WO2019004540A1 - 핫 스탬핑 부품 및 이의 제조방법 - Google Patents

핫 스탬핑 부품 및 이의 제조방법 Download PDF

Info

Publication number
WO2019004540A1
WO2019004540A1 PCT/KR2017/015715 KR2017015715W WO2019004540A1 WO 2019004540 A1 WO2019004540 A1 WO 2019004540A1 KR 2017015715 W KR2017015715 W KR 2017015715W WO 2019004540 A1 WO2019004540 A1 WO 2019004540A1
Authority
WO
WIPO (PCT)
Prior art keywords
hot
rolled
steel
layer
rolling
Prior art date
Application number
PCT/KR2017/015715
Other languages
English (en)
French (fr)
Inventor
유병길
도형협
송치웅
임희중
허성열
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170168404A external-priority patent/KR102021200B1/ko
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to US16/625,470 priority Critical patent/US11390929B2/en
Priority to CN201780092499.5A priority patent/CN110799281B/zh
Priority to DE112017007697.8T priority patent/DE112017007697T5/de
Publication of WO2019004540A1 publication Critical patent/WO2019004540A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Definitions

  • the present invention relates to a hot stamping component and a method of manufacturing the same.
  • the B-pillar which is an important component for the collision member of an automobile, mainly uses heat treated steel of 150K or more in grade. This plays a very important role in ensuring the survival space of the driver in the side collision.
  • the brittle steel member used as the collision member causes a brittle fracture phenomenon that threatens the safety of the driver in the side collision. Therefore, the collision absorbing ability is improved by connecting the low-strength steel member to the lower end portion of the brittle B- pillar.
  • These steel members are referred to as steels for Taylor Welded Blank (TWB).
  • the steel material for TWB is produced through a hot pressing process such as hot stamping after cold rolling and hot rolling.
  • Korean Patent Registration No. 0851805 (2008.08.06, registered name, a method of producing a high carbon steel sheet excellent in impact toughness) is disclosed.
  • An embodiment of the present invention provides a hot stamping component having excellent crash performance and a method of manufacturing the same.
  • An embodiment of the present invention provides a hot stamping component having excellent mechanical characteristics such as bending property and high strength toughness, and a method of manufacturing the same.
  • a method of manufacturing a hot stamping component in accordance with an aspect of the present invention comprising the steps of: (a) providing a hot stamping component comprising: 0.20 to 0.50% carbon; 0.05 to 1.00% silicon; 0.10 to 2.50% manganese; (S): not less than 0.005%, chromium (Cr): 0.05 to 1.00%, boron (B): 0.001 to 0.009%, titanium (Ti): 0.01 to 0.09% ) And unavoidable impurities to a temperature of 1200 to 1250 ⁇ ; Finishing the reheated slab at a temperature of 880 to 950 ⁇ ; Forming a hot rolled decarburized layer on the surface by cold rolling the hot rolled steel sheet at a temperature of 680 to 800 ⁇ ; Cold rolling the picked-up steel sheet after pickling; Annealing the cold-rolled sheet material in a reducing atmosphere; Plating the annealed sheet material; And hot stamping
  • the slab further comprises at least one of molybdenum (Mo) and niobium (Nb), wherein the molybdenum (Mo) is 0.01 to 0.80%, the niobium (Nb) is 0.01 to 0.09% %. ≪ / RTI >
  • the hot-rolled decolorized layer may be formed to a thickness of 10 to 50 mu m from the surface.
  • the hot rolled decolorized layer may have a thickness of 5 to 15 ⁇ ⁇ from the surface.
  • the microstructure of the hot-rolled decolorized layer may have a composite structure composed of ferrite, bainite and martensite.
  • the annealing treatment can be carried out at a dew point of -15 ⁇ ⁇ or lower in a gas atmosphere comprising hydrogen and the remainder nitrogen.
  • a hot stamping component according to another aspect of the present invention is disclosed.
  • the hot stamping component comprises 0.20 to 0.50% of carbon (C), 0.05 to 1.00% of silicon (Si), 0.10 to 2.50% of manganese (Mn) (Fe) and unavoidable impurities (Fe) are contained in an amount of not more than 0.005% of sulfur (S), 0.05 to 1.00% of chromium (Cr), 0.001 to 0.009% of boron (B), 0.01 to 0.09% of titanium (TS): not less than 1,400 MPa, a yield strength (YS): not less than 1,000 MPa, and an elongation (EL): not less than 1,000 MPa, a surface decarburization layer having a thickness of 5 to 15 ⁇ m from the surface of the steel, 7% or more.
  • the microstructure of the hot-rolled decolorized layer may have a composite structure of ferrite, bainite and martensite.
  • a hot stamping component having excellent mechanical properties such as impact performance, bending property, and high strength and toughness.
  • FIG. 1 is a flowchart schematically showing a method of manufacturing a hot stamping component according to an embodiment of the present invention.
  • Fig. 2 shows an apparatus for carrying out a collision simulation test on the steel material of the present invention.
  • FIGS. 3A to 3C are views showing changes in cross-sectional structure of the decarburized layer according to the hot rolling process, the cold rolling process, and the hot stamping process according to an embodiment of the present invention.
  • 4A to 4C show changes in the cross-sectional structure of the decarburized layer according to the hot rolling process, the cold rolling process, and the hot stamping process of the comparative example of the present invention.
  • Fig. 5 is a graph showing the correlation of the thickness of the hot rolled decolorized layer according to the coiling temperature according to an embodiment of the present invention.
  • FIG. 6 is a graph showing changes in the thickness of the decarburized layer after the hot rolling process and the cold rolling process according to the coiling temperature according to an embodiment of the present invention.
  • the hot-rolled decarburized layer means a decarburized layer produced in a steel material through a hot rolling process including hot rolling, cooling, and winding.
  • the hot-rolled decarburized layer may remain in the steel after the cold rolling process is completed.
  • the hot-rolled decarburized layer can remain on the surface of the steel, and bainite and ferrite layers are produced in the hot-rolled decarburized layer, .
  • the improved bending performance can improve the impact performance of the hot stamping product.
  • the method of manufacturing the hot stamping component includes a steel slab reheating step S10, a hot rolling step S20, a winding step S30, a cold rolling step S40, an annealing step S50, Step S60 and hot stamping step S70.
  • the method of manufacturing the hot stamping component comprises, by weight percent, 0.20 to 0.50% of carbon (C), 0.05 to 1.00% of silicon (Si), 0.10 to 2.50% of manganese (Mn) ): More than 0 to 0.015%, sulfur (S): more than 0 to 0.005%, chromium (Cr): 0.05 to 1.00%, boron (B): 0.001 to 0.009%, titanium (Ti) (S10) reheating the steel slab containing the iron (Fe) and unavoidable impurities to a temperature of 1200 to 1250 ⁇ ; (S20) finishing rolling the reheated steel slab at a temperature of 880 to 950 ⁇ ⁇ ; Forming a hot-rolled decarburized layer on the surface of the steel sheet by winding the hot-rolled steel sheet at a temperature of 680 to 800 ° C (S30); A step (S40) of pickling and cold rolling the wound steel sheet; A step (S50) of annealing the
  • the steel slab further comprises at least one of molybdenum (Mo) and niobium (Nb), wherein molybdenum (Mo) is 0.01 to 0.80 wt% and niobium (Nb) is 0.01 to 0.09% .
  • Mo molybdenum
  • Nb niobium
  • the step (a) is performed at a ratio of 0.20 to 0.50% of carbon (C), 0.05 to 1.00% of silicon (Si), 0.10 to 2.50% of manganese (Mn) (Fe) and inevitable impurities are contained in the balance of iron (Fe) and iron (Fe) in a range of more than 0 to 0.005%, chromium (Cr) 0.05 to 1.00%, boron (B) 0.001 to 0.009%
  • the steel slab is reheated to a temperature of 1200 to 1250 ⁇ .
  • the steel slab further comprises at least one of molybdenum (Mo) and niobium (Nb), wherein molybdenum (Mo) is 0.01 to 0.80 wt% and niobium (Nb) is 0.01 to 0.09% .
  • Mo molybdenum
  • Nb niobium
  • the carbon (C) is a main element that determines the strength and hardness of the steel, and is added for the purpose of securing the tensile strength of the steel after hot stamping (or hot pressing).
  • the carbon is included in an amount of 0.20-0.50 wt% based on the total weight of the steel slab.
  • the carbon content is less than 0.20 wt%, it is difficult to achieve the mechanical strength of the present invention.
  • the carbon content is more than 0.50 wt%, the toughness of the steel or the brittle control problem of the steel may be caused.
  • Silicon (Si) acts as a ferrite stabilizing element in the steel sheet.
  • Si acts as a ferrite stabilizing element in the steel sheet.
  • the silicon is included in an amount of 0.05 to 1.00 wt% based on the total weight of the steel slab.
  • the amount of silicon is less than 0.05 wt%, the above-mentioned functions are not sufficiently exhibited. If the amount exceeds 1.00 wt%, the weldability may be deteriorated.
  • the manganese (Mn) is added for the purpose of increasing the incombustibility and strength at the time of heat treatment.
  • the manganese is included in an amount of 0.10 to 2.50 wt% based on the total weight of the steel slab. If the content of manganese is less than 0.10 wt%, it may cause degradation of the sinterability and strength, and if it is contained in excess of 2.50 wt%, ductility and toughness due to manganese segregation may be deteriorated.
  • Phosphorus (P) is an element that segregates well and inhibits the toughness of steel.
  • the phosphorus (P) is included in an amount of more than 0 wt% to 0.015 wt% or less based on the total weight of the steel slab. When the content is in the above range, deterioration in toughness can be prevented. When the phosphorus is contained in an amount exceeding 0.015% by weight, cracks are generated in the process, and the iron phosphate compound is formed and the toughness may be lowered.
  • the sulfur (S) is an element which hinders workability and physical properties.
  • the sulfur may be present in an amount of greater than 0 wt% to 0.005 wt% based on the total weight of the steel slab.
  • sulfur is contained in an amount exceeding 0.005 wt%, the hot workability is deteriorated, and surface defects such as cracks may occur due to the formation of large inclusions.
  • the chrome (Cr) is added for the purpose of improving the incombustibility and strength of the steel.
  • the chromium is included in an amount of 0.05 to 1.00% by weight based on the total weight of the steel slab. If the chromium content is less than 0.05 wt%, the effect of adding chromium can not be exhibited properly. If the chromium content is more than 1.00 wt%, the toughness of the steel material may decrease and the cost may increase.
  • the boron (B) is added for the purpose of securing the incombustibility and strength of the steel material by securing the martensite structure, and has an effect of grain refinement by increasing the austenite grain growth temperature.
  • the boron is included in an amount of 0.001 to 0.009% by weight based on the total weight of the steel slab. If the content of boron is less than 0.001 wt%, the effect of sorptive effect is insufficient. If the content of boron is more than 0.009 wt%, the risk of elongation loss may increase.
  • the titanium (Ti) is added for the purpose of enhancing the entrapment property by the formation of the precipitate after the hot stamping heat treatment and the material upward.
  • a precipitate phase such as Ti (C, N) is formed at a high temperature, thereby effectively contributing to miniaturization of austenite grains.
  • the titanium is included in an amount of 0.01 to 0.09% by weight based on the total weight of the steel slab.
  • the content of titanium is less than 0.01% by weight, the effect of addition is insignificant.
  • the content of titanium exceeds 0.09% by weight, poor performance occurs, and it is difficult to secure the physical properties of steel, elongation is decreased, .
  • Molybdenum (Mo) can contribute to strength enhancement through suppression of coarsening of precipitates during hot rolling and hot stamping and increase in incombustibility.
  • Molybdenum (Mo) may be added in an amount of 0.01 to 0.80% by weight based on the total weight of the steel sheet. If the content of molybdenum (Mo) is less than 0.01% by weight, the effect of the addition can not be exhibited. If the content of molybdenum (Mo) is more than 0.80% by weight, economical efficiency may be lowered due to an increase in alloy cost.
  • the niobium (Nb) is added for the purpose of increasing the strength and toughness according to the decrease of the martensite packet size.
