WO2012070382A1 - 硬化性樹脂組成物 - Google Patents
硬化性樹脂組成物 Download PDFInfo
- Publication number
- WO2012070382A1 WO2012070382A1 PCT/JP2011/075712 JP2011075712W WO2012070382A1 WO 2012070382 A1 WO2012070382 A1 WO 2012070382A1 JP 2011075712 W JP2011075712 W JP 2011075712W WO 2012070382 A1 WO2012070382 A1 WO 2012070382A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- meth
- resin composition
- mass
- acrylate
- curable resin
- Prior art date
Links
- 0 CC(*)[N+]([O-])OC(C)(C)C Chemical compound CC(*)[N+]([O-])OC(C)(C)C 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D181/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur, with or without nitrogen, oxygen, or carbon only; Coating compositions based on polysulfones; Coating compositions based on derivatives of such polymers
- C09D181/02—Polythioethers; Polythioether-ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/006—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00
- C08F283/008—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polymers provided for in C08G18/00 on to unsaturated polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F283/00—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
- C08F283/01—Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to unsaturated polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/08—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
- C08F290/12—Polymers provided for in subclasses C08C or C08F
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L57/00—Compositions of unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C08L57/06—Homopolymers or copolymers containing elements other than carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D157/00—Coating compositions based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09D157/06—Homopolymers or copolymers containing elements other than carbon and hydrogen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
Definitions
- the present invention is capable of forming a cured coating film having high pencil hardness, low curing shrinkage, and excellent scratch resistance and transparency, and imparting properties such as blocking resistance to the cured coating film as necessary.
- An active energy ray-curable hard coat agent composition used for the production of surface protective coatings for plastic films such as optical films such as flat panel displays, polycarbonate resins, ABS resins, acrylic resins, etc., and curing thereof And a film or a molded article including a coating film made of the cured product.
- a hard coat layer is provided on the surface of the material in order to increase the surface hardness.
- resin base materials such as polycarbonate and ABS
- the same treatment has been widely performed for the purpose of preventing damage to the surface and protecting the pattern.
- organic materials such as polyfunctional acrylates have been used for such hard coat layers, but the shrinkage due to curing shrinkage, thermal degradation, and wet heat degradation is large, and the edges of plastic sheets and plastic films roll up (curl phenomenon) ), Or cracks on the substrate were likely to occur.
- Patent Document 1 discloses an ultraviolet curable resin raw material composition
- colloidal silica is dispersed but does not have a reactive unsaturated group, so that it is not incorporated into a crosslinking system, and there is a possibility that a predetermined hardness and elastic modulus may not be obtained. There was a risk that the particles would fall off.
- Patent Document 2 discloses colloidal silica surface-treated with at least a hexafunctional urethane acrylate, a tetrafunctional or higher (meth) acrylate monomer, and a silane coupling agent having a reactive (meth) acrylate group in the molecule.
- Compositions containing are disclosed. According to this method, colloidal silica is incorporated into the crosslinking system, exhibits high pencil hardness, and can prevent the silica fine particles from falling off.
- the curing shrinkage is large, the radius of curvature at the time of curing is small, and there is a risk that problems occur in the manufacturing process.
- the present invention provides a hard coating agent that solves the above-mentioned problems of the prior art, that is, has a low cure shrinkage, and has both a low cure shrinkage and a blocking resistance as required.
- An object of the present invention is to provide a hard coat film having a high pencil hardness and a low curl property using a coating agent, or a plastic substrate subjected to a hard coat treatment.
- the present inventor has found that the above-described problems can be solved by combining at least a polymer having a specific structure, silica fine particles, a reactive monomer, and a polymerization initiator.
- the present invention has been completed.
- X represents an atomic group formed by removing k mercapto groups from a polyfunctional thiol compound having at least k mercapto groups
- Y represents a copolymer formed by copolymerizing unsaturated monomers.
- a curable resin composition comprising (D).
- (2) Y in the general formula (1) is the following general formula (2)
- R 1 and R 4 are each independently a hydrogen atom or a methyl group
- R 2 and R 3 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms or 20
- a functional organic group The curable resin composition as described in (1) above, comprising a monomer unit represented by formula (1).
- -Z- represents the following general formulas (3) to (6)
- silica fine particles (B ′) in which the silica fine particles (B) are not surface-treated are silane compounds (E) and (8) represented by the following general formula (7) (E) )
- the reactive monomer (C) is contained in an amount of 1 to 1000 parts by mass with respect to 100 parts by mass of the copolymer (A).
- the curable resin composition according to any one of the above.
- the reactive monomer (C) is trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipentaerythritol penta (
- the curable resin composition according to any one of (1) to (6) above which is at least one selected from the group consisting of (meth) acrylate and dipentaerythritol hexa (meth) acrylate.
- a curable resin composition according to claim 1. The reactive oligomer (F) is contained in an amount of 0.1 to 500 parts by mass with respect to 100 parts by mass of the copolymer (A).
- the curable resin composition according to any one of the above. (10) The curable resin composition as described in any one of (1) to (9) above, which contains a filler. (11) The curable resin composition as described in any one of (1) to (10) above, which contains a polyfunctional thiol compound.
- the present invention provides a hard coat agent having low cure shrinkage and having both low cure shrinkage and blocking resistance as required, and further using the hard coat agent to achieve high pencil hardness and low curl. It is possible to provide a hard base film such as a clear hard coat film and a hard coat film for decorative molding, or a plastic base material subjected to a hard coat treatment.
- the curable resin composition of the present invention has the following general formula (1)
- X represents an atomic group formed by removing k mercapto groups from a polyfunctional thiol compound having at least k mercapto groups
- Y represents a copolymer formed by copolymerizing unsaturated monomers.
- D is an integer of 3 to 10.
- the curable resin composition of the present invention can contain a reactive oligomer (F), an additive (G), and the like, if necessary.
- copolymer (A) (hereinafter also referred to as “component (A)”) is represented by the above formula (1), and, for example, two or more unsaturated monomers in the presence of a polyfunctional thiol compound. Can be synthesized by copolymerizing.
- X in the formula (1) represents an atomic group formed by removing k mercapto groups from a polyfunctional thiol compound having at least k mercapto groups.
- the polyfunctional thiol compound will be described later.
- S in formula (1) represents a sulfur atom contained in a mercapto group possessed by the polyfunctional thiol compound.
- Y in the formula (1) represents a monovalent organic group derived from a copolymer obtained by copolymerizing an unsaturated monomer.
- the unsaturated monomer will be described later.
- K in the formula (1) is an integer of 3 to 10.
- the value of k is within the above range, it is preferable in terms of low shrinkage expression and ease of reaction control during copolymerization.
- K is preferably 3 to 8, more preferably 3 to 6.
- R 1 and R 4 are each independently a hydrogen atom or a methyl group
- R 2 and R 3 are each independently an aliphatic hydrocarbon group having 1 to 20 carbon atoms or 20
- An alicyclic hydrocarbon group having a cyclic structure having not more than carbon atoms provided that R 2 may include an ester bond, R 3 may be a single bond, and Z includes an ester bond or a urethane bond. It is preferable to include a structure represented by a functional organic group.
- Z in the formula (2) is a bifunctional organic group containing an ester bond or a urethane bond.
- -Z- is preferably any one of the following formulas (3) to (6).
- R 1 and R 4 each independently represent a hydrogen atom or a methyl group
- R 2 and R 3 each independently have 1 to 20 carbon atoms.
- the structure represented by the general formula (9) includes, for example, an acrylic compound (a-1) having a carboxyl group and another ethylenically unsaturated monomer (a-5) in the presence of a polyfunctional thiol compound. And an acrylic compound (a-2) having a glycidyl group is added to the carboxyl group present in the side chain of the obtained polymer.
- the structure represented by the general formula (10) is, for example, in the presence of a polyfunctional thiol compound, a (meth) acrylic compound (a-2) having a glycidyl group and another ethylenically unsaturated monomer (a- 5), and a (meth) acrylic compound (a-1) having a carboxyl group is added to the glycidyl group present in the side chain of the obtained polymer.
- the structure represented by the general formula (11) is, for example, in the presence of a polyfunctional thiol compound, a (meth) acrylic compound (a-3) having a hydroxyl group and another ethylenically unsaturated monomer (a- 5) and a (meth) acrylic compound (a-4) having an isocyanate group is added to the hydroxyl group present in the side chain of the obtained polymer.
- the structure represented by the general formula (12) is, for example, in the presence of a polyfunctional thiol compound, a (meth) acrylic compound (a-4) having an isocyanate group and another ethylenically unsaturated monomer (a- 5), and the (meth) acrylic compound (a-3) having a hydroxyl group is added to the isocyanate group present in the side chain of the obtained polymer.
