WO2012073269A1 - 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置 - Google Patents

有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置 Download PDF

Info

Publication number
WO2012073269A1
WO2012073269A1 PCT/JP2010/006928 JP2010006928W WO2012073269A1 WO 2012073269 A1 WO2012073269 A1 WO 2012073269A1 JP 2010006928 W JP2010006928 W JP 2010006928W WO 2012073269 A1 WO2012073269 A1 WO 2012073269A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic
thickness
light emitting
hole injection
Prior art date
Application number
PCT/JP2010/006928
Other languages
English (en)
French (fr)
Inventor
隆太 山田
恵子 倉田
慎也 藤村
藤田 浩史
義朗 塚本
小松 隆宏
大内 暁
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2012546565A priority Critical patent/JPWO2012073269A1/ja
Priority to PCT/JP2010/006928 priority patent/WO2012073269A1/ja
Priority to US13/988,372 priority patent/US8957412B2/en
Publication of WO2012073269A1 publication Critical patent/WO2012073269A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to an organic EL panel, a method for manufacturing the organic EL panel, an organic light emitting device using the organic EL panel, and an organic display device using the organic EL panel.
  • organic EL panels that have been researched and developed are display panels that utilize the electroluminescence phenomenon of organic materials.
  • the panel has a configuration in which subpixels of each color of R (red), G (green), and B (blue) are arranged on a substrate.
  • the organic EL panel it is important to improve the light extraction efficiency of the R, G, and B subpixels from the viewpoint of reducing power consumption and extending the life.
  • Patent Document 1 in an organic light emitting display device in which a reflective film, an interlayer insulating film, a first transparent electrode, a hole transport layer, an organic light emitting layer, an electron injection layer, and a second transparent electrode are stacked on a substrate, A technique for increasing the intensity of emitted light by utilizing the interference effect of direct light from the light emitting layer directly toward the second transparent electrode and reflected light from the light emitting layer through the reflective film toward the second transparent electrode is proposed. (Paragraphs 0022-0024).
  • An object of the present invention is to provide an organic EL panel with further reduced power consumption.
  • an organic EL panel corresponding to each color of R (red), G (green), and B (blue), and reflects incident light.
  • An organic light emitting layer that emits light of each color of R, G, and B when a voltage is applied between the anode and the cathode, and between the anode and the organic light emitting layer.
  • a hole injection layer for injecting holes, provided on the hole injection layer, and transporting holes to the organic light emitting layer.
  • a first functional layer composed of two or more layers including a hole transport layer for performing the organic light emission After a part of the light of each color R, G, B emitted from the light travels to the anode side through the first functional layer and is reflected by the anode, the first functional layer, the organic light emitting layer, and the The first optical path emitted to the outside through the cathode and the remaining part of the light of each color R, G, B emitted from the organic light emitting layer proceed to the cathode side without proceeding to the anode side.
  • the hole injection layer is made of only a metal oxide containing tungsten oxide, and the thickness of each color of R, G, B is 5 nm to 40 nm , At least one color has a thickness different from that of the other colors, the hole transport layer is in the same thickness range for each color of R, G, B, and the organic light emitting layer is for each color of R, G, B The thickness was assumed to be in the same range.
  • the hole transport layer and the organic light emitting layer are in the same thickness range for each color of R, G, and B, and the film thickness is adjusted by the hole injection layer.
  • This hole injection layer is composed only of a metal oxide containing tungsten oxide, and the thickness of each color of R, G, B is 5 nm or more and 40 nm or less.
  • the driving voltage for obtaining a predetermined current density can be made substantially constant, it is possible to prevent an increase in the driving voltage due to thickening of the film. Even if there is a part where the film thickness increases when the film thickness is adjusted for each color of R, G, B of the hole injection layer, the drive voltage of the part is almost equal to the drive voltage of the part where the film thickness is thin. The driving voltage can be reduced as a whole of the organic EL panel.
  • the relationship between the film thickness of a positive hole injection layer and a drive voltage is shown.
  • A The relationship between the current density and the drive voltage at each film thickness when the film thickness of the organic light emitting layer is set in increments of 10 nm from 55 nm to 105 nm is shown.
  • B The relationship between each film thickness and drive voltage when the current density is 10 mA / cm 2 is shown.
  • A The relationship between the current density and the driving voltage at each film thickness when the film thickness of the hole transport layer is set to 30 nm, 60 nm, 80 nm, and 100 nm is shown.
  • B The relationship between each film thickness and drive voltage when the current density is 10 mA / cm 2 is shown.
  • (A) The relationship between the current density and the drive voltage at each film thickness when the film thickness of the hole injection layer is set from 5 nm to 40 nm in increments of 5 nm is shown.
  • (B) The relationship between each film thickness and drive voltage when the current density is 10 mA / cm 2 is shown.
  • (A) When the light extraction efficiency is adjusted by the R, G, and B film thicknesses of the hole injection layer (Example 1-1, Example 1-2), and the R, G, and B of the organic light emitting layer The simulation conditions and results when the light extraction efficiency is adjusted for each film thickness (Comparative Example 1) are shown.
  • (B) Refractive indexes of the hole transport layer, the hole injection layer, and the transparent conductive layer are shown.
  • FIG. 5 is a diagram illustrating an example of a manufacturing process of the organic EL panel 10 according to Embodiment 1.
  • FIG. 9 is a diagram illustrating an example of a part subsequent to the process illustrated in FIG. 8 in the manufacturing process of the organic EL display panel 10 according to the first embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a configuration of a hole-only element 101. It is a device characteristic figure which shows the relationship curve of the applied voltage and current density of a Hall only element. 3 is a schematic cross-sectional view showing a configuration of an organic EL element 201.
  • FIG. 6 is a device characteristic diagram showing a relationship curve between applied voltage and current density of an organic EL element 201.
  • FIG. W5p 3/2 by XPS measurement of the tungsten oxide film surface, W4f 5/2, illustrates a spectrum attributed to W4f 7/2.
  • a resonator structure has been adopted to adjust the light extraction efficiency.
  • a reflective anode having light reflectivity and a transparent cathode having light transmittance are used, an organic light emitting layer is provided between the reflective anode and the transparent cathode, and between the reflective anode and the organic light emitting layer.
  • functional layers composed of one or two or more layers are arranged.
  • a part of the light emitted from the organic light emitting layer travels to the anode side through the functional layer and is reflected by the anode, and then is emitted to the outside through the functional layer, the organic light emitting layer, and the cathode.
  • the first optical path and the remaining part of the light emitted from the organic light emitting layer proceed to the cathode side without proceeding to the anode side, thereby forming a second optical path that is emitted to the outside through the cathode.
  • the light extraction efficiency is adjusted by setting the optical thickness of the organic light emitting layer and the functional layer.
  • the light extraction efficiency of the organic EL panel is adjusted by appropriately setting the film thickness of the hole transport layer in the organic light emitting layer or the functional layer. This is because the organic light-emitting layer and the hole transport layer formed from an organic material that transports holes to the organic light-emitting layer are formed using a coating method such as an inkjet method. This is because the control is relatively easy.
  • the present inventors have set the film thickness of the organic light emitting layer or the hole transport layer appropriately to adjust the light extraction efficiency to obtain a predetermined current density. It was confirmed that the required drive voltage varies. More specifically, it was confirmed that the drive voltage increased as the film thickness increased. Specific experimental contents and results at this time will be described later with reference to FIGS. 2 (a) and 2 (b) and FIGS. 3 (a) and 3 (b).
  • the present inventors focused on the hole injection layer that injects holes injected from the anode into the hole transport layer in the functional layer, and not the organic light emitting layer or the hole transport layer. The idea was to adjust the light extraction efficiency by appropriately setting the film thickness of the hole injection layer.
  • the hole injection layer conventionally, there are a form using an organic material such as PEDOT (polythiophene, poly (ethylenedioxy) thiophene) and a form using an inorganic material such as a metal oxide.
  • PEDOT polythiophene, poly (ethylenedioxy) thiophene
  • an inorganic material such as a metal oxide.
  • the present inventors have studied a form using an inorganic material formed by vapor deposition or sputtering, particularly a form using a metal oxide, as the hole injection layer.
  • the present inventors conducted experiments by using tungsten oxide as a metal oxide, forming a hole injection layer under a predetermined condition, and setting the film thickness to 30 nm, 50 nm, and 70 nm.
  • the hole injection layer was made of only tungsten oxide without containing an organic material. This is because organic materials generally have lower electrical conductivity than metal oxides, so that when organic materials are included, the driving voltage becomes high and it is difficult to reduce the driving voltage. .
  • FIG. 1 shows the experimental results. However, this experiment showed that the drive voltage tends to increase with increasing film thickness (see series 1 in FIG. 1). From this result, it seems that the method of adjusting the light extraction efficiency by setting the film thickness of the hole injection layer is not necessarily effective.
  • the present inventors have made further consideration without giving up after receiving the above experimental results.
  • the driving voltage tends to increase as the film thickness increases, the driving voltage decreases in the thin film region. Therefore, we inferred that the increase would be moderate.
  • the present inventors further conducted an experiment by forming a hole injection layer using tungsten oxide under a predetermined condition and setting the film thickness in a range of 5 nm to 40 nm in increments of 5 nm. Specific experimental contents and results at this time will be described later with reference to FIGS.
  • the drive voltage for obtaining a predetermined current density can be made substantially constant even at different film thicknesses within the above range (see series 2 in FIG. 1).
  • the organic light emitting layer or the hole transport layer has a high dependency on the film thickness of the driving voltage that satisfies the predetermined light emission efficiency, whereas the hole injection layer having a thin layer structure made of tungsten oxide has a predetermined thickness. It was found that the driving voltage satisfying the luminous efficiency of the film had a low dependence on the film thickness.
  • the present inventors conducted an experiment for adjusting the light extraction efficiency by the film thickness of the organic light emitting layer and an experiment for adjusting the light extraction efficiency by the film thickness of the hole injection layer. As a result, it was confirmed that there was no great difference in light extraction efficiency between the case where the film thickness of the organic light emitting layer was changed and the case where the film thickness of the hole injection layer was changed.
  • An organic EL panel is provided corresponding to each color of R (red), G (green), and B (blue), and reflects an incident light, and is opposed to the anode.
  • An organic light emitting layer that emits light of each color of R, G, and B when a voltage is applied between the anode and the cathode, and is disposed between the anode and the organic light emitting layer, and the R, G , B provided corresponding to each color, and a hole injection layer for injecting holes, and a hole transport layer provided on the hole injection layer for transporting holes to the organic light emitting layer.
  • a first functional layer including two or more layers including the R, G, and R emitted from the organic light emitting layer A first optical path in which part of light of each color travels toward the anode through the first functional layer and is reflected by the anode, and then is emitted to the outside through the first functional layer, the organic light emitting layer, and the cathode. And the remaining part of the R, G, B light emitted from the organic light emitting layer travels to the cathode side without proceeding to the anode side, and is emitted to the outside through the cathode.
  • the hole injection layer is composed of only a metal oxide containing tungsten oxide, the thickness of each color of R, G, B is 5 nm or more and 40 nm or less, and at least one color is different from other colors
  • the hole transport layer has different thicknesses, and the R, G, B colors have the same thickness, and the organic light emitting layer has the R, G, B colors, the same thickness.
  • the hole transport layer and the organic light emitting layer are in the same thickness range for each color of R, G, and B, and the film thickness is adjusted by the hole injection layer.
  • This hole injection layer is composed only of a metal oxide containing tungsten oxide, and the thickness of each color of R, G, B is 5 nm or more and 40 nm or less.
  • the driving voltage for obtaining a predetermined current density can be made substantially constant, it is possible to prevent an increase in the driving voltage due to thickening of the film. Even if there is a part where the film thickness increases when the film thickness is adjusted for each color of R, G, B of the hole injection layer, the drive voltage of the part is almost equal to the drive voltage of the part where the film thickness is thin. The driving voltage can be reduced as a whole of the organic EL panel.
  • the tungsten element constituting the tungsten oxide includes a hexavalent state that is the maximum valence that the tungsten element can take, and a pentavalent that is lower than the hexavalence that is the maximum valence.
  • the tungsten oxide film may include the tungsten oxide crystal having a particle size of the order of nanometers.
  • the tungsten element constituting tungsten oxide is in a hexavalent state that is the maximum valence and a pentavalent state that is lower than the maximum valence, so that oxygen defects are present in the hole injection layer. It can have a similar structure.
  • the crystal grain size of tungsten oxide is set to a nanometer order size, many crystal grain boundaries in which many structures similar to oxygen defects exist are formed in the tungsten oxide layer. Thereby, since the hole conduction path can be extended in the film thickness direction of the tungsten oxide film, efficient hole conduction can be realized with a low driving voltage.
  • W 5+ / W 6+ which is a value obtained by dividing the number of atoms of the pentavalent tungsten element by the number of atoms of the hexavalent tungsten element is 3.2% or more. It is good.
  • the band structure of the hole injection layer has a lower bond energy than the lowest valence band of 1.8-3. It may be possible to have an occupied level in a binding energy region as low as 6 eV.
  • the presence of this occupied level can suppress the hole injection barrier between the hole injection layer and the hole transport layer. As a result, better hole injection efficiency can be obtained.
  • the tungsten oxide film may include a plurality of crystals of the tungsten oxide having a particle size of 3 to 10 nanometers.
  • the film thickness of the first functional layer of each color of R, G, B is 36 nm or more and 69 nm or less, and the organic light emitting layer in each color of R, G, B is
  • the optical distance to the anode may be 72 nm or more and 131 nm or less.
  • the inventors of the present invention have a film thickness of the first functional layer in the range of 36 nm to 69 nm, and an optical distance from the organic light emitting layer to the anode in each color of R, G, B is 72 nm to 131 nm. In this range, it was confirmed that the light extraction efficiency obtained by adjusting the film thickness of the hole injection layer was not significantly different from the light extraction efficiency obtained by adjusting the film thickness of the organic light emitting layer.
  • the film thickness of the first functional layer of each color of R, G, B is 36 nm or more and 69 nm or less, and the organic light emitting layer in each color of R, G, B is The optical distance to the anode is not less than 72 nm and not more than 131 nm.
  • the light extraction efficiency equivalent to the light extraction efficiency obtained by adjusting the film thickness of the organic light emitting layer can be achieved.
  • the driving voltage can be reduced while realizing the light extraction efficiency equivalent to the case where the light extraction efficiency is adjusted by the film thickness of the organic light emitting layer.
  • the organic EL panel according to one embodiment of the present invention can achieve chromaticity equivalent to that obtained when the thickness of the organic light emitting layer is adjusted.
  • the hole injection layer may have a different thickness for each of R, G, and B.
  • the hole injection layer may be made of only tungsten oxide.
  • the present inventors have a predetermined current density even at different film thicknesses within the above range. It was confirmed that the drive voltage for obtaining the power can be made substantially constant.
  • the driving voltage for obtaining a predetermined current density can be made almost constant.
  • the hole injection layer has a thickness of R of 36 nm to 40 nm, a thickness of G of 30 nm to 34 nm, and a thickness of B of 8 nm to 12 nm.
  • the thickness of each of the R, G, and B colors is 7 nm or more and 13 nm or less, and the organic light emitting layer has a thickness of each of the R, G, and B colors of 32 nm. It may be equal to or greater than 48 nm and equal.
  • the hole injection layer has a thickness of R of 36 nm to 40 nm, a thickness of G of 26 nm to 30 nm, and a thickness of B of 4 nm to 8 nm.
  • the thickness of each of the R, G, and B colors is 12 nm or more and 18 nm or less, and the organic light emitting layer has a thickness of each of the R, G, and B colors of 32 nm or more. It may be equal to or less than 48 nm.
  • the first functional layer includes a transparent conductive layer formed on the anode, and the transparent conductive layer has a thickness for each of R, G, and B colors.
  • a second functional layer including an electron injecting and transporting layer, which is different from the first functional layer, is provided between the organic light emitting layer and the cathode, and the electron injecting and transporting layer includes R, G , B may be in the same thickness range.
  • the organic EL panel which is one embodiment of the present invention is provided corresponding to each color of R (red), G (green), and B (blue), and reflects the incident light. Is disposed between the anode and the cathode, and is provided corresponding to each color of R (red), G (green), and B (blue).
  • An organic light emitting layer that emits light of each color of R, G, and B when a voltage is applied between the anode and the cathode, and is disposed between the anode and the organic light emitting layer, A hole injection layer for injecting holes provided for each color of R, G, and B, and a hole for transporting holes to the organic light emitting layer provided on the hole injection layer.
  • the hole injection layer is made of only a metal oxide containing tungsten oxide, and has a different thickness for each color of R, G, and B.
  • the thickness related to G is 30 nm or more and 34 nm or less
  • the thickness related to B is 8 nm or more and 12 nm or less
  • the hole transport layer has a thickness related to R of 7 nm or more and 13 nm or less.
  • the thickness related to B is 7 nm to 13 nm
  • the thickness related to B is 7 nm to 13 nm
  • the organic light emitting layer has a thickness related to R of 32 nm to 48 nm
  • a thickness related to G is 32 nm to 48 nm
  • B The thickness is about 32 nm to 48 nm.
  • the driving voltage for obtaining a predetermined current density can be made almost constant, so that an increase in the driving voltage due to thickening can be prevented.
  • the film thickness of the first functional layer for each of the R, G, and B colors is 36 nm or more and 69 nm or less, and the organic for each of the R, G, and B colors.
  • the optical distance from the light emitting layer to the anode may be not less than 72 nm and not more than 131 nm.
  • the light extraction efficiency equivalent to the light extraction efficiency obtained by adjusting the film thickness of the organic light emitting layer can be achieved.
  • the organic EL panel which is one embodiment of the present invention is provided corresponding to each color of R (red), G (green), and B (blue), and reflects the incident light. Is disposed between the anode and the cathode, and is provided corresponding to each color of R (red), G (green), and B (blue).
  • An organic light emitting layer that emits light of each color of R, G, and B when a voltage is applied between the anode and the cathode, and is disposed between the anode and the organic light emitting layer, A hole injection layer for injecting holes provided for each color of R, G, and B, and a hole for transporting holes to the organic light emitting layer provided on the hole injection layer.
  • the hole injection layer is made of only a metal oxide containing tungsten oxide, and has a different thickness for each color of R, G, and B.
  • the thickness related to G is 26 nm or more and 30 nm or less
  • the thickness related to B is 4 nm or more and 8 nm or less
  • the hole transport layer has a thickness related to R of 12 nm or more and 18 nm or less.
  • the thickness related to B is 12 nm or more and 18 nm or less
  • the organic light emitting layer has a thickness related to R of 32 nm or more and 48 nm or less
  • a thickness related to G is 32 nm or more and 48 nm or less; The thickness is about 32 nm to 48 nm.
  • the driving voltage for obtaining a predetermined current density can be made almost constant, so that an increase in the driving voltage due to thickening can be prevented.
  • the film thickness of the first functional layer for each of the R, G, and B colors is 36 nm or more and 69 nm or less, and the organic for each of the R, G, and B colors.
  • the optical distance from the light emitting layer to the anode may be not less than 72 nm and not more than 131 nm.
  • the light extraction efficiency equivalent to the light extraction efficiency obtained by adjusting the film thickness of the organic light emitting layer can be achieved.
  • a first anode that reflects incident light is provided corresponding to each color of R (red), G (green), and B (blue).
  • the thickness of the hole transport layer is formed to be in the same range for each color of R, G, B, and each color of R, G, B
  • the first functional layer is formed to have a thickness of 36 nm to 69 nm, and an optical distance from the organic light emitting layer to the anode in each of the R, G, and B colors is set to 72 nm to 131 nm. Also good.
  • the hole injection layer is formed by depositing the tungsten oxide on the anode using a vapor deposition method or a sputtering method.
  • the hole transport layer is formed by depositing an ink containing the hole transport material on the hole injection layer using a printing method or an inkjet method.
  • the organic light emitting layer the organic light emitting layer is formed. You may form by forming the ink containing a material on the said positive hole transport layer using the printing method or the inkjet method.
  • the step of forming the hole injection layer in the second step includes a step of forming a layer composed of the tungsten oxide on the anode, and the oxidation
  • the photosensitive resist layer is selectively formed by using a lamination process of laminating a layer made of a photosensitive resist material on a layer made of tungsten, and a mask having different light transmittance for each of R, G, and B.
  • An adjustment step for adjusting the thickness of the photosensitive resist layer to be different for each of R, G, and B by exposing, and etching the photosensitive resist layer with the adjusted thickness using a developer, and A molding step of molding the hole injection layer to have a different thickness for each of R, G, and B by removing a part including the upper part of the hole injection layer using the developer, and the molding step rear, Serial may be from the hole injection layer and a removal step of removing the photosensitive resist layer.
  • the second step includes a transparent conductive layer formed on the anode as the first functional layer, and the thickness of the transparent conductive layer is the same for each of the colors R, G, and B.
  • the electron injecting and transporting layer may be formed so that the thicknesses of R, G, and B are in the same range.
  • the second step uses a sputtering gas composed of argon gas and oxygen gas, and a target composed of tungsten, and the total pressure of the sputtering gas is 2.3 Pa or more and 7.0 Pa.
  • the ratio of the oxygen gas partial pressure to the total pressure of the sputtering gas is 50% or more and 70% or less, and the input power density that is input power per unit area of the target is 1.5W.
  • the hole injection layer may be formed by forming a tungsten oxide film under film forming conditions.
  • the tungsten element constituting the tungsten oxide film has a hexavalent state that is the maximum valence that the tungsten element can take, and is more than the hexavalent state.
  • the tungsten oxide film may be formed so as to be included in the tungsten oxide film in a low pentavalent state and to include a tungsten oxide crystal having a particle size of the order of nanometers. .
  • the total pressure / input power density may be smaller than 3.2 Pa ⁇ cm 2 / W.
  • an organic light-emitting device using an organic EL panel manufactured by the manufacturing method according to one embodiment of the present invention may be used.
  • the organic light-emitting device of this aspect is obtained by using the organic EL panel manufactured by the manufacturing method according to one aspect of the present invention, and the driving voltage can be reduced for the above reason.
  • an organic display device using an organic EL panel manufactured by the manufacturing method according to one aspect of the present invention may be used.
  • the organic display device of this embodiment is obtained by using an organic EL panel manufactured by the manufacturing method according to one embodiment of the present invention. For the above reason, the driving voltage can be reduced.
  • the R, G, and B film thicknesses of the hole injection layer are set in a thin film region of 5 nm or more and 40 nm or less to adjust the light extraction efficiency.
  • the superiority over the case where the light extraction efficiency is adjusted by each film thickness of the organic light emitting layer or the hole transport layer will be described.
  • simulations are performed when the light extraction efficiency is adjusted by the R, G, and B film thicknesses of the hole injection layer and when the light extraction efficiency is adjusted by the R, G, and B film thicknesses of the organic light emitting layer.
  • the configuration of the organic EL panel of the present embodiment will be specifically described.
  • ⁇ Relationship between film thickness of organic light emitting layer and hole transport layer and driving voltage> A description will be given of how the current density and the driving voltage change when the thicknesses of the organic light emitting layer and the hole transport layer are changed.
  • FIG. 2A shows the relationship between the current density and the driving voltage at each film thickness when the film thickness of the organic light emitting layer is set from 55 nm to 105 nm in increments of 10 nm.
  • the driving voltage required to obtain the same current density increases as the thickness of the organic light emitting layer increases.
  • the variation in driving voltage between the respective film thicknesses is larger than when the film thickness of the hole injection layer described later is changed (see FIG. 4A).
  • FIG. 2B shows the relationship between each film thickness and the driving voltage when the current density is 10 mA / cm 2 .
  • the drive voltage increases as the film thickness increases, and the drive voltage varies greatly between the film thicknesses. For example, there is a difference of 3.4 V at the maximum (that is, when the film thickness of the organic light emitting layer is 55 nm and 105 nm).
  • FIG. 3A shows the relationship between the current density and the driving voltage at each film thickness when the film thickness of the hole transport layer is set to 30 nm, 60 nm, 80 nm, and 100 nm.
  • the driving voltage required to obtain the same current density increases as the thickness of the hole transport layer increases.
  • the variation in driving voltage between the film thicknesses is also large.