  • the niobium is included in an amount of 0.01 wt% to 0.09 wt% with respect to the total weight of the steel slab. If the content of niobium is less than 0.01% by weight, the effect of grain refinement of the steel material is insignificant in the hot rolling and cold rolling processes, and when the niobium is contained in excess of 0.09% by weight, stiff coarse precipitates may be formed, It is disadvantageous in terms of cost.
  • the steel slab may be heated at a slab reheating temperature (SRT) of 1,200 ° C to 1,250 ° C.
  • SRT slab reheating temperature
  • the homogenizing effect of the alloy element component is advantageous.
  • the homogenizing effect of the alloy element component is lowered, and the process cost of reheating at a temperature exceeding 1,250 ° C may increase.
  • the reheating steel slab is hot rolled.
  • the hot-rolled steel slab may be subjected to a finishing rolling temperature (FDT) of 880 ° C to 950 ° C. It is advantageous in homogenizing the alloying element component in the hot rolling at the finish rolling temperature, and the rigidity and formability of the steel can be excellent.
  • FDT finishing rolling temperature
  • the step is a step of winding the hot-rolled steel sheet to produce a hot-rolled coil.
  • the winding is performed at a coiling temperature (CT) of 680 to 800 ° C.
  • CT coiling temperature
  • the hot-rolled steel sheet may be cooled to a winding temperature within the above range and wound. The carbon can be easily redistributed under the above coiling temperature condition, sufficient hot-rolled decarburization layer can be ensured and the hot-rolled coil can be prevented from being crushed.
  • the cooling may be a waterless cooling method.
  • the cooling rate of the hot-rolled coil may be lowered to increase the contact time between the surface of the hot-rolled steel sheet and oxygen, which may be advantageous for forming the decarburized layer.
  • the coiling temperature is lower than 680 ⁇ , it is difficult to secure a sufficient hot-rolled decolorizing layer and the hot-rolled coil may be distorted. If the coiling temperature exceeds 800 ⁇ ⁇ , moldability or strength deterioration may occur due to abnormal crystal grain growth or excessive crystal grain growth.
  • the hot rolled decolorized layer of the wound hot rolled coil may be formed to a thickness of 10 to 50 ⁇ from the surface.
  • the step is a step of uncoiling the hot rolled coil and cold rolling to produce a cold rolled sheet.
  • the hot-rolled coil may be uncoiled, pickled, and then cold-rolled.
  • the pickling can be carried out for the purpose of removing scale formed on the hot-rolled coil surface.
  • the hot rolling plate subjected to the pickling treatment may be cold rolled at a cold rolling reduction rate of 60 to 80%.
  • the cold rolling reduction is less than 60%, the deformation effect of the hot-rolled steel is small.
  • the cold rolling reduction ratio exceeds 80%, not only the cost required for cold rolling increases, but also drawability is hindered and cracks are generated at the edges of the steel sheet, which may cause the steel sheet to break.
  • the thickness of the hot rolled decolorizing layer may be reduced.
  • This step is a step of annealing and plating the cold-rolled sheet.
  • the annealing process may be performed at a process temperature of 740 ° C to 820 ° C.
  • the annealing treatment can be carried out at a dew point of -15 ⁇ ⁇ or lower in a reducing gas atmosphere comprising hydrogen and the remainder nitrogen.
  • the annealing treatment is performed in a reducing gas atmosphere composed of hydrogen and the remainder nitrogen, thereby preventing the occurrence of decarburization during the annealing process.
  • the plate material after the annealing process can be cooled.
  • the cooling may, for example, be carried out at a cooling rate of 5 to 50 ° C / sec.
  • the plating process of the plate material can be continuously performed after the annealing process is completed.
  • the plating process can be carried out by stopping the cooling of the plate material and immersing the plate material in a plating bath at 650 to 660 ° C.
  • the plating process may be an aluminum-silicon (Al-Si) plating layer formation process, and the plating bath may include molten aluminum and molten silicon.
  • the plated plate is heated and hot-stamped in a predetermined mold.
  • the hot stamping may be performed by cutting the cold-rolled sheet to form a blank, then heating the blank to 850 to 950 ° C, and then hot-forming the blank using a press mold.
  • the hot rolled decolorized layer may have a thickness of 5 to 15 ⁇ from the surface.
  • the hot-rolled decarburized layer may have a microstructure composed of ferrite, bainite and martensite.
  • the hot stamping component comprises, by weight percent, 0.20 to 0.50% carbon, 0.05 to 1.00% silicon, 0.10 to 2.50% manganese (Mn) (S): not less than 0.005%, chromium (Cr): 0.05 to 1.00%, boron (B): 0.001 to 0.009%, titanium (Ti): 0.01 to 0.09% (TS) of not less than 1,400 MPa, a yield strength (YS) of not less than 1,000 MPa, and an elongation (YS) of not less than 1,000 MPa, and a tensile strength (EL): 7% or more.
  • the components and the content of the hot stamping component are the same as those contained in the steel slab, and a detailed description thereof will be omitted.
  • the surface decarburization layer may be caused by the hot rolled decarburized layer formed after the hot rolling process.
  • the microstructure of the surface decarburization layer present in the hot stamping component may comprise ferrite, bainite, and martensite.
  • the surface brittleness of the hot stamping component can be alleviated by the ferrite structure of the surface decarburization layer, and the brittleness, the bending performance and the crash performance can be improved.
  • the steel slab containing the components shown in Table 1 below satisfying the composition range of the embodiment of the present invention and the remaining amount of iron (Fe) and other unavoidable impurities was reheated to 1200 deg. C
  • the steel slab was subjected to hot rolling To prepare specimens of Comparative Examples 1 to 4 and Examples 1 to 4. More specifically, in the case of Comparative Examples 1 to 4, the main cooling method was applied to produce the steel sheet at the finishing rolling temperature (FDT) of 884 to 889 ⁇ ⁇ and the coiling temperature (CT) of 555 to 643 ⁇ ⁇ , respectively. That is, after the finish rolling, water was sprayed in the cooling process to reach the coiling temperature to advance the cooling of the hot-rolled steel sheet.
  • FDT finishing rolling temperature
  • CT coiling temperature
  • Hot-rolled specimens of Comparative Examples 1 to 4 and Examples 1 to 4 were cold-rolled, annealed at 765 ⁇ ⁇ and then cooled to 33 ⁇ ⁇ / s.
  • the aluminum-silicon (Al-Si) plating layer formation process was carried out by immersion in a plating bath containing molten aluminum and molten silicon at 660 ° C.
  • the annealing treatment was carried out at a dew point of -15 ⁇ ⁇ or lower in a gas atmosphere comprising hydrogen and the remainder nitrogen.
  • the grain size and the thickness of the hot-rolled decarburized layer were measured for the hot-rolled steel sheet before the cold-rolling step after the hot rolling.
  • the microstructure fractions of the specimens of Comparative Examples 1 to 4 and Examples 1 to 4 were measured. The measurement was conducted according to the known ASTM E562-11 systematic manual point count method.
  • Examples 1 to 4 are comparable to Comparative Examples 1 to 4, although the grain sizes are similar to each other, but Examples 1 to 4 have a relatively thick hot rolled decarburized layer. In the case of Comparative Examples 1 to 4, a coil distortion defect occurred after the hot rolling process, but in Examples 1 to 4, no coil distortion defect occurred.
  • the prepared specimens of Comparative Examples 1 to 4 and Examples 1 to 4 may have a mixed structure of ferrite, bainite and martensite.
  • the specimens of Examples 1 to 4 exhibited relatively higher area fraction of ferrite than the specimens of Comparative Examples 1 to 4, and the area fraction of martensite was relatively low.
  • the hot stamping parts of Comparative Examples 1 to 4 and Examples 1 to 4 prepared above had tensile strength (TS) of 1,400 MPa or more, yield strength (YS) of 1,000 MPa and elongation ).
  • FIG. 2 shows a test apparatus for performing a collision simulation test on the steel material of the present invention.
  • a specimen 210 having a length and a width of 30 mm and a width of 60 mm was prepared for each of the above Examples 1 to 4 and Comparative Examples 1 to 4 and was placed on a pair of rolls 220 having a radius of 15 mm .
  • the side spacing may be proportional to the thickness of the specimen 210 as an example.
  • the lateral spacing of the pair of rolls 220 can be set to a value twice the thickness of the specimen 210 plus 0.5 mm. Then, using the test apparatus 1 shown in Fig.
  • the bending punch 230 having a punch radius of 0.4 mm at one end was used as the bending punch 230 of the specimens of Examples 1 to 4 and Comparative Examples 1 to 4 (210) were subjected to a collision simulation test in which deformation and fracture were measured while applying a load. The results are shown in Table 4 below.
  • FIGS. 3A to 3C are views showing changes in cross-sectional structure of the decarburized layer according to the hot rolling process, the cold rolling process, and the hot stamping process according to an embodiment of the present invention.
  • 4A to 4C show changes in the cross-sectional structure of the decarburized layer according to the hot rolling process, the cold rolling process, and the hot stamping process of the comparative example of the present invention.
  • FIG. 3A is a cross-sectional photograph of a steel slab having composition components shown in Table 1 after hot rolling at 920 DEG C finish hot rolling, no-water cooling, and coiling temperature of 755 DEG C, (T 1 ) was observed.
  • Fig. 3B is a cross-sectional photograph after cold rolling, annealing at 765 DEG C and aluminum-silicon plating layer formation at 660 DEG C, and a hot rolled decolorized layer having a thickness (T < 2 > .
  • Fig. 3C is a cross-sectional photograph after the hot stamping process is further proceeded, and a hot-rolled decolorized layer having a thickness (T 3 ) of 6 mu m in the hot stamping part was observed.
  • FIG. 4A is a cross-sectional photograph of a steel slab having composition components shown in Table 1 after hot rolling at 880 ° C. finish hot rolling, main cooling and coiling at 600 ° C., (T 4 ) was observed.
  • Fig. 4B is a cross-sectional photograph after cold rolling, annealing at 765 DEG C and aluminum-silicon plating layer formation at 660 DEG C, and a cold-rolled steel sheet having a very small thickness of a hot-rolled decarburized layer.
  • Fig. 4C is a cross-sectional photograph after the hot stamping process is further proceeded. In the hot stamping component after the hot stamping process, a hot-rolled decolorized layer having a very small thickness is observed.
  • Fig. 5 is a graph showing the correlation of the thickness of the hot rolled decolorized layer according to the coiling temperature according to an embodiment of the present invention.
  • Fig. Fig. 5 is a distribution chart showing the thickness of the decarburized layer after the hot rolling process for 78 specimens in all of the above-described Comparative Examples 1 to 4 and Examples 1 to 4, and showing the thickness according to the coiling temperature. Regression analysis was performed on the distribution diagram of FIG. 5 to derive the following relational expression.
  • CT coiling temperature ( ⁇ ⁇ )
  • T thickness of hot-rolled decarburized layer ( ⁇ ⁇ )
  • FIG. 6 is a distribution diagram showing the thickness variation of the decarburized layer after the hot rolling process and the cold rolling process according to the coiling temperature according to an embodiment of the present invention.
  • the first distribution diagram 610 is the same as the distribution diagram of FIG.
  • the second distribution chart 620 shows the results of the cold rolling, the annealing process at 765 ° C and the aluminum-silicon plated layer formation at 660 ° C for the hot rolling specimens of Comparative Examples 1 to 4 and Examples 1 to 4 derived from the first distribution chart 610 Is a graph showing the decarburized layer remaining on the steel material after the step is further carried out according to the hot rolled coiling temperature.
  • the hot rolled decarburization layer is reduced to a very small thickness by the cold rolling, annealing and plating processes. Thereby, it may be difficult to ensure the effect of improving the impact performance of the hot stamping product by the residual hot-rolled decolorized layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

