ES2851176T3 - Method for forming and hardening coated steel sheets - Google Patents

Method for forming and hardening coated steel sheets Download PDF

Info

Publication number
ES2851176T3
ES2851176T3 ES11808645T ES11808645T ES2851176T3 ES 2851176 T3 ES2851176 T3 ES 2851176T3 ES 11808645 T ES11808645 T ES 11808645T ES 11808645 T ES11808645 T ES 11808645T ES 2851176 T3 ES2851176 T3 ES 2851176T3
Authority
ES
Spain
Prior art keywords
temperature
zinc
forming
plate
forming tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11808645T
Other languages
Spanish (es)
Inventor
Andreas Sommer
Siegfried Kolnberger
Gerald Rabler
Harald Schwinghammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Voestalpine Stahl GmbH
Original Assignee
Voestalpine Stahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102010056265.3A external-priority patent/DE102010056265C5/en
Priority claimed from DE102010056264.5A external-priority patent/DE102010056264C5/en
Priority claimed from DE102011053941.7A external-priority patent/DE102011053941B4/en
Priority claimed from DE102011053939.5A external-priority patent/DE102011053939B4/en
Application filed by Voestalpine Stahl GmbH filed Critical Voestalpine Stahl GmbH
Application granted granted Critical
Publication of ES2851176T3 publication Critical patent/ES2851176T3/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Abstract

Método para conformar y endurecer chapas de acero recubiertas, en donde se estampa una pletina de una chapa recubierta de zinc o aleación de zinc, la pletina estampada se calienta a una temperatura >=Ac3 y se mantiene opcionalmente a esta temperatura durante un tiempo predeterminado para llevar a cabo la formación de austenita y a continuación la pletina calentada se transfiere a una herramienta de conformación, se conforma en la herramienta de conformación y se enfría en la herramienta de conformación a una velocidad que está por encima de la velocidad crítica de endurecimiento y de esta manera se endurece, caracterizado por que, para evitar la adherencia de zinc a la herramienta de conformación, el material de acero se ajusta con un retardo de conversión de tal manera que se lleva a cabo la conformación a una temperatura de conformación que está en el intervalo de 500 °C a 800 °C y por debajo de la temperatura peritéctica del diagrama de zinc-hierro, y por que la pletina se calienta en un horno a una temperatura >Ac3 y se mantiene durante un tiempo predeterminado y a continuación la pletina se deja enfriar a una temperatura de entre 600 °C y 800 °C y se mantiene a esta temperatura con el fin de lograr la solidificación de la capa de zinc y, después de un tiempo de permanencia predeterminado, se transfiere a la herramienta de conformación y allí se conforma desde 500 °C a 800 °C, utilizándose un material de acero con el siguiente análisis (todos los datos en % en masa): Carbono (C) 0,08-0,6 Manganeso (Mn) 0,8-3,0 Aluminio (Al) 0,01-0,07 Silicio (Si) 0,01-0,5 Cromo (Cr) 0,02-0,6 Titanio (Ti) 0,01-0,05 Nitrógeno (N) 0,003-0,1 Boro (B) 0,001-0,06 Fósforo (P) < 0,01 Azufre (S) < 0,01 Molibdeno (Mo) < 1 siendo el resto hierro e impurezas producidas por la fundición.Method for forming and hardening coated steel sheets, where a plate of a zinc or zinc alloy coated plate is stamped, the stamped plate is heated to a temperature> = Ac3 and optionally kept at this temperature for a predetermined time to carry out austenite formation and then the heated strip is transferred to a forming tool, shaped in the forming tool, and cooled in the forming tool at a rate that is above the critical rate of hardening and This way is hardened, characterized in that, to avoid adhesion of zinc to the forming tool, the steel material is set with a conversion delay in such a way that the forming is carried out at a forming temperature that is in the range from 500 ° C to 800 ° C and below the peritectic temperature of the zinc-iron diagram, and why the plate heats up in an oven at a temperature> Ac3 and is kept for a predetermined time and then the plate is allowed to cool to a temperature between 600 ° C and 800 ° C and is kept at this temperature in order to achieve the solidification of the layer of zinc and, after a predetermined residence time, it is transferred to the forming tool and there it is formed from 500 ° C to 800 ° C, using a steel material with the following analysis (all data in% by mass) : Carbon (C) 0.08-0.6 Manganese (Mn) 0.8-3.0 Aluminum (Al) 0.01-0.07 Silicon (Si) 0.01-0.5 Chromium (Cr) 0 .02-0.6 Titanium (Ti) 0.01-0.05 Nitrogen (N) 0.003-0.1 Boron (B) 0.001-0.06 Phosphorus (P) <0.01 Sulfur (S) <0, 01 Molybdenum (Mo) <1, the rest being iron and impurities produced by smelting.

Description

descripcióndescription

Método para conformar y endurecer chapas de acero recubiertasMethod for forming and hardening coated steel sheets

[0001] La invención se refiere a un método para conformar y endurecer chapas de acero recubiertas con las características de la reivindicación 1.[0001] The invention relates to a method for forming and hardening steel sheets coated with the features of claim 1.

[0002] Se sabe que los llamados componentes endurecidos por presión hechos de chapa de acero se usan en particular en automóviles. Estos componentes endurecidos por presión hechos de chapa de acero son componentes de alta resistencia que se utilizan en particular como componentes de seguridad de la zona de la carrocería. En este caso, con la utilización de estos componentes de acero de alta resistencia es posible reducir el espesor del material frente a un acero de resistencia normal y, por lo tanto, lograr pesos de carrocería bajos.[0002] So-called pressure-hardened components made of sheet steel are known to be used in particular in automobiles. These pressure-hardened components made of sheet steel are high-strength components that are used in particular as safety components in the body area. In this case, with the use of these high-strength steel components it is possible to reduce the thickness of the material compared to normal strength steel and thus achieve low body weights.

[0003] En el endurecimiento por presión hay básicamente dos posibilidades diferentes para fabricar componentes de este tipo, distinguiéndose los llamados métodos directo e indirecto.[0003] In pressure hardening there are basically two different possibilities for manufacturing components of this type, distinguishing between the so-called direct and indirect methods.

[0004] En el método directo, una pletina de chapa de acero se calienta por encima de la llamada temperatura de austenitización y, opcionalmente, se mantiene a esta temperatura hasta que se logra un grado deseado de austenitización. A continuación, esta pletina calentada se transfiere a una herramienta de conformación y en esta herramienta de conformación, en un paso de conformación de una sola etapa, se conforma en el componente acabado y, en este caso, se enfría al mismo tiempo mediante la herramienta de conformación enfriada a una velocidad que es superior a la velocidad de endurecimiento crítica. De este modo se produce el componente endurecido.[0004] In the direct method, a sheet steel strip is heated above the so-called austenitization temperature and, optionally, is held at this temperature until a desired degree of austenitization is achieved. This heated strip is then transferred to a forming tool and in this forming tool, in a single-stage forming step, it is formed into the finished component and in this case is cooled at the same time by the tool. forming cooled at a rate that is greater than the critical hardening rate. This produces the hardened component.