  • FIG. 3B shows the relationship between each film thickness and the driving voltage when the current density is 10 mA / cm 2 .
  • the drive voltage increases as the film thickness increases, and the drive voltage varies greatly between the film thicknesses. For example, there is a difference of 2.7 V at the maximum (that is, when the hole transport layer has a film thickness of 30 nm and 100 nm).
  • FIG. 4A shows the relationship between the current density and the driving voltage at each film thickness when the film thickness of the hole injection layer is set from 5 nm to 40 nm in increments of 5 nm. As shown in FIG. 4A, the variation in the driving voltage between the film thicknesses is clear when the film thickness of the organic light emitting layer is changed and when the film thickness of the hole transport layer is changed. Small.
  • FIG. 4B shows the relationship between each film thickness and the driving voltage when the current density is 10 mA / cm 2 .
  • the driving voltage is 6.7 V or 6.8 V regardless of the thickness of the hole injection layer in the range of 5 nm to 40 nm, and the driving voltage varies. Is small.
  • the film thickness of the hole injection layer is in the range of 5 nm to 40 nm, driving by increasing the film thickness Since an increase in voltage can be avoided, a reduction in power consumption can be realized.
  • the hole injection layer is made of a metal oxide, and therefore has higher conductivity than an organic light emitting layer or a hole transport layer made of an organic material. It is done.
  • the reason why the variation in driving voltage is small when the thickness of the hole injection layer is in the range of 5 nm to 40 nm is not necessarily clear, but is presumed as follows. Here, a brief description is given, and details will be described later.
  • the hole injection layer has a thin film structure (thickness of 5 nm to 40 nm) made of tungsten oxide.
  • the tungsten element constituting the tungsten oxide is included in the tungsten oxide film in a hexavalent state that is the maximum valence that the tungsten element can take and in a pentavalent state that is lower than the maximum valence of 6 A portion serving as a hole conduction portion exists in the hole injection layer.
  • the tungsten oxide film contains crystals of tungsten oxide with a grain size on the order of nanometers, so that the number of crystal grain boundaries increases, so that an overlap of electron orbits contributing to hole conduction is formed.
  • FIG. 5 (a) shows the case where the light extraction efficiency is adjusted by the film thicknesses of R, G, B of the hole injection layer (Example 1-1, Example 1-2), and R, The simulation conditions and results in the case where the light extraction efficiency is adjusted by the G and B film thicknesses (Comparative Example 1) are shown. However, in the simulation of FIG. 5A, current efficiency is used as the light extraction efficiency.
  • FIG. 5B shows the refractive indexes of the hole transport layer, the hole injection layer, and the transparent conductive layer.
  • the light extraction efficiency is adjusted by the R, G, and B film thicknesses of the organic light emitting layer.
  • the R film thickness of the organic light emitting layer is 80 nm
  • G The film thickness is set to 80 nm
  • the film thickness of B is set to 50 nm.
  • the electron transport layer, the hole transport layer, the hole injection layer, and the transparent conductive layer are set to a common thickness for R, G, and B, respectively.
  • the light extraction efficiency is adjusted by the film thicknesses of R, G, and B of the hole injection layer.
  • the film thickness of R of the hole injection layer is: The thickness of 38 nm, the thickness of G is set to 32 nm, and the thickness of B is set to 10 nm.
  • the electron transport layer, the hole transport layer, and the transparent conductive layer are set to the same film thickness as in Comparative Example 1.
  • the organic light-emitting layer has a common film thickness for R, G, and B, and is set to 40 nm, which is considered to ensure device performance by preliminary experiments.
  • the film thickness of the organic light-emitting layer of Comparative Example 1 is 80 nm. It is thinner.
  • R is 7.9 cd / A in Comparative Example 1, whereas it is 9.3 cd / A in Example 1-1, which shows an improvement of about 18%.
  • G was 41 cd / A in Comparative Example 1, whereas it was 40 cd / A in Example 1-1, a decrease of about 4%.
  • B there was no change between Comparative Example 1 and Example 1-1.
  • R is a significant improvement of about 18%, while G is a slight deterioration of about 4%. Therefore, it can be said that the current efficiency is improved as a whole.
  • the current efficiency and chromaticity are adjusted by the R, G, and B film thicknesses of the organic light emitting layer, and are adjusted by the R, G, and B film thicknesses of the hole injection layer. It can be seen that the latter is slightly improved in terms of current efficiency and chromaticity.
  • Example 1-1 the driving voltage is significantly improved in Example 1-1 as compared with Comparative Example 1.
  • R is 6.1 V
  • G is 8.2 V
  • B is 6.2 V
  • R is 4.4 V
  • G is 4.
  • 9V and B are 5.4V, about 28% for R, about 40% for G, and about 13% for B.
  • Example 1-1 As compared with Comparative Example 1. Comparing Comparative Example 1 and Example 1-1 in terms of total power consumption, it was 27.11 W in Comparative Example 1, whereas it was 21.77 W in Example 1-1, which was compared in Example 1-1. About 20% can be reduced compared to Example 1.
  • Example 1-2- Example 1-2 in the figure is another example in which the light extraction efficiency is adjusted by the R, G, and B film thicknesses of the hole injection layer, and the R film thickness of the hole injection layer is 38 nm.
  • G film thickness is set to 28 nm
  • B film thickness is set to 6 nm.
  • the thickness of the electron transport layer and the hole transport layer is set to be 5 nm thicker than that of Example 1-1.
  • R was 7.9 cd / A in Comparative Example 1, whereas 9.3 cd / A in Example 1-2, showing an improvement of about 18%.
  • G was 41 cd / A in Comparative Example 1, whereas it was 39 cd / A in Example 1-2, a decrease of about 5%.
  • B there was no change between Comparative Example 1 and Example 1-2.
  • R is a significant improvement of about 18%, while G is a slight deterioration of about 5%. Therefore, it can be said that the current efficiency is improved as a whole.
  • Example 1-2 As for chromaticity, the value of R is exactly the same in Comparative Example 1 and Example 1-2. However, G is (0.28, 0.66) in Comparative Example 1, whereas it is (0.29, 0.66) in Example 1-2, and the value of x is increased by 0.01. is doing. Therefore, it can be said that Example 1-2 is improved with respect to G for the same reason as described above. B was (0.13, 0.074) in Comparative Example 1, whereas (0.13, 0.075) in Example 1-2, and the value of Y increased by 0.001. Yes.
  • B is defined as (0.15, 0.06). Therefore, it can be said that B is lower in Example 1-2.
  • G is about 4% improvement, while B is about 1% worse, so it can be said that the chromaticity is improved as a whole.
  • Example 1-2 as in Example 1-1, the current efficiency and chromaticity are adjusted by the R, G, and B film thicknesses of the organic light emitting layer, and the hole injection is performed. It can be seen that there is no significant difference between the case of adjusting the film thicknesses of the R, G, and B layers, and that the latter is slightly improved in terms of current efficiency and chromaticity.
  • Example 1-2 the driving voltage is greatly improved in Example 1-2 as compared with Comparative Example 1 as in Example 1-1.
  • R is 6.1 V
  • G is 8.2 V
  • B is 6.2 V
  • R is 4.6 V
  • G is 5.
  • 1V and B are 5.6V, about 25% for R, about 38% for G, and about 10% for B.
  • Example 1-2 the power consumption is improved in Example 1-2 as compared with Comparative Example 1. Comparing Comparative Example 1 and Example 1-2 in terms of total power consumption, it was 27.11 W in Comparative Example 1, whereas it was 22.15 W in Example 1-2, and comparison was made in Example 1-2. Compared to Example 1, it can be reduced by about 18%.
  • Example 1-1 Even when the conditions are made stricter by setting the film thicknesses of the electron transport layer and the hole transport layer to 5 nm thicker than in Example 1-1, they are slightly inferior to those in Example 1-1. As compared with Comparative Example 1, the total power consumption can be greatly improved.
  • Example 1-1 B in Example 1-1 was the thinnest at 36 nm.
  • R is the thickest and is 69 nm.
  • B in Example 1-1 is the shortest and 72 nm
  • R in Example 1-2 is the longest and is 131 nm.
  • the driving voltage can be reduced while maintaining or improving the current efficiency and chromaticity.
  • the optical distance is obtained by taking the product of the film thickness and the refractive index for each layer and totaling the obtained products.
  • the refractive index of each layer is as shown in FIG. ⁇ Second simulation>
  • the simulation will be described.
  • a 40-inch FHD specification organic EL panel is assumed.
  • FIG. 6 shows the case where the light extraction efficiency is adjusted by the R, G, and B film thicknesses of the hole injection layer (Example 2-1 and Example 2-2), and the organic light emitting layer R, G, B The simulation conditions and results in the case where the light extraction efficiency is adjusted with each film thickness (Comparative Example 2) are shown.
  • Example 2-1 and Example 2-2 The film thickness of each layer in Comparative Example 2, Example 2-1 and Example 2-2 is the same as the film thickness of each layer in Comparative Example 1, Example 1-1, and Example 1-2. The description is omitted here.
  • Example 2-1 The power consumption is improved in Example 2-1 compared to Comparative Example 2. Comparing Comparative Example 2 and Example 2-1 in terms of total power consumption, it was 101.00 W in Comparative Example 2, compared to 81.08 W in Example 2-1, and compared in Example 2-1. About 20% can be reduced compared to Example 2.
  • Example 1-2 The current efficiency, chromaticity, and driving voltage are basically the same as the comparison between Comparative Example 1 and Example 1-2.
  • the current efficiency of R is 39 cd / A, whereas in Example 2-2, it is 40 cd / A.
  • the chromaticity of B is (0.13, 0.075), whereas in Example 1-2, it is (0.13, 0.074).
  • the film thickness of each layer is the same as in Example 1-2 and Example 2-2, these are considered to be variation.
  • Example 2-2 The power consumption is improved in Example 2-2 compared to Comparative Example 2. Comparing Comparative Example 2 and Example 2-2 in terms of total power consumption, it was 101.00 W in Comparative Example 1, compared with 82.50 W in Example 2-2, compared in Example 2-2. Compared to Example 2, it can be reduced by about 18%.
  • FIG. 7 is a cross-sectional view schematically showing the structure of the organic EL panel 10 according to the first embodiment.
  • subpixels 10R, 10G, and 10B of R (red), G (green), and B (blue) colors are arranged in a matrix.
  • the structure of the organic EL panel 10 will be described in detail.
  • an interlayer insulating film 2 is formed on the TFT substrate 1, and on the interlayer insulating film 2, anodes 3 are arranged in a matrix in units of subpixels. It is formed by patterning.
  • One pixel is formed by a combination of three subpixels 10R, 10G, and 10B adjacent in the X-axis direction.
  • a transparent conductive layer 4 is formed on each anode 3, and a hole injection layer 5 is formed on the interlayer insulating film 2 so as to cover each transparent conductive layer 4.
  • the film thickness of the hole injection layer 5 is different for each of R, G, and B. As shown in the above simulation, the thickness of the hole injection layer 5 is preferably 5 nm or more and 40 nm or less.
  • a bank 6 is formed in a region on the hole injection layer 5 and corresponding to between the anodes 3.
  • a hole transport layer 7 is formed on the anode 3, and an organic light emitting layer 8 of a predetermined color is laminated on the hole transport layer 7 (hereinafter referred to as the anode 3).
  • the transparent conductive layer 4, the hole injection layer 5, and the hole transport layer 7 provided between the organic light emitting layer 8 and the organic light emitting layer 8 are collectively referred to as a “first functional layer”).
  • the hole transport layer 7 and the organic light emitting layer 8 are in the same thickness range for each of R, G, and B colors.
  • the range where the thicknesses are equal means that (i) the design values of the R, G, B colors are the same and the measured values are the same, and (ii) the design values of the R, G, B colors are the same. Although it is the same, the case where the actual measurement value is deviated within the range of the manufacturing error (for example, ⁇ 5 [nm] per layer) is included.
  • an electron transport layer 9, a cathode 11, and a sealing layer 12 are formed on the organic light emitting layer 8 so as to be continuous with those of adjacent subpixels beyond the region defined by the bank 6, respectively. Yes.
  • the electron transport layer 9 is in the range where the thicknesses of R, G, and B are the same. The range where the thickness is equal is as shown in the above (i) and (ii).
  • a resonator structure is realized by the presence of the anode 3.
  • the organic EL panel 10 after a part of the light emitted from the organic light emitting layer 8 travels to the anode 3 side through the first functional layer and is reflected by the anode 3, the first functional layer, the organic light emitting layer 8 and The first optical path emitted to the outside through the cathode 11 and the remaining part of the light emitted from the organic light emitting layer 8 proceed to the cathode 11 side without proceeding to the anode 3 side, and are emitted to the outside through the cathode 11.
  • a second optical path is formed.
  • the distance between the organic light emitting layers 8 (R), 8 (G) and 8 (B) and the anode 3 is set so that the reflected light passing through the first optical path and the direct light passing through the second optical path are intensified by the interference effect.
  • the adjustment of the distance can be realized by adjusting the film thickness of the first functional layer.
  • the film thickness of the first functional layer of each color of R, G, and B is adjusted to 36 nm or more and 69 nm or less as shown in the simulation.
  • R is 36 nm or more and 40 nm or less
  • G is 30 nm or more and 34 nm or less
  • B is 8 nm or more and 12 nm or less
  • R, G, and B are 7 nm each regarding the film thickness of the hole transport layer. It is preferably 13 nm or less and equal, and the R, G, B are preferably 32 nm or more and 48 nm or less, respectively, with respect to the film thickness of the organic light emitting layer.
  • R is 38 nm
  • G is 32 nm
  • B is 10 nm with respect to the thickness of the hole transport layer.
  • G, and B are each 10 nm in common, and it is more preferable that R, G, and B are 40 nm in common with respect to the film thickness of the organic light emitting layer.
  • R is 36 nm or more and 40 nm or less
  • G is 26 nm or more and 30 nm or less
  • B is 4 nm or more and 8 nm or less
  • R, G, and B are each 12 nm or more regarding the film thickness of the hole transport layer. It may be equal to or less than 18 nm, and R, G, and B may be equal to or greater than 32 nm and equal to or less than 48 nm, respectively, with respect to the film thickness of the organic light emitting layer.
  • R is 38 nm
  • G is 28 nm
  • B is 6 nm. More preferably, R, G, and B are each 15 nm in common with respect to the film thickness, and R, G, and B are 40 nm in common with respect to the film thickness of the organic light emitting layer.
  • the optical distance from the organic light emitting layer 8 to the anode 3 in each of R, G, and B colors is preferably adjusted to 72 nm or more and 131 nm or less.
  • the TFT substrate 1 is, for example, alkali-free glass, soda glass, non-fluorescent glass, phosphoric acid glass, boric acid glass, quartz, acrylic resin, styrene resin, polycarbonate resin, epoxy resin, polyethylene, polyester, and silicone.
  • a TFT, a wiring member, and a passivation film (not shown) for covering the TFT are formed on a substrate body of an insulating material such as resin or alumina.
  • the substrate body may be an organic resin film.
  • the interlayer insulating film 2 is provided in order to adjust the surface step of the TFT substrate 1 to be flat, and is made of an insulating material such as polyimide resin or acrylic resin.
  • the anode 3 is made of Al (aluminum) or an aluminum alloy.
  • the anode 3 is made of, for example, Ag (silver), an alloy of silver, palladium and copper, an alloy of silver, rubidium and gold, MoCr (alloy of molybdenum and chromium), NiCr (alloy of nickel and chromium) or the like. It may be formed. Since the organic EL panel 10 according to Embodiment 1 is a top emission type, the anode 3 is preferably formed of a light reflective material.
  • the transparent conductive layer 4 functions as a protective layer that prevents the anode 3 from being naturally oxidized during the manufacturing process.
  • the material of the transparent conductive layer 4 may be formed of a conductive material having sufficient translucency with respect to the light generated in the organic light emitting layer 8, and for example, ITO or IZO is preferable. This is because good conductivity can be obtained even if the film is formed at room temperature.
  • the hole injection layer 5 has a function of injecting holes into the organic light emitting layer 8.
  • it is formed only from a metal oxide including an oxide of a transition metal such as tungsten oxide (WOx) or molybdenum tungsten oxide (MoxWyOz).
  • a metal oxide including an oxide of a transition metal such as tungsten oxide (WOx) or molybdenum tungsten oxide (MoxWyOz).
  • the thickness of the hole injection layer 5 is more preferably greater than 10 nm and not greater than 40 nm. The reason will be described below.
  • the hole injection layer 5 is made of, for example, a tungsten oxide film (WOx) having a thickness of 30 nm.
  • Tungsten oxide is a real number in the range of 2 ⁇ x ⁇ 3 in the composition formula WOx.
  • the hole injection layer 5 is preferably composed of only tungsten oxide as much as possible, but may contain a trace amount of impurities to such an extent that it can be mixed at a normal level.
  • the tungsten oxide film is formed under predetermined film forming conditions.
  • the details of the predetermined film forming conditions will be described in detail in the section (Method for manufacturing organic EL panel 10) and the section (About film forming conditions for hole injection layer 5).
  • the tungsten oxide film includes many tungsten oxide crystals 5a.
  • Each crystal 5a is formed to have a particle size of nanometer order.
  • the hole injection layer 5 has a thickness of about 30 nm, whereas the crystal 5a has a particle size of about 3 to 10 nm.
  • the crystal 5a having a particle size of the order of nanometers is referred to as “nanocrystal 5a”, and the structure of the layer composed of the nanocrystal 5a is referred to as “nanocrystal structure”. Note that the region other than the region having the nanocrystal structure in the hole injection layer 5 includes an amorphous structure.
  • the tungsten atom (W) constituting the tungsten oxide has a state of a maximum valence that tungsten can take and a state of a valence lower than the maximum valence. Distributed to have.
  • the crystal structure of tungsten oxide is not uniform and includes a structure similar to an oxygen defect.
  • the maximum valence that tungsten can take is a hexavalent state.
  • tungsten oxides having a crystal structure having a structure similar to an oxygen defect it has been found that the valence of tungsten is a pentavalent state lower than the maximum valence.
  • the tungsten oxide film is composed of tungsten atoms in various valence states such as the above maximum valence and valence lower than the maximum valence. The average valence of various valences.
  • tungsten oxide it is possible to improve the hole conduction efficiency by distributing tungsten so as to have a hexavalent or pentavalent state and providing the hole injection layer 5 with a structure similar to oxygen defects. That is, since the holes supplied from the anode 3 to the hole injection layer 5 conduct oxygen defects existing at the crystal grain boundaries, the tungsten oxide film has a nanocrystal structure, thereby increasing the number of paths through which holes are conducted. This leads to improved hole conduction efficiency. Therefore, the drive voltage for starting the organic EL panel 10 can be lowered.
  • the hole injection layer 5 is made of tungsten oxide having high chemical resistance, that is, hardly causing unnecessary chemical reaction. Therefore, even when the hole injection layer 5 is in contact with a solution or the like used in a process performed after the formation of the same layer, the damage to the hole injection layer 5 due to dissolution, alteration, decomposition, or the like is suppressed. Can do. Thus, since the hole injection layer 5 is made of a material having high chemical resistance, it is possible to prevent a decrease in hole conduction performance of the hole injection layer 5.
  • the hole injection layer 5 in the present embodiment is composed only of tungsten oxide having a nanocrystal structure and the case where the hole injection layer 5 is composed of both tungsten oxide having a nanocrystal structure and tungsten oxide having an amorphous structure. Shall be included.
  • the nanocrystal structure is preferably present in the whole hole injection layer 5, but from the interface between the anode 3 and the hole injection layer 5 to the interface between the hole injection layer 5 and the hole transport layer 7. If a grain boundary is connected even at one location between the holes, holes from the lower end to the upper end of the hole injection layer 5 can be conducted.
  • non-patent literature Jingze Li et al., Synthetic Metals 151, 141 (2005) shows that hole conductivity is improved by crystallizing a tungsten oxide film by annealing at 450 ° C. Yes.
  • the above non-patent document does not show the practicality of mass production of large organic EL panels including the influence on other layers such as the substrate on which the hole injection layer is formed. Further, it has not been shown to form tungsten oxide nanocrystals having oxygen defects positively in the hole injection layer.
  • the hole injection layer 5 according to the present invention is made of a tungsten oxide film that hardly causes a chemical reaction, is stable, and can withstand a mass production process of a large organic EL panel. Furthermore, the present invention is greatly different from the prior art in that excellent hole conductivity and hole injection efficiency are realized by actively making oxygen defects present in the tungsten oxide film.
  • the bank 6 is made of an organic material such as resin and has an insulating property.
  • organic materials include acrylic resins, polyimide resins, novolac type phenol resins, and the like.
  • the bank 6 preferably has organic solvent resistance. Furthermore, since the bank 6 may be subjected to an etching process, a baking process, or the like, it is preferable that the bank 6 be formed of a highly resistant material that does not excessively deform or alter the process.
  • the hole transport layer 7 is, for example, a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative and a pyrazolone derivative, a phenylenediamine derivative, an arylamine derivative, an amino substitution described in JP-A-5-163488.
  • the organic light emitting layer 8 may be, for example, a polymer material such as polyfluorene, polyphenylene vinylene, polyacetylene, polyphenylene, polyparaphenylene ethylene, poly-3-hexylthiophene or derivatives thereof, or an oxinoid described in JP-A-5-163488.
  • a polymer material such as polyfluorene, polyphenylene vinylene, polyacetylene, polyphenylene, polyparaphenylene ethylene, poly-3-hexylthiophene or derivatives thereof, or an oxinoid described in JP-A-5-163488.
  • the electron transport layer 9 is, for example, a nitro-substituted fluorenone derivative, a thiopyrandioxide derivative, a diphequinone derivative, a perylenetetracarboxyl derivative, an anthraquinodimethane derivative, a fluorenylidenemethane derivative, an anthrone derivative described in JP-A-5-163488. It is formed of an oxadiazole derivative, a perinone derivative, or a quinoline complex derivative.
  • the material constituting the electron transport layer may be doped with an alkali metal such as Na, Ba, or Ca or an alkaline earth metal.
  • the cathode 11 is made of, for example, ITO (indium tin oxide) or IZO (indium zinc oxide). Since the organic EL panel 10 is a top emission type, the cathode 10 is preferably formed of a light transmissive material.
  • the sealing layer 12 has a function of preventing the organic light emitting layer 8 or the like from being exposed to moisture or air, for example, SiO (silicon oxide), SiN (silicon nitride), SiON (acidic). It is made of a material such as silicon nitride), SiC (silicon carbide), SiOC (carbon-containing silicon oxide), AlN (aluminum nitride), Al2O3 (aluminum oxide). Since the organic EL panel 10 is a top emission type, the sealing layer 11 is preferably formed of a light transmissive material. ⁇ Method for Manufacturing Organic EL Panel 10 of the Present Embodiment> Then, the manufacturing process of the organic electroluminescent panel 10 of this Embodiment is illustrated. 8 and 9 are diagrams illustrating an example of the manufacturing process of the organic EL panel 10. 8 and 9, a part of the organic EL panel 10 is extracted and schematically shown.
  • an Ag thin film is formed on the interlayer insulating film 2 formed on the main surface of the TFT substrate 1 by a sputtering method, and an ITO thin film is formed on the Ag thin film.
  • the Ag thin film and the ITO thin film are patterned by, for example, photolithography to form the anode 3 and the transparent conductive layer 4 in a matrix (see FIG. 8A).
  • the vacuum vapor deposition method can also be used for film-forming of an Ag thin film and an ITO thin film other than sputtering method.
  • a thin film 51 of WOx or MoxWyOz is formed on the surface of the TFT substrate 1 including the transparent conductive layer 4 by a technique such as vacuum deposition or sputtering using a composition containing WOx or MoxWyOz (forming process). . And a photoresist is uniformly apply
  • a halftone mask having different light transmittance for each of R, G, and B is overlaid on the coated photoresist. Then, it is exposed from above the halftone mask, and a resist pattern is formed so that the thickness is different for each of R, G, and B (adjustment process). Thereafter, a portion including the upper portion of the photoresist and the thin film 51 is washed out with a developer (molding process). Thereby, patterning of the thin film 51 having different thicknesses for each of R, G, and B is completed. Thereafter, the photoresist (resist residue) on the patterned thin film 51 is removed by washing with pure water (removal step). This completes the hole injection layer 5 having different thicknesses for R, G, and B (see FIG. 8C).
  • a bank material layer made of an insulating organic material is formed on the hole injection layer 5.
  • the bank material layer can be formed, for example, by coating.
  • a mask having an opening having a predetermined shape is overlaid on the bank material layer, and after exposing the mask from above, the excess bank material layer is washed out with a developer. Thereby, patterning of the bank material layer is completed.
  • the bank 6 is completed (see FIG. 9A).
  • a composition ink (hereinafter simply referred to as “ink”) containing a material for the hole transport layer is filled on the anode 3 by an ink jet method. Is dried to form the hole transport layer 7.
  • the organic light emitting layer 8 may be formed by a dispenser method, a nozzle coating method, a spin coating method, intaglio printing, letterpress printing, or the like.
  • the electron transport layer 9 is formed by, for example, vacuum deposition, and the ITO thin film and the sealing layer 12 to be the cathode 11 are formed (see FIG. 9C).
  • the tungsten oxide film is formed by a technique such as vacuum deposition or sputtering, but it is particularly preferable to form the tungsten oxide film by a reactive sputtering method.
  • metallic tungsten is used as a target
  • argon gas is used as a sputtering gas
  • oxygen gas is used as a reactive gas in the chamber.
  • argon is ionized by a high voltage and collides with the target.
  • metallic tungsten released by the sputtering phenomenon reacts with oxygen gas to become tungsten oxide, and a tungsten oxide film is formed on the transparent conductive layer 4.
  • the total pressure of the sputtering gas composed of argon gas and oxygen gas is 2.3 Pa to 7.0 Pa
  • the oxygen gas partial pressure with respect to the total pressure of the sputtering gas is 50% or more and 70% or less.
  • closing electric power per unit area of the target is at 1.5 W / cm 2 or more 6.0 W / cm 2 or less
  • the total pressure of the sputtering gas in the input power density It is preferable to set the total pressure / power density, which is a divided value, to be greater than 0.7 Pa ⁇ cm 2 / W. Under such film formation conditions, a tungsten oxide film having a nanocrystal structure is formed.
  • the tungsten oxide constituting the hole injection layer 5 has high chemical resistance. Therefore, even when the hole injection layer 5 is in contact with a solution or the like used in the subsequent steps, damage to the hole injection layer 5 due to dissolution, alteration, decomposition, or the like can be suppressed.
  • film formation conditions of hole injection layer 5> (Regarding film forming conditions of the hole injection layer 5)
  • the tungsten oxide constituting the hole injection layer 5 is formed under a predetermined film formation condition, so that the nanocrystal structure is intentionally present in the hole injection layer 5 to thereby improve the hole conductivity.
  • the organic EL panel 10 can be driven at a low voltage.
  • the predetermined film forming conditions will be described in detail.
  • a DC magnetron sputtering apparatus was used as the sputtering apparatus, and the target was metallic tungsten.