일 실시 예에 따른 핫스탬핑강의 제조 방법에 있어서, 중량%로, 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물을 포함하는 강 슬라브를 1200~1250℃의 온도로 재가열하는 단계; 상기 재가열한 강 슬라브를 880~950℃의 온도에서 마무리압연하는 단계; 상기 열간 압연된 강판을 무주수 냉각하고 680~800℃에서 권취하여 표면에 열연 탈탄층을 생성하는 단계; 상기 권취된 강판을 산세 후 냉간압연하는 단계; 상기 냉간압연된 판재를 환원분위기에서 소둔 처리하는 단계; 상기 소둔 처리된 판재를 도금 처리하는 단계; 및 상기 도금처리된 판재를 핫 스탬핑하는 단계;를 포함한다.

Description

핫 스탬핑 부품 및 이의 제조방법
본 발명은 핫 스탬핑 부품 및 이의 제조방법에 관한 것이다.
자동차의 충돌 부재용 중요 부품인 B-필러(Pillar)에는 주로 150K급 이상의 열처리강이 사용된다. 이는 측면 충돌시 운전자의 생존공간을 확보하는데 매우 중요한 역할을 하고 있다. 또한 충돌 부재로 사용되는 고인성의 강부재는 측면 충돌 시 운전자의 안전을 위협하는 취성파단 현상이 발생하므로, 취성이 발생하는 B-필러 하단부에 저인성의 강 부재를 연결하여 충돌 흡수 능력을 향상시킨다. 이러한 강 부재를 테일러 웰디드 강재(Taylor Welded Blank, TWB)용 강재라 한다. 상기 TWB용 강재는 열연, 냉연 공정 후 핫 스탬핑(Hot stamping) 등의 열간 프레스 공정을 통하여 제조된다.
본 발명과 관련한 선행기술로는 대한민국 등록특허공보 제0851805호(2008.08.06. 등록, 발명의 명칭 : 충격인성이 우수한 고탄소 강판의 제조 방법)가 개시되어 있다.
본 발명의 일 실시예는, 충돌 성능이 우수한 핫 스탬핑 부품 및 이의 제조방법을 제공한다.
본 발명의 일 실시예는, 굽힘특성, 고강도 인성 등의 기계적 특성이 우수한 핫 스탬핑 부품 및 이의 제조 방법을 제공한다.
본 발명의 일 측면에 따른 핫 스탬핑 부품의 제조방법이 개시된다. 상기 핫스탬핑 부품의 제조 방법에 있어서, 중량%로 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물을 포함하는 강 슬라브를 1200~1250℃의 온도로 재가열하는 단계; 상기 재가열한 슬라브를 880~950℃의 온도에서 마무리압연하는 단계; 상기 열간압연된 강판을 무주수 냉각하고 680℃ 내지 800℃에서 권취하여 표면에 열연 탈탄층을 생성하는 단계; 상기 권취된 강판을 산세 후 냉간압연하는 단계; 상기 냉간압연된 판재를 환원분위기에서 소둔 처리하는 단계; 상기 소둔 처리된 판재를 도금 처리하는 단계; 상기 도금처리된 판재를 핫 스탬핑하는 단계;를 포함한다.
일 실시 예에 있어서, 상기 슬라브는 몰리브덴(Mo) 및 니오븀(Nb) 중 적어도 하나 이상을 더 포함하되, 중량%로, 몰리브덴(Mo):0.01 ~ 0.80%, 니오븀(Nb): 0.01% ~ 0.09% 일 수 있다.
일 실시 예에 있어서, 상기 권취후에 상기 열연 탈탄층은 표면으로부터 10~50㎛의 두께로 형성될 수 있다.
일 실시 예에 있어서, 상기 핫스탬핑 후, 상기 열연 탈탄층은 표면으로부터 5~15㎛의 두께를 가질 수 있다.
일 실시 예에 있어서, 상기 핫스탬핑 후, 상기 열연 탈탄층의 미세조직은 페라이트, 베이나이트 및 마르텐사이트로 이루어지는 복합 조직을 가질 수 있다.
일 실시 예에 있어서, 상기 소둔 처리는 수소와 잔부의 질소로 이루어지는 가스 분위기에서 노점 -15℃ 이하로 실시할 수 있다.
본 발명의 다른 측면에 따른 핫 스탬핑 부품이 개시된다. 상기 핫 스탬핑 부품은 중량%로, 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물로 조성되는 강재를 포함하며, 상기 강재 표면으로부터 5~15㎛의 두께로 표면 탈탄층을 가지며, 인장강도(TS) : 1,400MPa 이상, 항복강도(YS) : 1,000MPa 이상 및 연신율(EL) : 7% 이상을 가진다.
일 실시 예에 있어서, 상기 열연 탈탄층의 미세조직은 상기 열연 탈탄층의 미세조직은 페라이트, 베이나이트 및 마르텐사이트로 이루어지는 복합 조직을 가질 수 있다.
본 발명의 일 실시예에 의하면, 충돌 성능, 굽힘 특성, 고강도 인성 등의 기계적 물성이 우수한 핫 스탬핑 부품을 획득할 수 있다.
본 발명의 실시예에 의하면, 상술한 기계적 물성이 우수한 핫 스탬핑 부품의 제조방법을 획득할 수 있다.
도 1은 본 발명의 일 실시 예에 따른 핫 스탬핑 부품의 제조방법을 개략적으로 나타내는 순서도이다.
도 2는 본 발명의 강재에 대한, 충돌 모사 시험을 실시하기 위한 장치를 나타낸 것이다.
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 열연공정, 냉연공정, 및 핫스탬핑 공정에 따르는 탈탄층의 단면 조직의 변화를 관찰한 것이다.
도 4a 내지 도 4c는 본 발명에 대한 비교예의 열연공정, 냉연공정, 및 핫스탬핑 공정에 따르는 탈탄층의 단면 조직의 변화를 관찰한 것이다.
도 5는 본 발명의 일 실시 예에 따르는 권취 온도에 따르는 열연 탈탄층의 두께의 상관 관계를 나타내는 그래프이다.
도 6은 본 발명의 일 실시 예에 따르는 권취 온도에 따르는 열연 공정 및 냉연 공정 후의 탈탄층의 두께 변화를 나타내는 그래프이다.
이하, 본 발명을 상세히 설명한다. 이때, 본 발명을 설명함에 있어서 관련된 공지기술 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있으므로 그 정의는 본 발명을 설명하는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
본 명세서에서, 열연 탈탄층이란, 열간 압연, 냉각, 권취 단계를 포함하는 열연 공정을 통해, 강재에 생성되는 탈탄층을 의미한다. 상기 열연 탈탄층은 냉연 공정이 완료된 후에도 강재에 잔존할 수 있다. 일 예로서, 냉연, 소둔, 도금 및 핫스탬핑 공정 후에, 강재의 표면에 상기 열연 탈탄층을 잔존시킬 수 있으며, 상기 열연 탈탄층 내에 베이나이트 및 페라이트층이 생성됨으로써, 굽힘 성능이 향상될 수 있다. 상기 향상된 굽힘 성능은 핫스탬핑 제품의 충돌 성능을 향상시킬 수 있다.
핫 스탬핑 부품의 제조방법
본 발명의 일 실시 예에 따르는 핫 스탬핑 부품의 제조방법에 관한 것이다. 도 1은 본 발명의 한 구체예에 따른 핫 스탬핑 부품의 제조방법을 나타낸 것이다. 상기 도 1을 참조하면, 상기 핫 스탬핑 부품의 제조방법은 강 슬라브 재가열 단계(S10), 열간압연단계(S20), 권취 단계(S30), 냉간압연단계(S40), 소둔 단계(S50),도금 단계(S60) 및 핫 스탬핑 단계(S70)를 포함한다.
좀 더 구체적으로, 상기 핫 스탬핑 부품의 제조방법은 중량%로, 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물을 포함하는 강 슬라브를 1200~1250℃의 온도로 재가열하는 단계(S10); 상기 재가열한 강 슬라브를 880~950℃의 온도에서 마무리압연하는 단계(S20); 상기 열간 압연된 강판을 무주수 냉각하고 680~800℃ 에서 권취하여 상기 강판 표면에 열연 탈탄층을 생성하는 단계(S30); 상기 권취된 강판을 산세 후 냉간압연하는 단계(S40); 상기 냉간압연된 판재를 환원 분위기에서 소둔 처리하는 단계(S50), 상기 소둔 처리된 판재를 도금처리하는 단계(S60); 및 상기 도금처리된 판재를 핫 스탬핑하는 단계(S70);를 포함한다.
몇몇 실시예에 있어서, 상기 강 슬라브는 몰리브덴(Mo) 및 니오븀(Nb) 중 적어도 하나 이상을 더 포함하되, 몰리브덴(Mo)은 0.01~0.80 중량%, 및 니오븀(Nb)은 0.01~0.09% 일 수 있다.
