WO2012077778A1 - 嫌気性処理方法および装置 - Google Patents

嫌気性処理方法および装置 Download PDF

Info

Publication number
WO2012077778A1
WO2012077778A1 PCT/JP2011/078531 JP2011078531W WO2012077778A1 WO 2012077778 A1 WO2012077778 A1 WO 2012077778A1 JP 2011078531 W JP2011078531 W JP 2011078531W WO 2012077778 A1 WO2012077778 A1 WO 2012077778A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
anaerobic
digested
concentrate
liquid
Prior art date
Application number
PCT/JP2011/078531
Other languages
English (en)
French (fr)
Inventor
直明 片岡
萩野 隆生
正人 西脇
Original Assignee
水ing株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 水ing株式会社 filed Critical 水ing株式会社
Priority to CN201180059643.8A priority Critical patent/CN103347824B/zh
Priority to AU2011339363A priority patent/AU2011339363B2/en
Priority to KR1020137017553A priority patent/KR101885070B1/ko
Priority to JP2012547919A priority patent/JP6121165B2/ja
Publication of WO2012077778A1 publication Critical patent/WO2012077778A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/02Biological treatment
    • C02F11/04Anaerobic treatment; Production of methane by such processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to an anaerobic treatment method and apparatus for sludge.
  • the anaerobic digestion treatment of sludge produces less sludge than aerobic treatment, promptly kills and stabilizes pathogenic microorganisms and parasite eggs, reduces oxygen consumption, and consumes less power. Since biogas as a component can also be obtained, this technology has been applied for a long time as an energy-saving treatment method.
  • the anaerobic digester equipment requires a large capacity, and the treatment of digested sludge has a high chemical cost, and the sludge is difficult to dehydrate and the water content of the dehydrated sludge is difficult to lower.
  • the conventional sludge anaerobic treatment includes the one shown in the block flow diagram of FIG. This flow will be described.
  • the sludge 1 is sent to the storage device 2, and then the sludge 1 is sent to the solid-liquid separation device 6 and separated into the sludge concentrate 7 and the separation liquid 8.
  • the sludge concentrate 7 is an anaerobic digester.
  • biogas 10 and anaerobic digested sludge 11 are generated by anaerobic digestion of sludge, biogas 10 is sent to biogas tank 101, and biogas 10 is then used in gas utilization facility 102 (e.g., gas Turbine, biogas boiler, gas tank, dryer heat source, etc.) or surplus gas combustion device 103.
  • gas utilization facility 102 e.g., gas Turbine, biogas boiler, gas tank, dryer heat source, etc.
  • the anaerobic digested sludge 11 is sent to the digested sludge aggregate preparation device 12 to separate the separated liquid 14 and the digested sludge aggregate 15 is prepared.
  • the digested sludge aggregate 15 is sent to the dewatering device 16 and separated. 17 is separated and a dehydrated cake 18 is prepared.
  • the separation liquid 8, the separation liquid 14, and the separation liquid 17 are sent to the wastewater treatment facility 104 and the like.
  • a flocculant is often added.
  • Patent Document 1 includes (a) a pretreatment process for solid-liquid separation of sludge mixed with human waste, and (b) an anaerobic digestion process for directly anaerobically digesting the solid matter separated in the treatment process without dehydration.
  • an anaerobic digestion step for anaerobically digesting the plant and animal residue and the solids containing solid matter
  • a dehydration step for dehydrating and separating the anaerobic digestion step effluent into solids and separated water
  • Patent Document 2 primary sludge generated from the first sedimentation basin and waste sludge generated from the final sedimentation basin in the wastewater treatment facility are mixed and stored, and a flocculant is added to the mixed sludge to perform primary flocculation treatment.
  • the mixed sludge that has been subjected to the primary flocculation process is concentrated so that the sludge concentration becomes 6 to 8%, and then the coagulant is added to the mixed sludge after the concentration process to perform the secondary flocculation process.
  • the mixed sludge subjected to the secondary agglomeration treatment is subjected to a dehydration treatment method to concentrate the two types of sludge, the primary sludge generated by the wastewater treatment and the excess sludge, in one system and the subsequent dehydration.
  • a dehydration treatment method to concentrate the two types of sludge, the primary sludge generated by the wastewater treatment and the excess sludge, in one system and the subsequent dehydration.
  • Patent Document 3 proposes a slit type concentrator that increases the conveying ability of the solid-liquid separator and increases the pressing and pressing effect.
  • the silicon contained in the waste water is usually in the form of siloxane derived from silicon compounds such as silicon oil contained in shampoos, rinses, cosmetics and the like.
  • Siloxane means an organic compound having a silicon-oxygen bond having a main skeleton of Si—O— and a hydrocarbon group in the side chain. Examples of the siloxane include linear or cyclic siloxanes having 2 to 6 silicon atoms and a hydrocarbon group such as a methyl group.
  • siloxane Since siloxane has low solubility in water, when sewage sludge is anaerobically digested, it is distributed and transferred to biogas, so if biogas is used for power generation, it becomes a scale for power generation facilities such as gas engines and peripheral equipment. There are many known cases that have been deposited and have an adverse effect on power generation efficiency reduction and equipment maintenance, and this preventive measure is important.
  • the present invention has been made in view of the above-mentioned points, and reduces the generation of precipitates including phosphorus, calcium, siloxane (a silicon compound having a siloxane bond), etc. while reducing the size of an anaerobic digester, and thereby treating wastewater.
  • Cost reduction that enables anaerobic digestion of sludge generated in facilities, etc., as well as efficient recovery of biogas (especially methane gas) and efficient dehydration of digested sludge
  • An object is to provide an anaerobic treatment method and apparatus.
  • a pretreatment step of solid-liquid separation of sludge concentrate prepared by adding a flocculant to sludge into sludge concentrate with 4-12 wt% sludge and separated liquid, biotreating the sludge concentrate anaerobically Anaerobic digestion step for collecting gas, anaerobic digestion sludge prepared in the anaerobic digestion step, a step of preparing a digested sludge aggregate by mixing a flocculant and at least one of the separation liquid and water.
  • an anaerobic treatment method comprising a step of dehydrating a digested sludge concentrate obtained by solid-liquid separation of the digested sludge aggregate.
  • a coagulation tank for preparing coagulated sludge by adding a coagulant to the sludge, and pretreatment for preparing the sludge concentrate by solid-liquid separation of the coagulated sludge into a sludge concentrate having a sludge concentration of 4 to 12 wt% and a separated liquid Sludge concentrator, anaerobic digester for anaerobically digesting the sludge concentrate and collecting biogas, anaerobic digested sludge prepared by the anaerobic digester, a flocculant, at least the separation liquid and water
  • An anaerobic treatment apparatus comprising: a digested sludge agglomeration apparatus that mixes any of these to prepare a digested sludge aggregate; and a dehydrator that dehydrate
  • the sludge concentrate prepared by solid-liquid separation in the pretreatment step contains 4 to 12 wt% of sludge, which is 1.5 to 2 times higher than the conventional method.
  • the anaerobic digested sludge in the present invention has higher M alkalinity and ammonia concentration than the anaerobic digested sludge in the conventional method. Therefore, if a flocculant is added to anaerobic digested sludge as it is to obtain a dewaterable floc, a large amount of flocculant is required.
  • At least one of the separation liquid and water obtained in the pretreatment step is mixed with anaerobic digested sludge to dilute the anaerobic digested sludge,
  • the digested sludge agglomerate is smoothly generated by the sludge agglomeration reaction between the digested sludge and the added flocculant, and the amount of the flocculant injected is reduced.
  • the aggregated sludge prepared by adding a flocculant is separated into the sludge concentrate and the separated liquid, so that the separated liquid contains water-soluble or hydrophilic useful resources such as phosphorus.
  • useful resources can be efficiently recovered.
  • the pretreatment process capable of recovering useful resources is performed before the anaerobic digestion process, phosphorus, siloxane, etc. in the sludge concentrate sent to the anaerobic digestion process are reduced, and the sludge concentration Since it is high concentration, generation
  • the anaerobic treatment apparatus of the present invention can appropriately include means for sending sludge between the unique apparatuses, for example, piping, pumps, valves, and the like.
  • an organic substance can be decomposed by anaerobic digestion of sludge at a wastewater treatment plant or the like, and biogas (especially methane gas) can be efficiently recovered, thereby significantly improving energy recovery efficiency. It becomes possible.
  • biogas especially methane gas
  • the technical problem that a large-capacity anaerobic digester equipment in the conventional treatment method is required, the chemical cost for digested sludge treatment is high, and the sludge is difficult to dehydrate and the water content of dehydrated sludge is difficult to reduce.
  • the present invention it is possible to concentrate the sludge at a high concentration with a low running cost concentrator, greatly reduce the anaerobic digestion capacity, and further improve the dehydration operation with the hardly dehydrated anaerobic digested sludge. Therefore, a low-cost anaerobic digestion system capable of efficiently dewatering digested sludge can be realized.
  • the present invention can reduce the amount of phosphorus, calcium, siloxane, and the like introduced into the anaerobic digestion tank to almost half of the conventional amount, and consequently the generation of precipitates containing phosphorus, calcium, siloxane, etc. in the anaerobic digestion tank. This contributes to the maintenance of anaerobic digesters and piping, and the reduction of management costs, and it is possible to efficiently recover useful resources such as phosphorus.
  • the anaerobic treatment method of the present invention comprises a pretreatment step in which agglomerated sludge prepared by adding a flocculant to sludge is separated into a sludge concentrate having a sludge concentration of 4 to 12 wt% and a separated liquid, and the sludge concentrate.
  • Anaerobic digestion step for anaerobic digestion and biogas recovery anaerobic digestion sludge prepared in the anaerobic digestion step, mixed with a flocculant and at least one of the separation liquid and water for digestion
  • sludge means sludge discharged in a process of treating organic substances such as sewage, urine, and waste.
  • the sludge to be treated in the present invention is preferably at least one selected from the initial sludge generated from the first settling basin of the wastewater treatment facility and the surplus sludge generated from the final settling basin. More preferably, it is sludge.
  • the sludge is preferably stored in a storage tank and concentrated by gravity.
  • Coagulant is added to the sludge discharged from the storage tank to prepare the coagulated sludge.
  • the amount of the flocculant added is preferably 0.2 to 1.0 wt%, more preferably 0.3 to 0.6 wt%, based on the sludge SS (Suspended Solids, suspended particles).
  • the flocculant a commonly used flocculant can be used without particular limitation.
  • examples thereof include inorganic aggregating agents such as polyferric sulfate or PAC and sulfuric acid bands, and organic polymer aggregating agents (hereinafter also referred to as polymer aggregating agents), and each can be used alone or in combination.
  • examples of the polymer flocculant include cationic, anionic, amphoteric, and the like, and examples thereof include amidine flocculants, acrylamide flocculants, and acrylic acid flocculants.
  • This pretreatment step is a sludge concentration step in which the agglomerated sludge prepared by adding a flocculant to the sludge is solid-liquid separated into a sludge concentrate having a sludge concentration of 4 to 12 wt% and a separated liquid.
  • the sludge is concentrated by adding a polymer flocculant, so that the concentration to a sludge concentration of about 3 to 4 wt%, and at most about 4 to 5 wt% has been the limit.
  • the concentration can be increased to a sludge concentration of 4 to 12 wt%.
  • the separation liquid contains phosphorus, calcium, siloxane and the like.
  • the said sludge concentrate is sent to an anaerobic digestion process, and the biogas generated while anaerobically digesting is collect
  • Digestion of the sludge concentrate is preferably carried out in an intermediate temperature digestion region of 30 to 60 ° C, preferably 30 to 40 ° C or a high temperature digestion region of 50 to 60 ° C.
  • a suitable pH during anaerobic digestion is pH 6 to 8.5, most preferably pH 6.5 to 8.0.
  • the anaerobic digestion step is a pre-stage digestion step in which the sludge concentrate is solubilized and acid-fermented under conditions of a treatment temperature of 30 to 60 ° C. and an HRT (Hydraulic retention time) of 1 to 3 days. More preferably, the digested sludge treated in the previous digestion step is subjected to a methane fermentation treatment to prepare an anaerobic digested sludge.
  • This pre-stage digestion process has the function of promoting the anaerobic treatment of the post-stage methane fermentation process, reduces the HRT in the methane fermentation process, streamlines and stabilizes the recovery of biogas, and increases the content of crude suspended matter. Maintain high and stable, contribute to reduce the viscosity of fermentation broth. Further, the SS concentration may be adjusted in the previous digestion step.
  • the methane fermentation process is preferably performed under conditions of a processing temperature of 30 to 60 ° C. and HRT of 12 to 20 days, and anaerobic digested sludge is prepared so that the content of crude suspended solids with respect to SS is 3 to 20%. It is preferable.
