WO2015029653A1 - 熱間プレス成形部材の製造方法および熱間プレス成形部材 - Google Patents

熱間プレス成形部材の製造方法および熱間プレス成形部材 Download PDF

Info

Publication number
WO2015029653A1
WO2015029653A1 PCT/JP2014/069498 JP2014069498W WO2015029653A1 WO 2015029653 A1 WO2015029653 A1 WO 2015029653A1 JP 2014069498 W JP2014069498 W JP 2014069498W WO 2015029653 A1 WO2015029653 A1 WO 2015029653A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
temperature
hot press
less
plating layer
Prior art date
Application number
PCT/JP2014/069498
Other languages
English (en)
French (fr)
Other versions
WO2015029653A8 (ja
Inventor
達也 中垣内
裕一 時田
簑手 徹
玉井 良清
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201480047569.1A priority Critical patent/CN105492134B/zh
Priority to KR1020167003811A priority patent/KR101784119B1/ko
Priority to EP14839784.7A priority patent/EP3040133B1/en
Priority to MX2016002450A priority patent/MX2016002450A/es
Priority to JP2014556297A priority patent/JP5825447B2/ja
Priority to US14/914,392 priority patent/US10167530B2/en
Publication of WO2015029653A1 publication Critical patent/WO2015029653A1/ja
Publication of WO2015029653A8 publication Critical patent/WO2015029653A8/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C18/00Alloys based on zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • C23C2/405Plates of specific length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a hot press-formed member that requires strength and corrosion resistance, such as used for a structural member of an automobile part, and a manufacturing method thereof, particularly a surface-treated steel sheet in which a plating layer is formed on the surface of a base steel sheet.
  • the present invention relates to a hot press-formed member that obtains a predetermined strength by quenching a base steel plate at the same time as imparting a shape when hot-pressing a surface-treated steel plate that has been preheated as a raw material into a predetermined shape, and a method for manufacturing the same .
  • Patent Document 1 discloses that when a blank plate (steel plate) heated to an austenite single phase region around 900 ° C. is hot pressed to produce a part having a predetermined shape, it is quenched in the mold at the same time as hot press forming. A technique for increasing the strength of parts by performing the above has been proposed.
  • Patent Document 2 discloses that a steel sheet coated with Zn (zinc) or a Zn base alloy is heated to 700 to 1200 ° C. and then hot pressed to form a Zn—Fe base compound or Zn— on the surface.
  • a technique for forming a hot press-molded member including an Fe—Al base compound has been proposed.
  • Patent Document 2 by using a steel sheet coated with Zn or a Zn-based alloy, it becomes possible to suppress oxidation of the steel sheet surface, which is a problem during heating before hot press forming, and excellent in corrosion resistance. Further, it is described that a hot press-formed member is obtained.
  • Patent Document 3 the surface-treated steel sheet having a Zn-Fe-based plating layer formed on the base steel sheet surface is formed by hot pressing to produce a hot press-formed product.
  • the surface-treated steel sheet is heated to a temperature not lower than the Ac 1 transformation point of the base steel sheet and not higher than 950 ° C., and the surface-treated steel sheet is cooled to a temperature not higher than the freezing point of the plating layer, and thereafter forming is started.
  • Patent Document 3 describes that liquid metal embrittlement can be suppressed by cooling the surface-treated steel sheet to a temperature not higher than the freezing point of the plating layer and then starting forming.
  • the present invention has been made paying attention to the above problems. That is, the purpose of the present invention is to produce a hot press-formed member by hot-pressing a Zn-based plated steel sheet, while suppressing an excessive increase in forming load during hot press forming and fracture of the steel sheet.
  • An object of the present invention is to provide a method for suppressing the generation of microcracks and to provide a hot press-formed member in which the generation of microcracks is suppressed.
  • Microcracks are completely different in depth from conventionally known liquid metal cracks, differ in the position where they occur and the presence or absence of Zn at the cracked interface, and clearly differ in form and phenomenon.
  • microcracking may occur on the surface of the plated steel sheet by forming a Zn-based plated steel sheet at a high temperature.
  • This micro crack is a micro crack having a depth of about 30 ⁇ m or less from the plating layer-ground iron (base steel plate) interface, and penetrates the plating layer-base iron (base steel plate) interface to the inside of the base steel plate.
  • the microcracks are completely suppressed by setting the temperature of the plated steel sheet during hot press forming to about 400 ° C. or less. Revealed. Furthermore, the effect that the plating adhesion amount to a metal mold
  • the present inventors have conceived that hot press forming is performed in a state where only the surface layer portion of the plated steel sheet is cooled. As described above, microcracks are likely to occur in the region near the surface of the plated steel sheet. Therefore, the present inventors maintain the plate thickness direction central portion of the plated steel sheet in a high temperature state, and even when hot pressing in a state where only the surface layer portion of the plated steel sheet is cooled to about 400 ° C. or less, It was speculated that microcracks could be suppressed.
  • % which shows content of the following chemical components means “mass%”.
  • a cold-rolled steel plate having a thickness of 1.6 mm (chemical component: Fe-0.23% C-0.25% Si-1.40% Mn-0.01% P-0.005% S-0.0020 % B-0.03% Al-0.005 % N, Ac 3 transformation point: 801 ° C.) was used as a base steel sheet, Zn-based plating layer on the plain ground surface of the steel sheet (Zn-12 mass% Ni plating, deposition per side
  • a surface-treated steel sheet having an amount of 65 g / m 2 ) was prepared.
  • the surface-treated steel plate was punched to obtain a 200 mm ⁇ 400 mm blank plate.
  • a press molding test was conducted using the blank plate obtained as described above. Specifically, when the blank plate is uniformly heated to 900 ° C. and allowed to cool to 700 ° C., the blank plate surface is cooled under various conditions, and the blank plate whose surface temperature is lowered to 400 ° C. or lower is molded. (Material: SKD61, punch shoulder R: 6 mm, die shoulder R: 6 mm) and press-molded. Thereafter, the mold was held for 15 s in the mold, cooled to 120 ° C. or lower, and then released to obtain a hat-shaped press-formed member shown in FIG. The press molding was a punch molding with a punch-die clearance of 1.6 mm and a wrinkle holding force of 10 tonf.
  • the conditions for water cooling the blank plate surface are as follows: water temperature, water density, water injection time: water temperature: 10-30 ° C., water density: 10-100,000 L / m 2 ⁇ min, water injection time: 0.1-10.0 s
  • the water cooling was carried out under various conditions.
  • the molding load was measured at the time of press molding.
  • a sample was taken from the vertical wall portion of the obtained hat-shaped press-formed member, and the cross-section of the surface layer was observed at a magnification of 1000 using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the blank plate surface is cooled under various conditions in the same manner as in the press molding test.
  • the surface was set to 400 ° C. or less, and then left without being press-molded, and the temperature history of the blank plate surface was measured with a radiation thermometer.
  • the press molding test in which the molding load is changed in the range of 180 to 600 tons, when the molding load is relatively cooled to 300 tonf or less and then water-cooled under water-cooling conditions, it is left without being press-molded.
  • the blank plate surface temperature is cooled to 400 ° C.
  • the blank plate surface temperature during press molding is 400 ° C. or less and a temperature distribution is generated in the thickness direction of the blank plate. It was done.
  • the blank plate internal temperature at the time of press forming when the forming load is relatively low at 300 tonf or less cannot be grasped. Therefore, the average temperature of the blank plate in which the temperature distribution occurred was obtained by the following method.
  • a blank plate (200 mm ⁇ 400 mm) of the same type as above was heated to 900 ° C., then air-cooled, uniformly cooled to various temperatures, and press-molded.
  • the press molding conditions were the same as those in the press molding test except that the temperature of the blank plate was uniform throughout the thickness direction.
  • the molding load was measured for every blank board temperature at the time of press molding.
  • the blank board temperature at the time of press molding was calculated
  • the time required from the temperature measurement of the blank plate to press molding is about 1.5 s, and the temperature drop during this period can be ignored.
  • FIG. 3 is a graph showing the relationship between the blank plate temperature and the press molding load when the blank plate is uniformly cooled. As shown in FIG. 3, when the blank plate is uniformly cooled, the molding load increases as the blank plate temperature decreases. And it was confirmed that if a blank board temperature is about 500 ° C or more, a forming load will be 300 tons or less. From these results, when the blank plate surface temperature during press molding is 400 ° C. or less and the molding load is 300 tonf or less, the average blank plate temperature during press molding can be considered to be about 500 ° C. or more.
  • the blank plate temperature is a uniform temperature over the entire plate thickness direction. Press molding. In such a case, generation of microcracks cannot be sufficiently suppressed, and various characteristics (such as fatigue resistance characteristics) of the hot press-formed member are deteriorated.
  • FIG. 4 (b) micro-cracks can be suppressed without increasing the press load or breaking the blank plate by press-molding a blank plate having a desired temperature distribution. .
  • the center in the thickness direction of the blank plate in the period corresponding to the press molding time.
  • the temperature of the part was estimated to be about 530 ° C. or higher. That is, the blank plate temperature at the time of press molding is replaced with the average temperature: 500 ° C. or higher, and the plate thickness central portion temperature: 530 ° C. or higher, if the surface temperature is 400 ° C. or lower. It is estimated that the same effect as described above can be obtained.
  • the present invention has been completed based on the above findings, and the gist thereof is as follows.
  • the surface-treated steel sheet is 750 ° C. or higher and 1000 ° C. or lower.
  • the surface of the surface-treated steel sheet is cooled, and hot press forming is performed under the condition that the surface temperature of the surface-treated steel sheet is 400 ° C. or lower and the average temperature of the surface-treated steel sheet is 500 ° C. or higher.
  • a method for manufacturing a hot press-formed member is performed by hot-pressing a surface-treated steel sheet having a Zn-based plating layer formed on the surface of the base steel sheet.
  • the surface-treated steel sheet has a temperature of 750 ° C. or higher and 1000 ° C. or lower. After heating to a temperature range, the surface of the surface-treated steel sheet is cooled, the surface temperature of the surface-treated steel sheet is 400 ° C. or less, and the temperature of the central portion in the thickness direction of the surface-treated steel sheet is 530 ° C. or more.
  • the plating layer is a Zn—Ni plating layer, and the Ni content in the Zn—Ni plating layer is 9% to 25% by mass%.
  • the plating layer is a Zn—Fe plating layer, and the Fe content in the Zn—Fe plating layer is 5% to 80% by mass%.
  • the base steel sheet is mass%, C: 0.15% to 0.50%, Si: 0.05% to 2.00%, Mn: 0.50% to 3.00%.
  • P 0.10% or less
  • S 0.050% or less
  • B 0.0002% or more and 0.0050% or less
  • Al 0.10% or less
  • N 0.010% or less
  • the balance Has a component composition consisting of Fe and inevitable impurities
  • the base steel sheet is further mass%, Cr: 0.01% to 0.5%, V: 0.01% to 0.5%, Mo: 0.01% to 0.5%
  • the present invention when a hot-pressed member is manufactured by hot-pressing a Zn-based plated steel sheet, liquid metal embrittlement cracks and microcracks (microcracks), which have conventionally been problematic, can be suppressed. it can.
  • the above-described problems can be solved without causing an increase in forming load during hot press forming and breakage of the steel sheet. Therefore, this invention contributes to the quality improvement and productivity improvement of the hot press molding member which provided the Zn type plating layer excellent in anticorrosion performance on the surface, and has a remarkable effect on industry.
  • (A) is a perspective view
  • (b) is a cross-sectional view.) It is a figure which shows the surface temperature log
  • (A) It is a figure which shows the heat history in the manufacturing method of the conventional hot press molding member.
  • (B) It is a figure which shows the heat history in the manufacturing method of the hot press molding member according to this invention. It is the schematic of the microcrack which generate
  • the present invention relates to a method for manufacturing a hot press-formed member by heating a surface-treated steel plate having a Zn-based plating layer formed on the surface of a base steel plate, and hot press-molding with a die to obtain a predetermined member shape, and the method It is a hot press-molded member manufactured by the above. And after heating the said surface-treated steel sheet to the temperature range of 750 degreeC or more and 1000 degrees C or less, this invention cools the surface of the said surface-treated steel sheet, and the surface temperature of the said surface-treated steel sheet is 400 degrees C or less, and On the condition that the average temperature of the surface-treated steel sheet is 500 ° C. or higher, or on the condition that the surface temperature of the surface-treated steel sheet is 400 ° C. or lower and the temperature in the center part in the thickness direction of the surface-treated steel sheet is 530 ° C. or higher. And hot press forming.
  • the surface-treated steel sheet is quenched by quenching in the mold while hot press-molding into a desired shape using the mold.
  • quenching even when quenching is not involved, the effects of the present invention (such as suppression of microcracks) can be sufficiently exhibited.
  • a surface-treated steel sheet having a Zn-based plating layer formed on the surface of the base steel sheet is used as the material for the hot press-formed member.
  • a Zn-based plating layer is used as the material for the hot press-formed member.
  • the type of the base steel plate is not particularly limited, but the thickness of the base steel plate is 0 from the viewpoint of press formability, the rigidity of the hot press-formed member, and ensuring the desired temperature distribution of the steel plate during hot pressing. It is preferable to set it to 8 mm or more and 5.0 mm or less.