이하, 본 발명에 따른 핫 스탬핑 부품의 제조방법을 단계별로 상세히 설명하도록 한다.
(S10) 강 슬라브 재가열 단계
상기 단계는 중량%로, 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물을 포함하는 강 슬라브를 1200~1250℃의 온도로 재가열하는 단계이다. 몇몇 실시예에 있어서, 상기 강 슬라브는 몰리브덴(Mo) 및 니오븀(Nb) 중 적어도 하나 이상을 더 포함하되, 몰리브덴(Mo)은 0.01~0.80 중량%, 및 니오븀(Nb)은 0.01~0.09% 일 수 있다.
이하, 상기 강 슬라브에 포함되는 성분의 역할 및 그 함량에 대하여 상세히 설명하도록 한다.
탄소(C)
상기 탄소(C)는 강의 강도, 경도를 결정하는 주요 원소이며, 핫 스탬핑(또는 열간 프레스) 공정 이후, 강재의 인장강도를 확보하는 목적으로 첨가된다.
한 구체예에서 상기 탄소는 상기 강 슬라브 전체중량에 대하여 0.20~0.50 중량%로 포함된다. 상기 탄소가 0.20 중량% 미만으로 포함되는 경우, 본 발명의 기계적 강도를 달성하기 어려우며, 0.50 중량%를 초과하는 경우, 강재의 인성 저하 문제 또는 강의 취성 제어 문제가 야기될 수 있다.
실리콘( Si )
실리콘(Si)은 강판 내 페라이트 안정화 원소로 작용한다. 페라이트를 청정하게 해줌으로써 연성을 향상시키며, 저온역 탄화물 형성을 억제함으로써 오스테나이트 내 탄소 농화도를 향상시키는 기능을 수행할 수 있다.
한 구체예에서 상기 실리콘은 상기 강 슬라브 전체중량에 대하여 0.05 내지 1.00 중량%로 포함된다. 상기 실리콘이 0.05 중량% 미만으로 포함되는 경우, 상술한 기능을 충분히 발휘하지 못하며, 1.00 중량%를 초과하는 경우, 용접성이 저하될 수 있다.
망간(Mn)
상기 망간(Mn)은 열처리시 소입성 및 강도 증가 목적으로 첨가된다.
한 구체예에서 상기 망간은 상기 강 슬라브 전체중량에 대하여 0.10 내지 2.50 중량% 포함된다. 상기 망간을 0.10 중량% 미만으로 포함시 소입성 및 강도가 저하될 수 있으며, 2.50 중량%를 초과하여 포함시 망간 편석에 의한 연성 및 인성이 저하될 수 있다.
인(P)
상기 인(P)은 편석이 잘 되는 원소로 강의 인성을 저해하는 원소이다. 한 구체예에서 상기 인(P)은 상기 강 슬라브 전체중량에 대하여 0 중량% 초과 0.015 중량% 이하로 포함된다. 상기 범위로 포함시 인성 저하를 방지할 수 있다. 상기 인을 0.015 중량%를 초과하여 포함시, 공정중 크랙을 유발하고, 인화철 화합물이 형성되어 인성이 저하될 수 있다.
황(S)
상기 황(S)은 가공성 및 물성을 저해하는 원소이다. 한 구체예에서 상기 황은 상기 강 슬라브 전체중량에 대하여 0 중량% 초과 0.005 중량% 이하 포함될 수 있다. 상기 황을 0.005 중량%를 초과하여 포함시 열간 가공성을 떨어뜨리고, 거대 개재물 생성에 의해 크랙 등 표면 결함이 발생할 수 있다.
크롬(Cr)
상기 크롬(Cr)은 상기 강재의 소입성 및 강도를 향상시키는 목적으로 첨가된다. 한 구체예에서 상기 크롬은 상기 강 슬라브 전체중량에 대하여 0.05 내지 1.00 중량%로 포함된다. 상기 크롬을 0.05 중량% 미만으로 포함시 크롬 첨가 효과를 제대로 발휘할 수 없으며, 1.00 중량%를 초과하여 포함시 상기 강재의 인성이 저하 및 원가 상승을 유발할 수 있다.
보론(Β)
상기 보론(B)은 마르텐사이트 조직을 확보함으로써, 상기 강재의 소입성 및 강도를 확보하는 목적으로 첨가되며, 오스테나이트 결정립 성장 온도 증가로 결정립 미세화 효과를 가진다.
한 구체예에서 상기 보론은 상기 강 슬라브 전체중량에 대하여 0.001 내지 0.009 중량%로 포함된다. 상기 보론을 0.001 중량% 미만으로 포함시 소입성 효과가 부족하며, 0.009 중량%를 초과하여 포함시 연신율 열위 위험성이 증가할 수 있다.
티타늄(Ti)
상기 티타늄(Ti)은 핫 스탬핑 열처리 후 석출물 형성에 의한 소입성 강화 및 재질 상향 목적으로 첨가된다. 또한, 고온에서 Ti(C,N) 등의 석출상을 형성하여, 오스테나이트 결정립 미세화에 효과적으로 기여한다.
한 구체예에서 상기 티타늄은 상기 강 슬라브 전체중량에 대하여 0.01~0.09 중량% 포함된다. 상기 티타늄을 0.01 중량% 미만으로 포함시 첨가 효과가 미미하며, 0.09 중량%를 초과하여 포함시, 연주 불량이 발생하며, 강재의 물성을 확보하기 어렵고, 연신율이 저하되며, 강재 표면에 크랙이 발생할 수 있다.
몰리브덴(Mo)
몰리브덴(Mo)은 열간 압연 및 핫스탬핑 중 석출물의 조대화 억제 및 소입성 증대를 통해 강도 향상에 기여할 수 있다. 몰리브덴(Mo)은 강판 전체 중량의 0.01 중량% 내지 0.80 중량%로 첨가될 수 있다. 몰리브덴(Mo)의 함량이 0.01 중량% 미만일 경우에는 그 첨가 효과를 제대로 발휘할 수 없고, 0.80 중량%를 초과할 경우, 합금원가의 증가로 경제성이 저하되는 문제를 야기할 수 있다.
니오븀(Nb)
상기 니오븀(Nb)은 마르텐사이트(Martensite) 패캣 크기(Packet size) 감소에 따른 강도 및 인성 증가를 목적으로 첨가된다.
한 구체예에서 상기 니오븀은 상기 강 슬라브 전체 중량에 대하여 0.01 중량% 내지 0.09 중량%로 포함된다. 상기 니오븀을 0.01 중량% 미만으로 포함시 열간 압연 및 냉간 압연 공정에서 강재의 결정립 미세화 효과가 미미하고, 0.09 중량%를 초과하여 포함시 제강성 조대 석출물이 생성될 수 있으며, 강재 연신율이 저하되고, 원가 측면에서 불리하다.
한 구체예에서 상기 강 슬라브는 슬래브 재가열 온도(Slab Reheating Temperature, SRT): 1,200℃ 내지 1,250℃에서 가열할 수 있다. 상기 강 슬라브 재가열 온도에서, 합금원소 성분의 균질화 효과가 유리하다. 상기 강 슬라브를 1,200℃ 미만에서 재가열시 합금원소 성분의 균질화 효과가 저하되며, 1,250℃를 초과하여 재가열시 공정비용이 증가할 수 있다.
(S20) 열간 압연 단계
상기 단계는 상기 재가열된 강 슬라브를 열간 압연하는 단계이다. 한 구체예에서 상기 열간 압연은 상기 재가열된 강 슬라브를 마무리 압연온도(FDT): 880℃~950℃ 조건으로 실시할 수 있다. 상기 마무리 압연온도에서 열간 압연시 합금원소 성분의 균질화 효과에 유리하며, 상기 강의 강성 및 성형성이 우수할 수 있다.
(S30) 권취 단계
상기 단계는 상기 열간 압연된 강판를 권취하여 열연 코일을 제조하는 단계이다. 한 구체예에서 상기 권취는 권취온도(CT): 680~800℃의 조건에서 이루어진다. 한 구체예에서, 상기 열간 압연된 강판을 상기 범위의 권취 온도까지 냉각하여 권취할 수 있다. 상기 권취 온도 조건에서 탄소의 재분배가 용이하게 이루어지며, 충분한 열연 탈탄층 확보 및 열연 코일의 찌그러짐을 방지할 수 있다.
한 구체예에서 상기 냉각은 물을 사용하지 않는 무주수 냉각 방식을 적용할 수 있다. 상기 무주수 냉각 방식을 적용하는 경우, 열연 코일의 냉각 속도를 낮추어 열연 강판의 표면과 산소와의 접촉 시간을 증가시킴으로써 탈탄층의 형성에 유리할 수 있다. 상기 권취 온도를 680℃ 미만으로 실시하는 경우, 충분한 열연 탈탄층을 확보하기 어려우며 열연코일의 찌그러짐이 발생할 수 있다. 상기 권취 온도가 800℃를 초과하면, 이상 결정입자 성장이나 과도한 결정입자 성장으로 성형성 또는 강도 열화가 발생할 수 있다.
한 구체예에서 상기 권취된 열연 코일의 열연 탈탄층은 표면으로부터 10~50㎛의 두께로 형성될 수 있다.
(S40) 냉간 압연 단계