- Examples of the (meth) acrylic compound (a-1) having a carboxyl group include (meth) acrylic acid, crotonic acid, fumaric acid, maleic acid, maleic anhydride, 2-methylmaleic acid, itaconic acid, phthalic acid, and tetrahydrophthal Examples thereof include acids, tetrahydrophthalic anhydrides, metal salts thereof, ammonium salts and the like, and (meth) acrylic acid is preferable.
- These (meth) acrylic compounds (a-1) having a carboxyl group may be used alone or in combination of two or more.
- Examples of the (meth) acrylic compound (a-2) having a glycidyl group include glycidyl (meth) acrylate, allyl glycidyl ether, methyl glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and 4-hydroxybutyl. Examples include (meth) acrylate glycidyl ether, and glycidyl (meth) acrylate is preferred. These (meth) acrylic compounds (a-2) having a glycidyl group may be used alone or in combination of two or more.
- Examples of the (meth) acrylic compound (a-3) having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and polyethylene glycol mono (meth) Examples thereof include acrylate, polypropylene glycol mono (meth) acrylate, polyethylene glycol polytetramethylene glycol mono (meth) acrylate, polypropylene glycol polytetramethylene glycol mono (meth) acrylate, and 2-hydroxyethyl (meth) acrylate is preferred.
- These (meth) acrylic compounds (a-3) having a hydroxyl group may be used alone or in combination of two or more.
- Examples of the (meth) acrylic compound (a-4) having an isocyanate group include 2- (meth) acryloyloxyethyl isocyanate, 3- (meth) acryloyloxypropyl isocyanate, 4- (meth) acryloyloxybutyl isocyanate, 5- ( (Meth) acryloyloxypentyl isocyanate, 6- (meth) acryloyloxyhexyl isocyanate, 2- (2- (meth) acryloyloxyethyl) oxyethyl isocyanate, 3- (meth) acryloyloxyphenyl isocyanate, 4- (meth) acryloyloxy And phenyl isocyanate.
- These (meth) acrylic compounds (a-4) having an isocyanate group may be used alone or in combination of two or more.
- ethylenically unsaturated monomers (a-5) that can be copolymerized with the above (meth) acrylic compounds include methyl (meth) acrylate, ethyl (meth) acrylate, and propyl (meth) acrylate.
- the polyfunctional thiol compound used in combination with the polymer synthesis is a compound having two or more mercapto groups in one molecule, such as ethylene glycol bis (3-mercaptopropionate), ethylene glycol bis (3-mercaptobutyrate).
- pentaerythritol tetrakis (3-mercaptopropionate) and pentaerythritol tetrakis (3-mercaptobutyrate) having four mercapto groups in one molecule are preferable.
- the amount of the polyfunctional thiol compound used for synthesizing the copolymer (A) is preferably 0.01 to 15 parts by mass with respect to 100 parts by mass of the unsaturated monomer used for synthesis.
- the amount is preferably 0.1 to 10 parts by mass, more preferably 1 to 5 parts by mass.
- the copolymerization reaction is desirably performed in an organic solvent from the viewpoint of reaction stability.
- the organic solvent is not particularly limited as long as it is usually used in the copolymerization reaction of (meth) acrylic compounds.
- ketones such as methyl ethyl ketone, acetone, methyl isobutyl ketone, methyl acetate, ethyl acetate And esters such as butyl acetate, aromatic compounds such as toluene and xylene, ethers such as diethyl ether and tetrahydrofuran, alcohols such as methanol, ethanol and isopropanol.
- methyl ethyl ketone and methyl isobutyl ketone are preferable.
- These organic solvents may be used individually by 1 type, and may be used in combination of 2 or more type.
- the copolymerization reaction is performed at a temperature of 60 ° C. to 120 ° C., preferably 70 ° C. to 100 ° C., preferably in an inert gas atmosphere.
- a polymerization initiator is used.
- the polymerization initiator is not particularly limited as long as it is usually used.
- azobisisobutyronitrile, azobis (2-methylbutyronitrile), azobisisobutyronitrile, 2,2- Azobis- (2,4-dimethylvaleronitrile), dimethyl-2,2-azobis- (2-methylpropionate), benzoyl peroxide and the like can be mentioned.
- As the polymerization method a method in which all components are charged in a lump and then polymerized, a method in which each component is polymerized while being continuously supplied, etc. can be applied.
- the addition reaction is performed at a temperature of 50 ° C. to 130 ° C., preferably 90 ° C. to 120 ° C. When the temperature is lower than 50 ° C., a practically sufficient reaction rate may not be obtained. On the other hand, when the temperature exceeds 130 ° C., the double bond portion may be cross-linked by radical polymerization due to heat, and a gelled product may be generated.
- the addition reaction is preferably performed in a molecular oxygen-containing gas atmosphere. The concentration of molecular oxygen is appropriately determined in consideration of safety.
- the addition reaction is preferably performed in the presence of a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, or phenothiazine.
- a catalyst may be used to obtain a sufficient reaction rate.
- a tertiary amine such as dimethylbenzylamine, triethylamine, tetramethylethylenediamine, tri-n-octylamine, tetramethylammonium chloride, tetramethylammonium bromide, tetrabutylammonium bromide Quaternary ammonium salts, alkylureas such as tetramethylurea, alkylguanidines such as tetramethylguanidine, tertiary phosphines such as triphenylphosphine, and the like can be used.
- triethylamine is preferable.
- dibutyltin dilaurate, tin octylate, tin chloride, or the like can be used.
- dibutyltin dilaurate is preferable.
- the above-mentioned catalysts may be used alone or in combination of two or more.
- the copolymer (A) preferably has a double bond equivalent of 200 to 5,000, more preferably 200 to 1,000.
- the double bond equivalent is less than 200, curing of the composition may proceed excessively, and a curled phenomenon may occur in the resulting cured coating film, whereas when the double bond equivalent exceeds 5,000. In some cases, sufficient surface hardness cannot be obtained for the cured coating film.
- the double bond equivalent is defined as follows.
- Double bond equivalent [mass of total unsaturated monomer used in synthesis (g) + mass of polymerization initiator used in synthesis (g) + mass of all polyfunctional thiol compounds used in synthesis (g)] / [Mol number of unsaturated monomer used to introduce unsaturated group x number of unsaturated group of unsaturated monomer used to introduce unsaturated group]
- the copolymer (A) preferably has a glass transition temperature of 60 ° C. to 100 ° C., more preferably 80 ° C. to 100 ° C. When the glass transition temperature is less than 60 ° C., sufficient surface hardness may not be obtained for the cured coating film.
- the glass transition temperature (Tg) of the (meth) acrylic copolymer resin is a value calculated using the following formula.
- W 1 , W 2 ,..., W n are mass ratios (mass%) of the respective acrylic compounds and ethylenically unsaturated monomers
- Tg 1 , Tg 2 ,. n is the glass transition temperature (absolute temperature) of the homopolymer of each acrylic compound and ethylenically unsaturated monomer
- the copolymer (A) preferably has a weight average molecular weight of 5,000 to 200,000, more preferably 7,000 to 120,000. When the weight average molecular weight is less than 5,000, sufficient surface hardness may not be obtained. On the other hand, when the weight average molecular weight exceeds 200,000, solubility in a solvent or the like decreases and workability decreases. There is.
- the value of the weight average molecular weight of the copolymer resin in the present invention is measured at room temperature under the following conditions using gel permeation chromatography (Shodex SYS-11 manufactured by Showa Denko KK), and converted into polystyrene. It is calculated.
- silica fine particles (B) As the silica fine particles (B) used in the present invention (hereinafter also referred to as “component (B)”), those having an average particle diameter of 1 to 100 nm can be suitably used.
- the average particle diameter When the average particle diameter is less than 1 nm, the viscosity of the prepared curable composition increases, the content of the silica fine particles (B) in the curable composition is limited, and in the curable composition The dispersibility of the silica fine particles (B) is deteriorated, and a cured product obtained by curing the curable composition (hereinafter also simply referred to as a cured product) tends not to have sufficient heat resistance. On the other hand, when the average particle diameter exceeds 100 nm, the appearance performance and mechanical properties of the cured product may be deteriorated.
- the average particle diameter of the silica fine particles (B) is more preferably 1 to 70 nm, and further preferably 5 to 50 nm from the viewpoint of adjusting the viscosity of the curable composition to a suitable value.
- the average particle size of the silica fine particles (B) was determined by observing the fine particles with a high-resolution transmission electron microscope (manufactured by Hitachi, Ltd., model H-9000), and arbitrarily selecting 100 particle images from the observed fine particle images. And a value obtained as a number average particle diameter by a known image data statistical processing method.
- the content of the silica fine particles (B) in the curable composition is preferably 5 to 1000 parts by mass with respect to 100 parts by mass of the copolymer (A). From the viewpoint of the balance between the heat resistance and environmental resistance of the cured product and the viscosity of the curable composition, it is more preferably 30 to 800 parts by mass.
- the amount is less than 5 parts by mass, there is a possibility that sufficient hardness cannot be imparted to the cured product.
