WO2017111303A1 - 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법 - Google Patents

굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법 Download PDF

Info

Publication number
WO2017111303A1
WO2017111303A1 PCT/KR2016/012892 KR2016012892W WO2017111303A1 WO 2017111303 A1 WO2017111303 A1 WO 2017111303A1 KR 2016012892 W KR2016012892 W KR 2016012892W WO 2017111303 A1 WO2017111303 A1 WO 2017111303A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
rolled steel
hard
hot rolled
Prior art date
Application number
PCT/KR2016/012892
Other languages
English (en)
French (fr)
Inventor
김성환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2017111303A1 publication Critical patent/WO2017111303A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a hot-rolled steel sheet, and more particularly, to a resistance-ratio ratio high strength hot-rolled steel sheet excellent in bending workability and a method of manufacturing the same.
  • Steel sheets with a tensile strength of 590 MPa or more are required to have excellent bendability from the viewpoint of formability.
  • it is mounted by arc welding, spot welding, or the like, and high dimensional accuracy at the time of mounting is required to be modularized. From this, it is necessary to prevent springback or the like from occurring well after processing, and a resistance ratio is required before processing.
  • DP steel dual phase steel of ferritic martensite structure
  • the composite structure steel in which martensite was dispersed with ferrite as the main phase has a high resistivity ratio, high tensile strength, and excellent elongation.
  • stress tends to concentrate at the interface between ferrite and martensite, cracking tends to occur, and thus there is a drawback of inferior bending workability.
  • steel composition is mass%, C: 0.055% or more and less than 0.15%, Si: less than 1.2%, Mn: more than 0.5% and less than 2.5%, Al: less than 0.5%, P: less than 0.1%, S: Less than 0.01%, N: less than 0.008%, and V: more than 0.03% and less than 0.5%, Ti: more than 0.003% and less than 0.2%, Nb: more than 0.003% and less than 0.1%, and Mo: more than 0.03% and less than 0.2% Isocyanate ferrite containing 1 type or 2 or more types selected in the range of the following (1) formula, remainder consists of Fe and an impurity, and a steel structure is equipped with the Vickers hardness Hv (alpha) prescribed
  • the hot rolled sheet steel which is excellent in the bendability whose tensile strength is 850 Mpa or more and the limit bending radius at the plate thickness of 1 mm is 0.5 mm or less is obtained. It is said to be lost.
  • steel composition is mass%, C: 0.04-0.15%, Si: 0.05-1.5%, Mn: 0.5-2.0%, P: 0.06% or less, S: 0.005% or less, Al: 0.10% or less , Ti:
  • the steel piece containing 0.05-0.20% is hot-rolled at the finishing temperature of 800-1000 degreeC, and then it cools at the cooling rate of 55 degreeC / s or more, and then the temperature range of 500 degrees C or less is 120 degreeC / s.
  • the manufacturing method of the high strength hot rolled sheet steel which has tensile strength of 780 Mpa or more by cooling on the conditions which become nuclear boiling cooling at the above cooling rate, and winding up at 350-500 degreeC is described.
  • Patent Literature 1 in order to make the fraction of hard equiaxed ferrite 70% or more, in the cooling process after hot rolling, it is necessary to simultaneously control the ferrite transformation temperature and the air cooling of 7 seconds or more, so that it is stable. It was difficult to manufacture.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-161111
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2009-280900
  • An object of the present invention is to provide a high strength hot rolled steel sheet having excellent elongation and bending workability and a resistance ratio by controlling alloy elements and controlling a hot rolling process, and a method of manufacturing the same.
  • One preferred aspect of the present invention is by weight, C: 0.05 to 0.15%, Si: 0.01 to 1.0%, Mn: 0.5 to 2.5%, P: 0.06% or less, S: 0.01% or less, Al: 0.01 to 0.4% , Cr: 0.1% to 1.0%, N: 0.001% to 0.006%, containing 0.01% to 0.1% in total of one or two or more selected from the group consisting of Ti, Nb, V, and Zr, and the balance It is composed of Fe and unavoidable impurities, and the microstructure of the steel sheet has a complex structure containing 50% or more and 90% or less of ferrite in a volume fraction and a sum of martensite and bainite of 10% or more and less than 50%, uniaxial 10%.
  • the present invention relates to a high-strength hot rolled steel sheet excellent in bending workability, which satisfies the following relational formula 1, which means a difference in relative height change between the ferrite and the hard phase after tensile deformation.
  • RH soft represents the relative average height of ten ferrites randomly selected after 10% uniaxial strain
  • RH hard represents the relative average height of ten hard phases (martensite or bainite) optionally selected after uniaxial 10% tensile strain)
  • Another preferred aspect of the present invention is by weight, C: 0.05-0.15%, Si: 0.01-1.0%, Mn: 0.5-2.5%, P: 0.06% or less, S: 0.01% or less, Al: 0.01-0.4 %, Cr: 0.1% to 1.0%, N: 0.001% to 0.006%, containing 0.01% to 0.1% in total of one or two or more selected from the group consisting of Ti, Nb, V and Zr Reheating the steel slab consisting of additional Fe and unavoidable impurities in a temperature range of 1100-1300 ° C .;
  • the hot rolled steel sheet was first cooled to 600 to 750 ° C. at an average cooling rate of 10 to 200 ° C./s, maintained for 3 to 30 seconds, and then to an average cooling rate of 10 ° C. to 70 ° C./s. A secondary cooling step of cooling to 20-400 ° C .; And
  • the present invention relates to a method for producing a high strength hot rolled steel sheet having excellent bending workability, which satisfies the following relational formula 1, which means a difference in relative height change between the ferrite and the hard phase after uniaxial 10% tensile deformation.
  • RH soft represents the relative average height of ten ferrites randomly selected after 10% uniaxial strain
  • RH hard represents the relative average height of ten hard phases (martensite or bainite) optionally selected after uniaxial 10% tensile strain)
  • FIG. 1 is a view showing the difference in relative height change between ferrite and hard phases (martensite and bainite) after 10% uniaxial tensile strain in the inventive steel produced by the method presented in the present invention.
  • the inventors have found that the bending workability of dual phase steels of ferritic martensite structure is due to uneven deformation between ferrite and martensite grains. That is, it was found that voids (cracks) are preferentially generated from the interface between ferrite and martensite while the deformation is limited in the thickness direction in the ferrite around the phase interface to satisfy the continuous conditions between the ferrite and martensite during sheet deformation.
  • the hardness difference between the hard phase and the hard phase is reduced by adding an appropriate amount of Si to strengthen the ferrite, the difference in the relative height change between the ferrite and the hard phase at the time of uniaxial deformation of the sheet material is not large, and consequently, the interface between the ferrite and the hard phase has priority. It has been found that voids (cracks) generated can be suppressed.
  • the present invention has been completed based on the above findings.
  • One preferred aspect of the present invention is by weight, C: 0.05 to 0.15%, Si: 0.01 to 1.0%, Mn: 0.5 to 2.5%, P: 0.06% or less, S: 0.01% or less, Al: 0.01 to 0.4% , Cr: 0.1% to 1.0%, N: 0.001% to 0.006%, containing 0.01% to 0.1% in total of one or two or more selected from the group consisting of Ti, Nb, V, and Zr, and the balance It is composed of Fe and unavoidable impurities, and the microstructure of the steel sheet is excellent in bending processability having a composite structure containing 50% or more and 90% or less of ferrite in a volume fraction and 10% or more and 50% or less of the sum of martensite and bainite. Provides high strength hot rolled steel sheet.
  • Another preferred aspect of the present invention is by weight, C: 0.05-0.15%, Si: 0.01-1.0%, Mn: 0.5-2.5%, P: 0.06% or less, S: 0.01% or less, Al: 0.01-0.4 %, Cr: 0.1% to 1.0%, N: 0.001% to 0.006%, containing 0.01% to 0.1% in total of one or two or more selected from the group consisting of Ti, Nb, V and Zr Reheating the steel slab consisting of additional Fe and unavoidable impurities in a temperature range of 1100-1300 ° C .;
  • the hot rolled steel sheet was first cooled at an average cooling rate of 10 to 200 ° C./s in a range of 600 ° C. to 750 ° C. (middle temperature), and maintained for 3 to 30 seconds, followed by 10 ° C./s to 70 ° C. / a secondary cooling step of secondary cooling to 20-400 ° C. at an average cooling rate of s; And
  • C is an important element in producing martensite and improving the strength of the steel sheet. In order to exhibit such an effect, it is preferable to make content of C into 0.05% or more. From the viewpoint of increasing the strength, the higher the carbon content is, the more preferable. However, if the carbon content is too high, it will adversely affect the weldability as well as the problem of generating a large amount of carbides that degrade the bending workability. Therefore, the carbon content is preferably 0.15% or less.
  • the carbon content is preferably limited to 0.05 to 0.15%.
  • Si is an effective element for improving strength without degrading the ductility of steel, in addition to acting effectively as a deoxidizing element when melting steel, and also has a function of suppressing precipitation of carbides that deteriorate bending workability.