상기 단계는 상기 열연코일을 언코일링하고, 냉간 압연하여 냉연 판재를 제조하는 단계이다. 한 구체예에서 상기 열연 코일을 언코일링한 다음, 산세 처리한 후, 냉간 압연할 수 있다. 상기 산세는 열연코일 표면에 형성된 스케일을 제거하기 위한 목적으로 실시할 수 있다. 일 실시 예에 있어서, 상기 냉간 압연은 산세 처리된 열연판재를 냉간 압하율 60~80%로 진행할 수 있다. 냉간 압하율이 60% 미만일 경우에는 열연 조직의 변형효과가 작다. 반대로, 냉간 압하율이 80%를 초과하는 경우에는 냉간 압연에 소요되는 비용이 상승할 뿐만 아니라, 드로잉성을 저해하고 강판의 가장자리에 균열의 발생으로 강판이 파단되는 문제를 야기할 수 있다. 상기 냉간 압연 과정에서, 상기 열연 탈탄층의 두께가 감소할 수 있다.
(S50) 소둔 단계
상기 단계는 상기 냉연 판재를 소둔 및 도금 처리 단계이다. 상기 소둔 공정은 740℃~820℃의 공정 온도에서 진행될 수 있다. 한 구체예에서 상기 소둔처리는 수소와 잔부의 질소로 이루어지는 환원 가스 분위기에서 노점 -15℃ 이하로 실시할 수 있다. 상기 소둔 처리는 수소와 잔부의 질소로 이루어지는 환원 가스 분위기에서 실시함으로써, 소둔 공정 중 탈탄의 발생을 방지할 수 있다.
이어서, 소둔 공정이 완료된 판재를 냉각시킬 수 있다. 상기 냉각은 일 예로서, 5~50℃/sec로 냉각 속도로 진행될 수 있다.
(S60) 도금 단계
상기 소둔 공정이 종료된 후에 상기 판재의 도금 공정이 연속적으로 진행될 수 있다. 상기 도금 공정은 상기 판재의 냉각을 중단하고, 상기 판재를 650~660℃의 도금욕에 침지시킴으로써 진행될 수 있다. 일 예로서, 상기 도금 공정은 알루미늄-실리콘(Al-Si) 도금층 형성 공정일 수 있으며, 상기 도금욕은 용융 알루미늄과 용융 실리콘을 포함할 수 있다.
(S70) 핫스탬핑 단계
핫스탬핑 단계에서는, 상기 도금처리된 판재를 가열하여 소정 형태의 금형에서 핫 스탬핑 한다. 상기 핫스탬핑하는 공정은, 상기 냉연 판재를 재단하여 블랭크를 형성하고, 이어서, 상기 블랭크를 850~950℃로 가열한 후에 프레스 금형을 이용하여 열간 성형하는 과정으로 진행될 수 있다.
한 구체예에서 상기 핫 스탬핑 공정 이후, 상기 열연 탈탄층은 표면으로부터 5~15㎛의 두께를 가질 수 있다. 상기 열연 탈탄층은 페라이트, 베이나이트 및 마르텐사이트로 이루어지는 미세조직을 가질 수 있다. 상기 열연 탈탄층의 페라이트 조직에 의해, 핫 스탬핑 부품의 표면 취성이 완화될 수 있으며, 소성 능, 굽힘 성능 및 충돌 성능 향상이 가능하다.
핫 스탬핑 부품의 제조방법에 의해 제조된 핫 스탬핑 부품
본 발명의 다른 측면은 상기 핫 스탬핑 부품의 제조방법에 의해 제조된 핫 스탬핑 부품에 관한 것이다. 한 구체예에서 상기 핫 스탬핑 부품은 중량%로, 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물로 조성되는 강재를 포함하며, 상기 강재 표면으로부터 5~15㎛의 두께로 표면 탈탄층을 가지며, 인장강도(TS) : 1,400MPa 이상, 항복강도(YS) : 1,000MPa 이상 및 연신율(EL) : 7% 이상을 가질 수 있다. 상기 핫 스탬핑 부품의 성분 및 함량은, 상기 강 슬라브에 포함되는 성분과 동일하므로, 상세한 설명은 생략하도록 한다. 상기 표면 탈탄층은 열연 공정 후에 생성된 열연 탈탄층에 기인할 수 있다.
한 구체예에서 상기 핫 스탬핑 부품 내에 존재하는 표면 탈탄층의 미세조직은 페라이트, 베이나이트 및 마르텐사이트로 이루어질 수 있다. 이때, 상기 표면 탈탄층의 페라이트 조직에 의해, 핫 스탬핑 부품의 표면 취성이 완화될 수 있으며, 소성 능, 굽힘 성능 및 충돌 성능 향상이 가능하다.
실시예
이하, 본 발명의 바람직한 실시예를 통해 본 발명의 구성 및 작용을 더욱 상세히 설명하기로 한다. 다만, 이는 본 발명의 바람직한 예시로 제시된 것이며 어떠한 의미로도 이에 의해 본 발명이 제한되는 것으로 해석될 수는 없다.
본 발명의 실시예의 조성범위를 만족하는 하기 표 1의 성분과, 잔량의 철(Fe) 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1200℃로 재가열한 후에 하기의 표 2의 공정조건에 따라 열연 공정을 진행하여 비교예 1 내지 4 및 실시예 1 내지 4의 시편을 제조하였다. 보다 상세하게는 비교예 1 내지 4의 경우, 주수 냉각 방법을 적용하여 마무리 압연온도(FDT) 884~889℃ 및 권취 온도(CT) 555~643℃의 공정 조건에서 각각 제조하였다. 즉, 마무리 압연 후, 권취 온도에 이르는 냉각 과정에서 물을 분사하여 열연 강판의 냉각을 진행하였다. 실시예 1 내지 4의 경우, 무주수 냉각 방법을 적용하여, 마무리 압연온도(FDT) 885~927℃ 및 권취 온도(CT) 682℃~797℃의 공정 조건에서 각각 제조하였다. 즉, 마무리 압연 후, 권취 온도에 이르는 냉각 과정에서 물을 제공함이 없이 열연 강판의 냉각을 진행하였다. 최종적으로 비교예 1 내지 4 및 실시예 1 내지 4의 시편을 제조하였다.
또한, 비교예 1 내지 4 및 실시예 1 내지 4의 열연 시편에 대하여, 냉간 압연을 실시하고, 이어서 765℃에서 소둔 열처리를 진행한 후에 33℃/s로 냉각하였다. 상기 냉각 중에 660℃에서 용융 알루미늄 및 용융 실리콘을 포함하는 도금욕에 침지시켜 알루미늄-실리콘(Al-Si) 도금층 형성 공정을 진행하였다. 상기 소둔처리는 수소와 잔부의 질소로 이루어지는 가스 분위기에서 노점 -15℃ 이하로 실시하였다.
또한, 상기 도금층이 형성된 비교예 1 내지 4 및 실시예 1 내지 4의 시편을 930℃에서 5분간 가열한 다음, 상기 가열된 접합강재를 약 10초의 이송시간으로 열간 프레스용 금형에 이송하여 열간 프레스 성형하여 성형체를 제조하고, 상기 성형체를 75℃/s의 냉각속도로 냉각하여 핫 스탬핑 부품을 각각 제조하였다.
성분(wt.%)
C Si Mn S P Cr B Ti
0.23 0.25 1.25 0.003 0.011 0.21 0.0031 0.030
구분 냉각 방법 마무리 압연온도 (℃) 권취온도 (℃)
비교예1 주수 889 555
비교예2 주수 884 562
비교예3 주수 886 605
비교예4 주수 885 643
실시예1 무주수 885 682
실시예2 무주수 885 720
실시예3 무주수 927 797
실시예4 무주수 917 760
상기 비교예 1 내지 4, 실시예1 내지 4의 시편에 대하여, 열연 공정 후 냉연 공정 전에, 상기 열연 강판에 대해 결정립 크기 및 열연 탈탄층의 두께를 측정하였다. 또한, 상기 비교예 1 내지 4, 실시예1 내지 4의 시편에 대하여, 열연 공정 후 냉연 공정 전에 코일 찌그러짐 결함 발생 여부를 관찰하였다. 그리고, 핫스탬핑 공정이 완료된 후, 상기 비교예 1 내지 4, 실시예1 내지 4의 시편에 대하여 미세조직 분율을 측정하였다. 상기 측정은 공지의 ASTM E562-11 시스테메틱 메뉴얼 포인트 카운트법(systematic manual point count)으로 진행하였다. 상기 비교예 1 내지 4, 실시예1 내지 4의 시편 별로 500 ㎛ X 500 ㎛의 이미지 사진 각각 10장을 촬영하고, 이로부터 미세 조직의 면적분율을 측정하였다. 측정된 면적 분율의 평균값을 시편별로 표 3에 나타내었다.
하기 표 3을 참조하면, 실시예 1 내지 4를 비교예 1 내지 4과 비교하면, 결정립 크기는 서로 유사한 크기를 가지나, 실시예 1 내지 4가 상대적으로 두꺼운 열연 탈탄층을 가지는 것을 볼 수 있다. 비교예 1 내지 4의 경우, 열연 공정 후 코일 찌그러짐 결함이 발생하였으나, 실시예 1 내지 4의 경우 코일 찌그러짐 결함이 발생하지 않았다.