[0005] En el método indirecto, en primer lugar, se conforma el componente casi por completo opcionalmente en un proceso de conformación de varias etapas. A continuación, este componente conformado se calienta también a una temperatura superior a la temperatura de austenitización y, opcionalmente, se mantiene a esta temperatura durante un tiempo deseado requerido.[0005] In the indirect method, first, the component is optionally almost completely formed in a multi-stage forming process. This shaped component is then also heated to a temperature above the austenitization temperature and optionally held at this temperature for a required desired time.

[0006] A continuación, este componente calentado, que ya tiene las dimensiones del componente o las dimensiones finales del componente, se transfiere e introduce en una herramienta de conformación, opcionalmente teniendo en cuenta la dilatación térmica del componente preformado. Después de cerrar, en particular, la herramienta enfriada, el componente preformado se enfría así solo en esta herramienta a una velocidad superior a la velocidad de endurecimiento crítica y, de este modo, se endurece.[0006] This heated component, which already has the component dimensions or the final component dimensions, is then transferred and introduced into a shaping tool, optionally taking into account the thermal expansion of the preformed component. After closing, in particular, the cooled tool, the preformed component is thus cooled only in this tool at a rate higher than the critical hardening rate and thus hardens.

[0007] En este caso, el método directo es algo más fácil de realizar, sin embargo, solo permite formas que pueden realizarse de hecho con un solo paso de conformación, es decir, formas de perfil relativamente sencillas.[0007] In this case, the direct method is somewhat easier to perform, however, it only allows shapes that can be made in fact with a single shaping step, that is, relatively simple profile shapes.

[0008] El método indirecto es algo más complicado, pero es capaz de realizar formas más complejas.[0008] The indirect method is somewhat more complicated, but it is capable of performing more complex shapes.

[0009] Además de la demanda de componentes endurecidos por presión, surgió la demanda de no producir componentes de este tipo de chapa de acero sin recubrir, sino de ponerles un recubrimiento de protección contra la corrosión.[0009] In addition to the demand for pressure-hardened components, there was a demand not to produce components of this type of uncoated steel sheet, but to put a corrosion protection coating on them.

[0010] Como recubrimiento de protección contra la corrosión en la industria del automóvil se considera solo el aluminio o las aleaciones de aluminio utilizados en pequeña medida, o Ios recubrimientos a base de zinc, solicitados más frecuentemente. En este caso, el zinc tiene la ventaja de que no solo forma un recubrimiento de barrera de protección, como el aluminio, sino también una protección contra la corrosión catódica. Además, Ios componentes recubiertos de zinc endurecidos por presión se ajustan mejor al concepto de protección total contra la corrosión de las carrocerías para vehículos, ya que estas se galvanizan completamente en el método de construcción común actual. En este sentido, se puede reducir o eliminar la corrosión por contacto.[0010] As a coating for protection against corrosion in the automobile industry, only aluminum or aluminum alloys used to a small extent, or zinc-based coatings, which are most frequently requested, are considered. In this case, zinc has the advantage that it not only forms a protective barrier coating, like aluminum, but also a protection against cathodic corrosion. In addition, the pressure-hardened zinc-coated components are better suited to the concept of total corrosion protection of vehicle bodies, as they are fully galvanized in the current common construction method. In this sense, contact corrosion can be reduced or eliminated.

[0011] En el proceso directo, es decir, la conformación en caliente de aceros que se endurecen por presión con recubrimiento de zinc, las herramientas de conformación se ensucian considerablemente. Esto aparentemente se produce no sólo por la abrasión, sino mucho más en la sublimación de Ios vapores de zinc que se evaporan de las fases líquidas de zinc durante la conformación. Las consecuencias de la acumulación de zinc que se forma en la herramienta de conformado van desde daños superficiales al componente conformado en caliente en forma de estrías hasta las paradas de la planta debido a que Ios componentes queden atascados en la herramienta de conformado o al riesgo de rotura de la herramienta debido al prensado de dos piezas si Ios componentes atascados no se detectan a tiempo. La eliminación regular requerida de la acumulación de zinc reduce la productividad de la planta de conformado en caliente debido a la parada requerida de la producción. [0011] In the direct process, ie hot forming of zinc coated pressure hardened steels, the forming tools become considerably dirty. This apparently occurs not only by abrasion, but much more in the sublimation of the zinc vapors that evaporate from the liquid zinc phases during shaping. The consequences of zinc build-up that forms on the forming tool range from surface damage to the hot-formed component in the form of grooves to plant shutdowns due to the components getting stuck in the forming tool or risk of tool breakage due to the pressing of two pieces if I stuck components will not detected early. The required regular removal of zinc build-up reduces the productivity of the hot forming plant due to the required shutdown of production.

[0012] En el método directo, es decir, en la conformación en caliente, Ios aceros recubiertos de zinc no se usaban hasta ahora, menos un componente en la región de Asia. Aquí se usan más bien aceros con un recubrimiento de aluminio y silicio.[0012] In the direct method, that is, in hot forming, zinc-coated steels have not been used until now, except for one component in the Asian region. Rather steels with an aluminum and silicon coating are used here.

[0013] Se puede encontrar una descripción general en la publicación "Corrosión resistance of different metallic coatings on press hardened steels for automotive", de Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. En esta publicación se indica que hay un aceró al manganeso-boro aluminizado para el proceso de conformación en caliente, comercializado bajo el nombre de Usibor 1500P. Además, con el propósito de proteger contra la corrosión catódica, se venden aceros previamente recubiertos en zinc para el proceso de conformado en caliente, a saber, el Usibor Gl galvanizado con un recubrimiento de zinc, que contiene pequeñas cantidades de aluminio, y un llamado Usibor GA galvanizado recubierto, que tiene una capa de zinc con un lO % de hierro.[0013] A general description can be found in the publication "Corrosion resistance of different metallic coatings on press hardened steels for automotive", by Arcelor Mittal Maiziere Automotive Product Research Center F-57283 Maiziere-Les-Mez. This publication indicates that there is an aluminized manganese-boron steel for the hot forming process, marketed under the name Usibor 1500P. In addition, for the purpose of protecting against cathodic corrosion, pre-zinc coated steels are sold for the hot forming process, namely the zinc coated Usibor Gl, which contains small amounts of aluminum, and a so-called Galvanized coated Usibor GA, which has a zinc coating with 10% iron.