  • the coarse suspended matter having the above-mentioned coarse suspended solid content means fibrous substances such as cellulose, granular substances and the like.
  • the HRT is more preferably 12 to 15 days, and the content of crude suspended matter is more preferably 5 to 18%.
  • the organic waste liquid or waste carried from the outside can be treated together with sludge.
  • the organic waste liquid or waste from the outside includes at least an organic compound discharged from facilities such as factories and sewage treatment plants, and may include sludge, herbs, and the like.
  • the organic waste liquid or waste from the outside may be carried into any of the pretreatment process, the pre-digestion process, and the methane fermentation process.
  • the concentration of slurry TS (Total solids) of the organic waste liquid or waste is 1 to 15% (more preferably 3 to 10%) It is preferable to add the slurry under a mixing condition that provides a slurry TS ratio of 120% or less (more preferably 5 to 100%) with respect to TS of the sludge concentrate.
  • the slurry TS concentration means the TS concentration in the slurry
  • the slurry TS ratio means the TS ratio of the carried-in substance contained in the slurry.
  • the slurry TS concentration is determined in consideration of the type, concentration, state, delivery frequency, etc. of the organic waste liquid or waste.
  • the organic waste liquid or waste carried from the outside can stabilize the digestion reaction if it is introduced into the anaerobic digestion step after being subjected to physical, chemical and biological decomposition treatment as necessary. Therefore, it is preferable.
  • the treatment method wet crushing, dry pulverization, heat treatment, high-temperature and high-pressure treatment, acid or alkali treatment, biological solubilization or acid fermentation treatment, and the like can be preferably exemplified.
  • the digested sludge aggregate is prepared by mixing the anaerobic digested sludge prepared in the anaerobic digestion step with the flocculant and at least one of the separation liquid and water in the pretreatment step.
  • a polymer flocculant or the like As the flocculant added to the anaerobic digested sludge, a polymer flocculant or the like is suitable.
  • an inorganic coagulant aid such as polyferric sulfate or PAC and a polymer coagulant may be effective for increasing the clarity of the separated liquid.
  • an expensive amidine flocculant can be used, but a relatively inexpensive cationic polymer flocculant, for example, acrylate ester-based, methacrylic acid ester-based, amphoteric with higher cationicity than anionic degree
  • a system flocculant or the like can be used.
  • acrylic ester those having a molecular weight of 3 to 6 million are preferable in order to obtain a digested sludge aggregate having high sedimentation separation.
  • the addition amount of the flocculant varies depending on the properties of the anaerobic digested sludge, but in order to improve the sedimentation and segregation property of the digested sludge aggregate, it is preferable that the floc diameter of the aggregate is about several millimeters.
  • the flocculant has a floc diameter in the range of 5 to 20 mm, preferably in the range of 10 to 20 mm, and the flocculant is in the range of 1.0 to 2.5% per SS in the anaerobic digested sludge. Preferably, it is added in the range of 1.5 to 2.0%.
  • the separation liquid or water (also referred to as “diluted water”) used in the digested sludge aggregate preparation step has a function of diluting anaerobic digested sludge.
  • the electrical conductivity of the sludge is 1200 mS / m or less, preferably 750 mS / m or less
  • the M alkalinity of the sludge is 4000 mg / l or less, preferably 2500 mg / l or less
  • the sludge temperature Is adjusted to 35 ° C. or higher, preferably 50 to 75 ° C.
  • the temperature of the diluted sludge may be adjusted by adding a separation liquid or water having a temperature in the above range, or may be heated after the addition.
  • Dilution water is a water quality condition (electric conductivity 500 mg / L or less, M alkalinity 1500 mg / L or less, etc.) in addition to the separation liquid obtained in the pretreatment step, ordinary drinking water, etc.
  • any process water in the treatment plant may be used. It is also possible to use biologically treated water such as activated sludge treated water and biological deodorizing apparatus waste liquid.
  • the obtained digested sludge aggregate is solid-liquid separated to prepare a digested sludge concentrate and a separated liquid.
  • the concentration rate of the digested sludge concentrate is preferably about 2.5 to 8 times.
  • the concentration ratio means a value obtained by dividing the volume of the digested sludge aggregate by the volume of the digested sludge concentrate.
  • the flocculant and diluting water as necessary to the digested sludge concentrate that has been solid-liquid separated to prepare the reconcentrated flocculent sludge.
  • the flocculant and dilution water used at this time may be the flocculant and dilution water used in the digested sludge aggregate preparation step.
  • the re-concentrated agglomerated sludge has sufficient dewaterability (the TS concentration of the concentrated agglomerated sludge is in the range of 4 to 15 wt%, preferably 6 to 10 wt%), it is sent to the dehydration process as the final digested sludge agglomerate.
  • the reconcentrated flocculated sludge does not have sufficient dewaterability, or when it is required in the original design (when the TS concentration of the concentrated flocculated sludge is less than 4 wt%), Only injection and subsequent solid-liquid separation or solid-liquid separation may be repeated.
  • the flocculant used for reinjection of the flocculant the same flocculant as that used in the digested sludge aggregate preparation step may be used, or a different flocculant may be used.
  • the final digested sludge agglomerate is preferably a floc having such a strength that the granular floc shape remains slightly even after being subjected to the shearing force in the subsequent dehydration step.
  • the flocculant for obtaining such a digested sludge aggregate is not particularly limited, but a polymer flocculant is preferable.
  • the polymer flocculant include those used in the above-mentioned flocculent sludge preparation step, and may be the same as or different from the flocculant in the pretreatment step.
  • the digested sludge aggregate is dehydrated and separated into a dehydrated cake and a separated liquid.
  • the concentration ratio of the dehydrated cake is preferably about 4 to 10 times.
  • the concentration ratio means a value obtained by dividing the volume of the digested sludge aggregate by the volume of the dewatered cake.
  • the separated liquid separated in the dehydrated cake preparation step has a low SS concentration, M alkalinity, and electrical conductivity, and is therefore suitable as dilution water used in the step of preparing digested sludge aggregates. Since the dehydrated cake has a low salt content and a low water content, it can be recycled, and is suitable for secondary processing such as composting, carbonization, and fueling.
  • the separation liquid obtained in the pretreatment step contains phosphorus, calcium, siloxane and the like.
  • all or a part of the separation liquid containing them can be sent to a step of recovering or removing phosphorus, calcium, siloxane and the like.
  • a catalytic dephosphorization method using hydroxyapatite, a MAP method using magnesium ammonium phosphate, or the like can be applied.
  • a seed tank of MAP is preliminarily filled in a reaction tank, for example, an upward flow tank, and an agent such as MgCl 2 , Mg (OH) 2 or the like for supplementing the MAP component which is insufficient if desired is added.
  • the pH of the separation liquid is adjusted to 7.8 to 8.5 if desired, and the separation liquid is passed through the reaction vessel in an upward flow to increase the particle size of MAP.
  • a method of appropriately extracting MAP having an increased particle size from the reaction vessel and separating / recovering it can be mentioned. Fine MAP generated in the reaction tank is recovered from the upper part of the tank and returned to the reaction tank.
  • Siloxane is recovered by a method in which the separated liquid is adsorbed with an adsorbent such as activated carbon, silica gel, zeolite, polymer (for example, styrene / divinylbenzene copolymer) in the form of gas or spray or as it is. be able to.
  • siloxane can also be desorbed and recovered by optionally heating nitrogen gas as appropriate and passing it through an adsorbent adsorbing siloxane. It is possible to treat siloxane with biogas described later using the same adsorbent as described above, and siloxane can be desorbed and recovered by the same method.
  • the present invention has the step of solid-liquid separation into the separation liquid and the sludge concentrate as described above, the amount of phosphorus, siloxane, and the like introduced into the anaerobic digester is reduced compared to the prior art, and consequently the phosphorus in the apparatus is reduced. This reduces the generation of precipitates containing siloxane and the like, and has the effect of contributing to the maintenance of the apparatus or piping and the reduction of management costs.
  • the anaerobic treatment apparatus of the present invention is a coagulation tank for adding coagulant to sludge to prepare coagulated sludge, a pretreatment sludge concentration apparatus for solid-liquid separation into a sludge concentrate having a sludge concentration of 4 to 12 wt% and a separated liquid, Anaerobic digester for anaerobically digesting the sludge concentrate and collecting biogas, anaerobic digested sludge prepared by the anaerobic digester, a flocculant, and at least one of the separation liquid and water.
  • a digested sludge agglomeration apparatus for preparing a digested sludge agglomerate by mixing, and an apparatus for dewatering a digested sludge concentrate obtained by solid-liquid separation of the digested sludge agglomerate are included.
  • the coagulation tank may be a commonly used coagulation tank.
  • the pretreatment sludge concentrator may be a solid-liquid separation tank that separates the agglomerated sludge into sludge concentrate and separated liquid.
  • the solid-liquid separation tank is not particularly limited, but a simple tank to which the gravity concentration method is applied, a centrifugal separator to which the centrifugal concentration method is applied, a separator to which the floating concentration method is applied, a separator using a screen, A slit type concentrator can be used. Among them, the slit type concentrator is preferable. For example, as described in Japanese Patent Application Laid-Open No.
  • Patent Document 3 the processed product is received by the slit plate, and the peripheral surface protrudes on the slit plate in which a large number of slits are formed.
  • a large number of squeezed discs are eccentrically rotated by the rotating shaft in the direction of discharge of the processed material, so that the processed material is sent to the discharge side on the slit plate, and in this process, the liquid component is released from the gap with the disk in the slit. It is dropped and filtered, and the solid components in the processed material are separated and collected, and further rotated in the direction of discharge of the processed material close to the upper surface of the slit plate, and the collected material on the slit plate is squeezed and dehydrated.
  • the mechanical structure which provided the belt conveyor on the said slit board is mentioned.
  • An anaerobic digester includes at least an anaerobic digester. Although it does not specifically limit as an anaerobic digester, It is preferable to apply a complete mixing type digester. In an anaerobic digestion tank, in addition to homogenization of the liquid in the tank and uniform temperature distribution, stirring is essential to prevent the occurrence of scum, and in the present invention, the mechanical stirring system is the most efficient, but the equipment environment It is also effective to attach a pump stirring method and a gas stirring method according to the processing conditions. Furthermore, any water-tight and air-tight digester with these requirements can be either reinforced concrete or steel plate, and it can also be applied by modifying or updating an existing anaerobic digester according to the processing conditions. is there.
  • the anaerobic digester includes a solubilization / acid fermentation treatment tank for solubilizing and acid fermentation treatment of the sludge concentrate, and a methane fermentation tank for subjecting the digested sludge treated in the tank to methane fermentation treatment. It is preferable to do.
  • the anaerobic digester includes an external biomass storage device for storing organic waste liquid or waste from the outside, a device for solubilizing and acid fermentation treatment of the biomass discharged from the external biomass storage device, and It is preferable to include a mechanism and piping for introduction into at least one selected from the group consisting of methane fermentation apparatuses.
  • the digested sludge flocculation apparatus includes a digested sludge flocculation tank, a means for introducing diluted sludge as appropriate, a flocculant addition means, a stirring means, a heating means, a means for extracting the coagulated sludge, and the like.
  • an in-pipe mixing device for dilution may be provided separately.
  • the anaerobic treatment apparatus of the present invention preferably includes an apparatus for preparing a digested sludge concentrate from the digested sludge aggregate.
  • the apparatus for preparing the digested sludge concentrate is a sludge aggregating treatment apparatus for preparing agglomerated sludge with a coagulant, agglomerated sludge separating and concentrating apparatus for preparing the agglomerated sludge by solid-liquid separation of the agglomerated sludge, and agglomerating the concentrated agglomerated sludge. It is preferable to provide an apparatus for preparing the reconcentrated agglomerated sludge by adding an agent.
  • the agglomerated sludge separation and concentration device is a device for solid-liquid separation of the agglomerated sludge into concentrated agglomerated sludge and a separated liquid.