  • the hardness difference between the hard phase and the hard phase is reduced by adding an appropriate amount of Si to strengthen the ferrite, the difference in the relative height change between the ferrite and the hard phase is not large during uniaxial deformation of the plate, and consequently, the interface between the ferrite and the hard phase is preferred. Voids (cracks) generated can be suppressed. It is preferable to contain 0.01% or more in order to exhibit these effects effectively.
  • Mn is an element useful for improving the hardenability of the steel sheet to secure high strength, and in order to exhibit such an effect, it is preferable to contain 0.5% or more. However, when Mn content becomes excessive, since it will make ductility fall and adversely affect workability, 2.5% is made an upper limit.
  • the lower limit of the Mn content is 0.7% and the upper limit is 2.5%.
  • Phosphorus (P) 0.06% or less
  • Phosphorus (P) has the effect of promoting solid solution strengthening, but it causes segregation at grain boundaries, reducing the bending workability of the steel. Moreover, P can cause embrittlement at the hot working temperature. For this reason, the P content should be as low as possible.
  • the maximum allowable phosphorus content is 0.06% or less, preferably 0.03% or less.
  • S sulfur
  • MnS inclusions in particular MnS inclusions, when drawn during hot working can result in a significant decrease in hole expandability.
  • the S content should be as low as possible, preferably at most 0.01% or less, more preferably at most 0.005%.
  • Al is an element having a deoxidation action, and when Al deoxidation is performed, it is necessary to add Al of 0.01% or more. However, when Al content is too large, the said effect will not only be saturated but a nonmetallic interference
  • inclusion will deteriorate a physical property and a surface property, and therefore an upper limit is 0.4%.
  • Cr is an element which contributes to high strength by improving hardenability and generating a second phase (hard phase). In order to exhibit this effect, it is preferable to contain 0.1% or more. On the other hand, since the effect is saturated even if it contains exceeding 1.0%, 1.0% or less of the content is preferable.
  • N is an important element for producing martensite and obtaining paint flammability.
  • Al which is a deoxidation element exists
  • N exists in steel as a nitride and deteriorates ductility. Therefore, the smaller the N content is, the better, but since the de-N process is required to be less than 0.001%, the manufacturing cost increases, so the lower limit of the nitrogen content is preferably 0.001%.
  • the N content is more than 0.006%, in order for the precipitated nitride to make the steel sheet structure uneven, stable strength cannot be obtained and it is unsuitable for industrial production. Therefore, the upper limit of N content is made into 0.006%.
  • These elements form precipitates such as C, N, carbides, nitrides, carbonitrides, and the like to contribute to the improvement of strength, and also have the effect of miniaturizing crystal grains during hot rolling to improve growth and bending workability.
  • Such an effect is effectively exhibited by containing 0.01% or more in total (1 type, or 2 or more types) of these. More preferable sum total content is 0.02% or more. However, if too much, the growth and bending workability are deteriorated rather, and therefore, 0.1% or less, more preferably 0.05% or less should be suppressed.
  • the remaining component of the present invention is iron (Fe).
  • impurities that are not intended from the raw materials or the surrounding environment may be inevitably mixed in the usual manufacturing process, and thus cannot be excluded. Since these impurities are known to those skilled in the art, all of them are not specifically mentioned herein.
  • the hot rolled steel sheet of the present invention preferably has a composite structure containing a volume fraction of ferrite: 50% or more and 90% or less and the sum of martensite and bainite: 10% or more and less than 50%.
  • the volume fraction of bainite in the signboard may be 10% or less.
  • the volume fraction of martensite in the steel sheet may be 5% or more.
  • the hot rolled steel sheet may preferably have a tensile strength of 590 MPa or more and a yield ratio of 70% or less.
  • the hot rolled steel sheet may satisfy the following Equation 1, which means a difference in relative height change between the ferrite and the hard phase after uniaxial 10% tensile deformation in the plate.
  • RH soft is the relative average height of ten ferrites randomly selected after uniaxial 10% tensile strain
  • RH hard represents the relative average height of ten hard phases (martensite or bainite) optionally selected after uniaxial 10% tensile strain).
  • Steel sheet that satisfies the above chemical composition can be produced by the following process.
  • the steel slab that satisfies the above chemical composition is reheated.
  • the reheating is preferably set to 1100 ⁇ 1300 °C.
  • the steel containing a lot of alloying elements is excessive in scale generated in the hot-rolling furnace process and may develop into scalability defects. Therefore, the upper limit of the temperature of the furnace is limited to 1300 ° C.
  • the reheating temperature is lower than 1100 °C, re-use of Ti, Nb, etc. added as a precipitation element is not made, the strength is not achieved.
  • the reheated steel slab is subjected to hot rolling at a finish hot rolling temperature of 800 ° C. or higher and 870 ° C. or lower to obtain a hot rolled steel sheet.
  • a finish hot rolling temperature 800 ° C. or higher and 870 ° C. or lower
  • recrystallization of the austenite particles is promoted, and the difference between the average particle diameter of the main phase and the hard phase after the ferrite transformation becomes small, and at the interface between ferrite and martensite at the time of uniaxial deformation.
  • the density of geometrically necessary dislocations introduced is lowered and, as a result, the bendability is improved.
  • the holding time is preferably 3 to 30 seconds, it is difficult to secure a ferrite fraction of 50% or more when kept below 3 seconds, and when the time exceeds 30 seconds, a pearlite phase is generated in the corresponding temperature range, resulting in inferior bending characteristics. There is this.
  • the secondary cooling may be performed after maintaining for 3 seconds to 10 seconds or less after the primary cooling.
  • the cooling rate is less than 10 ° C / s during the primary cooling, there is a fear that the pearlite is generated and workability is lowered, and when the temperature exceeds 200 ° C / s, precise temperature control becomes difficult and the operation is impossible.
  • the intermediate temperature is less than 600 °C, the ferrite fraction is less and the shape is changed to a needle type rather than polygonal, there is a possibility that the ductility is lowered, if the temperature exceeds 750 °C, the ferrite fraction is reduced to reduce the ductility problem have.
  • the steel sheet cooled as mentioned above is wound up.
  • the said winding is performed at 20-400 degreeC.
  • the untransformed austenite phase is transformed into martensite during air cooling. If the coiling temperature exceeds 400 °C bainitization proceeds without transforming to martensite in the austenite structure, it is impossible to secure the resistance to the yield ratio of less than 70% yield.
  • the cooled steel sheet is cooled to room temperature at an average cooling rate of 5 ° C./s or less.
  • Table 1 shows the steel slab composition having the composition of the invention and comparative examples based on the present invention.
  • the steel having the composition shown in Table 1 is hot-rolled-first cooling-maintenance-secondary cooling-winding under the conditions shown in Table 2, cooled to room temperature, and then investigated the property values and microstructure results.
  • Table 2 shows.
  • FDT, MT, and CT mean hot polishing temperature, intermediate temperature, and winding temperature, respectively.
  • YS, TS, EL, and YR mean yield strength, tensile strength, elongation, and yield ratio, respectively, and YS means 0.2% off-set yield strength.
  • the tensile test was made with the test piece collected according to JIS-5 standard based on 90 degree direction with respect to the rolling direction of a rolled sheet material.
  • the microstructure of the plate was obtained by etching the rolled plate specimen with Nital etching solution at 500 magnification using an optical microscope and analyzing and comparing this with an image analyzer.
  • Equation 1 shown in Table 3 was evaluated by obtaining the difference in the relative height change between the ferrite and the hard phase after 10% uniaxial tensile strain on the plate.
  • the plate is thinned and the microstructure is stretched by the tensile deformation, and the height is lower than before the deformation.
  • the height is measured by scanning probe microscope (AFM) and divided by the height before tensile deformation. Find the height.
  • RH soft represents the relative average height of ten ferrites randomly selected after 10% uniaxial tensile strain
  • RH hard represents the relative average height of ten hard phases (martensite or bainite) optionally selected after 10% uniaxial tensile strain.
  • RH soft is the relative average height of ten ferrites randomly selected after uniaxial 10% tensile strain
  • RH hard represents the relative average height of ten hard phases (martensite or bainite) optionally selected after uniaxial 10% tensile strain).
  • the invention examples satisfying the conditions presented in the present invention all have a tensile strength of 590 MPa or more, and the minimum bending radius (R) is expressed by the following relation R / t ⁇ 1.5. Satisfying and favorable bending workability were obtained.
  • Comparative Example 6 secured excellent bending workability through proper hot rolling conditions, but the Si content exceeded 1% so that the red scale very badly generated on the surface of the steel sheet is not commercially valuable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