[0014] De EP 1439 24O B1 se conoce un método para la conformación en caliente de un producto de aceró recubierto, en dónde el material de aceró tiene un recubrimiento de zinc o aleación de zinc que se forma en la superficie del material de aceró y el material de base de aceró con el recubrimiento se calienta a una temperatura de 7OO °C a 1OOO°C y se conforma en caliente, en dónde el recubrimiento tiene una capa de óxido, que contiene principalmente óxido de zinc, antes de que el material de base de aceró con la capa de zinc o aleación de zinc se caliente para evitar una evaporación del zinc durante el calentamiento. Para ello se ha previsto un desarrollo del método especial.[0014] From EP 1439 24O B1 a method for hot forming of a coated steel product is known, wherein the steel material has a zinc or zinc alloy coating which is formed on the surface of the steel material and the steel base material with the coating is heated to a temperature of 7OO ° C to 1OOO ° C and hot formed, where the coating has an oxide layer, which mainly contains zinc oxide, before the material The steel base with the zinc or zinc alloy layer is heated to prevent evaporation of the zinc during heating. For this, a development of the special method has been foreseen.

[0015] De EP 1642 991 B1 se conoce un método para la conformación en caliente de un aceró en el que un componente de un aceró al manganeso-boro se calienta a una temperatura en el punto Ac3 o mayor, se mantiene a esta temperatura y luego la chapa de aceró calentada se conforma al componente acabado, en dónde el componente conformado, mediante el enfriamiento de la temperatura de conformación durante la conformación o después de la conformación, se enfría bruscamente de tal manera que la velocidad de enfriamiento en el punto MS al menos corresponda a la velocidad de enfriamiento crítica y que la velocidad media de enfriamiento del componente conformado desde el punto MS a 2OO °C se encuentre en el intervalo de 25 °C/s a 15O °C/s. También JP 2OO71826O8 describe un proceso para la conformación en caliente de aceros recubiertos de boro-manganeso.[0015] From EP 1642 991 B1 a method is known for the hot forming of a steel in which a component of a manganese-boron steel is heated to a temperature at point A c3 or higher, it is kept at this temperature and then the heated steel plate is shaped to the finished component, wherein the shaped component, by cooling the forming temperature during forming or after forming, is abruptly cooled in such a way that the cooling rate at the point MS at least corresponds to the critical cooling rate and that the average cooling rate of the shaped component from the MS point at 200 ° C is in the range of 25 ° C / s to 15O ° C / s . Also JP 2OO71826O8 describes a process for hot forming boron-manganese coated steels.

[0016] La tarea de la invención es proporcionar un método para conformar y endurecer chapas de aceró recubiertas de metal, en el que la suciedad de las herramientas se reduzca a lo inevitable debido a la abrasión.The object of the invention is to provide a method for forming and hardening metal-coated steel sheets, in which the dirt on the tools is reduced to the inevitable due to abrasion.

[0017] La tarea se logra con las características de la reivindicación 1. Se señalan desarrollos ventajosos en reivindicaciones dependientes.The task is achieved with the features of claim 1. Advantageous developments are pointed out in dependent claims.

[0018] Los inventores han reconocido que las adherencias metálicas tales como adherencias de Zn a herramientas de conformado en caliente que van más allá del nivel de abrasión inevitable perjudican en gran medida la productividad en el proceso directo. Los inventores suponen que la causa probable sea principalmente la evaporación de fases metálicas líquidas, tales como fases de Zn en la conformación en caliente de aceros con recubrimiento de zinc.[0018] L os inventors have recognized that metal such as adhesions adhesions Zn hot forming tools that go beyond the level of abrasion inevitably greatly harm productivity in the direct process. The inventors assume that the probable cause is mainly the evaporation of liquid metal phases, such as Zn phases in hot forming of zinc coated steels.

[0019] Por ello se prevé, según la invención, llevar a cabo la conformación en caliente de aceros con recubrimiento de zinc por debajo de la temperatura peritéctica del sistema de hierro-zinc (fusión, ferrita, fase gamma). Con el fin de poder garantizar aquí el endurecimiento por temple, la composición de la aleación de aceró se ajusta al marcó de la composición habitual de aceró al magnesio-boro (22 MnB5) de tal manera que el endurecimiento por temple se lleva a cabo mediante una conversión retardada de la austenita en martensita y, con ello, la presencia de austenita también a la temperatura más baja por debajo de 8OO °C o menos, de modo que, en el momento en que se conforma el acero, no hay fases líquidas de zinc de las que se pueda evaporar zinc que pueda condensarse en las herramientas.For this reason it is envisaged, according to the invention, to carry out the hot forming of zinc-coated steels below the peritectic temperature of the iron-zinc system (melt, ferrite, gamma phase). In order to be able to guarantee the hardening by tempering here, the composition of the steel alloy conforms to the marking of the usual composition of steel to magnesium-boron (22 MnB5) in such a way that the hardening by tempering is carried out by a delayed conversion of austenite to martensite and thus the presence of austenite also at the lowest temperature below 8OO ° C or less, so that, at the time the steel is formed, there are no liquid phases zinc that can evaporate zinc that can condense on tools.

[0020] La temperatura de conformación deseada está entre 45O °C y 8OO °C, preferiblemente entre 45O °C y 7OO °C y más preferiblemente entre 45O °C y 6OO °C.The desired forming temperature is between 45O ° C and 8OO ° C, preferably between 45O ° C and 7OO ° C and more preferably between 45O ° C and 6OO ° C.

[0021] La invención se explica mediante un dibujó. En este muestran:The invention is explained by means of a drawing. In this they show:

Figura 1: de forma muy esquemática, un montaje experimental;Figure 1: very schematically, an experimental setup;

Figura 2: de forma esquemática, el potencial de adherencia de un recubrimiento metálico, de por ejemplo zinc, a la herramienta;Figure 2: schematically, the potential for adhesion of a metallic coating, of for example zinc, to the tool;

Figura 3: imágenes que muestran la herramienta en tres ensayos de conformado consecutivos que se realizaron sin enfriamiento intermedio;Figure 3: images showing the tool in three consecutive forming tests that were carried out without intermediate cooling;

Figura 4: imágenes que muestran la herramienta en tres ensayos de conformado consecutivos que se realizaron con enfriamiento intermedio según la invención antes de la conformación; Figure 4: images showing the tool in three consecutive forming tests that were carried out with intermediate cooling according to the invention before forming;

Figura 5: una imagen que muestra la herramienta después de Ios ensayos sin y con enfriamiento intermedio según la invención y la herramienta en el estado inicial limpio.Figure 5: an image showing the tool after the tests without and with intermediate cooling according to the invention and the tool in the initial clean state.