  • the coagulation sludge separation and concentration device is not particularly limited, and is simply a tank to which the gravity concentration method is applied, a centrifugal separator to which the centrifugal concentration method is applied, a separator to which the floating concentration method is applied, a separator using a screen, etc. Is mentioned. Among them, a solid-liquid separation device provided with a screen is preferable.
  • agglomerated sludge in a gap between adjacent screens is physically separated by a plurality of disks rotating in parallel with a plurality of screens arranged in parallel at regular intervals.
  • a solid-liquid separation device that can be separated into concentrated agglomerated sludge and separated water.
  • the slit width of the screen is in principle less than the floc diameter of the digested sludge aggregate, and is preferably 0.1 to 2.5 mm.
  • the re-concentrated coagulated sludge preparation device appropriately includes a concentrated coagulated sludge introducing unit, a coagulant adding unit, a stirring unit, a re-concentrated coagulated sludge extracting unit, and the like.
  • the apparatus for dewatering the digested sludge concentrate is not particularly limited. Usually, the same apparatus as the agglomerated sludge separation and concentration apparatus can be used, but the digestion for separating the dehydrated cake than the agglomerated sludge separation and concentration apparatus is possible. Generally, the stress on the sludge aggregate is increased, and publicly known means can be used.
  • the dewatered cake preparation device is preferably composed of a means for applying stress to the reconcentrated agglomerated sludge and a filtering means for permeating the separated liquid and holding the digested sludge agglomerates. Examples of means for applying stress to the digested sludge aggregate include press and centrifugation. Examples of the filtering means include a screen having an opening diameter of 0.1 to 2.5 mm.
  • FIG. 1 is a block flow diagram showing a first embodiment of the present invention, and is an explanatory diagram showing the configuration of an anaerobic treatment apparatus.
  • Sludge 1 is sent to the storage device 2. Subsequently, the sludge 1 is discharged
  • the agglomerated sludge 5 is sent to a pretreatment sludge concentration tank 6 and separated into a sludge concentrate 7 and a separation liquid 8 having a sludge concentration of 4 to 12%.
  • the sludge concentrate 7 is sent to the anaerobic digester 9 and produces biogas 10 and anaerobic digested sludge 11 by anaerobic digestion of the sludge.
  • the biogas 10 is sent to the biogas tank 101, and then the biogas 10 is sent to the gas utilization facility 102 (for example, a gas turbine, a biogas boiler, a gas tank, a dryer heat source, etc.) or the surplus gas combustion device 103.
  • Anaerobic digested sludge 11 is sent to digested sludge aggregating device 12.
  • a part of the separation liquid 8 formed in the pretreatment sludge concentration tank 6 is introduced into the digested sludge aggregating apparatus 12.
  • the separation liquid 8 and the flocculant 13 are added to the anaerobic digested sludge 11, and the digested sludge aggregate 15 and the separation liquid 14 are formed.
  • the digested sludge aggregate 15 from the digested sludge aggregating apparatus 12 is sent to a dehydrator 16 to separate the separation liquid 17 and prepare a dehydrated cake 18.
  • a part of the separation liquid 8, the separation liquid 14, and the separation liquid 17 are sent to a wastewater treatment facility 104 such as phosphorus recovery.
  • a siloxane removal or recovery device may be provided in front of the biogas tank.
  • FIG. 2 is a block flow diagram showing a second embodiment of the present invention, which is an explanatory diagram showing the configuration of the anaerobic treatment apparatus, and performs solubilization and acid fermentation treatment before anaerobic digestion. is there.
  • the sludge concentrate 7 separated in the pretreatment mud concentration tank 6 is sent to the solubilization and acid fermentation treatment device 9 a before being sent to the anaerobic digester 8, solubilizing and acid fermentation.
  • the digested sludge 7a to which the process was performed is produced
  • the digested sludge 7a is sent to the anaerobic digester 9, and thereafter processed according to the flow of FIG.
  • FIG. 3 is a block flow diagram showing a third embodiment of the present invention, which is an explanatory diagram showing the configuration of the anaerobic treatment apparatus, and divides the sludge agglomeration treatment by an aerobic digested sludge flocculant into two times. It is what you do.
  • anaerobic digested sludge 11 and part of the separated liquid 8 are sent to the digested sludge agglomeration tank 12 to separate the separated liquid 14 by the added flocculant 13 and digested sludge agglomerated.
  • the process by which the product 15 is prepared is changed as follows.
  • the anaerobic digested sludge 11 and a part of the separation liquid 8 are sent to the sludge aggregating treatment apparatus 12a, and the agglomerated sludge 12c is prepared by the added aggregating agent 13a.
  • the agglomerated sludge 12c is introduced into the agglomerated sludge separation and concentration device 14A, and is solid-liquid separated into the separated liquid 14 and the concentrated agglomerated sludge 12d.
  • the concentrated flocculated sludge 12d is sent to the reconcentrated flocculated sludge preparation device 12b, and the reconcentrated flocculated sludge is prepared by the added flocculant 13b, and this is used as the final digested sludge flocculate 15.
  • FIG. 4 is a block flow diagram showing the fourth embodiment of the present invention and is an explanatory diagram showing the configuration of the anaerobic treatment device.
  • the biologically treated water 19 is added to the sludge aggregation treatment device 12a. Is added to dilute the sludge, and other processes are the same as in FIG.
  • Examples of the biologically treated water include activated sludge treated water, biological deodorized treated water, and nitrified denitrified treated water.
  • the kind and concentration of the biologically treated water component are appropriately determined depending on the purpose of treatment because they affect the kind or amount of the flocculant and the cost.
  • FIG. 5 is a block flow diagram showing the fifth embodiment of the present invention and is an explanatory diagram showing the configuration of the anaerobic treatment apparatus.
  • the organic waste liquid or waste carried from the outside is shown. Is an anaerobic digestion process, and the other processes are the same as those in FIG.
  • the organic waste liquid or waste 20 is stored in the biomass storage tank 21 as a slurry.
  • the slurry 22 from the biomass storage tank 21 is adjusted to the TS concentration as desired, and then introduced into at least one of the storage tank 2, the solubilization and acid fermentation treatment apparatus 9a, and the anaerobic digestion apparatus 9 to be processed. .
  • 1 to 5 may be an automatic control, a batch process, or a combination thereof.
  • temperature control of various sludges may be automated.
  • Table 2 shows the anaerobic digestion test conditions in the anaerobic digester.
  • a completely mixed digestion test apparatus (total volume 30 L, effective volume 25 L, jacket hot water circulation type) made of heat-resistant vinyl chloride was used.
  • a solubilization and acid fermentation apparatus a jar fermenter MDL manufactured by Tokyo Rika Kikai Co., Ltd. was used (fully mixed type with a total volume of 10 L, operated at a depth of 4 L).
  • the anaerobic digester was operated at 37 ° C
  • the solubilization and acid fermentation apparatus (solubilization tank) was operated at 45 ° C.
  • Comparative Example 2 a high temperature anaerobic treatment test at 55 ° C. was performed.
  • the raw material was charged using a tube pump RP-60 type (manufactured by Tokyo Rika Kikai Co., Ltd.) in 4 to 8 times per day with timer control.
  • Example 2 It implemented according to the flow of FIG. In addition, about the dehydration process of anaerobic digestion sludge, the processing method shown in FIG. 3 and FIG. 4 was also combined.
  • the digested sludge aggregate 15 was prepared by sludge aggregation with a polymer flocculant.
  • the analysis method was as follows. -TS (Total solids): 105 ° C evaporation residue weight (JIS K 0102) ⁇ VTS (Volatile total solids, loss on ignition); 600 ° C loss on ignition (JIS K 0102) ⁇ SS (Suspended solids, suspended particles): 3,000rpm, sediment weight in 10 minutes by centrifugation (JIS K 0102) ⁇ VSS (Volatile suspended solids); Loss on ignition of suspended particles at 600 °C (JIS K 0102) ⁇ COD Cr (chemical oxygen consumption); potassium dichromate method (JIS K 0102) ⁇ BOD (Biochemical Oxygen Consumption); Winkler ⁇ Modified Sodium Azide (JIS K 0102) ⁇ Protein; (Kjeldahl Nitrogen-Ammonia Nitrogen) x 6.25 ⁇ Volatile organic acid (VFA); High performance liquid chromatograph (Elmer Optics ERC-8710, detector RI, column Shodex RSpak KC-8
  • the decamethylcyclopentasiloxane (D5) concentration of cyclic siloxane which is said to be the most abundant in sewage sludge digestion gas, was evaluated by quantitative analysis.
  • Solubility fraction Filtrate in GF / B (1 ⁇ m)
  • M alkalinity 3,000 rpm, 3 minutes of supernatant with 0.1 mol / L hydrochloric acid solution to pH 4.8 Titration (sewage test method)
  • ⁇ Coarse suspended solids analysis of coarse suspended solids with a nominal size of 74 ⁇ m (sewage test method)
  • Example 3 shows about the Example which performed the anaerobic process of the sewage sludge, food manufacturing waste (waste sugar liquid and dessert-type waste product), and riverbed cut grass.
  • anaerobic digesters that are significantly smaller than conventional ones according to the present invention can anaerobically treat sludge and organic waste to stably generate high-quality biogas. It became clear that we could do it.
  • anaerobic digester 630-945 m 3
  • an anaerobic digester of 206 m 3 is used, so the anaerobic scale is the same as the conventional anaerobic digester. Anaerobic treatment is possible with a system reduced to 1/3 to 1/4.
  • the generated anaerobic digested sludge can be agglomerated and dehydrated at low cost by an easy operation, and the resulting dehydrated cake moisture content of 77% is lower than the conventional 82% (see Table 4). )
  • the appearance was the same as the conventional product, and it was hygienic with no unpleasant odor.
  • Example 4 Similarly to Example 3, based on FIG. 5, anaerobic treatment of sewage sludge and food production waste (tangerine juice for juice) was performed in a sewage treatment plant. As sewage sludge, sludge concentration was performed as a mixed sludge composed of gravity-concentrated primary sedimentation sludge and excess sludge. Anaerobic digestion was carried out at a mixing ratio of approximately equal amounts of solids of sewage sludge and mandarin orange pomace.
  • the TS concentration is 7.5 with respect to the mixed raw sludge of the primary sedimentation sludge and the excess sludge that are not mechanically concentrated but only gravity concentrated (TS concentration 1.39%).
  • % (Sludge concentration ratio is about 5.4 times), and it is possible to omit various mechanical concentration facilities that have been widely applied conventionally.
  • a highly miniaturized anaerobic digester can stably generate high-quality biogas even if anaerobic digestion treatment is performed with an approximately equal mixing ratio of each solid content of concentrated sludge and mandarin be able to.
  • the generated anaerobic digested sludge can be agglomerated and dehydrated at low cost by the same easy operation as in Example 3, and the resulting dehydrated cake moisture content of 78% is lower than that of the prior art.
  • Example 5 The waste liquid and dehydrated cake generated in Examples 3 and 4 were examined for effective use. Phosphorus was recovered from the separation liquid generated from the solid-liquid separation of the sewage sludge and the dehydration separation liquid from the dehydration process, and the dehydrated cake generated from the dehydration process of the anaerobic digested sludge concentrate was composted. .
  • phosphorus is recovered from the waste liquid generated in Examples 3 and 4 in the present invention, and the dehydrated cake can be composted, and in terms of quality, it is a conventional product (compost properties of garbage-type intermediate temperature methane fermentation sludge as a comparative example) It is also clear that there is almost no change.
  • the organic matter decomposition rate in composting was 24% for the sludge of Example 3 and 28% for Example 4.
  • the high calorific value of the dewatered cake is 17 MJ / kg-dry for the sludge of Example 3, and 17.3 MJ / kg-dry for the sludge of Example 4. Therefore, this dewatered sludge is mechanically dried to obtain sludge fuel. [As a quality standard for fueled products (flow-dried products), the calorific value is 4000 cal / kg or more (16.7 MJ / kg or more)].
  • SYMBOLS 1 ... Sludge, 2 ... Storage tank, 3 ... Coagulation tank, 4 ... Coagulant, 5 ... Coagulated sludge, 6 ... Pretreatment sludge concentration tank, 7 ... Sludge concentrate, 7a ... Digested sludge, 8 ... Separation liquid, DESCRIPTION OF SYMBOLS 9 ... Anaerobic digestion tank, 9a ... Solubilization and acid fermentation treatment tank, 10 ... Biogas, 11 ... Anaerobic digestion sludge, 12 ... Digestion sludge aggregation apparatus, 12a ... Sludge aggregation treatment tank, 12b ...
  • Reconcentration aggregation sludge preparation Apparatus 12c ... Aggregated sludge, 12d ... Concentrated aggregated sludge, 14A ... Aggregated sludge separation and concentration apparatus, 15 ... Digested sludge aggregate, 13, 13a, 13b ... Coagulant, 14 ... Separation liquid, 15 ... Digested sludge aggregate, 16 DESCRIPTION OF SYMBOLS ... Dehydration apparatus, 17 ... Separation liquid, 18 ... Dehydrated cake, 19 ... Biologically treated water, 20 ... Organic waste liquid or waste, 21 ... Biomass storage tank, 101 ... Biogas tank, 102 ... Gas utilization equipment, 103 ... Excess gas combustion Equipment, 104 ... Wastewater treatment Bei.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Treatment Of Sludge (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