- the amount exceeds 1000 parts by mass dispersibility is impaired, and molding of the cured product may be difficult.
- the silica fine particles (B) are preferably used in a state of being dispersed in an organic solvent from the viewpoint of dispersibility in the curable composition.
- organic solvent examples include alcohols, ketones, esters, and glycol ethers.
- alcohol-based organic solvents such as methanol, ethanol, isopropyl alcohol, butyl alcohol and n-propyl alcohol
- ketone-based organic solvents such as methyl ethyl ketone and methyl isobutyl ketone are preferred.
- the silica fine particles (B) can be suitably used not only those that have not been surface-treated but also those that have been surface-treated.
- Silica fine particles (B) dispersed in an organic solvent can be produced by a conventionally known method.
- silica fine particles that are commercially available under the trade name Snowtech IPA-ST (manufactured by Nissan Chemical Co., Ltd.) are used.
- surface treatment can be performed using the silica fine particles as a raw material.
- the silica fine particles (B) used in the present invention are preferably obtained by surface-treating silica fine particles (B ′) that are not surface-treated with a silane compound (E).
- a silane compound (E) examples include a silane compound (E1) having a polymerizable unsaturated group and a silane compound (E2) having an aromatic ring. Each of these silane compounds will be described below.
- the silane compound (E1) having a polymerizable unsaturated group used in the present invention is a silane compound having a (meth) acryloyl group or a (meth) acryloyloxy group, and particularly an unsaturated group represented by the general formula (7).
- a silane compound having the above can be suitably used.
- R 5 represents a hydrogen atom or a methyl group
- R 6 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group
- R 7 represents a hydrogen atom or a hydrocarbon having 1 to 10 carbon atoms.
- r is an integer of 0 to 2
- l is an integer of 1 to 6.
- the silane compound (E1) reduces the viscosity of the curable composition and at the same time improves the dispersion stability of the silica fine particles (B) in the curable composition, and is cured when the curable composition is cured. It is used for reducing shrinkage and imparting moldability to the cured product. That is, when the silica fine particles are not surface-treated with the silane compound (E1) having a polymerizable unsaturated group, the viscosity of the curable composition is increased, the curing shrinkage during curing is increased, and the cured product becomes brittle. Cracks may occur in the cured product.
- Examples of the silane compound (E1) include ⁇ - (meth) acryloxypropyldimethylmethoxysilane, ⁇ - (meth) acryloxypropylmethyldimethoxysilane, ⁇ - (meth) acryloxypropyldiethylmethoxysilane, ⁇ - (meta ) Acryloxypropylethyldimethoxysilane, ⁇ - (meth) acryloxypropyltrimethoxysilane, ⁇ - (meth) acryloxypropyldimethylethoxysilane, ⁇ - (meth) acryloxypropylmethyldiethoxysilane, ⁇ - (meth) Examples include acryloxypropyldiethylethoxysilane, ⁇ - (meth) acryloxypropylethyldiethoxysilane, and ⁇ - (meth) acryloxypropyltriethoxysilane.
- ⁇ - (meth) acryloxypropyldimethylmethoxysilane, ⁇ - (Meth) acryloxypropylmethyldimethoxysilane and ⁇ - (meth) acryloxypropyltrimethoxysilane are preferred, and ⁇ -methacryloxypropyltrimethoxysilane is more preferred.
- these may be used individually by 1 type and may use 2 or more types together.
- such a silane compound (E1) can be produced by a known method and is commercially available.
- silane compound having an aromatic ring (E2) The silane compound (E2) having an aromatic ring used in the present invention is represented by the following general formula (8).
- R 6 and R 7 represent the same meaning as R 6 and R 7 in the general formula (7), respectively, and t is an integer of 0 to 2.
- a substituent may be bonded to the phenyl group present at the left end of the structure represented by the general formula (8) as long as the effects of the present invention are not impaired.
- preferred R 7 is a methyl group, and preferred t is 0.
- preferred R 6 is a methyl group.
- silane compound (E2) having an aromatic ring examples include phenyldimethylmethoxysilane, phenylmethyldimethoxysilane, phenyldiethylmethoxysilane, phenylethyldimethoxysilane, phenyltrimethoxysilane, phenyldimethylethoxysilane, phenylmethyldiethoxysilane, Phenyldiethylethoxysilane, phenylethyldiethoxysilane, phenyltriethoxysilane, benzyldimethylmethoxysilane, benzylmethyldimethoxysilane, benzyldiethylmethoxysilane, benzylethyldimethoxysilane, benzyltrimethoxysilane, benzyldimethylethoxysilane, benzylmethyldiethoxy Silane, benzyldiethylethoxys
- phenyldimethylmethoxysilane phenylmethyldimethoxysilane, phenyldiethylmethoxysilane, phenylethyldimethoxysilane
- Phenyltrimethoxysilane is preferred, and phenyltrimethoxysilane is more preferred.
- these may be used individually by 1 type and may use 2 or more types together.
- such a silane compound (8) can be produced by a known method and is commercially available.
- the amount of the silane compound (E1) having a polymerizable unsaturated group used for the surface treatment of the silica fine particles is 0.1 to 60 parts by mass with respect to 100 parts by mass of the silica fine particles (B ′) that are not surface-treated. Part by mass or less, preferably 1 part by mass or more and 50 parts by mass or less, more preferably 5 parts by mass or more and 40 parts by mass or less.
- the amount of the silane compound (E1) having a polymerizable unsaturated group is less than 0.1 parts by mass, the dispersibility of the silica fine particles (B) in the curable composition may be deteriorated to cause gelation. There is. Moreover, when it exceeds 60 mass parts, there exists a possibility that hardness may fall by an unreacted unsaturated group increasing.
- the usage-amount of the silane compound (E2) which has an aromatic ring is more than 0 mass parts and 40 mass parts or less are preferable with respect to 100 mass parts of silica fine particles (B ') which are not surface-treated, and more than 0 mass parts 30 mass parts or less are more preferable, and more than 0 mass parts and 20 mass parts or less are still more preferable.
- the usage-amount of the silane compound (E2) which has an aromatic ring exceeds 40 mass parts, there exists a possibility that hardness may fall by the increase in the surface modification amount which does not contribute to radical polymerization reaction.
- the silane compound (E1) having a polymerizable unsaturated group and the silane compound (E2) having an aromatic ring are used, the silane compound (E1) having a polymerizable unsaturated group and the silane compound having an aromatic ring ( E2) and the total amount used are preferably 0.1 parts by mass or more and 90 parts by mass or less, more preferably 1 part by mass or more and 75 parts by mass or less, with respect to 100 parts by mass of silica fine particles (B ′). 60 mass parts or less are still more preferable.
- the total amount of (E1) and (E2) used is less than 0.1 part by mass, the dispersibility of the silica fine particles (B) in the curable composition may be deteriorated to cause gelation.
- the amount exceeds 60 parts by mass the hardness may decrease due to an increase in the amount of surface modification that does not contribute to an unreacted unsaturated group or radical polymerization reaction.
- the reactive monomer (C) (hereinafter also referred to as “component (C)”) is a compound that is polymerized or cross-linked by radicals generated from a photopolymerization initiator upon irradiation with actinic rays, or a compound that is polymerized or cross-linked by heating. .
- component (C) By copolymerizing the copolymer (A), the silica fine particles (B) and the reactive monomer (C), a crosslinked product is obtained, and the curable composition of the present invention is cured.
- the reactive monomer (C) is also referred to as a reactive diluent, and has roles such as adjusting the viscosity of the composition and adjusting the curability.
- Examples of the reactive monomer (C) include compounds having one or more, preferably two or more, and more preferably three or more carbon-carbon double bonds. Specifically, (meth) acrylic acid esters Epoxy (meth) acrylates or urethane (meth) acrylates are preferably used.
- (meth) acrylic acid esters include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di ( (Meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di Diacrylates such as (meth) acrylate, tricyclodecane di (meth) acrylate, bisphenol A di (meth) acrylate; trimethylolpropane tri (meth) acrylate, pentaerythris Tall tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ditrimethyl
- epoxy (meth) acrylates can be obtained by reacting a known epoxy compound with a carboxylic acid having an unsaturated group.
- the epoxy compound include glycidyl (meth) acrylate, glycidylpropyltrimethoxysilane, glycidyl ethers at both ends of a linear alcohol having 1 to 12 carbon atoms, diethyleneglycol diglycidyl ether, and tripropylene glycol diglycidyl ether.
- Bisphenol A diglycidyl ether Bisphenol A diglycidyl ether, ethylene oxide modified bisphenol A diglycidyl ether, propylene oxide modified bisphenol A diglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, hydrogenated bisphenol A diglycidyl ether, glycerin diglycidyl ether Etc.
- the carboxylic acid having an unsaturated group include (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, and the like.
- the epoxy compound and the carboxylic acid having an unsaturated group can be easily reacted by a conventionally known method.