  • the substrate temperature was not controlled. It is considered that it is preferable to form the film under conditions using a reactive sputtering method in which the sputtering gas is composed of argon gas, the reactive gas is composed of oxygen gas, and each gas has an equivalent flow rate.
  • the upper limit of the total sputtering gas pressure is 4.7 Pa, but it has been separately confirmed that the same tendency is exhibited up to at least 7.0 Pa.
  • the ratio of the partial pressure of oxygen gas to the total sputtering gas pressure is set to 50%, but it has been confirmed that the driving voltage is reduced at least 50% to 70%.
  • the input power density in (3) changes the number and energy of tungsten atoms or tungsten atom clusters to be sputtered. That is, by lowering the input power density, the number of tungsten to be sputtered can be reduced, and tungsten deposited on the substrate can be deposited with low energy, and a film formation at a low deposition rate can be expected.
  • the total pressure during film formation of (1) changes the mean free path until tungsten atoms or tungsten atom clusters sputtered and released into the gas phase arrive at the film formation substrate.
  • the film formation condition (4) by the total pressure (Pa) at the time of film formation / input power density (W / cm 2 ) as an index for determining the film formation rate of tungsten atoms.
  • the total pressure / power density is 0.78 Pa ⁇ cm 2 / W or more, and it is necessary to be larger than 0.7 Pa ⁇ cm 2 / W according to the experimental conditions described later. More surely, it is considered preferable to be 0.8 Pa ⁇ cm 2 / W or more.
  • the upper limit value of the total pressure / power density is 3.13 Pa ⁇ cm 2 / W or less in the experimental conditions, and is considered to be smaller than 3.2 Pa ⁇ cm 2 / W. Although it is considered to be preferably 3.1 Pa ⁇ cm 2 / W or less, as described above, it is considered that the upper limit value is not necessarily limited in terms of the film formation rate.
  • a hole-only element 101 as shown in FIG. 10 was fabricated as an evaluation device.
  • the hole-only element 101 is formed on a substrate 107 with an anode 102 made of an ITO thin film having a thickness of 50 nm, a hole injection layer 103 made of tungsten oxide having a thickness of 30 nm, and a TFB having a thickness of 20 nm.
  • a hole transport layer 104, an organic light emitting layer 105 made of F8BT having a thickness of 70 nm, and a cathode 106 made of gold having a thickness of 100 nm were sequentially laminated.
  • the organic light emitting layer 105 is formed in 70 nm instead of the range of 32 nm or more and 48 nm or less. However, in the organic EL panel 10, the range described above is preferable. Needless to say.
  • the hole injection layer 103 was formed by a reactive sputtering method using a DC magnetron sputtering apparatus.
  • the gas in the chamber was composed of at least one of argon gas and oxygen gas, and metallic tungsten was used as the target.
  • the substrate temperature was not controlled, and the total pressure was adjusted by the flow rate of each gas.
  • Table 1 a hole-only device 101 was fabricated under five film formation conditions A to E. As shown in Table 1, the total pressure and input power density were changed depending on each film forming condition.
  • the partial pressures of argon gas and oxygen gas in the chamber are 50%, respectively.
  • the hole-only element 101 formed under the film formation condition A is HOD-A
  • the hole-only element 101 formed under the film formation condition B is HOD-B
  • the hole-only element 101 formed under the film formation condition C is HOD
  • the hole-only element 101 formed under the film formation condition D is referred to as HOD-D
  • the hole-only element 101 formed under the film formation condition E is referred to as HOD-E.
  • Each of the produced hole-only elements was connected to a DC power source 108 and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • FIG. 11 is a device characteristic diagram showing a relationship curve between applied voltage and current density of each hole-only element.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • Table 2 shows the driving voltage values of the samples HOD-A to HOD-E obtained by the experiment.
  • the “drive voltage” in Table 2 is an applied voltage at a current density of 0.3 mA / cm 2 which is a practical specific value.
  • HOD-A to HOD-E are more conductive in holes than HOD-E produced under the conditions where the total pressure during film formation is reduced and the input power density is maximized. It can be seen that the efficiency is excellent.
  • the hole conduction efficiency of the hole injection layer 103 in the hole-only device 101 has been described above.
  • the hole conduction efficiency from the hole injection layer 5 to the hole transport layer 7 depends on the film formation conditions. The nature is essentially the same as the hole-only device 101.
  • an organic EL element 201 using a hole injection layer formed under each film forming condition A to E was manufactured.
  • an anode 202 made of an ITO thin film having a thickness of 50 nm is formed on a substrate 207, and further, tungsten oxide having a thickness of 30 nm is formed on the anode 202.
  • the configuration was as follows.
  • the organic EL element 201 formed under the film forming condition A is BPD-A
  • the organic EL element 201 formed under the film forming condition B is BPD-B
  • the organic EL element 201 formed under the film forming condition C is BPD-B.
  • the organic EL element 201 formed under the film formation condition D is referred to as BPD-D
  • the organic EL element 201 formed under the film formation condition E is referred to as BPD-E.
  • the produced organic EL elements 201 under the film forming conditions A to E were connected to a DC power source 208, and a voltage was applied. The applied voltage at this time was changed, and the current value that flowed according to the voltage value was converted to a value (current density) per unit area of the element.
  • FIG. 13 is a device characteristic diagram showing a relationship curve between applied voltage and current density of each organic EL element.
  • the vertical axis represents current density (mA / cm 2 )
  • the horizontal axis represents applied voltage (V).
  • Table 3 shows the drive voltage values of the samples BOD-A to BOD-E obtained by the experiment. “Drive voltage” in Table 3 is an applied voltage at a current density of 8 mA / cm 2 , which is a practical specific value.
  • BPD-E has the slowest rise in current density-applied voltage curve compared to other organic EL elements, and the highest applied voltage is required to obtain a high current density. It was confirmed that. This is the same tendency as the hole-only elements HOD-A to HOD-E having the same film forming conditions.
  • the film formation condition dependency of the hole conduction efficiency of the hole injection layer 203 is also acting in the organic EL element 201 as in the case of the hole only element 101. That is, by conducting film formation under film formation conditions in the range of film formation conditions A, B, C, and D, hole conduction from the hole injection layer 203 to the hole transport layer 204 also in the organic EL element 201. Efficiency is improved, thereby realizing low voltage drive. Thus, not only in the hole-only element 101 but also in the organic EL element 201, the hole conduction efficiency from the hole injection layer 203 to the hole transport layer 204 can be improved. The hole conduction efficiency from the hole injection layer 5 to the hole transport layer 7 is improved, thereby realizing low voltage driving.
  • the input power condition is represented by the input power density as shown in Table 1.
  • Table 1 the input power density satisfies the above conditions according to the size of the magnet on the back surface of the target.
  • a hole injection layer made of a tungsten oxide film having excellent hole conduction efficiency can be obtained. Note that the total pressure and the oxygen partial pressure do not depend on the apparatus, the target size, and the target magnet size.
  • the substrate temperature is not intentionally set in a sputtering apparatus arranged in a room temperature environment. Therefore, at least the substrate temperature before film formation is room temperature. However, the substrate temperature may increase by several tens of degrees Celsius during film formation.
  • the inventor of this application has confirmed by another experiment that the drive voltage rises conversely when the oxygen partial pressure is increased too much. Therefore, the oxygen partial pressure is desirably 50% to 70%.
  • an organic EL panel including a hole injection layer produced under film formation conditions A, B, C, and D is preferable for low voltage driving, and more preferably an organic EL panel produced under film formation conditions A and B. It is a panel.
  • an organic EL panel including a hole injection layer manufactured under film forming conditions A, B, C, and D is an object of the present application.
  • the above-described nanocrystal structure is present in the tungsten oxide constituting the hole injection layer 5 of the organic EL panel 10 of the present embodiment.
  • This nanocrystal structure is formed by adjusting the film forming conditions shown in the previous experiment. Details are described below.
  • HXPES Hard X-ray photoelectron spectroscopy
  • XPS measurement Hard X-ray photoelectron spectroscopy
  • XPS spectrum a hard X-ray photoelectron spectroscopic spectrum
  • XPS measurement conditions are as follows. During the measurement, no charge up occurred.
  • Samples for XPS measurement were prepared under the film formation conditions A to E shown in Table 1.
  • a sample for XPS measurement was prepared by depositing a hole injection layer having a thickness of 30 nm on the ITO conductive substrate formed on glass by the reactive sputtering method.
  • the XPS measurement samples prepared under the film formation conditions A, B, C, D, and E are referred to as Sample A, Sample B, Sample C, Sample D, and Sample E, respectively.
  • XPS measurement was performed on the surface of each successful injection layer of Samples A to E. The resulting spectrum is shown in FIG.
  • the horizontal axis of FIG. 14 indicates the binding energy, which corresponds to the energy of photoelectrons existing at each level when the X-ray is used as a reference, and the left direction is a positive direction.
  • the vertical axis represents the photoelectron intensity and corresponds to the number of observed photoelectrons.
  • three peaks are observed, and each peak is directed from the left to the right in the figure, with 5p 3/2 level (W5p 3/2 ), 4f 5/2 level (W4f 5 ) of tungsten. / 2 ), it was assigned to be a peak corresponding to the 4f 7/2 level (W4f 7/2 ).
  • Peak fitting analysis was performed on the peaks assigned to W5p 3/2 , W4f 5/2 , and W4f 7/2 of the spectrum of sample E as a comparative example and the spectrum of sample A. Peak fitting analysis was performed as follows.
  • FIG. 15A shows the analysis result of sample A
  • FIG. 15B shows the analysis result of sample E.
  • broken lines are measured spectra (corresponding to the spectrum of FIG. 5), and two-dot chain lines (surface) are surface photoelectron peaks W sur 5p 3/2 , W sur 4f 5/2 , W sur
  • the spectrum attributed to 4f 7/2 the dotted line (W 6+ ) is the spectrum attributed to hexavalent surface defect levels W 6+ 5p 3/2 , W 6+ 4f 7/2 , (W 6+ 4f 5/2 ),
  • the alternate long and short dash line (W 5+ ) is a spectrum assigned to pentavalent surface defect levels W 5+ 5p 3/2 , W 5+ 4f 5/2 , and W 5+ 4f 7/2 .
  • the solid line (fit) is a spectrum obtained by adding the two-dot chain line, the dotted line, and the one-dot chain line.
  • the peak attributed to pentavalent tungsten indicated by the alternate long and short dash line was considered to originate only from tungsten in the pentavalent state.
  • the spectrum attributed to each level of 5p 3/2 , 4f 5/2 , 4f 7/2 is a peak due to photoelectrons from the surface of the hole injection layer.
  • the hexavalent tungsten peak (W 6+ ) included in the depth at which photoelectrons are detected in the hole injection layer is added to the pentavalent tungsten peak (W 5+ ) included in the same depth. You can see that.
  • W 5+ / W 6+ which is the ratio of the number of pentavalent tungsten elements to the number of hexavalent tungsten elements in Samples A to E. This abundance ratio was calculated by dividing the area intensity of the W 5+ (dashed line) peak in the spectrum obtained by peak fitting analysis of each sample by the area intensity of the W 6+ (dotted line) peak.
  • the ratio of the area intensity of the W 6+ peak to the area intensity of the W 5+ peak in W4f 7/2 represents the abundance ratio of the number of hexavalent tungsten atoms and the number of pentavalent tungsten atoms, It is synonymous with expressing the abundance ratio from the peaks attributed to W5p 3/2 and W4f 5/2 . Indeed, in this study, confirming that the ratio of the integrated intensity of the integrated intensity and W 6+ 4f 7/2 of W 5+ 4f 7/2 in W4f 7/2 is the same value even if W5p, the W4f 5/2 is doing. Therefore, in the following discussion, it was decided to use only the peak attributed to W4f 7/2 .
  • Table 5 shows W 5+ / W 6+ of samples A to E.
  • Tungsten oxide deposited under the above-mentioned deposition conditions A to D has a binding energy 1.8 to 3.6 eV lower than the uppermost valence band, that is, the lowest binding energy in the valence band in its electronic state. Occupied levels exist in the region. This occupied level corresponds to the highest occupied level of the hole injection layer, that is, its binding energy range is closest to the Fermi surface of the hole injection layer. Hereinafter, this occupied level is referred to as “occupied level near the Fermi surface”.
  • the existence of the occupied level in the vicinity of the Fermi surface allows so-called interface level connection at the stacked interface between the hole injection layer 5 and the hole transport layer 7, and the highest occupied orbit of the hole transport layer 7.
  • the binding energy is substantially equal to the binding energy of the occupied level in the vicinity of the Fermi surface of the hole injection layer 5. That is, the presence of this occupied level can suppress the hole injection barrier between the hole injection layer 5 and the hole transport layer 7 to be small. As a result, better hole conduction efficiency can be obtained, and driving at a low voltage is possible.
  • substantially equal and “interface state connection was made” as used herein means that the lowest bond at the occupied level near the Fermi surface at the interface between the hole injection layer 5 and the hole transport layer 7. This means that the difference between the energy and the lowest binding energy in the highest occupied orbital is within a range of ⁇ 0.3 eV.
  • the “interface” here refers to a region including the surface of the hole injection layer 5 and the hole transport layer 7 at a distance within 0.3 nm from the surface.
  • the occupied level in the vicinity of the Fermi surface is preferably present in the whole hole injection layer 5, but it may be present at least at the interface with the hole transport layer 7.
  • the UPS spectrum reflects the state of the occupied level such as the valence band from the surface of the measurement object to a depth of several nm. Therefore, in this experiment, the state of the occupied level in the surface layer of the hole injection layer was observed using UPS measurement.
  • UPS measurement conditions are as follows. Note that no charge-up occurred during the measurement.
  • FIG. 16 shows the UPS spectrum of the surface of the hole injection layer in Sample A. The origin of the binding energy on the horizontal axis was the Fermi surface of the substrate, and the left direction was positive.
  • each occupation level of the hole injection layer will be described with reference to FIG.
  • the largest and steep rise is uniquely determined.
  • a tangent line passing through the rising inflection point is defined as a line (i), and an intersection with the horizontal axis is defined as a point (iii).
  • the UPS spectrum of tungsten oxide is divided into a region (A) located on the high bond energy side from the point (iii) and a region (A) located on the low bond energy side (that is, the Fermi surface side).
  • the ratio of the number of tungsten atoms to oxygen atoms was approximately 1: 3 in both samples A and E.
  • the composition ratio of tungsten and oxygen was estimated from the surface of the hole injection layer to a depth of several nm.
  • the hole injection layer has a basic structure of atomic arrangement based on tungsten trioxide at least within a range of several nanometers from the surface (details will be described in the next section). It is thought to have. Therefore, the region (a) in FIG. 16 is an occupied level derived from the above basic structure, and corresponds to a so-called valence band.
  • this inventor performed the X-ray absorption fine structure (XAFS) measurement of the positive hole injection layer, and confirmed that the said basic structure was formed in any of the samples A and E.
  • XAFS X-ray absorption fine structure
  • the region (a) in FIG. 16 corresponds to the band gap between the valence band and the conduction band, but as this UPS spectrum shows, this region is different from the valence band in tungsten oxide. It is known that there may be a number of occupied levels. This is a level derived from another structure different from the above basic structure, and is a so-called inter-gap level (in-gap state or gap state).
  • FIG. 17 shows a UPS spectrum in the region (A) of each hole injection layer in Samples A and E.
  • the intensity of the spectrum shown in FIG. 17 was normalized by the peak top value of the peak (ii) located 3-4 eV higher than the point (iii) in FIG.
  • FIG. 17 also shows a point (iii) at the same horizontal axis position as the point (iii) in FIG.
  • the horizontal axis is expressed as a relative value (relative binding energy) with respect to the point (iii), and the binding energy decreases from left to right (Fermi surface side).
  • tungsten oxide having a structure that is raised (not necessarily a peak) in a region having a binding energy of about 1.8 to 3.6 eV lower than point (iii) in the UPS spectrum is used as the hole injection layer. This makes it possible to exhibit excellent hole conduction efficiency in organic EL panels.
  • a region having a binding energy lower by about 2.0 to 3.2 eV from the point (iii) is a region where the raised structure is relatively easy to confirm and the raised portion is relatively steep. It can be said that it is particularly important.
  • FIG. 18 is a view for explaining the structure of the surface of the tungsten oxide film.
  • tungsten trioxide (WO 3 ) will be described as an example of tungsten oxide.
  • a single crystal of tungsten oxide has a rutile structure in which oxygen atoms are bonded to tungsten atoms in octahedral coordination as a basic structure.
  • the tungsten trioxide single crystal is shown in a rutile structure for simplification, but it is actually a distorted rutile structure.
  • tungsten atoms are terminated with oxygen atoms inside the crystal, but there are terminal oxygen atoms (b) and unterminated tungsten atoms (a) surrounded by them at the grain boundaries. Conceivable.
  • the first-principles calculation shows that all tungsten atoms at the grain boundaries are terminated with oxygen atoms. It is disclosed that a structure in which some of the tungsten atoms (a) are not terminated periodically such as 18 is more stable in terms of energy.
  • a tungsten atom terminated with an oxygen atom that is, a tungsten atom having no structure (a) similar to an oxygen defect corresponds to a hexavalent tungsten atom.
  • a tungsten atom not terminated with an oxygen atom that is, a tungsten atom having a structure (a) similar to an oxygen defect corresponds to a pentavalent tungsten atom (including a pentavalent or higher valence of less than 6).
  • the pentavalent tungsten atom is considered to have a structure having an unshared electron pair by eliminating one of the octahedrally coordinated oxygen atoms. That is, it is considered that the pentavalent tungsten atom donates its own unshared electron pair to the hole, and thus the pentavalent tungsten atom that donated the electron has a hole.
  • the supply of unshared electron pairs existing in the pentavalent tungsten atom is continuously generated by the bias voltage applied to the hole injection layer, so that the holes move in the lower potential direction and the electrons move in the higher potential direction. It is thought that conduction occurs.
  • a hole injection layer with a high value of W 5+ / W 6+ as in sample A, that is, a high ratio of pentavalent tungsten atoms has many hole conduction paths, and low voltage driving is realized by hole conduction at low voltage. As a result, excellent hole conduction efficiency can be exhibited in the organic EL panel.
  • the tungsten oxide film constituting the hole injection layer 5 has a nanocrystal structure. This nanocrystal structure is formed by adjusting the film forming conditions. Details are described below.
  • the tungsten oxide layer in the sample for TEM observation was formed by a reactive sputtering method using a DC magnetron sputtering apparatus under the conditions shown in Table 1.
  • a hole injection layer having a thickness of 30 nm was formed on the ITO conductive substrate formed on glass by the reactive sputtering method.
  • the TEM observation samples prepared under the film forming conditions A, B, C, D, and E are referred to as Sample A, Sample B, Sample C, Sample D, and Sample E, respectively.
  • the TEM observation is performed after confirming that the samples A, B, C, and D contain pentavalent tungsten atoms by the previous XPS measurement.
  • TEM observation is performed by slicing the thickness of the surface to be observed.
  • the thickness in the depth direction from the cross section of the tungsten oxide film is sampled by using a focused ion beam (FIB) apparatus, and thinned to about 100 nm.
  • FIB focused ion beam
  • FIG. 19 the TEM observation photograph of the hole injection layer cross section of sample A, B, C, D, E is shown. The scale of the photograph follows the scale bar described in the photograph, and the display size of the TEM photograph is displayed at 560 ⁇ 560 pixels. In addition, the TEM observation photograph shown in FIG. 19 displays an average of 256 gradations from a black dark portion to a light bright portion.
  • a single crystal of tungsten oxide is considered to have a distorted rutile structure in which oxygen atoms are bonded to tungsten atoms in octahedral coordination as a basic structure.
  • this rutile structure is formed into a film without order, an amorphous structure is formed, and when the rutile structure is formed into a film with order, a nanocrystal structure is considered.
  • pentavalent tungsten atoms are present in the tungsten oxide film
  • one of the oxygen atoms that are octahedrally coordinated to the tungsten atoms disappears, so that the tungsten atoms have a structure having an unshared electron pair.
  • the pentavalent tungsten atom donates its own unshared electron pair to the tungsten atom having a hole, and the pentavalent tungsten atom that has donated the unshared electron pair has a hole.
  • the supply of unshared electron pairs existing in the pentavalent tungsten atom is continuously generated by the bias voltage applied to the hole injection layer, so that the holes move in the lower potential direction and the electrons move in the higher potential direction. It is thought that conduction occurs. Therefore, the more pentavalent tungsten atoms are contained, the more tungsten atoms contribute to hole conduction, and the hole conduction efficiency is improved. However, containing many pentavalent tungsten atoms is not a necessary and sufficient condition for improving hole conductivity. The reason for this will be described with reference to FIG.
  • FIG. 20B is a conceptual diagram showing how the holes 110 are conducted by hopping conduction, and shows the conduction of the holes 110 in the case of an amorphous structure.
  • the portion indicated by 111 in the figure is a crystalline portion (segregated crystal 111) in which the rutile structure has order, and the surface of the segregated crystal 111 has many pentavalent tungsten atoms.
  • the rutile structure is not ordered and is an amorphous portion, and there are not as many pentavalent tungsten atoms as the segregated crystal 111 surface.
  • pentavalent tungsten atoms exist on the surface of the segregated crystal 111, but there is no overlap of the orbits of each tungsten atom between the pentavalent tungsten atom and other pentavalent tungsten atoms in the vicinity. Furthermore, it is considered that holes are conducted by hopping the holes 110 between each pentavalent tungsten atom. In other words, in the case of an amorphous structure, it is necessary to apply a very high voltage between pentavalent tungsten atoms in order to transfer holes between pentavalent tungsten atoms that have long distances between pentavalent tungsten atoms and can serve as hole conduction sites. The drive voltage as a generating element is also increased.
  • FIG. 20A is a conceptual diagram showing how the holes 110 are conducted through the surface of the nanocrystal, and shows the conduction of the holes 110 in the case of the nanocrystal structure.
  • the nanocrystal structure as shown in the figure, since the rutile structure exists in order, the entire film is finely crystalline, and the hole conduction mode is different from that of the amorphous film.
  • pentavalent tungsten atoms are present on the surface portions of the nanocrystals 109, and this surface portion serves as a hole conducting portion.
  • the holes 110 can be conducted with a low voltage because the surface portions serving as the hole conducting portions are connected.
  • the structure of the metal oxide film having good hole conductivity includes (1) the existence of a portion that becomes a hole conduction portion and (2) the increase of the portion that becomes a grain boundary. Thus, it is considered necessary to form overlapping electron orbits that contribute to hole conduction. That is, (1) a metal element having a valence lower than the maximum valence that can be taken by the metal element itself exists, and (2) a metal oxide film having a nanocrystal structure has a structure suitable for hole conduction. I can say that.
  • the hole injection layer 5 is a hole injection barrier formed at the interface between the transparent conductive layer 4 and the hole injection layer 5 and a hole injection barrier formed at the interface between the hole injection layer 5 and the hole transport layer 7. Therefore, it is possible to reduce the driving voltage.
  • the hole conduction energy value was analyzed using UPS measurement for a tungsten oxide film formed with the same hole injection layer 203 as BPD-D and BPD-E shown in Table 4 having different hole injection characteristics. In BPD-D and BPD-E, as shown in FIG.
  • FIG. 21 is a diagram illustrating the appearance of the display device 100 of this embodiment.
  • FIG. 22 is a block diagram schematically showing the overall configuration of the display device 100.
  • the display device 100 includes an organic EL panel 10 and a drive control unit 20 connected thereto.
  • the organic EL panel 10 is a top emission type organic EL panel using an electroluminescence phenomenon of an organic material.
  • the drive control unit 20 includes four drive circuits 21 to 24 and a control circuit 25.
  • the arrangement of the drive control unit 20 with respect to the organic EL panel 10 is not limited to this.
  • the hole transport layer 7 and the organic light emitting layer 8 are in the same thickness range for each of R, G, and B colors.
  • the film thickness is adjusted.
  • the hole injection layer 5 is composed only of a metal oxide containing tungsten oxide WOx, and the thickness of each color of R, G, B is 5 nm to 40 nm.
  • the driving voltage for obtaining a predetermined current density can be made substantially constant, the driving voltage can be reduced as compared with the case where the thickness of the organic light emitting layer 8 is adjusted.
  • the thickness of the first functional layer of each color of R, G, B is 36 nm or more and 69 nm or less, and the optical emission layer 8 to the anode 3 in each color of R, G, B is optical.
  • the distance is 72 nm or more and 131 nm or less.
  • the light extraction efficiency equivalent to the light extraction efficiency obtained by adjusting the film thickness of the organic light emitting layer 8 can be achieved.
  • the driving voltage can be reduced while realizing the light extraction efficiency equivalent to the case where the light extraction efficiency is adjusted by the film thickness of the organic light emitting layer 8.
  • chromaticity equivalent to that obtained when the film thickness of the organic light emitting layer 8 is adjusted can be realized.
  • the organic light emitting layer 8 and the hole transport layer 7 that are highly dependent on the driving voltage can be made as thin as possible. Can do.
  • the organic EL panel 10 has been described based on the embodiment, but the present invention is not limited to the above embodiment.
  • the hole injection layer has a different thickness for each of R, G, and B.
  • the present invention is not limited to this, and it is sufficient that at least one color has a different thickness from other colors.
  • R and G may have the same film thickness, and only B may have a different film thickness.
  • the hole injection layer is formed only from a metal oxide including an oxide of a transition metal, but may be formed from only tungsten oxide.
  • the display device has been described as an example. However, the present invention is not limited to this, and the organic EL panel can also be applied to a light emitting device.
  • the present invention can be used, for example, for home or public facilities, various display devices for business use, television devices, displays for portable electronic devices, and the like.
  • TFT substrate 1 TFT substrate 2 Interlayer insulating film 3 Anode 4 Transparent conductive layer 5 Hole injection layer 6 Bank 7 Hole transport layer 8 Organic light emitting layer 9 Electron transport layer 10 Organic EL panel 11 Cathode 12 Sealing layer 20 Drive controller 21-24 Drive circuit 25 Control circuit 100 Display device