 嫌気性消化装置を小型化するとともにリン、シロキサン等の析出物発生を低減し、廃水処理設備等で発生する汚泥を安定的かつ効率的に嫌気性消化すると共に、バイオガス(特にメタンガス)を効率良く回収することができ、かつ消化汚泥を効率的に脱水することのできる低コスト化が図れる嫌気性処理方法および装置を提供すること。 汚泥に凝集剤を添加して調製した凝集汚泥を、汚泥濃度4~12%の汚泥濃縮物と分離液とに固液分離する前処理工程、該汚泥濃縮物を嫌気性消化するとともにバイオガスを回収する嫌気性消化工程、該嫌気性消化工程で調製された嫌気性消化汚泥に凝集剤と、前記分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する工程、該消化汚泥凝集物を固液分離して得られる消化汚泥濃縮物を脱水する工程を含む、嫌気性処理方法、及び前記処理方法を実施するための装置

Description

嫌気性処理方法および装置
 本発明は、汚泥の嫌気性処理方法および装置に関するものである。
 汚泥の嫌気性消化処理は、好気性処理に比べて汚泥発生量が少なく、病原微生物や寄生虫卵も速やかに死滅して安定化し、酸素の供給が不要なので動力消費量も少なく、メタンガスを主成分とするバイオガスも得られることから、省エネルギー的処理方法として古くから適用されている技術である。一方、嫌気性消化槽設備は大容量を必要とし、消化汚泥の処理では薬品費用が高く、かつ、汚泥が難脱水性で脱水汚泥含水率も下げにくいことから、課題点の多い技術でもある。
 したがって、現状の汚泥処分方法としては、汚泥を嫌気性消化することなく、脱水して埋立てたり、脱水して焼却処分する事例がまだまだ多い。例えば、従来の汚泥の嫌気性処理として、図6に示すブロックフロー図で示されるものが挙げられる。このフローについて説明する。
 汚泥1は、貯留装置2に送られ、次いで汚泥1は、固液分離装置6に送られ、汚泥濃縮物7と分離液8とに固液分離され、汚泥濃縮物7は、嫌気性消化装置9に送られ、汚泥の嫌気性消化によりバイオガス10及び嫌気性消化汚泥11が生成され、バイオガス10は、バイオガスタンク101に送られ、次いでバイオガス10は、ガス利用設備102(例えば、ガスタービン、バイオガスボイラ、ガス燈、乾燥機熱源等)、あるいは余剰ガス燃焼装置103に送られる。嫌気性消化汚泥11は、消化汚泥凝集物調製装置12に送られ、分離液14を分離するとともに消化汚泥凝集物15が調製され、消化汚泥凝集物15は、脱水装置16に送られ、分離液17を分離するとともに脱水ケーキ18が調製される。分離液8、分離液14、及び分離液17は、廃水処理設備104等に送られる。消化汚泥凝集物調製装置12では、凝集剤が添加されることが多い。
 一方、特許文献1には、(a)汚泥の混在するし尿を固液分離する前処理工程と、(b)処理工程で分離した固形物を脱水せずに直接嫌気性消化する嫌気性消化工程と、(c)動植物残さ及び固形物を含有する厨芥を嫌気性消化する嫌気性消化工程と、(d)嫌気性消化工程流出液を固形物と分離水に脱水分離する脱水工程、(e)前処理工程の分離水、脱水工程からの分離水を生物学的に酸化、脱窒素する生物処理工程とからなる処理方法により、有機性廃水処理施設の汚泥、浄化槽汚泥等の汚泥、し尿、動植物残さを含有する厨芥を省エネルギー的に処理するとともに、し尿、浄化槽汚泥中の非衛生な篩渣を衛生的にコンポスト化又は固形燃料化する、し尿、厨芥、汚泥の処理方法を提案している。
 特許文献2には、廃水処理設備における最初沈殿池から発生する初沈汚泥と最終沈殿池から発生する余剰汚泥とを混合して貯留し、この混合汚泥に凝集剤を添加して1次凝集処理を行い、次に1次凝集処理を終えた混合汚泥をその汚泥濃度が6~8%となるように濃縮処理し、次いで濃縮処理後の混合汚泥に凝集剤を添加して2次凝集処理を行い、さらに2次凝集処理を行った混合汚泥に脱水処理を施す処理方法により、廃水処理により発生する初沈汚泥と余剰汚泥の2種の汚泥を、1系統で濃縮処理するとともに、後続の脱水工程にとって最適な汚泥濃度まで濃縮、維持することにより、これら廃水汚泥の濃縮、脱水プロセスにおけるトータルの効率を最大限に発揮させる汚泥処理方法及びそのシステムを提案している。
 また、特許文献3には、固液分離装置の搬送能力を上げるとともに、押圧圧搾効果を増大させるスリット型濃縮機が提案されている。
特開平10-216785号公報 特開2007-264758号公報 特開2003-211293号公報
 廃水処理設備等で発生する汚泥の嫌気性消化処理では、通常はHRT(水理学的滞留時間:Hydraulic retention time)20~30日とするので大容量の嫌気性消化槽を必要とすることが最大の問題であった。例えば、汚泥TS(Total Solids)濃度3wt%、処理量100m/日の汚泥処理では、通常2000~3000mもの大型の嫌気性消化槽を設ける必要がある。また、消化汚泥処理では、汚泥凝集や脱水処理に要する薬品費用が高くなり、かつ、汚泥が難脱水性になっていて汚泥含水率も下がりにくいことが問題であった。これは、汚泥の嫌気性消化ではタンパク質が分解されることでアンモニア態窒素が生成され、Mアルカリ度(pH4.8までの酸消費量)も3,000mgCaCO/L程度以上と高くなり、汚泥凝集の最適pH条件とされる弱酸性領域から外れていくためである。さらには、汚泥消化によって汚泥中の粗浮遊物(繊維分)も一緒に分解される為、汚泥脱水時の水抜けに大きく寄与する粗浮遊物含率が低下してしまって、脱水ケーキ含水率は高くなってしまう問題もあった。更に、嫌気性消化槽や配管等にリンやカルシウム等の析出物が発生するという問題もある。また、排水中に含まれるケイ素は、通常、シャンプー、リンス、化粧品等に含まれるシリコンオイル等のケイ素化合物に起因するシロキサンの形態である。シロキサンとは、主骨格がSi-O-で側鎖に炭化水素基を有するケイ素-酸素結合を有する有機化合物を意味する。シロキサンとしては、例えば、ケイ素原子が2~6で、炭化水素基がメチル基等である線状又は環状のものが挙げられる。シロキサンは水への溶解度が低いことから、下水汚泥を嫌気性消化した場合にはバイオガス中に分配移行するため、バイオガスを発電利用するとガスエンジンなどの発電設備や周辺機器にスケールとなって析出し、発電効率低下や設備メンテナンスに悪影響を及ぼす事例が多く知られ、この防止対策が重要となっている。
 本発明は、上述の点に鑑みてなされたもので、嫌気性消化装置を小型化するとともにリン、カルシウム、シロキサン(シロキサン結合を有するケイ素化合物)等を含む析出物の発生を低減し、廃水処理設備等で発生する汚泥を安定的かつ効率的に嫌気性消化すると共に、バイオガス(特にメタンガス)を効率良く回収することができ、かつ消化汚泥を効率的に脱水することのできる低コスト化が図れる嫌気性処理方法および装置を提供することにある。
 本発明によれば、以下の嫌気性処理方法及び嫌気性処理装置が提供される。
1)汚泥に凝集剤を添加して調製した凝集汚泥を、汚泥濃度4~12wt%の汚泥濃縮物と分離液とに固液分離する前処理工程、該汚泥濃縮物を嫌気性消化するとともにバイオガスを回収する嫌気性消化工程、該嫌気性消化工程で調製された嫌気性消化汚泥に、凝集剤と、前記分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する工程、及び該消化汚泥凝集物を固液分離して得られる消化汚泥濃縮物を脱水する工程を含む、嫌気性処理方法。
2)汚泥に凝集剤を添加して凝集汚泥を調製する凝集槽、該凝集汚泥を汚泥濃度4~12wt%の汚泥濃縮物と分離液とに固液分離して汚泥濃縮物を調製する前処理汚泥濃縮装置、該汚泥濃縮物を嫌気性消化するとともにバイオガスを回収する嫌気性消化装置、該嫌気性消化装置で調製された嫌気性消化汚泥に、凝集剤と、前記分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する消化汚泥凝集装置、及び該消化汚泥凝集物を固液分離して得られる消化汚泥濃縮物を脱水する脱水装置を含む、嫌気性処理装置。
 本発明の処理方法において、前処理工程で固液分離されて調製される汚泥濃縮物は、4~12wt%と従来方法よりも1.5~2倍以上高濃度の汚泥を含む。この汚泥濃縮物を嫌気性消化処理するため、本発明における嫌気性消化汚泥は、従来方法における嫌気性消化汚泥よりも高いMアルカリ度及びアンモニア濃度を有する。そのために、嫌気性消化汚泥にそのまま凝集剤を添加して脱水可能なフロックを得ようとすると、多量の凝集剤が必要となる。そこで本発明では、脱水可能な消化汚泥凝集物を得るために、前処理工程で得られた分離液又は水の少なくとも何れかを嫌気性消化汚泥に混合して嫌気性消化汚泥を希釈し、嫌気性消化汚泥と添加される凝集剤との汚泥凝集反応による消化汚泥凝集物の生成をスムーズに行い、凝集剤注入量の低減を図る。また、本発明の前処理工程では、凝集剤を添加して調製した凝集汚泥を汚泥濃縮物と分離液とに分離するため、分離液にはリン等の水溶性乃至親水性の有用資源が含有されることになり、効率的に有用資源を回収することができる。さらに、有用資源を回収することができる前処理工程は、嫌気性消化工程の前に行われるため、嫌気性消化工程に送られる汚泥濃縮物中のリン、シロキサン等は低減され、且つ、汚泥濃度が高濃度であるため、嫌気性消化槽でのリン、シロキサン等を含む析出物の発生を低減することができる。
 本発明において、「%」は、特に言及がない限り、「質量%」を意味する。本発明の嫌気性処理装置は、上記各固有の装置間に汚泥を送るための手段、例えば、配管、ポンプ、バルブ等を適宜、有することができる。
 本発明によれば、廃水処理場等での汚泥の嫌気性消化により有機物を分解すると共に、バイオガス(特にメタンガス)を効率良く回収することができ、これよりエネルギー回収効率を著しく向上させることが可能となる。特に、従来の処理方法における大容量の嫌気性消化槽設備を必要とし、消化汚泥処理のための薬品費用が高く、かつ、汚泥が難脱水性で脱水汚泥含水率も下げにくいという技術課題に対し、本発明では低ランニングコストの濃縮装置で汚泥濃度を高く濃縮でき、かつ、嫌気性消化容量も大幅に削減でき、さらには、難脱水性の嫌気性消化汚泥での脱水操作改善も行うことができるため、消化汚泥を効率的に脱水処理することができる低コストの嫌気性消化システムを実現できる。また、本発明は、嫌気性消化槽へのリン、カルシウム、シロキサン等の導入量を従来のほぼ半分に低減でき、ひいては嫌気性消化槽でのリン、カルシウム、シロキサン等を含む析出物の発生を低減でき、嫌気性消化槽及び配管等の維持、管理費用の低減化に寄与するとともにリン等の有用資源を効率的に回収することができる。
本発明の実施の形態に係る処理装置の構成を表す説明図である。 本発明の実施の形態に係る処理装置の構成を表す説明図である。 本発明の実施の形態に係る処理装置の構成を表す説明図である。 本発明の実施の形態に係る処理装置の構成を表す説明図である。 本発明の実施の形態に係る処理装置の構成を表す説明図である。 従来の処理装置の構成を表す説明図である。
 以下、適宜図面を参照しながら、本発明を更に詳細に説明する。
 本発明の嫌気性処理方法は、汚泥に凝集剤を添加して調製した凝集汚泥を、汚泥濃度4~12wt%の汚泥濃縮物と分離液とに固液分離する前処理工程、該汚泥濃縮物を嫌気性消化するとともにバイオガスを回収する嫌気性消化工程、該嫌気性消化工程で調製された嫌気性消化汚泥に、凝集剤と、前記分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する工程、及び該消化汚泥凝集物を固液分離して得られる消化汚泥濃縮物を脱水する工程を含む。
 本発明において、「汚泥」とは、下水、屎尿、厨芥などの有機性物質を処理する工程で排出される汚泥を意味する。
 本発明で処理される汚泥としては、廃水処理設備の最初沈殿池から発生する初沈汚泥と最終沈殿池から発生する余剰汚泥とから選択される少なくとも1種であることが好ましく、両者からの混合汚泥であることが更に好ましい。該汚泥は、貯留槽に貯留され、重力濃縮されることが好ましい。
 貯留槽から排出された汚泥に凝集剤が添加され、凝集汚泥が調製される。凝集剤の添加量は、汚泥のSS(Suspended Solids、懸濁粒子)に対して0.2~1.0wt%が好ましく、0.3~0.6wt%が更に好ましい。
 凝集剤としては、通常用いられる凝集剤を特に限定せずに用いることができる。例えば、ポリ硫酸第二鉄またはPAC、硫酸バンド等の無機系凝集剤、及び有機高分子凝集剤(以下、高分子凝集剤ともいう)などが挙げられ、各々、単独または組み合わせて用いることができるが、少なくとも高分子凝集剤を含むことが好ましい。高分子凝集剤としては、カチオン系、アニオン系、両性系、等が挙げられ、例えば、アミジン系凝集剤、アクリルアミド系凝集剤、アクリル酸系凝集剤等が挙げられる。
 以下、本発明の嫌気性処理方法を工程別に説明する。
 <前処理工程>
 この前処理工程は、汚泥に凝集剤を添加して調製した凝集汚泥を、汚泥濃度4~12wt%の汚泥濃縮物と、分離液と、に固液分離する汚泥濃縮工程である。従来の処理方法では、高分子凝集剤を添加して汚泥を濃縮していたため、3~4wt%、高くても4~5wt%程度の汚泥濃度に濃縮することが限界であった。本発明では、汚泥濃度4~12wt%までの高濃度化が可能である。一方、分離液には、リン、カルシウム、シロキサン等が含まれる。
 <嫌気性消化工程>
 次に、上記汚泥濃縮物は、嫌気性消化工程に送られ、嫌気性消化されるとともに発生するバイオガスが回収される。汚泥濃縮物の消化は、30~60℃、好ましくは30~40℃の中温消化領域または50~60℃の高温消化領域で行うことが好ましい。嫌気性消化時の好適なpHはpH6~8.5、最も好ましくはpH6.5~8.0である。
 油脂成分が多く含まれる後述の有機性廃液または廃棄物を混合消化する場合には、温度が高いほうが中性脂肪や高級脂肪酸の分散性が増すため、50~60℃の高温消化方法を選択することが好ましい。一方、汚泥の嫌気性消化で生成されるアンモニアは高pHと高温域で解離しやすいことから、高温消化ではアンモニア阻害を受けやすくなる点に注意が必要である。消化液中NH -N濃度としては、中温消化で3,500mg/L以上、高温消化で2,000mg/L以上となるとメタン生成反応が阻害される。これらの操作条件は、濃縮汚泥の汚泥濃度や汚泥性状、嫌気性消化時の水量変動、目標処理水質を加味した上で決定される。
 嫌気性消化工程は、前記汚泥濃縮物を、処理温度30~60℃、HRT(水理学的滞留時間:Hydraulic retention time)1~3日の条件で可溶化および酸発酵処理する前段消化工程と、該前段消化工程で処理された消化汚泥をメタン発酵処理し、嫌気性消化汚泥を調製するメタン発酵工程を含むことがより好ましい。
 この前段消化工程は、後段のメタン発酵工程の嫌気性処理を促進する機能を有し、メタン発酵工程でのHRTを低減し、バイオガスの回収を効率化・安定化し、粗浮遊物含有率を高く安定に維持し、発酵液粘度を低減するために寄与する。また、前段消化工程でSS濃度の調整を行っても良い。
 メタン発酵工程は、処理温度30~60℃、かつHRT12~20日の条件で行われることが好ましく、SSに対する粗浮遊物含有率が3~20%となるように嫌気性消化汚泥が調製されることが好ましい。上記粗浮遊物含有率の粗浮遊物とは、セルロース等の繊維状物質、粒状物質等を意味する。該HRTは12~15日が更に好ましく、粗浮遊物含有率は5~18%が更に好ましい。粗浮遊物含有率を上記範囲とすることにより、消化汚泥濃縮物の脱水性を改善し、脱水ケーキの含水率低減を図ることができる。
