the clearly visible contamination of the tool during forming without intermediate cooling. After just three forming steps, the degree of contamination is so high that an impairment of the surface quality of the hardened steel components is foreseeable with continued forming steps. Here, the zinc components adhering to the tool through first evaporation and then adhesion and welding can tear parts out of the zinc layer of the following components by welding, which has a negative effect on the corrosion protection. Conversely, zinc components adhering to the tool can be transferred in the same way to the steel component and there impair the surface quality and the paintability of the component.

In den Figuren 4 und 5 erkennt man demgegenüber, dass das Werkzeug bis auf absolut unbedeutende und unschädliche geringe Zinkabriebe im Werkzeug im Wesentlichen unbeeinflußt bleibt.In the Figures 4 and 5 On the other hand, it can be seen that the tool remains essentially unaffected apart from absolutely insignificant and harmless minor zinc abrasions in the tool.

Ergänzend kann man nach dem Aufheizen der Platine erfindungsgemäß im Temperaturbereich des Peritektikums eine Haltephase vorsehen, so dass die Erstarrung der Zinkbeschichtung gefördert und vorangetrieben wird bevor umgeformt wird.In addition, according to the invention, after the board has been heated up, a holding phase can be carried out in the temperature range of the peritectic Provide so that the solidification of the zinc coating is promoted and promoted before it is formed.

Mit der Erfindung gelingt es somit, zuverlässig ein kostengünstiges Warmumformverfahren für mit metallischen Beschichtungen wie Zink oder Zinklegierungen oder Aluminium oder Aluminiumregierungen beschichteter Stahlbleche zu erreichen bei dem einerseits eine Abschreckhärtung herbeigeführt wird und andererseits Anhaftungen am Werkzeug vermindert oder vermieden werden.With the invention it is thus possible to reliably achieve a cost-effective hot forming process for steel sheets coated with metallic coatings such as zinc or zinc alloys or aluminum or aluminum governments in which, on the one hand, quench hardening is brought about and, on the other hand, adhesions on the tool are reduced or avoided.

Claims (3)

  1. Method for forming and hardening coated sheet steels, wherein a blank is stamped from a sheet coated with the zinc or zinc alloy, the stamped blank is heated to a temperature ≥Ac3 and kept at this temperature for a predefined time where appropriate, in order to allow austenite formation, after which the heated blank is moved into a forming tool, formed in said forming tool and cooled in said forming tool at a speed that lies above the critical hardening speed, cooled and thereby hardened,
    characterized in that
    in order to avoid zinc adhesions on the forming tool, the steel material is adjusted in a conversion-delayed manner, such that forming takes place at a forming temperature which lies within the range of 500°C to 800°C and is below the peritectic temperature of the zinc/iron graph,
    and that the blank is heated in a furnace to a temperature >Ac3 and kept at this temperature for a predefined time, after which the blank is left to cool to a temperature of between 600°C to 800°C and kept at this temperature, in order to achieve solidification of the zinc layer, and after a predefined holding time is moved into the forming tool and formed there at 500°C to 800°C, wherein a steel material having the following analysis is used (all figures in % by mass): Carbon (C) 0.08 - 0.6 Manganese (Mn) 0.8 - 3.0 Aluminium (Al) 0.01 - 0.07 Silicon (Si) 0.01 - 0.5 Chromium (Cr) 0.02 - 0.6 Titanium (Ti) 0.01 - 0.05 Nitrogen (N) 0.003 - 0.1 Boron (B) 0.001 - 0.06 Phosphor (P) < 0.01 Sulphur (S) < 0.01 Molybdenum (Mo) < 1
    Residual iron and smelting-related impurities.
  2. Method according to Claim 1, characterized in that the steel material contains the elements boron, manganese and carbon and, optionally, chromium and molybdenum, as conversion retarders.
  3. Method according to Claim 1 or 2, characterized in that a steel material having the following analysis is used (all figures in % by mass): Carbon (C) 0.08 - 0.30 Manganese (Mn) 1.00 - 3.00 Aluminium (Al) 0.03 - 0.06 Silicon (Si) 0.15 - 0.20 Chromium (Cr) 0.2 - 0.3 Titanium (Ti) 0.03 - 0.04 Nitrogen (N) 0.004 - 0.006 Boron (B) 0.001 - 0.06 Phosphor (P) < 0.01 Sulphur (S) < 0.01 Molybdenum (Mo) < 1
    Residual iron and smelting-related impurities.
EP11808645.3A 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets Active EP2655674B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102010056265.3A DE102010056265C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102010056264.5A DE102010056264C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102011053941.7A DE102011053941B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components with regions of different hardness and / or ductility
DE102011053939.5A DE102011053939B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components
PCT/EP2011/073882 WO2012085248A2 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets

Publications (2)

Publication Number Publication Date
EP2655674A2 EP2655674A2 (en) 2013-10-30
EP2655674B1 true EP2655674B1 (en) 2021-02-03

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
EP11808211.4A Active EP2655673B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11811026.1A Active EP2656187B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11808645.3A Active EP2655674B1 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
EP11811025.3A Active EP2655675B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Family Applications Before (3)

Application Number Title Priority Date Filing Date
EP11807691.8A Active EP2655672B1 (en) 2010-12-24 2011-12-22 Method for producing hardened components with regions of different hardness and/or ductility
EP11808211.4A Active EP2655673B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements
EP11811026.1A Active EP2656187B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP11811025.3A Active EP2655675B1 (en) 2010-12-24 2011-12-22 Method for producing hardened structural elements

Country Status (8)

Country Link
US (2) US10640838B2 (en)
EP (5) EP2655672B1 (en)
JP (2) JP2014507556A (en)
KR (3) KR101582922B1 (en)
CN (5) CN103415630B (en)
ES (5) ES2853207T3 (en)
HU (5) HUE052381T2 (en)
WO (5) WO2012085256A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (en) * 2012-10-31 2015-11-10 アイシン高丘株式会社 Die quench apparatus and die quench method for aluminum alloy material
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
JP5825447B2 (en) * 2013-08-29 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed member
DE102013015032A1 (en) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
US20160289809A1 (en) * 2013-09-19 2016-10-06 Tata Steel Ijmuiden B.V. Steel for hot forming
JP6167814B2 (en) * 2013-09-30 2017-07-26 マツダ株式会社 Automatic transmission
DE102014000969A1 (en) * 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motor vehicle component
DE102014101159B4 (en) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Process for the surface treatment of workpieces
CN106715745A (en) * 2014-03-28 2017-05-24 塔塔钢铁艾默伊登有限责任公司 Method for hot forming a coated steel blank
JP6260411B2 (en) * 2014-03-31 2018-01-17 新日鐵住金株式会社 Slow cooling steel
JP5825413B1 (en) * 2014-04-23 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed product
WO2016046593A1 (en) 2014-09-22 2016-03-31 Arcelormittal Reinforcement element for a vehicle, method for producing the same and door assembly
JP6152836B2 (en) * 2014-09-25 2017-06-28 Jfeスチール株式会社 Manufacturing method of hot press-formed product
JP6056826B2 (en) * 2014-09-30 2017-01-11 Jfeスチール株式会社 Manufacturing method of hot press-formed product
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (en) * 2014-12-12 2017-08-09 Jfeスチール株式会社 Manufacturing method of hot press-formed product
CN105772584B (en) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 Improve the thermoforming process and molding machine of forming parts performance
CN104668326B (en) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
EP3067129A1 (en) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Press systems and methods
ES2725470T3 (en) 2015-03-09 2019-09-24 Autotech Eng Sl Pressing systems and procedures
CN107922988B (en) * 2015-05-29 2019-12-17 奥钢联钢铁有限责任公司 Method for non-contact cooling of steel sheet and apparatus therefor
WO2016193268A1 (en) * 2015-06-03 2016-12-08 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardenening of components
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
DE102016114658B4 (en) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Process for forming and hardening steel materials
CN106334875A (en) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 Steel welding component with aluminum or aluminum alloy coating and manufacturing method thereof
CN106424280B (en) * 2016-11-30 2017-09-29 华中科技大学 A kind of high-strength steel hot forming differentiation mechanical property distribution flexible control method
DE102017115755A1 (en) * 2017-07-13 2019-01-17 Schwartz Gmbh Method and device for heat treatment of a metallic component
EP3437750A1 (en) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Press method for coated steels