- a compound represented by phosphines such as triphenylphosphine is used as a catalyst. Can also be used.
- Particularly preferred epoxy (meth) acrylates include 2-hydroxy-3-methacryloyloxypropyl methacrylate and 2-hydroxy-3-acryloyloxypropyl which are reaction products of glycidyl (meth) acrylate and (meth) acrylic acid.
- a methacrylate etc. can be mentioned.
- Urethane (meth) acrylates can be reacted with known alcohol compounds, thiol compounds or amine compounds with unsaturated group-containing isocyanates, or with known polyols and polyisocyanates in excess of isocyanate groups. Is obtained by reacting an alcohol compound having an unsaturated group with respect to the terminal isocyanate, for example, a (meth) acryloyloxy group-containing alcohol.
- alcohol compounds include (meth) acryloyloxy group-containing alcohols such as 2-hydroxyethyl acrylate, ethylene glycol, 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol.
- Glycerin polyglycerin, tris (2-hydroxyethyl) isocyanurate, 1,3,5-trihydroxypentane, 1,4-dithian-2,5-dimethanoltricyclodecanediol, trimethylolpropane, pentaerythritol, Ditrimethylolpropane, dipentaerythritol, norbornanedimethanol, polycarbonate diol, polysiloxane diol, bisphenol A, purple olcoalcohol, and their EO-modified, PO-modified, caprolacto Modified products thereof.
- examples of the known thiol compound include the thiol compound (a-5).
- the unsaturated group-containing isocyanate compound in addition to the unsaturated monomer (a-4) having the isocyanate group, 2,2-bis (acryloyloxymethyl) ethyl isocyanate, 1,1-bis (acryloyloxy) And methyl) methyl isocyanate.
- the content of the reactive monomer (C) in the curable resin composition is preferably 1 part by mass to 1000 parts by mass with respect to 100 parts by mass of the copolymer (A), and 10 parts by mass to 800 parts by mass. Is more preferable. If the content of the reactive monomer (C) is less than 1 part by mass, the crosslinking density may be lowered and the hardness may be insufficient. If it exceeds 1000 parts by mass, flexibility may be impaired due to an increase in the crosslinking density. is there.
- polymerization initiator (D) examples include a photopolymerization initiator that generates radicals and a thermal polymerization initiator. These may be used alone or in combination.
- photopolymerization initiator examples include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-phenylphenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine. Oxides and diphenyl- (2,4,6-trimethylbenzoyl) phosphine oxide. Two or more of these photopolymerization initiators may be used in combination.
- the content of the photopolymerization initiator in the curable composition may be an amount that appropriately cures the curable composition.
- the curable component that is, the component (A) and the component (B) ) Component and (C) component are added in a total amount of 100 parts by mass, preferably 0.1 to 50 parts by mass, more preferably 1 to 8 parts by mass.
- the blending amount of the photopolymerization initiator is less than 0.1 parts by mass, curing may be insufficient, and when it exceeds 50 parts by mass, the storage stability of the curable composition is reduced, or coloring is performed.
- problems such as cracking during curing may occur, and there is a risk of increasing the outgas component during high-temperature treatment and contaminating the apparatus.
- thermal polymerization initiator examples include benzoyl peroxide, diisopropyl peroxycarbonate, t-butylperoxy (2-ethylhexanoate), 1,1-di (t-hexylperoxy) cyclohexane, 1,1-di ( t-butylperoxy) cyclohexane, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane, t-hexylperoxysopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy 3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxysopropyl monocarbonate, t-butylperoxy-2-ethylhexyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl- 2,5-di Benzoy
- the content of the thermal polymerization initiator in the curable resin composition is the same as that in the case of the above-mentioned photopolymerization initiator. Moreover, you may use together a photoinitiator and a thermal-polymerization initiator.
- the mass ratio of the component (A), the component (B), and the component (C) is 5% by mass to 60% by mass of the component (A) with respect to the entire curable composition. %,
- the component (B) is preferably 30% by mass to 60% by mass, and the component (C) is preferably 10% by mass to 60% by mass. If the amount of component (A) is too large, sufficient hardness may not be obtained due to insufficient crosslinking density, and if it is too small, the amount of curing shrinkage will increase, causing cracks and warping of the cured film.
- the curable composition may become gelled due to the deterioration of dispersibility, or the cured film may become brittle due to the increase in inorganic properties. If the amount is too small, the cured film may be warped. There is a fear that it cannot contribute to the reduction, or a sufficient hardness may not be obtained. If the amount of (C) is too large, the cured film may be warped due to the progress of crosslinking more than necessary, or unreacted double bonds may increase and the optical properties may be impaired. If the amount is too small, the crosslinking density is decreased. As a result, sufficient hardness may not be obtained.
- Reactive oligomer (F) As the reactive oligomer (F) used in the present invention, a conventionally known reactive oligomer can be arbitrarily used as long as the effects of the present invention are not impaired.
- the curable composition of this invention contains the reactive oligomer (F), there exists an advantage that toughness can be provided, without reducing the hardness of hardened
- Specific examples of the reactive oligomer (F) include urethane acrylate.
- Examples of commercially available urethane acrylates include: Purple light UV-1600B, purple light UV-1700B, purple light UV-6300B, purple light UV-7600B, purple light UV-7640B, manufactured by Nippon Synthetic Chemical Co., Ltd.
- hyperbranched oligomers or dendrimers are useful from the viewpoint of reducing curing shrinkage and improving reactivity.
- the hyperbranched oligomers and dendrimers referred to here are three-dimensionally branched multi-branched compounds, and those with low regularity are called hyperbranches and those with high regularity are called dendrimers.
- Specific examples that are commercially available include CN2302, CN-2303, CN-2304, etc. manufactured by Sartomer.
- the content of the reactive oligomer (F) in the curable composition is preferably 0.1 to 500 parts by mass with respect to 100 parts by mass of the copolymer (A). More preferably, 1 to 100 parts by mass is blended. If the blending amount is less than 0.1 parts by mass, the performance of the reactive oligomer such as high hardness and low shrinkage may not be sufficiently imparted, and if it exceeds 500 parts by mass, dispersion of silica fine particles or other There is a risk of adversely affecting the compatibility with the composition.
- Additive (G) Any additive can be used in the curable resin composition of the present invention as necessary.
- the types of additives used include fillers (G1), dyes, pigments, leveling agents, ultraviolet absorbers, light stabilizers, antifoaming agents, dispersants, thixotropic agents, polyfunctional thiol compounds (G2), many A functional isocyanate compound (G3) etc. can be mentioned.
- the addition amount of these additives is usually in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the curable composition.
- the filler (G1), the polyfunctional thiol compound (G2), and the polyfunctional isocyanate are added to the curable composition. It is useful to use compound (G3).
- silica fine particles having a particle diameter of 100 nm to 10 ⁇ m.
- the thiol compound to be used is not particularly limited, and any polyfunctional thiol compound can be used. Specifically, the compounds listed in the above (a-5) can be used, but are not limited thereto.
- a polyfunctional thiol compound to the curable resin composition, for example, a polymerization reaction starting from a thiol-ene reaction that occurs between an unsaturated group and a mercapto group in a heating step such as a solvent drying step, Alternatively, a certain amount of crosslinking of the composition proceeds by 1,4-Michael addition reaction to impart blocking resistance to the hard coat layer.
- a thiol having a primary mercapto group as the polyfunctional thiol compound (G2). It is preferable to use one having a mercapto group secondary.
- the curable composition can be crosslinked by a condensation reaction with a substituent having active hydrogen in the curable composition in a heating step such as a solvent drying step.
- a heating step such as a solvent drying step.
- blocking resistance can be imparted to the hard coat layer.
- the curable composition does not contain an amino group, a hydroxyl group, a mercapto group, a carboxyl group, or other substituents capable of reacting with isocyanate, sufficient blocking resistance may not be obtained.
- the blocked isocyanate compound which protected the isocyanate group can also be used.
- the curable composition of the present invention is cured in an extremely short time by applying it to an optical film as an object and finally irradiating it with active energy rays such as ultraviolet rays or electron beams. be able to.
- the coating amount of the curable composition is such that the film thickness upon drying is 5 ⁇ m to 50 ⁇ m.
- a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a xenon lamp, a metal halide lamp, or the like is used as a light source when performing ultraviolet irradiation.
- the irradiation time varies depending on the type of light source, the distance between the light source and the coating surface, and other conditions, but it is several tens of seconds at most, and usually several seconds.
- an irradiation source having a lamp output of about 80 W / cm 2 to 300 W / cm 2 is used.
- an electron beam irradiation it is preferable to use an electron beam having an energy in the range of 50 KeV to 1,000 KeV and an irradiation amount of 2 Mrad to 5 Mrad. After active energy ray irradiation, heat treatment may be performed as necessary to promote curing.