 また、本発明の嫌気性消化工程では、外部、すなわち、本発明において実施する廃水処理場の系外から搬入した有機性廃液または廃棄物を汚泥とともに処理することができる。外部からの有機性廃液または廃棄物とは、工場、下水処理場等の設備から排出される有機化合物を少なくとも含み、汚泥、草本類等を含んでもよい。外部からの有機性廃液または廃棄物は、前処理工程、前段消化工程及びメタン発酵工程のいずれに搬入してもよい。外部からの有機性廃液または廃棄物を汚泥と一緒に嫌気性消化する場合には、該有機性廃液又は廃棄物のスラリーTS(Total solids)濃度を1~15%(更に好ましくは3~10%)に調整し、汚泥濃縮物のTSに対して120%以下(更に好ましくは5~100%)のスラリーTS比となる混合条件で添加することが好ましい。ここで、スラリーTS濃度とは、スラリー中のTS濃度を意味し、スラリーTS比とは、スラリーに含まれる搬入物質のTS比率を意味する。スラリーTS濃度は、有機性廃液または廃棄物の種類、濃度、状態、搬入頻度などを加味して決定される。また、外部から搬入される有機性廃液または廃棄物は、必要に応じて物理的、化学的、生物的分解処理された後に嫌気性消化工程に導入されると消化反応を安定化させることができるので好ましい。処理方式の一例としては、湿式破砕、乾式粉砕、熱処理、高温高圧処理、酸またはアルカリ処理、生物的可溶化または酸発酵処理などを好適に挙げることができる。
 <消化汚泥凝集物調製工程>
 次に、嫌気性消化工程で調製された嫌気性消化汚泥に凝集剤と、前処理工程の分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する。
 嫌気性消化汚泥に添加する凝集剤としては、高分子凝集剤等が好適である。また、ポリ硫酸第二鉄またはPAC等の無機系凝集助剤と高分子凝集剤の併用も分離液の清澄度を高めるために有効な場合がある。高分子凝集剤としては、高価なアミジン系凝集剤も使用できるが、比較的安価なカチオンポリマー系凝集剤、例えば、アクリル酸エステル系、メタアクリル酸エステル系、アニオン度よりもカチオン度の高い両性系凝集剤等を用いることができる。アクリル酸エステル系としては、分子量が300~600万のものが沈降分離性の高い消化汚泥凝集物を得る上で好ましい。
 凝集剤の添加量は、嫌気性消化汚泥の性状によって変動するが、消化汚泥凝集物の沈降分離性を高めるため、凝集物のフロック径が数ミリ程度になる添加量とすることが好ましい。具体的には、凝集物のフロック径が5~20mmの範囲、好ましくは10~20mmの範囲となるように、凝集剤を嫌気性消化汚泥中のSSあたり1.0~2.5%の範囲、好ましくは1.5~2.0%の範囲で添加する。
 消化汚泥凝集物調製工程で用いる分離液又は水(「希釈水」ともいう)は、嫌気性消化汚泥を希釈する機能を有する。分離液又は水による濃縮汚泥の希釈により、汚泥の電気伝導度を1200mS/m以下、好ましくは750mS/m以下、汚泥のMアルカリ度を4000mg/l以下、好ましくは2500mg/l以下、汚泥の温度を35℃以上、好ましくは50~75℃に調整する。希釈された汚泥の温度は、上記範囲の温度の分離液又は水を添加することによって調整してもよく、あるいは添加後に加熱してもよい。希釈水は、前処理工程で得られる分離液、通常の飲用水等の他、溶解成分等の濃度が比較的小さい等の水質条件(電気伝導度500mg/L以下、Mアルカリ度1500mg/L以下、SS1500mg/L以下、CODCr15000mg/L以下)を満たす水であれば処理プラント内のどのプロセス水を使用しても良い。また、活性汚泥処理水、生物脱臭装置廃液といった生物処理水を使用することも可能である。
 得られた消化汚泥凝集物を固液分離して消化汚泥濃縮物と分離液とを調製する。消化汚泥濃縮物の濃縮倍率は2.5~8倍程度が好ましい。ここで、濃縮倍率とは、消化汚泥凝集物の容積を消化汚泥濃縮物の容積で除した値を意味する。
 固液分離された消化汚泥濃縮物に、再び、凝集剤及び必要に応じて希釈水を添加して再濃縮凝集汚泥を調製する。この際用いられる凝集剤及び希釈水は、消化汚泥凝集物調製工程で用いる凝集剤及び希釈水でよい。再濃縮凝集汚泥が、十分な脱水性を有する場合(濃縮凝集汚泥のTS濃度として4~15wt%の範囲、好ましくは6~10wt%)は、最終的な消化汚泥凝集物として脱水工程に送る。しかし、該再濃縮凝集汚泥が十分な脱水性を有しない場合、又は当初の設計上必要とされる場合(濃縮凝集汚泥のTS濃度として4wt%未満の場合)等は、例えば、上記凝集剤再注入とそれに続く固液分離又は固液分離のみを繰り返してもよい。凝集剤再注入に用いる凝集剤は、消化汚泥凝集物調製工程において用いた凝集剤と同じ凝集剤を用いてもよいし、異なる凝集剤を用いてもよい。
 最終的な消化汚泥凝集物は、後段の脱水工程におけるせん断力を受けた後もその粒状のフロック形状がわずかに残る程度の強度を持つフロックであることが好ましい。このような消化汚泥凝集物を得るための凝集剤としては、特に限定されるべきものではないが、高分子凝集剤が好ましい。高分子凝集剤としては、上記凝集汚泥調製工程に使用するものが挙げられ、前処理工程の凝集剤と同一でも異なっていてもよい。
 <脱水工程>
 次に、消化汚泥凝集物を脱水して、脱水ケーキと分離液に固液分離す。本発明において、脱水ケーキの濃縮倍率は4~10倍程度が好ましい。ここで、濃縮倍率とは、消化汚泥凝集物の容積を脱水ケーキの容積で除した値を意味する。脱水ケーキ調製工程で分離された分離液は、SS濃度、Mアルカリ度、及び電気伝導度が小さいため、消化汚泥凝集物を調製する工程で使用する希釈水として好適である。脱水ケーキは、低含塩かつ低含水率であるため、再資源化が可能であり、コンポスト化、炭化、燃料化などの二次加工等にも好適である。
 <リン及びシロキサン回収>
 前処理工程で得られる分離液には、リン、カルシウム、シロキサン等が含まれている。本発明では、これらを含む分離液のすべて又は一部をリン、カルシウム、シロキサン等を回収乃至除去する工程に送ることができる。リンの回収には、ヒドロキシアパタイトを用いる接触脱リン法、リン酸マグネシウムアンモニウムを用いるMAP法等が適用できる。
 MAP法では、反応槽、例えば、上向流槽内に予めMAPの種晶を充填し、また、所望により不足するMAP成分を補うための薬剤、例えば、MgCl、Mg(OH)等を分離液に添加し、更に、所望により分離液のpHを7.8~8.5に調整して、分離液を上向流で反応槽に通水し、MAPの粒径を増大させ、この増大した粒径を有するMAPを適宜、反応槽から抜き出し、分離・回収する方法が挙げられる。反応槽で生成した微細なMAPは槽上部から回収し、反応槽に戻される。
 シロキサンの回収は、分離液をガス乃至噴霧状として、又はそのままの状態で、活性炭、シリカゲル、ゼオライト、ポリマー(例えば、スチレン・ジビニルベンゼン共重合体等)等の吸着剤により、吸着させる方法により行うことができる。また、所望により窒素ガスを、適宜、加温して、シロキサンを吸着した吸着剤に通すことにより、シロキサンを脱離、回収することもできる。後述のバイオガスに対しても上記と同様の吸着剤を用いてシロキサンを処理することが可能であり、同様の方法でシロキサンを脱離、回収することができる。
 本発明は、上述のように分離液と汚泥濃縮物に固液分離する工程を有するため、嫌気性消化装置へのリン、シロキサン等の導入量が従来よりも低減し、ひいては同装置でのリン、シロキサン等を含む析出物の発生が低減し、同装置又は配管等の維持、管理費用の低減化に寄与する効果がある。
 <嫌気性処理装置>
 本発明の嫌気性処理装置は、汚泥に凝集剤を添加して凝集汚泥を調製する凝集槽、汚泥濃度4~12wt%の汚泥濃縮物と分離液とに固液分離する前処理汚泥濃縮装置、該汚泥濃縮物を嫌気性消化するとともにバイオガスを回収する嫌気性消化装置、該嫌気性消化装置で調製された嫌気性消化汚泥に、凝集剤と、前記分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する消化汚泥凝集装置、及び該消化汚泥凝集物を固液分離して得られる消化汚泥濃縮物を脱水する装置を含む。
 凝集槽は、通常用いられる凝集槽でよい。
 前処理汚泥濃縮装置は、凝集汚泥を汚泥濃縮物と分離液とに固液分離する固液分離槽でよい。固液分離槽としては、特に限定されず、重力濃縮法が適用される単なる槽、遠心濃縮法が適用される遠心分離機、浮上濃縮法が適用される分離機、スクリーンを用いた分離機、スリット型濃縮機等が挙げられる。中でも、スリット型濃縮機は好ましく、例えば、前記特開2003-211293号公報(特許文献3)に記載の、処理物をスリット板で受け止め、多数のスリットを形成したスリット板上に周面を突出せしめた多数の円板が、処理物排出方向に回転軸により偏心回転することによって、処理物はスリット板上を排出側に送られ、この過程でスリット内の円板との隙間から液体成分が落下して濾過され、処理物中の固体成分は分離捕集され、さらにスリット板の上面に近接して処理物の排出方向に回転し、スリット板上の捕集物を圧搾して脱液するベルトコンベアを上記スリット板上に設けた機械構造が挙げられる。スリット型濃縮機を適用すると、安価なランニングコストで安定して確実に4~12wt%の高濃度化が可能である。
 嫌気性消化装置は、少なくとも嫌気性消化槽を含む。嫌気性消化槽としては、特に限定されないが、完全混合型消化槽を適用することが好ましい。嫌気性消化槽は、槽内液の均質化や温度分布の均一化とともに、スカムの発生を防止するために攪拌が必須であり、本発明では機械攪拌方式が最も効率的であるが、設備環境や処理条件に応じてポンプ攪拌方式、ガス攪拌方式を付属することも効果的である。さらに、これらの要件を備えた水密かつ気密な構造の消化槽であれば鉄筋コンクリート造りまたは鋼板製のいずれでも良く、既設の嫌気性消化槽を処理条件に合わせて改造・更新することでも適用可能である。また、嫌気性消化装置は、汚泥濃縮物を可溶化および酸発酵処理する可溶化・酸発酵処理槽と、該槽で処理された消化汚泥をメタン発酵処理するメタン発酵槽と、を含む構成とすることが好ましい。嫌気性消化装置は、外部からの有機性廃液または廃棄物を貯留する外部バイオマス貯留装置と、該外部バイオマス貯留装置から排出されるバイオマスを、前記貯留装置、可溶化および酸発酵処理する装置、及びメタン発酵装置からなる群から選択される少なくとも1つに導入する機構及び配管を含むことが好ましい。
 消化汚泥凝集装置は、消化汚泥凝集槽と、適宜、希釈した汚泥を導入する手段、凝集剤添加手段、攪拌手段、加温手段、凝集汚泥の引き抜き手段等を備える。また、別途、希釈のための配管内混合装置を具備していてもよい。
 本発明の嫌気性処理装置は、消化汚泥凝集物から消化汚泥濃縮物を調製する装置を具備することが好ましい。
 消化汚泥濃縮物を調製する装置は、凝集剤により凝集汚泥を調製する汚泥凝集処理装置、該凝集汚泥を固液分離して濃縮凝集汚泥を調製する凝集汚泥分離濃縮装置、該濃縮凝集汚泥に凝集剤を添加して再濃縮凝集汚泥を調製する装置を備えることが好ましい。
 凝集汚泥分離濃縮装置は、凝集汚泥を濃縮凝集汚泥と分離液に固液分離する装置である。凝集汚泥分離濃縮装置は、特に限定されず、重力濃縮法が適用される単なる槽、遠心濃縮法が適用される遠心分離機、浮上濃縮法が適用される分離機、スクリーンを用いた分離機等が挙げられる。中でも、スクリーンを備えた固液分離装置が好ましく、例えば、一定間隔で平行に並ぶ複数のスクリーンと隣り合う該スクリーンの間で回転する複数の円盤により隣り合う該スクリーン間の隙間の凝集汚泥を物理的に排除するとともに濃縮凝集汚泥と分離水とに分別することが可能な固液分離装置が挙げられる。ここで、スクリーンのスリット幅は原理的に消化汚泥凝集物のフロック径未満であり、0.1~2.5mmが好ましい。
 再濃縮凝集汚泥調製装置は、適宜、濃縮凝集汚泥導入手段、凝集剤添加手段、攪拌手段、再濃縮凝集汚泥の引き抜き手段等を備える。
 消化汚泥濃縮物を脱水する装置は、特に限定されず、通常、凝集汚泥分離濃縮装置と原理的に同じものを用いることができるが、凝集汚泥分離濃縮装置よりも脱水ケーキを分離するための消化汚泥凝集物への応力は高くすることが一般的であり、公知手段を用いることができる。脱水ケーキ調製装置は、再濃縮凝集汚泥へ応力を付与する手段と分離液を透過し、消化汚泥凝集物を保持するろ過手段から構成されることが好ましい。消化汚泥凝集物へ応力を付与する手段としては、プレス、遠心等が挙げられる。ろ過手段としては、開孔径が0.1~2.5mmのスクリ-ン等が挙げられる。
 次に、本発明の一例を、図を参照して更に説明する。
 図1は、本発明の第一の実施形態を示すブロックフロー図で、嫌気性処理装置の構成を表す説明図である。
 汚泥1は、貯留装置2に送られる。次いで、汚泥1は、貯留装置2から排出され、配管を介して凝集槽3に送られる。凝集槽3において、汚泥1に凝集剤4が添加されて、凝集汚泥5が調製される。凝集汚泥5は、前処理汚泥濃縮槽6に送られ、汚泥濃度4~12%の汚泥濃縮物7と分離液8とに固液分離される。汚泥濃縮物7は、嫌気性消化装置9に送られ、汚泥の嫌気性消化によりバイオガス10及び嫌気性消化汚泥11を生成する。バイオガス10は、バイオガスタンク101に送られ、次いでバイオガス10は、ガス利用設備102(例えば、ガスタービン、バイオガスボイラ、ガス燈、乾燥機熱源等)、あるいは余剰ガス燃焼装置103に送られる。嫌気性消化汚泥11は、消化汚泥凝集装置12に送られる。消化汚泥凝集装置12には、前処理汚泥濃縮槽6にて形成される分離液8の一部が導入される。消化汚泥凝集装置12において、嫌気性消化汚泥11に分離液8と凝集剤13が添加され、消化汚泥凝集物15と分離液14が形成される。消化汚泥凝集装置12からの消化汚泥凝集物15は、脱水装置16に送られ、分離液17を分離するとともに脱水ケーキ18が調製される。分離液8の一部、分離液14、及び分離液17は、リン回収等の廃水処理設備104等に送られる。なお、バイオガスタンクの前にシロキサン除去乃至回収装置を設けても良い。
 次に図2は、本発明の第二の実施形態を示すブロックフロー図で、嫌気性処理装置の構成を表す説明図であり、嫌気性消化の前段で可溶化および酸発酵処理を行うものである。
 図1のフローにおいて、前処理泥濃縮槽6にて分離された汚泥濃縮物7は、嫌気性消化装置8に送られる前に可溶化および酸発酵処理装置9aに送られ、可溶化および酸発酵処理が施された消化汚泥7aが生成される。消化汚泥7aは、嫌気性消化装置9に送られ、以降は図1のフローに従って、処理される。
 次に図3は、本発明の第三の実施形態を示すブロックフロー図で、嫌気性処理装置の構成を表す説明図であり、嫌気性消化汚泥の凝集剤による汚泥凝集処理を2回に分割して行うものである。
 本フローでは、図2のフローにおいて、嫌気性消化汚泥11及び分離液8の一部が、消化汚泥凝集槽12に送られ、添加される凝集剤13により分離液14を分離するとともに消化汚泥凝集物15が調製される工程を以下のように変更する。
 嫌気性消化汚泥11及び分離液8の一部は、汚泥凝集処理装置12aに送られ、添加される凝集剤13aにより凝集汚泥12cが調製される。凝集汚泥12cは、凝集汚泥分離濃縮装置14Aに導入され、分離液14と濃縮凝集汚泥12dに固液分離される。次いで、濃縮凝集汚泥12dは、再濃縮凝集汚泥調製装置12bに送られ、添加される凝集剤13bにより再濃縮凝集汚泥が調製され、これを最終的な消化汚泥凝集物15とする。
 次に図4は、本発明の第四の実施形態を示すブロックフロー図で、嫌気性処理装置の構成を表す説明図であり、図3のフローにおいて、汚泥凝集処理装置12aに生物処理水19を添加して汚泥を希釈するものであり、他の処理は、図3と同じである。