DE102017131247A1 (en) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
DE102017131253A1 (en) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
CN112513310A (en) 2018-05-24 2021-03-16 通用汽车环球科技运作有限责任公司 Method for improving strength and ductility of press-hardened steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109433960A (en) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system
EP3712292B1 (en) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
PT4045205T (en) * 2019-10-14 2023-06-01 Autotech Eng Sl Press systems and methods
EP3872230A1 (en) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
WO2021215418A1 (en) * 2020-04-20 2021-10-28 日本製鉄株式会社 Method for manufacturing hot-press-formed article, and hot-press-formed article
CN111822571A (en) * 2020-07-12 2020-10-27 首钢集团有限公司 Hot stamping method capable of customizing organization performance subareas of parts
KR102553226B1 (en) * 2020-12-21 2023-07-07 주식회사 포스코 Electro-magnetic Test Device
CN113182374A (en) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 Thermal forming method of high-strength structural member
DE102021122383A1 (en) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Process for the production of a hot-formed and press-hardened sheet steel component
WO2023074114A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (en) * 1991-11-04 1994-03-04 Isoform DEVICE FOR STAMPING SHEET MATERIALS, PARTICULARLY SHEET SHEET.
DE19838332A1 (en) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Quality monitoring of galvannealed coating of steel strip involves determining the visual appearance of the coating as a variable relevant to its quality and using it for controlling the annealing furnace
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
WO2003035922A1 (en) 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Method for press working, plated steel product for use therein and method for producing the steel product
JP4085876B2 (en) * 2003-04-23 2008-05-14 住友金属工業株式会社 Hot press-formed product and method for producing the same
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
AT412403B (en) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
WO2005021822A1 (en) * 2003-07-29 2005-03-10 Voestalpine Stahl Gmbh Method for producing a hardened steel part
CN100355928C (en) * 2003-09-29 2007-12-19 杰富意钢铁株式会社 Steel parts for machine structure, material therefor, and method for manufacture thereof
JP2005177805A (en) * 2003-12-19 2005-07-07 Nippon Steel Corp Hot press forming method
JP4131715B2 (en) * 2004-05-18 2008-08-13 トピー工業株式会社 Method and apparatus for partial heat treatment of heat treatment member
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP4329639B2 (en) * 2004-07-23 2009-09-09 住友金属工業株式会社 Steel plate for heat treatment with excellent liquid metal brittleness resistance
DE102005003551B4 (en) 2005-01-26 2015-01-22 Volkswagen Ag Method for hot forming and hardening a steel sheet
JP2007016296A (en) * 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
JP4733522B2 (en) * 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4681492B2 (en) 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
JP5092523B2 (en) * 2007-04-20 2012-12-05 新日本製鐵株式会社 Manufacturing method of high-strength parts and high-strength parts
ES2678072T3 (en) * 2007-06-15 2018-08-08 Nippon Steel & Sumitomo Metal Corporation Method for the manufacture of shaped articles
JP2009061473A (en) 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP4890416B2 (en) 2007-10-18 2012-03-07 アイシン高丘株式会社 Press working apparatus and press working method in die quench method
WO2010069588A1 (en) * 2008-12-19 2010-06-24 Corus Staal Bv Method for manufacturing a coated part using hot forming techniques
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009015013B4 (en) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Process for producing partially hardened steel components
DE102009017326A1 (en) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Process for producing press-hardened components
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
KR101171450B1 (en) * 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
JP5740099B2 (en) * 2010-04-23 2015-06-24 東プレ株式会社 Manufacturing method of hot press products