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 有機ELパネル10は、陽極3と、陰極11と、有機発光層8(R)、8(G)、8(B)と、正孔注入層5と正孔輸送層7とを含む第1機能層とを備える。前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、R,G,B各色の厚みが5nm以上40nm以下であり、少なくとも1色について他の色とは異なる厚みを有し、前記正孔輸送層は、R,G,B各色ともに厚みが等しい範囲にあり、前記有機発光層は、R,G,B各色ともに厚みが等しい範囲にある。

Description

有機ELパネル、有機ELパネルの製造方法、有機ELパネルを用いた有機発光装置、及び有機ELパネルを用いた有機表示装置
 本発明は、有機ELパネル、有機ELパネルの製造方法、有機ELパネルを用いた有機発光装置、及び有機ELパネルを用いた有機表示装置に関する。
 近年、研究・開発が進んでいる有機ELパネルは、有機材料の電界発光現象を利用した表示パネルである。同パネルは、基板上にR(レッド),G(グリーン),B(ブルー)の各色のサブピクセルが配列された構成を有している。
 有機ELパネルでは、消費電力の低減や長寿命化などの観点から、R,G,B各色のサブピクセルの光取り出し効率を向上させることが重要である。
 そこで、特許文献1では、基板上に反射膜、層間絶縁膜、第1透明電極、正孔輸送層、有機発光層、電子注入層、第2透明電極が積層された有機発光表示装置において、有機発光層から直接に第2透明電極に向かう直接光と、発光層から反射膜を経て第2透明電極に向かう反射光との光の干渉効果を利用することにより出射光強度を高める技術が提案されている(段落0022-0024)。
特許第4046948号公報
 ところで近年、有機ELパネルの大型化が進んでおり、消費電力の低減の重要性が一層高まっている。そのため駆動電圧のさらなる低減が求められている。
 本発明は、より一層消費電力を低減した有機ELパネルを提供することを目的とする。
 上記課題を解決するために、本発明の一態様に係る有機ELパネルは、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、入射された光を反射する陽極と、前記陽極に対向して配置され、入射された光を透過する陰極と、前記陽極と前記陰極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、前記陽極と前記陰極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、前記陽極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられ、正孔を注入するための正孔注入層と、前記正孔注入層上に設けられ、正孔を前記有機発光層に輸送するための正孔輸送層を含む2以上の層からなる第1機能層とを備え、前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1機能層を通じて前記陽極側に進行し前記陽極により反射された後、前記第1機能層、前記有機発光層および前記陰極を通じて外部に出射される第1光路と、前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記陽極側に進行することなく前記陰極側に進行し、前記陰極を通じて外部に出射される第2光路が形成され、前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、R,G,B各色の厚みが5nm以上40nm以下であり、少なくとも1色について他の色とは異なる厚みを有し、前記正孔輸送層は、R,G,B各色ともに厚みが等しい範囲にあり、前記有機発光層は、R,G,B各色ともに厚みが等しい範囲にあるとした。
 本発明の一態様に係る有機ELパネルでは、前記正孔輸送層及び前記有機発光層は、R,G,B各色ともに厚みが等しい範囲にあり、前記正孔注入層で膜厚調整している。この正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、R,G,B各色の厚みが5nm以上40nm以下である。
 これにより、所定の電流密度を得るための駆動電圧をほぼ一定にできるため、厚膜化による駆動電圧の増加を防止することができる。正孔注入層のR,G,B各色で膜厚調整した場合に膜厚が厚くなる部分があったとしても、当該部分の駆動電圧は膜厚が薄い部分の駆動電圧とほぼ同等になるので、有機ELパネル全体として駆動電圧を低減することができる。
正孔注入層の膜厚と駆動電圧との関係を示す。 (a)有機発光層の膜厚を55nmから105nmまで10nm刻みで設定した場合の各膜厚における電流密度と駆動電圧との関係を示す。(b)電流密度が10mA/cmのときの各膜厚と駆動電圧との関係を示す。 (a)正孔輸送層の膜厚を30nm、60nm、80nm、100nmと設定した場合の各膜厚における電流密度と駆動電圧との関係を示す。(b)電流密度が10mA/cmのときの各膜厚と駆動電圧との関係を示す。 (a)正孔注入層の膜厚を5nmから40nmまで5nm刻みで設定した場合の各膜厚における電流密度と駆動電圧との関係を示す。(b)電流密度が10mA/cmのときの各膜厚と駆動電圧との関係を示す。 (a)正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した場合(実施例1-1、実施例1-2)、及び有機発光層のR,G,Bの各膜厚で光取り出し効率を調整した場合(比較例1)のシミュレーション条件及び結果を示す。(b)正孔輸送層、正孔注入層、及び透明導電層の屈折率を示す。 正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した場合(実施例2-1、実施例2-2)、及び有機発光層のR,G,Bの各膜厚で光取り出し効率を調整した場合(比較例2)のシミュレーション条件及び結果を示す。 実施の形態1に係る有機ELパネル10の構造を模式的に示す断面図である。 実施の形態1に係る有機ELパネル10の製造工程の一例を示す図である。 実施の形態1に係る有機EL表示パネル10の製造工程のうち図8に示す工程に後続する部分の一例を示す図である。 ホールオンリー素子101の構成を示す模式的な断面図である。 ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 有機EL素子201の構成を示す模式的な断面図である。 有機EL素子201の印加電圧と電流密度の関係曲線を示すデバイス特性図である。 酸化タングステン膜表面のXPS測定によるW5p3/2、W4f5/2、W4f7/2に帰属されるスペクトルを示す図である。 (a)図14に示すサンプルAに係るピークフィッティング解析結果を示す図と、(b)サンプルEに係るピークフィッティング解析結果を示す図である。 酸化タングステン膜表面のUPSスペクトルを示す図である。 酸化タングステン膜表面のUPSスペクトルを示す図である。 酸化タングステン膜表面の構造を説明するための図である。 酸化タングステン膜断面のTEM写真である。 酸化タングステン膜が、(a)ナノクリスタル構造である場合のホール伝導を模式的に示す図と、(b)アモルファス構造である場合のホール伝導を模式的に示す図である。 本実施の形態の表示装置100の外観を例示した図である。 本実施の形態の表示装置100の全体構成を模式的に示すブロック図である。
  [本発明の一態様を得るに至った経緯]
 以下、本発明の態様を具体的に説明するのに先立ち、本発明の態様を得るに至った経緯について説明する。
 従来、有機ELパネルでは、光取り出し効率を調整するため、共振器構造が採用されている。この共振器構造として、光反射性を有する反射陽極と、光透過性を有する透明陰極とを用い、反射陽極と透明陰極との間に有機発光層を、反射陽極と有機発光層との間に1または2以上の層からなる機能層を、それぞれ配置する形態がある。
 この共振器構造によれば、有機発光層から出射された光の一部が、機能層を通じて陽極側に進行し陽極により反射された後、機能層、有機発光層および陰極を通じて外部に出射される第1光路と、有機発光層から出射された光の残りの一部が、陽極側に進行することなく陰極側に進行し、陰極を通じて外部に出射される第2光路が形成される。
 そして、この共振器構造では、有機発光層および機能層の光学的厚みを設定することにより、光取り出し効率が調整される。この場合、一般的に、有機発光層または機能層のうちの正孔輸送層の膜厚を適宜設定することにより、有機ELパネルの光取り出し効率が調整されている。なぜなら、有機発光層、および当該有機発光層に正孔を輸送する有機材料から形成される正孔輸送層は、インクジェット法等の塗布方式を用いて形成されており、塗布方式は、膜厚の制御が比較的容易であるためである。
 本発明者らは、上述した有機ELパネルについて鋭意研究の結果、有機発光層または正孔輸送層の膜厚を、適宜設定して光取り出し効率を調整した場合、所定の電流密度を得るために必要とされる駆動電圧にバラつきが生じることを確認した。より詳細には、膜厚が厚くなるにつれて駆動電圧が増加することを確認した。このときの具体的な実験内容および結果については、図2(a)(b)、図3(a)(b)を用いて後述する。
 そこで、本発明者らは、機能層の内、陽極から注入された正孔を正孔輸送層に対して注入する正孔注入層に着眼し、有機発光層または正孔輸送層ではなく、正孔注入層の膜厚を、適宜設定することにより、光取り出し効率を調整することを着想した。
 ここで、正孔注入層としては、従来、PEDOT(ポリチオフェン、poly(ethylenedioxy)thiophene)などの有機材料を用いる形態、および金属酸化物などの無機材料を用いる形態が存在しており、この場合、当業者であれば、膜厚調整の容易化の点から、塗布方式を用いて形成できる有機材料を用いる形態を選択することが考えられる。その技術常識に反し、本発明者らは、正孔注入層として、蒸着またはスパッタ法を用いて形成される無機材料を用いる形態、特に、金属酸化物を用いる形態について検討したのである。
 そして、本発明者らは、金属酸化物として酸化タングステンを用いて、正孔注入層を所定条件の下で成膜し、その膜厚を30nm、50nm、70nmに設定して実験を行った。このとき、正孔注入層は、有機材料を含有させずに酸化タングステンのみから構成した。なぜなら、有機材料は、一般的に、金属酸化物に比べて導電性が低いため、有機材料を含有させた場合、駆動電圧が高くなってしまい、駆動電圧の低減が困難になると考えたためである。図1は、その実験結果を示す。しかしながら、この実験では、厚膜化に伴い駆動電圧が増加する傾向があることを示す結果となった(図1の系列1参照)。この結果からすると、正孔注入層の膜厚を設定することにより光取り出し効率を調整する手法は、必ずしも有効ではないとも思われる。
 しかし、本発明者らは、上記実験結果を受けて諦めることなく、更に考察を重ね、たしかに、厚膜化に伴い駆動電圧が増加する傾向が認められるものの、薄膜領域では駆動電圧が小さくなっており、その増加幅が緩やかになるのではないかとの推論を立てた。
 そこで、さらに本発明者らは、酸化タングステンを用いて正孔注入層を所定条件の下で成膜し、その膜厚を5nm以上40nm以下の範囲で5nm刻みに設定して実験を行った。このときの具体的な実験内容および結果については、図4(a)(b)を用いて後述する。
 その結果、上記範囲内においては異なる膜厚においても、所定の電流密度を得るための駆動電圧をほぼ一定にできることを見出した(図1の系列2参照)。
 すなわち、有機発光層または正孔輸送層は、所定の発光効率を満たす駆動電圧の、膜厚に対する依存性が高いのに対し、酸化タングステンから構成した薄層構造を有する正孔注入層は、所定の発光効率を満たす駆動電圧の、膜厚に対する依存性が低いことを知見し得た。
 以上のような実験、考察、新たな知見を積み重ねることにより、本発明者らは、本発明の一態様である有機ELパネルの構成を得ることができたのである。
 また、本発明者らは、上記知見を得た後、有機発光層の膜厚で光取り出し効率を調整する実験と、正孔注入層の膜厚で光取り出し効率を調整する実験を行った。その結果、有機発光層の膜厚を変化させた場合と、正孔注入層の膜厚を変化させた場合とで、光取り出し効率に大差がないことを確認した。
 それらの結果、光学的な補正を有機発光層または正孔輸送層ではなく、酸化タングステンから構成した正孔注入層で行うことにより、良好な光学特性を満たしつつ、駆動電圧の低減を図ることができる、という本発明の一態様である有機ELパネルに想到するに至ったのである。
  [実施の態様]
 本発明の一態様である有機ELパネルは、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、入射された光を反射する陽極と、前記陽極に対向して配置され、入射された光を透過する陰極と、前記陽極と前記陰極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、前記陽極と前記陰極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、前記陽極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられ、正孔を注入するための正孔注入層と、前記正孔注入層上に設けられ、正孔を前記有機発光層に輸送するための正孔輸送層を含む2以上の層からなる第1機能層とを備え、前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1機能層を通じて前記陽極側に進行し前記陽極により反射された後、前記第1機能層、前記有機発光層および前記陰極を通じて外部に出射される第1光路と、前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記陽極側に進行することなく前記陰極側に進行し、前記陰極を通じて外部に出射される第2光路が形成され、前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、R,G,B各色の厚みが5nm以上40nm以下であり、少なくとも1色について他の色とは異なる厚みを有し、前記正孔輸送層は、R,G,B各色ともに厚みが等しい範囲にあり、前記有機発光層は、R,G,B各色ともに厚みが等しい範囲にあるとした。
 本発明の一態様に係る有機ELパネルでは、前記正孔輸送層及び前記有機発光層は、R,G,B各色ともに厚みが等しい範囲にあり、前記正孔注入層で膜厚調整している。この正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、R,G,B各色の厚みが5nm以上40nm以下である。
 これにより、所定の電流密度を得るための駆動電圧をほぼ一定にできるため、厚膜化による駆動電圧の増加を防止することができる。正孔注入層のR,G,B各色で膜厚調整した場合に膜厚が厚くなる部分があったとしても、当該部分の駆動電圧は膜厚が薄い部分の駆動電圧とほぼ同等になるので、有機ELパネル全体として駆動電圧を低減することができる。
 ここで、本発明の別の態様として、前記酸化タングステンを構成するタングステン元素は、タングステン元素が取り得る最大価数である6価の状態、および前記最大価数である6価よりも低い5価の状態で酸化タングステン膜に含まれ、かつ、前記酸化タングステン膜は、粒径がナノメートルオーダーの大きさである前記酸化タングステンの結晶を含むとしてもよい。
 本態様の有機ELパネルでは、酸化タングステンを構成するタングステン元素を、最大価数である6価の状態および当該最大価数よりも低い5価の状態とすることで、正孔注入層に酸素欠陥に類する構造を持たせることができる。これに加え、酸化タングステンの結晶粒径をナノメートルオーダーの大きさとすることで、それに伴って、酸素欠陥に類する構造が多く存在する結晶粒界が酸化タングステン層内に数多く形成される。これにより、酸化タングステン膜の膜厚方向にホール伝導経路を張り巡らすことができるので、低い駆動電圧で効率的なホールの伝導を実現できる。
 ここで、本発明の別の態様として、前記5価のタングステン元素の原子数を、前記6価のタングステン元素の原子数で割った値であるW5+/W6+が3.2%以上であるとしてもよい。
 本態様の有機ELパネルでは、6価のタングステン原子に対し、5価のタングステン原子が3.2%以上含まれていることで、より良好なホール伝導効率を得ることができる。
 ここで、本発明の別の態様として、前記5価の状態のタングステン元素の存在によって、前記正孔注入層のバンド構造には、価電子帯で最も低い結合エネルギーよりも1.8~3.6eV低い結合エネルギー領域内に占有準位を有しているとしてもよい。
 本態様の有機ELパネルでは、この占有準位が存在することで、正孔注入層と正孔輸送層との間のホール注入障壁を小さく抑えることができる。その結果、より良好なホール注入効率を得ることができる。
 ここで、本発明の別の態様として、前記酸化タングステン膜は、粒径が3~10ナノメートルの大きさである前記酸化タングステンの結晶を複数個含むとしてもよい。
 ここで、本発明の別の態様として、前記R,G,B各色の前記第1機能層の膜厚は、36nm以上69nm以下であり、前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離は、72nm以上131nm以下であるとしてもよい。
 本発明者らは、第1機能層の膜厚が36nm以上69nm以下の範囲で、かつ、R,G,B各色における前記有機発光層から前記陽極までの光学的な距離が、72nm以上131nm以下の範囲である場合、正孔注入層の膜厚を調整して得られる光取り出し効率は、有機発光層の膜厚を調整して得られる光取り出し効率と大差がないことを確認した。
 本発明の一態様に係る有機ELパネルでは、R,G,B各色の前記第1機能層の膜厚は、36nm以上69nm以下であり、前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離は、72nm以上131nm以下である。
 これにより、有機発光層の膜厚を調整して得られる光取り出し効率と同等の光取り出し効率を達成することができる。
 このように、本発明の一態様に係る有機ELパネルでは、有機発光層の膜厚で光取り出し効率を調整した場合と同等の光取り出し効率を実現しつつ、駆動電圧を低減することができる。
 なお、本発明の一態様に係る有機ELパネルでは、色度についても、有機発光層の膜厚を調整した場合と同等の色度が実現できることも判明している。
 ここで、本発明の別の態様として、前記正孔注入層は、R,G,B毎に厚みが異なっているとしてもよい。
 ここで、本発明の別の態様として、前記正孔注入層は、酸化タングステンのみから構成されるとしてもよい。
 本発明者らは、正孔注入層を酸化タングステンから構成し、その膜厚を5nm以上40nm以下の範囲で5nm刻みに設定した場合、上記範囲内においては異なる膜厚においても、所定の電流密度を得るための駆動電圧をほぼ一定にできることを確認した。
 本態様の有機ELパネルでは、前記正孔注入層は、酸化タングステンのみから構成されるので、所定の電流密度を得るための駆動電圧をほぼ一定にすることができる。
 ここで、本発明の別の態様として、前記正孔注入層は、前記Rの厚みが36nm以上40nm以下であり、前記Gの厚みが30nm以上34nm以下であり、前記Bの厚みが8nm以上12nm以下であり、前記正孔輸送層は、前記R,G,B各色の厚みが7nm以上13nm以下であって、かつ、等しく、前記有機発光層は、前記R,G,B各色の厚みが32nm以上48nm以下であって、かつ、等しいとしてもよい。
 また、本発明の別の態様として、前記正孔注入層は、前記Rの厚みが36nm以上40nm以下であり、前記Gの厚みが26nm以上30nm以下であり、前記Bの厚みが4nm以上8nm以下であり、前記正孔輸送層は、前記R,G,B各色の厚みが12nm以上18nm以下であって、かつ、等しく、前記有機発光層は、前記R,G,B各色の厚みが32nm以上48nm以下であって、かつ、等しいとしてもよい。
 ここで、本発明の一態様である有機ELパネルは、前記第1機能層は、前記陽極上に形成される透明導電層を含み、前記透明導電層は、R,G,B各色ともに厚みが等しい範囲にあり、前記有機発光層と前記陰極との間には、前記第1機能層と異なる、電子注入輸送層を含む第2機能層が設けられ、前記電子注入輸送層は、R,G,B各色ともに厚みが等しい範囲にあるとしてもよい。
 ここで、本発明の一態様である有機ELパネルは、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、入射された光を反射する陽極と、前記陽極に対向して配置され、入射された光を透過する陰極と、前記陽極と前記陰極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、前記陽極と前記陰極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、前記陽極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられ、正孔を注入するための正孔注入層と、前記正孔注入層上に設けられ、正孔を前記有機発光層に輸送するための正孔輸送層を含む2以上の層からなる第1機能層とを備え、前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1機能層を通じて前記陽極側に進行し前記陽極により反射された後、前記第1機能層、前記有機発光層および前記陰極を通じて外部に出射される第1光路と、前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記陽極側に進行することなく前記陰極側に進行し、前記陰極を通じて外部に出射される第2光路が形成され、前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、かつ、R,G,B各色ごとに厚みが異なっており、Rに関する厚みが36nm以上40nm以下であり、Gに関する厚みが30nm以上34nm以下であり、Bに関する厚みが8nm以上12nm以下であり、前記正孔輸送層は、Rに関する厚みが7nm以上13nm以下であり、Gに関する厚みが7nm以上13nm以下であり、Bに関する厚みが7nm以上13nm以下であり、前記有機発光層は、Rに関する厚みが32nm以上48nm以下であり、Gに関する厚みが32nm以上48nm以下であり、Bに関する厚みが32nm以上48nm以下であるとした。
 本態様の有機ELパネルでは、所定の電流密度を得るための駆動電圧をほぼ一定にできるため、厚膜化による駆動電圧の増加を防止することができる。
 ここで、本発明の一態様である有機ELパネルは、前記R,G,B各色の前記第1機能層の膜厚は、36nm以上69nm以下であり、前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離は、72nm以上131nm以下であるとしてもよい。
 本態様の有機ELパネルでは、有機発光層の膜厚を調整して得られる光取り出し効率と同等の光取り出し効率を達成することができる。
 したがって、有機発光層の膜厚で光取り出し効率を調整した場合と同等の光取り出し効率を実現しつつ、駆動電圧を低減することができる。
 ここで、本発明の一態様である有機ELパネルは、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、入射された光を反射する陽極と、前記陽極に対向して配置され、入射された光を透過する陰極と、前記陽極と前記陰極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、前記陽極と前記陰極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、前記陽極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられ、正孔を注入するための正孔注入層と、前記正孔注入層上に設けられ、正孔を前記有機発光層に輸送するための正孔輸送層を含む2以上の層からなる第1機能層とを備え、前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1機能層を通じて前記陽極側に進行し前記陽極により反射された後、前記第1機能層、前記有機発光層および前記陰極を通じて外部に出射される第1光路と、前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記陽極側に進行することなく前記陰極側に進行し、前記陰極を通じて外部に出射される第2光路が形成され、前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、かつ、R,G,B各色ごとに厚みが異なっており、Rに関する厚みが36nm以上40nm以下であり、Gに関する厚みが26nm以上30nm以下であり、Bに関する厚みが4nm以上8nm以下であり、前記正孔輸送層は、Rに関する厚みが12nm以上18nm以下であり、Gに関する厚みが12nm以上18nm以下であり、Bに関する厚みが12nm以上18nm以下であり、前記有機発光層は、Rに関する厚みが32nm以上48nm以下であり、Gに関する厚みが32nm以上48nm以下であり、Bに関する厚みが32nm以上48nm以下であるとした。
 本態様の有機ELパネルでは、所定の電流密度を得るための駆動電圧をほぼ一定にできるため、厚膜化による駆動電圧の増加を防止することができる。
 ここで、本発明の一態様である有機ELパネルは、前記R,G,B各色の前記第1機能層の膜厚は、36nm以上69nm以下であり、前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離は、72nm以上131nm以下であるとしてもよい。
 本態様の有機ELパネルでは、有機発光層の膜厚を調整して得られる光取り出し効率と同等の光取り出し効率を達成することができる。
 したがって、有機発光層の膜厚で光取り出し効率を調整した場合と同等の光取り出し効率を実現しつつ、駆動電圧を低減することができる。