  • the kind of Zn type plating layer is not specifically limited, In addition to a pure Zn plating layer, a Zn-Fe plating layer, a Zn-Ni plating layer, etc. can be illustrated. Moreover, the method in particular of forming a Zn type plating layer in the base steel plate surface is not limited, Any methods, such as hot dipping and electroplating, may be sufficient.
  • the adhesion amount of the plating is preferably 10 g / m 2 or more and 90 g / m 2 or less per side.
  • the Fe content in the plating layer is not particularly limited, but is preferably 5% by mass or more and 80% by mass or less.
  • the Fe content in the plating layer is 5% by mass or more, an excellent function peculiar to Zn-Fe plating is exhibited.
  • it exceeds 80% by mass corrosion resistance, paint adhesion, weldability and the like tend to deteriorate.
  • Ni content in a plating layer When making a Zn-type plating layer into a Zn-Ni plating layer, it is preferable that Ni content in a plating layer shall be 9 mass% or more and 25 mass% or less.
  • the Ni content in the plating layer is 9% by mass or more and 25% by mass or less, so that Ni 2 Zn 11 , NiZn 3 , Ni 5 Zn A ⁇ phase having any one of the crystal structures of 21 is formed. Since the ⁇ phase has a high melting point, it is advantageous for suppressing evaporation of the plating layer, which is a concern during heating of the surface-treated steel sheet before hot press forming. Further, it is advantageous for suppressing liquid metal embrittlement, which is a problem during hot press forming.
  • the above-mentioned surface-treated steel sheet is heated to a predetermined temperature, only the surface is cooled, and then hot press-molded.
  • the heating temperature of the surface-treated steel sheet is less than 750 ° C., it is difficult to set the average temperature of the surface-treated steel sheet and the temperature in the central portion in the thickness direction to the desired temperature conditions described later during hot press forming. Become.
  • the heating temperature of the surface-treated steel sheet exceeds 1000 ° C., the oxidation resistance and the corrosion resistance of the hot press-formed member are deteriorated due to evaporation of the plating layer and excessive generation of oxide in the surface layer portion. Therefore, the heating temperature is set to 750 ° C. or higher and 1000 ° C. or lower. Preferably, it is 800 degreeC or more and 950 degrees C or less.
  • the heating temperature of the surface-treated steel sheet is set to the Ac 1 transformation point of the base steel sheet. It is necessary to do it above. Also, from the viewpoint of strengthening the hot press forming member, the heating temperature of the surface-treated steel sheet as above Ac 3 transformation point of the base steel sheet, it is preferable that the base steel sheet and austenite single-phase structure.
  • the heating method of the surface-treated steel sheet is not particularly limited, and any method such as heating with an electric furnace, an induction heating furnace, or a direct current heating furnace may be used. Moreover, in this invention, it is not necessary to make a surface-treated steel plate retain in the said temperature range (750 degreeC or more and 1000 degrees C or less) for a fixed time. That is, as soon as the entire surface-treated steel sheet is heated to the above temperature range, the process may immediately proceed to the next step (step of cooling the surface). In addition, when retaining a surface-treated steel plate in the said temperature range (750 degreeC or more and 1000 degrees C or less) for a fixed time, it is preferable that the residence time shall be 1000 s or less.
  • the surface of the surface-treated steel sheet After heating the surface-treated steel sheet to the above temperature range, the surface of the surface-treated steel sheet is cooled, and the surface-treated steel sheet is hot under the condition that the surface temperature of the surface-treated steel sheet is 400 ° C or lower and the average temperature of the surface-treated steel plate is 500 ° C or higher. Press forming. If the surface temperature of the surface-treated steel sheet during hot press forming exceeds 400 ° C., the occurrence of microcracks cannot be avoided. On the other hand, when the average temperature of the surface-treated steel sheet during hot press forming is less than 500 ° C., the press-forming load increases or the surface-treated steel sheet is easily broken during press forming. Moreover, when the average temperature of the surface-treated steel sheet is less than 500 ° C. before hot press forming, ferrite and bainite may be generated on the base steel sheet before press forming, and sufficient strength may not be obtained after press forming.
  • the surface of the surface-treated steel sheet is cooled, and hot press forming is performed under the condition that the surface temperature of the surface-treated steel sheet is 400 ° C. or lower and the average temperature of the surface-treated steel sheet is 500 ° C. or higher. More preferably, hot press forming is performed under the condition that the surface temperature of the surface-treated steel sheet is 350 ° C. or lower and the average temperature of the surface-treated steel sheet is 530 ° C. or higher.
  • the surface temperature of the surface-treated steel sheet is less than 150 ° C., breakage is likely to occur during press molding, and therefore, it is preferably set to 150 ° C. or higher.
  • the upper limit of the average temperature of the surface-treated steel sheet is preferably less than the melting point of plating.
  • the average temperature of the surface treatment steel plate at the time of hot press forming being 500 degreeC or more, and is hot-pressed on the conditions that the temperature of the plate thickness direction center part of a surface treatment steel plate is 530 degreeC or more. Molding may be performed.
  • the effect similar to the case where an average temperature shall be 500 degreeC or more is acquired by setting the temperature of the plate
  • the upper limit of the temperature of the center portion in the plate thickness direction of the surface-treated steel plate is preferably less than the melting point of the plating, like the average temperature.
  • the surface temperature of the surface-treated steel sheet can be measured using, for example, a radiation thermometer.
  • the average temperature of the surface-treated steel sheet can be predicted from, for example, a forming load during hot press forming.
  • the molding load required for hot press forming decreases.
  • the steel sheet strength increases, so that the forming load necessary for hot press forming increases. Therefore, after the surface-treated steel sheet is heated, it is uniformly cooled to various temperatures (cooled to a uniform temperature over the entire thickness direction) and subjected to hot press forming.
  • the correlation with the molding load can be analyzed in advance. And according to the present invention, by hot press forming a surface-treated steel sheet in which only the surface is cooled and a temperature distribution is generated in the plate thickness direction, the forming load measured at that time is applied to a previously analyzed correlation.
  • the obtained surface-treated steel sheet temperature can be regarded as the average temperature of the surface-treated steel sheet during hot press forming.
  • the temperature of the central portion in the thickness direction of the surface-treated steel sheet can be obtained by heat transfer calculation using, for example, a finite element method or a difference method.
  • the average temperature of the surface-treated steel sheet may also be obtained by heat transfer calculation using a finite element method or a differential method, instead of predicting from the above-described press forming load.
  • the method for cooling the surface of the surface-treated steel sheet is not particularly limited. That is, as long as a surface-treated steel sheet having a desired temperature distribution (surface temperature: 400 ° C. or lower and average temperature: 500 ° C. or higher, or plate thickness direction central temperature: 530 ° C. or higher) is obtained, water cooling, mist cooling, high pressure Any cooling method such as cooling by gas or cooling by mold contact may be adopted.
  • the water temperature, water density, water injection time, etc. for example, depending on the heating temperature of the surface-treated steel sheet, for example, water temperature: 10-30 ° C., water density: 500-100000 L / m 2 ⁇ min
  • the surface-treated steel sheet having a desired temperature distribution can be obtained by appropriately adjusting the water injection time in the range of 0.1 to 3.0 s.
  • the air-water ratio, water temperature, air flow density, spraying time, etc. are set according to the heating temperature of the surface-treated steel sheet, for example, the air-water ratio (room temperature and normal pressure): 10 to 10,000.
  • the gas injection amount, the gas injection time, and the like are set according to the heating temperature of the surface-treated steel sheet, for example, the gas injection amount: 1.0 to 30 Nm 3 / m 2 ⁇ s, the gas injection time: 0.5 to 5. What is necessary is just to adjust suitably in the range of 0 s.
  • the cooling conditions for making the surface-treated steel sheet have a desired temperature distribution are the thickness and heating temperature of the surface-treated steel sheet, the time required to perform hot press forming after cooling the surface of the surface-treated steel sheet, etc. Therefore, it is often difficult to predict optimal cooling conditions. Therefore, it is preferable to conduct preliminary experiments on various cases (such as the thickness of the surface-treated steel sheet) and obtain the optimal cooling conditions for each case in advance.
  • a cold-rolled steel sheet having a thickness of 1.6 mm (chemical component (mass%): Fe-0.23% C-0.25% Si-1.40% Mn-0.01% P-0.005% S ⁇ 0.0020% B ⁇ 0.03% Al ⁇ 0.005% N, Ac 3 transformation point: 801 ° C.) is a base steel plate, and a Zn-based plating layer (Zn-12 mass% Ni plating,
  • a desired temperature distribution (surface temperature) is obtained by cooling the surface of the blank plate under the following conditions. : 400 ° C. or lower, and average temperature: 500 ° C.
  • the blank plate is uniformly heated to 900 ° C. and allowed to cool to 700 ° C. Then, the blank plate surface is water-cooled under the conditions of water temperature: 10 ° C., water density: 10000 L / m 2 ⁇ min, water injection time: 0.3 s, and the surface temperature is cooled to 250 ° C. A temperature distribution can be obtained.
  • the surface of the surface-treated steel sheet after heating is cooled, and hot press forming is performed under the condition that the surface temperature of the surface-treated steel sheet is 400 ° C. or lower and the average temperature of the surface-treated steel plate is 500 ° C. or higher.
  • the average temperature of the surface-treated steel sheet is set to 500 ° C. or higher, and the thickness of the surface-treated steel sheet is 530 ° C. or higher, the same effect as described above can be obtained. can get.
  • the plate thickness of the base steel plate is about 0.8 to 5.0 mm, whereas the thickness of the plating layer is very thin, about 5 to 20 ⁇ m. Therefore, it is estimated that the temperature in the vicinity of the plating layer-base steel plate interface at the time of hot press forming is substantially the same as the surface temperature of the surface-treated steel plate.
  • the formed member may be released immediately, or the base steel plate may be quenched by holding it in the mold for a predetermined time.
  • the base steel plate temperature after hot press forming is 150 ° C or less
  • the cooling rate of the base steel sheet in the mold is 30 ° C./s or more. This cooling rate can be adjusted, for example, by selecting the mold material and mass (thermal conductivity and heat capacity) according to the dimensions of the blank plate (surface-treated steel plate), etc.
  • a mold for example, a mold in which a passage for a cooling medium such as water is provided
  • a desired speed can be controlled.
  • the base steel plate is, for example, mass%, C: 0.15% or more 0.50% or less, Si: 0.05% or more and 2.00% or less, Mn: 0.50% or more and 3.00% or less, P: 0.10% or less, S: 0.050% or less, B: Hot-rolled steel sheet or cold-rolled steel sheet having a composition of 0.0002% or more and 0.0050% or less, Al: 0.10% or less, and N: 0.010% or less, with the balance being Fe and inevitable impurities Can be used.
  • % indicating the content of a component means “% by mass” unless otherwise specified.
  • C 0.15% or more and 0.50% or less C is an element for improving the strength of steel, and in order to increase the strength of a hot press-formed member, the content thereof is set to 0.15% or more. It is preferable. On the other hand, when the C content exceeds 0.50%, the weldability of the hot press-formed member and the blanking property of the material (base steel plate) are significantly lowered. Therefore, the C content is preferably 0.15% or more and 0.50% or less, and more preferably 0.20% or more and 0.40% or less.
  • Si 0.05% or more and 2.00% or less
  • Si is an element that improves the strength of steel in the same way as C, and in order to increase the strength of a hot press-formed member, its content is 0.05. % Or more is preferable.
  • the Si content exceeds 2.00%, the production of a base steel sheet significantly increases the occurrence of surface defects called red scale during hot rolling. Therefore, the Si content is preferably 0.05% or more and 2.00% or less, and more preferably 0.10% or more and 1.50% or less.
  • Mn 0.50% or more and 3.00% or less
  • Mn is an element that enhances the hardenability of steel, and is effective in obtaining a quenched structure by suppressing ferrite transformation of the base steel sheet during the cooling process after hot press forming. Element.
  • Mn since it has an effect of lowering the Ac 3 transformation point of steel, is an element effective for lower temperature the heating temperature of the surface treated steel sheet before hot press forming. In order to exhibit such an effect, the Mn content is preferably 0.50% or more.
  • the Mn content is preferably 0.50% or more and 3.00% or less, and more preferably 0.75% or more and 2.50% or less.
  • P 0.10% or less
  • the P content is preferably 0.10% or less, and more preferably 0.01% or less.
  • P is preferably 0.001% or more.
  • S 0.050% or less
  • S is an element that combines with Mn to form coarse sulfides and causes a reduction in the ductility of steel. Therefore, it is preferable to reduce the S content as much as possible, but it is acceptable up to 0.050%. Therefore, the S content is preferably 0.050% or less, and more preferably 0.010% or less. However, excessive S reduction leads to an increase in desulfurization cost in the steel making process. Therefore, S is preferably 0.0005% or more.
  • B 0.0002% or more and 0.0050% or less B is an element that enhances the hardenability of the steel, and suppresses the formation of ferrite from the austenite grain boundaries when the base steel sheet is cooled after hot press forming. It is an effective element for obtaining. Such an effect can be obtained by setting the B content to 0.0002% or more. However, if the B content exceeds 0.0050%, the effect is saturated and causes an increase in cost. Therefore, B is preferably 0.0002% or more and 0.0050% or less. More preferably, it is 0.0005% or more and 0.0030% or less.
  • the Al content is preferably 0.10% or less, and more preferably 0.07% or less.