- the application method is not particularly limited, and is a spraying method, an airless spray method, an air spray method, a roll coating method, a bar coating method.
- the gravure method can be applied.
- the gravure method is most preferably used from the viewpoints of aesthetics, cost, workability, and the like.
- the application may be an in-line coating method performed in a manufacturing process of a plastic film or the like, or an off-line coating method in which coating is performed on a molded product already manufactured in a separate process. From the viewpoint of production efficiency, off-line coating is preferred.
- the cured coating film obtained by heating or irradiating active energy to the curable composition of the present invention can be widely applied to applications requiring low curing shrinkage, high surface hardness and high scratch resistance. It is suitable for optical applications that require high transparency.
- MMA methyl methacrylate
- Aa acrylic acid
- Aa cyclohexane methacrylate
- 2EHMA 2-ethylhexyl methacrylate
- AIBN azobisisobutyronitrile
- 2- 2-ethylhexyl thioglycolate
- copolymerized polymer (P-1) A double bond equivalent: 820, glass transition temperature: 92 ° C., weight average molecular weight: 78,000) MEK and PGME mixed solution was obtained.
- the glass transition temperature and the weight average molecular weight are numerical values measured by the method described above.
- Copolymers (P-2) to (P-6) having an unsaturated group in the side chain were prepared in the same manner as in Production Example 1, except that the components used and the proportions used were as shown in Table 1.
- MAa represents methacrylic acid
- 4-HBAGE represents 4-hydroxybutyl acrylate glycidyl ether.
- MAa was added instead of Aa and 4-HBAGE was added instead of GMA.
- the concentration of ⁇ -methacryloxypropyltrimethoxysilane is a non-polar column DB-1 (manufactured by J & W), a temperature of 50 to 300 ° C., a heating rate of 10 ° C./min, He as a carrier gas, and a flow rate of 1 .2 cc / min, measured by an internal standard method using a flame ionization detector.
- ⁇ -Methacryloxypropyltrimethoxysilane disappeared 8 hours after the addition of the HCl solution.
- MIBK methyl isobutyl ketone
- curable resin composition C-14 The composition of each component was as shown in Table 3, and tris (2-isocyanatoethyl) isocyanurate (with copolymer copolymer (P-1)) ( Hereinafter, curable resin composition C-14 was prepared in the same manner as in Production Example 9 except that TIEI was sometimes mixed with the composition shown in Table 3.
- Example 1 The curable resin composition (C-1) was applied on a TAC (triacetylcellulose) film (Fuji Photo Film Co., Ltd., Fujitack (film thickness 40 ⁇ m)) to a thickness of 8 ⁇ m as a dry coating film, and 70 ° C. And dried for 1 minute with a UV irradiator (mercury lamp) in an N 2 atmosphere to obtain an integrated illuminance of 200 mJ / cm 2 to obtain a hard coat film.
- TAC triacetylcellulose
- Fujitack film thickness 40 ⁇ m
- Examples 2 to 8, Comparative Examples 1 and 2 A hard coat film was obtained in the same manner as in Example 1 except that the curable resin composition of Example 1 was changed to C-2 to 10 respectively, and the performance was evaluated. The results are shown in Table 4. The evaluation method will be described later.
- Example 9 The curable resin composition (C-11) was applied on a PET film (Panac Lumirror 50-T60 (film thickness 50 ⁇ m)) to a thickness of 6 ⁇ m as a dry coating film, and dried at 100 ° C. for 1 minute. UV unexposed samples were obtained. About blocking resistance and shape followability, it evaluated using the UV unexposed sample obtained here. Further, the UV unexposed sample was exposed and cured in an air atmosphere with a UV irradiator (mercury lamp) so as to have an integrated illuminance of 1000 mJ / cm 2 to obtain a hard coat film. Performances such as pencil hardness were evaluated using the hard coat film obtained here. The results are shown in Table 5. The evaluation method will be described later.
- Examples 10 to 17, Comparative Examples 3 and 4 A hard coat film was obtained in the same manner as in Example 9 except that the curable resin composition of Example 9 was changed to C-11 to 21 respectively, and the performance was evaluated. The results are shown in Table 5. The evaluation method will be described later.
- Blocking resistance is obtained by holding a UV unexposed sample for 12 hours at a temperature of 50 ° C. and a load of 1 kg / cm 2 using a blocking tester (manufactured by Tester Sangyo Co., Ltd.). Evaluation was conducted.
- the hard coat film produced using the curable resin composition of the present invention had high pencil hardness and exhibited low curing shrinkage by using an optimal (meth) acrylate polymer.
- Comparative Example 1 that does not contain silica fine particles, not only a sufficient pencil hardness cannot be obtained, but also the curing shrinkage is large and the warpage is large.
- Comparative Example 2 using the (meth) acrylic copolymer synthesized without using thiol, sufficient pencil hardness cannot be obtained, and the haze is increased due to deterioration of compatibility with silica fine particles. It became.
- the hard coat film produced using the curable resin composition of the present invention has good blocking resistance and high pencil hardness.