강판의 화학 성분이 중량%로, C : 0.05~0.15%, Si : 0.01~1.0%, Mn : 0.5~2.5%, P : 0.06 % 이하, S: 0.01 % 이하, Al : 0.01~0.4%, Cr :0.1~1.0%, N : 0.001~0.006 %를 포함하고, Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%를 함유하고 잔부가 Fe 및 불가피한 불순물로 이루어지고, 강판의 미세 조직은 체적 분율로 페라이트를 50%이상 90%이하, 마르텐사이트와 베이나이트의 합이 10%이상 50%미만으로 함유하는 복합 조직을 갖는 동시에, 판재에 일축 10% 인장변형 후의 페라이트와 경질상 간의 상대 높이 변화 차이를 의미하는 하기 관계식 1을 만족하는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법. [관계식 1] (RHhard)-(RHsoft)< 0.2

Description

굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
본 발명은 열연강판에 관한 것으로, 보다 상세하게는 굽힘 가공성이 우수한 저항복비 고강도 열연강판 및 그 제조방법에 관한 것이다.
최근, 환경 문제의 고조로부터 CO2 배출 규제가 엄격화되고 있고, 자동차 분야에 있어서는, 차체의 경량화에 의한 연비 향상이 큰 과제가 되어 있다. 이 때문에 자동차 부품에 대한 고강도 강판의 적용에 의한 박육화가 진행되고 있고, 지금까지 TS 가 270 ∼ 440 ㎫ 급의 강판이 사용되고 있던 부품에 대해, 인장강도 가 590 ㎫ 이상인 강판의 적용이 진행되고 있다.
인장강도가 590 ㎫ 이상인 강판에는, 성형성의 관점에서 우수한 굽힘 가공성이 요구되고 있다. 또한, 프레스 가공 후에 아크 용접, 스폿 용접 등에 의해 장착되고, 모듈화되기 위해서 장착시에 높은 치수 정밀도가 요구된다. 이것으로부터, 가공 후에 스프링백 등을 잘 일어나지 않게 할 필요가 있어, 가공 전에는 저항복비가 요구된다.
성형성과 고강도를 겸비한 저항복비의 고강도 강판으로서, 페라이트·마르텐사이트 조직의 듀얼 페이즈강 (DP강) 이 알려져 있다. 주상을 페라이트로 하여 마르텐사이트를 분산시킨 복합 조직 강은, 저항복비이며 인장강도도 높고, 연신율이 우수하다. 그러나, 페라이트와 마르텐사이트의 계면에 응력이 집중되는 것에 의해, 크랙이 발생하기 쉽기 때문에, 굽힘 가공성이 열등하다는 결점이 있다.
특허문헌 1 에는, 강 조성이 질량% 로, C : 0.055 % 초과 0.15 % 미만, Si : 1.2 % 미만, Mn :0.5 % 초과 2.5 % 미만, Al : 0.5 % 미만, P : 0.1 % 미만, S : 0.01 % 미만, N : 0.008 % 미만, 그리고 V : 0.03 % 초과 0.5 % 미만, Ti : 0.003 % 초과 0.2 % 미만, Nb : 0.003 % 초과 0.1 % 미만, 및 Mo :0.03 % 초과 0.2 % 미만의 군에서 선택되는 1 종 또는 2 종 이상을 이하의 (1) 식의 범위에서 함유하고, 잔부가 Fe 및 불순물로 이루어지고, 강 조직이, 이하의 (2) 식에서 규정되는 비커스 경도 Hvα 를 구비하는 등축 페라이트를 70 체적% 이상 함유하고, 마텐자이트의 함유량이 0 ∼ 5 체적% 이며, 잔부가 상기 등축 페라이트를 제외한 페라이트, 베이나이트, 세멘타이트 및 펄라이트의 1 종 또는 2 종 이상으로 이루어지는 열연 강판이 기재되어 있다.
-0.04<C-(Ti-3.43 N)×0.25-Nb×0.129-V×0.235-[0005] Mo×0.125<0.05 ···(1)
Hvα≥0.3×TS+10 ···(2)
특허문헌 1 에 기재된 기술에 의하면, 경질인 등축 페라이트를 70 % 이상 함유시킴으로써, 인장 강도 850 ㎫이상이고, 판두께 1 ㎜ 일 때의 한계 굽힘 반경이 0.5 ㎜ 이하라는 굽힘성이 우수한 열연 강판이 얻어진다고 하고 있다.
특허문헌 2 에는, 강 조성이 질량% 로, C : 0.04 ∼ 0.15 %, Si : 0.05 ∼ 1.5 %, Mn : 0.5 ∼ 2.0 %, P :0.06 % 이하, S : 0.005 % 이하, Al : 0.10 % 이하, Ti : 0.05 ∼ 0.20 % 를 포함하는 강편을, 800 ∼1000 ℃ 의 마무리 온도로 열간 압연한 후, 55 ℃/s 이상의 냉각 속도로 냉각하고, 계속해서 500 ℃ 이하의 온도역을 120 ℃/s 이상의 냉각 속도로 핵 비등 냉각이 되는 조건으로 냉각하고, 350 ∼ 500 ℃ 에서 권취함으로써, 780 ㎫ 이상의 인장 강도를 갖는 고강도 열연 강판의 제조 방법이 기재되어 있다.
특허문헌 2 에 기재된 기술에 의하면, 95 % 초과의 베이나이트와 불가역적으로 발생하는 5 % 미만의 다른 상으로 이루어지는 조직을 갖고, 가공 후의 신장 플랜지성이 우수하고, 강판 내 재질 변동이 작으며 안정적인 590㎫ 이상의 인장 강도를 갖는 고강도 열연 강판이 얻어진다고 하고 있다.
그러나, 특허문헌 1 에 기재된 기술에서는, 경질인 등축 페라이트의 분율을 70 % 이상으로 하기 위해서, 열연후의 냉각 과정에 있어서, 페라이트 변태 온도와 7 초 이상의 공냉을 동시에 제어할 필요가 있기 때문에, 안정적으로 제조하는 것이 곤란하였다.
또, 특허문헌 2 에 기재된 기술에서는, 인장 강도 590 ㎫ 이상이라는 고강도는 확보할 수 있지만, 베이나이트의 조직 제어가 불충분하기 때문에, 자동차용 부품으로서 충분한 굽힘 가공성을 구비하기까지는 도달하지 못했다.
이와 같이, 상기 서술한 바와 같은 인장 강도가 590 ㎫ 이상인 고강도 열연 강판에서는, 충분한 굽힘 가공성을 얻는 것이 어렵다. 특히, 전단으로 소정의 형상으로 블랭킹 가공한 후에, 굽힘 가공 등의 성형을 실시하면, 전단 단면으로부터 균열이 발생하여 소정의 형상이 얻어지지 않는다는 문제가 있었다.
(선행기술문헌)
(특허문헌 1) 일본 공개특허공보 2006-161111호
(특허문헌 2) 일본 공개특허공보 2009-280900호
본 발명의 과제는 합금원소의 조절과 열연 공정의 제어로 연신율과 굽힘 가공성이 우수하며, 저항복비를 갖는 고강도 열연 강판 및 그 제조 방법을 제공하는 것이다.
본 발명의 바람직한 일 측면은 중량%로, C : 0.05~0.15%, Si : 0.01~1.0%, Mn : 0.5~2.5%, P : 0.06 % 이하, S: 0.01 % 이하, Al : 0.01~0.4%, Cr :0.1~1.0%, N : 0.001~0.006 %를 포함하고, Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%를 함유하고 잔부가 Fe 및 불가피한 불순물로 이루어지고, 강판의 미세 조직은 체적 분율로 페라이트를 50%이상 90%이하, 마르텐사이트와 베이나이트의 합이 10%이상 50%미만으로 함유하는 복합 조직을 갖고, 일축 10% 인장변형 후의 페라이트와 경질상 간의 상대 높이 변화 차이를 의미하는 하기 관계식 1을 만족하는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판에 관한 것이다.