 この生物処理水としては、活性汚泥処理水、生物脱臭処理水、硝化脱窒処理水等が挙げられる。生物処理水の含有成分の種類、及びその濃度は、凝集剤の種類又は添加量、ひいては費用に影響するため、処理目的に応じて、適宜決定される。
 次に図5は、本発明の第五の実施形態を示すブロックフロー図で、嫌気性処理装置の構成を表す説明図であり、図4のフローにおいて、外部から搬入した有機性廃液または廃棄物も嫌気性消化処理を行うものであり、他の処理は、図4と同じである。
 本フローでは、有機性廃液または廃棄物20は、スラリーとしてバイオマス貯槽21に貯留される。バイオマス貯槽21からのスラリー22は、所望によりTS濃度を調整した後、貯留槽2、可溶化および酸発酵処理装置9a、及び嫌気性消化装置9の少なくとも何れかに導入され、処理が施される。
 上記図1~5の嫌気性処理装置は、自動制御であってよいし、バッチ処理であってもよいし、その組み合わせであってもよい。また、各種汚泥の温度制御も自動化してもよい。
 以下、本発明の実施例を説明する。A下水処理場から発生した下水汚泥について、本発明の嫌気性処理試験を行った。なお、本発明はこの実施例により何等制限されるものではない。
 試験では汚泥にカチオン性高分子凝集剤(平均分子量300万)を0.4%(対SS比)添加混合して凝集処理後、背圧板付き機械濃縮機で汚泥濃縮物と分離液とに固液分離した。表1に汚泥、汚泥濃縮物、分離液の性状を示す。
 表2に嫌気性消化装置における嫌気性消化試験条件を示す。嫌気性処理試験では、耐熱塩化ビニル製の完全混合型消化試験装置(総容積30L、有効容積25L、ジャケット温水循環式)を用いた。また、可溶化および酸発酵装置では、東京理化器械(株)製ジャーファーメンターMDLを用いた(総容積10Lの完全混合型、4L水深で運転)。試験では、嫌気性消化装置(消化槽)は37℃、可溶化及び酸発酵装置(可溶化槽)では45℃で運転した。なお、比較例2では55℃の高温嫌気性処理試験を行った。原料投入は、チューブポンプRP-60型(東京理化器械株式会社製)を用い、1日あたり4~8回に分けてタイマー制御で投入した。
 [実施例1]
 図1のフローに従って、実施した。
 [実施例2]
 図2のフローに従って、実施した。なお、嫌気消化汚泥の脱水処理については、図3と図4に示す処理方法も併せて行った。
 [比較例]
 図6のフローに従って、実施した。なお、消化汚泥凝集物15は、高分子凝集剤による汚泥凝集により調製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 なお、分析方法は下記の方法で行った。
・TS(Total solids、全蒸発残留物);105℃蒸発残留物重量(JIS K 0102)
・VTS(Volatile total solids、強熱減量);600℃強熱減量(JIS K 0102)
・SS(Suspended solids、懸濁粒子);遠心分離法による回転数3,000rpm,10分間での沈殿物重量(JIS K 0102)
・VSS(Volatile suspended solids、揮発性懸濁粒子);懸濁粒子の600℃強熱減量(JIS K 0102)
・CODCr(化学的酸素消費量);重クロム酸カリウム法(JIS K 0102)
・BOD(生物化学的酸素消費量);ウインクラー・アジ化ナトリウム変法(JIS K 0102)
・タンパク質;(ケルダール窒素-アンモニア性窒素)×6.25
・揮発性有機酸(VFA);高速液体クロマトグラフ(エルマ光学ERC-8710、検出器 RI、カラムShodex RSpak KC-811、カラム温度60℃、移動相0.1%りん酸)
・メタンガス、炭酸ガス;ガスクロマトグラフ(GLサイエンスGC-323、検出器TCD、TCD電流値120A、分離カラム Active Carbon 30/60、カラム温度 95℃、キャリアガス He)
・消化ガス中のシロキサン:消化ガスを流通速度0.6L/分でヘキサン溶液に通液させてシロキサンを捕集後、濃縮してガスクロマトグラフ質量分析計GC/MSで定量分析。ここでは、下水汚泥消化ガス中に最も多く含まれるとされる環状シロキサンのデカメチルシクロペンタシロキサン(D5)濃度を定量分析により評価。
・溶解性画分;GF/B(1μm)でのろ液
・Mアルカリ度;遠心分離機による回転数3,000rpm、3分間での上澄液を0.1mol/Lの塩酸溶液でpH4.8まで滴定(下水試験方法)
・粗浮遊物;呼び寸法74μmふるいでの粗浮遊物分析(下水試験方法)
Figure JPOXMLDOC01-appb-T000003
 表3の嫌気性処理試験結果に示すように、実施例1及び2による嫌気性処理では従来技術と同等のTS分解率、VTS分解率、メタンガス発生率の性能が出ていることがわかる。
 また、消化ガス中のシロキサンD5濃度を比較すると、実施例1と2において含有率が低くなっており、高濃度に保持された消化汚泥SS分にシロキサン化合物が吸着されることで消化ガス中へのシロキサン濃度が低くなったものと考えられる。
 さらに、粗浮遊物を比較すると、実施例1と2において含有率が高くなっており、従来の消化汚泥よりも汚泥脱水には有利な汚泥条件となっていることがわかる。
 なお、比較例、実施例の何れの消化槽でも揮発性有機酸の残留は認められておらず、嫌気性処理反応は問題なく進行していたものと考えられる。
 上記の比較例1および2、実施例1および2で得られた嫌気性消化汚泥を用いて、汚泥脱水処理性能を検討した。汚泥脱水にはカチオン性高分子凝集剤(平均分子量300万)を用いた。また、脱水機はベルトプレス式脱水機を用い、脱水処理条件は、ろ布緊張力4.9kN/m、ろ布スピード1.0m/分で行った。
 先ず、比較例1および2の嫌気性消化汚泥について脱水処理した結果、高分子凝集剤注入率と脱水ケーキ含水率は表4の結果であった。
Figure JPOXMLDOC01-appb-T000004
 次に、実施例1および2で得られた嫌気性消化汚泥について脱水処理した結果、高分子凝集剤注入率と脱水ケーキ含水率の結果は表5の結果であった。何れの脱水方法でも従来法よりも高性能であったが、中でも、図4に示される凝集剤を2回に分けて注入して生物処理水を併用する処理方式では最も効率的であることが分かる。なお、実施例1で得られた嫌気性消化汚泥を分離水で希釈することなく、そのままの状態で高分子凝集剤を注入して汚泥を凝集・脱水処理した場合は、高分子凝集剤注入率3.8%(対SS)、脱水ケーキ含水率83%であった。
Figure JPOXMLDOC01-appb-T000005
 [実施例3]
 次に、図5に基づいて、下水汚泥と食品製造廃棄物(廃糖液およびデザート系廃製品)と河川敷刈草の嫌気性処理を行った実施例について示す。
 <処理条件>
 ・下水汚泥量(初沈汚泥と余剰汚泥の混合汚泥) 30m/日(TS濃度3.1%)
 ・食品製造廃棄物搬入量 1.35t/日(TS濃度9.9%)
 ・河川敷刈草搬入量 0.15t/日(含水率70.0%)
 ・バイオマス貯槽 3m×2槽
 <前処理固液分離装置(下水混合汚泥用)>
  ・スリット型濃縮機(スクリーンスリット幅1.0mm、背圧板付帯)
  ・カチオン性高分子凝集剤(平均分子量300万)注入率0.4%(対SS比)
  ・汚泥濃縮物量 12t/日(TS濃度7.9%)
  ・分離液量 19.5m/日(SS濃度395mg/L)
  ・SS回収率97%
 ・刈草用粉砕装置
 <嫌気性消化:可溶化および酸発酵装置(縦型機械式攪拌機)>
 ・食品製造廃棄物、河川敷刈草、汚泥濃縮物の混合物の可溶化および酸発酵装置への投入量3m/日(スラリーTS濃度10%)
 ・汚泥濃縮物のTSに対する食品製造廃棄物・河川敷刈草のTS比 19%
 ・HRT 2日
 ・有効容積6m
 ・水温45℃
 <嫌気性消化:嫌気性消化装置(縦型機械式攪拌機)>
 ・嫌気性消化装置への投入量13.5m/日
 ・HRT 14.8日
 ・有効容積200m
 ・水温37℃
 <嫌気性消化汚泥の凝集処理工程>
 ・スリット型濃縮機(スクリーンスリット幅1.0mm)
 ・汚泥分離液の混合量 10.5m/日(Mアルカリ度690mgCaCO/L)
 ・生物脱臭装置廃液の混合量 3.5m/日(Mアルカリ度1250mg/L)
 ・カチオン性高分子凝集剤(平均分子量300万)注入率1.7%(対SS比)
      (注入率内訳;前段凝集槽の注入率1.3%、再凝集槽の注入率0.4%)
 <脱水機>
 ・スクリュープレス型脱水機
 <発電機>
 ・マイクロガスタービン発電機
 <処理結果>
 ・嫌気性消化汚泥性状(TS濃度3.9%、VTS68%、SS濃度3.0%、Mアルカリ度8900mgCaCO/L、粗浮遊物含有率16.7%(対SS比))
 ・バイオガス発生量 570m/日(NTP)
 ・メタンガス発生量 365m/日(NTP)
 ・メタンガス濃度 64%
 ・メタンガス発生率 0.37m/投入kgVTS(NTP)
 ・バイオガス中のシロキサンD5濃度 2.3mg/m
 ・発電量 686kwh/日
 ・脱水ケーキ発生量 2.1t/日(含水率77%)
 ・廃水量 37.6m/日
 以上のように、本発明によって従来よりも大幅に小型化した嫌気性消化装置によって汚泥や有機性廃棄物を嫌気性処理して良質なバイオガスを安定的に発生せしめることができ、バイオガス発電できることも明らかとなった。従来法のHRT20~30日での処理方式では嫌気性消化槽630~945mを設ける必要があったのに対して、本発明では206mの嫌気性消化装置であるので嫌気槽規模は従来の1/3~1/4に縮小されたシステムで嫌気性処理が可能である。さらには、発生した嫌気性消化汚泥は容易な操作によって低コストで凝集・脱水でき、得られた脱水ケーキ含水率77%は従来の82%程度と比較して低含水率であり(表4参照)、外観も従来品と変わりなく、不快臭もなく衛生的であった。
 [実施例4]
 実施例3と同様に、図5に基づいて、下水処理場において下水汚泥と食品製造廃棄物(ジュース用の蜜柑絞り粕)の嫌気性処理を行った。下水汚泥は重力濃縮した初沈濃縮汚泥と余剰汚泥の混合汚泥として、汚泥濃縮を実施した。嫌気性消化は下水汚泥と蜜柑絞り粕の各固形物量をほぼ等量の混合比率で実施した。
 <処理条件>
 ・下水汚泥量(初沈汚泥と余剰汚泥の混合汚泥) 35m/日
  (初沈汚泥: TS濃度3.88%、余剰汚泥: TS濃度0.93%、混合汚泥: TS濃度1.39%)
 ・食品製造廃棄物搬入量 4.0t/日(TS濃度12.5%)
 ・バイオマス貯槽 3m×2槽
 <前処理固液分離装置(下水混合汚泥用)>
 ・スリット型濃縮機(スクリーンスリット幅1.0mm、背圧板付帯)
 ・カチオン性高分子凝集剤(平均分子量300万、溶液濃度2.0g/L)注入量0.95m/日
 ・高分子凝集剤注入率 0.44%(対SS比)
 ・汚泥濃縮物量 6.2t/日(TS濃度7.5%)
 ・分離液量 29.8m/日(SS濃度230mg/L)
 ・SS回収率98%
 <食品製造廃棄物の可溶化・酸発酵装置>
 ・6.0m×1槽、縦型機械攪拌機、37℃加温
 ・汚泥濃縮物のTSに対する食品製造廃棄物のTS比 102%
 <嫌気性消化装置(縦型機械式攪拌機)>
 ・嫌気性消化装置への投入量10.2m/日
 ・HRT 19.6日
 ・有効容積200m
 ・水温37℃
 <嫌気性消化汚泥の凝集処理工程>
 ・スリット型濃縮機(スクリーンスリット幅1.0mm)
 ・汚泥分離液の混合量 2.0m/日(Mアルカリ度320mgCaCO/L)
 ・カチオン性高分子凝集剤(平均分子量300万)注入率1.6%(対SS比)
 ・凝集剤注入工程 1回
 <脱水機>
 ・スクリュープレス型脱水機
 <発電機>
 ・マイクロガスタービン発電機
 <処理結果>
 ・嫌気性消化汚泥性状(TS濃度3.8%、VTS70%、SS濃度3.2%、Mアルカリ度4490mgCaCO/L、粗浮遊物含有率     12.1%(対SS比))
 ・バイオガス発生量 591m/日(NTP)
 ・メタンガス発生量 349m/日(NTP)
 ・メタンガス濃度 59%
 ・メタンガス発生率 0.38m/投入kgVTS(NTP)
 ・バイオガス中のシロキサンD5濃度 1.2mg/m
 ・発電量 656kwh/日
 ・脱水ケーキ発生量 1.6t/日(含水率78%)
 ・廃水量 41.5m/日
 以上のように、本発明による下水汚泥濃縮では、機械濃縮してない重力濃縮のみの初沈濃縮汚泥および余剰汚泥の混合生汚泥に対して(TS濃度1.39%)、TS濃度7.5%にまで効率的に濃縮処理でき(汚泥濃縮倍率約5.4倍)、従来から多く適用されている各種機械濃縮設備を省略することが可能である。そして、本発明では大幅に小型化した嫌気性消化装置で濃縮汚泥と蜜柑絞り粕の各固形物量をほぼ等量の混合比率で嫌気性消化処理しても良質なバイオガスを安定的に発生せしめることができる。さらには、発生した嫌気性消化汚泥は実施例3と同様に容易な操作によって低コストで凝集・脱水でき、得られた脱水ケーキ含水率78%は従来と比較して低含水率である。
 [実施例5]
 実施例3及び4で発生した廃液および脱水ケーキについて、有効利用を検討した。本発明の前処理工程にあたる下水汚泥の固液分離から発生した分離液および脱水工程の脱水分離液からはリンの回収、嫌気性消化汚泥濃縮物の脱水工程から発生した脱水ケーキについてはコンポスト化した。
 <処理条件>
(1)汚泥の固液分離廃液のリン回収(MAP法)
・反応時のpH8.3、Mg濃度を30mg/l以上
・1槽式リアクタ(反応部:直径35cm×高さ2.2m、沈殿部:直径80cm×高さ1.8m、粒径約0.4~1.0mmの種晶を予め充填)
・リン容積負荷20kg-P/m・日
(2)脱水ケーキのコンポスト化
・コンポスト化試験装置 15m(高速堆肥化縦型発酵槽)
・脱水汚泥の水分調整 汚泥を機械乾燥して含水率45~55%
・副資材添加ナシ
・コンポスト化時の通気速度0.15m/t・分
 <処理結果>
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 以上のように、本発明において実施例3及び4で発生した廃液からはリン回収され、脱水ケーキについてはコンポスト化できて品質上も従来製品(比較例として生ごみ系中温メタン発酵汚泥のコンポスト性状を列挙)と殆ど変わりないことも明らかとなった。コンポスト化にける有機物分解率は、実施例3の汚泥で24%、実施例4では28%だった。なお、脱水ケーキの高位発熱量は、実施例3の汚泥で17MJ/kg-dry、実施例4の汚泥では17.3MJ/kg-dryであることから、この脱水汚泥を機械乾燥して汚泥燃料としても有効活用できる品質である〔燃料化物(造流乾燥化物)の品質基準として、発熱量4000kal/kg以上(16.7MJ/kg以上)とされている〕。
1…汚泥、2…貯留槽、3…凝集槽、4…凝集剤、5…凝集汚泥、6…前処理汚泥濃縮槽、7…汚泥濃縮物、7a・・・消化汚泥、8…分離液、9…嫌気性消化槽、9a…可溶化および酸発酵処理槽、10…バイオガス、11…嫌気性消化汚泥、12…消化汚泥凝集装置、12a…汚泥凝集処理槽、12b…再濃縮凝集汚泥調製装置、12c…凝集汚泥、12d…濃縮凝集汚泥、14A…凝集汚泥分離濃縮装置、15…消化汚泥凝集物、13、13a、13b…凝集剤、14…分離液、15…消化汚泥凝集物、16…脱水装置、17…分離液、18…脱水ケーキ、19…生物処理水、20…有機性廃液または廃棄物、21…バイオマス貯槽、101…バイオガスタンク、102…ガス利用設備、103…余剰ガス燃焼設備、104…廃水処理設備。