[0022] Según la invención, un acero al manganeso-boro convencional para su uso como material de acero que se endurece por presión se ajusta con respecto a la transformación de la austenita en otras fases de tal manera que la transformación se desplaza a áreas más profundas.According to the invention, a conventional manganese boron steel for use as a pressure hardening steel material is adjusted with respect to the transformation of austenite into other phases in such a way that the transformation is shifted to more areas. deep.

[0023] Por lo tanto, Ios aceros de esta composición de aleación generalmente son adecuados para la invención (todos Ios datos en % en masa):[0023] Therefore, I will steels of this alloy composition are generally suitable for the invention (all os I data in mass%):

C [%] Si [%] Mn [%] p [%] s [%] Al [%] Cr [%] Ti [%] b [%] N [%]C [%] Si [%] Mn [%] p [%] s [%] Al [%] Cr [%] Ti [%] b [%] N [%]

0,22 0,19 1,22 0,0066 0,001 0,053 0,26 0,031 0,0025 0,00420.22 0.19 1.22 0.0066 0.001 0.053 0.26 0.031 0.0025 0.0042

siendo el resto hierro e impurezas producidas por la fundición, en donde en particular Ios elementos de aleación boro, manganeso, carbono, y opcionalmente cromo y molibdeno, se utilizan como retardadores de conversión en aceros de este tipo.the remainder being iron and impurities produced by the foundry, where in particular the alloying elements boron, manganese, carbon, and optionally chromium and molybdenum, are used as conversion retarders in steels of this type.

[0024] Por lo tanto, Ios aceros de esta composición de aleación generalmente son adecuados para la invención (todos Ios datos en % en masa):Therefore, the steels of this alloy composition are generally suitable for the invention (all data in% by mass):

Carbono (C) 0,08-0,6Carbon (C) 0.08-0.6

Manganeso (Mn) 0,8-3,0Manganese (Mn) 0.8-3.0

Aluminio (Al) 0,01-0,07Aluminum (Al) 0.01-0.07

Silicio (Si) 0,01-0,5Silicon (Si) 0.01-0.5

Cromo (Cr) 0,02-0,6Chromium (Cr) 0.02-0.6

Titanio (Ti) 0,01-0,05Titanium (Ti) 0.01-0.05

Nitrógeno (N) 0,003-0,1Nitrogen (N) 0.003-0.1

Boro (B) 0,001-0,06Boron (B) 0.001-0.06

Fósforo (P) < 0,01Phosphorus (P) <0.01

Azufre (S) < 0,01Sulfur (S) <0.01

Molibdeno (Mo) < 1Molybdenum (Mo) <1

[0025] Siendo el resto hierro e impurezas producidas por la fundición, en particular han demostrado ser adecuadas las siguientes composiciones de acero (todos Ios datos en % en masa):The remainder being iron and impurities produced by the foundry, in particular the following steel compositions have proven to be suitable (all the data in% by mass):

Carbono (C) 0,08-0,30Carbon (C) 0.08-0.30

Manganeso (Mn) 1,00-3,00Manganese (Mn) 1.00-3.00

Aluminio (Al) 0,03-0,06Aluminum (Al) 0.03-0.06

Silicio (Si) 0,15-0,20Silicon (Si) 0.15-0.20

Cromo (Cr) 0,2-0,3Chromium (Cr) 0.2-0.3

Titanio (Ti) 0,03-0,04Titanium (Ti) 0.03-0.04

Nitrógeno (N) 0,004-0,006Nitrogen (N) 0.004-0.006

Boro (B) 0,001-0,06Boron (B) 0.001-0.06

Fósforo (P) < 0,01Phosphorus (P) <0.01

Azufre (S) < 0,01Sulfur (S) <0.01

Molibdeno (Mo) < 1Molybdenum (Mo) <1

siendo el resto hierro e impurezas producidas por la fundición.the rest being iron and impurities produced by the foundry.

[0026] Al ajustar Ios elementos de aleación que actúan como retardadores de conversión, el endurecimiento por temple, es decir, un enfriamiento rápido a una velocidad de enfriamiento que es superior a la velocidad de endurecimiento crítica, se logra de forma fiable incluso por debajo de 780 °C. Esto significa que, en este caso, se trabaja por debajo del punto peritéctico del sistema de zinc-hierro, es decir, solo se conforma por debajo del punto peritéctico. Además, esto significa que en el momento en que la chapa que conformar entra en contacto con la herramienta, ya no hay fases líquidas de zinc que puedan condensarse en la superficie de la herramienta. [0026] By adjusting the alloying elements that act as conversion retarders, quench hardening, that is, rapid cooling at a cooling rate that is higher than the critical hardening rate, is reliably achieved even below 780 ° C. This means that, in this case, it is worked below the peritectic point of the zinc-iron system, that is, it is only formed below the peritectic point. Furthermore, this means that by the time the sheet to be formed comes into contact with the tool, there are no longer any liquid zinc phases that can condense on the surface of the tool.

[0027] En la Figura 1 se aprecia el montaje experimental. La chapa de acero utilizada es una chapa de acero de 1,5 mm de espesor hecha de una aleación descrita anteriormente que está recubierta con una capa de Z140. La temperatura del horno para calentar y austenitizar la chapa es de aproximadamente 910°C. El tiempo de permanencia de las chapas en el horno se ajusta de tal manera que las chapas alcancen una temperatura de 870 °C y luego se mantengan durante 45 segundos. Para los ensayos, o bien las chapas se introdujeron en la herramienta de conformación y se conformaron allí, o bien después del calentamiento se extrajeron del horno, se llevaron a una estación de enfriamiento intermedio y, después del enfriamiento, se transfirieron lo más rápidamente posible a la herramienta y allí se conformaron y se endurecieron por temple. En este caso, el enfriamiento intermedio se lleva a cabo de tal manera que se obtiene una temperatura de conformación de entre 450 °C y 800 °C, preferiblemente de entre 450 °C y 700 °C y más preferiblemente de entre 450 °C y 600 °C.[0027] Figure 1 shows the experimental setup. The steel sheet used is a 1.5mm thick steel sheet made from an alloy described above that is coated with a layer of Z140. The oven temperature for heating and austenitizing the sheet is approximately 910 ° C. The residence time of the sheets in the furnace is set so that the sheets reach a temperature of 870 ° C and are then held for 45 seconds. For assays, or sheets introduced into the forming tool and formed there, or after heating were extracted from the oven, they were brought to a station intermediate cooling and after cooling, were transferred as quickly as possible to the tool and there they were shaped and hardened by tempering. In this case, the intermediate cooling is carried out in such a way that a forming temperature of between 450 ° C and 800 ° C is obtained, preferably between 450 ° C and 700 ° C and more preferably between 450 ° C and 600 ° C.