[관계식 1] (RHhard)-(RHsoft)< 0.2
(여기서 RHsoft는 일축 10% 인장변형 후 임의로 선택된 10개의 페라이트 상대평균높이, RHhard는 일축 10% 인장변형 후 임의로 선택된 10개의 경질상(마르텐사이트 또는 베이나이트) 상대평균높이를 나타낸다)
본 발명의 바람직한 다른 일 측면은 중량%로, C : 0.05~0.15%, Si : 0.01~1.0%, Mn : 0.5~2.5%, P : 0.06 % 이하, S: 0.01 % 이하, Al : 0.01~0.4%, Cr :0.1~1.0%, N : 0.001~0.006 %를 포함하고, Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%를 함유하고 잔부가 Fe 및 불가피한 불순물로 이루어진 강 슬라브를 1100~1300℃의 온도 범위에서 재가열하는 단계;
상기 재가열된 강 슬라브를 마무리 열간 압연 온도가 800℃ 이상 870℃이하로 열간 압연을 수행하여 열간 압연 강판을 얻는 열간압연단계;
상기 열간 압연 강판을 10~200℃/s의 평균 냉각 속도로, 600~750℃로 1차 냉각하여 3~30초의 시간 동안 유지한 후, 10℃/s∼70℃/s 의 평균 냉각 속도로 20~400℃까지 냉각하는 2차 냉각 단계; 및
상기 2차 냉각된 강판을 권취하는 단계; 및
상기 권취 후, 냉각된 강판을 5 ℃/s 이하의 평균 냉각 속도로 상온까지 냉각시키는 단계; 를 포함하고,
일축 10% 인장변형 후의 페라이트와 경질상 간의 상대 높이 변화 차이를 의미하는 하기 관계식 1을 만족하는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판의 제조방법에 관한 것이다.
[관계식 1] (RHhard)-(RHsoft)< 0.2
(여기서 RHsoft는 일축 10% 인장변형 후 임의로 선택된 10개의 페라이트 상대평균높이, RHhard는 일축 10% 인장변형 후 임의로 선택된 10개의 경질상(마르텐사이트 또는 베이나이트) 상대평균높이를 나타낸다)
본 발명에 의하면, 연신율과 굽힘 가공성이 우수하며, 저항복비를 갖는 고강도 열연 강판을 제공할 수 있다.
도 1은 본 발명에서 제시된 방법에 의해 제조된 발명강에 10% 일축 인장변형 후, 페라이트와 경질상(마르텐사이트와 베이나이트) 간의 상대 높이 변화 차이를 나타낸 도면이다.
본 발명자는 상기의 목적을 달성하기 위하여 열심히 연구한 결과, 합금성분을 적정하게 조정함과 동시에, 열간 압연 조건 및 그 후의 냉각 조건을 적절히 제어하여 미세조직을 적정하게 조정함으로써, 본 발명의 목적 달성이 가능함을 인식하게 되었다.
본 발명자는 페라이트·마르텐사이트 조직의 듀얼 페이즈강의 굽힘 가공성이열위한 것은 페라이트와 마르텐사이트 결정립간의 불균일한 변형으로 인한 것이라는 것을 발견하였다. 즉, 판재 변형 시에 페라이트와 마르텐사이트간의 연속 조건을 만족 시키기 위해 상 계면 주위의 페라이트에서 두께 방향으로 변형이 제한되면서 페라이트와 마르텐사이트의 계면으로부터 보이드(크랙)가 우선적으로 발생된다는 것을 발견하였다.
따라서, Si를 적정량 첨가하여 페라이트를 고용강화시킴으로써 경질상과의 경도차를 저감시키면, 판재의 일축 변형 시에 페라이트와 경질상 간의 상대 높이 변화 차이가 크지 않아, 결과적으로 페라이트와 경질상의 계면에 우선 발생되는 보이드(크랙)를 억제할 수 있다는 것을 발견하였다.
또한, 열간 마무리 압연 온도를 800℃ 이상 870℃ 이하로 높게 함으로써, 오스테나이트 입자의 재결정이 촉진되고, 페라이트 변태 후의 주상과 경질상의 평균입경의 차이가 작아져, 일축 변형 시에 페라이트와 마르텐사이트의 계면에 도입되는 기하적 필수전위(Geometrically necessary dislocations)의 밀도가 낮아지고, 그 결과, 굽힘 가공성이 개선된다는 것을 발견하였다.
본 발명은 상기한 연구결과에 근거하여 완성된 것이다.
본 발명의 바람직한 일 측면은 중량%로, C : 0.05~0.15%, Si : 0.01~1.0%, Mn : 0.5~2.5%, P : 0.06 % 이하, S: 0.01 % 이하, Al : 0.01~0.4%, Cr :0.1~1.0%, N : 0.001~0.006 %를 포함하고, Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%를 함유하고 잔부가 Fe 및 불가피한 불순물로 이루어지고, 강판의 미세 조직은 체적 분율로 페라이트를 50%이상 90%이하, 마르텐사이트와 베이나이트의 합이 10%이상 50%미만으로 함유하는 복합 조직을 갖는 굽힘 가공성이 우수한 고강도 열연 강판을 제공한다.
본 발명의 바람직한 다른 일 측면은 중량%로, C : 0.05~0.15%, Si : 0.01~1.0%, Mn : 0.5~2.5%, P : 0.06 % 이하, S: 0.01 % 이하, Al : 0.01~0.4%, Cr :0.1~1.0%, N : 0.001~0.006 %를 포함하고, Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%를 함유하고 잔부가 Fe 및 불가피한 불순물로 이루어진 강 슬래브를 1100~1300℃의 온도 범위에서 재가열하는 단계;
상기 재가열된 강 슬라브를 마무리 열간 압연 온도가 800℃ 이상 870℃ 이하로 열간 압연을 수행하여 열간 압연 강판을 얻는 열간압연단계;
상기 열간 압연 강판을 10~200℃/s의 평균 냉각 속도로, 600℃~750℃ (중간온도)범위로 1차 냉각하여 3~30초의 시간 동안 유지한 후, 10℃/s∼70℃/s 의 평균 냉각 속도로 20~400℃까지 2차 냉각하는 2차 냉각 단계; 및
상기 2차 냉각된 강판을 권취하는 단계; 및
상기 권취 후, 냉각된 강판을 5 ℃/s 이하의 평균 냉각 속도로 상온까지 냉각시키는 단계; 를 포함하는 굽힘 가공성이 우수한 고강도 열연 강판의 제조방법을 제공한다.
이하, 본 발명에 대해 상세히 설명한다. 먼저 본 발명의 조성에 대해 상세히 설명한다.
탄소(C): 0.05~0.15%
C는 마르텐사이트를 생성시켜 강판의 강도를 향상시키는데 있어서 중요한 원소이다. 이러한 효과를 발휘시키기 위해서는 C의 함유량은 0.05%이상으로 하는 것이 바람직하다. 고강도화의 관점에서 보면 탄소 함유량은 많을수록 바람직하지만, 너무 많으면 굽힘 가공성을 열화시키는 탄화물을 다량으로 생성되는 문제점 외, 용접성에도 악영향을 미치므로, 0.15%이하로 하는 것이 바람직하다.
따라서, 탄소 함량은 0.05~0.15%로 제한하는 것이 바람직하다.
실리콘(Si): 0.01~1.0%