 ここで、本発明の一態様である有機ELパネルの製造方法は、入射された光を反射する陽極をR(レッド),G(グリーン),B(ブルー)の各色に対応して設ける第1工程と、前記陽極の上方に、R(レッド),G(グリーン),B(ブルー)の各色に対応して、正孔を注入する正孔注入層と、正孔を輸送する正孔輸送層を含む、2以上の層からなる第1機能層を設ける第2工程と、前記R,G,B各色の機能層の上方に、それぞれR,G,B各色の光を出射する有機発光層を設ける第3工程と、前記有機発光層の上方に、前記陽極と対向するように、入射された光を透過する陰極を設ける第4工程とを含み、前記第2工程では、前記正孔注入層を酸化タングステンを含む金属酸化物のみから構成し、前記正孔注入層の厚みをR,G,B各色が5nm以上40nm以下で、かつ、少なくともいずれかの1色について他の色とは異なる厚みになるように形成し、前記第3工程では、前記有機発光層の厚みを、R,G,B各色ともに等しい範囲となるように形成するとした。
 ここで、本発明の別の態様として、前記第2工程では、前記正孔輸送層の厚みをR,G,B各色ともに等しい範囲となるように形成し、かつ、前記R,G,B各色の第1機能層の膜厚を36nm以上69nm以下に形成し、前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離を72nm以上131nm以下となるように形成するとしてもよい。
 ここで、本発明の別の態様として、前記第2工程では、前記正孔注入層を、前記酸化タングステンを蒸着法またはスパッタ法を用いて前記陽極上に成膜することにより形成し、前記正孔輸送層を、前記正孔輸送材料を含むインクを印刷法またはインクジェット法を用いて前記正孔注入層上に成膜することにより形成し、前記第3工程では、前記有機発光層、有機発光材料を含むインクを印刷法またはインクジェット法用いて前記正孔輸送層上に成膜することにより形成するとしてもよい。
 ここで、本発明の別の態様として、前記第2工程における、前記正孔注入層を形成する工程は、前記陽極上に、前記酸化タングステンから構成される層を形成する形成工程と、前記酸化タングステンから構成される層上に、感光性レジスト材料からなる層を積層する積層工程と、R,G,B毎に異なる光透過率を有するマスクを用いて、前記感光性レジスト層を選択的に露光することにより、前記R,G,Bごとに前記感光性レジスト層の厚みを異なるように調整する調整工程と、前記厚みを調整した感光性レジスト層を現像液を用いてエッチングすると共に、前記正孔注入層の上部を含む一部を前記現像液を用いて除去することにより、前記R,G,Bごとに前記正孔注入層の厚みが異なるように成形する成形工程と、前記成形工程後、前記正孔注入層から前記感光性レジスト層を除去する除去工程とを含むとしてもよい。
 ここで、本発明の別の態様として、前記第2工程では、第1機能層として前記陽極上に形成される透明導電層を含み、前記透明導電層の厚みをR,G,B各色ともに等しい範囲となるように形成し、前記第3工程と前記第4工程との間において、前記有機発光層上に、電子注入輸送層を含む第2機能層を設ける工程をさらに含み、当該工程では、前記電子注入輸送層の厚みをR,G,B各色ともに等しい範囲となるように形成するとしてもよい。
 ここで、本発明の別の態様として、前記第2工程は、アルゴンガスと酸素ガスからなるスパッタガス、および、タングステンからなるターゲットを用い、前記スパッタガスの全圧が2.3Pa以上7.0Pa以下であるとともに、前記スパッタガスの全圧に対する前記酸素ガス分圧の割合が50以%上70%以下であり、かつ、前記ターゲットの単位面積当たりの投入電力である投入電力密度が1.5W/cm以上6.0W/cm以下であり、かつ、前記スパッタガスの全圧を投入電力密度で割った値である全圧/投入電力密度が0.7Pa・cm/Wよりも大きい成膜条件下で酸化タングステン膜を成膜することにより、前記正孔注入層を形成するとしてもよい。
 ここで、本発明の別の態様として、前記第2工程において、前記酸化タングステン膜を構成するタングステン元素が、前記タングステン元素が取り得る最大価数である6価の状態および、前記6価よりも低い5価の状態で前記酸化タングステン膜に含まれるように、かつ、粒径がナノメートルオーダーの大きさである酸化タングステンの結晶が含まれるように、前記酸化タングステン膜を成膜するとしてもよい。
 ここで、本発明の別の態様として、前記第2工程は、前記全圧/投入電力密度が3.2Pa・cm/Wよりも小さいとしてもよい。
 ここで、本発明の別の態様として、上記本発明の一態様に係る製造方法により製造された有機ELパネルを用いた有機発光装置としてもよい。
 本態様の有機発光装置は、上記本発明の一態様に係る製造方法により製造された有機ELパネルを用いることで得られるものであり、上記理由により、駆動電圧を低減することができる。
 ここで、本発明の別の態様として、上記本発明の一態様に係る製造方法により製造された有機ELパネルを用いた有機表示装置としてもよい。
 本態様の有機表示装置は、上記本発明の一態様に係る製造方法により製造された有機ELパネルを用いることで得られるものであり、上記理由により、駆動電圧を低減することができる。
  [実施の形態1]
<概要>
 本実施の形態の有機ELパネルは、正孔注入層のR,G,Bの各膜厚を5nm以上40nm以下の薄膜領域に設定し光取り出し効率を調整している。まず、このことによる、有機発光層または正孔輸送層の各膜厚で光取り出し効率を調整する場合に対する優位性を説明する。その後、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した場合と、有機発光層のR,G,Bの各膜厚で光取り出し効率を調整した場合のシミュレーションについて説明する。最後に、本実施の形態の有機ELパネルの構成について具体的に説明する。
<有機発光層及び正孔輸送層の膜厚と駆動電圧との関係>
 有機発光層及び正孔輸送層の膜厚をそれぞれ変化させたとき電流密度と駆動電圧とがどのように変化するのか説明する。
 図2(a)は、有機発光層の膜厚を55nmから105nmまで10nm刻みで設定した場合の各膜厚における電流密度と駆動電圧との関係を示している。図2(a)に示すように、有機発光層の膜厚が厚くなるほど、同じ電流密度を得るために必要となる駆動電圧が大きくなる。また、後述する正孔注入層の膜厚を変化させた場合(図4(a)参照)に比べ、各膜厚間での駆動電圧のばらつきが大きい。
 また、図2(b)は、電流密度が10mA/cmのときの各膜厚と駆動電圧との関係を示している。図2(b)に示すように、膜厚が厚くなるにつれて駆動電圧が大きくなっており、各膜厚間での駆動電圧のばらつきが大きい。例えば、最大で(すなわち、有機発光層の膜厚が55nmの場合と105nmの場合とでは)、3.4Vの差がある。
 以上のことより、有機発光層のR、G、Bの各膜厚で光取り出し効率を調整した場合には、R、G、Bの各膜厚のうち膜厚が厚くなるものについては駆動電圧が大きくなるため、消費電力の低減を実現することができない。
 続いて図3(a)は、正孔輸送層の膜厚を30nm、60nm、80nm、100nmと設定した場合の各膜厚における電流密度と駆動電圧との関係を示している。図3(a)に示すように、有機発光層の場合と同様、正孔輸送層の膜厚が厚くなるほど、同じ電流密度を得るために必要となる駆動電圧が大きくなっており、正孔注入層の膜厚を変化させた場合に比べ、各膜厚間での駆動電圧のばらつきも大きい。
 また、図3(b)は、電流密度が10mA/cmのときの各膜厚と駆動電圧との関係を示している。図3(b)に示すように、膜厚が厚くなるにつれて駆動電圧が大きくなっており、各膜厚間での駆動電圧のばらつきが大きい。例えば、最大で(すなわち、正孔輸送層の膜厚が30nmの場合と100nmの場合とでは)、2.7Vの差がある。
 有機発光層の膜厚で光取り出し効率を調整する場合に比べ、膜厚を厚くした際の駆動電圧の増加幅は小さいものの、厚膜化に伴う駆動電圧の増大は免れない。
<正孔注入層の膜厚と駆動電圧との関係>
 次に、正孔注入層の膜厚を薄膜領域で変化させたとき電流密度と駆動電圧とがどのように変化するのか説明する。図4(a)は、正孔注入層の膜厚を5nmから40nmまで5nm刻みで設定した場合の各膜厚における電流密度と駆動電圧との関係を示している。図4(a)に示すように、有機発光層の膜厚を変化させた場合、及び正孔輸送層の膜厚を変化させた場合に比べ、各膜厚間での駆動電圧のばらつきが明らかに小さい。
 また、図4(b)は、電流密度が10mA/cmのときの各膜厚と駆動電圧との関係を示している。図4(b)に示すように、正孔注入層の膜厚が5nm以上40nm以下の範囲においてはどの膜厚であっても駆動電圧は6.7Vまたは6.8Vであり、駆動電圧のばらつきが小さいことがわかる。
 すなわち、正孔注入層のR、G、Bの各膜厚で光取り出し効率を調整し、かつ正孔注入層の膜厚を5nm以上40nm以下の範囲とした場合には、厚膜化による駆動電圧の増大を回避できるので、消費電力の低減を実現することができる。
 このように駆動電圧のばらつきが小さくなるのは、正孔注入層が金属酸化物で構成されるため、有機物から構成される有機発光層や正孔輸送層に比べ、導電性が高いためと考えられる。
 また、正孔注入層の膜厚が5nm以上40nmの範囲で駆動電圧のばらつきが小さくなる理由は、必ずしも明確ではないが、以下のように推測される。なお、ここでは簡単に説明し、詳細は後述する。
 本実施の形態によれば、正孔注入層は、酸化タングステンからなる薄膜構造(厚みが5nm以上40nm以下)である。酸化タングステンを構成するタングステン元素は、タングステン元素が取り得る最大価数である6価の状態、および当該最大価数である6価よりも低い5価の状態で酸化タングステン膜に含まれることにより、正孔注入層にホール伝導部となる部分が存在する。加えて、酸化タングステン膜は、粒径がナノメートルオーダーの大きさである酸化タングステンの結晶を含むことにより、結晶粒界となる部分が増えるため、ホール伝導に寄与する電子軌道の重なりが形成される。この結果、正孔注入層内部における電気導電性が向上するので、駆動電圧が小さくなって安定するというものである。
<第1シミュレーション>
 続いて、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した場合と、有機発光層のR,G,Bの各膜厚で光取り出し効率を調整した場合のシミュレーションについて説明する。図5(a)は、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した場合(実施例1-1、実施例1-2)、及び有機発光層のR,G,Bの各膜厚で光取り出し効率を調整した場合(比較例1)のシミュレーション条件及び結果を示している。ただし、図5(a)のシミュレーションでは、光取り出し効率として、電流効率を用いている。また、図5(b)は、正孔輸送層、正孔注入層、及び透明導電層の屈折率を示している。
 ─比較例1、及び実施例1-1における各層の膜厚─
 図中の比較例1では、有機発光層のR,G,Bの各膜厚で光取り出し効率を調整しており、具体的には、有機発光層のRの膜厚が、80nm、Gの膜厚が80nm、Bの膜厚が50nmに設定されている。電子輸送層、正孔輸送層、正孔注入層、及び透明導電層についてはそれぞれ、R,G,Bで共通の膜厚に設定されている。
 図中の実施例1-1では、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整しており、具体的には、正孔注入層のRの膜厚が、38nm、Gの膜厚が32nm、Bの膜厚が10nmに設定されている。電子輸送層、正孔輸送層、及び透明導電層については比較例1と同様の膜厚に設定されている。また、有機発光層については、R,G,Bで共通の膜厚であり、予備実験によりデバイス性能を保証できると考えられる40nmに設定されており、比較例1の有機発光層の膜厚80nmより薄膜になっている。
 ─比較例1と実施例1-1との比較─
 続いて、電流効率、色度、駆動電圧、消費電力、及びtotal消費電力について比較例1と実施例1-1とを対比しながら説明する。
 電流効率に関して、Rについては比較例1では7.9cd/Aであるのに対し、実施例1-1では9.3cd/Aであり、約18%の向上が見られる。Gについては比較例1では41cd/Aであるのに対し、実施例1-1では40cd/Aであり、約4%低下している。Bについては比較例1と実施例1-1とで変化はなかった。
 Rについては約18%の大幅な改善であるのに対し、Gについては約4%の小幅な悪化であるので、全体としては、電流効率は向上していると言える。
 また、色度については、RとBに関しては比較例1と実施例1-1とで、値が全く同じになっている。ただし、Gについては比較例1では(0.28,0.66)であるのに対し、実施例1-1では(0.29,0.66)であり、xの値が0.01増加している。ここで、例えばEBU規格によれば、Gは(0.29,0.60)と規定されている。したがって、EBU規格に基づくと、Gについては実施例1-1の方が向上しているといえる。
 これらのことから、電流効率及び色度に関して、有機発光層のR,G,Bの各膜厚で調整した場合と、正孔注入層のR,G,Bの各膜厚で調整した場合とで大差はなく、むしろ電流効率及び色度については後者の方が若干向上することがわかる。
 また、駆動電圧については、比較例1に比べて実施例1-1では大幅に改善されている。具体的には、比較例1では、Rが6.1V,Gが8.2V,Bが6.2Vであるのに対し、実施例1-1では、Rが4.4V、Gが4.9V、Bが5.4Vとなっており、Rで約28%、Gで約40%、Bで約13%低下している。
 このため消費電力についても比較例1に比べて実施例1-1では改善されている。total消費電力で比較例1と実施例1-1とを比べると、比較例1では27.11Wであるのに対し、実施例1-1では21.77Wであり、実施例1-1では比較例1に対し約20%削減できる。
 以上のことより、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整することにより、有機発光層で調整した場合と比較し、電流効率及び色度については維持あるいは若干向上させつつ、駆動電圧を低減することができる。
 ─実施例1-2における各層の膜厚─
 図中の実施例1-2は、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した他の実施例であり、正孔注入層のRの膜厚が、38nm、Gの膜厚が28nm、Bの膜厚が6nmに設定されている。また、実施例1-1と比較し電子輸送層及び正孔輸送層の膜厚が5nm厚く設定されている。
 ─比較例1と実施例1-2との比較─
 続いて、電流効率、色度、駆動電圧、消費電力、及びtotal消費電力について比較例1と実施例1-2とを対比しながら説明する。
 電流効率に関して、Rについては比較例1では7.9cd/Aであるのに対し、実施例1-2では9.3cd/Aであり、約18%の向上が見られる。Gについては比較例1では41cd/Aであるのに対し、実施例1-2では39cd/Aであり、約5%低下している。Bについては比較例1と実施例1-2とで変化はなかった。
 Rについては約18%の大幅な改善であるのに対し、Gについては約5%の小幅な悪化であるので、全体としては、電流効率は向上していると言える。
 また、色度については、Rに関しては比較例1と実施例1-2とで、値が全く同じになっている。ただし、Gについては比較例1では(0.28,0.66)であるのに対し、実施例1-2では(0.29,0.66)であり、xの値が0.01増加している。したがって、上記同様の理由により、Gについては実施例1-2の方が向上しているといえる。Bについては比較例1では(0.13,0.074)であるのに対し、実施例1-2では(0.13,0.075)であり、Yの値が0.001増加している。ここで、例えばEBU規格によれば、Bは(0.15,0.06)と規定されている。したがって、Bについては実施例1-2の方が低下しているといえる。
 Gについては約4%の改善であるのに対し、Bについては約1%の悪化であるので、全体としては、色度は向上しているといえる。
 これらのことから、実施例1-2についても、実施例1-1と同様、電流効率及び色度に関して、有機発光層のR,G,Bの各膜厚で調整した場合と、正孔注入層のR,G,Bの各膜厚で調整した場合とで大差はなく、むしろ電流効率及び色度については後者の方が若干向上することがわかる。
 また、駆動電圧についても、実施例1-1と同じように、比較例1に比べて実施例1-2では大幅に改善されている。具体的には、比較例1では、Rが6.1V,Gが8.2V,Bが6.2Vであるのに対し、実施例1-2では、Rが4.6V、Gが5.1V、Bが5.6Vとなっており、Rで約25%、Gで約38%、Bで約10%改善している。
 このため消費電力についても比較例1に比べて実施例1-2では改善されている。total消費電力で比較例1と実施例1-2とを比べると、比較例1では27.11Wであるのに対し、実施例1-2では22.15Wであり、実施例1-2では比較例1に対し約18%削減できる。
 このように、実施例1-1より電子輸送層及び正孔輸送層の膜厚を5nm厚く設定することで条件をより厳しくした場合であっても、実施例1-1に比べて若干劣るものの、比較例1に対して大幅にtotal消費電力を改善することができる。
 ─第1機能層の膜厚と光学距離─
 正孔輸送層、正孔注入層、及び透明導電層(以下、これらをまとめて「第1機能層」という)の合計膜厚に関して、実施例1-1のBが最も薄く36nmであり、実施例1-2のRが最も厚く69nmである。
 陽極と有機発光層との間の光学距離に関して、実施例1-1のBが最も短く72nmであり、実施例1-2のRが最も長く131nmである。
 すなわち、第1機能層の膜厚が36nm以上69nm以下の範囲であり、光学距離が72nm以上131nm以下の範囲において、電流効率及び色度を維持または向上させつつ駆動電圧を低減することができる。
 なお、光学距離は、層毎に膜厚と屈折率の積をとり、得られた積を合計することにより求められる。ただし、各層の屈折率については図5(b)に示すものを用いる。
<第2シミュレーション>
 続いて、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した場合と、有機発光層のR,G,Bの各膜厚で光取り出し効率を調整した場合の別のシミュレーションについて説明する。ここでは、40型のFHD仕様の有機ELパネルを想定している。
 図6は、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整した場合(実施例2-1、実施例2-2)、及び有機発光層のR,G,Bの各膜厚で光取り出し効率を調整した場合(比較例2)のシミュレーション条件及び結果を示している。
 比較例2、実施例2-1、及び実施例2-2における各層の膜厚は、比較例1、実施例1-1、及び実施例1-2における各層の膜厚と同様であるので、ここでは説明を省略する。
 ─比較例2と実施例2-1との比較─
 続いて、電流効率、色度、駆動電圧、消費電力、及びtotal消費電力について比較例2と実施例2-1とを対比しながら説明する。
 電流効率、色度、及び駆動電圧について、比較例1と実施例1-1との対比と同様であるので、ここでは説明を省略する。
 消費電力について、比較例2に比べて実施例2-1では改善されている。total消費電力で比較例2と実施例2-1とを比べると、比較例2では101.00Wであるのに対し、実施例2-1では81.08Wであり、実施例2-1では比較例2に対し約20%削減できる。
 以上のことより、正孔注入層のR,G,Bの各膜厚で光取り出し効率を調整することにより、有機発光層で調整した場合と比較し、電流効率及び色度については維持あるいは若干向上させつつ、駆動電圧を低減することができる。
 ─比較例2と実施例2-2との比較─
 続いて、電流効率、色度、駆動電圧、消費電力、及びtotal消費電力について比較例2と実施例2-2とを対比しながら説明する。
 電流効率、色度、及び駆動電圧について、基本的には、比較例1と実施例1-2との対比と同様である。実施例1-2ではRの電流効率が39cd/Aであるのに対し、実施例2-2では、40cd/Aである。また、実施例1-2ではBの色度が(0.13,0.075)であるのに対し、実施例1-2では、(0.13,0.074)である。ただし、各層の膜厚は実施例1-2と実施例2-2と同様であるため、これらはばらつきであると考えられる。
 消費電力について、比較例2に比べて実施例2-2では改善されている。total消費電力で比較例2と実施例2-2とを比べると、比較例1では101.00Wであるのに対し、実施例2-2では82.50Wであり、実施例2-2では比較例2に対し約18%削減できる。
 また、第1機能層の膜厚と光学距離については第1シミュレーションで説明した通りである。本シミュレーションにおいても、各層の屈折率については図5(b)に示すものを用いる。
<有機ELパネルの構成>
 図7は、実施の形態1に係る有機ELパネル10の構造を模式的に示す断面図である。有機ELパネル10では、R(レッド),G(グリーン),B(ブルー)各色のサブピクセル10R、10G、10Bが行列状に配置されている。以下、有機ELパネル10の構造について詳細に説明する。
 図7に示すように、実施の形態1の有機ELパネル10では、TFT基板1上に層間絶縁膜2が形成されており、この層間絶縁膜2上に、陽極3がサブピクセル単位で行列状にパターニングして形成されている。X軸方向に隣り合う3つのサブピクセル10R,10G,10Bの組み合わせにより1画素(ピクセル)が構成される。
 各陽極3上には透明導電層4が形成され、それぞれの透明導電層4を覆うように層間絶縁膜2上には正孔注入層5が形成されている。ただし、正孔注入層5の膜厚が、R,G,B各々で異なっている。上記シミュレーションで示したように、正孔注入層5の膜厚は、5nm以上40nm以下であるのが好ましい。
 正孔注入層5上であって陽極3間に相当する領域にはバンク6が形成されている。バンク6で規定された領域内において陽極3上には、正孔輸送層7が形成され、正孔輸送層7上には所定の色の有機発光層8が積層されている(以下、陽極3と有機発光層8との間に設けられた、透明導電層4、正孔注入層5、及び正孔輸送層7をまとめて「第1機能層」という)。ただし、正孔輸送層7及び有機発光層8はそれぞれ、R,G,B各色ともに厚みが等しい範囲にある。ここで、厚みが等しい範囲とは、(i)R,G,B各色の設計値が同一であり、実測値も同一である場合の他、(ii)R,G,B各色の設計値が同一であるが、製造誤差の範囲内(例えば一層当たり±5[nm])で実測値がずれている場合も含む。
 さらに、有機発光層8上には、電子輸送層9、陰極11、及び封止層12が、それぞれバンク6で規定された領域を超えて隣接するサブピクセルのものと連続するように形成されている。ただし、電子輸送層9は、R,G,B各色ともに厚みが等しい範囲にある。厚みが等しい範囲とは、上記(i)、(ii)で示した通りである。
 また、有機ELパネル10では、陽極3の存在により共振器構造が実現されている。有機ELパネル10には、有機発光層8から出射された光の一部が、第1機能層を通じて陽極3側に進行し陽極3により反射された後、第1機能層、有機発光層8および陰極11を通じて外部に出射される第1光路と、有機発光層8から出射された光の残りの一部が陽極3側に進行することなく陰極11側に進行し、陰極11を通じて外部に出射される第2光路とが形成される。
 第1光路を通る反射光と第2光路を通る直接光とが干渉効果で強め合うように有機発光層8(R),8(G),8(B)と陽極3との間の距離を調整することで、有機ELパネルの光取り出し効率を高めることができる。距離の調整は、第1機能層の膜厚を調整することにより実現できる。
 具体的には、R,G,B各色の第1機能層の膜厚は、上記シミュレーションで示したように、36nm以上69nm以下に調整されていることが好ましい。
 その際、正孔注入層の膜厚に関してRが36nm以上40nm以下、Gが30nm以上34nm以下、Bが8nm以上12nm以下であり、正孔輸送層の膜厚に関してR,G,Bがそれぞれ7nm以上13nm以下であって、かつ、等しく、有機発光層の膜厚に関してR,G,Bがそれぞれ32nm以上48nm以下であって、かつ、等しいことが好ましい。
 特に、実施例1-1及び実施例2-1で示したように、正孔輸送層の膜厚に関してRが38nm、Gが32nm、Bが10nmであり、正孔輸送層の膜厚に関してR,G,Bが各々共通の10nmであり、有機発光層の膜厚に関してR,G,Bが各々共通の40nmであることがより好ましい。
 また、正孔注入層の膜厚に関してRが36nm以上40nm以下、Gが26nm以上30nm以下、Bが4nm以上8nm以下であり、正孔輸送層の膜厚に関してR,G,Bがそれぞれ12nm以上18nm以下であって、かつ、等しく、有機発光層の膜厚に関してR,G,Bがそれぞれ32nm以上48nm以下であって、かつ、等しいとしてもよい。
 この場合には特に、実施例1-2及び実施例2-2で示したように、正孔輸送層の膜厚に関してRが38nm、Gが28nm、Bが6nmであり、正孔輸送層の膜厚に関してR,G,Bが各々共通の15nmであり、有機発光層の膜厚に関してR,G,Bが各々共通の40nmであることがより好ましい。
 また、R,G,B各色における有機発光層8から陽極3までの光学的な距離は、72nm以上131nm以下に調整されていることが好ましい。
<各層の具体例>
 TFT基板1は、例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエチレン、ポリエステル、シリコーン系樹脂、又はアルミナ等の絶縁性材料の基板本体上に、TFT、配線部材、および前記TFTを被覆するパッシベーション膜など(図示せず)を形成した構成である。また、前記基板本体は有機樹脂フィルムであってもかまわない。
 層間絶縁膜2は、TFT基板1の表面段差を平坦に調整するために設けられ、ポリイミド系樹脂またはアクリル系樹脂等の絶縁材料で構成されている。
 陽極3は、Al(アルミニウム)、あるいはアルミニウム合金で形成されている。なお、陽極3は、例えば、Ag(銀)、銀とパラジウムと銅との合金、銀とルビジウムと金との合金、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)等で形成されていても良い。本実施の形態1に係る有機ELパネル10はトップエミッション型であるので、陽極3は、光反射性の材料で形成されていることが好ましい。