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103392014B (en) 2016-01-27
US20140020795A1 (en) 2014-01-23
KR101582922B1 (en) 2016-01-07
HUE054465T2 (en) 2021-09-28
CN103392014A (en) 2013-11-13
EP2655672A2 (en) 2013-10-30
CN103547686B (en) 2016-11-23
ES2858225T3 (en) 2021-09-29
WO2012085247A3 (en) 2012-08-16
WO2012085256A3 (en) 2012-08-16
US20140027026A1 (en) 2014-01-30
HUE054867T2 (en) 2021-10-28
EP2656187B1 (en) 2020-09-09
CN103384726A (en) 2013-11-06
KR20130132566A (en) 2013-12-04
CN103415630A (en) 2013-11-27
EP2655672B1 (en) 2020-12-16
WO2012085247A2 (en) 2012-06-28
WO2012085253A3 (en) 2012-08-16
US10640838B2 (en) 2020-05-05
EP2655673A2 (en) 2013-10-30
ES2829950T8 (en) 2021-06-10
HUE052381T2 (en) 2021-04-28
ES2851176T3 (en) 2021-09-03
CN103384726B (en) 2016-11-23
ES2858225T8 (en) 2022-01-05
HUE055049T2 (en) 2021-10-28
HUE053150T2 (en) 2021-06-28
EP2655674A2 (en) 2013-10-30
ES2848159T3 (en) 2021-08-05
WO2012085248A2 (en) 2012-06-28
EP2656187A2 (en) 2013-10-30
JP5727037B2 (en) 2015-06-03
KR20130126962A (en) 2013-11-21
WO2012085251A2 (en) 2012-06-28
WO2012085253A2 (en) 2012-06-28
ES2829950T3 (en) 2021-06-02
JP2014505791A (en) 2014-03-06
CN103547687A (en) 2014-01-29
EP2655673B1 (en) 2021-02-03
WO2012085251A3 (en) 2012-08-16
WO2012085256A2 (en) 2012-06-28
WO2012085248A3 (en) 2012-08-16
EP2655675A2 (en) 2013-10-30
CN103415630B (en) 2015-09-23
EP2655675B1 (en) 2021-03-10
JP2014507556A (en) 2014-03-27
ES2853207T3 (en) 2021-09-15
KR20130132565A (en) 2013-12-04
CN103547686A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
EP2655674B1 (en) Method for forming and hardening coated steel sheets
EP2553133B1 (en) Steel, flat steel product, steel component and method for producing a steel component
EP2177641B1 (en) Steel plate having a galvanized corrosion protection layer
EP3041969B1 (en) Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening
DE102011053939B4 (en) Method for producing hardened components
EP3215656B1 (en) Method for producing an anti-corrosion coating for hardenable steel sheets and anti-corrosion layer for hardenable steel sheets
EP2848709A1 (en) Method for producing a steel component with an anti-corrosive metal coating and steel component
EP3250727B1 (en) Component made of press-form-hardened, aluminum-based coated steel sheet, and method for producing such a component
DE102010056264C5 (en) Process for producing hardened components
DE10348086A1 (en) High-strength steel component with zinc corrosion protection layer
DE102010056265C5 (en) Process for producing hardened components
EP2944710B1 (en) Method for producing a hot-formed steel component made from press-hardenable steel provided with a metallic, corrosion-protective coating
DE102009049398B3 (en) Method for producing a structural component for a motor vehicle, hot-forming board and structural component
EP2987889A1 (en) Surface finished steel sheet and method for the production thereof
EP3332048B1 (en) Method for producing a zinc-magnesium-galvannealed hot-dip coating and flat steel product provided with such a coating
EP3583239B1 (en) Method for producing steel sheets, steel sheet and use thereof
WO2021063899A1 (en) Method for producing a press-hardened sheet steel part having an aluminium-based coating, initial sheet metal blank, and a press-hardened sheet steel part made therefrom
DE102020204356A1 (en) Hardened sheet metal component, produced by hot forming a flat steel product and process for its production
DE102015122453B4 (en) Process for producing a fine-grained surface layer in a flat steel product and flat steel product with a fine-grained surface layer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130723

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: RABLER, GERALD

Inventor name: SOMMER, ANDREAS

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: SCHWINGHAMMER, HARALD

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RABLER, GERALD

Inventor name: KOLNBERGER, SIEGFRIED

Inventor name: SCHWINGHAMMER, HARALD

Inventor name: SOMMER, ANDREAS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20171023

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VOESTALPINE STAHL GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200716

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20201105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1359712

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017052

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI AND CIE SA, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210504

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2851176

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210903

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054465

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017052

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221227

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230102

Year of fee payment: 12

Ref country code: CH

Payment date: 20230109

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221228

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231211

Year of fee payment: 13

Ref country code: SE

Payment date: 20231227

Year of fee payment: 13

Ref country code: NL

Payment date: 20231226

Year of fee payment: 13

Ref country code: HU

Payment date: 20231212

Year of fee payment: 13

Ref country code: FR

Payment date: 20231227

Year of fee payment: 13

Ref country code: CZ

Payment date: 20231207

Year of fee payment: 13

Ref country code: AT

Payment date: 20231204

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231227

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240102

Year of fee payment: 13