Si는 강을 용제할 때에 탈산성 원소로서 유효하게 작용하는 것 외, 강의 연성을 열화시키는 일 없이 강도를 향상시키는 유효한 원소이며, 굽힘 가공성을 열화시키는 탄화물의 석출을 억제하는 작용도 가지고 있다. 또한, Si를 적정량 첨가하여 페라이트를 고용강화시킴으로써 경질상과의 경도차를 저감시키면, 판재의 일축 변형 시에 페라이트와 경질상 간의 상대 높이 변화 차이가 크지 않아, 결과적으로 페라이트와 경질상의 계면에 우선 발생되는 보이드(크랙)를 억제할 수 있다. 이들의 효과를 유효하게 발휘시킴에는 0.01%이상 함유시키는 것이 바람직하다. 그러나, Si를 1.0%를 초과하여 첨가하면, 열연 가열로에서 열처리시 철감람석(Fayalite, Fe2SiO4)의 액상화를 유발하여 스케일과 금속 계면이 불규칙하게 되고 스케일 제거가 용이하지 않아서 스케일성 결함을 유발할 수 있는 문제가 있으므로, 1.0%이하로 하는 것이 바람직하다.
망간(Mn): 0.5~2.5%
Mn는 강판의 담금질성을 향상시켜 고강도를 확보하는데 유용한 원소이며, 이러한 효과를 발휘시키기 위해서는 0.5%이상 함유시키는 것이 바람직하다. 그렇지만, Mn함유량이 과도하게 되면, 연성을 저하시켜 가공성에 악영향을 미치도록 이루어지므로, 2.5%을 상한으로 한다.
바람직하게는 Mn함유량의 하한은 0.7%이며, 상한은 2.5%이다.
인(P): 0.06% 이하
인(P)은 고용 강화를 촉진하는 효과가 있지만, 입계에 편석이 생기게 하여 강의 굽힘 가공성을 감소시킨다. 더욱이, P는 열간가공 온도에서의 취화를 초래할 수 있다. 이 때문에, P 함량은 가능한 한 낮아야 한다. 최대 허용 인 함량은 0.06% 이하이며, 바람직하게는 0.03% 이하이다.
황(S): 0.01% 이하
황(S)은 Ti 또는 Mn의 황화물(sulphide)을 잠재적으로 형성하며, 이에 따라 Ti 및 Mn의 유효량이 감소되는 원인이 된다. 또한, MnS 개재물들, 특히 열간가공 동안 연신되면 MnS 개재물들은 홀 확장성의 상당한 감소를 초래할 수 있다. 이 때문에, S 함량은 가능한 한 낮아야 하며, 바람직하게는 최대 0.01% 이하, 더 바람직하게는 최대 0.005% 이다.
알루미늄(Al): 0.01~0.4%
Al는 탈산 작용을 가지는 원소이며, Al탈산을 수행한 경우는 0.01%이상의 Al를 첨가할 필요가 있다. 그러나 Al함유량이 너무 많으면, 상기 효과가 포화할 뿐만아니라, 비금속계 개재물이 되어 물성이나 표면 성상을 열화시키므로, 0.4%를 상한으로 한다.
크롬(Cr): 0.1~1.0%
Cr 은 경화능을 향상시켜 제2상 (경질상)을 생성함으로써 고강도화에 기여하는 원소이다. 이 효과를 발휘시키기 위해서는 0.1 % 이상 함유시키는 것이 바람직하다. 한편, 1.0% 를 초과하여 함유시켜도 효과가 포화되기 때문에, 그 함유량은 1.0 % 이하가 바람직하다.
질소(N): 0.001~0.006%
N은 C와 같이, 마르텐사이트의 생성이나 도장 인화성을 얻기 위해서 중요한 원소이다. 그러나, 탈산 원소인 Al가 존재한 경우, N는 질화물로서 강중에 존재해, 연성을 열화시킨다. 따라서 N량은 적을수록 좋지만, 0.001%미만으로 함에는 탈N공정이 필요하게 되어 제조 비용이 증가하기 때문에, 질소함량의 하한은 0.001%로 하는 것이 바람직하다. 한편, N 함량이 0.006%를 초과하면, 석출한 질화물이 강판 조직을 불균일하게 하기 위해, 안정된 강도를 얻지 못하고, 공업 생산에 부적합이 된다. 따라서, N 함량의 상한은 0.006%로 한다.
Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%
이들의 원소는 C나 N와 탄화물, 질화물, 탄질화물 등의 석출물을 형성하여, 강도 향상에 기여하는 것 외, 열연시의 결정립을 미세화해 성장 및 굽힘 가공성을 향상시키는 작용도 가지고 있다.
이러한 효과는 이들의 합계(1종 또는 2 종 이상)로 0.01%이상 함유시킴으로써 유효하게 발휘된다. 보다 바람직한 합계 함유량은 0.02%이상이다. 그러나, 너무 많으면 성장 및 굽힘 가공성을 오히려 열화시키므로, 0.1%이하, 보다 바람직하게는 0.05%이하로 억제해야 하는 것이다.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명의 열연강판은 체적 분율로, 페라이트: 50%이상 90%이하 및 마르텐사이트와 베이나이트의 합: 10%이상 50%미만을 포함하는 복합 조직을 갖는 것이 바람직하다.
본 발명 바람직한 일 측면에 따르면, 간판 중 베이나이트의 체적 분율이 10%이하 일 수 있다.
본 발명 바람직한 다른 일 측면에 따르면, 강판 중 마르텐사이트의 체적 분율이 5%이상 일 수 있다.
상기 열연강판은 바람직하게는 인장 강도 590 ㎫이상 및 항복비 70 % 이하일 수 있다.
상기 열연강판은 판재에 일축 10% 인장변형 후의 페라이트와 경질상 간의 상대 높이 변화 차이를 의미하는 하기 관계식 1을 만족할 수 있다.
[관계식 1] (RHhard)-(RHsoft)< 0.2
(여기서 RHsoft는 일축 10% 인장변형 후 임의로 선택된 10개의 페라이트 상대평균높이, RHhard는 일축 10% 인장변형 후 임의로 선택된 10개의 경질상(마르텐사이트 또는 베이나이트) 상대평균높이를 나타낸다).
이하, 본 발명의 바람직한 다른 일 측면에 따라 굽힘 가공성이 우수한 고강도 열연 강판을 제조하는 방법에 대하여 설명한다.
상기와 같은 화학 성분 조성을 만족하는 강판은 다음과 같은 공정에 의해서 제조할 수 있다.
재가열 단계
상기와 같은 화학 성분 조성을 만족하는 강 슬래브를 재가열한다. 이때 재가열은 1100~1300℃로 하는 것이 바람직하다. 합금원소를 많이 포함하고 있는 강은 열연 가열로 공정에서 생성된 스케일이 과도하여 스케일성 결함으로 발전할 수 있으므로 가열로의 온도 상한을 1300℃로 제한을 두기로 한다. 또한 재가열 온도가 1100℃보다 낮을 경우, 석출원소로 첨가한 Ti, Nb 등의 재고용이 이루어지지 않아 강도를 달성하지 못한다.
열간 압연 단계
상기 재가열된 강 슬라브를 마무리 열간 압연 온도가 800℃ 이상 870℃ 이하로 열간 압연을 수행하여 열간 압연 강판을 얻는다. 열간 마무리 압연 온도를 800℃ 이상 870℃ 이하로 높게 함으로써, 오스테나이트 입자의 재결정이 촉진되고, 페라이트 변태 후의 주상과 경질상의 평균입경의 차이가 작아져, 일축 변형 시에 페라이트와 마르텐사이트의 계면에 도입되는 기하적 필수전위(Geometrically necessary dislocations)의 밀도가 낮아지고, 그 결과, 굽힘 가공성이 개선된다.
냉각단계
상기 열간 압연 강판을 10~200℃/s의 평균 냉각 속도로, 600~750℃ (중간온도)범위로 1차 냉각하여 3~30초의 시간 동안 유지한 후, 10℃/s∼70℃/s의 평균 냉각 속도로 20~400℃까지 2차 냉각한다.
상기 유지시간은 3~30초가 바람직하며, 3초 미만으로 유지하면 페라이트 분율을 50%이상으로 확보하는 것이 곤란하고, 30초를 초과하면 해당 온도 구간에서 펄라이트상이 생성되어 굽힘특성이 열위하게 되는 문제점이 있다.
본 발명 바람직한 다른 일 측면에 따르면, 상기 1차 냉각 후 3초 이상 10초 이하의 시간 동안 유지한 후 2차 냉각을 진행할 수 있다.