Claims (14)

  1.  汚泥に凝集剤を添加して調製した凝集汚泥を、汚泥濃度4~12wt%の汚泥濃縮物と分離液とに固液分離する前処理工程、該汚泥濃縮物を嫌気性消化するとともにバイオガスを回収する嫌気性消化工程、該嫌気性消化工程で調製された嫌気性消化汚泥に、凝集剤と、前記分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する工程、及び該消化汚泥凝集物を固液分離して得られる消化汚泥濃縮物を脱水する工程を含む、嫌気性処理方法。
  2.  前記汚泥は、廃水処理設備の最初沈殿池から発生する初沈汚泥と最終沈殿池から発生する余剰汚泥とから選択される少なくとも1種である、請求項1の嫌気性処理方法。
  3.  前記凝集汚泥は、汚泥のSSに対して0.2~1.0%の凝集剤の使用により調製される、請求項1又は2の嫌気性処理方法。
  4.  前記嫌気性消化工程は、前記汚泥濃縮物を、処理温度30~60℃、HRT1~3日の条件で可溶化および酸発酵処理する前段消化工程と、該前段消化工程で処理された消化汚泥をメタン発酵処理し、前記嫌気性消化汚泥を調製するメタン発酵工程を含む、請求項1~3のいずれか1項の嫌気性処理方法。
  5.  前記メタン発酵工程は、処理温度30~60℃、かつHRT12~20日で、かつSSに対する粗浮遊物含有率が3~20%となるように嫌気性消化汚泥が調製される、請求項4の嫌気性処理方法。
  6.  外部から搬入した有機性廃液または廃棄物をスラリーTS濃度1~15%に調整し、前記嫌気性消化工程に送り、前記汚泥濃縮物のTSに対して120%以下のスラリーTS比となる混合条件で嫌気性消化する、請求項1~5のいずれか1項の嫌気性処理方法。
  7.  前記消化汚泥濃縮物は、凝集剤注入工程とそれに続く固液分離工程からなる工程の内、凝集剤注入工程を少なくとも2回行うことにより調製される、請求項1~6のいずれか1項の嫌気性処理方法。
  8.  汚泥に凝集剤を添加して凝集汚泥を調製する凝集槽、汚泥濃度4~12wt%の汚泥濃縮物と分離液とに固液分離する前処理汚泥濃縮装置、該汚泥濃縮物を嫌気性消化するとともにバイオガスを回収する嫌気性消化装置、該嫌気性消化装置で調製された嫌気性消化汚泥に、凝集剤と、前記分離液及び水の少なくとも何れかと、を混合して消化汚泥凝集物を調製する消化汚泥凝集装置、及び該消化汚泥凝集物を固液分離して得られる消化汚泥濃縮物を脱水する装置を含む、嫌気性処理装置。
  9.  前記汚泥は、廃水処理設備の最初沈殿池から発生する初沈汚泥と最終沈殿池から発生する余剰汚泥とから選択される少なくとも1種であり、汚泥を貯留する汚泥貯留装置を備える、請求項8の嫌気性処理装置。
  10.  前記汚泥貯留装置から排出される汚泥に凝集剤を供給する機構及び汚泥を送るための配管を備える、請求項9の嫌気性処理装置。
  11.  前記嫌気性消化装置は、前記汚泥濃縮物を、可溶化および酸発酵処理する装置と、該装置で処理された消化汚泥をメタン発酵処理する装置を含む、請求項9又は10の嫌気性処理装置。
  12.  前記酸発酵槽、及び前記メタン発酵槽は、処理温度が30~60℃である、請求項11の嫌気性処理装置。
  13.  前記消化汚泥濃縮物を調製する装置は、前記凝集剤により凝集汚泥を調製する汚泥凝集処理装置、該凝集汚泥を固液分離により濃縮凝集汚泥を調製する装置、該濃縮凝集汚泥を凝集剤により再濃縮凝集汚泥を調製する装置を備える、請求項8~12のいずれか1項の嫌気性処理装置。
  14.  外部から搬入した有機性廃液または廃棄物を貯留する外部バイオマス貯留装置と、該外部バイオマス貯留装置から排出されるバイオマスを、前記汚泥貯留装置、可溶化および酸発酵処理する装置、及びメタン発酵装置からなる群から選択される少なくとも1つに導入する機構及び配管を備える請求項11~13のいずれか1項の嫌気性処理装置。
PCT/JP2011/078531 2010-12-10 2011-12-09 嫌気性処理方法および装置 WO2012077778A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180059643.8A CN103347824B (zh) 2010-12-10 2011-12-09 厌氧性处理方法及装置
AU2011339363A AU2011339363B2 (en) 2010-12-10 2011-12-09 Anaerobic treatment method and device
KR1020137017553A KR101885070B1 (ko) 2010-12-10 2011-12-09 혐기성 처리 방법 및 장치
JP2012547919A JP6121165B2 (ja) 2010-12-10 2011-12-09 嫌気性処理方法および装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010276156 2010-12-10
JP2010-276156 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012077778A1 true WO2012077778A1 (ja) 2012-06-14