  • Al has an action as a deoxidizer, and from the viewpoint of improving the cleanliness of steel, the content is preferably 0.01% or more.
  • N 0.010% or less
  • the N content is preferably 0.010% or less, and more preferably 0.005% or less.
  • N is preferably 0.0005% or more.
  • the base steel sheet may further contain the following elements as necessary.
  • Cr 0.01% to 0.5%
  • V 0.01% to 0.5%
  • Mo 0.01% to 0.5%
  • Ni 0.01% to 0.5%
  • Cr, V, Mo, and Ni are all effective elements for improving the hardenability of the steel. This effect can be obtained by setting the content to 0.01% or more for any element.
  • Cr, V, Mo, and Ni are all saturated when the content exceeds 0.5%, resulting in a cost increase. Therefore, when it contains any one or more of Cr, V, Mo, and Ni, the content is preferably 0.01% or more and 0.5% or less, respectively, % Or less is more preferable.
  • Ti 0.01% or more and 0.20% or less Ti is an element effective for strengthening steel.
  • the strength improvement effect by Ti is obtained by setting its content to 0.01% or more, and if it is within the range specified in the present invention, it can be used for strengthening steel.
  • the Ti content exceeds 0.20%, the effect is saturated, resulting in a cost increase. Therefore, when Ti is contained, the content is preferably 0.01% or more and 0.20% or less, and more preferably 0.01% or more and 0.05% or less.
  • Nb 0.01% or more and 0.10% or less
  • Nb is also an element effective for strengthening steel.
  • the strength improvement effect by Nb is obtained by setting the content to 0.01% or more, and may be used for strengthening steel as long as it is within the range specified in the present invention. However, when the Nb content exceeds 0.10%, the effect is saturated, resulting in a cost increase. Therefore, when Nb is contained, the content is preferably 0.01% or more and 0.10% or less, and more preferably 0.01% or more and 0.05% or less.
  • Sb 0.003% or more and 0.03% or less
  • Sb is applied to the surface layer portion of the base steel sheet after the surface-treated steel sheet is heated before the hot press forming and cooled by a series of hot press forming processes. It has the effect of suppressing the resulting decarburized layer.
  • the Sb content is preferably 0.003% or more.
  • the content is preferably 0.003% or more and 0.03% or less, and more preferably 0.005% or more and 0.01% or less.
  • Components other than the above (remainder) are Fe and inevitable impurities.
  • the surface-treated steel plate before hot press forming is heated to a temperature equal to or higher than the Ac 3 transformation point of the base steel plate and hot press-molded at a desired temperature condition, and then a die If the base steel plate is cooled to 150 ° C. or lower at a cooling rate of 30 ° C./s or more while being held for 5 seconds or more, the base steel plate can have a martensitic structure. As a result, a hot press-formed member having excellent corrosion resistance and tensile strength of 1300 MPa or more is obtained.
  • the hot press forming method of the present invention is a liquid metal that does not cause an increase in forming load or break the steel plate even when applied to a base steel plate that is generally high in strength and difficult to process. Embrittlement cracks and micro cracks (micro cracks) can be suppressed. For this reason, the hot press forming method of the present invention is extremely advantageous when applied to a high-strength green steel sheet having the above component composition.
  • the surface-treated steel sheet used as a raw material for the hot press-formed member is not particularly limited in its production conditions.
  • the production conditions of the base steel plate are not particularly limited, and for example, a hot-rolled steel plate (pickled steel plate, plate thickness: about 2.0 mm or more and 5.0 mm or less) having a predetermined component composition can be used as the base steel plate.
  • a hot-rolled steel plate pickled steel plate, plate thickness: about 2.0 mm or more and 5.0 mm or less
  • the cold-rolled steel plate plate thickness: about 0.8 mm or more and 2.3 mm or less
  • the conditions for forming a Zn-based plating layer on the surface of the base steel sheet to form a surface-treated steel sheet are not particularly limited.
  • a hot-rolled steel plate pickled steel plate
  • a surface-treated steel plate can be obtained by subjecting the hot-rolled steel plate (pickled steel plate) to annealing treatment and hot-dip Zn plating treatment. It is good also as a surface treatment steel plate by giving an alloying process following the said hot-dip Zn plating process. Moreover, it can also be set as a surface treatment steel plate by performing an electrical Zn plating process to a hot-rolled steel plate (pickled steel plate).
  • the surface-treated steel sheet when a cold-rolled steel sheet is used as the base steel sheet, the surface-treated steel sheet can be obtained by subjecting the cold-rolled steel sheet to an annealing treatment and then a hot-dip Zn plating treatment. It is good also as a surface treatment steel plate by giving an alloying process following the said hot-dip Zn plating process. Moreover, it can also be set as a surface-treated steel plate by performing an electrical Zn plating process to a cold-rolled steel plate. Prior to the electrical Zn plating treatment, the cold-rolled steel sheet may be annealed.
  • the base steel plate when forming a hot-dip Zn plating layer on the surface of the base steel plate, the base steel plate is passed through a continuous hot-dip galvanizing line and annealed, and then immersed in a zinc plating bath at 440 ° C. or higher and 500 ° C. or lower. Thereby, a hot dip Zn plating layer can be formed.
  • the adhesion amount of the hot-dip Zn plating layer may be adjusted to a desired adhesion amount (for example, 10 g / m 2 or more and 90 g / m 2 or less per side) by a gas wiping method or the like.
  • a Zn—Fe plating layer on the base steel plate surface
  • the alloy is heated to a temperature range of 460 ° C. or more and 600 ° C. or less.
  • a Zn—Fe plating layer can be formed by heating and performing an alloying treatment in which the temperature is maintained for 5 to 60 seconds.
  • the Fe content in the plating layer can be adjusted to the desired Fe content (for example, 5% by mass or more) by appropriately adjusting the heating temperature in the alloying furnace and the residence time at the heating temperature within the above range. 80% by mass or less).
  • a Zn—Ni plating layer is formed on the surface of the base steel plate, for example, the base steel plate is degreased and pickled, and then nickel sulfate hexahydrate of 10 g / L to 400 g / L, 10 g / L to 400 g / L. Electricity at a current density of 10 A / dm 2 or more and 150 A / dm 2 or less in a plating bath containing zinc sulfate heptahydrate of L or less and having a pH of 1.0 to 3.0 and a bath temperature of 30 ° C. to 70 ° C. By performing the plating treatment, a Zn—Ni plating layer can be formed.
  • the Ni content in the plating layer can be adjusted to a desired Ni content (for example, 9% by mass to 25% by mass) by appropriately adjusting the concentration and current density of zinc sulfate heptahydrate within the above ranges. can do.
  • the coating weight of Zn-Ni plated layer, by adjusting the energization time can be desired adhesion amount (e.g., 10 g / m 2 or more per side 90 g / m 2 or less).
  • the cold-rolled steel sheet obtained as described above is used as a base steel sheet, and a pure Zn plating layer, a Zn—Fe plating layer (Fe content: 8 to 70 mass%), a Zn—Ni plating layer ( Each plated layer having a Ni content of 10 to 23% by mass was formed into a surface-treated steel sheet. Each plating layer was formed under the following conditions.
  • ⁇ Pure Zn plating layer> The cold-rolled steel sheet is passed through a continuous hot-dip galvanizing line, heated to a temperature range of 800 ° C. to 900 ° C. at a temperature increase rate of 10 ° C./s, and retained in the temperature range of 10 s to 120 s, then 15 A Zn plating layer was formed by cooling to a temperature range of 460 ° C. or more and 500 ° C. or less at a cooling rate of ° C./s and immersing in a zinc plating bath at 450 ° C.
  • the adhesion amount of the Zn plating layer was adjusted to a predetermined adhesion amount by a gas wiping method.
  • ⁇ Zn-Fe plating layer> The cold-rolled steel sheet is passed through a continuous hot-dip galvanizing line, heated to a temperature range of 800 ° C. to 900 ° C. at a temperature increase rate of 10 ° C./s, and retained in the temperature range of 10 s to 120 s, then 15 A Zn plating layer was formed by cooling to a temperature range of 460 ° C. or more and 500 ° C. or less at a cooling rate of ° C./s and immersing in a zinc plating bath at 450 ° C.
  • the adhesion amount of the Zn plating layer was adjusted to a predetermined adhesion amount by a gas wiping method.
  • a Zn—Fe plating layer was formed by immediately heating to 500 to 550 ° C. in an alloying furnace and holding for 5 to 60 s.
  • the Fe content in the plating layer was set to a predetermined content by changing the heating temperature in the alloying furnace and the residence time at the heating temperature within the above range.
  • ⁇ Zn-Ni plating layer> The cold-rolled steel sheet is passed through a continuous annealing line, heated to a temperature range of 800 ° C. to 900 ° C. at a temperature increase rate of 10 ° C./s, and retained in the temperature range of 10 s to 120 s, then 15 ° C. / It cooled to the temperature range of 400 degreeC or more and 500 degrees C or less with the cooling rate of s.
  • a Zn—Ni plating layer was formed by performing an electroplating process in which a current of 10 to 100 s was applied at a current density of 100 A / dm 2 .
  • the Ni content in the plating layer was set to a predetermined content by appropriately adjusting the concentration and current density of zinc sulfate heptahydrate within the above ranges.
  • the adhesion amount of the Zn—Ni plating layer was set to a predetermined adhesion amount by appropriately adjusting the energization time within the above range.
  • a blank plate of 200 mm ⁇ 400 mm is punched out from the surface-treated steel plate obtained as described above, and the blank plate is heated by an electric furnace in an air atmosphere, and then the surface of the blank plate is cooled.
  • Cooling before press molding was performed by water-cooling or high-pressure gas cooling of the surface of the blank plate with the blank plate set in a mold.
  • the surface temperature of the blank plate after cooling that is, the blank plate at the time of press forming, the average temperature or the central temperature in the thickness direction, as the target range
  • the amount of water at the time of water cooling, water pressure, and high pressure gas cooling were adjusted as appropriate.
  • the water cooling conditions were as follows: water temperature: 10 to 30 ° C., water density: 500 to 100,000 L / m 2 ⁇ min, water injection time: 0.1 to 3.
  • a desired surface temperature, average temperature, or plate thickness direction center temperature was obtained.
  • Table 2 in the example of high pressure gas cooling, N 2 gas, H 2 gas or He gas is sprayed on the blank plate surface at a high pressure of 1 to 3 atm as the high pressure gas cooling condition. : 1.0 to 30 Nm 3 / m 2 ⁇ s, gas injection time: By appropriately adjusting in the range of 0.5 to 5.0 s, a desired surface temperature, average temperature, or plate thickness direction center temperature was obtained.
  • the temperature of the blank plate surface before pressing was measured with a radiation thermometer.
  • the time required from the surface temperature measurement of the blank plate to press molding was about 1.5 s.
  • the average temperature of the blank plate at the time of press molding was obtained by estimating from the press molding load according to the method described above. That is, after heating the blank plate to about 900 ° C., it is uniformly cooled by air cooling until the start of molding, and this embodiment is based on the correlation between the blank plate and the molding load obtained by performing press molding at various temperatures.
  • the average temperature of the blank plate was estimated from the molding load at.
  • the temperature of the central portion in the thickness direction of the blank plate during press molding was obtained by heat transfer calculation using a finite element method.
  • Samples were taken from the vertical wall portion of the obtained hat-shaped press-formed member, and the cross-section of the surface layer was observed using a scanning electron microscope (SEM) at a magnification of 1000 times for 10 or more fields for each sample. Presence / absence of micro cracks generated on the sample surface, the depth from the plating layer-base steel plate interface being 30 ⁇ m or less, and penetrating the plating layer-base steel plate interface to the inside of the base steel plate, And the average depth of microcracks was investigated. The average depth of the microcracks was determined as the average value of the microcrack depth for 20 arbitrary microcracks.
  • microcrack depth refers to the length of cracks in the direction of the center of the thickness of the microcracks 3 measured from the interface between the plating layer 1 and the base steel plate 2 (see FIG. 5). In FIG. 5, it means the length of h). When the number of observed microcracks was less than 20, the average of all observed microcrack depths was taken as the average depth. In addition, the presence or absence of cracks other than microcracks (cracks generated on the surface of the sample and having a depth of more than 30 ⁇ m from the interface between the plating layer and the base steel sheet) was also confirmed.
  • JIS No. 13 B tensile test piece was collected from the vertical wall portion of the obtained press-molded member. Using this collected specimen, a tensile test was performed according to JIS G 0567 (1998), and the tensile strength at room temperature (22 ⁇ 5 ° C.) was measured. All tensile tests were performed at a crosshead speed of 10 mm / min. These results are also shown in Table 2.
  • any of the hot press-formed members of the inventive example and the comparative example no crack with a depth exceeding 30 ⁇ m from the interface between the plating layer and the base steel sheet was observed.
  • micro cracks micro cracks that penetrate the interface between the plating layer and the base steel sheet and reach the inside of the base steel sheet
  • the molding load at the time of hot press molding exceeded 300 tonf.
  • micro cracks micro cracks that penetrate the interface between the plating layer and the base steel plate and reach the inside of the base steel plate
  • the load also became a low value of less than 300tonf.
  • a tensile strength of 1300 MPa or more was obtained in all cases.
  • FIG. 6 shows a part of the result of the SEM observation.
  • 6A shows the member No. in Table 2. It is a SEM observation result of 23 (comparative example), and it can be confirmed that a microcrack reaches the inside of the base steel sheet.
  • FIG. 14 (invention example) SEM observation results, although there are cracks in the plating layer, but microcracks reaching the inside of the base steel sheet are not recognized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Articles (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Zn系のめっき層が素地鋼板の表面に形成された表面処理鋼板に熱間プレスを施して熱間プレス成形部材を製造するにあたり、前記表面処理鋼板を、750℃以上1000℃以下の温度域に加熱した後、前記表面処理鋼板の表面を冷却し、前記表面処理鋼板の表面温度が400℃以下、且つ前記表面処理鋼板の平均温度が500℃以上または前記表面処理鋼板の板厚方向中央部の温度が530℃以上となる条件で熱間プレス成形する。