 透明導電層4は、製造過程において陽極3が自然酸化するのを防止する保護層として機能する。透明導電層4の材料は、有機発光層8で発生した光に対して十分な透光性を有する導電性材料により形成されればよく、例えば、ITOやIZOなどが好ましい。室温で成膜しても良好な導電性を得ることができるからである。
 正孔注入層5は、正孔を有機発光層8に注入する機能を有する。例えば、酸化タングステン(WOx)、酸化モリブデンタングステン(MoxWyOz)などの遷移金属の酸化物を含む金属酸化物のみから形成される。有機材料を含有することなく、遷移金属の酸化物を含む金属酸化物のみから形成し、かつ、5nm以上40nm以下である薄膜構造とすることで、電圧-電流密度特性を向上させ、また、電流密度を高めて発光強度を高めることができる。
 また、正孔注入層5の厚みは、10nmより厚く、40nm以下であることがより好ましい。その理由を以下に説明する。
 ここでは、正孔注入層5が、例えば、厚さ30nmの酸化タングステン膜(WOx)からなる場合を想定する。酸化タングステンは、その組成式WOxにおいて、xが概ね2<x<3の範囲における実数である。正孔注入層5は、できるだけ酸化タングステンのみで構成されることが望ましいが、通常レベルで混入し得る程度に、微量の不純物が含まれていてもよい。
 ここで、酸化タングステン膜は所定の成膜条件で成膜されている。この所定の成膜条件についての詳細は(有機ELパネル10の製造方法)の項および(正孔注入層5の成膜条件について)の項で詳細に説明する。酸化タングステン膜がこの所定の成膜条件下で成膜されていることにより、図7の拡大図に示すように、酸化タングステン膜は、酸化タングステンの結晶5aを多数含んでいる。各々の結晶5aの粒径はナノメートルオーダーの大きさとなるように形成されている。例えば、正孔注入層5が厚さ30nm程度であるのに対し、結晶5aの粒径は3~10nm程度である。以下、粒径がナノメートルオーダーの大きさの結晶5aを「ナノクリスタル5a」と称し、ナノクリスタル5aからなる層の構造を「ナノクリスタル構造」と称する。なお、正孔注入層5における、ナノクリスタル構造をとっている領域以外の領域には、アモルファス構造も含まれる。
 上記のようなナノクリスタル構造を有する正孔注入層5において、酸化タングステンを構成するタングステン原子(W)は、タングステンが取り得る最大価数の状態および当該最大価数よりも低い価数の状態を有するように分布している。一般に、酸化タングステンの結晶構造は均一ではなく、酸素欠陥に類する構造が含まれる。このうち、酸素欠陥に類する構造を有しない結晶構造の酸化タングステンの中では、タングステンの取り得る最大価数は6価の状態である。一方、酸素欠陥に類する構造を有する結晶構造の酸化タングステンの中では、タングステンの価数は最大価数よりも低い5価の状態であることが分かっている。なお、酸化タングステンの膜中は、上記の最大価数、最大価数よりも低い価数等、様々な価数の状態のタングステン原子が集まって構成されており、膜全体で見ると、それらの様々な価数の平均の価数となっている。
 ここで、酸素欠陥に類する構造をとることで、当該構造に基づく電子準位により、ホール伝導効率が向上するとの報告がある(非特許文献 Kaname Kanai et al.,Organic Electronics 11,188(2010).)。さらに、この酸素欠陥に類する構造は結晶の表面に多く存在することが分かっている。この点については、図18を用いて後述する。
 したがって、酸化タングステン中において、タングステンを6価または5価の状態を有するように分布させ、正孔注入層5に酸素欠陥に類する構造を持たせることにより、ホール伝導効率の向上が望める。すなわち、陽極3から正孔注入層5に供給された正孔は結晶粒界に存在する酸素欠陥を伝導するので、酸化タングステン膜をナノクリスタル構造とすることで、正孔が伝導する経路を増やすことができ、ホール伝導効率の向上につながる。したがって、有機ELパネル10を起動させる駆動電圧を下げることが可能となる。
 また、正孔注入層5は化学的耐性が高い、すなわち、不要な化学反応を起こしにくい酸化タングステンで構成されている。したがって、正孔注入層5が、同層の形成後に行われる工程等において用いられる溶液等と触れた場合であっても、溶解、変質、分解等による正孔注入層5の損傷を抑制することができる。このように、正孔注入層5が、化学的耐性が高い材料で構成されていることにより、正孔注入層5のホール伝導性能の低下を防ぐことができる。
 本実施の形態における正孔注入層5は、ナノクリスタル構造の酸化タングステンのみから構成されている場合と、ナノクリスタル構造の酸化タングステンとアモルファス構造の酸化タングステンの両方から構成されている場合の、双方を含むものとする。また、ナノクリスタル構造は、正孔注入層5の全体に存在することが望ましいが、陽極3と正孔注入層5が接する界面から、正孔注入層5と正孔輸送層7が接する界面との間に一箇所でも粒界が繋がっていれば、正孔注入層5の下端から上端へのホールを伝導させることができる。
 なお、結晶化した酸化タングステンを含む酸化タングステン膜を正孔注入層として用いる例自体は、過去にも報告されている。例えば、非特許文献(Jingze Li et al.,Synthetic Metals 151,141(2005).)には、酸化タングステン膜を450℃のアニーリングで結晶化することによりホール伝導性が向上することが示されている。しかしながら、上記非特許文献では正孔注入層が成膜される基板等の他層への影響を含めて、大型有機ELパネルを量産するに堪える実用性については示されていない。さらに、正孔注入層に積極的に酸素欠陥を有する酸化タングステンのナノクリスタルを形成することも示されていない。本発明に係る正孔注入層5は、化学反応を起こしにくく、安定であり、大型有機ELパネルの量産プロセスにも耐える酸化タングステン膜で構成されている。さらに、酸化タングステン膜に積極的に酸素欠陥を存在させることにより、優れたホール伝導性およびホール注入効率を実現している点で、従来技術と大きく異なるものである。
 バンク6は、樹脂等の有機材料で形成されており絶縁性を有する。有機材料の例として、アクリル系樹脂、ポリイミド系樹脂、ノボラック型フェノール樹脂等が挙げられる。バンク6は、有機溶剤耐性を有することが好ましい。さらに、バンク6はエッチング処理、ベーク処理等がされることがあるので、それらの処理に対して過度に変形、変質などをしないような耐性の高い材料で形成されることが好ましい。
 正孔輸送層7は、例えば、特開平5-163488号に記載のトリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物、ブタジエン化合物、ポリスチレン誘導体、ヒドラゾン誘導体、トリフェニルメタン誘導体、テトラフェニルベンジン誘導体である。特に好ましくは、ポリフィリン化合物、芳香族第三級アミン化合物及びスチリルアミン化合物で形成される。
 有機発光層8は、例えば、ポリフルオレン、ポリフェニレンビニレン、ポリアセチレン、ポリフェニレン、ポリパラフェニレンエチレン、ポリ3-ヘキシルチオフェンやこれらの誘導体などの高分子材料や、特開平5-163488号公報に記載のオキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属錯体、2-ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質で形成されることが好ましい。
 電子輸送層9は、例えば、特開平5-163488号公報のニトロ置換フルオレノン誘導体、チオピランジオキサイド誘導体、ジフェキノン誘導体、ペリレンテトラカルボキシル誘導体、アントラキノジメタン誘導体、フレオレニリデンメタン誘導体、アントロン誘導体、オキサジアゾール誘導体、ペリノン誘導体、キノリン錯体誘導体で形成される。
 なお、電子注入性を更に向上させる点から、上記電子輸送層を構成する材料に、Na,Ba,Caなどのアルカリ金属またはアルカリ土類金属をドーピングしてもよい。
 陰極11は、例えば、ITO(酸化インジウムスズ)やIZO(酸化インジウム亜鉛)等で形成される。有機ELパネル10はトップエミッション型であるので、陰極10は、光透過性の材料で形成されることが好ましい。
 封止層12は、有機発光層8等が水分に晒されたり、空気に晒されたりすることを抑制する機能を有し、例えば、SiO(酸化シリコン),SiN(窒化シリコン)、SiON(酸窒化シリコン)、SiC(炭化ケイ素),SiOC(炭素含有酸化シリコン),AlN(窒化アルミニウム),Al2O3(酸化アルミニウム)等の材料で形成される。有機ELパネル10はトップエミッション型であるので、封止層11は、光透過性の材料で形成されることが好ましい。
<本実施の形態の有機ELパネル10の製造方法>
 続いて、本実施の形態の有機ELパネル10の製造工程を例示する。図8,9は、有機ELパネル10の製造工程の一例を示す図である。なお、図8,9では、有機ELパネル10の一部を抜き出して模式的に示している。
 まず、TFT基板1の主面上に形成された層間絶縁膜2上に、スパッタリング法によりAg薄膜を成膜し、当該Ag薄膜上にITO薄膜を成膜する。Ag薄膜及びITO薄膜を、例えば、フォトリソグラフィでパターニングすることにより行列状に陽極3及び透明導電層4を形成する(図8(a)参照)。なお、Ag薄膜及びITO薄膜の成膜には、スパッタリング法の他に、真空蒸着法を用いることもできる。
 次に、透明導電層4を含むTFT基板1の表面に対し、WOx、又はMoxWyOzを含む組成物を用いて真空蒸着、スパッタリングなどの技術によりWOx、又はMoxWyOzの薄膜51を形成する(形成工程)。そして、薄膜51上にフォトレジストを一様に塗布する(積層工程)(図8(b)参照)。
 次に、塗布したフォトレジストの上に、R,G,B毎に異なる光透過率を有するハーフトーンマスクを重ねる。そして、ハーフトーンマスクの上から感光させ、R,G,Bごとに厚みが異なるようにレジストパターンを形成する(調整工程)。その後、フォトレジスト及び薄膜51の上部を含む一部を現像液で洗い出す(成形工程)。これによりR,G,Bごとに厚みが異なる薄膜51のパターニングが完了する。その後、パターニングされた薄膜51の上のフォトレジスト(レジスト残渣)を純水で洗浄して除去する(除去工程)。これで、R,G,Bで膜厚の異なる正孔注入層5が完成する(図8(c)参照)。
 次に、正孔注入層5上に絶縁性有機材料からなるバンク材料層を形成する。バンク材料層の形成は、例えば塗布等により行うことができる。次に、バンク材料層上に所定形状の開口部を持つマスクを重ね、マスクの上から感光させた後、余分なバンク材料層を現像液で洗い出す。これによりバンク材料層のパターニングが完了する。以上で、バンク6が完成する(図9(a)参照)。
 次に、バンク6で区画された各領域内において、陽極3上に、インクジェット法により、正孔輸送層の材料を含む組成物インク(以下、単に「インク」という。)を充填し、そのインクを乾燥させることにより、正孔輸送層7を形成する。
 次に、バンク6で区画された各領域内に例えばインクジェット法により有機EL材料を含む組成物インクを滴下し、そのインクを乾燥させて有機発光層8を形成する(図9(b)参照)。なお、有機発光層8は、ディスペンサー法、ノズルコート法、スピンコート法、凹版印刷、凸版印刷等により形成しても良い。
 次に、例えば真空蒸着により電子輸送層9を形成し、さらに陰極11となるITO薄膜及び封止層12を形成する(図9(c)参照)。
 続いて、酸化タングステン膜が酸化タングステンの結晶5aを多数含むための成膜条件について詳細に説明する。
 上述のように、酸化タングステン膜は、真空蒸着、スパッタリングなどの技術により形成されるが、特に、反応性スパッタ法で成膜することが好適である。具体的には、金属タングステンをターゲットとし、アルゴンガスをスパッタガスとし、酸素ガスを反応性ガスとしてチャンバー内に導入する。この状態で高電圧によりアルゴンをイオン化し、ターゲットに衝突させる。このとき、スパッタリング現象により放出された金属タングステンが酸素ガスと反応して酸化タングステンとなり、透明導電層4上に酸化タングステン膜が成膜される。
 なお、この成膜条件の詳細については次項で述べるが、簡単に述べると、(1)アルゴンガスと酸素ガスから構成されるスパッタガスの全圧が2.3Pa以上7.0Pa以下であり、かつ、(2)スパッタガスの全圧に対する酸素ガス分圧が50%以上70%以下である。さらに(3)ターゲットの単位面積当たりの投入電力(投入電力密度)は1.5W/cm以上6.0W/cm以下であり、かつ、(4)スパッタガスの全圧を投入電力密度で割った値である全圧/電力密度が0.7Pa・cm/Wより大きくなるように設定することが好適である。このような成膜条件により、ナノクリスタル構造を有する酸化タングステン膜が形成される。
 前述したように、正孔注入層5を構成する酸化タングステンは化学的耐性が高い。したがって、正孔注入層5が、この後の工程で用いられる溶液等と触れた場合であっても、溶解、変質、分解等による正孔注入層5の損傷を抑制することができる。
<正孔注入層5の成膜条件に関する各種実験と考察>
 (正孔注入層5の成膜条件について)
 本実施の形態では、正孔注入層5を構成する酸化タングステンを所定の成膜条件で成膜することで、正孔注入層5にナノクリスタル構造を意図的に存在させることによりホール伝導性を向上させ、有機ELパネル10を低電圧駆動できるようにしている。この所定の成膜条件について詳細に説明する。
 スパッタ装置としてDCマグネトロンスパッタ装置を用い、ターゲットは金属タングステンとした。基板温度の制御は行わなかった。スパッタガスはアルゴンガスで構成し、反応性ガスは酸素ガスで構成し、各々のガスを同等の流量とする反応性スパッタ法を用いる条件下で成膜することが好適であると考えられる。
 結晶性の高い酸化タングステン膜を形成する為には、原子が基板に成膜されて規則性を持って膜化する必要があり、出来る限り低い蒸着レートで成膜されることが望ましい。
ここで、スパッタ成膜における成膜レートは、上述した(1)~(4)の条件に依存すると考えられる。そして、後述する実験を行った結果、(1)~(4)が上記の数値範囲を取る場合、駆動電圧が低減されることを確認しており、このことにより、結晶性の高い酸化タングステン膜が得られていることになる。
 なお、上記(1)に関し、後述する実験条件においては、スパッタガスの全圧は上限値が4.7Paであるが、少なくとも7.0Paまでは同様な傾向を示すことが別途、確認されている
 また、上記(2)に関し、スパッタガス全圧に対する酸素ガス分圧の割合は50%に設定されているが、少なくとも50%以上70%以下において、駆動電圧の低減が確認されている。
 さらに、上記(4)に関し、補足説明する。アルゴンガスと酸素ガスの流量比率が同等の場合、投入電力密度と成膜時圧力(全圧)によって決定すると考えられる。(3)の投入電力密度は、スパッタされるタングステン原子またはタングステン原子クラスターの数とエネルギーを変化させる。つまり、投入電力密度を低くすることによって、スパッタされるタングステンの数が低減し、基板に成膜されるタングステンを低エネルギーで成膜でき、低成膜レートでの膜化が期待できる。(1)の成膜時の全圧は、スパッタされ気相中に放出されたタングステン原子またはタングステン原子クラスターが成膜基板に到着するまでの平均自由行程を変化させる。つまり、全圧が高いとタングステン原子またはタングステン原子クラスターが基板に到着するまでに成膜チャンバー内のガス成分と衝突を繰返す確率が上昇して、飛来しているタングステン原子またはタングステン原子クラスターのランダム性が増すことによって、基板に成膜されるタングステンの数が低減し、タングステンを低エネルギーで成膜できると考えられる。それにより低成膜レートでの膜化が期待できる。
 しかし、前記スパッタの成膜レートを変化させる前記投入電力密度、前記成膜時の全圧をそれぞれ単独で制御しデバイス特性を高めるには限界があると考えられる。そこで、成膜時の全圧(Pa)/投入電力密度(W/cm)によって、これを新たに成膜条件(4)と規定し、タングステン原子の成膜レートを決定する指標とした。
 上記成膜条件(4)が高い程、駆動電圧が低くなって、成膜レートが低く、一方、前記成膜パラメータ(4)が低い程、駆動電圧が高くなって、成膜レートが高い傾向であることが実験的に確認された。
 具体的には、全圧/電力密度は後述する実験条件の通り、0.78Pa・cm/W以上であり、0.7Pa・cm/Wよりも大きいことが必要であると考えられ、より確実には、0.8Pa・cm/W以上であることが好ましいと考えられる。一方、全圧/電力密度の上限値については、実験条件上、3.13Pa・cm/W以下であり、3.2Pa・cm/Wよりも小さければよいと考えられ、より確実には、3.1Pa・cm/W以下であることが好ましいと考えられるが、上記の通り、成膜レートの点からすると、必ずしも上限値には制約されないと考えられる。
 次に、上記成膜条件の有効性を確認するための諸実験を行った。
 まず、正孔注入層5から正孔輸送層7へのホール伝導効率の、成膜条件依存性の評価を行うため、評価デバイスとして図10に示すようなホールオンリー素子101を作製した。
 実際に動作する有機EL素子においては、電流を形成するキャリアはホールと電子の両方である。したがって、有機EL素子の電気特性には、ホール電流以外にも電子電流が反映されている。しかし、ホールオンリー素子では、陰極からの電子の注入が阻害されるため、電子電流はほとんど流れず、全電流は、ほぼホール電流のみから構成されることとなる。すなわち、キャリアはホールのみと見なすことができ、ホールオンリー素子はホール伝導効率の評価に好適である。
 図10に示すように、ホールオンリー素子101は、基板107上に、厚さ50nmのITO薄膜からなる陽極102、厚さ30nmの酸化タングステンからなる正孔注入層103、厚さ20nmのTFBからなる正孔輸送層104、厚さ70nmのF8BTからなる有機発光層105、厚さ100nmの金からなる陰極106を順次積層した構成とした。なお、ここでは、ホール伝導効率の評価を目的としているため、有機発光層105を32nm以上48nm以下の範囲でなく、70nmに形成しているが、有機ELパネル10においては、上述した範囲が好ましいことは言うまでもない。
 ホールオンリー素子101の作製工程において、正孔注入層103は、DCマグネトロンスパッタ装置を用い、反応性スパッタ法で成膜した。チャンバー内ガスは、アルゴンガスおよび酸素ガスの少なくともいずれかから構成し、ターゲットは金属タングステンを用いた。基板温度は制御せず、全圧は各ガスの流量で調節するものとした。表1に示すように、A~Eの5種の成膜条件でホールオンリー素子101を作製した。表1に示すように、各成膜条件によって、全圧および投入電力密度を変化させた。チャンバー内のアルゴンガスおよび酸素ガスの分圧はそれぞれ50%である。
 以下、成膜条件Aで成膜したホールオンリー素子101をHOD-A、成膜条件Bで成膜したホールオンリー素子101をHOD-B、成膜条件Cで成膜したホールオンリー素子101をHOD-C、成膜条件Dで成膜したホールオンリー素子101をHOD-D、成膜条件Eで成膜したホールオンリー素子101をHOD-Eと称する。
Figure JPOXMLDOC01-appb-T000001
 作製した各ホールオンリー素子を直流電源108に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。
 図11は、各ホールオンリー素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。
 表2は、当該実験によって得られたHOD-A~HOD-Eの各サンプルの駆動電圧の値を示したものである。表2中の「駆動電圧」とは、実用的な具体値である電流密度0.3mA/cmのときの印加電圧である。
Figure JPOXMLDOC01-appb-T000002
 この駆動電圧が小さいほど、正孔注入層103のホール伝導効率は高いと言える。なぜなら、各ホールオンリー素子において、正孔注入層103以外の各部位の作製方法は同一であるから、正孔注入層103を除く、隣接する2つの層の間のホール注入障壁は一定と考えられる。また、当該実験で用いた陽極102と正孔注入層103は、オーミック接続をしていることが、別の実験で確認している。したがって、正孔注入層103の成膜条件による駆動電圧の違いは、正孔注入層103から正孔輸送層104へのホール伝導効率を強く反映したものであると言える。
 表2、図11に示されるように、HOD-A~HOD-Eは、成膜時の全圧を下げるとともに投入電力密度を最大にした条件で作製したHOD-Eと比較して、ホール伝導効率が優れていることがわかる。
 以上、ホールオンリー素子101における正孔注入層103のホール伝導効率に関する検証について述べたが、有機ELパネルにおいても、正孔注入層5から正孔輸送層7へのホール伝導効率の成膜条件依存性は、本質的にホールオンリー素子101と同じである。このことを確認するために、A~Eの各成膜条件で成膜した正孔注入層を用いた有機EL素子201を作製した。ただし、ここでは、作製した各有機EL素子は、図12に示すように、基板207上に厚さ50nmのITO薄膜からなる陽極202を形成し、さらに陽極202上に厚さ30nmの酸化タングステンからなる正孔注入層203、厚さ20nmのTFBからなる正孔輸送層204、厚さ70nmのF8BTからなる有機発光層205、厚さ5nmのバリウムおよび厚さ100nmのアルミニウムからなる陰極206を順次積層した構成とした。以下、成膜条件Aで成膜した有機EL素子201をBPD-A、成膜条件Bで成膜した有機EL素子201をBPD-B、成膜条件Cで成膜した有機EL素子201をBPD-C、成膜条件Dで成膜した有機EL素子201をBPD-D、成膜条件Eで成膜した有機EL素子201をBPD-Eと称する。
 作製した成膜条件A~Eの各有機EL素子201を直流電源208に接続し、電圧を印加した。このときの印加電圧を変化させ、電圧値に応じて流れた電流値を素子の単位面積当たりの値(電流密度)に換算した。
 図13は、各有機EL素子の印加電圧と電流密度の関係曲線を示すデバイス特性図である。図中縦軸は電流密度(mA/cm)、横軸は印加電圧(V)である。表3は、当該実験によって得られたBOD-A~BOD-Eの各サンプルの駆動電圧の値を示したものである。表3中の「駆動電圧」とは、実用的な具体値である電流密度8mA/cmのときの印加電圧である。
Figure JPOXMLDOC01-appb-T000003
 表3、図13に示されるように、BPD-Eは他の有機EL素子と比較して、最も電流密度―印加電圧曲線の立ち上がりが遅く、高い電流密度を得る為には、最も高い印加電圧であることが確認された。これは、それぞれ同じ成膜条件のホールオンリー素子HOD-A~HOD-Eと同様の傾向である。
 以上の結果により、正孔注入層203のホール伝導効率の成膜条件依存性が、有機EL素子201においても、ホールオンリー素子101の場合と同様に作用していることが確認された。すなわち、成膜条件A、B、C、Dの範囲となる成膜条件下で成膜を行うことにより、有機EL素子201においても、正孔注入層203から正孔輸送層204へのホール伝導効率を向上させ、それにより低電圧駆動が実現される。このように、ホールオンリー素子101に限らず、有機EL素子201においても、正孔注入層203から正孔輸送層204へのホール伝導効率を向上させることができるので、有機ELパネル10においても、正孔注入層5から正孔輸送層7へのホール伝導効率を向上させ、それにより低電圧駆動が実現される。
 なお、上記においては、投入電力の条件は、表1に示したように投入電力密度で表した。本実験で用いたDCマグネトロンスパッタ装置とは異なるDCマグネトロンスパッタ装置を用いる場合は、ターゲット裏面のマグネットのサイズに合わせて、投入電力密度が上記条件になるように投入電力を調節することにより、本実験と同様に、ホール伝導効率の優れた酸化タングステン膜からなる正孔注入層を得ることができる。なお、全圧、酸素分圧については、装置やターゲットサイズ及び、ターゲットマグネットサイズに依存しない。
 また、正孔注入層の反応性スパッタ法による成膜時は、室温環境下に配置されるスパッタ装置において、基板温度を意図的には設定していない。したがって、少なくとも成膜前の基板温度は室温である。ただし、成膜中に基板温度は数10℃程度上昇する可能性がある。
 なお、本願発明者は別の実験により、酸素分圧を上げすぎた場合には逆に駆動電圧が上昇してしまうことを確認している。したがって、酸素分圧は50%~70%であることが望ましい。
 以上の実験結果より、低電圧駆動には成膜条件A、B、C、Dで作製した正孔注入層を備える有機ELパネルが好ましく、より好ましくは成膜条件A、Bで作製した有機ELパネルである。以下、成膜条件A、B、C、Dで作製した正孔注入層を備える有機ELパネルを本願の対象とする。
 (正孔注入層におけるタングステンの化学状態について)
 本実施の形態の有機ELパネル10の正孔注入層5を構成する酸化タングステンには、上述したナノクリスタル構造が存在している。このナノクリスタル構造は、先の実験で示した成膜条件の調整により形成されるものである。詳細を以下に述べる。
 前述の成膜条件A~Eで成膜した酸化タングステンにおける、ナノクリスタル構造の存在を確認するために、硬X線光電子分光(HAXPES)測定(以下、単に「XPS測定」と記載する。)実験を行った。ここで、一般に硬X線光電子分光スペクトル(以下、単に「XPSスペクトル」と記載する。)は、測定対象物の表面と、光電子を取り出す検出器において光電子を検出する方向とがなす角度によって、膜の平均価数を反映する情報深さが決まる。そこで本実験では、XPS測定における光電子検出方向と、酸化タングステン膜の表面のなす角度が40°となる条件で測定を行い、酸化タングステン膜の厚み方向の平均の価数の状態を観察するものとした。
 XPS測定条件は以下の通りである。なお、測定中、チャージアップは発生しなかった。
 (XPS測定条件)
  使用機器 :R-4000(VG-SCIENTA社製)
  光源   :シンクロトロン放射光(7856eV)
  バイアス :なし
  出射角  :基板表面とのなす角が40°
  測定点間隔:0.05eV
 表1に示すA~Eの各成膜条件でXPS測定用のサンプルを作製した。ガラス上に成膜されたITO導電性基板の上に、厚さ30nmの正孔注入層を、前記の反応性スパッタ法により成膜することにより、XPS測定用のサンプルとした。以降、成膜条件A、B、C、D、Eで作製したXPS測定用サンプルを、それぞれサンプルA、サンプルB、サンプルC、サンプルD、サンプルEと称する。続いて、サンプルA~Eの各成功注入層の表面に対してXPS測定を行った。その結果のスペクトルを図14に示す。