- Comparative Example 3 containing no silica fine particles not only a sufficient pencil hardness was not obtained, but also the anti-blocking performance was greatly reduced.
- Comparative Example 4 using a (meth) acrylic copolymer synthesized without using thiol sufficient pencil hardness cannot be obtained, and haze is increased due to deterioration of compatibility with silica fine particles. As a result, the shape followability also decreased.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Paints Or Removers (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
(1)下記一般式(1)
(2)前記一般式(1)のYが下記一般式(2)
で表されるモノマー単位を含むことを特徴とする前記(1)に記載の硬化性樹脂組成物。
(3)前記一般式(2)の-Z-が、下記一般式(3)~(6)
(4)前記シリカ微粒子(B)が、表面処理されていないシリカ微粒子(B')を下記一般式(7)で表されるシラン化合物(E)および(8)で表されるシラン化合物(E)
の少なくともいずれか一方によって表面処理して得られたものであることを特徴とする、前記(1)~(3)のいずれかに記載の硬化性樹脂組成物。
(5)前記シリカ微粒子(B)が前記共重合ポリマー(A)100質量部に対して5~1000質量部の量で含まれることを特徴とする、前記(1)~(4)のいずれかに記載の硬化性樹脂組成物。
(6)前記反応性モノマー(C)が、前記共重合ポリマー(A)100質量部に対して1~1000質量部の量で含まれることを特徴とする、前記(1)~(5)のいずれかに記載の硬化性樹脂組成物。
(7)反応性モノマー(C)が、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも一つであることを特徴とする、前記(1)~(6)のいずれかに記載の硬化性樹脂組成物。
(8)前記重合開始剤(D)が、硬化性成分の合計100質量部に対して0.1~50質量部の量で含まれることを特徴とする前記(1)~(7)のいずれかに記載の硬化性樹脂組成物。
(9)反応性オリゴマー(F)が、前記共重合ポリマー(A)100質量部に対して0.1~500質量部の量で含まれることを特徴とする前記(1)~(8)のいずれかに記載の硬化性樹脂組成物。
(10)フィラーを含有することを特徴とする前記(1)~(9)のいずれかに記載の硬化性樹脂組成物。
(11)多官能チオール化合物を含有することを特徴とする前記(1)~(10)のいずれかに記載の硬化性樹脂組成物。
(12)多官能イソシアネート化合物を含有することを特徴とする前記(1)~(11)のいずれかに記載の硬化性樹脂組成物。
(13)前記(1)~(11)のいずれかに記載の硬化性樹脂組成物を含むハードコート剤。
(14)前記(13)に記載のハードコート剤によって形成されたコーティング膜を含むクリアハードコートフィルムまたは加飾成形用ハードコートフィルム。
共重合ポリマー(A)(以下「(A)成分」ともいう。)は上記式(1)で表され、たとえば、多官能チオール化合物の存在下で2種または3種以上の不飽和単量体を共重合させることで合成することができる。
から選ばれる少なくとも1種の(メタ)アクリロイル基を含むことが好ましい。
共重合ポリマー(A)は、好ましくは60℃~100℃、より好ましくは80℃~100℃のガラス転移温度を有する。ガラス転移温度が60℃未満であると硬化塗膜に十分な表面硬度が得られない場合があり、一方、ガラス転移温度が100℃を超えると硬化塗膜の耐屈曲性が低下する場合がある。本発明において、(メタ)アクリル系共重合樹脂のガラス転移温度(Tg)は、下記式を用いて計算される値である。
上記計算に用いる単独重合体のガラス転移温度は、文献に記載されている値を用いることができ、例えば、Polymer Handbookなどに記載されている。
カラム:昭和電工株式会社製KF-806L
カラム温度:40℃
試料:共重合体の0.2質量%テトラヒドロフラン溶液
流量:2ml/分
溶離液:テトラヒドロフラン
ii)シリカ微粒子(B)
本発明で用いられるシリカ微粒子(B)(以下「(B)成分」ともいう。)としては、平均粒子径が1~100nmのものを好適に用いることができる。平均粒子径が1nm未満であると、作製した硬化性組成物の粘度が増大し、シリカ微粒子(B)の硬化性組成物中での含有量が制限されるとともに、硬化性組成物中でのシリカ微粒子(B)の分散性が悪化し、硬化性組成物を硬化させて得られる硬化物(以下単に硬化物とも言う)が十分な耐熱性を得ることができない傾向がある。また、平均粒子径が100nmを越えると、硬化物の外観性能や機械特性が低下する場合がある。
本発明で使用する重合性不飽和基を有するシラン化合物(E1)は(メタ)アクリロイル基または(メタ)アクリロイルオキシ基を有するシラン化合物であり、中でも一般式(7)で表される不飽和基を有するシラン化合物を好適に用いることができる。
硬化性組成物の粘度の低減、保存安定性の点から、好ましいR5はメチル基であり、好ましいR7はメチル基であり、好ましいlは3であり、好ましいrは0である。
本発明で用いられる芳香環を有するシラン化合物(E2)は、下記一般式(8)などで表される。
反応性モノマー(C)(以下「(C)成分」ともいう。)は、活性光線の照射時に光重合開始剤から発生するラジカルで重合または架橋する化合物、または加熱により重合または架橋する化合物である。共重合ポリマー(A)とシリカ微粒子(B)および反応性モノマー(C)とを共重合させることで架橋物となり、本発明の硬化性組成物が硬化する。反応性モノマー(C)は反応性希釈剤とも称され、組成物の粘度の調整、硬化性の調整などの役割も有する。反応性モノマー(C)としては、炭素-炭素二重結合を1つ以上、好ましくは2つ以上、さらに好ましくは3つ以上有する化合物が挙げられ、具体的には、(メタ)アクリル酸エステル類、エポキシ(メタ)アクリレート類、またはウレタン(メタ)アクリレート類が好ましく使用される。
本発明で用いられる重合開始剤(D)としては、ラジカルを発生する光重合開始剤及び熱重合開始剤が挙げられる。これらは、それぞれ単独に用いてもよく、併用してもよい。
本発明で用いられる反応性オリゴマー(F)としては、本発明の効果を損なわない限り、従来公知の反応性オリゴマーを任意に用いることができる。本発明の硬化性組成物が反応性オリゴマー(F)を含有すると、硬化物の硬度を低下させることなく靭性を付与できるという利点がある。
本発明の硬化性樹脂組成物には必要に応じて、任意の添加剤を用いることが可能である。用いる添加剤の種類としては、フィラー(G1)、染料、顔料、レベリング剤、紫外線吸収剤、光安定化剤、消泡剤、分散剤、チクソトロピー性付与剤、多官能チオール化合物(G2)、多官能イソシアネート化合物(G3)等を挙げることができる。これらの添加剤の添加量は、硬化性組成物100質量部に対して、通常0.01質量部~10質量部の範囲である。
[製造例1]:側鎖に不飽和基を有する共重合ポリマー(P-1)の合成
温度計、撹拌棒、還流冷却器及び滴下漏斗を備えた反応容器に、プロピレングリコールモノメチルエーテルとメチルエチルケトンの50%/50%混合溶液(以下、PGME、MEK混合溶液と略記する)115.0質量部、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社製、PEMP)3.0質量部を入れた後、約80℃に加熱した。ここに、メチルメタクリレート(以下、MMAと略記する)97.6質量部、アクリル酸(以下、Aaと略記する) 72.6質量部、シクロヘキサンメタクリレート(以下、CHMAと略記する)43.1質量部、2-エチルヘキシルメタクリレート(以下、2EHMAと略記する)13.6質量部、アゾビスイソブチロニトリル(以下、AIBNと略記する) 0.9質量部、2-エチルヘキシルチオグリコレート(以下、2-EHTGと略記する) 0.7質量部及びPGME、MEK混合溶液125.0質量部からなる単量体溶液を2時間掛けて滴下した。滴下終了から1時間後、AIBN 0.7質量部及びPGME、MEK混合溶液10.0質量部を加え、約90℃で2時間攪拌し、エージングを実施した。80℃まで冷却後、メトキノン 0.2質量部、トリエチルアミン0.2質量部及び付加単量体としてのグリシジルメタクリレート(以下、GMAと略記する) 22.7質量部を添加し、80℃で9時間攪拌した。不揮発分が50質量%になるようにPGME、MEK混合溶液で希釈した後、冷却し、一般式(1)で表される共重合ポリマー(以下、共重合ポリマー(P-1)と記す)(二重結合当量:820、ガラス転移温度:92℃、重量平均分子量:78,000)のMEK、PGME混合溶液を得た。ガラス転移温度および重量平均分子量は、上述の方法により測定された数値である。
使用した成分およびその使用比率を表1に示したとおりにしたこと以外は、製造例1と同様の手法で、側鎖に不飽和基を有する共重合ポリマー(P-2)~(P-6)を得た。表1中のMAaはメタクリル酸を表わし、4-HBAGEは4-ヒドロキシブチルアクリレートグリシジルエーテルを表わす。MAaはAaの代わりに加えられ、4-HBAGEはGMAの代わりに加えられた。
製造例1で用いたペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社製、PEMP)を使用しなかったこと以外は、製造例1と同様の操作を行い、側鎖に不飽和基を有する共重合ポリマー(P-7)(二重結合当量:820、ガラス転移温度:92℃、重量平均分子量:93,000)のMEK溶液を得た。
[製造例7]:シリカ微粒子分散液(M-1)の合成
セパラブルフラスコに、イソプロピルアルコール分散型コロイダルシリカ(シリカ含量30質量%、平均粒子径10~20nm、商品名スノーテックIPA-ST;日産化学(株)製)100質量部を入れ、該セパラブルフラスコにγ-メタクリロキシプロピルトリメトキシシラン9質量部を加え攪拌混合した。さらにこの混合液に0.1825質量%のHCl溶液3.1質量部を加え、室温で24hr撹拌することにより、シリカ微粒子の表面処理を行い、シリカ微粒子分散液(M-1)を得た。なお、γ-メタクリロキシプロピルトリメトキシシランの加水分解による消失は、ガスクロマトグラフィー(アジレント(株)製 型式6850)により確認した。γ-メタクリロキシプロピルトリメトキシシラン濃度は、無極性カラムDB-1(J&W社製)を使用し、温度50~300℃、昇温速度10℃/min、キャリアガスとしてHeを使用し、流量1.2cc/min、水素炎イオン化検出器にて内部標準法で測定した。γ-メタクリロキシプロピルトリメトキシシランは、上記HCl溶液を添加後8hrで消失した。
[製造例8]:硬化性樹脂組成物C-1の調製
製造例1で合成した共重合ポリマー(P-1)の50%MEK溶液16.6質量部、製造例2で合成したシリカ微粒子(M-1)分散液144.4質量部、ジペンタエリスリトールヘキサアクリレート(製品名:日本化薬社製 KAYARAD DPHA)41.7質量部を混合し、更に光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(製品名:チバスペシャリティケミカルズ社製 IRG184)4.6質量部を加え、更にMIBKを311質量部加え、固形分を30%とした。この混合液を遮光中室温にてスターラーで24時間攪拌することで、硬化性樹脂組成物C-1を得た。
各成分の組成を表3に示したとおりにし、共重合ポリマー(P-1)等とともにペンタエリスリトールテトラキス-(3-メルカプトブチレート)(以降、PE1と称することがある。)を表3に示した組成で混合したこと以外は製造例9と同様の要領で硬化性樹脂組成物C-13を調製した。
各成分の組成を表3に示したとおりにし、共重合ポリマー(P-1)等とともにトリス(2-イソシアナトエチル)イソシアヌレート(以降、TIEIと称することがある。)を表3に示した組成で混合したこと以外は製造例9と同様の要領で硬化性樹脂組成物C-14を調製した。