Description

熱間プレス成形部材の製造方法および熱間プレス成形部材
 本発明は、自動車部品の構造部材に使用されるような、強度、耐食性が必要とされる熱間プレス成形部材およびその製造方法、特に素地鋼板の表面にめっき層が形成された表面処理鋼板を素材とし、予め加熱された表面処理鋼板を所定の形状に熱間プレス成形する際に、形状付与と同時に素地鋼板を焼入れし、所定強度を得る熱間プレス成形部材およびその製造方法に関するものである。
 近年、地球環境保全の観点から、自動車排ガス規制が強化されている。このような状況下、自動車の燃費向上が重要な課題となっており、自動車部品の高強度化・薄肉化が要求されている。自動車部品の高強度・薄肉化を図るうえでは、自動車部品の素材として所定の強度を有する鋼板を用い、該鋼板にプレス加工を施して所定形状の部品に成形することが極めて有効である。しかし、鋼板の高強度化に伴ってそのプレス加工性が低下するため、鋼板を所望の部品形状に加工することが困難になる場合が多くなっている。
 上記問題を解決する技術としては、高温に加熱した素材鋼板を、金型を用いて所望の形状に熱間プレス成形しつつ金型内で抜熱して焼入れし、熱間プレス成形後の部品を高強度化する技術が知られている。例えば特許文献1には、900℃前後のオーステナイト単相域まで加熱したブランク板(鋼板)に熱間プレスを施して所定形状の部品を製造するに際し、熱間プレス成形と同時に金型内で焼入れを行うことで、部品の高強度化を図る技術が提案されている。
 しかし、特許文献1で提案された技術では、プレス前に鋼板を900℃前後の高温に加熱する際、鋼板表面にスケール(鉄酸化物)が生成し、そのスケールが熱間プレス成形時に剥離して金型を損傷させたり、熱間プレス成形後の部材表面を損傷させるという問題がある。また、部材表面に残ったスケールは、外観不良や塗装密着性の低下の原因にもなる。このため、通常は酸洗やショットブラストなどの処理を行って部材表面のスケールを除去するが、これらの処理は生産性の低下を招く。更に、自動車の足廻り部材や車体構造部材などには優れた耐食性も必要とされるが、特許文献1で提案された技術では、素材鋼板にめっき層などの防錆皮膜が設けられていないため、熱間プレス成形部材の耐食性が不十分となる。
 以上の理由により、熱間プレス成形前の加熱時にスケールの生成を抑制するとともに、熱間プレス成形後の部材の耐食性を向上させることが可能な熱間プレス成形技術が要望されている。このような要望に対し、表面にめっき層などの皮膜を設けた表面処理鋼板や、表面処理鋼板を用いた熱間プレス成形方法が提案されている。
 例えば、特許文献2には、Zn(亜鉛)またはZnベース合金で被覆された鋼板を、700~1200℃に加熱した後、熱間プレス成形することにより、表面にZn−Feベース化合物またはZn−Fe−Alベース化合物を備えた熱間プレス成形部材とする技術が提案されている。また、特許文献2には、ZnまたはZnベース合金で被覆された鋼板を用いることにより、熱間プレス成形前の加熱時に問題となる鋼板表面の酸化を抑制することが可能となり、しかも耐食性に優れた熱間プレス成形部材が得られると記載されている。
 特許文献2で提案された技術によると、熱間プレス成形部材表面のスケール生成はある程度抑制される。しかし、めっき層中のZnに起因する液体金属脆化割れが起こり、熱間プレス成形部材の表層部に深さ100μm程度のクラックが発生する場合がある。このようなクラックが発生すると、熱間プレス成形部材の耐疲労特性が低下する等、様々な支障をきたす。
 このような問題に対し、特許文献3には、Zn−Fe系めっき層が素地鋼板表面に形成された表面処理鋼板を、熱間プレスにより成形して熱間プレス成形品を製造するに当たり、前記表面処理鋼板を、素地鋼板のAc変態点以上950℃以下の温度に加熱し、めっき層の凝固点以下の温度まで表面処理鋼板を冷却した後、成形を開始する方法が提案されている。そして、特許文献3には、めっき層の凝固点以下の温度まで表面処理鋼板を冷却してから成形を開始することにより、液体金属脆化の抑制が可能であると記載されている。
英国特許第1490535号明細書 特許第3663145号公報 :特開2013−91099号公報
 特許文献3で提案された技術によると、液体金属脆化割れ、すなわち熱間プレス成形部材の表面に発生する深さ100μm程度のクラックを抑制し得る。しかし、特許文献3で提案された技術では、表面処理鋼板全体をめっき層の凝固点以下の温度まで冷却した状態でプレス成形している。そのため、成形温度の低下によりプレス成形時の鋼板の強度上昇および延性低下が起こり、成形荷重が増加する、成形時の鋼板の破断が生じ易くなる等、新たな問題が生じる。
 また、特許文献3で提案された技術では、液体金属脆化による割れ(熱間プレス成形部材の表面に発生し、めっき層−地鉄界面から地鉄内部方向への深さが100μm程度であって、界面にZnが検出されるクラック)は抑制される。しかし、熱間プレス成形部材の表面に発生する割れであって、めっき層−地鉄界面から地鉄内部方向への深さが約30μm以下であり、界面からはZnが検出されない微小割れが発生する場合がある。この微小割れはマイクロクラックと称され、めっき層−地鉄界面を貫通して地鉄(素地鋼板)の内部にまで至り、熱間プレス成形部材の諸特性(耐疲労特性等)に悪影響を及ぼす場合がある。
 本発明は、上記のような問題点に着目してなされたものである。すなわち、本発明の目的は、Zn系めっき鋼板に熱間プレスを施して熱間プレス成形部材を製造するに際し、熱間プレス成形時の過度な成形荷重の増加や鋼板の破断を抑制しつつ、マイクロクラックの生成を抑制する方法を提供すること、およびマイクロクラックの生成が抑制された熱間プレス成形部材を提供することにある。
 なお、マイクロクラックは従来から知られる液体金属割れとは深さが全く異なり、発生する位置や割れた界面でのZnの有無も異なっており、明らかに形態や現象が相違するものである。
 本発明者らは先ず、Zn系めっき鋼板を熱間プレス成形する際に問題となる微小割れ(マイクロクラック)を抑制する手段について検討した。
 マイクロクラックの生成メカニズムについては明確になっていないが、Zn系のめっき鋼板を高温で成形することによりめっき鋼板の表面に微小割れが発生する場合がある。この微小割れは、めっき層−地鉄(素地鋼板)界面からの深さが30μm以下程度の微小な割れであり、めっき層−地鉄(素地鋼板)界面を貫通して素地鋼板内部に至る。このような問題に対し、本発明者らが種々の検討を行った結果、熱間プレス成形時のめっき鋼板の温度を約400℃以下とすることにより、マイクロクラックが完全に抑制されることを明らかにした。更に、上記のように熱間プレス成形時のめっき鋼板温度を約400℃以下とすることで、金型へのめっき付着量も大幅に低減する効果が得られた。
 しかし、プレス成形時の鋼板温度が低くなると、鋼板の強度が上昇するため、成形荷重が増加する。また、プレス成形時の鋼板温度が低くなると、鋼板の延性が低下するため、成形時に鋼板の破断が発生し易くなる。このように、プレス成形時の鋼板温度が低くなると、熱間プレス成形の利点を生かすことができない。特に、プレス成形時のめっき鋼板が板厚方向全域に亘り約400℃以下に低下すると、これらの問題が顕著に生じて、プレス成形部材の品質が低下する、或いは生産性、歩留まりが低下する等、新たな問題が浮上する。
 そこで、本発明者らは、めっき鋼板の表層部のみを冷却した状態で、熱間プレス成形することに想到した。先述のとおり、マイクロクラックが発生し易いのは、めっき鋼板の表面近傍の領域である。したがって、本発明者らは、めっき鋼板の板厚方向中央部を高温状態に維持し、めっき鋼板の表層部のみを約400℃以下に冷却した状態で熱間プレス成形する場合であっても、マイクロクラックを抑制し得るものと推測した。
 上記推測の下、本発明者らが更に検討を行った結果、めっき鋼板の平均温度が500℃以上、或いはめっき鋼板の板厚方向中央部の温度が530℃以上であっても、めっき鋼板表面温度を400℃以下とし、めっき鋼板の表層付近のみ局所的に冷却された状態で熱間プレス成形すれば、マイクロクラックが抑制可能であるという知見を得た。また、熱間プレス成形時のめっき鋼板表面温度が400℃以下であっても、めっき鋼板の平均温度が500℃以上、或いはめっき鋼板の板厚方向中央部の温度が530℃以上であれば、プレス成形荷重の増加や成形時の鋼板の破断が抑制可能であるという知見を得た。
 ここで、上記知見を得るに至る実験について述べる。なお、以下の化学成分の含有量を示す「%」は「質量%」を意味する。
 まず、板厚1.6mmの冷延鋼板(化学成分:Fe−0.23%C−0.25%Si−1.40%Mn−0.01%P−0.005%S−0.0020%B−0.03%Al−0.005%N、Ac変態点:801℃)を素地鋼板とし、該素地鋼板表面にZn系めっき層(Zn−12質量%Niめっき、片面あたりの付着量65g/m)を形成した表面処理鋼板を用意した。次いで、表面処理鋼板に打ち抜き加工を施し、200mm×400mmのブランク板を得た。
 以上のようにして得られたブランク板を用い、先ずプレス成形試験を実施した。具体的には、ブランク板を、900℃に均一加熱し、700℃まで放冷した時点でブランク板表面を種々の条件で冷却し、表面の温度が400℃以下に低下したブランク板を金型(材料:SKD61、パンチ肩R:6mm、ダイス肩R:6mm)に挿入してプレス成形した。その後、金型内で15s保持して120℃以下まで冷却したのち離型し、図1に示すハット形状のプレス成形部材とした。なお、上記プレス成形は、パンチ−ダイスのクリアランス:1.6mmとし、しわ押さえ力:10tonfの絞り成形とした。
 上記において、ブランク板表面を水冷する条件は、水温、水量密度、注水時間を水温:10~30℃、水量密度:10~100000L/m・min、注水時間0.1~10.0sの範囲で変更し、様々な条件で水冷を実施した。また、プレス成形時、その成形荷重を測定した。
 得られたハット形状のプレス成形部材の縦壁部からサンプルを採取し、その表層の断面を、走査型電子顕微鏡(SEM)を用いて倍率1000倍で観察した。その結果、冷却後のブランク板表面温度が400℃以下となったいずれの条件でも、マイクロクラック(プレス部材表面に生じる微小割れであって、めっき層−素地鋼板の界面から板厚中央方向への深さが30μm以下である微小割れ)は観察されなかった。しかし、ブランク板表面を水冷する条件によって、プレス成形時の成形荷重が180~600tonfの範囲で変化した。
 そこで、上記と同種のブランク板(200mm×400mm)を、900℃に均一加熱し、700℃まで放冷した時点で前記プレス成形試験と同様にブランク板表面を種々の条件で冷却してブランク板表面を400℃以下とし、その後、プレス成形せずにそのまま放置し、ブランク板表面の温度履歴を放射温度計により測定した。その結果、前記の成形荷重が180~600tonfの範囲で変化したプレス成形試験の中で、成形荷重が300tonf以下と比較的低くなった水冷条件により水冷した後にプレス成形せずに放置した場合には、図2に示すように、プレス成形時間(ブランク板を金型にセットし、パンチが下死点に到達するまでに要する時間)に相当する期間でブランク板表面温度が400℃以下に冷却されたのち、復熱により温度が500℃以上に上昇する現象が確認された。このように、復熱により表面温度が大幅に上昇している場合、ブランク表面温度が400℃以下に冷却された場合であってもブランク板内部は高温状態を維持していると結論付けることができる。一方、成形荷重が300tonf超と比較的高くなった水冷条件により水冷した後にプレス成形せずに放置した場合には、復熱現象が観察されないか、観察される場合であってもその温度上昇量はわずかであった。
 以上の結果から、成形荷重が300tonf以下と比較的低くなる場合には、プレス成形時のブランク板表面温度が400℃以下であり且つブランク板の板厚方向に温度分布が生じていることが確認された。しかしながら、以上の結果からは、成形荷重が300tonf以下と比較的低くなる場合の、プレス成形時におけるブランク板内部温度を把握することができない。そこで、温度分布が生じたブランク板の平均温度を、以下の手法により求めた。
 上記と同種のブランク板(200mm×400mm)を、900℃に加熱したのち、空冷して種々の温度に均一冷却し、プレス成形した。プレス成形条件は、ブランク板の温度が板厚方向全域に亘り均一である点を除き、前記プレス成形試験と同じ条件とした。そして、プレス成形時のブランク板温度毎に、成形荷重を測定した。プレス成形時のブランク板温度は、金型に挿入する直前のブランク板を放射温度計で測定することにより求めた。なお、ブランク板の温度測定からプレス成形までに要する時間は1.5s程度であり、この間の温度低下は無視できる。