구분 열연공정 후 관찰 도금 공정후 관찰 핫스탬핑 공정 후 관찰
열연 공정 후 코일 찌그러짐 결함 발생여부 정립 크기 (㎛) 열연 탈탄층 (㎛) 도금 공정 후 잔류 탈탄층 (㎛) 페라이트 면적분율(%) 베이나이트면적분 (%) 마르텐사이트면적분율 (%)
비교예1 발생 17 2-3 0 7.5% 17.5% 75%
비교예2 발생 18 3-4 0 6.5% 15.5% 78%
비교예3 발생 18 3-4 0 7% 16.5% 76.5%
비교예4 발생 18 4-5 0 7.5% 17% 75.5%
실시예1 미발생 18 8-12 2-4 10.5% 17% 72.5%
실시예2 미발생 18 12-18 4-6 13.5% 19% 67.5%
실시예3 미발생 19 18-34 6-11 16% 21% 63%
실시예4 미발생 18 15-24 5-8 15% 21.5% 63.5%
냉연, 소둔 및 도금 공정 후의 관찰 결과, 비교예 1 내지 4 및 실시예 1 내지 4의 시편에서, 열연 탈탄층의 두께 감소 현상이 발생하였다. 냉간 압연에 의해 상기 열연 강판의 두께가 감소함에 따라, 상기 열연 탈탄층의 두께도 감소하기 때문인 것으로 판단된다. 비교예 1 내지 4의 시편의 경우, 냉간 압연, 소둔 공정 및 도금 공정이 순차적으로 진행된 후에, 상기 열연 탈탄층이 극소 두께로 잔존하는 것으로 관찰된다. 반면에, 상기 냉간 압연, 소둔 공정 및 도금 공정이 완료된 후에, 실시예 1 내지 4의 시편에서, 2~11 ㎛의 잔류 탈탄층이 관찰되었다.
핫 스탬핑 후에, 상기 제조된 비교예 1 내지 4 및 실시예 1 내지 4의 시편은 페라이트, 베이나이트 및 마르텐사이트의 혼합 조직을 가질 수 있다. 실시예 1 내지 4의 시편이, 비교예 1 내지 4의 시편보다 페라이트의 면적 분율이 상대적으로 높게 나타났으며, 마르텐사이트의 면적 분율이 상대적으로 낮게 나타났다.
한편, 상기 제조된 비교예 1 내지 4 및 실시예 1 내지 4의 핫 스탬핑 부품은 기계적 물성 목표치인 인장강도(TS): 1,400MPa 이상, 항복강도(YS): 1,000MPa 및 7% 이상의 연신율(EL)을 모두 만족시켰다.
또한, 상기 비교예 1 내지 4 및 상기 실시예 1 내지 4의 핫 스탬핑 부품에 대한 충돌성능모사 실험을 진행하였다. 도 2는 본 발명의 강재에 대한, 충돌 모사 시험을 실시하기 위한 테스트 장치를 나타낸 것이다. 상기 실시예 1 내지 4 및 비교예 1 내지 4에 대하여 길이와 폭이 각각 30mm, 60mm인 시편(210)을 제작하고, 반경 15mm을 가지며 소정 측면 간격으로 이격 배치된 한쌍의 롤(220) 상에 배치한다. 상기 측면 간격은 일 예로서, 시편(210)의 두께에 비례할 수 있다. 일 예로서, 한쌍의 롤(220)의 상기 측면 간격은 시편(210)의 두께의 2배에 0.5 mm를 더한 값으로 설정할 수 있다. 이어서, 도 2에 도시된 테스트 장치(1)를 이용하여, 일 단부에 0.4 mm의 펀치 반경을 가지는 밴딩 펀치(bending punch)(230)로 상기 실시예 1 내지 4 및 비교예 1 내지 4의 시편(210)에 각각 하중을 가하며 누르면서 변형 및 파단을 측정하는 충돌 모사 시험을 실시하였다. 그 결과를 하기 표 4에 나타내었다.
구분 충돌성능모사(금형냉각소재)
하중(Load, kN) 변위(Disp.,mm) 굽힘각(o) 에너지(J)
비교예1 7.9 7.1 61.6 53.8
비교예2 7.9 6.9 59.6 51.8
비교예3 7.9 7.1 60.9 52.6
비교예4 7.9 7.1 60.5 52.3
실시예1 7.9 7.3 63.8 56.1
실시예2 8.1 7.8 68.7 58.5
실시예3 8.1 7.5 62.6 57.8
실시예4 8.1 7.6 63.2 56.3
표 3 및 표 4로부터 실시예 1 내지 4 및 비교예 1 내지 4를 비교하면 상대적으로 두꺼운 표면 탈탄층을 가지는 실시예 1 내지 4의 경우, 비교예 1 내지 4와 비교하여, 하중, 변위, 굽힘각, 굽힘 에너지의 수치 측면에서 상대적으로 우수한 수치를 나타내고 있으며, 특히 에너지 측면에서 약 10% 이상의 충돌성능 향상을 보여주고 있다.
단면 조직관찰 시험
도 3a 내지 도 3c는 본 발명의 일 실시예에 따른 열연공정, 냉연공정, 및 핫스탬핑 공정에 따르는 탈탄층의 단면 조직의 변화를 관찰한 것이다. 도 4a 내지 도 4c는 본 발명에 대한 비교예의 열연공정, 냉연공정, 및 핫스탬핑 공정에 따르는 탈탄층의 단면 조직의 변화를 관찰한 것이다.
실시예로서, 도 3a는 표 1의 조성 성분을 가지는 강 슬라브를 920℃ 마무리 열간 압연, 무주수 냉각 및 755℃의 권취 온도로 열연 공정을 진행한 후의 단면 사진이며, 열연 강판에서 13㎛의 두께(T1)을 가지는 열연 탈탄층이 관찰되었다. 도 3b는 냉간 압연, 765℃의 소둔 공정 및 660℃의 알루미늄-실리콘 도금층 형성 공정을 추가로 진행한 후의 단면 사진이며, 냉연 강판에서 6㎛ 의 두께(T2)를 가지는 열연 탈탄층이 관찰되었다. 도 3c는, 핫 스탬핑 처리를 추가로 진행한 후의 단면 사진이며, 핫 스탬핑 부품에서 6㎛ 의 두께(T3)를 가지는 열연 탈탄층이 관찰되었다.
비교예로서, 도 4a는 표 1의 조성 성분을 가지는 강 슬라브를 880℃ 마무리 열간 압연, 주수 냉각 및 600℃의 권취 온도로 열연 공정을 진행한 후의 단면 사진이며, 열연 강판에서 약 3㎛의 두께(T4)를 가지는 열연 탈탄층이 관찰되었다. 도 4b는 냉간 압연, 765℃의 소둔 공정 및 660℃의 알루미늄-실리콘 도금층 형성 공정을 추가로 진행한 후의 단면 사진이며, 냉연 강판에서는 극소 두께의 열연 탈탄층이 관찰되었다. 도 4c는, 핫 스탬핑 처리를 추가로 진행한 후의 단면 사진이며, 핫 스탬핑 처리 후의 핫스탬핑 부품에서는 극소 두께의 열연 탈탄층이 관찰되었다.
도 5는 본 발명의 일 실시 예에 따르는 권취 온도에 따르는 열연 탈탄층의 두께의 상관 관계를 나타내는 그래프이다. 도 5는, 상술한 비교예 1 내지 4 및 실시예 1 내지 4에 있어서, 총 78개의 시편에 대해 열연 공정 후 탈탄층의 두께를 측정하고, 이를 권취온도에 따라 도시한 분포도이다. 그리고, 도 5의 분포도에 대해 회귀 분석을 실시하여, 다음과 같은 관계식을 도출하였다.
T = -3.015 + 0.078 * e(0.0075 * CT)
CT: 권취온도(℃), T: 열연 탈탄층의 두께(㎛)
도 5를 참조하면, 권취온도가 증가함에 따라, 열연 탈탄층의 두께가 지수 함수적으로 증가함을 확인할 수 있다.
도 6은 본 발명의 일 실시 예에 따르는 권취 온도에 따르는 열연 공정 및 냉연 공정 후의 탈탄층의 두께 변화를 나타내는 분포도이다. 도 6을 참조하면, 제1 분포도(610)는 도 5의 분포도와 동일하다. 제2 분포도(620)는 제1 분포도(610)를 도출한 비교예 1 내지 4 및 실시예 1 내지 4의 열연 시편에 대해, 냉간 압연, 765℃의 소둔 공정 및 660℃의 알루미늄-실리콘 도금층 형성 공정을 추가로 진행한 후에, 강재에 잔류하는 탈탄층을 열연 권취 온도에 따라 나타낸 그래프이다.
도 6을 참조하면, 열연 공정 시의 권취 온도가 680℃ 미만인 경우에, 냉간 압연, 소둔 공정 및 도금 공정을 진행하게 되면, 상기 열연 탈탄층이 극소 두께로 감소되는 것을 확인할 수 있다. 이에 의해, 상기 잔류하는 열연 탈탄층에 의해 핫스탬핑 제품의 충격 성능 향상 효과를 확보하기 어려울 수 있다.
본 발명은 개시된 실시예 뿐만 아니라, 당해 기술이 속하는 분야에서 통상의 지식을 가진 자가 개시된 실시예로부터 도출할 수 있는 다양한 변형 및 균등한 타 실시예를 포함한다는 점을 이해할 것이다. 따라서 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.