Family

ID=46207260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078531 WO2012077778A1 (ja) 2010-12-10 2011-12-09 嫌気性処理方法および装置

Country Status (5)

Country Link
JP (2) JP6121165B2 (ja)
KR (1) KR101885070B1 (ja)
CN (1) CN103347824B (ja)
AU (1) AU2011339363B2 (ja)
WO (1) WO2012077778A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074134A (zh) * 2013-01-05 2013-05-01 上海杲晟实业有限公司 利用秸秆废弃物制备生物天然气和碳酸盐的方法
JP2015051417A (ja) * 2013-09-09 2015-03-19 水ing株式会社 汚泥処理システム及び汚泥処理方法
JP2016055216A (ja) * 2014-09-05 2016-04-21 栗田工業株式会社 下水処理汚泥の嫌気性消化方法及び装置
WO2016103949A1 (ja) * 2014-12-25 2016-06-30 水ing株式会社 油脂含有排水の処理方法及び処理装置
WO2017014004A1 (ja) * 2015-07-21 2017-01-26 水ing株式会社 有機物の処理方法及び処理装置
JP2017209680A (ja) * 2017-09-11 2017-11-30 水ing株式会社 汚泥処理システム及び汚泥処理方法
JP2017213479A (ja) * 2016-05-30 2017-12-07 水ing株式会社 脱水システム及び脱水方法
CN108996740A (zh) * 2018-07-13 2018-12-14 武汉市政工程设计研究院有限责任公司 一种初雨处理系统及方法
JP2020062640A (ja) * 2015-01-09 2020-04-23 水ing株式会社 有機性汚泥の処理方法及び処理装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10703662B2 (en) * 2016-04-11 2020-07-07 Kemira Oyj Improving sludge dewaterability and energy balance of wastewater treatment
GB2561018B (en) 2017-03-27 2021-09-08 Anaergia Inc Process for recovering organics from material recovery facility fines
JP6635964B2 (ja) * 2017-03-27 2020-01-29 三菱電機株式会社 汚泥処理装置及びそれを用いた水処理システム、汚泥処理方法及び水処理方法
JP7105136B2 (ja) * 2018-08-21 2022-07-22 水ing株式会社 有機性廃棄物の処理方法及び有機性廃棄物の処理システム

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166997A (en) * 1980-05-26 1981-12-22 Hitachi Ltd Control method for sludge-digesting vessel
JPS5794388A (en) * 1980-12-05 1982-06-11 Hitachi Ltd Sludge concentrating device
JPH05123700A (ja) * 1991-11-07 1993-05-21 Nishihara Environ Sanit Res Corp 有機性廃水の汚泥処理方法とその装置
JPH1128496A (ja) * 1997-07-10 1999-02-02 Kurita Water Ind Ltd し尿等の処理方法
JPH11300396A (ja) * 1998-04-21 1999-11-02 Ataka Constr & Eng Co Ltd 廃棄物処理装置およびメタン発酵処理の前処理装置
JP2000051900A (ja) * 1998-08-17 2000-02-22 Kubota Corp 汚泥の調質脱水方法
JP2001104999A (ja) * 1999-10-07 2001-04-17 Kurita Water Ind Ltd 有機性廃棄物の処理方法
JP2001276880A (ja) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd 廃棄物処理方法およびその装置
JP2001334297A (ja) * 2000-05-25 2001-12-04 Kurita Water Ind Ltd 消化汚泥の脱水方法及び脱水性予測方法
JP2002102828A (ja) * 2000-09-28 2002-04-09 Japanese Research & Development Association For Environment-Friendly Processing In Food Industry 油脂含有廃棄物の処理方法
JP2004330153A (ja) * 2003-05-12 2004-11-25 Ebara Corp メタン発酵処理方法及び装置
JP2005246311A (ja) * 2004-03-05 2005-09-15 Ngk Insulators Ltd 汚泥連続加圧脱水機の運転方法
JP2006035166A (ja) * 2004-07-29 2006-02-09 Kurita Water Ind Ltd 汚泥処理方法及び汚泥処理装置
JP2006305488A (ja) * 2005-04-28 2006-11-09 Kobe Steel Ltd 有機性汚泥の処理方法
JP2007136347A (ja) * 2005-11-18 2007-06-07 Ishigaki Co Ltd 脱水機の原汚泥供給量一定制御方法並びにその制御装置
JP2009090240A (ja) * 2007-10-10 2009-04-30 Kobelco Eco-Solutions Co Ltd 汚泥の処理方法及びその処理システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118649A (en) * 1978-03-08 1979-09-14 Hitachi Ltd Purifying water control system for sludge treatment
JPS5781899A (en) * 1980-11-10 1982-05-22 Toshiba Corp Treatment of organic sludge
JPS57144098A (en) * 1981-02-28 1982-09-06 Hitachi Plant Eng & Constr Co Ltd Anaerobic digestive method for sewer sludge
JPH08206699A (ja) * 1995-02-06 1996-08-13 Kurita Water Ind Ltd 嫌気性消化汚泥の脱水方法
JP3533064B2 (ja) 1997-02-07 2004-05-31 株式会社荏原製作所 し尿、厨芥、汚泥の処理方法及び装置
JP2938442B1 (ja) * 1998-08-03 1999-08-23 三菱レイヨン株式会社 汚泥の処理方法および処理システム
JP3974785B2 (ja) 2002-01-17 2007-09-12 株式会社研電社 固液分離装置
JP4298602B2 (ja) * 2004-07-16 2009-07-22 株式会社荏原製作所 有機性汚泥の嫌気性消化処理方法及び装置
CN1247473C (zh) * 2004-12-17 2006-03-29 清华大学 城市污泥的处理方法
JP2007264758A (ja) 2006-03-27 2007-10-11 Aiphone Co Ltd ライト制御装置
CN101343137A (zh) * 2008-05-28 2009-01-14 罗德春 无害化处理石化行业中底油泥、浮渣和活性污泥的方法
CN101696077B (zh) * 2009-10-21 2011-06-08 黑旋风工程机械开发有限公司 一种城市污泥高效筛分脱水方法
CN101767922B (zh) * 2010-01-21 2012-07-04 上海亚同环保实业股份有限公司 一种污泥脱水处理工艺

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56166997A (en) * 1980-05-26 1981-12-22 Hitachi Ltd Control method for sludge-digesting vessel
JPS5794388A (en) * 1980-12-05 1982-06-11 Hitachi Ltd Sludge concentrating device
JPH05123700A (ja) * 1991-11-07 1993-05-21 Nishihara Environ Sanit Res Corp 有機性廃水の汚泥処理方法とその装置
JPH1128496A (ja) * 1997-07-10 1999-02-02 Kurita Water Ind Ltd し尿等の処理方法
JPH11300396A (ja) * 1998-04-21 1999-11-02 Ataka Constr & Eng Co Ltd 廃棄物処理装置およびメタン発酵処理の前処理装置
JP2000051900A (ja) * 1998-08-17 2000-02-22 Kubota Corp 汚泥の調質脱水方法
JP2001104999A (ja) * 1999-10-07 2001-04-17 Kurita Water Ind Ltd 有機性廃棄物の処理方法
JP2001276880A (ja) * 2000-03-31 2001-10-09 Ataka Construction & Engineering Co Ltd 廃棄物処理方法およびその装置
JP2001334297A (ja) * 2000-05-25 2001-12-04 Kurita Water Ind Ltd 消化汚泥の脱水方法及び脱水性予測方法
JP2002102828A (ja) * 2000-09-28 2002-04-09 Japanese Research & Development Association For Environment-Friendly Processing In Food Industry 油脂含有廃棄物の処理方法
JP2004330153A (ja) * 2003-05-12 2004-11-25 Ebara Corp メタン発酵処理方法及び装置
JP2005246311A (ja) * 2004-03-05 2005-09-15 Ngk Insulators Ltd 汚泥連続加圧脱水機の運転方法
JP2006035166A (ja) * 2004-07-29 2006-02-09 Kurita Water Ind Ltd 汚泥処理方法及び汚泥処理装置
JP2006305488A (ja) * 2005-04-28 2006-11-09 Kobe Steel Ltd 有機性汚泥の処理方法
JP2007136347A (ja) * 2005-11-18 2007-06-07 Ishigaki Co Ltd 脱水機の原汚泥供給量一定制御方法並びにその制御装置
JP2009090240A (ja) * 2007-10-10 2009-04-30 Kobelco Eco-Solutions Co Ltd 汚泥の処理方法及びその処理システム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103074134A (zh) * 2013-01-05 2013-05-01 上海杲晟实业有限公司 利用秸秆废弃物制备生物天然气和碳酸盐的方法
JP2015051417A (ja) * 2013-09-09 2015-03-19 水ing株式会社 汚泥処理システム及び汚泥処理方法
JP2016055216A (ja) * 2014-09-05 2016-04-21 栗田工業株式会社 下水処理汚泥の嫌気性消化方法及び装置
WO2016103949A1 (ja) * 2014-12-25 2016-06-30 水ing株式会社 油脂含有排水の処理方法及び処理装置
JPWO2016103949A1 (ja) * 2014-12-25 2017-10-26 水ing株式会社 油脂含有排水の処理方法及び処理装置
JP2020062640A (ja) * 2015-01-09 2020-04-23 水ing株式会社 有機性汚泥の処理方法及び処理装置
WO2017014004A1 (ja) * 2015-07-21 2017-01-26 水ing株式会社 有機物の処理方法及び処理装置
JPWO2017014004A1 (ja) * 2015-07-21 2018-04-26 水ing株式会社 有機物の処理方法及び処理装置
JP2020075249A (ja) * 2015-07-21 2020-05-21 水ing株式会社 有機物の処理方法及び処理装置
JP2017213479A (ja) * 2016-05-30 2017-12-07 水ing株式会社 脱水システム及び脱水方法
JP2017209680A (ja) * 2017-09-11 2017-11-30 水ing株式会社 汚泥処理システム及び汚泥処理方法
CN108996740A (zh) * 2018-07-13 2018-12-14 武汉市政工程设计研究院有限责任公司 一种初雨处理系统及方法

Also Published As

Publication number Publication date
KR20140032362A (ko) 2014-03-14
JP2016117066A (ja) 2016-06-30
KR101885070B1 (ko) 2018-08-03
AU2011339363A1 (en) 2013-09-05
JP6121165B2 (ja) 2017-04-26
JPWO2012077778A1 (ja) 2014-05-22
CN103347824A (zh) 2013-10-09
CN103347824B (zh) 2016-01-13
JP6121589B2 (ja) 2017-04-26
AU2011339363B2 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP6121589B2 (ja) 嫌気性処理方法
Dai et al. Role of organic compounds from different EPS fractions and their effect on sludge dewaterability by combining anaerobically mesophilic digestion pre-treatment and Fenton’s reagent/lime
Chen et al. Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulants: kinetics of enzymatic reaction and re-flocculation morphology
Ye et al. Effect of potassium ferrate on disintegration of waste activated sludge (WAS)
JP3452439B2 (ja) 有機性廃棄物からの有用物質の回収と資源化方法
Chen et al. Decrease the effective temperature of hydrothermal treatment for sewage sludge deep dewatering: mechanistic of tannic acid aided
KR101853734B1 (ko) 유기성폐기물 음폐수의 처리수 무방류 자원화 처리장치 및 그 처리방법
JP5211769B2 (ja) 有機性廃液の生物処理方法及び処理装置
US11512028B2 (en) Method for dry biological treatment of organic waste
AU2019385688B2 (en) Advanced phosphorous recovery process and plant
JPH11197636A (ja) 有機性廃棄物の処理方法
Bokhary et al. Effect of organic loading rate on the biological performance of the thermophilic anaerobic membrane bioreactor treating pulp and paper primary sludge
JP6395877B2 (ja) 嫌気性消化処理方法及び嫌気性消化処理装置
JPH11285698A (ja) 生物学的脱リン方法
JP2001062498A (ja) 汚泥処理方法
Aysan et al. Effect of Organic Loading Rate and Temperature on Dewaterability of Sewage Sludge at Anaerobic Mesophilic and Thermophilic digestion
JPS6377600A (ja) 有機性汚泥の嫌気性消化方法
CN110698027A (zh) 一种有机污泥的脱水方法
JPH11277099A (ja) 脱リン方法
JPH11277097A (ja) 脱リン方法
JP2018079438A (ja) 有機物処理システム及び有機物処理方法
JPS61271100A (ja) し尿と有機性汚泥の合併処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012547919

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017553

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011339363

Country of ref document: AU

Date of ref document: 20111209

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11847406

Country of ref document: EP

Kind code of ref document: A1