[0028] En la Figura 2 se aprecia de forma esquemática el potencial de adherencia de un recubrimiento metálico a la herramienta de por ejemplo zinc. También se aplica correspondientemente a otros recubrimientos metálicos. En los puntos de inflexión se aprecia los intervalos de temperatura en los que las fases líquidas se convierten en fases sólidas y por debajo de los cuales se produce una conformación con menos adherencias.[0028] Figure 2 shows a schematic view of the potential for adherence of a metallic coating to the tool of, for example, zinc. It also applies correspondingly to other metallic coatings. At the inflection points, the temperature ranges in which the liquid phases become solid phases and below which a conformation with less adhesion occurs.

[0029] La Figura 3 muestra la suciedad claramente visible de la herramienta durante una conformación sin enfriamiento intermedio. Ya después de tres etapas de conformado, el grado de suciedad es tan alto que es previsible un deterioro de la calidad de la superficie de los componentes de acero endurecido durante los pasos de conformado siguientes. En este caso, las partes de zinc que se adhieren a la herramienta primero por evaporación y luego adherencia y soldadura pueden arrancar partes de la capa de zinc de los componentes posteriores mediante soldadura, lo que afecta negativamente a la protección contra la corrosión. Por el contrario, las partes de zinc que se adhieren a la herramienta se pueden transferir al componente de acero de la misma manera e interfieren en la calidad de la superficie y la facilidad del pintado del componente.[0029] Figure 3 shows clearly visible dirt on the tool during shaping without intermediate cooling. Already after three forming stages, the degree of soiling is so high that a deterioration of the surface quality of hardened steel components is expected during subsequent forming steps. In this case, the zinc parts that adhere to the tool first by evaporation and then by adhering and welding can strip parts of the zinc layer from the subsequent components by welding, which negatively affects the corrosion protection. In contrast, the zinc parts that adhere to the tool can be transferred to the steel component in the same way and interfere with the surface quality and ease of painting of the component.

[0030] En cambio, en las Figuras 4 y 5 se aprecia que la herramienta permanece sustancialmente sin estar influenciada excepto por una mínima abrasión de zinc en la herramienta absolutamente insignificante y no perjudicial.[0030] On the other hand, in Figures 4 and 5 it is seen that the tool remains substantially uninfluenced except for a minimal abrasion of zinc on the tool which is absolutely insignificant and not harmful.

[0031] Además, después del calentamiento de la pletina, se puede proporcionar según la invención una fase de permanencia en el intervalo de temperatura del punto peritéctico, de modo que se favorezca y mejore la solidificación del recubrimiento de zinc antes de su conformación.[0031] Furthermore, after heating the plate, according to the invention a phase of permanence in the temperature range of the peritectic point can be provided, so as to promote and improve the solidification of the zinc coating before its shaping.

[0032] Por lo tanto, con la invención se llega a conseguir de manera fiable un método de conformación en caliente rentable para chapas de acero con recubrimientos metálicos tales como zinc o aleaciones de zinc o aluminio o aleaciones de aluminio en las que, por un lado, se produce un endurecimiento por temple y, por otro lado, se reduce o evita adherencias en la herramienta. [0032] Therefore, the invention is reached achieve reliably a method of forming profitable hot steel plates with metallic coatings such as zinc or zinc alloys , aluminum or aluminum alloys in which, for On the other hand, a hardening by tempering occurs and, on the other hand, adhesions on the tool are reduced or avoided.

Claims (3)

reivindicaciones claims 1. Método para conformar y endurecer chapas de acero recubiertas, en donde se estampa una pletina de una chapa recubierta de zinc o aleación de zinc, la pletina estampada se calienta a una temperatura >Ac3 y se mantiene opcionalmente a esta temperatura durante un tiempo predeterminado para llevar a cabo la formación de austenita y a continuación la pletina calentada se transfiere a una herramienta de conformación, se conforma en la herramienta de conformación y se enfría en la herramienta de conformación a una velocidad que está por encima de la velocidad crítica de endurecimiento y de esta manera se endurece, caracterizado por que, para evitar la adherencia de zinc a la herramienta de conformación, el material de acero se ajusta con un retardo de conversión de tal manera que se lleva a cabo la conformación a una temperatura de conformación que está en el intervalo de 500 °C a 800 °C y por debajo de la temperatura peritéctica del diagrama de zinc-hierro, y por que la pletina se calienta en un horno a una temperatura >Ac3 y se mantiene durante un tiempo predeterminado y a continuación la pletina se deja enfriar a una temperatura de entre 600 °C y 800 °C y se mantiene a esta temperatura con el fin de lograr la solidificación de la capa de zinc y, después de un tiempo de permanencia predeterminado, se transfiere a la herramienta de conformación y allí se conforma desde 500 °C a 800 °C, utilizándose un material de acero con el siguiente análisis (todos los datos en % en masa):1. Method for forming and hardening coated steel sheets, where a plate of a zinc or zinc alloy coated plate is stamped, the stamped plate is heated to a temperature> Ac 3 and optionally kept at this temperature for a time predetermined to carry out austenite formation and then the heated strip is transferred to a forming tool, formed in the forming tool and cooled in the forming tool at a rate that is above the critical rate of hardening and thus hardened, characterized in that, to avoid adhesion of zinc to the forming tool, the steel material is set with a conversion delay in such a way that the forming is carried out at a forming temperature that is in the range of 500 ° C to 800 ° C and below the peritectic temperature of the zinc-iron diagram, and because the plate is heated a in an oven at a temperature> Ac 3 and is kept for a predetermined time and then the plate is allowed to cool to a temperature between 600 ° C and 800 ° C and is kept at this temperature in order to achieve the solidification of the zinc layer and, after a predetermined residence time, it is transferred to the forming tool and there it is formed from 500 ° C to 800 ° C, using a steel material with the following analysis (all data in% in mass): Carbono (C) 0,08-0,6Carbon (C) 0.08-0.6 Manganeso (Mn) 0,8-3,0Manganese (Mn) 0.8-3.0 Aluminio (Al) 0,01-0,07Aluminum (Al) 0.01-0.07 Silicio (Sí) 0,01-0,5Silicon (S t) 0.01-0.5 Cromo (Cr) 0,02-0,6Chromium (Cr) 0.02-0.6 Titanio (Tí) 0,01-0,05Titanium ( Ti ) 0.01-0.05 Nitrógeno (N) 0,003-0,1Nitrogen (N) 0.003-0.1 Boro (B) 0,001-0,06Boron (B) 0.001-0.06 Fósforo (P) < 0,01Phosphorus (P) <0.01 Azufre (S) < 0,01Sulfur (S) <0.01 Molibdeno (Mo) < 1Molybdenum (M o ) <1 siendo el resto hierro e impurezas producidas por la fundición.the rest being iron and impurities produced by the foundry. 2. Método según la reivindicación 1 caracterizado por que el material de acero contiene los elementos boro, manganeso y carbono, y opcionalmente cromo y molibdeno, como retardadores de conversión.2. Method according to claim 1 characterized in that the steel material contains the elements boron, manganese and carbon, and optionally chromium and molybdenum, as conversion retarders. 3. Método según la reivindicación 1 o 2 caracterizado por que se utiliza un material de acero con el siguiente análisis (todos los datos en % en masa):3. Method according to claim 1 or 2 characterized in that a steel material is used with the following analysis (all data in% by mass): Carbono (C) 0,08-0,30Carbon (C) 0.08-0.30 Manganeso (Mn) 1,00-3,00Manganese (Mn) 1.00-3.00 Aluminio (Al) 0,03-0,06Aluminum (Al) 0.03-0.06 Silicio (Sí) 0,15-0,20Silicon (Yes) 0.15-0.20 Cromo (Cr) 0,2-0,3Chromium (Cr) 0.2-0.3 Titanio (Tí) 0,03-0,04Titanium (Ti) 0.03-0.04 Nitrógeno (N) 0,004-0,006Nitrogen (N) 0.004-0.006 Boro (B) 0,001-0,06Boron (B) 0.001-0.06 Fósforo (P) < 0,01Phosphorus (P) <0.01 Azufre (S) < 0,01Sulfur (S) <0.01 Molibdeno (Mo) < 1Molybdenum (Mo) <1 siendo el resto hierro e impurezas producidas por la fundición. the rest being iron and impurities produced by the foundry.
ES11808645T 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets Active ES2851176T3 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102010056265.3A DE102010056265C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102010056264.5A DE102010056264C5 (en) 2010-12-24 2010-12-24 Process for producing hardened components
DE102011053941.7A DE102011053941B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components with regions of different hardness and / or ductility
DE102011053939.5A DE102011053939B4 (en) 2011-09-26 2011-09-26 Method for producing hardened components
PCT/EP2011/073882 WO2012085248A2 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets

Publications (1)

Publication Number Publication Date
ES2851176T3 true ES2851176T3 (en) 2021-09-03

Family

ID=45470542

Family Applications (5)

Application Number Title Priority Date Filing Date
ES11808211T Active ES2853207T3 (en) 2010-12-24 2011-12-22 Procedure for the manufacture of hardened components
ES11811026T Active ES2829950T3 (en) 2010-12-24 2011-12-22 Procedure for producing hardened components
ES11808645T Active ES2851176T3 (en) 2010-12-24 2011-12-22 Method for forming and hardening coated steel sheets
ES11811025T Active ES2858225T3 (en) 2010-12-24 2011-12-22 Procedure for producing tempered structural elements
ES11807691T Active ES2848159T3 (en) 2010-12-24 2011-12-22 Method for producing hardened components with areas of different hardness and / or ductility

Family Applications Before (2)

Application Number Title Priority Date Filing Date
ES11808211T Active ES2853207T3 (en) 2010-12-24 2011-12-22 Procedure for the manufacture of hardened components
ES11811026T Active ES2829950T3 (en) 2010-12-24 2011-12-22 Procedure for producing hardened components

Family Applications After (2)

Application Number Title Priority Date Filing Date
ES11811025T Active ES2858225T3 (en) 2010-12-24 2011-12-22 Procedure for producing tempered structural elements
ES11807691T Active ES2848159T3 (en) 2010-12-24 2011-12-22 Method for producing hardened components with areas of different hardness and / or ductility

Country Status (8)