Claims (8)

  1. (a) 중량%로 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물을 포함하는 강 슬라브를 1200~1250℃의 온도로 재가열하는 단계;
    (b) 상기 재가열한 슬라브를 880~950℃의 온도에서 마무리압연하는 단계;
    (c) 상기 열간압연된 강판을 무주수 냉각하고 680~800℃에서 권취하여 표면에 열연 탈탄층을 생성하는 단계;
    (d) 상기 권취된 강판을 산세 후 냉간압연하는 단계;
    (e) 상기 냉간압연된 판재를 환원분위기에서 소둔 처리하는 단계;
    (f) 상기 소둔 처리된 판재를 도금 처리하는 단계;
    (g) 상기 도금처리된 판재를 핫 스탬핑하는 단계;를 포함하는 핫 스탬핑 부품의 제조방법.
  2. 제1 항에 있어서,
    상기 슬라브는 몰리브덴(Mo) 및 니오븀(Nb) 중 적어도 하나 이상을 더 포함하되,
    중량%로, 몰리브덴(Mo): 0.01~0.80%, 니오븀(Nb): 0.01~0.09% 인 것을 특징으로 하는 핫 스탬핑 부품의 제조방법.
  3. 제1 항에 있어서,
    (c) 단계에서 상기 열연 탈탄층은 표면으로부터 10~50㎛의 두께로 형성함을 특징으로하는 핫 스탬핑 부품의 제조방법.
  4. 제1 항에 있어서,
    (g)단계 이후, 상기 열연 탈탄층은 표면으로부터 5~15㎛의 두께를 가지는 것을 특징으로하는 핫 스탬핑 부품의 제조방법.
  5. 제1 항에 있어서,
    (g)단계 이후, 상기 열연 탈탄층의 미세조직은 페라이트, 베이나이트 및 마르텐사이트로 이루어지는 복합 조직을 가지는 것을 특징으로 하는 핫 스탬핑 부품의 제조방법.
  6. 제1 항에 있어서,
    상기 (e) 단계에서,
    상기 소둔 처리는 수소와 잔부의 질소로 이루어지는 가스 분위기에서 노점 -15℃ 이하로 실시하는 것을 특징으로 하는 핫 스탬핑 부품의 제조방법.
  7. 중량%로, 탄소(C): 0.20~0.50%, 실리콘(Si): 0.05~1.00%, 망간(Mn) : 0.10~2.50%, 인(P): 0 초과 0.015% 이하, 황(S): 0 초과 0.005% 이하, 크롬(Cr): 0.05~1.00%, 보론(B): 0.001~0.009%, 티타늄(Ti): 0.01~0.09% 및 잔부의 철(Fe)과 불가피한 불순물로 조성되는 강재를 포함하며,
    상기 강재 표면으로부터 5~15㎛의 두께로 표면 탈탄층을 가지며,
    인장강도(TS) : 1,400MPa 이상, 항복강도(YS) : 1,000MPa 이상 및 연신율(EL) : 7% 이상을 갖는 것을 특징으로 하는 핫 스탬핑 부품.
  8. 제7 항에 있어서,
    상기 표면 탈탄층의 미세조직은 페라이트, 베이나이트 및 마르텐사이트로 이루어지는 복합 조직을 가지는 것을 특징으로 하는 핫 스템핑 부품.
PCT/KR2017/015715 2017-06-27 2017-12-29 핫 스탬핑 부품 및 이의 제조방법 WO2019004540A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/625,470 US11390929B2 (en) 2017-06-27 2017-12-29 Hot-stamped part and method for manufacturing same
CN201780092499.5A CN110799281B (zh) 2017-06-27 2017-12-29 热冲压零件及其制造方法
DE112017007697.8T DE112017007697T5 (de) 2017-06-27 2017-12-29 Heißprägeteil und Verfahren zum Herstellen desselben