 図3は、ブランク板を均一冷却した場合のブランク板温度とプレス成形荷重との関係を示すグラフである。図3のとおり、ブランク板を均一冷却した場合、ブランク板温度が低下するにつれて成形荷重は増加する。そして、ブランク板温度が約500℃以上であれば、成形荷重が300tonf以下になることが確認された。これらの結果から、プレス成形時のブランク板表面温度が400℃以下であり且つ成形荷重が300tonf以下である場合、プレス成形時のブランク板平均温度は約500℃以上であると見なすことができる。
 以上により、プレス成形時のブランク板温度を、表面温度:400℃以下且つ平均温度:500℃以上とすることにより、プレス荷重の増大やブランク板の破断を招来することなくマイクロクラックを効果的に抑制できることが確認された。図4(a)に示すように、従来の熱間プレス成形法、例えば特許文献3で提案された熱間プレス成形法では、ブランク板温度が板厚方向全域に亘り均一な温度となる条件でプレス成形する。このような場合には、マイクロクラックの発生を十分に抑制することができず、熱間プレス成形部材の諸特性(耐疲労特性等)が劣化する。これに対し、図4(b)に示すように、所望の温度分布を有するブランク板をプレス成形することにより、プレス荷重の増大やブランク板の破断を伴うことなくマイクロクラックを抑制することができる。
 なお、図2に示すブランク板表面の温度履歴に基づき、ブランク板の板厚方向中央部の温度を伝熱計算により算出したところ、プレス成形時間に相当する期間でのブランク板の板厚方向中央部の温度は約530℃以上と推定された。すなわち、プレス成形時のブランク板温度を、平均温度:500℃以上とすることに代えて、板厚中央部温度:530℃以上とする場合であっても、表面温度が400℃以下であれば上記と同様の効果が得られるものと推定される。なお、伝熱計算は差分法を用いたが、有限要素法(FEM)等で求めてもよい。
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1] Zn系のめっき層が素地鋼板の表面に形成された表面処理鋼板に熱間プレスを施して熱間プレス成形部材を製造するにあたり、前記表面処理鋼板を、750℃以上1000℃以下の温度域に加熱した後、前記表面処理鋼板の表面を冷却し、前記表面処理鋼板の表面温度が400℃以下であり且つ前記表面処理鋼板の平均温度が500℃以上である条件で熱間プレス成形する熱間プレス成形部材の製造方法。
[2] Zn系のめっき層が素地鋼板の表面に形成された表面処理鋼板に熱間プレスを施して熱間プレス成形部材を製造するにあたり、前記表面処理鋼板を、750℃以上1000℃以下の温度域に加熱した後、前記表面処理鋼板の表面を冷却し、前記表面処理鋼板の表面温度が400℃以下であり且つ前記表面処理鋼板の板厚方向中央部の温度が530℃以上である条件で熱間プレス成形する熱間プレス成形部材の製造方法。
[3] 前記[1]または[2]において、前記めっき層が、Zn−Niめっき層であり、該Zn−Niめっき層中のNi含有量が質量%で9%以上25%以下である熱間プレス成形部材の製造方法。
[4] 前記[1]または[2]において、前記めっき層が、Zn−Feめっき層であり、該Zn−Feめっき層中のFe含有量が質量%で5%以上80%以下である熱間プレス成形部材の製造方法。
[5] 前記素地鋼板が、質量%で、C:0.15%以上0.50%以下、Si:0.05%以上2.00%以下、Mn:0.50%以上3.00%以下、P:0.10%以下、S:0.050%以下、B:0.0002%以上0.0050%以下、Al:0.10%以下およびN:0.010%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有することを特徴とする前記[1]~[4]のいずれかに記載の熱間プレス成形部材の製造方法。
[6] 前記素地鋼板が、さらに質量%で、Cr:0.01%以上0.5%以下、V:0.01%以上0.5%以下、Mo:0.01%以上0.5%以下およびNi:0.01%以上0.5%以下のうちの少なくとも1種を含有することを特徴とする前記[5]に記載の熱間プレス成形部材の製造方法。
[7] 前記素地鋼板が、さらに質量%で、Ti:0.01%以上0.20%以下を含有することを特徴とする前記[5]または[6]に記載の熱間プレス成形部材の製造方法。
[8] 前記素地鋼板が、さらに質量%で、Nb:0.01%以上0.10%以下を含有することを特徴とする前記[5]~[7]のいずれかに記載の熱間プレス成形部材の製造方法。
[9] 前記素地鋼板が、さらに質量%で、Sb:0.003%以上0.03%以下を含有することを特徴とする前記[5]~[8]のいずれかに記載の熱間プレス成形部材の製造方法。
[10] 前記[1]~[9]のいずれかに記載の方法により製造された熱間プレス成形部材。
 本発明によると、Zn系めっき鋼板に熱間プレスを施して熱間プレス成形部材を製造する際、従来から問題とされていた液体金属脆化割れや微小割れ(マイクロクラック)を抑制することができる。また、本発明によると、熱間プレス成形時の成形荷重の増加や鋼板の破断を生じることなく上記問題を解決することができる。したがって、本発明は、防食性能に優れたZn系めっき層を表面に備えた熱間プレス成形部材の品質向上および生産性向上に寄与し、産業上格段の効果を奏する。
プレス成形部材の形状を示す図である。((a)は斜視図、(b)は断面図。) 表面処理鋼板(ブランク板)を表面冷却した場合の表面温度履歴を示す図である。 表面処理鋼板(ブランク板)の温度とプレス成形荷重との関係を示す図である。 (a)従来の熱間プレス成形部材の製造方法における熱履歴を示す図である。(b)本発明に従う熱間プレス成形部材の製造方法における熱履歴を示す図である。 プレス成形部材の表面に発生したマイクロクラックの概略図である。 (a)比較例(表2の部材No.23)の熱間プレス成形部材の表層部断面をSEM観察した結果を示す図である。(b)発明例(表2の部材No.14)の熱間プレス成形部材の表層部断面をSEM観察した結果を示す図である。
 以下、本発明について具体的に説明する。
 本発明は、Zn系めっき層が素地鋼板表面に形成された表面処理鋼板を加熱し、金型で熱間プレス成形して所定の部材形状とする熱間プレス成形部材の製造方法、および当該方法により製造された熱間プレス成形部材である。そして、本発明は、前記表面処理鋼板を、750℃以上1000℃以下の温度域に加熱した後、前記表面処理鋼板の表面を冷却し、前記表面処理鋼板の表面温度が400℃以下であり且つ前記表面処理鋼板の平均温度が500℃以上である条件、或いは前記表面処理鋼板の表面温度が400℃以下であり且つ前記表面処理鋼板の板厚方向中央部の温度が530℃以上である条件で、熱間プレス成形することを特徴とする。
 なお、本発明においては、表面処理鋼板を、金型を用いて所望の形状に熱間プレス成形しつつ、金型内で抜熱して焼入れすることが好ましい。但し、焼入れを伴わない場合であっても、本発明の効果(マイクロクラックの抑制等)を十分に発揮し得る。
 熱間プレス成形部材の素材としては、Zn系めっき層が素地鋼板表面に形成された表面処理鋼板を用いる。鋼板表面にZn系めっき層を設けることにより、熱間プレス成形時の耐酸化性を確保することができる。また、鋼板表面にZn系めっき層を設けることにより、熱間プレス成形後の部材の耐食性を確保することができる。なお、素地鋼板の種類は特に問わないが、素地鋼板の板厚は、プレス成形性や熱間プレス成形部材の剛性、熱間プレス時に所望とする鋼板の温度分布の確保等の観点から、0.8mm以上5.0mm以下とすることが好ましい。
 Zn系めっき層の種類は特に限定されず、純Znめっき層のほか、Zn−Feめっき層、Zn−Niめっき層などを例示することができる。また、素地鋼板表面にZn系めっき層を形成する方法は特に限定されず、溶融めっき、電気めっきなどいずれの方法でもよい。めっきの付着量は、片面あたり10g/m以上90g/m以下とすることが好ましい。
 Zn系めっき層をZn−Feめっき層とする場合、めっき層中のFe含有量については特に限定するものではないが、5質量%以上80質量%以下とすることが好ましい。めっき層中のFe含有量が5質量%以上であれば、Zn−Feめっき特有の優れた機能を発揮する。一方、80質量%を超えると耐食性、塗装密着性、溶接性等が劣化し易くなる。
 Zn系めっき層をZn−Niめっき層とする場合、めっき層中のNi含有量を9質量%以上25質量%以下とすることが好ましい。電気めっき法によりZn−Niめっき層を素地鋼板表面に形成する際、めっき層中のNi含有量を9質量%以上25質量%以下とすることで、NiZn11、NiZn、NiZn21のいずれかの結晶構造を有するγ相が形成される。このγ相は、融点が高いことから、熱間プレス成形前の表面処理鋼板加熱時に懸念されるめっき層の蒸発を抑制するうえで有利となる。また、熱間プレス成形時に問題となる液体金属脆化の抑制にも有利となる。
 本発明においては、上記の表面処理鋼板を、所定温度に加熱し、表面のみを冷却したのち熱間プレス成形する。ここで、表面処理鋼板の加熱温度が750℃未満であると、熱間プレス成形時に、表面処理鋼板の平均温度や板厚方向中央部の温度を後述する所望の温度条件とすることが困難になる。一方、表面処理鋼板の加熱温度が1000℃を超えると、めっき層の蒸発や表層部での酸化物の過度な生成により、耐酸化性や熱間プレス成形部材の耐食性が低下する。したがって、加熱温度は750℃以上1000℃以下とする。好ましくは、800℃以上950℃以下である。
 なお、表面処理鋼板を、金型を用いて所望の形状に熱間プレス成形しつつ、金型内で抜熱して焼入れする場合には、表面処理鋼板の加熱温度を素地鋼板のAc変態点以上とする必要がある。また、熱間プレス成形部材の高強度化を図る観点からは、表面処理鋼板の加熱温度を素地鋼板のAc変態点以上とし、素地鋼板をオーステナイト単相組織とすることが好ましい。
 表面処理鋼板の加熱方法は特に限定されず、電気炉や誘導加熱炉、直接通電加熱炉による加熱等、いずれの方法であってもよい。また、本発明においては、表面処理鋼板を上記温度域(750℃以上1000℃以下)に一定時間滞留させなくてもよい。すなわち、表面処理鋼板全体が上記温度域に加熱され次第、直ちに次工程(表面を冷却する工程)に移行してもよい。なお、表面処理鋼板を上記温度域(750℃以上1000℃以下)に一定時間滞留させる場合には、その滞留時間を1000s以下とすることが好ましい。
 表面処理鋼板を上記温度域に加熱した後、表面処理鋼板の表面を冷却し、表面処理鋼板の表面温度が400℃以下であり且つ表面処理鋼板の平均温度が500℃以上である条件で熱間プレス成形を行う。熱間プレス成形時の表面処理鋼板の表面温度が400℃を超えると、マイクロクラックの発生が避けられない。一方、熱間プレス成形時の表面処理鋼板の平均温度が500℃未満では、プレス成形荷重が増加したり、プレス成形時に表面処理鋼板の破断が生じ易くなる。また、熱間プレス成形前に表面処理鋼板の平均温度が500℃未満になると、プレス成形前の素地鋼板にフェライトやベイナイトが生成し、プレス成形後に十分な強度が得られない場合がある。
 以上の理由により、表面処理鋼板の表面を冷却し、表面処理鋼板の表面温度が400℃以下であり且つ前記表面処理鋼板の平均温度が500℃以上である条件で熱間プレス成形を行う。より好ましくは、表面処理鋼板の表面温度が350℃以下、表面処理鋼板の平均温度が530℃以上である条件で、熱間プレス成形を行う。
 ただし、表面処理鋼板の表面温度が150℃未満になると、プレス成形時に破断が生じ易くなるので、150℃以上とすることが好ましい。
 また、表面処理鋼板の平均温度の上限は、液体金属脆化割れを防ぐため、めっきの融点未満とするのがよい。
 また、上記において、熱間プレス成形時の表面処理鋼板の平均温度を500℃以上とすることに代えて、表面処理鋼板の板厚方向中央部の温度が530℃以上である条件で熱間プレス成形を行ってもよい。熱間プレス成形時の表面処理鋼板の板厚方向中央部の温度を530℃以上とすることにより、平均温度を500℃以上とする場合と同様の効果が得られる。なお、表面処理鋼板の板厚方向中央部の温度の上限も、平均温度と同じく、めっきの融点未満とするのがよい。
 なお、表面処理鋼板の表面温度は、例えば放射温度計を用いて測定することができる。一方、表面処理鋼板の平均温度は、例えば熱間プレス成形時の成形荷重から予測することができる。