상기 1차 냉각 시 냉각속도가 10℃/s 미만이면 펄라이트가 생성되어 가공성이 저하될 우려가 있고, 200℃/s를 초과하면 정밀한 온도제어가 어려워져 작업이 불가능한 문제점이 있다. 또한 중간온도가 600℃ 미만이면 페라이트 분율이 적어지고 그 형태가 폴리고날이 아닌 침상형 타입으로 변하기 때문에 연성이 저하될 우려가 있고, 750℃를 초과하면 페라이트 분율이 적어져서 연성이 저하되는 문제가 있다.
권취단계
상기와 같이 냉각된 강판을 권취한다.
상기 권취는 20~400℃에서 행한다.
이때 공냉중에 미변태한 오스테나이트상이 마르텐사이트로 변태하게 된다. 상기 권취온도가 400℃를 초과하면 오스테나이트 조직에서 마르텐사이트로 변태하지 않고 베이나이트화가 진행되어 항복비 70%이하의 저항복 특성을 확보할 수 없게 된다.
권취후 냉각 단계
상기 냉각된 강판을 5℃/s 이하의 평균 냉각 속도로 상온까지 냉각한다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다.
하기 표 1에 본 발명에 의거한 발명예와 비교예의 성분 조성을 갖는 강 슬라브 조성을 나타내었다.
또한, 표 1에 나타낸 조성을 갖는 강을 하기 표 2에 나타낸 조건으로 열간압연-1차냉각-유지-2차냉각-권취하고, 상온까지 냉각한 다음, 물성값과 미세조직 결과를 조사하고 그결과는 표 2에 나타냈다. 표 2에서 FDT와 MT, CT는 각각 열연마무리온도와 중간온도, 권취온도를 의미한다. 또한, 표 2에서 YS, TS, EL, YR은 각각 항복강도, 인장강도, 연신율, 항복비를 의미하며, YS는 0.2%off-set 항복강도를 의미한다. 인장시험은 압연판재의 압연방향에 대하여 90°방향을 기준으로 JIS-5호 규격에 의거하여 채취된 시험편으로 하였다.
판재의 미세조직은 해당 압연판재 시편을 Nital 에칭액으로 에칭한 후 광학현미경을 이용하여 500배율로 관찰하고 이를 이미지분석기로 분석, 비교하여 구하였다.
성분(wt%)
C Mn Si P S Al Cr Ti N
비교예1 0.1 1.2 0.1 0.01 0.004 0.04 0.05 0 0.004
비교예2 0.08 1.0 0.04 0.01 0.009 0.3 0.1 0.01 0.005
비교예3 0.07 1.45 0.5 0.01 0.007 0.03 0.01 0.008 0.005
비교예4 0.08 1.6 0.08 0.01 0.005 0.2 0.02 0.01 0.004
비교예5 0.12 1.2 0.1 0.01 0.004 0.03 0.2 0.02 0.004
비교예6 0.11 0.8 1.1 0.01 0.008 0.02 0.2 0.03 0.005
발명예1 0.08 1.3 0.07 0.01 0.008 0.1 0.1 0.016 0.005
발명예2 0.07 1.4 0.8 0.02 0.005 0.05 0.2 0.02 0.006
발명예3 0.1 1.6 0.5 0.02 0.001 0.05 0.1 0.016 0.005
발명예4 0.07 1.7 0.1 0.015 0.009 0.2 0.15 0.02 0.004
발명예5 0.11 1.2 0.1 0.01 0.005 0.2 0.3 0.02 0.005
Figure PCTKR2016012892-appb-T000001
하기 표 3에 표시된 관계식 1은 판재에 10% 일축 인장변형 후의 페라이트와 경질상 간의 상대 높이 변화 차이를 구하여 평가하였다. 판재는 인장 변형에 의해 판재의 두께는 얇아지고 미세조직은 연신 되면서 높이가 변형 이전에 비해 낮아지게 되는데 그것의 높이를 주사탐침현미경(AFM)으로 측정하여, 인장 변형을 하기 이전의 높이로 나누어 상대높이를 구하게 된다.
RHsoft 는 10% 일축 인장변형 후 임의로 선택된 10개의 페라이트 상대평균높이, RHhard 는 10% 일축 인장변형 후 임의로 선택된 10개의 경질상(마르텐사이트 또는 베이나이트) 상대평균높이를 나타낸다.
얻어진 열연판으로부터, 20 ㎜×150 ㎜ 의 굽힘 시험편을, 시험편의 세로 길이가 압연 방향과 직각이 되도록 전단하고, 전단 단면을 갖는 샘플을 사용하여, JIS Z 2248 에 기재된 압곡법에 준거하여, 180 °의 굽힘 시험을 실시하였다. 이 때, n=3 개이고, 균열이 발생하지 않는 최소의 굽힘 반경을 한계 굽힘 반경 R (㎜) 로 하고 판두께 t (㎜) 로 나눈 R/t 값을 구하여, 강판의 굽힘 가공성을 평가하였다.
또한, 본 발명에서는, R/t 의 값이 1.5 이하이면 굽힘 가공성이 우수하다고 할 수 있다. 얻어진 결과를 하기 표 3 에 나타낸다.
구분 10% 일축 인장변형 후 페라이트와 경질상의 상대높이 관계식1(RHhard-RHsoft) R/t
Rhsoft RHhard
비교예1 0.78 0.83 0.05 0.8
비교예2 0.76 0.85 0.09 1.1
비교예3 0.72 0.86 0.14 1.7
비교예4 0.65 0.87 0.22 1.7
비교예5 0.62 0.92 0.3 2.8
비교예6 0.72 0.84 0.12 1.4
발명예1 0.71 0.81 0.1 1.1
발명예2 0.72 0.79 0.07 0.9
발명예3 0.73 0.87 0.14 1.3
발명예4 0.7 0.83 0.13 1.2
발명예5 0.72 0.89 0.17 1.4
[관계식 1] (RHhard)-(RHsoft)< 0.2
(여기서 RHsoft는 일축 10% 인장변형 후 임의로 선택된 10개의 페라이트 상대평균높이, RHhard는 일축 10% 인장변형 후 임의로 선택된 10개의 경질상(마르텐사이트 또는 베이나이트) 상대평균높이를 나타낸다).
상기 표 1, 2, 3에 나타난 바와 같이, 본 발명에서 제시하는 조건을 만족하는 발명예는 모두 590MPa급 이상의 인장강도를 가짐과 아울러, 최소굽힘반경(R)이 하기 관계식 R/t <1.5 을 만족하여 굽힘 가공성이 양호한 결과가 얻어졌다.
그러나, 비교예 1,2은 열간압연 종료 후에 열연강판을 400℃ 초과하여 냉각한 것으로서, 베이나이트 분율이 10%초과하여 나타나, 결과적으로 YR비가 70%를 초과하여 나타났다.
비교예 3은 870℃ 보다 높은 온도에서 마무리 열간압연을 했기 때문에 경화능 원소인 C, Mn, Cr의 합금성분 분배가 원활히 이뤄지지 않아 이상역에서의 오스테나이트의 경화능이 충분히 확보되지 않았고, 결과적으로 베이나이트 분율이 10%이상 나타나 YR비가 70%를 초과하여 나타났다.
비교예 4는 권취온도가 400℃ 이하로 제어되었음에도 불구하고 열간압연온도(FDT)가 지나치게 낮아, 표층부에 조대한 페라이트가 형성되고, 판 두께방향으로 조대립과 정립의 이층조직, 즉 혼립조직이 생성되어, 페라이트 주상과 경질상의 평균입경의 차이가 커져 결과적으로 관계식 1을 만족하지 못했다.
비교예 5는 중간온도가 적절하게 제어되었음에도 중간온도 유지시간이 지나치게 짧아 페라이트 분율 50%이상 확보가 되지 않고 페라이트 주상과 경질상의 평균입경의 차이가 커져 결과적으로 관계식 1을 만족하지 못해 굽힘 가공 중에 크랙이 발생할 가능성이 높다.
비교예 6는 적절한 열간압연조건을 통해 우수한 굽힘 가공성을 확보하였으나 Si함량이 1%를 초과하여 강판 표면에 적스케일이 매우 심하게 발생되어 상업적으로 가치가 없다.