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0081281 2017-06-27
KR20170081281 2017-06-27
KR1020170168404A KR102021200B1 (ko) 2017-06-27 2017-12-08 핫 스탬핑 부품 및 이의 제조방법
KR10-2017-0168404 2017-12-08

Publications (1)

Publication Number Publication Date
WO2019004540A1 true WO2019004540A1 (ko) 2019-01-03

Family

ID=64742009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/015715 WO2019004540A1 (ko) 2017-06-27 2017-12-29 핫 스탬핑 부품 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2019004540A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111663075A (zh) * 2020-04-09 2020-09-15 北京首钢股份有限公司 一种冲压用酸洗钢及其制备方法、应用
US11326226B2 (en) * 2020-09-01 2022-05-10 Hyundai Steel Company Material for hot stamping and method for manufacturing the same
US20230227932A1 (en) * 2020-09-01 2023-07-20 Hyundai Steel Company Material for hot stamping and method of manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110118621A (ko) * 2008-12-19 2011-10-31 타타 스틸 이즈무이덴 베.뷔. 열간 성형 기술을 사용하는 코팅된 부품의 제조 방법
EP2631308A1 (en) * 2010-10-22 2013-08-28 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall
KR20150038959A (ko) * 2013-10-01 2015-04-09 현대제철 주식회사 성형성이 우수한 고강도 복합조직 냉연강판, 용융아연도금강판, 합금화용융아연도금강판 제조 방법
KR101568549B1 (ko) * 2013-12-25 2015-11-11 주식회사 포스코 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
KR20160032194A (ko) * 2013-08-29 2016-03-23 제이에프이 스틸 가부시키가이샤 열간 프레스 성형 부재의 제조 방법 및 열간 프레스 성형 부재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110118621A (ko) * 2008-12-19 2011-10-31 타타 스틸 이즈무이덴 베.뷔. 열간 성형 기술을 사용하는 코팅된 부품의 제조 방법
EP2631308A1 (en) * 2010-10-22 2013-08-28 Nippon Steel & Sumitomo Metal Corporation Method for manufacturing hot stamped body having vertical wall, and hot stamped body having vertical wall
KR20160032194A (ko) * 2013-08-29 2016-03-23 제이에프이 스틸 가부시키가이샤 열간 프레스 성형 부재의 제조 방법 및 열간 프레스 성형 부재
KR20150038959A (ko) * 2013-10-01 2015-04-09 현대제철 주식회사 성형성이 우수한 고강도 복합조직 냉연강판, 용융아연도금강판, 합금화용융아연도금강판 제조 방법
KR101568549B1 (ko) * 2013-12-25 2015-11-11 주식회사 포스코 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111663075A (zh) * 2020-04-09 2020-09-15 北京首钢股份有限公司 一种冲压用酸洗钢及其制备方法、应用
US11326226B2 (en) * 2020-09-01 2022-05-10 Hyundai Steel Company Material for hot stamping and method for manufacturing the same
US20230227932A1 (en) * 2020-09-01 2023-07-20 Hyundai Steel Company Material for hot stamping and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR102021200B1 (ko) 핫 스탬핑 부품 및 이의 제조방법
WO2013069937A1 (ko) 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2010074370A1 (ko) 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법
WO2018110867A1 (ko) 항복강도, 연성 및 구멍확장성이 우수한 고강도 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2017188654A1 (ko) 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
WO2020067752A1 (ko) 구멍확장성이 높은 고강도 냉연강판, 고강도 용융아연도금강판 및 이들의 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2017222159A1 (ko) 가공성이 우수한 고강도 냉연강판 및 그 제조 방법
WO2022050501A1 (ko) 핫스탬핑용 소재 및 그 제조방법
WO2019004540A1 (ko) 핫 스탬핑 부품 및 이의 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2017051998A1 (ko) 도금 강판 및 이의 제조방법
WO2021172604A1 (ko) 신선가공성 및 충격인성이 우수한 비조질 선재 및 그 제조방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2017051997A1 (ko) 성형체 제조방법
WO2019088552A1 (ko) 냉간압연성이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2019125018A1 (ko) 초고강도 냉연강판 및 그 제조방법
WO2015060499A1 (ko) 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
WO2022119253A1 (ko) 굽힘가공성이 우수한 초고강도 냉연강판 및 그 제조방법
WO2023121179A1 (ko) 강도 및 저온 충격인성이 우수한 플랜지용 극후물 강재 및 그 제조방법
WO2022050500A1 (ko) 핫스탬핑용 소재 및 그 제조방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915399

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17915399

Country of ref document: EP

Kind code of ref document: A1