 図14の横軸は結合エネルギーを示しており、X線を基準としたときの各準位に存在する光電子のエネルギーに相当し、左方向を正の向きとした。縦軸は光電子強度を示しており、観測された光電子の個数に相当する。図14に示すように3つのピークが観測され、各ピークは図の左から右に向かって、それぞれタングステンの5p3/2準位(W5p3/2)、4f5/2準位(W4f5/2)、4f7/2準位(W4f7/2)に対応するピークであると帰属した。
 次に、サンプルAのスペクトルと比較例としてサンプルEのスペクトルのW5p3/2、W4f5/2、W4f7/2に帰属されたピークに対し、ピークフィッティング解析を行った。
ピークフィッティング解析は以下のようにして行った。
 具体的には、光電子分光解析用ソフト「XPSpeak Version4.1」を用いて行った。まず、硬X線のエネルギーの7940eVの光イオン化断面積から、W4f7/2準位、W4f5/2準位、W5p3/2準位に対応するピーク面積強度の比率を、W4f7/2:W4f5/2:W5p3/2=4:3:10.5で固定し、表4に示すように、W4f7/2の6価表面欠陥準位(W6+4f7/2)に帰属されるピークトップを35.7eVのエネルギー値に合わせた。次に、W5p3/2の表面光電子ピーク(Wsur5p3/2)、6価表面欠陥準位(W6+5p3/2)、5価表面欠陥準位(W5+5p3/2)に帰属される各帰属ピークのピークエネルギー値とピーク半値幅を、表4に示す数値に設定した。同様に、W4f5/2、W4f7/2に対しても、表面光電子ピーク(Wsur4f5/2、Wsur4f7/2)、6価表面欠陥準位(W6+4f5/2)、5価表面欠陥準位(W5+4f5/2、W5+4f7/2)に帰属される各帰属ピークのピークエネルギー値とピーク半値幅の値を、表4のように設定した。ピーク強度を任意の強度に設定した後、Gaussian-Lorentzianの混合関数を用いて最大100回演算することにより、最終的なピークフィッティング解析結果を得た。上記混合関数におけるLorentzian関数の比率は表4の通りである。
Figure JPOXMLDOC01-appb-T000004
 最終的なピークフィッティング解析結果を図に示す。図15(a)は、サンプルAの解析結果、図15(b)はサンプルEの解析結果である。
 両図において、破線(sample A、sample E)は実測スペクトル(図5のスペクトルに相当)、二点鎖線(surface)は表面光電子ピークWsur5p3/2、Wsur4f5/2、Wsur4f7/2に帰属されるスペクトル、点線(W6+)は6価表面欠陥準位W6+5p3/2、W6+4f7/2、(W6+4f5/2)に帰属されるスペクトル、一点鎖線(W5+)は5価表面欠陥準位W5+5p3/2、W5+4f5/2、W5+4f7/2に帰属されるスペクトルである。実線(fit)は、二点鎖線と点線と一点鎖線で示すスペクトルを足し合わせたスペクトルである。なお、両図において、一点鎖線で示した5価タングステンに帰属されるピークは、5価の状態のタングステンのみに由来するものとみなした。
 図15の各図に示すように、5p3/2、4f5/2、4f7/2の各準位に帰属されるスペクトルは、正孔注入層の表面からの光電子によるピーク(surface)と、正孔注入層の層内で光電子が検出される深さに含まれる6価タングステンのピーク(W6+)と、同深さに含まれる5価タングステンのピーク(W5+)の足し合わせにより構成されていることが分かる。
 また、図15(a)に示すように、サンプルAでは、W6+のスペクトルにおける5p3/2、4f5/2、4f7/2の各準位に帰属されるピークから、0.3~1.8eV低い結合エネルギー領域において、各々の準位に対応するW5+のピークが存在することが見て取れる。一方、図15(b)に示すように、サンプルEでは、そのようなW5+のピークは見て取れない。分かりやすくするために、図15(a)および(b)の右側に、サンプルAおよびサンプルEのW5+のスペクトルにおける4f7/2に帰属されるピークの拡大図を示した。同図の(c)で示したように、サンプルAでははっきりとW5+のピークが存在していること確認できるが、サンプルEではW5+のピークは確認できない。
 さらに、図15の各拡大図の細部に着目すると、サンプルAでは実線(fit)で示すピークフィッティンの足し合わせのスペクトルと、点線(W6+)で示すW6+のスペクトルとの間で大きく「ずれ」がある一方で、サンプルEではサンプルAほどの「ずれ」はない。すなわち、サンプルAにおけるこの「ずれ」が5価タングステンの存在を示唆するものであると推察される。
 次に、サンプルA~Eにおける、6価タングステンの元素数に対する5価タングステンの元素数の存在比率であるW5+/W6+を算出した。この存在比率は、各サンプルのピークフィッティング解析で得たスペクトルにおけるW5+(一点鎖線)のピークの面積強度を、W6+(点線)のピークの面積強度で除算することにより算出した。
 なお、原理上、W4f7/2におけるW6+のピークの面積強度とW5+のピークの面積強度の比率により、6価タングステン原子の数と5価タングステン原子の数の存在比を表すことは、W5p3/2ならびにW4f5/2に帰属されるピークから前記存在比を表すことと同義である。実際、本検討において、W4f7/2におけるW5+4f7/2の面積強度とW6+4f7/2の面積強度の比率は、W5p、W4f5/2の場合でも同じ値であることを確認している。よって、以降の考察においては、W4f7/2に帰属されるピークのみを用いて検討を行うこととした。
 表5にサンプルA~EのW5+/W6+を示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すW5+/W6+の値より、最も多くの5価タングステン原子が含まれるのはサンプルAであり、続いてサンプルB、サンプルC、サンプルDの順にその比率が少ないことを確認した。また、表3および表5の結果より、W5+/W6+の値が大きいほど、有機EL素子の駆動電圧が低くなることが明らかとなった。
 (正孔注入層におけるタングステンの電子状態について)
 前述の成膜条件A~Dで成膜した酸化タングステンには、その電子状態において、価電子帯の上端、すなわち価電子帯で最も低い結合エネルギーよりも、1.8~3.6eV低い結合エネルギー領域内に占有準位が存在している。この占有準位が正孔注入層の最高占有準位に該当し、すなわち、その結合エネルギー範囲は正孔注入層のフェルミ面に最も近い。以降、この占有準位を「フェルミ面近傍の占有準位」と称する。
 このフェルミ面近傍の占有準位が存在することで、正孔注入層5と正孔輸送層7との積層界面では、いわゆる界面準位接続がなされ、正孔輸送層7の最高被占軌道の結合エネルギーが、正孔注入層5の前記フェルミ面近傍の占有準位の結合エネルギーと、ほぼ等しくなる。すなわち、この占有準位が存在することで、正孔注入層5と正孔輸送層7との間のホール注入障壁を小さく抑えることができる。その結果、より良好なホール伝導効率を得ることができ、低電圧で駆動が可能となる。
 なお、ここで言う「ほぼ等しくなる」および「界面準位接続がなされた」とは、正孔注入層5と正孔輸送層7との界面において、フェルミ面近傍の占有準位で最も低い結合エネルギーと、最高被占軌道で最も低い結合エネルギーとの差が、±0.3eV以内の範囲にあることを意味している。
 さらに、ここで言う「界面」とは、正孔注入層5の表面と、当該表面から0.3nm以内の距離における正孔輸送層7とを含む領域を指す。
 また、前記フェルミ面近傍の占有準位は、正孔注入層5の全体に存在することが望ましいが、少なくとも正孔輸送層7との界面に存在すればよい。
 次に、前述のサンプルAおよびサンプルEの正孔注入層に対し、フェルミ面近傍の占有準位の存在を確認する実験を、紫外光電子分光(UPS)測定を用いて行った。
 サンプルA、Eはいずれも、スパッタ装置内において正孔注入層を成膜した後、当該スパッタ装置に連結され窒素ガスが充填されたグローブボックス内に移送し、大気曝露しない状態を保った。そして、当該グローブボックス内でトランスファーベッセルに封入し、光電子分光装置に装着した。これにより、正孔注入層を成膜後に大気曝露することなく、UPS測定を実施した。
 ここで、一般にUPSスペクトルは、測定対象物の表面から深さ数nmまでにおける、価電子帯などの占有準位の状態を反映したものになる。そこで本実験では、UPS測定を用いて正孔注入層の表層における占有準位の状態を観察するものとした。
 UPS測定条件は以下の通りである。なお、測定中チャージアップは発生しなかった。
 (UPS測定条件)
  使用機器 :走査型X線光電子分光分析装置 PHI5000 VersaProbe(アルバック・ファイ社製)
  光源  :He I線
  バイアス:なし
  出射角 :基板法線方向
  測定点間隔:0.05eV
 図16に、サンプルAにおける正孔注入層表面のUPSスペクトルを示す。横軸の結合エネルギーの原点は基板のフェルミ面とし、左方向を正の向きとした。以下、図16を用いて、正孔注入層の各占有準位について説明する。
 一般に酸化タングステンが示すUPSスペクトルにおいて、最も大きく急峻な立ち上がりは一意に定まる。この立ち上がりの変曲点を通る接線を線(i)、その横軸との交点を点(iii)とする。これにより、酸化タングステンのUPSスペクトルは、点(iii)から高結合エネルギー側に位置する領域(ア)と、低結合エネルギー側(すなわちフェルミ面側)に位置する領域(イ)に分けられる。
 ここで、先の同様のXPS測定を用いて、サンプルA、Eとも、タングステン原子と酸素原子の数の比率がほぼ1:3であること確認した。具体的には、正孔注入層の表面から深さ数nmまでにおけるタングステンと酸素の組成比を見積もることにより行った。
 この比率より、サンプルサンプルA、Eのいずれにおいても、正孔注入層は少なくとも表面から深さ数nm以内の範囲において、三酸化タングステンを基本とする原子配置を基本構造(詳細は次項で述べる)に持つと考えられる。したがって、図16における領域(ア)は、上記基本構造に由来する占有準位であり、いわゆる価電子帯に対応する領域である。なお、本願発明者は正孔注入層のX線吸収微細構造(XAFS)測定を行い、サンプルA、Eのいずれにおいても、上記基本構造が形成されていることを確認した。
 したがって、図16における領域(イ)は、価電子帯と伝導帯の間のバンドギャップに対応するが、本UPSスペクトルが示すように、酸化タングステンにはこの領域にも、価電子帯とは別の占有準位が存在することがあることが知られている。これは上記基本構造とは異なる別の構造に由来する準位であり、いわゆるバンドギャップ間準位(in-gap stateあるいはgap state)である。
 続いて図17に、サンプルA、Eにおける各正孔注入層の、領域(イ)におけるUPSスペクトルを示す。図17に示すスペクトルの強度は、図16における点(iii)よりも3~4eVほど高結合エネルギー側に位置するピーク(ii)のピークトップの値で規格化した。図17にも図16の点(iii)と同じ横軸位置に点(iii)を示している。横軸は点(iii)を基準とした相対値(相対結合エネルギー)として表し、左から右(フェルミ面側)に向かって結合エネルギーが低くなるように示している。
 図17に示されるように、サンプルAの正孔注入層では、点(iii)からおおよそ3.6eV低い結合エネルギーの位置から、点(iii)からおおよそ1.8eV低い結合エネルギーの位置までの領域に、ピークの存在が確認できる。このピークの明瞭な立ち上がり位置を図中に点(iv)で示した。このようなピークは、サンプルEでは確認できない。
 このように、UPSスペクトルにおいて点(iii)から1.8~3.6eV程度低い結合エネルギーの領域内に隆起(ピークとは限らない)した構造を持つ酸化タングステンを、正孔注入層として用いることにより、有機ELパネルにおいて優れたホール伝導効率が発揮できるようになっている。
 ここで、当該隆起の程度が急峻であるほど、ホール注入効率が高くなることが分かっている。したがって、図17に示すように、点(iii)から2.0~3.2eV程度低い結合エネルギーの領域は、比較的当該隆起構造を確認しやすく、かつ、その隆起が比較的急峻である領域として、特に重要であると言える。
 (W5+/W6+の値と駆動電圧の関係)
 図18は酸化タングステン膜表面の構造を説明するための図である。ここでは酸化タングステンとして三酸化タングステン(WO)を例に挙げて説明する。図18に示すように、酸化タングステンの単結晶は、酸素原子がタングステン原子に対し8面体配位で結合したルチル構造を基本構造に持つ。なお、図18では、単純化のために三酸化タングステン単結晶をルチル構造で示しているが、実際は歪んだルチル構造である。
 図18に示すように、結晶内部においてタングステン原子が酸素原子で終端されているが、結晶粒界においては終端酸素原子(b)とそれに囲まれた終端されていないタングステン原子(a)が存在すると考えられる。非特許文献(I.N.Yakovkin et al.,Surface Science 601,1481(2007).)では、第一原理計算により、結晶粒界の全てのタングステン原子が酸素原子で終端されるよりも、図18のように周期的に一部のタングステン原子(a)が終端されない構造の方がエネルギー的に安定すると開示されている。この理由として、結晶粒界の全てのタングステン原子が酸素原子で終端されると終端酸素原子同士の電気的な斥力が大きくなり、かえって不安定化するからであると報告している。つまり、結晶粒界においては、表面に酸素欠陥に類する構造(a)がある方が安定するのである。
 ここでは、酸素原子で終端されているタングステン原子、すなわち、酸素欠陥に類する構造(a)を有しないタングステン原子が6価タングステン原子に対応している。一方、酸素原子で終端されていないタングステン原子、すなわち、酸素欠陥に類する構造(a)を有するタングステン原子が5価タングステン原子(5価以上6価未満も含む)に対応している。
 5価タングステン原子は、8面体配位している酸素原子の1つがなくなることによって非共有電子対を有する構造を有していると思われる。つまり、5価タングステン原子は自身が持つ非共有電子対をホールに供与し、それにより当該電子を供与した5価タングステン原子はホールを有することになると考えられる。正孔注入層に印加されたバイアス電圧によって、5価タングステン原子に存在する非共有電子対の供与が連続的に生じることで、ホールは低い電位方向に、電子は高い電位方向に移動し、ホール伝導が生じると考えられる。よって、サンプルAのようにW5+/W6+の値が高い、すなわち、5価タングステン原子の比率が高い正孔注入層ではホール伝導経路が多く、低電圧でのホール伝導により低電圧駆動が実現し、結果として有機ELパネルにおいて優れたホール伝導効率が発揮できるようになっている。
 また、サンプルC、Dにおいては、W5+/W6+の値がサンプルAほど高くはないが、3.2%程度であっても良好なホール伝導が生じていることも確認された。
 (正孔注入層5におけるタングステンの微細構造について)
 正孔注入層5を構成する酸化タングステン膜には、ナノクリスタル構造が存在している。このナノクリスタル構造は、成膜条件の調整により形成されるものである。詳細を以下に述べる。
 表1で示した成膜条件A、B、C、D、Eで成膜した酸化タングステン膜における、ナノクリスタル構造の存在を確認するために、透過電子顕微鏡(TEM)観察実験を行った。
 TEM観察用のサンプルにおける酸化タングステン層は、表1に示す条件にてDCマグネトロンスパッタ装置を用い、反応性スパッタ法で成膜した。当該サンプルの構成としては、ガラス上に成膜されたITO導電性基板の上に、厚さ30nmの正孔注入層を前記の反応性スパッタ法により成膜した。以降、成膜条件A、B、C、D、Eで作製したTEM観察用サンプルを、それぞれサンプルA、サンプルB、サンプルC、サンプルD、サンプルEと称する。なお、TEM観察は、先のXPS測定により、サンプルA、B、C、Dに5価タングステン原子が含まれていることを確認した上で行っている。
 ここで、一般にTEM観察は、観察する面に対する厚みを薄片化し観察を行う。本実施の形態での薄片化は、酸化タングステン膜における断面からの深さ方向の厚みを、収束イオンビーム(FIB)装置を用いてサンプル加工し、100nm程度の薄片化とした。FIB加工とTEM観察の条件は以下の通りである。
 (FIB加工条件)
  使用機器:Quanta200(FEI社製)
  加速電圧:30kV(最終仕上げ5kV)
  薄片膜厚:~50nm
 (TEM観察条件)
  使用機器:トプコンEM-002B(トプコンテクノハウス社製)
  観察方法:高分解能電子顕微鏡法
  加速電圧:200kV
 図19に、サンプルA、B、C、D、Eの正孔注入層断面のTEM観察写真を示す。写真のスケールは、写真内に記載したスケールバーに従い、TEM写真の表示サイズは560×560ピクセルで表示している。また、図19で示すTEM観察写真は、黒暗部から薄明部までを256階調に平均分割し表示している。
 図19に示すTEM写真から、サンプルA、B、C、Dにおいては部分的に明部が同方向に配列していることにより、規則的に配列した線状構造が確認される。この線状構造は、TEM写真中の縮尺より、おおよそ1.85~5.55Åの間隔で配列していることがわかった。
 一方で、サンプルEにおいては明部が不規則に分散しており、規則的に配列した線状構造は確認されなかった。TEM写真において、上記の線状構造がある領域は、酸化タングステンの一つのナノクリスタルを表しており、TEM写真より、サンプルA、B、C、Dでは酸化タングステンのナノクリスタル構造の形成が確認された。一方、サンプルEにおいてはナノクリスタル構造の形成は確認されなかった。
 図19のサンプルAのTEM写真において、ナノクリスタルの任意の1つを白線枠にて図示した。なお、この輪郭線は正確なものではなく、あくまで例示である。というのは、実際には、TEM写真に写っているのは最表面だけではなく、下層の様子も写り込んでいるため、正確な輪郭を特定することが困難であるからである。サンプルAにおいて白線枠にて図示している一のナノクリスタルの大きさは、おおよそ3~10nm程度である。
 (注入されたホールのホール伝導に関する考察)
 上述しているように、酸化タングステンの単結晶は酸素原子がタングステン原子に対し8面体配位で結合した、歪んだルチル構造を基本構造としていると考えられる。このルチル構造が秩序性を持たずに膜化した場合はアモルファス構造となり、ルチル構造が秩序性を持って膜化した場合はナノクリスタル構造になると考えられる。
 酸化タングステン膜に5価タングステン原子が存在している場合、タングステン原子に対して8面体配位している酸素原子の1つがなくなることによって、タングステン原子は非共有電子対を有する構造をしていると思われる。つまり、5価タングステン原子は自身が持つ非共有電子対を、ホールを有するタングステン原子に供与し、非共有電子対を供与した5価タングステン原子はホールを有することになると考えられる。正孔注入層に印加されたバイアス電圧によって、5価タングステン原子に存在する非共有電子対の供与が連続的に生じることで、ホールは低い電位方向に、電子は高い電位方向に移動し、ホール伝導が生じると考えられる。よって、5価タングステン原子が多く含まれるほど、ホール伝導に寄与するタングステン原子が多く存在することになり、ホール伝導効率は向上する。しかし、5価タングステン原子を多く含んでいることが、ホール伝導性が向上する必要十分条件とはならない。この理由について図20を用いて説明する。
 図20(b)は、ホッピング伝導によりホール110が伝導される様子の概念図であり、アモルファス構造の場合におけるホール110の伝導を示す図である。アモルファス構造では、同図において、111で示した部分はルチル構造が秩序性を持つ結晶質の部分(偏析した結晶111)であり、偏析した結晶111の表面には5価タングステン原子が多く存在する。一方、偏析した結晶111以外の領域112においてはルチル構造が秩序性を持たず、アモルファス部分となっており、5価タングステン原子は偏析した結晶111の表面ほど多くは存在しない。アモルファス構造においては、偏析した結晶111の表面に5価タングステン原子が存在しているものの、5価タングステン原子と近接する他の5価タングステン原子の間は各々のタングステン原子の軌道の重なりがない為に、各々の5価タングステン原子間をホール110がホッピングすることによってホールが伝導すると思われる。つまり、アモルファス構造の場合、5価タングステン原子間の距離が長く、ホール伝導部位となり得る5価タングステン原子間でのホールの授受には、5価タングステン原子間に非常に高い電圧を印加する必要が生じ素子としての駆動電圧も高電圧化する。
 一方、図20(a)は、ナノクリスタルの表面を介してホール110が伝導される様子の概念図であり、ナノクリスタル構造の場合におけるホール110の伝導を示す図である。ナノクリスタル構造では、同図に示すように、ルチル構造が秩序性を持って存在しているため、膜全体が微細な結晶質となっており、ホール伝導様式はアモルファス膜の場合とは異なる。前述したように、5価タングステン原子が存在するのはナノクリスタル109同士の表面部分であり、この表面部分がホール伝導部となる。ナノクリスタル構造では、このホール伝導部となる表面部分がつながりを有していることによって低い電圧でホール110が伝導できると考えられる。
 以上説明したように、良好なホール伝導性をもつ金属酸化物膜の構造としては、(1)ホール伝導部となる部分が存在すること、および、(2)結晶粒界となる部分を増やすことにより、ホール伝導に寄与する電子軌道の重なりを形成することが必要であると考えられる。すなわち、(1)金属元素自身が取り得る最大価数より低い価数の状態の金属元素が存在し、(2)ナノクリスタル構造となるような金属酸化物膜が、ホール伝導に好適な構造と言える。
 次に、低価数を含むナノクリスタルの結晶性の酸化タングステンが低電圧駆動を実現することの要因がホール伝導性の向上による効果が支配的である点について述べる。正孔注入層5は、透明導電層4と正孔注入層5の界面で形成されるホール注入障壁及び、正孔注入層5と正孔輸送層7の界面で形成されるホール注入障壁の低減によっても駆動電圧の低減を図ることが可能である。本検討においては、ホール注入特性の異なる表4に示すBPD-D、BPD-Eと同じ正孔注入層203で作製した酸化タングステン膜についてUPS測定を用いてホール伝導エネルギー値の解析を行った。BPD-D、BPD-Eは図13に示すように電流密度10mA/cmにおいては、おおよそ2V程度の駆動電圧の違いが確認されたが、UPSによるホール伝導エネルギー値に違いはなかった。すなわち、BPD-D、BPD-Eのホール注入電圧の違いは、陽極202と正孔注入層203の界面で形成されるホール注入障壁及び、正孔注入層203と正孔輸送層204の界面で形成されるホール注入障壁の違いによって形成されるのではなく、前述の正孔注入層203の膜構造に起因するものであることを確認した。
<表示装置100の全体構成>
 本実施の形態に係る表示装置100について説明する。図21は、本実施の形態の表示装置100の外観を例示した図である。図22は、表示装置100の全体構成を模式的に示すブロック図である。
 図22に示すように、表示装置100は、有機ELパネル10と、これに接続された駆動制御部20とを有し構成されている。有機ELパネル10は、有機材料の電界発光現象を利用したトップエミッション型の有機ELパネルである。
 また、駆動制御部20は、4つの駆動回路21~24と制御回路25とから構成されている。
 なお、実際の表示装置100では、有機ELパネル10に対する駆動制御部20の配置については、これに限られない。
 以上のように本実施の形態によれば、有機ELパネル10において、正孔輸送層7及び有機発光層8は、R,G,B各色ともに厚みが等しい範囲にあり、正孔注入層5で膜厚調整している。この正孔注入層5は、酸化タングステンWOxを含む金属酸化物のみから構成され、R,G,B各色の厚みが5nm以上40nm以下である。
 これにより、所定の電流密度を得るための駆動電圧をほぼ一定にできるため、有機発光層8で膜厚調整した場合に比べ、駆動電圧を低減することができる。
 また、有機ELパネル10では、R,G,B各色の第1機能層の膜厚は、36nm以上69nm以下であり、R,G,B各色における有機発光層8から陽極3までの光学的な距離は、72nm以上131nm以下である。
 これにより、有機発光層8の膜厚を調整して得られる光取り出し効率と同等の光取り出し効率を達成することができる。
 このように、有機ELパネル10では、有機発光層8の膜厚で光取り出し効率を調整した場合と同等の光取り出し効率を実現しつつ、駆動電圧を低減することができる。
 さらに、色度についても、有機発光層8の膜厚を調整した場合と同等の色度が実現できる。
 また、正孔注入層のR、G、Bの各膜厚で光取り出し効率を調整することにより、駆動電圧に対する依存性の高い有機発光層8及び正孔輸送層7を最大限薄膜化することができる。
 以上、本発明に係る有機ELパネル10について、実施の形態に基づいて説明したが、本発明は上記実施の形態に限られないことは勿論である。
(1)上記実施の形態では、正孔注入層は、R,G,B毎に厚みが異なっていたが、これに限らず、少なくとも1色について他の色と厚みが異なっていればよい。例えば、RとGとが同じ膜厚で、Bのみ膜厚が異なる構成としてもよい。
(2)上記実施の形態では、正孔注入層は、遷移金属の酸化物を含む金属酸化物のみから形成されるとしたが、酸化タングステンのみから構成されるとしてもよい。
(3)上記実施の形態では、表示装置を例に挙げて説明したが、これに限らず、上記有機ELパネルを発光装置に適用することも可能である。
 本発明は、例えば、家庭用もしくは公共施設、あるいは業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等に利用可能である。
1     TFT基板
2     層間絶縁膜
3     陽極
4     透明導電層
5     正孔注入層
6     バンク
7     正孔輸送層
8     有機発光層
9     電子輸送層
10    有機ELパネル
11    陰極
12    封止層
20    駆動制御部
21-24 駆動回路
25    制御回路
100   表示装置