Claims (7)

  1. 중량%로, C : 0.05~0.15%, Si : 0.01~1.0%, Mn : 0.5~2.5%, P : 0.06 % 이하, S: 0.01 % 이하, Al : 0.01~0.4%, Cr :0.1~1.0%, N : 0.001~0.006 %를 포함하고, Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%를 함유하고 잔부가 Fe 및 불가피한 불순물로 이루어지고, 강판의 미세 조직은 체적 분율로 페라이트를 50%이상 90%이하, 마르텐사이트와 베이나이트의 합이 10%이상 50%미만으로 함유하는 복합 조직을 갖고, 일축 10% 인장변형 후의 페라이트와 경질상 간의 상대 높이 변화 차이를 의미하는 하기 관계식 1을 만족하는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판.
    [관계식 1] (RHhard)-(RHsoft)< 0.2
    (여기서 RHsoft는 일축 10% 인장변형 후 임의로 선택된 10개의 페라이트 상대평균높이, RHhard는 일축 10% 인장변형 후 임의로 선택된 10개의 경질상(마르텐사이트 또는 베이나이트) 상대평균높이를 나타낸다)
  2. 제1항에 있어서,
    상기 강판의 미세 조직은 체적 분율로 베이나이트를 10%이하로 갖는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판.
  3. 제1항에 있어서,
    상기 강판의 미세 조직은 체적 분율로 마르텐사이트를 5%이상으로 갖는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판.
  4. 제1항에 있어서,
    상기 고강도 열연강판은 항복비가 70 % 이하인 굽힘 가공성이 우수한 고강도 열연 강판.
  5. 제1항에 있어서,
    상기 고강도 열연강판은 인장강도가 590MPa 이상임을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판.
  6. 중량%로, C : 0.05~0.15%, Si : 0.01~1.0%, Mn : 0.5~2.5%, P : 0.06 % 이하, S: 0.01 % 이하, Al : 0.01~0.4%, Cr :0.1~1.0%, N : 0.001~0.006 %를 포함하고, Ti, Nb, V 및 Zr로 구성되는 군으로부터 선택되는 1종 또는 2 종 이상을 합계로 0.01~0.1%를 함유하고 잔부가 Fe 및 불가피한 불순물로 이루어진 강 슬라브를 1100~1300℃의 온도 범위에서 재가열하는 단계;
    상기 재가열된 강 슬라브를 마무리 열간 압연 온도가 800℃ 이상 870℃ 이하로 열간 압연을 수행하여 열간 압연 강판을 얻는 열간압연단계;
    상기 열간 압연 강판을 10~200℃/s의 평균 냉각 속도로, 600~750℃로 1차 냉각하여 3~30초의 시간 동안 유지한 후, 10℃/s∼70℃/s의 평균 냉각 속도로 20~400℃까지 냉각하는 2차 냉각 단계;
    상기 2차 냉각된 강판을 권취하는 단계; 및
    상기 권취 후, 냉각된 강판을 5℃/s 이하의 평균 냉각 속도로 상온까지 냉각시키는 단계; 를 포함하고,
    일축 10% 인장변형 후의 페라이트와 경질상 간의 상대 높이 변화 차이를 의미하는 하기 관계식 1을 만족하는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판의 제조방법.
    [관계식 1] (RHhard)-(RHsoft)< 0.2
    (여기서 RHsoft는 일축 10% 인장변형 후 임의로 선택된 10개의 페라이트 상대평균높이, RHhard는 일축 10% 인장변형 후 임의로 선택된 10개의 경질상(마르텐사이트 또는 베이나이트) 상대평균높이를 나타낸다)
  7. 제6항에 있어서,
    상기 열연 강판의 미세 조직은 체적 분율로 페라이트를 50%이상 90%이하, 마르텐사이트와 베이나이트의 합이 10%이상 50%미만으로 함유하는 복합 조직을 갖는 것을 특징으로 하는 굽힘 가공성이 우수한 고강도 열연 강판의 제조방법.
PCT/KR2016/012892 2015-12-23 2016-11-10 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법 WO2017111303A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20150185485 2015-12-23
KR10-2015-0185485 2015-12-23