 被成形材である鋼板の温度が高温化するにつれ、鋼板強度が低下するため、熱間プレス成形に必要な成形荷重は小さくなる。逆に、被成形材である鋼板の温度が低温化するにつれ、鋼板強度が上昇するため、熱間プレス成形に必要な成形荷重は大きくなる。したがって、表面処理鋼板を加熱した後、様々な温度に均一冷却(板厚方向全域に亘り均一な温度に冷却)して熱間プレス成形を行うことで、表面処理鋼板温度と熱間プレス成形時の成形荷重との相関関係を事前に解析しておくことができる。そして、本発明に従い、表面のみを冷却して板厚方向に温度分布が生じた表面処理鋼板を熱間プレス成形し、その際に測定される成形荷重を事前に解析した相関関係に当てはめることによって得られる表面処理鋼板温度を、熱間プレス成形時における表面処理鋼板の平均温度と見なすことができる。
 表面処理鋼板の板厚方向中央部の温度は、例えば有限要素法や差分法による伝熱計算により求めることができる。なお、表面処理鋼板の平均温度も、上記のプレス成形荷重から予測することに代えて、有限要素法や差分法による伝熱計算により求めてもよい。
 表面処理鋼板の表面を冷却する方法は特に限定されない。すなわち、所望の温度分布(表面温度:400℃以下、且つ平均温度:500℃以上、または板厚方向中央部温度:530℃以上)を有する表面処理鋼板が得られる限り、水冷、ミスト冷却、高圧ガスによる冷却、金型接触による冷却など、いずれの冷却方法を採用してもよい。
 表面処理鋼板の表面を水冷する場合には、表面処理鋼板の加熱温度等に応じて水温、水量密度、注水時間等を例えば水温:10~30℃、水量密度:500~100000L/m・min、注水時間:0.1~3.0sの範囲で適宜調整することにより、所望の温度分布を有する表面処理鋼板が得られる。
 表面処理鋼板の表面をミスト冷却する場合には、表面処理鋼板の加熱温度等に応じて気水比、水温、エア流量密度、噴霧時間等を例えば気水比(常温常圧):10~10000、水温:10~30℃、エア流量密度:0.5~2Nm/m・s、噴霧時間0.1~3.0sの範囲で適宜調整することにより、所望の温度分布を有する表面処理鋼板が得られる。
 表面処理鋼板の表面を高圧ガスにより冷却する場合には、例えばHガス、Nガス、Heガス等を1~3atmの高圧で表面処理鋼板に吹き付けることにより、所望の温度分布を有する表面処理鋼板が得られる。この際、表面処理鋼板の加熱温度等に応じてガス噴射量、ガス噴射時間等を、例えばガス噴射量:1.0~30Nm/m・s、ガス噴射時間:0.5~5.0sの範囲で適宜調整すればよい。
 なお、表面処理鋼板を所望の温度分布にするための冷却条件は、表面処理鋼板の板厚や加熱温度、表面処理鋼板の表面を冷却してから熱間プレス成形を実施するまでに要する時間等によって異なるため、最適な冷却条件を予測することが困難となる場合が多い。したがって、様々なケース(表面処理鋼板の板厚等)について予備実験を実施し、ケース毎に最適な冷却条件を事前に求めておくことが好ましい。
 例えば、板厚1.6mmの冷延鋼板(化学成分(質量%):Fe−0.23%C−0.25%Si−1.40%Mn−0.01%P−0.005%S−0.0020%B−0.03%Al−0.005%N、Ac変態点:801℃)を素地鋼板とし、該素地鋼板表面にZn系めっき層(Zn−12質量%Niめっき、片面あたりの付着量65g/m)を形成した表面処理鋼板から得たブランク板を用いる場合には、以下の条件でこのブランク板の表面の冷却を行うことにより、所望の温度分布(表面温度:400℃以下、且つ平均温度:500℃以上、または板厚方向中央部温度:530℃以上)が得られる。
 すなわち、ブランク板を900℃に均一加熱し、700℃まで放冷する。ついで、当該ブランク板表面を、水温:10℃、水量密度:10000L/m・min、注水時間:0.3sの条件で水冷し、表面温度を250℃まで冷却することで、上記した所望の温度分布を得ることができる。
 以上のように、加熱後の表面処理鋼板の表面を冷却し、表面処理鋼板の表面温度が400℃以下であり且つ表面処理鋼板の平均温度が500℃以上である条件で熱間プレス成形を行うことにより、熱間プレス成形時の成形荷重の増加や鋼板の破断を生じることなく、マイクロクラックを抑制することができる。また、上記において、表面処理鋼板の平均温度を500℃以上とすることに代えて、表面処理鋼板の板厚方向中央部温度を530℃以上にする場合であっても、上記と同様の効果が得られる。なお、素地鋼板の板厚は0.8~5.0mm程度であるのに対し、めっき層の厚さは概ね5~20μmと極めて薄い。したがって、熱間プレス成形時におけるめっき層−素地鋼板界面近傍の温度は、表面処理鋼板の表面温度とほぼ同温になっているものと推測される。
 表面処理鋼板の熱間プレス成形後、成形部材を直ちに離型してもよいし、金型内に所定時間保持して素地鋼板を焼入れ組織としてもよい。熱間プレス成形後、素地鋼板を焼入れして熱間プレス成形部材の高強度化を図る場合には、金型内で5秒以上保持し、熱間プレス成形後の素地鋼板温度を150℃以下とすることが好ましい。また、金型内での素地鋼板の冷却速度は、30℃/s以上とすることが好ましい。この冷却速度は、例えばブランク板(表面処理鋼板)の寸法等に応じて金型の材料や質量(熱伝導率や熱容量)を選択して抜熱能を調整すること、或いは冷却機能を備えた金型(例えば、水等の冷却媒体用通路を内部に設けた金型)を用いることにより、所望の速度に制御することができる。
 なお、金型内に所定時間保持して素地鋼板を焼入れ組織とし、熱間プレス成形部材の高強度化を図る場合には、素地鋼板として、例えば、質量%で、C:0.15%以上0.50%以下、Si:0.05%以上2.00%以下、Mn:0.50%以上3.00%以下、P:0.10%以下、S:0.050%以下、B:0.0002%以上0.0050%以下、Al:0.10%以下およびN:0.010%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する熱延鋼板や冷延鋼板を用いることができる。各成分の限定理由を以下に説明する。ここで、成分の含有量を示す「%」は特に断らない限り「質量%」を意味する。
 C :0.15%以上0.50%以下
 Cは、鋼の強度を向上させる元素であり、熱間プレス成形部材の高強度化を図るうえでは、その含有量を0.15%以上とすることが好ましい。一方、C含有量が0.50%を超えると、熱間プレス成形部材の溶接性や素材(素地鋼板)のブランキング性が著しく低下する。したがって、C含有量は0.15%以上0.50%以下とすることが好ましく、0.20%以上0.40%以下とすることがより好ましい。
 Si:0.05%以上2.00%以下
 Siは、Cと同様に鋼の強度を向上させる元素であり、熱間プレス成形部材の高強度化を図るうえでは、その含有量を0.05%以上とすることが好ましい。一方、Si含有量が2.00%を超えると、素地鋼板を製造する際、熱間圧延時に赤スケールと呼ばれる表面欠陥の発生が著しく増大する。したがって、Si含有量は0.05%以上2.00%以下とすることが好ましく、0.10%以上1.50%以下とすることがより好ましい。
 Mn:0.50%以上3.00%以下
 Mnは、鋼の焼入れ性を高める元素であり、熱間プレス成形後の冷却過程で素地鋼板のフェライト変態を抑制して焼入れ組織を得るのに効果的な元素である。また、Mnは、鋼のAc変態点を低下させる作用を有するため、熱間プレス成形前の表面処理鋼板の加熱温度を低温化するのに有効な元素である。このような効果の発現には、Mn含有量を0.50%以上とすることが好ましい。一方、Mn含有量が3.00%を超えると、Mnが偏析して素地鋼板および熱間プレス成形部材の材料特性の均一性が低下する。したがって、Mn含有量は0.50%以上3.00%以下とすることが好ましく、0.75%以上2.50%以下とすることがより好ましい。
 P :0.10%以下
 P含有量が0.10%を超えると、Pが粒界に偏析して素地鋼板および熱間プレス成形部材の低温靱性が低下する。したがって、P含有量は0.10%以下とすることが好ましく、0.01%以下とすることがより好ましい。ただし、過度のP低減は、製鋼工程におけるコストの増加を招く。そのため、Pは0.001%以上とすることが好ましい。
 S :0.050%以下
 Sは、Mnと結合して粗大な硫化物を形成し、鋼の延性低下を招く元素である。そのため、S含有量は極力低減することが好ましいが、0.050%までは許容できる。したがって、S含有量は0.050%以下とすることが好ましく、0.010%以下とすることがより好ましい。ただし、過度のS低減は、製鋼工程における脱硫コストの増加を招く。そのため、Sは0.0005%以上とすることが好ましい。
 B :0.0002%以上0.0050%以下
 Bは、鋼の焼入れ性を高める元素であり、熱間プレス成形後に素地鋼板を冷却する際、オーステナイト粒界からのフェライト生成を抑制して焼入れ組織を得るのに有効な元素である。このような効果は、B含有量を0.0002%以上とすることにより得られるが、B含有量が0.0050%を超えると、その効果は飽和し、コストアップの要因となる。したがって、Bは0.0002%以上0.0050%以下とすることが好ましい。より好ましくは0.0005%以上0.0030%以下である。
 Al:0.10%以下
 Al含有量が0.10%を超えると、酸化物系介在物の増加を招き、鋼の延性が低下する。したがって、Al含有量は0.10%以下とすることが好ましく、0.07%以下とすることがより好ましい。但し、Alは、脱酸剤としての作用を有し、鋼の清浄度向上の観点からは、その含有量を0.01%以上とすることが好ましい。
 N :0.010%以下
 N含有量が0.010%を超えると、素地鋼板中にAlの窒化物が形成され、熱間プレス成形時の成形性の低下を招く。したがって、N含有量は0.010%以下とすることが好ましく、0.005%以下とすることがより好ましい。ただし、過度のN低減は製鋼工程におけるコストの増加を招く。そのため、Nは0.0005%以上とすることが好ましい。
 以上が本発明における素地鋼板の好ましい基本成分であるが、該素地鋼板は、必要に応じて更に以下の元素を含有してもよい。
 Cr:0.01%以上0.5%以下、V:0.01%以上0.5%以下、Mo:0.01%以上0.5%以下およびNi:0.01%以上0.5%以下のうちの少なくとも1種
 Cr、V、Mo、Niは、いずれも鋼の焼入れ性を向上させるのに有効な元素である。この効果は、いずれの元素の場合も含有量を0.01%以上とすることにより得られる。しかし、Cr、V、Mo、Niは、いずれも含有量が0.5%を超えると上記効果は飽和し、コストアップの要因となる。したがって、Cr、V、Mo、Niのいずれか1種以上を含有する場合には、それぞれ含有量を0.01%以上0.5%以下とすることが好ましく、0.1%以上0.4%以下とすることがより好ましい。
 Ti:0.01%以上0.20%以下
 Tiは、鋼の強化に有効な元素である。Tiによる強度向上効果は、その含有量を0.01%以上とすることにより得られ、本発明で規定した範囲内であれば、鋼の強化に使用して差し支えない。しかし、Ti含有量が0.20%を超えると、その効果は飽和し、コストアップの要因となる。したがって、Tiを含有する場合には、その含有量を0.01%以上0.20%以下とすることが好ましく、0.01%以上0.05%以下とすることがより好ましい。
 Nb:0.01%以上0.10%以下
 Nbも、鋼の強化に有効な元素である。Nbによる強度向上効果は、その含有量を0.01%以上とすることにより得られ、本発明で規定した範囲内であれば、鋼の強化に使用して差し支えない。しかし、Nb含有量が0.10%を超えると、その効果は飽和し、コストアップの要因となる。したがって、Nbを含有する場合には、その含有量を0.01%以上0.10%以下とすることが好ましく、0.01%以上0.05%以下とすることがより好ましい。
 Sb:0.003%以上0.03%以下
 Sbは、熱間プレス成形前に表面処理鋼板を加熱してから熱間プレス成形の一連の処理によって冷却するまでの間に、素地鋼板表層部に生じる脱炭層を抑制する効果を有する。このような効果の発現には、Sb含有量を0.003%以上とすることが好ましい。しかし、Sb含有量が0.03%を超えると、素地鋼板製造時に圧延荷重の増大を招き、生産性の低下が懸念される。したがって、Sbを含有する場合には、その含有量を0.003%以上0.03%以下とすることが好ましく、0.005%以上0.01%以下とすることがより好ましい。
 なお、上記以外の成分(残部)は、Feおよび不可避的不純物である。