Country Link
US (2) US10640838B2 (en)
EP (5) EP2655672B1 (en)
JP (2) JP2014507556A (en)
KR (3) KR101582922B1 (en)
CN (5) CN103415630B (en)
ES (5) ES2853207T3 (en)
HU (5) HUE052381T2 (en)
WO (5) WO2012085256A2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5808724B2 (en) * 2012-10-31 2015-11-10 アイシン高丘株式会社 Die quench apparatus and die quench method for aluminum alloy material
DE102013100682B3 (en) * 2013-01-23 2014-06-05 Voestalpine Metal Forming Gmbh A method of producing cured components and a structural component made by the method
JP5825447B2 (en) * 2013-08-29 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed member
DE102013015032A1 (en) * 2013-09-02 2015-03-05 Salzgitter Flachstahl Gmbh Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening
US20160289809A1 (en) * 2013-09-19 2016-10-06 Tata Steel Ijmuiden B.V. Steel for hot forming
JP6167814B2 (en) * 2013-09-30 2017-07-26 マツダ株式会社 Automatic transmission
DE102014000969A1 (en) * 2014-01-27 2015-07-30 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Motor vehicle component
DE102014101159B4 (en) 2014-01-30 2016-12-01 Thyssenkrupp Steel Europe Ag Process for the surface treatment of workpieces
CN106715745A (en) * 2014-03-28 2017-05-24 塔塔钢铁艾默伊登有限责任公司 Method for hot forming a coated steel blank
JP6260411B2 (en) * 2014-03-31 2018-01-17 新日鐵住金株式会社 Slow cooling steel
JP5825413B1 (en) * 2014-04-23 2015-12-02 Jfeスチール株式会社 Manufacturing method of hot press-formed product
WO2016046593A1 (en) 2014-09-22 2016-03-31 Arcelormittal Reinforcement element for a vehicle, method for producing the same and door assembly
JP6152836B2 (en) * 2014-09-25 2017-06-28 Jfeスチール株式会社 Manufacturing method of hot press-formed product
JP6056826B2 (en) * 2014-09-30 2017-01-11 Jfeスチール株式会社 Manufacturing method of hot press-formed product
DE102014114394B3 (en) * 2014-10-02 2015-11-05 Voestalpine Stahl Gmbh Method for producing a hardened steel sheet
US20160145731A1 (en) * 2014-11-26 2016-05-26 GM Global Technology Operations LLC Controlling Liquid Metal Embrittlement In Galvanized Press-Hardened Components
JP6178301B2 (en) * 2014-12-12 2017-08-09 Jfeスチール株式会社 Manufacturing method of hot press-formed product
CN105772584B (en) * 2014-12-22 2019-01-01 上海赛科利汽车模具技术应用有限公司 Improve the thermoforming process and molding machine of forming parts performance
CN104668326B (en) * 2015-03-05 2016-08-24 山东大王金泰集团有限公司 A kind of hot stamping method of high strength steel parts capability gradientization distribution
EP3067129A1 (en) 2015-03-09 2016-09-14 Autotech Engineering, A.I.E. Press systems and methods
ES2725470T3 (en) 2015-03-09 2019-09-24 Autotech Eng Sl Pressing systems and procedures
CN107922988B (en) * 2015-05-29 2019-12-17 奥钢联钢铁有限责任公司 Method for non-contact cooling of steel sheet and apparatus therefor
WO2016193268A1 (en) * 2015-06-03 2016-12-08 Salzgitter Flachstahl Gmbh Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardenening of components
WO2017017485A1 (en) 2015-07-30 2017-02-02 Arcelormittal A method for the manufacture of a phosphatable part starting from a steel sheet coated with a metallic coating based on aluminium
WO2017017483A1 (en) 2015-07-30 2017-02-02 Arcelormittal Steel sheet coated with a metallic coating based on aluminum
WO2017017484A1 (en) * 2015-07-30 2017-02-02 Arcelormittal Method for the manufacture of a hardened part which does not have lme issues
DE102016102322B4 (en) * 2016-02-10 2017-10-12 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
DE102016102324B4 (en) * 2016-02-10 2020-09-17 Voestalpine Metal Forming Gmbh Method and device for producing hardened steel components
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
DE102016114658B4 (en) * 2016-08-08 2021-10-14 Voestalpine Metal Forming Gmbh Process for forming and hardening steel materials
CN106334875A (en) * 2016-10-27 2017-01-18 宝山钢铁股份有限公司 Steel welding component with aluminum or aluminum alloy coating and manufacturing method thereof
CN106424280B (en) * 2016-11-30 2017-09-29 华中科技大学 A kind of high-strength steel hot forming differentiation mechanical property distribution flexible control method
DE102017115755A1 (en) * 2017-07-13 2019-01-17 Schwartz Gmbh Method and device for heat treatment of a metallic component
EP3437750A1 (en) * 2017-08-02 2019-02-06 Autotech Engineering A.I.E. Press method for coated steels
DE102017131247A1 (en) * 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
DE102017131253A1 (en) 2017-12-22 2019-06-27 Voestalpine Stahl Gmbh Method for producing metallic components with adapted component properties
CN112513310A (en) 2018-05-24 2021-03-16 通用汽车环球科技运作有限责任公司 Method for improving strength and ductility of press-hardened steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN109433960A (en) * 2018-09-30 2019-03-08 苏州普热斯勒先进成型技术有限公司 Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system
EP3712292B1 (en) * 2019-03-19 2023-08-02 ThyssenKrupp Steel Europe AG Component consisting of a steel substrate, an intermediate coating layer and a corrosion protection layer, as well as their process of manufacture
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
PT4045205T (en) * 2019-10-14 2023-06-01 Autotech Eng Sl Press systems and methods
EP3872230A1 (en) * 2020-02-28 2021-09-01 voestalpine Stahl GmbH Method for producing hardened steel components with a conditioned zinc alloy corrosion protection layer
WO2021215418A1 (en) * 2020-04-20 2021-10-28 日本製鉄株式会社 Method for manufacturing hot-press-formed article, and hot-press-formed article
CN111822571A (en) * 2020-07-12 2020-10-27 首钢集团有限公司 Hot stamping method capable of customizing organization performance subareas of parts
KR102553226B1 (en) * 2020-12-21 2023-07-07 주식회사 포스코 Electro-magnetic Test Device
CN113182374A (en) * 2021-04-30 2021-07-30 合肥合锻智能制造股份有限公司 Thermal forming method of high-strength structural member
DE102021122383A1 (en) 2021-08-30 2023-03-02 Audi Aktiengesellschaft Process for the production of a hot-formed and press-hardened sheet steel component
WO2023074114A1 (en) 2021-10-29 2023-05-04 Jfeスチール株式会社 Hot-pressed member

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683168B1 (en) * 1991-11-04 1994-03-04 Isoform DEVICE FOR STAMPING SHEET MATERIALS, PARTICULARLY SHEET SHEET.
DE19838332A1 (en) * 1998-08-24 2000-03-02 Schloemann Siemag Ag Quality monitoring of galvannealed coating of steel strip involves determining the visual appearance of the coating as a variable relevant to its quality and using it for controlling the annealing furnace
FR2807447B1 (en) * 2000-04-07 2002-10-11 Usinor METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET
WO2003035922A1 (en) 2001-10-23 2003-05-01 Sumitomo Metal Industries, Ltd. Method for press working, plated steel product for use therein and method for producing the steel product
JP4085876B2 (en) * 2003-04-23 2008-05-14 住友金属工業株式会社 Hot press-formed product and method for producing the same
JP4325277B2 (en) 2003-05-28 2009-09-02 住友金属工業株式会社 Hot forming method and hot forming parts
AT412403B (en) * 2003-07-29 2005-02-25 Voestalpine Stahl Gmbh Corrosion-protection layer for hardened metallic profiled structural part of motor vehicle, has roller-formed profiled elements having affinity to oxygen, and oxide skin comprising oxides of elements
WO2005021822A1 (en) * 2003-07-29 2005-03-10 Voestalpine Stahl Gmbh Method for producing a hardened steel part
CN100355928C (en) * 2003-09-29 2007-12-19 杰富意钢铁株式会社 Steel parts for machine structure, material therefor, and method for manufacture thereof
JP2005177805A (en) * 2003-12-19 2005-07-07 Nippon Steel Corp Hot press forming method
JP4131715B2 (en) * 2004-05-18 2008-08-13 トピー工業株式会社 Method and apparatus for partial heat treatment of heat treatment member
JP2006051543A (en) * 2004-07-15 2006-02-23 Nippon Steel Corp Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts
JP4329639B2 (en) * 2004-07-23 2009-09-09 住友金属工業株式会社 Steel plate for heat treatment with excellent liquid metal brittleness resistance
DE102005003551B4 (en) 2005-01-26 2015-01-22 Volkswagen Ag Method for hot forming and hardening a steel sheet
JP2007016296A (en) * 2005-07-11 2007-01-25 Nippon Steel Corp Steel sheet for press forming with excellent ductility after forming, its forming method and automotive parts using the steel sheet for press forming
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
JP4733522B2 (en) * 2006-01-06 2011-07-27 新日本製鐵株式会社 Method for producing high-strength quenched molded body with excellent corrosion resistance and fatigue resistance
JP4681492B2 (en) 2006-04-07 2011-05-11 新日本製鐵株式会社 Steel plate hot pressing method and press-formed product
DE102007013739B3 (en) * 2007-03-22 2008-09-04 Voestalpine Stahl Gmbh Flexible rolling process to manufacture sheet metal component after hot or cold dipping and further mechanical and/or chemical treatment
JP5194986B2 (en) * 2007-04-20 2013-05-08 新日鐵住金株式会社 Manufacturing method of high-strength parts and high-strength parts
JP5092523B2 (en) * 2007-04-20 2012-12-05 新日本製鐵株式会社 Manufacturing method of high-strength parts and high-strength parts
ES2678072T3 (en) * 2007-06-15 2018-08-08 Nippon Steel & Sumitomo Metal Corporation Method for the manufacture of shaped articles
JP2009061473A (en) 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP4890416B2 (en) 2007-10-18 2012-03-07 アイシン高丘株式会社 Press working apparatus and press working method in die quench method
WO2010069588A1 (en) * 2008-12-19 2010-06-24 Corus Staal Bv Method for manufacturing a coated part using hot forming techniques
JP4825882B2 (en) * 2009-02-03 2011-11-30 トヨタ自動車株式会社 High-strength quenched molded body and method for producing the same
DE102009015013B4 (en) * 2009-03-26 2011-05-12 Voestalpine Automotive Gmbh Process for producing partially hardened steel components
DE102009017326A1 (en) * 2009-04-16 2010-10-21 Benteler Automobiltechnik Gmbh Process for producing press-hardened components
DE102009051673B3 (en) * 2009-11-03 2011-04-14 Voestalpine Stahl Gmbh Production of galvannealed sheets by heat treatment of electrolytically finished sheets
KR101171450B1 (en) * 2009-12-29 2012-08-06 주식회사 포스코 Method for hot press forming of coated steel and hot press formed prodicts using the same
JP5740099B2 (en) * 2010-04-23 2015-06-24 東プレ株式会社 Manufacturing method of hot press products

Also Published As

Publication number Publication date
CN103392014B (en) 2016-01-27
US20140020795A1 (en) 2014-01-23
KR101582922B1 (en) 2016-01-07
HUE054465T2 (en) 2021-09-28
CN103392014A (en) 2013-11-13
EP2655672A2 (en) 2013-10-30
CN103547686B (en) 2016-11-23
ES2858225T3 (en) 2021-09-29
WO2012085247A3 (en) 2012-08-16
WO2012085256A3 (en) 2012-08-16
US20140027026A1 (en) 2014-01-30
HUE054867T2 (en) 2021-10-28
EP2656187B1 (en) 2020-09-09
CN103384726A (en) 2013-11-06
KR20130132566A (en) 2013-12-04
CN103415630A (en) 2013-11-27
EP2655672B1 (en) 2020-12-16
WO2012085247A2 (en) 2012-06-28
WO2012085253A3 (en) 2012-08-16
US10640838B2 (en) 2020-05-05
EP2655673A2 (en) 2013-10-30
ES2829950T8 (en) 2021-06-10
HUE052381T2 (en) 2021-04-28
CN103384726B (en) 2016-11-23
ES2858225T8 (en) 2022-01-05
HUE055049T2 (en) 2021-10-28
HUE053150T2 (en) 2021-06-28
EP2655674B1 (en) 2021-02-03
EP2655674A2 (en) 2013-10-30
ES2848159T3 (en) 2021-08-05
WO2012085248A2 (en) 2012-06-28
EP2656187A2 (en) 2013-10-30
JP5727037B2 (en) 2015-06-03
KR20130126962A (en) 2013-11-21
WO2012085251A2 (en) 2012-06-28
WO2012085253A2 (en) 2012-06-28
ES2829950T3 (en) 2021-06-02
JP2014505791A (en) 2014-03-06
CN103547687A (en) 2014-01-29
EP2655673B1 (en) 2021-02-03
WO2012085251A3 (en) 2012-08-16
WO2012085256A2 (en) 2012-06-28
WO2012085248A3 (en) 2012-08-16
EP2655675A2 (en) 2013-10-30
CN103415630B (en) 2015-09-23
EP2655675B1 (en) 2021-03-10
JP2014507556A (en) 2014-03-27
ES2853207T3 (en) 2021-09-15
KR20130132565A (en) 2013-12-04
CN103547686A (en) 2014-01-29

Similar Documents

Publication Publication Date Title
ES2851176T3 (en) Method for forming and hardening coated steel sheets
KR101820273B1 (en) Process for manufacturing steel sheets for press hardening, and parts obtained by means of this process
ES2561059T3 (en) Manufacturing procedure for a piece with very high mechanical characteristics from a laminated and coated plate
RU2684801C1 (en) Sheet steel with aluminum-based metal coating
ES2876231T3 (en) Hot-pressed product that has superior bending capacity and ultra-high strength, and method for its manufacture
ES2384135T3 (en) Procedure for manufacturing a steel component provided with a corrosion protection metallic coating and steel component
ES2762572T3 (en) High strength auto part and method of making a high strength auto part
US20160215376A1 (en) Zinc-based anti-corrosion coating for steel sheets, for producing a component at an elevated temperature by hot forming die quenching
CN108588612A (en) Hot press-formed component, hot press-formed pre- coating steel plate and hot press-formed technique
KR101846112B1 (en) Hot-stamping steel material
US9045817B2 (en) Heat treated galvannealed steel material and a method for its manufacture
KR101871618B1 (en) Hot-stamped steel material
US20160130675A1 (en) Method for producing a component by hot forming a pre-product made of steel
US10900110B2 (en) Method for the hot forming of a steel component
MX2014012626A (en) Steel sheet provided with a coating offering sacrificial cathodic protection, method for the production of a part using such a sheet, and resulting part.
JP5531757B2 (en) High strength steel plate
US20160362794A1 (en) Al-PLATED STEEL SHEET USED FOR HOT PRESSING AND METHOD FOR MANUFACTURING Al-PLATED STEEL SHEET USED FOR HOT PRESSING
CN112074616A (en) Method for forming articles from zinc or zinc alloy coated steel blanks
US20170145529A1 (en) Method for producing a steel component which is provided with a corrosion-resistant metal coating, and steel component
CN103993149B (en) Cold-rolled steel sheet and its preparation method and hot-dip coating aluminium-zinc alloy steel plate and its preparation method
KR101719446B1 (en) Press-molded article and method for manufacturing same
CN104060071B (en) Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104060166B (en) Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
CN104018079B (en) Cold-rolled steel sheet and preparation method thereof and hot-dip galvanizing sheet steel and preparation method thereof
US20240002965A1 (en) Steel Material and Method for Its Manufacture