Claims (29)

  1.  R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、入射された光を反射する陽極と、
     前記陽極に対向して配置され、入射された光を透過する陰極と、
     前記陽極と前記陰極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、前記陽極と前記陰極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、
     前記陽極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられ、正孔を注入するための正孔注入層と、前記正孔注入層上に設けられ、正孔を前記有機発光層に輸送するための正孔輸送層を含む2以上の層からなる第1機能層とを備え、
     前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1機能層を通じて前記陽極側に進行し前記陽極により反射された後、前記第1機能層、前記有機発光層および前記陰極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記陽極側に進行することなく前記陰極側に進行し、前記陰極を通じて外部に出射される第2光路が形成され、
     前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、R,G,B各色の厚みが5nm以上40nm以下であり、少なくとも1色について他の色とは異なる厚みを有し、
     前記正孔輸送層は、R,G,B各色ともに厚みが等しい範囲にあり、
     前記有機発光層は、R,G,B各色ともに厚みが等しい範囲にある
     ことを特徴とする有機ELパネル。
  2.  前記酸化タングステンを構成するタングステン元素は、タングステン元素が取り得る最大価数である6価の状態、および前記最大価数である6価よりも低い5価の状態で酸化タングステン膜に含まれ、かつ、
     前記酸化タングステン膜は、粒径がナノメートルオーダーの大きさである前記酸化タングステンの結晶を含む
     請求項1記載の有機ELパネル。
  3.  前記5価のタングステン元素の原子数を、前記6価のタングステン元素の原子数で割った値であるW5+/W6+が3.2%以上である
     請求項2に記載の有機ELパネル。
  4.  前記5価の状態のタングステン元素の存在によって、前記正孔注入層のバンド構造には、価電子帯で最も低い結合エネルギーよりも1.8~3.6eV低い結合エネルギー領域内に占有準位を有している
     請求項2または3に記載の有機ELパネル。
  5.  前記酸化タングステン膜は、粒径が3~10ナノメートルの大きさである前記酸化タングステンの結晶を複数個含む
     ことを特徴とする請求項2~4のいずれかに記載の有機ELパネル。
  6.  前記R,G,B各色の前記第1機能層の膜厚は、36nm以上69nm以下であり、
     前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離は、72nm以上131nm以下である
     請求項1記載の有機ELパネル。
  7.  前記正孔注入層は、R,G,B毎に厚みが異なっている
     請求項6記載の有機ELパネル。
  8.  前記正孔注入層は、酸化タングステンのみから構成される
     請求項6記載の有機ELパネル。
  9.  前記正孔注入層は、
     前記Rの厚みが36nm以上40nm以下であり、
     前記Gの厚みが30nm以上34nm以下であり、
     前記Bの厚みが8nm以上12nm以下であり、
     前記正孔輸送層は、前記R,G,B各色の厚みが7nm以上13nm以下であって、かつ、等しく、
     前記有機発光層は、前記R,G,B各色の厚みが32nm以上48nm以下であって、かつ、等しい
     請求項6記載の有機ELパネル。
  10.  前記正孔注入層は、
     前記Rの厚みが36nm以上40nm以下であり、
     前記Gの厚みが26nm以上30nm以下であり、
     前記Bの厚みが4nm以上8nm以下であり、
     前記正孔輸送層は、前記R,G,B各色の厚みが12nm以上18nm以下であって、かつ、等しく、
     前記有機発光層は、前記R,G,B各色の厚みが32nm以上48nm以下であって、かつ、等しい、
     請求項6記載の有機ELパネル。
  11.  前記第1機能層は、前記陽極上に形成される透明導電層を含み、
     前記透明導電層は、R,G,B各色ともに厚みが等しい範囲にあり、
     前記有機発光層と前記陰極との間には、前記第1機能層と異なる、電子注入輸送層を含む第2機能層が設けられ、前記電子注入輸送層は、R,G,B各色ともに厚みが等しい範囲にある
     請求項6記載の有機ELパネル。
  12.  R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、入射された光を反射する陽極と、
     前記陽極に対向して配置され、入射された光を透過する陰極と、
     前記陽極と前記陰極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、前記陽極と前記陰極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、
     前記陽極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられ、正孔を注入するための正孔注入層と、前記正孔注入層上に設けられ、正孔を前記有機発光層に輸送するための正孔輸送層を含む2以上の層からなる第1機能層とを備え、
     前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1機能層を通じて前記陽極側に進行し前記陽極により反射された後、前記第1機能層、前記有機発光層および前記陰極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記陽極側に進行することなく前記陰極側に進行し、前記陰極を通じて外部に出射される第2光路が形成され、
     前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、かつ、R,G,B各色ごとに厚みが異なっており、Rに関する厚みが36nm以上40nm以下であり、Gに関する厚みが30nm以上34nm以下であり、Bに関する厚みが8nm以上12nm以下であり、
     前記正孔輸送層は、Rに関する厚みが7nm以上13nm以下であり、Gに関する厚みが7nm以上13nm以下であり、Bに関する厚みが7nm以上13nm以下であり、
     前記有機発光層は、Rに関する厚みが32nm以上48nm以下であり、Gに関する厚みが32nm以上48nm以下であり、Bに関する厚みが32nm以上48nm以下である、
     ことを特徴とする有機ELパネル。
  13.  前記酸化タングステンを構成するタングステン元素は、タングステン元素が取り得る最大価数である6価の状態、および前記最大価数である6価よりも低い5価の状態で酸化タングステン膜に含まれ、かつ、
     前記酸化タングステン膜は、粒径がナノメートルオーダーの大きさである前記酸化タングステンの結晶を含む
     請求項12記載の有機ELパネル。
  14.  前記5価のタングステン元素の原子数を、前記6価のタングステン元素の原子数で割った値であるW5+/W6+が3.2%以上である
     請求項13に記載の有機ELパネル。
  15.  前記5価の状態のタングステン元素の存在によって、前記正孔注入層のバンド構造には、価電子帯で最も低い結合エネルギーよりも1.8~3.6eV低い結合エネルギー領域内に占有準位を有している
     請求項13または14に記載の有機ELパネル。
  16.  前記酸化タングステン膜は、粒径が3~10ナノメートルの大きさである前記酸化タングステンの結晶を複数個含む
     ことを特徴とする請求項13~15のいずれかに記載の有機ELパネル。
  17.  前記R,G,B各色の前記第1機能層の膜厚は、36nm以上69nm以下であり、
     前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離は、72nm以上131nm以下である
     請求項12記載の有機ELパネル。
  18.  R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、入射された光を反射する陽極と、
     前記陽極に対向して配置され、入射された光を透過する陰極と、
     前記陽極と前記陰極との間に配置され、R(レッド),G(グリーン),B(ブルー)の各色に対応して設けられ、前記陽極と前記陰極との間に電圧が印加されることにより前記R,G,B各色の光を出射する有機発光層と、
     前記陽極と前記有機発光層との間に配置され、前記R,G,B各色に対応して設けられ、正孔を注入するための正孔注入層と、前記正孔注入層上に設けられ、正孔を前記有機発光層に輸送するための正孔輸送層を含む2以上の層からなる第1機能層とを備え、
     前記有機発光層から出射された前記R,G,B各色の光の一部が、前記第1機能層を通じて前記陽極側に進行し前記陽極により反射された後、前記第1機能層、前記有機発光層および前記陰極を通じて外部に出射される第1光路と、
     前記有機発光層から出射された前記R,G,B各色の光の残りの一部が、前記陽極側に進行することなく前記陰極側に進行し、前記陰極を通じて外部に出射される第2光路が形成され、
     前記正孔注入層は、酸化タングステンを含む金属酸化物のみから構成され、かつ、R,G,B各色ごとに厚みが異なっており、Rに関する厚みが36nm以上40nm以下であり、Gに関する厚みが26nm以上30nm以下であり、Bに関する厚みが4nm以上8nm以下であり、
     前記正孔輸送層は、Rに関する厚みが12nm以上18nm以下であり、Gに関する厚みが12nm以上18nm以下であり、Bに関する厚みが12nm以上18nm以下であり、
     前記有機発光層は、Rに関する厚みが32nm以上48nm以下であり、Gに関する厚みが32nm以上48nm以下であり、Bに関する厚みが32nm以上48nm以下である
     ことを特徴とする有機ELパネル。
  19.  前記R,G,B各色の前記第1機能層の膜厚は、36nm以上69nm以下であり、
     前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離は、72nm以上131nm以下である
     請求項18記載の有機ELパネル。
  20.  入射された光を反射する陽極をR(レッド),G(グリーン),B(ブルー)の各色に対応して設ける第1工程と、
     前記陽極の上方に、R(レッド),G(グリーン),B(ブルー)の各色に対応して、正孔を注入する正孔注入層と、正孔を輸送する正孔輸送層を含む、2以上の層からなる第1機能層を設ける第2工程と、
     前記R,G,B各色の機能層の上方に、それぞれR,G,B各色の光を出射する有機発光層を設ける第3工程と、
     前記有機発光層の上方に、前記陽極と対向するように、入射された光を透過する陰極を設ける第4工程とを含み、
     前記第2工程では、前記正孔注入層を、酸化タングステンを含む金属酸化物のみから構成し、前記正孔注入層の厚みをR,G,B各色が5nm以上40nm以下で、かつ、少なくともいずれかの1色について他の色とは異なる厚みになるように形成し、
     前記第3工程では、前記有機発光層の厚みを、R,G,B各色ともに等しい範囲となるように形成する
     ことを特徴とする有機ELパネルの製造方法。
  21.  前記第2工程では、前記正孔輸送層の厚みをR,G,B各色ともに等しい範囲となるように形成し、かつ、
     前記R,G,B各色の第1機能層の膜厚を36nm以上69nm以下に形成し、前記R,G,B各色における前記有機発光層から前記陽極までの光学的な距離を72nm以上131nm以下となるように形成する
     請求項20記載の有機ELパネルの製造方法。
  22.  前記第2工程では、
     前記正孔注入層を、前記酸化タングステンを蒸着法またはスパッタ法を用いて前記陽極上に成膜することにより形成し、
     前記正孔輸送層を、前記正孔輸送材料を含むインクを印刷法またはインクジェット法を用いて前記正孔注入層上に成膜することにより形成し、
     前記第3工程では、
     前記有機発光層を、有機発光材料を含むインクを印刷法またはインクジェット法用いて前記正孔輸送層上に成膜することにより形成する
     請求項21記載の有機ELパネルの製造方法。
  23.  前記第2工程における、前記正孔注入層を形成する工程は、
     前記陽極上に、前記酸化タングステンから構成される層を形成する形成工程と、
     前記酸化タングステンから構成される層上に、感光性レジスト材料からなる層を積層する積層工程と、
     R,G,B毎に異なる光透過率を有するマスクを用いて、前記感光性レジスト層を選択的に露光することにより、前記R,G,Bごとに前記感光性レジスト層の厚みを異なるように調整する調整工程と、
     前記厚みを調整した感光性レジスト層を、現像液を用いてエッチングすると共に、前記正孔注入層の上部を含む一部を前記現像液を用いて除去することにより、前記R,G,Bごとに前記正孔注入層の厚みが異なるように成形する成形工程と、
     前記成形工程後、前記正孔注入層から前記感光性レジスト層を除去する除去工程とを含む
     請求項21記載の有機ELパネルの製造方法。
  24.  前記第2工程では、
     第1機能層として前記陽極上に形成される透明導電層を含み、
     前記透明導電層の厚みをR,G,B各色ともに等しい範囲となるように形成し、
     前記第3工程と前記第4工程との間において、
     前記有機発光層上に、電子注入輸送層を含む第2機能層を設ける工程をさらに含み、当該工程では、前記電子注入輸送層の厚みをR,G,B各色ともに等しい範囲となるように形成する
     請求項21記載の有機ELパネルの製造方法。
  25.  前記第2工程は、アルゴンガスと酸素ガスからなるスパッタガス、および、タングステンからなるターゲットを用い、前記スパッタガスの全圧が2.3Pa以上7.0Pa以下であるとともに、前記スパッタガスの全圧に対する前記酸素ガス分圧の割合が50以%上70%以下であり、かつ、前記ターゲットの単位面積当たりの投入電力である投入電力密度が1.5W/cm以上6.0W/cm以下であり、かつ、前記スパッタガスの全圧を投入電力密度で割った値である全圧/投入電力密度が0.7Pa・cm/Wよりも大きい成膜条件下で酸化タングステン膜を成膜することにより、前記正孔注入層を形成する
     請求項20記載の有機ELパネルの製造方法。
  26.  前記第2工程において、
     前記酸化タングステン膜を構成するタングステン元素が、前記タングステン元素が取り得る最大価数である6価の状態および、前記6価よりも低い5価の状態で前記酸化タングステン膜に含まれるように、かつ、粒径がナノメートルオーダーの大きさである酸化タングステンの結晶が含まれるように、前記酸化タングステン膜を成膜する
     請求項25記載の有機ELパネルの製造方法。
  27.  前記第2工程は、前記全圧/投入電力密度が3.2Pa・cm/Wよりも小さい
     請求項25記載の有機ELパネルの製造方法。
  28.  請求項20~27のいずれかに記載の製造方法により製造された有機ELパネルを用いた有機発光装置。
  29.  請求項20~27のいずれかに記載の製造方法により製造された有機ELパネルを用いた有機表示装置。
PCT/JP2010/006928 2010-11-29 2010-11-29 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置 WO2012073269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012546565A JPWO2012073269A1 (ja) 2010-11-29 2010-11-29 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置
PCT/JP2010/006928 WO2012073269A1 (ja) 2010-11-29 2010-11-29 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置
US13/988,372 US8957412B2 (en) 2010-11-29 2010-11-29 Organic electroluminescence panel, method of manufacturing organic electroluminescence panel, organic light emitting apparatus using organic electroluminescence panel, and organic display apparatus using organic electroluminescence panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006928 WO2012073269A1 (ja) 2010-11-29 2010-11-29 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置

Publications (1)

Publication Number Publication Date
WO2012073269A1 true WO2012073269A1 (ja) 2012-06-07

Family

ID=46171269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006928 WO2012073269A1 (ja) 2010-11-29 2010-11-29 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置

Country Status (3)

Country Link
US (1) US8957412B2 (ja)
JP (1) JPWO2012073269A1 (ja)
WO (1) WO2012073269A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015187982A (ja) * 2014-03-13 2015-10-29 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
WO2015178003A1 (ja) * 2014-05-21 2015-11-26 株式会社Joled 発光デバイスの製造方法および発光デバイス
JP2016500917A (ja) * 2012-10-09 2016-01-14 メルク パテント ゲーエムベーハー 電子素子
CN107819077A (zh) * 2016-09-13 2018-03-20 上海和辉光电有限公司 一种有机发光二极管器件及其显示面板
JP2018055936A (ja) * 2016-09-28 2018-04-05 株式会社Joled 有機el表示パネル、及び有機el表示パネルの製造方法
JP2018190702A (ja) * 2016-11-30 2018-11-29 株式会社半導体エネルギー研究所 表示装置及び電子機器
JP2020181823A (ja) * 2013-12-02 2020-11-05 株式会社半導体エネルギー研究所 発光装置、テレビジョン装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012168974A1 (ja) * 2011-06-08 2012-12-13 パナソニック株式会社 発光パネル、発光パネルの製造方法、および成膜システム
JP5982146B2 (ja) * 2011-06-16 2016-08-31 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機発光構造物、有機発光構造物の製造方法、有機発光表示装置、及び有機発光表示製造方法
JP2014026902A (ja) * 2012-07-30 2014-02-06 Sony Corp 表示装置、表示装置の製造方法および電子機器
JP6286943B2 (ja) * 2013-08-28 2018-03-07 セイコーエプソン株式会社 発光装置および電子機器
KR101952899B1 (ko) * 2013-12-31 2019-02-27 쿤산 뉴 플랫 패널 디스플레이 테크놀로지 센터 씨오., 엘티디. 유기 발광 표시 장치 및 시야각특성을 개선한 상부 발광 oled 장치
JP6685675B2 (ja) * 2015-09-07 2020-04-22 株式会社Joled 有機el素子、それを用いた有機el表示パネル、及び有機el表示パネルの製造方法
JP2017220528A (ja) * 2016-06-06 2017-12-14 株式会社Joled 有機el表示パネル
JP2018147599A (ja) * 2017-03-01 2018-09-20 株式会社Joled 有機電界発光素子、有機電界発光パネルおよび発光装置
CN107507917B (zh) * 2017-08-15 2020-02-28 京东方科技集团股份有限公司 一种oled器件及其制备方法、显示装置
CN110120409B (zh) * 2019-05-05 2021-08-24 深圳市华星光电半导体显示技术有限公司 Oled显示面板
CN110797468A (zh) * 2019-10-15 2020-02-14 深圳市华星光电半导体显示技术有限公司 显示面板和显示面板的制作方法
CN111155055A (zh) * 2020-01-06 2020-05-15 武汉华星光电半导体显示技术有限公司 Oled面板、其蒸镀方法和其掩膜版组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008987A1 (ja) * 2004-07-15 2006-01-26 Idemitsu Kosan Co., Ltd. 有機el表示装置
JP2009044103A (ja) * 2007-08-10 2009-02-26 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子及び製造方法
JP2010010670A (ja) * 2008-05-28 2010-01-14 Panasonic Corp 発光装置及びその製造方法
JP2010103374A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 有機エレクトロルミネッセンス素子及びその製造方法
JP2010108706A (ja) * 2008-10-29 2010-05-13 Seiko Epson Corp エレクトロルミネッセンス装置の製造方法
JP2010165461A (ja) * 2009-01-13 2010-07-29 Seiko Epson Corp 基板装置、発光装置及びそれらの製造方法、並びに電子機器
WO2010092795A1 (ja) * 2009-02-10 2010-08-19 パナソニック株式会社 発光素子、表示装置、および発光素子の製造方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443922A (en) 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JPH05163488A (ja) 1991-12-17 1993-06-29 Konica Corp 有機薄膜エレクトロルミネッセンス素子
JP4046948B2 (ja) 2001-02-26 2008-02-13 株式会社日立製作所 有機発光表示装置
KR100846586B1 (ko) * 2006-05-29 2008-07-16 삼성에스디아이 주식회사 유기 발광 소자 및 이를 구비한 평판 표시 장치
JP2006179780A (ja) * 2004-12-24 2006-07-06 Canon Inc 有機発光素子及び表示パネル
US20080119352A1 (en) * 2005-01-18 2008-05-22 Shinya Kitaguchi Visible Light-Responsive Photocatalyst Composition and Process for Producing the Same
JP2008283021A (ja) * 2007-05-11 2008-11-20 Seiko Epson Corp 有機電子デバイス
WO2008149498A1 (ja) 2007-05-31 2008-12-11 Panasonic Corporation 有機el素子、およびその製造方法
US7888867B2 (en) 2007-12-28 2011-02-15 Panasonic Corporation Organic el device having bank with groove, organic el display panel, and method for manufacturing the organic el device
WO2010032444A1 (ja) 2008-09-19 2010-03-25 パナソニック株式会社 有機エレクトロルミネッセンス素子及びその製造方法
CN102687592B (zh) 2010-01-08 2016-01-20 株式会社日本有机雷特显示器 有机el面板、使用了该有机el面板的显示装置以及有机el面板的制造方法
KR20130044118A (ko) 2010-08-06 2013-05-02 파나소닉 주식회사 유기 el 표시 패널, 표시 장치, 및 유기 el 표시 패널의 제조 방법
WO2012017500A1 (ja) 2010-08-06 2012-02-09 パナソニック株式会社 有機el表示パネル、表示装置、及び有機el表示パネルの製造方法
CN102440073B (zh) 2010-08-10 2014-10-08 松下电器产业株式会社 有机发光元件、有机发光装置、有机显示面板、有机显示装置以及有机发光元件的制造方法
JP5276222B2 (ja) 2010-08-25 2013-08-28 パナソニック株式会社 有機発光素子とその製造方法、および有機表示パネルと有機表示装置
JP5588007B2 (ja) 2010-08-25 2014-09-10 パナソニック株式会社 有機発光素子とその製造方法、および有機表示パネルと有機表示装置
WO2012070086A1 (ja) 2010-11-24 2012-05-31 パナソニック株式会社 有機elパネル、それを用いた表示装置および有機elパネルの製造方法
US8853716B2 (en) 2010-11-24 2014-10-07 Panasonic Corporation Organic EL panel, display device using same, and method for producing organic EL panel
US8847217B2 (en) 2010-11-24 2014-09-30 Panasonic Corporation Organic EL panel, display device using same, and method for producing organic EL panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008987A1 (ja) * 2004-07-15 2006-01-26 Idemitsu Kosan Co., Ltd. 有機el表示装置
JP2009044103A (ja) * 2007-08-10 2009-02-26 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子及び製造方法
JP2010010670A (ja) * 2008-05-28 2010-01-14 Panasonic Corp 発光装置及びその製造方法
JP2010103374A (ja) * 2008-10-24 2010-05-06 Panasonic Corp 有機エレクトロルミネッセンス素子及びその製造方法
JP2010108706A (ja) * 2008-10-29 2010-05-13 Seiko Epson Corp エレクトロルミネッセンス装置の製造方法
JP2010165461A (ja) * 2009-01-13 2010-07-29 Seiko Epson Corp 基板装置、発光装置及びそれらの製造方法、並びに電子機器
WO2010092795A1 (ja) * 2009-02-10 2010-08-19 パナソニック株式会社 発光素子、表示装置、および発光素子の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062216A (ja) * 2012-10-09 2019-04-18 メルク パテント ゲーエムベーハー 電子素子
CN109346615A (zh) * 2012-10-09 2019-02-15 默克专利有限公司 电子器件
JP2016500917A (ja) * 2012-10-09 2016-01-14 メルク パテント ゲーエムベーハー 電子素子
US9917272B2 (en) 2012-10-09 2018-03-13 Merck Patent Gmbh Electronic device
CN109346615B (zh) * 2012-10-09 2021-06-04 默克专利有限公司 电子器件
US10270052B2 (en) 2012-10-09 2019-04-23 Merck Patent Gmbh Electronic device
JP2020181823A (ja) * 2013-12-02 2020-11-05 株式会社半導体エネルギー研究所 発光装置、テレビジョン装置
JP2015187982A (ja) * 2014-03-13 2015-10-29 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
WO2015178003A1 (ja) * 2014-05-21 2015-11-26 株式会社Joled 発光デバイスの製造方法および発光デバイス
CN107819077A (zh) * 2016-09-13 2018-03-20 上海和辉光电有限公司 一种有机发光二极管器件及其显示面板
US10263046B2 (en) 2016-09-28 2019-04-16 Joled Inc. Organic EL display panel and method of manufacturing organic EL display panel
JP2018055936A (ja) * 2016-09-28 2018-04-05 株式会社Joled 有機el表示パネル、及び有機el表示パネルの製造方法
JP2018190702A (ja) * 2016-11-30 2018-11-29 株式会社半導体エネルギー研究所 表示装置及び電子機器
US11587904B2 (en) 2016-11-30 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device

Also Published As

Publication number Publication date
US8957412B2 (en) 2015-02-17
US20130234129A1 (en) 2013-09-12
JPWO2012073269A1 (ja) 2014-05-19

Similar Documents

Publication Publication Date Title
WO2012073269A1 (ja) 有機elパネル、有機elパネルの製造方法、有機elパネルを用いた有機発光装置、及び有機elパネルを用いた有機表示装置
JP5612691B2 (ja) 有機el素子およびその製造方法
JP5676652B2 (ja) 有機el素子
US10468623B2 (en) Organic EL display panel and method of manufacturing organic EL display panel
JP5677434B2 (ja) 有機el素子
WO2012017502A1 (ja) 有機el素子およびその製造方法
JP5543441B2 (ja) 有機発光素子とその製造方法、有機表示パネル、有機表示装置
WO2011021343A1 (ja) 有機el素子
US7887385B2 (en) Organic EL light emitting element, manufacturing method thereof, and display device
WO2012153445A1 (ja) 有機el表示パネルおよび有機el表示装置
WO2012114403A1 (ja) 有機el表示パネルおよび有機el表示装置
KR20130096773A (ko) 유기 발광 소자의 제조 방법, 유기 발광 소자, 발광 장치, 표시 패널, 및 표시 장치
WO2012017501A1 (ja) 有機el素子およびその製造方法
WO2012001728A1 (ja) 有機el表示パネル、有機el表示パネルを備えた表示装置、および有機el表示パネルの製造方法
JP5861210B2 (ja) 有機発光素子
JP2018129265A (ja) 有機el表示パネル、及び有機el表示パネルの製造方法
US9660213B2 (en) Organic EL element and manufacturing method thereof, and metal oxide film forming method
JP5793569B2 (ja) 有機発光素子の製造方法
JP2019016496A (ja) 有機el表示パネル及び有機el表示パネルの製造方法
JP2018133242A (ja) 有機el表示パネル、及び有機el表示パネルの製造方法
JP5793570B2 (ja) 有機発光素子の製造方法
JP5612503B2 (ja) 有機発光装置
JP2010199079A (ja) 有機el素子および表示装置
JP2012174712A (ja) 有機発光素子
JP2018129264A (ja) 有機el表示パネル、及び有機el表示パネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860293

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012546565

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13988372

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10860293

Country of ref document: EP

Kind code of ref document: A1