[実施例1]
硬化性樹脂組成物(C-1)を乾燥塗膜として8μmの厚さになるようにTAC(トリアセチルセルロース)フィルム(フジ写真フィルム社製 フジタック(膜厚40μm))上に塗布し、70℃で1分乾燥させた後、N2雰囲気下UV照射器(水銀ランプ)にて、積算照度200mJ/cm2になるよう露光して硬化させ、ハードコートフィルムを得た。
実施例1の硬化性樹脂組成物をそれぞれC-2~10に変更した以外は実施例1と同様の方法にてハードコートフィルムを取得し、性能を評価した。結果を表4に示す。また、評価方法に関しては後述する。
硬化性樹脂組成物(C-11)を乾燥塗膜として6μmの厚さになるようにPETフィルム(パナック社製 ルミラー50-T60(膜厚50μm))上に塗布し、100℃で1分間乾燥させ、UV未露光サンプルを得た。耐ブロッキング性と形状追随性に関しては、ここで得られたUV未露光サンプルを用いて評価した。またUV未露光サンプルをAir雰囲気下UV照射器(水銀ランプ)にて、積算照度1000mJ/cm2になるよう露光して硬化させ、ハードコートフィルムを得た。ここで得られたハードコートフィルムを用いて鉛筆硬度等の性能を評価した。結果を表5に示す。また、評価方法に関しては後述する。
実施例9の硬化性樹脂組成物をそれぞれC-11~21に変更した以外は実施例9と同様の方法にてハードコートフィルムを取得し性能を評価した。結果を表5に示す。また、評価方法に関しては後述する。
(a)硬化収縮性の評価
ハードコートフィルムから10cm角の試験片を作製した。試験片は対向する2辺部分がもち上がり、反りが生じた。試験片の、もち上がった両端の距離を測定した。10cmからその距離を差し引いて得られた長さの、10cmに対する比率を硬化収縮性とした。その比率が低いほど低硬化収縮性であることを表す。また、試験片が一回転してロール状になってしまった場合は、表4内にカッコ付きで数値を示した。その場合、示した数値はロールの半径である。
ハードコートフィルムの硬化塗膜表面に1mm間隔で切れ込みをいれ、1mm2の碁盤目を100個作った。その上にセロテープ(登録商標)を貼り付け、一気に引き剥がし、下記基準で評価した。尚、100個のうち密着を保ったマスの個数をカウントし、100個のうち100個のマスが密着を保った場合、密着性は100/100と表した。
×:剥離発生
(c)鉛筆硬度の評価
JIS K5400に記載の方法に基づき、表面性測定機(新東科学株式会社製)、及び硬度測定用鉛筆(三菱鉛筆株式会社製)を用い、JIS K5400に準じて鉛筆硬度を測定した。鉛筆硬度は5回測定し、合格であったサンプル数nを「n/5」の形で記載する。
スチールウール(#0000)に175g/cm2の荷重をかけてハードコートフィルムの硬化塗膜表面を10往復擦傷した。傷の有無を目視にて確認し、下記基準で評価した。
×:傷発生
(e)全光線透過率の評価
日本電色工業株式会社製ヘイズメーター(NDH2000)を使用し、JIS K7361に準じて全光線透過率(%)を測定した。
日本電色工業株式会社製ヘイズメーター(NDH2000)を使用し、JIS K7361に準じてヘイズ(%)を測定した。
UV未露光サンプルに対して、ブロッキングテスター(テスター産業株式会社社製)を用いて温度を50℃、荷重を1Kg/cm2として12時間保持することにより耐ブロッキング性の評価を実施した。
×:剥がれ有り
(h)形状追随性の評価
UV未露光サンプルを用いて、テンシロンによる引っ張り試験により乾燥塗膜の基材への追随を評価した。表5に記載した数値は、元の長さに対する伸張可能な長さの比率である。
Claims (14)
- 前記シリカ微粒子(B)が、前記共重合ポリマー(A)100質量部に対して5~1000質量部の量で含まれることを特徴とする、請求項1~4のいずれかに記載の硬化性樹脂組成物。
- 前記反応性モノマー(C)が、前記共重合ポリマー(A)100質量部に対して1~1000質量部の量で含まれることを特徴とする、請求項1~5のいずれかに記載の硬化性樹脂組成物。
- 反応性モノマー(C)が、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、及びジペンタエリスリトールヘキサ(メタ)アクリレートからなる群から選ばれる少なくとも一つであることを特徴とする、請求項1~6のいずれかに記載の硬化性樹脂組成物。
- 前記重合開始剤(D)が、硬化性成分の合計100質量部に対して0.1~50質量部の量で含まれることを特徴とする請求項1~7のいずれかに記載の硬化性樹脂組成物。
- 反応性オリゴマー(F)が、前記共重合ポリマー(A)100質量部に対して0.1~500質量部の量で含まれることを特徴とする請求項1~8のいずれかに記載の硬化性樹脂組成物。
- フィラーを含有することを特徴とする請求項1~9のいずれかに記載の硬化性樹脂組成物。
- 多官能チオール化合物を含有することを特徴とする請求項1~10のいずれかに記載の硬化性樹脂組成物。
- 多官能イソシアネート化合物を含有することを特徴とする請求項1~11のいずれかに記載の硬化性樹脂組成物。
- 請求項1~11のいずれかに記載の硬化性樹脂組成物を含むハードコート剤。
- 請求項13に記載のハードコート剤によって形成されたコーティング膜を含むクリアハードコートフィルムまたは加飾成形用ハードコートフィルム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11843403.4A EP2644631A4 (en) | 2010-11-22 | 2011-11-08 | CURABLE RESIN COMPOSITION |
US13/988,241 US20130237629A1 (en) | 2010-11-22 | 2011-11-08 | Curable resin composition |
KR1020137015920A KR101492355B1 (ko) | 2010-11-22 | 2011-11-08 | 경화성 수지 조성물 |
CN201180054691.8A CN103210008B (zh) | 2010-11-22 | 2011-11-08 | 固化性树脂组合物 |
JP2012545674A JP5896917B2 (ja) | 2010-11-22 | 2011-11-08 | 硬化性樹脂組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010259975 | 2010-11-22 | ||
JP2010-259975 | 2010-11-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012070382A1 true WO2012070382A1 (ja) | 2012-05-31 |
Family
ID=46145730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/075712 WO2012070382A1 (ja) | 2010-11-22 | 2011-11-08 | 硬化性樹脂組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20130237629A1 (ja) |
EP (1) | EP2644631A4 (ja) |
JP (1) | JP5896917B2 (ja) |
KR (1) | KR101492355B1 (ja) |
CN (1) | CN103210008B (ja) |
TW (1) | TWI522413B (ja) |
WO (1) | WO2012070382A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015098519A (ja) * | 2013-11-18 | 2015-05-28 | 住友ベークライト株式会社 | 樹脂組成物、部材、光学装置および電子装置 |
EP2980165A4 (en) * | 2013-03-29 | 2016-11-02 | Hoya Corp | COATING COMPOSITION |
US9574090B2 (en) * | 2013-08-27 | 2017-02-21 | Zeon Corporation | Resin composition, resin film, and electronic device |
JP2017044969A (ja) * | 2015-08-28 | 2017-03-02 | 積水化学工業株式会社 | 表示素子用封止剤 |
JP2018083950A (ja) * | 2017-12-21 | 2018-05-31 | 日本ペイント・オートモーティブコーティングス株式会社 | 3次元成型品加飾用積層フィルムのクリヤー塗膜層形成用塗料組成物 |
WO2019130807A1 (ja) * | 2017-12-27 | 2019-07-04 | 富士フイルム株式会社 | 組成物、膜、カラーフィルタ、固体撮像素子、画像表示装置および化合物の製造方法 |
JP2021152115A (ja) * | 2020-03-24 | 2021-09-30 | 東ソー株式会社 | 多量体組成物、ブロック化多量体組成物及びこれらの製造方法 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105474096B (zh) * | 2013-08-27 | 2019-11-12 | 日本瑞翁株式会社 | 辐射敏感树脂组合物、树脂膜及电子部件 |
KR101671430B1 (ko) * | 2013-11-25 | 2016-11-01 | 주식회사 엘지화학 | 플라스틱 필름 및 이의 제조방법 |
WO2015076632A1 (ko) * | 2013-11-25 | 2015-05-28 | 주식회사 엘지화학 | 플라스틱 필름 및 이의 제조방법 |
WO2016021545A1 (ja) * | 2014-08-06 | 2016-02-11 | 三菱樹脂株式会社 | 塗布フィルム |
CN107531813B (zh) * | 2015-04-21 | 2020-06-26 | 昭和电工株式会社 | 自由基聚合性含水树脂组合物、其固化方法及自由基聚合性含水树脂组合物的制造方法 |
JP6723788B2 (ja) * | 2016-03-31 | 2020-07-15 | 太陽インキ製造株式会社 | 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板 |
CN106267233B (zh) * | 2016-08-28 | 2019-03-26 | 浙江大学 | 一种可控制喜树碱释放速率的药物载体及其制备和应用 |
US11430992B2 (en) * | 2017-09-28 | 2022-08-30 | Zeon Corporation | Composition for non-aqueous secondary battery functional layer including first organic particles, second organic particles and solvent, functional layer for non-aqueous secondary battery, and non-aqueous secondary battery |
MX2022000910A (es) * | 2019-07-23 | 2022-05-10 | Adaptive 3D Tech Llc | Elastómeros de tiol-acrilato para impresión 3d. |
TWI731537B (zh) * | 2019-12-31 | 2021-06-21 | 財團法人工業技術研究院 | 底漆組合物及積層板 |
CN114249998B (zh) * | 2020-09-25 | 2024-06-28 | 广东华润涂料有限公司 | 可迈克尔加成固化的组合物、包含该组合物的涂料组合物以及由其制成的涂布制品 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113005A (ja) * | 2005-10-18 | 2007-05-10 | Dainippon Ink & Chem Inc | 硬化性組成物、アクリロイル基含有硬化性オリゴマー、及びアクリロイル基含有オリゴマーの製造方法 |