 以上のような組成を有する素地鋼板を用い、熱間プレス成形前の表面処理鋼板を素地鋼板のAc変態点以上の温度に加熱して所望の温度条件で熱間プレス成形した後、金型内で5秒以上保持して30℃/s以上の冷却速度で素地鋼板を150℃以下に冷却すれば、素地鋼板の組織をマルテンサイト組織とすることができる。その結果、耐食性に優れ、且つ引張強さ:1300MPa以上の強度を有する熱間プレス成形部材が得られる。
 また、本発明の熱間プレス成形方法は、一般的に強度が高く、加工が困難である素地鋼板に適用する場合であっても、成形荷重の増加や鋼板の破断を生じることなく、液体金属脆化割れや微小割れ(マイクロクラック)を抑制することができる。このため、本発明の熱間プレス成形方法は、上記のような成分組成を有する高強度の素地鋼板に適用して、極めて有利である。
 なお、本発明において熱間プレス成形部材の素材として用いる表面処理鋼板は、その製造条件に特段の制限はない。素地鋼板の製造条件は特に限定されず、例えば所定の成分組成を有する熱延鋼板(酸洗鋼板、板厚:約2.0mm以上5.0mm以下)を素地鋼板とすることができる。また、上記の熱延鋼板(酸洗鋼板)に、冷間圧延を施すことにより得られる冷延鋼板(板厚:約0.8mm以上2.3mm以下)を素地鋼板としてもよい。
 素地鋼板の表面に、Zn系めっき層を形成して表面処理鋼板とする際の条件も、特に限定されない。素地鋼板として熱延鋼板(酸洗鋼板)を用いる場合には、熱延鋼板(酸洗鋼板)に、焼鈍処理および溶融Znめっき処理を施すことにより、表面処理鋼板とすることができる。上記溶融Znめっき処理に続き、合金化処理を施すことにより、表面処理鋼板としてもよい。また、熱延鋼板(酸洗鋼板)に、電気Znめっき処理を施すことにより、表面処理鋼板とすることもできる。一方、素地鋼板として冷延鋼板を用いる場合には、冷延鋼板に、焼鈍処理を施した後、溶融Znめっき処理を施すことにより、表面処理鋼板とすることができる。上記溶融Znめっき処理に続き、合金化処理を施すことにより、表面処理鋼板としてもよい。また、冷延鋼板に、電気Znめっき処理を施すことにより、表面処理鋼板とすることもできる。電気Znめっき処理に先立ち、冷延鋼板に焼鈍処理を施してもよい。
 例えば、素地鋼板表面に溶融Znめっき層を形成する場合には、素地鋼板を連続溶融亜鉛めっきラインに通板して焼鈍処理を施した後、440℃以上500℃以下の亜鉛めっき浴に浸漬することにより、溶融Znめっき層を形成することができる。溶融Znめっき層の付着量は、ガスワイピング法等により所望の付着量(例えば、片面あたり10g/m以上90g/m以下)に調整すればよい。
 素地鋼板表面にZn−Feめっき層を形成する場合には、例えば、上記と同様の方法により素地鋼板表面にZnめっき層を形成した後、合金化炉で460℃以上600℃以下の温度域に加熱し、該温度域に5s以上60s以下滞留させる合金化処理を施すことにより、Zn−Feめっき層を形成することができる。なお、めっき層中のFe含有量は、合金化炉での加熱温度や該加熱温度での滞留時間を上記の範囲内で適宜調整することにより、所望のFe含有量(例えば、5質量%以上80質量%以下)とすることができる。
 素地鋼板表面にZn−Niめっき層を形成する場合には、例えば素地鋼板を、脱脂、酸洗した後、100g/L以上400g/L以下の硫酸ニッケル六水和物、10g/L以上400g/L以下の硫酸亜鉛七水和物を含有するpH1.0以上3.0以下、浴温30℃以上70℃以下のめっき浴中で、10A/dm以上150A/dm以下の電流密度で電気めっき処理を行うことにより、Zn−Niめっき層を形成することができる。なお、素地鋼板として冷延鋼板を用いる場合には、上記脱脂、酸洗に先立ち、冷延鋼板に焼鈍処理を施してもよい。めっき層中のNi含有量は、硫酸亜鉛七水和物の濃度や電流密度を上記の範囲内で適宜調整することにより、所望のNi含有量(例えば、9質量%以上25質量%以下)とすることができる。また、Zn−Niめっき層の付着量は、通電時間を調整することにより、所望の付着量(例えば、片面あたり10g/m以上90g/m以下)とすることができる。
 表1に示す成分を有する鋼を溶製して鋳片として、該鋳片を1200℃に加熱し、870℃の仕上げ圧延終了温度で熱間圧延を施した後、600℃で巻き取り、熱延鋼板とした。次いで、該熱延鋼板を酸洗後、65%の圧下率で冷間圧延し、板厚1.6mmの冷延鋼板とした。表1に記載のAc変態点は、以下の(1)式より算出した(William C.Leslie著、幸田成康監訳、熊井浩、野田龍彦訳、「レスリー鉄鋼材料学」、丸善株式会社、1985年、p.273参照)。
 Ac(℃)=910−203√[C]+44.7×[Si]−30×[Mn]+700×[P]+400×[Al] ・・・(1)
 なお、(1)式において、[C]、[Si]、[Mn]、[P]、[Al]は、各元素(C、Si、Mn、P、Al)の含有量(質量%)である。
 以上のようにして得られた冷延鋼板を素地鋼板とし、素地鋼板の表面に、純Znめっき層、Zn−Feめっき層(Fe含有量:8~70質量%)、Zn−Niめっき層(Ni含有量:10~23質量%)の各めっき層を形成して表面処理鋼板とした。各めっき層は、以下の条件で形成した。
 <純Znめっき層>
 冷延鋼板を連続溶融亜鉛めっきラインに通板し、10℃/sの昇温速度で800℃以上900℃以下の温度域まで加熱し、該温度域に10s以上120s以下滞留させた後、15℃/sの冷却速度で460℃以上500℃以下の温度域まで冷却し、450℃の亜鉛めっき浴に浸漬することにより、Znめっき層を形成した。Znめっき層の付着量は、ガスワイピング法により所定の付着量に調整した。
 <Zn−Feめっき層>
 冷延鋼板を連続溶融亜鉛めっきラインに通板し、10℃/sの昇温速度で800℃以上900℃以下の温度域まで加熱し、該温度域に10s以上120s以下滞留させた後、15℃/sの冷却速度で460℃以上500℃以下の温度域まで冷却し、450℃の亜鉛めっき浴に浸漬することにより、Znめっき層を形成した。Znめっき層の付着量は、ガスワイピング法により所定の付着量に調整した。ガスワイピング法により所定の付着量に調整した後、直ちに合金化炉で500~550℃に加熱して5~60s保持することにより、Zn−Feめっき層を形成した。めっき層中のFe含有量は、合金化炉での加熱温度や該加熱温度での滞留時間を上記の範囲内で変更することにより、所定の含有量とした。
 <Zn−Niめっき層>
 冷延鋼板を連続焼鈍ラインに通板し、10℃/sの昇温速度で800℃以上900℃以下の温度域まで加熱し、該温度域に10s以上120s以下滞留させた後、15℃/sの冷却速度で400℃以上500℃以下の温度域まで冷却した。次いで、脱脂、酸洗した後、200g/Lの硫酸ニッケル六水和物、10~300g/Lの硫酸亜鉛七水和物を含有するpH1.3、浴温50℃のめっき浴中、30~100A/dmの電流密度で10~100s通電する電気めっき処理を行うことにより、Zn−Niめっき層を形成した。めっき層中のNi含有量は、硫酸亜鉛七水和物の濃度や電流密度を上記の範囲内で適宜調整することにより、所定の含有量とした。また、Zn−Niめっき層の付着量は、通電時間を上記の範囲内で適宜調整することにより、所定の付着量とした。
 以上のようにして得られた表面処理鋼板から、200mm×400mmのブランク板を打抜き、該ブランク板を、大気雰囲気の電気炉により加熱したのち、ブランク板の表面を冷却し、その後、金型(材料:SKD61)を用いてプレス成形を行った。そして、金型内で冷却した後、離型することにより、図1に示すハット形状のプレス成形部材を製造した。プレス成形は、パンチ肩R:6mm、ダイス肩R:6mmの金型を用い、パンチ−ダイスのクリアランス:1.6mmとし、しわ押さえ力:10tonfの絞り成形にて行った。
 ブランク板の加熱温度、該加熱温度での保持時間、ブランク板の表面冷却方法、プレス成形開始時におけるブランク板の表面温度、平均温度、板厚方向中央部の温度、プレス成形荷重、金型内での保持時間(金型下死点位置での保持時間)プレス成形後の離型温度を、表2に示す。
 プレス成形前の冷却は、ブランク板を金型にセットした状態で、ブランク板の表面を水冷または高圧ガス冷却することにより行った。このとき、冷却後のブランク板、すなわちプレス成形時のブランク板の表面温度、平均温度または板厚方向中央部温度を目標の範囲とするために、水冷時の水量、水圧および高圧ガス冷却時のガス温度、ガス圧を適宜調整した。なお、表2に示す実施例のうち、水冷する発明例においては、水冷条件を、水温:10~30℃、水量密度:500~100000L/m・min、注水時間:0.1~3.0sの範囲で適宜調整することにより、所望の表面温度、平均温度または板厚方向中央部温度とした。表2に示す実施例のうち、高圧ガス冷却する発明例においては、高圧ガス冷却条件を、Nガス、HガスまたはHeガスを1~3atmの高圧でブランク板表面に吹き付け、ガス噴射量:1.0~30Nm/m・s、ガス噴射時間:0.5~5.0sの範囲で適宜調整することにより、所望の表面温度、平均温度または板厚方向中央部温度とした。
 プレス前のブランク板表面の温度は、放射温度計にて測定した。なお、ブランク板の表面温度測定からプレス成形までに要する時間は1.5s程度であった。プレス成形時のブランク板の平均温度は、先述の手法に従い、プレス成形荷重から推定して求めた。すなわち、ブランク板を、900℃程度に加熱した後、成形開始まで空冷で均一冷却し、種々の温度でプレス成形を行って求めたブランク板と成形荷重の相関関係をもとに、本実施例での成形荷重からブランク板の平均温度を推定した。
 プレス成形時のブランク板の板厚方向中央部の温度は、有限要素法による伝熱計算により求めた。
 得られたハット形状のプレス成形部材の縦壁部からサンプルを採取し、その表層の断面を、走査型電子顕微鏡(SEM)を用いて倍率1000倍で各サンプルにつき10視野以上観察し、マイクロクラック(サンプル表面に生じる微小割れであって、めっき層−素地鋼板の界面からの深さが30μm以下であり、めっき層−素地鋼板の界面を貫通して素地鋼板内部に至る微小割れ)の有無、およびマイクロクラックの平均深さを調べた。マイクロクラックの平均深さは、任意のマイクロクラック20個分のマイクロクラック深さの平均値として求めた。なお、ここでいう「マイクロクラック深さ」とは、図5に示すように、マイクロクラック3の、めっき層1−素地鋼板2の界面から測定される板厚中央方向への割れの長さ(図5中、hの長さ)を意味する。観察されるマイクロクラックの個数が20個未満である場合には、観察される全てのマイクロクラック深さの平均を平均深さとした。なお、マイクロクラック以外の割れ(サンプル表面に生じる割れであって、めっき層−素地鋼板の界面からの深さが30μm超の割れ)の有無も確認した。
 また、得られたサンプル(ハット形状のプレス成形部材の縦壁部から採取したサンプル)の断面を研磨し、その板厚方向中央部の硬さをマイクロビッカース硬度計にて求めた。これらの結果も、表2に併せて示す。
 さらに、得られたプレス成形部材の縦壁部から、JIS 13 B号引張試験片を採取した。この採取した試験片を用いて、JIS G 0567(1998)に準拠して引張試験を行い、室温(22±5℃)における引張強さを測定した。なお、引張試験はいずれも、クロスヘッドスピード:10mm/minで行った。これらの結果も、表2に併せて示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 発明例、比較例のいずれの熱間プレス成形部材についても、めっき層−素地鋼板の界面からの深さが30μmを超える割れは観察されなかった。
 しかし、比較例の熱間プレス成形部材の一部には、マイクロクラック(めっき層−素地鋼板の界面を貫通して素地鋼板内部に至る微小割れ)が観察された。また、比較例の熱間プレス成形部材のうち、マイクロクラックが観察されなかった部材に関しては、熱間プレス成形時の成形荷重が300tonfを上回っていた。
 これに対し、発明例の熱間プレス成形部材は、いずれもマイクロクラック(めっき層−素地鋼板の界面を貫通して素地鋼板内部に至る微小割れ)が観察されず、熱間プレス成形時の成形荷重も300tonf未満の低い値となった。また、発明例の熱間プレス成形部材では、いずれも1300MPa以上の引張強さが得られた。
 図6に、上記SEM観察の結果の一部を示す。図6の(a)は、表2の部材No.23(比較例)のSEM観察結果であり、微小割れが素地鋼板内部に至っている様子が確認できる。一方、図6の(b)は表2の部材No.14(発明例)のSEM観察結果であり、めっき層の割れはあるが、素地鋼板内部に至るようなマイクロクラックは認められない。
 1 … めっき層
 2 … 素地鋼板
 3 … マイクロクラック
 h … マイクロクラック深さ