Publications (1)

Publication Number Publication Date
WO2017111303A1 true WO2017111303A1 (ko) 2017-06-29

Family

ID=59090751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012892 WO2017111303A1 (ko) 2015-12-23 2016-11-10 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법

Country Status (1)

Country Link
WO (1) WO2017111303A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350911A (zh) * 2021-12-29 2022-04-15 日照钢铁控股集团有限公司 一种热轧700MPa级复相高强耐候钢制备方法
WO2024002043A1 (zh) * 2022-06-27 2024-01-04 宝山钢铁股份有限公司 一种抗拉强度800MPa级热轧复相钢及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723200B1 (ko) * 2005-12-16 2007-05-29 주식회사 포스코 연신율-신장플랜지성 및 신장플랜지성-피로특성 발란스가우수한 고강도 열연강판의 제조방법
JP2011122189A (ja) * 2009-12-09 2011-06-23 Jfe Steel Corp 伸びおよび伸びフランジ特性に優れた引張強度が780MPa以上の高強度熱延鋼板およびその製造方法
JP2011202272A (ja) * 2011-01-31 2011-10-13 Jfe Steel Corp 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
JP2012197516A (ja) * 2012-05-08 2012-10-18 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法
KR20150086354A (ko) * 2012-12-11 2015-07-27 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100723200B1 (ko) * 2005-12-16 2007-05-29 주식회사 포스코 연신율-신장플랜지성 및 신장플랜지성-피로특성 발란스가우수한 고강도 열연강판의 제조방법
JP2011122189A (ja) * 2009-12-09 2011-06-23 Jfe Steel Corp 伸びおよび伸びフランジ特性に優れた引張強度が780MPa以上の高強度熱延鋼板およびその製造方法
JP2011202272A (ja) * 2011-01-31 2011-10-13 Jfe Steel Corp 加工性に優れた高降伏比を有する高強度冷延鋼板およびその製造方法
JP2012197516A (ja) * 2012-05-08 2012-10-18 Sumitomo Metal Ind Ltd 熱延鋼板の製造方法
KR20150086354A (ko) * 2012-12-11 2015-07-27 신닛테츠스미킨 카부시키카이샤 열연 강판 및 그 제조 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114350911A (zh) * 2021-12-29 2022-04-15 日照钢铁控股集团有限公司 一种热轧700MPa级复相高强耐候钢制备方法
CN114350911B (zh) * 2021-12-29 2024-03-29 日照钢铁控股集团有限公司 一种热轧700MPa级复相高强耐候钢制备方法
WO2024002043A1 (zh) * 2022-06-27 2024-01-04 宝山钢铁股份有限公司 一种抗拉强度800MPa级热轧复相钢及其制造方法

Similar Documents

Publication Publication Date Title
WO2015099221A1 (ko) 고강도 저비중 강판 및 그 제조방법
WO2016104975A1 (ko) Pwht 후 인성이 우수한 고강도 압력용기용 강재 및 그 제조방법
WO2018074887A1 (ko) 고강도 철근 및 이의 제조 방법
WO2018009041A1 (ko) 균열전파 저항성 및 연성이 우수한 열간성형 부재 및 이의 제조방법
WO2020050573A1 (ko) 항복강도비가 우수한 초고강도 고연성 강판 및 그 제조방법
WO2010074370A1 (ko) 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법
WO2018117497A1 (ko) 길이방향 균일 연신율이 우수한 용접강관용 강재, 이의 제조방법 및 이를 이용한 강관
WO2017111524A1 (ko) 구멍확장성이 우수한 초고강도 강판 및 그 제조방법
WO2018004297A1 (ko) 저항복비 특성 및 저온인성이 우수한 고강도 강판 및 그 제조방법
WO2015099222A1 (ko) 용접성 및 버링성이 우수한 열연강판 및 그 제조방법
WO2012043984A2 (ko) 수소유기균열 저항성이 우수한 라인 파이프용 강판 및 그 제조 방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2019124765A1 (ko) 내충격특성이 우수한 고강도 강판 및 그 제조방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2021117989A1 (ko) 초고강도 냉연강판 및 이의 제조방법
WO2021010599A2 (ko) 강도가 향상된 오스테나이트계 스테인리스강 및 그 제조 방법
WO2016093513A2 (ko) 성형성이 우수한 복합조직강판 및 이의 제조방법
WO2013154254A1 (ko) 재질 균일성이 우수한 고탄소 열연강판 및 이의 제조방법
WO2019088552A1 (ko) 냉간압연성이 우수한 초고강도 냉연강판 및 이의 제조방법
WO2015060499A1 (ko) 방진성이 우수한 고강도 고망간 강판 및 그 제조방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2022065797A1 (ko) 연신율이 우수한 고강도 후물 열연강판 및 그 제조방법
WO2021091140A1 (ko) 내구성이 우수한 고항복비형 후물 고강도강 및 그 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2017086745A1 (ko) 전단가공성이 우수한 고강도 냉연강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879170

Country of ref document: EP

Kind code of ref document: A1