JP2008150484A (ja) | 2006-12-18 | 2008-07-03 | Momentive Performance Materials Japan Kk | ハードコート用組成物 |
JP2008201864A (ja) * | 2007-02-19 | 2008-09-04 | Nippon Shokubai Co Ltd | コーティング組成物および光学フィルム |
JP2009157315A (ja) | 2007-12-28 | 2009-07-16 | Sealex Corp | 表示パネルの製造方法及び表示パネル |
JP2009235119A (ja) * | 2008-03-25 | 2009-10-15 | Fujifilm Corp | 重合性組成物、その硬化物、硬化物の製造方法、およびハードコート物品 |
JP2010024255A (ja) * | 2008-07-15 | 2010-02-04 | Nippon Synthetic Chem Ind Co Ltd:The | 活性エネルギー線硬化型樹脂組成物及びコーティング剤組成物 |
JP2011021151A (ja) * | 2009-07-17 | 2011-02-03 | Showa Denko Kk | 活性エネルギー線硬化性ハードコート剤組成物及びそれに用いる(メタ)アクリル系共重合樹脂の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60311115T2 (de) * | 2002-07-22 | 2007-11-08 | Mitsui Chemicals, Inc. | Ultrafeine anorganische teilchen enthaltende harzzusammensetzung |
-
2011
- 2011-11-08 EP EP11843403.4A patent/EP2644631A4/en not_active Withdrawn
- 2011-11-08 CN CN201180054691.8A patent/CN103210008B/zh not_active Expired - Fee Related
- 2011-11-08 JP JP2012545674A patent/JP5896917B2/ja active Active
- 2011-11-08 WO PCT/JP2011/075712 patent/WO2012070382A1/ja active Application Filing
- 2011-11-08 KR KR1020137015920A patent/KR101492355B1/ko not_active IP Right Cessation
- 2011-11-08 US US13/988,241 patent/US20130237629A1/en not_active Abandoned
- 2011-11-15 TW TW100141664A patent/TWI522413B/zh not_active IP Right Cessation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007113005A (ja) * | 2005-10-18 | 2007-05-10 | Dainippon Ink & Chem Inc | 硬化性組成物、アクリロイル基含有硬化性オリゴマー、及びアクリロイル基含有オリゴマーの製造方法 |
JP2008150484A (ja) | 2006-12-18 | 2008-07-03 | Momentive Performance Materials Japan Kk | ハードコート用組成物 |
JP2008201864A (ja) * | 2007-02-19 | 2008-09-04 | Nippon Shokubai Co Ltd | コーティング組成物および光学フィルム |
JP2009157315A (ja) | 2007-12-28 | 2009-07-16 | Sealex Corp | 表示パネルの製造方法及び表示パネル |
JP2009235119A (ja) * | 2008-03-25 | 2009-10-15 | Fujifilm Corp | 重合性組成物、その硬化物、硬化物の製造方法、およびハードコート物品 |
JP2010024255A (ja) * | 2008-07-15 | 2010-02-04 | Nippon Synthetic Chem Ind Co Ltd:The | 活性エネルギー線硬化型樹脂組成物及びコーティング剤組成物 |
JP2011021151A (ja) * | 2009-07-17 | 2011-02-03 | Showa Denko Kk | 活性エネルギー線硬化性ハードコート剤組成物及びそれに用いる(メタ)アクリル系共重合樹脂の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2644631A4 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2980165A4 (en) * | 2013-03-29 | 2016-11-02 | Hoya Corp | COATING COMPOSITION |
US9574090B2 (en) * | 2013-08-27 | 2017-02-21 | Zeon Corporation | Resin composition, resin film, and electronic device |
JP2015098519A (ja) * | 2013-11-18 | 2015-05-28 | 住友ベークライト株式会社 | 樹脂組成物、部材、光学装置および電子装置 |
JP2017044969A (ja) * | 2015-08-28 | 2017-03-02 | 積水化学工業株式会社 | 表示素子用封止剤 |
JP2018083950A (ja) * | 2017-12-21 | 2018-05-31 | 日本ペイント・オートモーティブコーティングス株式会社 | 3次元成型品加飾用積層フィルムのクリヤー塗膜層形成用塗料組成物 |
WO2019130807A1 (ja) * | 2017-12-27 | 2019-07-04 | 富士フイルム株式会社 | 組成物、膜、カラーフィルタ、固体撮像素子、画像表示装置および化合物の製造方法 |
JPWO2019130807A1 (ja) * | 2017-12-27 | 2020-12-17 | 富士フイルム株式会社 | 組成物、膜、カラーフィルタ、固体撮像素子、画像表示装置および化合物の製造方法 |
JP7016891B2 (ja) | 2017-12-27 | 2022-02-07 | 富士フイルム株式会社 | 組成物、膜、カラーフィルタ、固体撮像素子、画像表示装置および化合物の製造方法 |
US11945917B2 (en) | 2017-12-27 | 2024-04-02 | Fujifilm Corporation | Composition, film, color filter, solid-state imaging element, image display device, and method for producing compound |
JP2021152115A (ja) * | 2020-03-24 | 2021-09-30 | 東ソー株式会社 | 多量体組成物、ブロック化多量体組成物及びこれらの製造方法 |
JP7474617B2 (ja) | 2020-03-24 | 2024-04-25 | 東ソー株式会社 | 多量体組成物、ブロック化多量体組成物及びこれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103210008B (zh) | 2015-04-15 |
US20130237629A1 (en) | 2013-09-12 |
KR101492355B1 (ko) | 2015-02-10 |
CN103210008A (zh) | 2013-07-17 |
TW201235399A (en) | 2012-09-01 |
JP5896917B2 (ja) | 2016-03-30 |
TWI522413B (zh) | 2016-02-21 |
KR20130087576A (ko) | 2013-08-06 |
EP2644631A1 (en) | 2013-10-02 |
EP2644631A4 (en) | 2015-11-04 |
JPWO2012070382A1 (ja) | 2014-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5896917B2 (ja) | 硬化性樹脂組成物 | |
JP2011246548A (ja) | 硬化性樹脂組成物および透明フィルム | |
JP5470166B2 (ja) | 硬化型コーティング剤組成物 | |
JP5443940B2 (ja) | 硬化型コーティング剤組成物 | |
JP5477299B2 (ja) | マレイミド基で表面修飾した無機酸化物微粒子を含む硬化型組成物 | |
JP4531620B2 (ja) | ウレタン(メタ)アクリレート系化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物、並びにコーティング剤 | |
JP2013173871A (ja) | 組成物、帯電防止性コート剤及び帯電防止性積層体 | |
JP2012062385A (ja) | フィルム保護層用活性エネルギー線硬化型樹脂組成物及びこれを用いたフィルム | |
JP5217112B2 (ja) | 硬化性組成物、硬化膜、反射防止膜積層体及び硬化膜の製造方法 | |
WO2013035265A1 (ja) | 硬化型コーティング剤組成物 | |
JP5163946B2 (ja) | 活性エネルギー線硬化性樹脂組成物、コーティング剤組成物、蒸着アンカー層用コーティング剤および硬化被膜 | |
JP5228098B2 (ja) | 硬化型コーティング剤組成物 | |
JP5150759B1 (ja) | 硬化型コーティング剤組成物 | |
JP5371202B2 (ja) | 活性エネルギー線硬化性組成物及びコーティング剤組成物、硬化膜 | |
JP5389150B2 (ja) | 硬化型コーティング剤組成物 | |
JP6965186B2 (ja) | 光硬化性樹脂組成物 | |
JP5221159B2 (ja) | 活性エネルギー線硬化型塗料組成物とその硬化物 | |
JP5415169B2 (ja) | 活性エネルギー線硬化性ハードコート剤組成物及びそれに用いる(メタ)アクリル系共重合樹脂の製造方法 | |
JP2012031434A (ja) | 光硬化性(メタ)アクリル樹脂の製造方法 | |
JP2013043902A (ja) | 硬化性樹脂組成物及び硬化物 | |
JP2010180306A (ja) | 活性エネルギー線硬化性ハードコート剤組成物 | |
JP2021187904A (ja) | 3次元架橋構造体、活性エネルギー線硬化型樹脂組成物、塗料、塗膜、レンズ、及び3次元架橋構造体の製造方法 | |
JP2013057010A (ja) | 硬化性樹脂組成物及び硬化物 | |
JP6106001B2 (ja) | 硬化型被覆材組成物、ハードコート用樹脂組成物及び樹脂成形物 | |
JP2010001399A (ja) | 帯電防止コーティング組成物及びそれを硬化させた被膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11843403 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011843403 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2012545674 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13988241 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20137015920 Country of ref document: KR Kind code of ref document: A |