Claims (10)

  1.  Zn系のめっき層が素地鋼板の表面に形成された表面処理鋼板に熱間プレスを施して熱間プレス成形部材を製造するにあたり、
     前記表面処理鋼板を、750℃以上1000℃以下の温度域に加熱した後、前記表面処理鋼板の表面を冷却し、前記表面処理鋼板の表面温度が400℃以下であり且つ前記表面処理鋼板の平均温度が500℃以上である条件で熱間プレス成形する熱間プレス成形部材の製造方法。
  2.  Zn系のめっき層が素地鋼板の表面に形成された表面処理鋼板に熱間プレスを施して熱間プレス成形部材を製造するにあたり、
     前記表面処理鋼板を、750℃以上1000℃以下の温度域に加熱した後、前記表面処理鋼板の表面を冷却し、前記表面処理鋼板の表面温度が400℃以下であり且つ前記表面処理鋼板の板厚方向中央部の温度が530℃以上である条件で熱間プレス成形する熱間プレス成形部材の製造方法。
  3.  前記めっき層が、Zn−Niめっき層であり、該Zn−Niめっき層中のNi含有量が質量%で9%以上25%以下である請求項1または2に記載の熱間プレス成形部材の製造方法。
  4.  前記めっき層が、Zn−Feめっき層であり、該Zn−Feめっき層中のFe含有量が質量%で5%以上80%以下である請求項1または2に記載の熱間プレス成形部材の製造方法。
  5.  前記素地鋼板が、質量%で、C:0.15%以上0.50%以下、Si:0.05%以上2.00%以下、Mn:0.50%以上3.00%以下、P:0.10%以下、S:0.050%以下、B:0.0002%以上0.0050%以下、Al:0.10%以下およびN:0.010%以下を含有し、残部はFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1~4のいずれかに記載の熱間プレス成形部材の製造方法。
  6.  前記素地鋼板が、さらに質量%で、Cr:0.01%以上0.5%以下、V:0.01%以上0.5%以下、Mo:0.01%以上0.5%以下およびNi:0.01%以上0.5%以下のうちの少なくとも1種を含有することを特徴とする請求項5に記載の熱間プレス成形部材の製造方法。
  7.  前記素地鋼板が、さらに質量%で、Ti:0.01%以上0.20%以下を含有することを特徴とする請求項5または6に記載の熱間プレス成形部材の製造方法。
  8.  前記素地鋼板が、さらに質量%で、Nb:0.01%以上0.10%以下を含有することを特徴とする請求項5~7のいずれかに記載の熱間プレス成形部材の製造方法。
  9.  前記素地鋼板が、さらに質量%で、Sb:0.003%以上0.03%以下を含有することを特徴とする請求項5~8のいずれかに記載の熱間プレス成形部材の製造方法。
  10.  請求項1~9のいずれかに記載の方法により製造された熱間プレス成形部材。
PCT/JP2014/069498 2013-08-29 2014-07-16 熱間プレス成形部材の製造方法および熱間プレス成形部材 WO2015029653A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201480047569.1A CN105492134B (zh) 2013-08-29 2014-07-16 热压成形构件的制造方法以及热压成形构件
KR1020167003811A KR101784119B1 (ko) 2013-08-29 2014-07-16 열간 프레스 성형 부재의 제조 방법 및 열간 프레스 성형 부재
EP14839784.7A EP3040133B1 (en) 2013-08-29 2014-07-16 Method of manufacturing hot press formed part, and hot press formed part
MX2016002450A MX2016002450A (es) 2013-08-29 2014-07-16 Metodo para la fabricacion de una parte estampada en caliente, y parte estampada en caliente.
JP2014556297A JP5825447B2 (ja) 2013-08-29 2014-07-16 熱間プレス成形部材の製造方法
US14/914,392 US10167530B2 (en) 2013-08-29 2014-07-16 Method of manufacturing hot press formed part, and hot press formed part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013177596 2013-08-29
JP2013-177596 2013-08-29

Publications (2)

Publication Number Publication Date
WO2015029653A1 true WO2015029653A1 (ja) 2015-03-05
WO2015029653A8 WO2015029653A8 (ja) 2016-03-03

Family

ID=52586228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069498 WO2015029653A1 (ja) 2013-08-29 2014-07-16 熱間プレス成形部材の製造方法および熱間プレス成形部材

Country Status (7)

Country Link
US (1) US10167530B2 (ja)
EP (1) EP3040133B1 (ja)
JP (1) JP5825447B2 (ja)
KR (1) KR101784119B1 (ja)
CN (1) CN105492134B (ja)
MX (1) MX2016002450A (ja)
WO (1) WO2015029653A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186097A (ja) * 2015-03-27 2016-10-27 Jfeスチール株式会社 耐遅れ破壊性と耐食性に優れた高強度鋼板
WO2017029773A1 (ja) * 2015-08-19 2017-02-23 Jfeスチール株式会社 熱間プレス部材の製造方法および熱間プレス部材
WO2021191961A1 (ja) * 2020-03-23 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体
JPWO2021191955A1 (ja) * 2020-03-23 2021-09-30

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6056826B2 (ja) * 2014-09-30 2017-01-11 Jfeスチール株式会社 熱間プレス成形品の製造方法
JP5910710B1 (ja) * 2014-12-02 2016-04-27 Jfeスチール株式会社 熱間プレス成形品の評価方法及び製造方法
CN106399837B (zh) * 2016-07-08 2018-03-13 东北大学 热冲压成形用钢材、热冲压成形工艺及热冲压成形构件
BR112019000065A2 (pt) * 2016-07-13 2019-04-09 Nippon Steel & Sumitomo Metal Corporation artigo conformado por estampagem a quente, membro de veículo e método de fabricação de artigo conformado por estampagem a quente
KR101908815B1 (ko) * 2016-12-23 2018-10-16 주식회사 포스코 내식성과 가공성이 우수한 Zn-Ni 전기도금강판 및 그 제조방법
EP3604594A1 (en) * 2017-03-30 2020-02-05 JFE Steel Corporation Hot pressed member and method for manufacturing same
WO2018203097A1 (en) * 2017-05-05 2018-11-08 Arcelormittal A method for the manufacturing of liquid metal embrittlement resistant galvannealed steel sheet
WO2019004540A1 (ko) * 2017-06-27 2019-01-03 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조방법
KR102021200B1 (ko) * 2017-06-27 2019-09-11 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조방법
KR102206929B1 (ko) * 2017-10-24 2021-01-25 아르셀러미탈 코팅된 강 시트의 제조 방법
FI3701058T3 (fi) 2017-10-24 2024-06-05 Arcelormittal Menetelmä galvanoidun-hehkutetun teräslevyn valmistusta varten
CN111356783B (zh) 2017-11-17 2023-03-21 安赛乐米塔尔公司 用于制造抗液态金属脆化的锌涂覆的钢板的方法
KR102385301B1 (ko) * 2018-04-13 2022-04-11 닛폰세이테츠 가부시키가이샤 열간 프레스 성형품의 제조 방법, 프레스 성형품, 다이 금형 및 금형 세트
KR102180811B1 (ko) 2018-12-03 2020-11-20 주식회사 포스코 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법
CN113366135A (zh) * 2019-01-31 2021-09-07 杰富意钢铁株式会社 热压构件、热压构件用冷轧钢板以及它们的制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1490535A (en) 1973-11-06 1977-11-02 Norrbottens Jaernverk Ab Manufacturing a hardened steel article
JP3663145B2 (ja) 2000-04-07 2005-06-22 ユジノール 極めて高い機械的特性値をもつ成形部品を被覆圧延鋼板、特に被覆熱間圧延鋼板の帯材から型打ちによって製造する方法
JP2006037141A (ja) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd 耐液体金属脆性に優れた熱処理用鋼板
JP2007182608A (ja) * 2006-01-06 2007-07-19 Nippon Steel Corp 耐食性、耐疲労性に優れた高強度焼き入れ成形体の製造方法および製造設備
WO2012085247A2 (de) * 2010-12-24 2012-06-28 Voestalpine Stahl Gmbh Verfahren zum erzeugen gehärteter bauteile
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP2013091099A (ja) 2011-09-01 2013-05-16 Kobe Steel Ltd 熱間プレス成形品およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582511B2 (ja) * 2001-10-23 2004-10-27 住友金属工業株式会社 熱間プレス成形用表面処理鋼とその製造方法
JP4085876B2 (ja) * 2003-04-23 2008-05-14 住友金属工業株式会社 熱間プレス成形品およびその製造方法
JP4506128B2 (ja) * 2003-08-29 2010-07-21 住友金属工業株式会社 熱間プレス成形品およびその製造方法
CA2581251C (en) * 2004-09-15 2011-11-15 Nippon Steel & Sumitomo Metal Corporation High strength part and method of production of the same
KR20100019500A (ko) * 2007-06-15 2010-02-18 수미도모 메탈 인더스트리즈, 리미티드 성형품의 제조 방법
JP4766186B2 (ja) * 2009-08-21 2011-09-07 Jfeスチール株式会社 ホットプレス部材、ホットプレス部材用鋼板、ホットプレス部材の製造方法
JP4849186B2 (ja) * 2009-10-28 2012-01-11 Jfeスチール株式会社 熱間プレス部材およびその製造方法
JP5884151B2 (ja) * 2010-11-25 2016-03-15 Jfeスチール株式会社 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1490535A (en) 1973-11-06 1977-11-02 Norrbottens Jaernverk Ab Manufacturing a hardened steel article
JP3663145B2 (ja) 2000-04-07 2005-06-22 ユジノール 極めて高い機械的特性値をもつ成形部品を被覆圧延鋼板、特に被覆熱間圧延鋼板の帯材から型打ちによって製造する方法
JP2006037141A (ja) * 2004-07-23 2006-02-09 Sumitomo Metal Ind Ltd 耐液体金属脆性に優れた熱処理用鋼板
JP2007182608A (ja) * 2006-01-06 2007-07-19 Nippon Steel Corp 耐食性、耐疲労性に優れた高強度焼き入れ成形体の製造方法および製造設備
WO2012085247A2 (de) * 2010-12-24 2012-06-28 Voestalpine Stahl Gmbh Verfahren zum erzeugen gehärteter bauteile
JP2012197505A (ja) * 2011-03-10 2012-10-18 Jfe Steel Corp 熱間プレス用鋼板およびそれを用いた熱間プレス部材の製造方法
JP2013091099A (ja) 2011-09-01 2013-05-16 Kobe Steel Ltd 熱間プレス成形品およびその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016186097A (ja) * 2015-03-27 2016-10-27 Jfeスチール株式会社 耐遅れ破壊性と耐食性に優れた高強度鋼板
WO2017029773A1 (ja) * 2015-08-19 2017-02-23 Jfeスチール株式会社 熱間プレス部材の製造方法および熱間プレス部材
WO2021191961A1 (ja) * 2020-03-23 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体
JPWO2021191955A1 (ja) * 2020-03-23 2021-09-30
WO2021191955A1 (ja) * 2020-03-23 2021-09-30 日本製鉄株式会社 ホットスタンプ成形体
JPWO2021191961A1 (ja) * 2020-03-23 2021-09-30
CN114981467A (zh) * 2020-03-23 2022-08-30 日本制铁株式会社 热冲压成型体
CN115066516A (zh) * 2020-03-23 2022-09-16 日本制铁株式会社 热冲压成型体
CN114981467B (zh) * 2020-03-23 2023-10-31 日本制铁株式会社 热冲压成型体

Also Published As

Publication number Publication date
MX2016002450A (es) 2016-06-24
EP3040133A4 (en) 2016-08-17
KR20160032194A (ko) 2016-03-23
JPWO2015029653A1 (ja) 2017-03-02
US10167530B2 (en) 2019-01-01
CN105492134A (zh) 2016-04-13
WO2015029653A8 (ja) 2016-03-03
CN105492134B (zh) 2017-05-17
JP5825447B2 (ja) 2015-12-02
KR101784119B1 (ko) 2017-10-10
US20160208355A1 (en) 2016-07-21
EP3040133B1 (en) 2017-03-01
EP3040133A1 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5825447B2 (ja) 熱間プレス成形部材の製造方法
WO2020108594A1 (zh) 一种冷弯性能优良的锌系镀覆热成型钢板或钢带及其制造方法
KR101879307B1 (ko) 열간 프레스 성형품의 제조 방법
KR101837883B1 (ko) 고강도 열간 성형 강판 부재
TWI589709B (zh) 熔融鍍鋅鋼板
CN108138282B (zh) 热压用镀锌钢板和热压成形品的制造方法
JP5817479B2 (ja) 熱間プレス部材の製造方法
TWI564404B (zh) 熔融鍍鋅鋼板
CN106756697B (zh) 热冲压用镀锌钢板的制造方法
US10384254B2 (en) Method of manufacturing hot-pressed member
JP2011195958A (ja) 熱間プレス加工用鋼材ならびに熱間プレス鋼材および熱間プレス鋼材の製造方法
JP6152836B2 (ja) 熱間プレス成形品の製造方法
CN106661707B (zh) 经表面处理的钢板及其制造方法
CN111511942A (zh) 镀铝系钢板、镀铝系钢板的制造方法及汽车用部件的制造方法
JP7215519B2 (ja) 熱間プレス部材およびその製造方法
JP6056826B2 (ja) 熱間プレス成形品の製造方法
JP6237729B2 (ja) 熱間プレス用鋼板
CN118284717A (zh) 热压用钢板、热压用钢板的制造方法、热压部件和热压部件的制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047569.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014556297

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839784

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014839784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014839784

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167003811

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201601118

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: 14914392

Country of ref document: US

Ref document number: MX/A/2016/002450

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE