WO2012060248A1 - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2012060248A1
WO2012060248A1 PCT/JP2011/074511 JP2011074511W WO2012060248A1 WO 2012060248 A1 WO2012060248 A1 WO 2012060248A1 JP 2011074511 W JP2011074511 W JP 2011074511W WO 2012060248 A1 WO2012060248 A1 WO 2012060248A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
layer
contact
concentration
silicon carbide
Prior art date
Application number
PCT/JP2011/074511
Other languages
English (en)
French (fr)
Inventor
増田 健良
和田 圭司
透 日吉
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201180010752.0A priority Critical patent/CN102770960B/zh
Priority to CA 2789371 priority patent/CA2789371A1/en
Priority to US13/522,216 priority patent/US9006745B2/en
Priority to EP11837899.1A priority patent/EP2637212A4/en
Priority to KR20127019707A priority patent/KR20130121668A/ko
Publication of WO2012060248A1 publication Critical patent/WO2012060248A1/ja
Priority to US14/643,140 priority patent/US9443960B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • H01L21/0465Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/049Conductor-insulator-semiconductor electrodes, e.g. MIS contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/086Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/6634Vertical insulated gate bipolar transistors with a recess formed by etching in the source/emitter contact region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
    • H01L29/66333Vertical insulated gate bipolar transistors
    • H01L29/66348Vertical insulated gate bipolar transistors with a recessed gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02255Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device capable of reducing on-resistance while suppressing occurrence of punch-through and a manufacturing method thereof.
  • silicon carbide has been increasingly adopted as a material constituting semiconductor devices in order to enable higher breakdown voltage, lower loss, and use in high-temperature environments.
  • Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device.
  • a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • the channel mobility is lowered when the impurity concentration of the body region in which the inversion layer is formed is increased. Therefore, the impurity concentration in the body region is suppressed to a predetermined value or less, for example, 2 ⁇ 10 16 cm ⁇ 3 or less.
  • the channel length cannot be set to a predetermined value or less, for example, 0.6 ⁇ m or less. As a result, there is a limit to reducing the on-resistance by shortening the channel length. That is, the conventional technique has a problem that it is difficult to reduce the on-resistance while suppressing the occurrence of punch-through.
  • an object of the present invention is to provide a semiconductor device capable of reducing on-resistance while suppressing the occurrence of punch-through and a method for manufacturing the same.
  • a semiconductor device includes a substrate made of silicon carbide, an epitaxial growth layer made of silicon carbide, formed on the substrate, a gate insulating film made of an insulator and disposed in contact with the epitaxial growth layer, And a gate electrode disposed in contact with the gate insulating film.
  • the epitaxial growth layer includes a body region in which an inversion layer is formed in a region in contact with the gate insulating film when a voltage is applied to the gate electrode.
  • the body region is disposed in a region where the inversion layer is formed, a low concentration region containing a low concentration impurity, and a region where the inversion layer is formed adjacent to the low concentration region in the carrier moving direction in the inversion layer. And a high concentration region including a higher concentration impurity than the low concentration region.
  • a low concentration region containing a low concentration impurity is arranged in a region where an inversion layer is to be formed in the body region, a decrease in channel mobility is suppressed.
  • a high concentration region containing an impurity having a higher concentration than the low concentration region is disposed so as to be adjacent to the low concentration region. Therefore, the spread of the depletion layer in the region where the inversion layer is to be formed in the body region can be reduced. As a result, punch-through can be effectively suppressed even if the channel length is shortened.
  • the semiconductor device of the present invention the low concentration region capable of ensuring high channel mobility and the high concentration region capable of suppressing punch-through are combined with the region where the inversion layer is to be formed. Therefore, even when the channel length is shortened, high channel mobility can be ensured while suppressing punch-through. As a result, according to the semiconductor device of the present invention, it is possible to reduce the on-resistance while suppressing the occurrence of punch-through.
  • the impurity concentration in the low concentration region is preferably suppressed to a concentration that can ensure a sufficiently high channel mobility.
  • the impurity concentration in the low concentration region is 2 ⁇ 10 16 cm ⁇ 3 or less. It is desirable.
  • the high concentration region may be arranged downstream of the low concentration region in the carrier moving direction. Thereby, the punch through suppression effect by arrangement
  • region can be heightened.
  • the channel length may be 0.5 ⁇ m or less.
  • the semiconductor device of the present invention can be suitably used for such a semiconductor device with a short channel length.
  • the impurity concentration in the high concentration region may be 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • the impurity concentration in the high concentration region is preferably 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less.
  • a method of manufacturing a semiconductor device includes a step of preparing a substrate made of silicon carbide, a step of forming an epitaxial growth layer made of silicon carbide on the substrate, a step of forming a body region in the epitaxial growth layer, and an epitaxial growth Forming a gate insulating film made of an insulator so as to be in contact with the layer; and forming a gate electrode that forms an inversion layer in a region in contact with the gate insulating film in the body region by applying a voltage; It has.
  • the step of forming the body region includes a step of forming a mask layer having an opening on the epitaxial growth layer, and an ion implantation using the mask layer as a mask, thereby changing the first concentration region having the first impurity concentration into the inversion layer.
  • the first impurity concentration by performing ion implantation using the mask layer with the opening enlarged as a mask, the step of forming in the region where the mask is formed, the step of enlarging the opening by etching the mask layer, and the mask layer with the opening enlarged Forming a second concentration region having a different second impurity concentration in a region adjacent to the first concentration region in the carrier moving direction in the inversion layer and in which the inversion layer is formed.
  • the semiconductor device of the present invention can be easily manufactured by adopting ion implantation by self-alignment.
  • the semiconductor device and the manufacturing method thereof of the present invention it is possible to provide a semiconductor device and a manufacturing method thereof that can reduce the on-resistance while suppressing the occurrence of punch-through. it can.
  • FIG. 6 is a schematic cross-sectional view showing a structure of a MOSFET in a second embodiment.
  • FIG. 10 is a flowchart showing an outline of a manufacturing procedure of a MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSFET in the second embodiment.
  • FIG. 10 is a schematic cross sectional view for illustrating the method for manufacturing the MOSF
  • MOSFET 1 as a semiconductor device in the present embodiment which is one embodiment of the present invention is arranged on silicon carbide substrate 10 and one main surface of silicon carbide substrate 10, and silicon carbide And an active layer 20 that is an epitaxially grown layer.
  • Silicon carbide substrate 10 is made of single crystal silicon carbide, and has an n-type conductivity (first conductivity type) by including impurities (n-type impurities) such as nitrogen and phosphorus.
  • Active layer 20 is formed with a trench 28 that opens on the main surface opposite to silicon carbide substrate 10, extends toward silicon carbide substrate 10, and has a bottom in active layer 20.
  • Active layer 20 includes drift layer 21, body region 22, n + source region 24, p + contact region 25, and p + electric field relaxation region 27.
  • Drift layer 21 is arranged on silicon carbide substrate 10 and has an n-type conductivity by containing an n-type impurity at a concentration lower than that of silicon carbide substrate 10.
  • the bottom of the trench 28 is located in the drift layer 21.
  • Body region 22 is arranged on drift layer 21 so as to be in contact with the sidewall of trench 28.
  • Body region 22 has a p-type conductivity (second conductivity type) by containing impurities (p-type impurities) such as aluminum and boron.
  • N + source region 24 is arranged on body region 22 so as to be in contact with the sidewall of trench 28 and to include a main surface of active layer 20 opposite to silicon carbide substrate 10.
  • the n + source region 24 includes an n-type impurity at a concentration higher than that of the drift layer 21, so that the conductivity type is n-type.
  • P + contact region 25 is located on body region 22 on the side opposite to trench 28 when viewed from n + source region 24, and includes a main surface of active layer 20 on the side opposite to silicon carbide substrate 10.
  • the p + contact region 25 has a p-type conductivity by including a p-type impurity.
  • the p + electric field relaxation region 27 is in contact with the entire bottom portion of the trench 28 in the drift layer 21 and extends to a position in contact with a part of the side wall of the trench 28.
  • the p + electric field relaxation region 27 has a p-type conductivity by including a p-type impurity.
  • the body region 22 is disposed so as to be in contact with the n + source region 24 and the p + contact region 25, and is sandwiched between the low concentration region 22B containing a low concentration p-type impurity, the low concentration region 22B, and the drift layer 21. And a high concentration region 22A containing a p-type impurity at a higher concentration than the low concentration region 22B.
  • the concentration of the p-type impurity in the low concentration region 22B is, for example, 2 ⁇ 10 16 cm ⁇ 3 or less.
  • the concentration of the p-type impurity in the high concentration region 22A is, for example, not less than 1 ⁇ 10 17 cm ⁇ 3 and not more than 1 ⁇ 10 18 cm ⁇ 3 .
  • MOSFET 1 further includes a gate oxide film 30, a gate electrode 40, a source contact electrode 60, an interlayer insulating film 50, a source wiring 70, a drain contact electrode 80, and a back surface protection electrode 90.
  • Gate oxide film 30 is made of an insulator such as silicon dioxide, covers the bottom wall and side walls of trench 28, and extends to the main surface of active layer 20 opposite to silicon carbide substrate 10. Has been placed.
  • the gate electrode 40 is disposed so as to fill the inside of the trench 28 covered with the gate oxide film 30, and is made of a conductor such as aluminum.
  • the source contact electrode 60 is disposed on the active layer 20 so as to be in contact with the n + source region 24 and the p + contact region 25. That is, the source contact electrode 60 is disposed so as to be in contact with a region on the active layer 20 that is not covered with the gate oxide film 30.
  • the source contact electrode 60 is made of a conductor such as nickel, and at least a region in contact with the active layer 20 is silicided to form an ohmic contact with the n + source region 24.
  • the interlayer insulating film 50 is disposed so as to cover the gate electrode 40 and extend to the gate oxide film 30.
  • the interlayer insulating film 50 is made of an insulator such as silicon dioxide.
  • the source wiring 70 is disposed so as to contact the source contact electrode 60 and cover the source contact electrode 60 and the interlayer insulating film 50.
  • the source wiring 70 is made of a conductor such as aluminum.
  • the drain contact electrode 80 is arranged in contact with the main surface of the silicon carbide substrate 10 opposite to the active layer 20.
  • Drain contact electrode 80 is made of a conductor such as nickel, and at least a region in contact with silicon carbide substrate 10 is silicided to form ohmic contact with silicon carbide substrate 10.
  • the back surface protective electrode 90 is disposed so as to contact the drain contact electrode 80 and cover the drain contact electrode 80.
  • the back surface protective electrode 90 is made of a conductor such as aluminum.
  • MOSFET 1 in the state where the voltage of gate electrode 40 is less than the threshold voltage, that is, in the off state, even if a voltage is applied to drain contact electrode 80 and back surface protective electrode 90, body region 22 and drift layer 21 The pn junction between them becomes a reverse bias and becomes non-conductive.
  • the inversion layer 29 is formed in the vicinity of the body region 22 in contact with the gate oxide film 30.
  • the n + source region 24 and the drift layer 21 are electrically connected, electrons serving as carriers move along the arrow ⁇ , and a current flows.
  • MOSFET 1 which is a trench type MOSFET includes a silicon carbide substrate 10 made of silicon carbide, an active layer 20 made of silicon carbide and formed as an epitaxial growth layer on silicon carbide substrate 10, an insulator, and an active layer.
  • a gate oxide film 30 as a gate insulating film disposed in contact with the gate electrode 20 and a gate electrode 40 disposed in contact with the gate oxide film 30 are provided.
  • the active layer 20 includes a body region 22 in which an inversion layer 29 is formed in a region in contact with the gate oxide film 30 when a voltage is applied to the gate electrode 40.
  • the body region 22 is disposed so as to include a region where the inversion layer 29 is formed.
  • the body region 22 is low in the low concentration region 22B containing a low concentration impurity and in the carrier moving direction (direction of arrow ⁇ ) in the inversion layer 29.
  • the high-concentration region 22A is disposed adjacent to the concentration region 22B so as to include a region where the inversion layer 29 is formed, and includes a higher concentration impurity than the low-concentration region 22B.
  • the low concentration region 22B that can ensure high channel mobility and the high concentration region 22A that can suppress punch through are in the body region 22 where the inversion layer 29 is to be formed. It is arranged in combination with the area. Therefore, even when the channel length is shortened, it is possible to ensure high channel mobility while suppressing punch-through.
  • the MOSFET 1 of the present embodiment is a semiconductor device that can reduce the on-resistance while suppressing the occurrence of punch-through.
  • the high concentration region 22A can be arranged upstream of the low concentration region 22B in the carrier movement direction (the direction of the arrow ⁇ ). However, as shown in FIG. Is disposed downstream of the low concentration region 22B in the carrier movement direction (the direction of the arrow ⁇ ), the punch through suppression effect due to the arrangement of the high concentration region 22A can be enhanced.
  • the body region 22 including the high concentration region 22A and the low concentration region 22B is employed in the MOSFET 1, the occurrence of punch-through is suppressed even when the channel length is reduced to 0.5 ⁇ m or less. Can do.
  • the threshold voltage may decrease when the channel length is shortened to 0.5 ⁇ m or less, the phenomenon that current does not saturate when the drain voltage is high, and the subthreshold coefficient deteriorates. Such a phenomenon is also suppressed by the above-described configuration in MOSFET 1 in the present embodiment.
  • the impurity concentration of the high concentration region 22A is preferably 1 ⁇ 10 17 cm ⁇ 3 or more and 1 ⁇ 10 18 cm ⁇ 3 or less. This ensures a good balance between the punch through suppression effect and the adverse effect on the carrier mobility.
  • a substrate preparation step is first performed as a step (S10).
  • step (S10) referring to FIG. 3, for example, silicon carbide substrate 10 taken from a single crystal silicon carbide ingot produced by a sublimation method is prepared.
  • an epitaxial growth step is performed as a step (S20).
  • this step (S20) referring to FIG. 3, on one main surface of silicon carbide substrate 10 by epitaxial growth, conductivity type n-type drift layer 21, conductivity type p-type high concentration region 22A, conductivity A low concentration region 22B of p-type and an n + source region 24 of n-type conductivity are sequentially formed.
  • nitrogen, phosphorus, or the like can be employed as an n-type impurity for making the conductivity type n-type.
  • aluminum, boron, etc. are employable as a p-type impurity for making a conductivity type into p-type.
  • a trench formation step is performed as a step (S30).
  • trench 28 is formed which penetrates low concentration region 22B and high concentration region 22A from main surface opposite to silicon carbide substrate 10 in n + source region 24 and extends to drift layer 21. Is done.
  • the trench 28 can be formed by the following procedure, for example. First, an oxide layer made of silicon dioxide is formed on the n + source region 24. Next, a resist is applied on the oxide layer, and exposed and developed to form a resist film having an opening in a desired region where the trench 28 is to be formed. Next, the oxide layer is etched using the resist film as a mask to form an opening in a region where the trench 28 is to be formed. Then, after removing the resist film, the trench 28 is formed by, for example, RIE (Reactive Ion Etching) using the oxide layer in which the opening is formed as a mask.
  • RIE Reactive Ion Etching
  • an ion implantation step is performed as a step (S40).
  • step (S40) referring to FIGS. 4 and 5, p + contact region 25 and p + electric field relaxation region 27 are formed by ion implantation.
  • an oxide layer having an opening in a desired region where ion implantation is to be performed is formed in the same manner as in the above-described step (S30), and p-type impurities are ion-implanted using this oxide layer as a mask.
  • activation annealing is performed by heating to a predetermined temperature, whereby p + contact region 25 and p + electric field relaxation region 27 are formed.
  • a gate oxide film forming step is performed as a step (S50).
  • a thermal oxide film 30 to be gate oxide film 30 is formed by performing a thermal oxidation process. This thermal oxide film 30 is formed so as to cover the side wall and bottom wall of the trench and to cover the upper surface of the n + source region 24.
  • a gate electrode formation step is performed as a step (S60).
  • this step (S60) referring to FIG. 6 and FIG. 7, the trench 28 formed in step (S30) and having the sidewall and the bottom wall covered with thermal oxide film 30 in step (S50) is filled.
  • a gate electrode 40 is formed. The formation of the gate electrode 40 can be performed by sputtering, for example.
  • a contact electrode forming step is performed as a step (S70).
  • step (S70) referring to FIGS. 7 and 8, source contact electrode 60 and drain contact electrode 80 are formed.
  • interlayer insulating film 50 made of, for example, silicon dioxide is formed so as to cover at least the upper surface of gate electrode 40.
  • the thermal oxide film 30 and the interlayer insulating film 50 on the regions to be in contact with the source contact electrode 60 in the n + source region 24 and the p + contact region 25 are removed by etching.
  • a nickel film is formed by vapor deposition in a desired region where the source contact electrode 60 and the drain contact electrode 80 are to be formed.
  • source contact electrode 60 that forms an ohmic contact with n + source region 24 and drain contact electrode 80 that forms an ohmic contact with silicon carbide substrate 10 are formed.
  • a wiring formation step is performed as a step (S80).
  • source wiring 70 and back surface protection electrode 90 are formed.
  • aluminum is deposited so as to cover the source contact electrode 60 and the interlayer insulating film 50 and to cover the drain contact electrode 80.
  • the semiconductor device according to the second embodiment basically has the same structure as the semiconductor device according to the first embodiment, and has the same effects. However, unlike the semiconductor device of the first embodiment, which is a trench MOSFET (UMOSFET), the semiconductor device of the second embodiment has a DMOSFET (planar MOSFET) structure.
  • UMOSFET trench MOSFET
  • MOSFET 101 which is a semiconductor device in the second embodiment includes silicon carbide substrate 110 and active layer 120 which is disposed on one main surface of silicon carbide substrate 110 and is an epitaxially grown layer made of silicon carbide. I have.
  • Silicon carbide substrate 110 is made of single crystal silicon carbide, and has an n-type conductivity (first conductivity type) by including impurities (n-type impurities) such as nitrogen and phosphorus.
  • the active layer 120 includes a drift layer 121, a body region 122, an n + source region 124, and a p + contact region 125.
  • Drift layer 121 is arranged on silicon carbide substrate 110, and has an n-type conductivity by containing an n-type impurity at a concentration lower than that of silicon carbide substrate 110.
  • Body region 122 is arranged to include a main surface of active layer 120 on the side opposite to silicon carbide substrate 110.
  • Body region 122 has a p-type conductivity (second conductivity type) by containing impurities (p-type impurities) such as aluminum and boron.
  • N + source region 124 is formed in body region 122 so as to include a main surface of active layer 120 opposite to silicon carbide substrate 110.
  • the n + source region 124 has an n-type conductivity type by containing an n-type impurity at a concentration higher than that of the drift layer 121.
  • P + contact region 125 is formed in body region 122 so as to include the main surface of active layer 120 opposite to silicon carbide substrate 110, and is disposed on the center side of body region 122 when viewed from n + source region 124. Has been.
  • the p + contact region 125 has a p-type conductivity by containing a p-type impurity.
  • the body region 122 is disposed so as to surround the n + source region 124 and the p + contact region 125, and is disposed so as to surround the high concentration region 122A containing a high concentration p-type impurity and the high concentration region 122A. And a low concentration region 122B containing a p-type impurity at a lower concentration than the high concentration region 122A.
  • the MOSFET 101 further includes a gate oxide film 130, a gate electrode 140, a source contact electrode 160, an interlayer insulating film 150, a source wiring 170, a drain contact electrode 180, and a back surface protective electrode 190.
  • Gate oxide film 130 is made of an insulator such as silicon dioxide, and is in contact with n + source region 124, high concentration region 122A, and low concentration region 122B on the main surface of active layer 120 opposite to silicon carbide substrate 110. Extends to be.
  • the gate electrode 140 is disposed in contact with the gate oxide film 130 and extends from the high concentration region 122A to the low concentration region 122B.
  • the gate electrode 140 is made of a conductor such as aluminum.
  • Source contact electrode 160 is arranged on active layer 120 so as to be in contact with n + source region 124 and p + contact region 125.
  • the source contact electrode 160 is disposed in contact with a region on the active layer 120 that is not covered with the gate oxide film 130.
  • the source contact electrode 160 is made of a conductor such as nickel, and at least a region in contact with the active layer 120 is silicided to form an ohmic contact with the n + source region 124.
  • the interlayer insulating film 150 is disposed so as to cover the gate electrode 140 and extend to the gate oxide film 130.
  • Interlayer insulating film 150 is made of an insulator such as silicon dioxide.
  • the source wiring 170 is disposed so as to contact the source contact electrode 160 and cover the source contact electrode 160 and the interlayer insulating film 150.
  • the source wiring 170 is made of a conductor such as aluminum.
  • the drain contact electrode 180 is arranged in contact with the main surface of the silicon carbide substrate 110 opposite to the active layer 120.
  • Drain contact electrode 180 is made of a conductor such as nickel, and at least a region in contact with silicon carbide substrate 110 is silicided to form ohmic contact with silicon carbide substrate 110.
  • the back surface protection electrode 190 is disposed so as to contact the drain contact electrode 180 and cover the drain contact electrode 180.
  • the back surface protective electrode 190 is made of a conductor such as aluminum.
  • MOSFET 101 which is a planar type MOSFET is made of silicon carbide substrate 110 made of silicon carbide, active layer 120 made of silicon carbide and formed as an epitaxial growth layer formed on silicon carbide substrate 110, an insulator, and an active layer A gate oxide film 130 as a gate insulating film disposed in contact with 120 and a gate electrode 140 disposed in contact with the gate oxide film 130 are provided.
  • the active layer 120 includes a body region 122 in which an inversion layer 129 is formed in a region in contact with the gate oxide film 130 when a voltage is applied to the gate electrode 140.
  • the body region 122 is disposed so as to include a region where the inversion layer 129 is formed.
  • the body region 122 is low in the low concentration region 122B including a low concentration impurity and in the carrier moving direction (the direction of the arrow ⁇ ) in the inversion layer 129.
  • the high-concentration region 122A which is adjacent to the concentration region 122B and includes a region where the inversion layer 129 is formed, includes a higher concentration impurity than the low-concentration region 122B.
  • MOSFET 101 of the present embodiment low concentration region 122B that can ensure high channel mobility and high concentration region 122A that can suppress punch-through are included in body region 122 where inversion layer 129 is to be formed. It is arranged in combination with the area. Therefore, even when the channel length is shortened, it is possible to ensure high channel mobility while suppressing punch-through.
  • the MOSFET 101 of this embodiment is a semiconductor device that can reduce the on-resistance while suppressing the occurrence of punch-through.
  • a substrate preparation step is first performed as a step (S110).
  • silicon carbide substrate 110 taken from, for example, a single crystal silicon carbide ingot produced by a sublimation method is prepared.
  • drift layer 121 having an n conductivity type is formed on one main surface of silicon carbide substrate 110 by epitaxial growth.
  • nitrogen, phosphorus, or the like can be employed as an n-type impurity for making the conductivity type n-type.
  • a first ion implantation step is performed as a step (S130).
  • step (S130) referring to FIG. 12, mask layer 199 having opening 199A is first formed on drift layer 121.
  • the mask layer 119 can be made of, for example, silicon dioxide.
  • n + region 124A containing an n-type impurity having a concentration higher than that of drift layer 121 is formed.
  • a first isotropic etching step is performed as a step (S140).
  • this step (S140) referring to FIG. 13, by performing isotropic etching on mask layer 199 used in step (S130), opening 199A is enlarged as shown by an arrow.
  • a second ion implantation step is performed.
  • ion implantation is performed using mask layer 199 in which opening 199A is enlarged in step (S140) as a mask, thereby forming high concentration region 122A containing a high concentration p-type impurity.
  • a second isotropic etching step is performed as a step (S160).
  • this step (S160) referring to FIG. 14, by performing isotropic etching on mask layer 199 used in step (S150), opening 199A is further enlarged as shown by an arrow. .
  • a third ion implantation step is performed.
  • ion implantation is performed using mask layer 199 in which opening 199A is enlarged in step (S160) as a mask, thereby forming low concentration region 122B having an impurity concentration lower than that of high concentration region 122A.
  • a fourth ion implantation step is performed.
  • this step (S180) referring to FIG. 15, after mask layer 199 used in step (S170) is once removed, mask layer 199 having opening 199A at an appropriate position is formed again. Thereafter, by performing ion implantation using the mask layer 199 as a mask, the p + contact region 125 containing a high concentration p-type impurity is formed. At this time, a region where the p + contact region 125 is not formed in the n + region 124A becomes the n + source region 124.
  • a gate oxide film forming step is performed as a step (S190).
  • the mask layer 199 used in step (S180) is removed, and then the thermal oxidation process is performed, whereby gate oxide film 130 and A thermal oxide film 130 to be formed is formed.
  • Thermal oxide film 130 is formed to cover the entire main surface of drift layer 121 opposite to silicon carbide substrate 110.
  • a gate electrode formation step is performed as a step (S200).
  • step (S200) referring to FIGS. 16 and 17, gate electrode 140 is formed in contact with thermal oxide film 130.
  • the formation of the gate electrode 140 can be performed by sputtering, for example.
  • a contact electrode formation step is performed as a step (S210).
  • step (S210) referring to FIGS. 17 and 18, source contact electrode 160 and drain contact electrode 180 are formed. Specifically, first, the thermal oxide film 130 on the region to be in contact with the source contact electrode 160 in the n + source region 124 and the p + contact region 125 is removed by etching. Next, for example, a nickel film is formed by vapor deposition in a desired region where the source contact electrode 160 and the drain contact electrode 180 are to be formed. Further, an interlayer insulating film 150 made of silicon dioxide is formed so as to cover the upper surfaces of the gate electrode 140, the nickel film to be the source contact electrode 160 and the thermal oxide film 130.
  • source contact electrode 160 that forms an ohmic contact with n + source region 124
  • drain contact electrode 180 that forms an ohmic contact with silicon carbide substrate 110
  • interlayer insulating film 150 are formed.
  • a wiring formation step is performed as a step (S220).
  • step (S220) referring to FIGS. 18 and 9, source wiring 170 and back surface protective electrode 190 are formed. Specifically, for example, after the interlayer insulating film 150 on the source contact electrode 160 is removed, aluminum is deposited so as to cover the source contact electrode 160 and the interlayer insulating film 150 and also cover the drain contact electrode 180. With the above process, the manufacturing method of MOSFET 101 in the present embodiment is completed.
  • the method for manufacturing MOSFET 101 in the present embodiment includes a step of preparing silicon carbide substrate 110, a step of forming drift layer 121 as an epitaxial growth layer made of silicon carbide on silicon carbide substrate 110, and drift layer 121.
  • the step of forming body region 122 includes a step of forming mask layer 199 having opening 199A on drift layer 121 and a high concentration having a first impurity concentration by performing ion implantation using mask layer 199 as a mask.
  • the semiconductor device of the present invention is applied to a trench MOSFET (UMOSFET) and a DMOSFET (planar MOSFET) has been described.
  • the semiconductor device of the present invention is not limited to this, The present invention can be applied to various semiconductor devices that control the presence / absence of inversion layer formation in the channel region with the threshold voltage as a boundary to conduct and block current.
  • the semiconductor device of the present invention can be widely applied to semiconductor devices such as VMOSFET and IGBT.
  • the semiconductor device of the present invention can be particularly advantageously applied to a semiconductor device that is required to reduce the on-resistance while suppressing the occurrence of punch-through.
  • 1,101 MOSFET, 10,110 Silicon carbide substrate 20,120 active layer, 21,121 drift layer, 22,122 body region, 22A, 122A high concentration region, 22B, 122B low concentration region, 24, 124 n + source Region, 124A n + region, 25, 125 p + contact region, 27 p + electric field relaxation region, 28 trench, 29, 129 inversion layer, 30, 130 gate oxide film (thermal oxide film), 40, 140 gate electrode, 50 , 150 Interlayer insulating film, 60, 160 Source contact electrode, 70, 170 Source wiring, 80, 180 Drain contact electrode, 90, 190 Back surface protection electrode, 199 Mask layer, 199A Opening.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

 MOSFET(1)は、炭化珪素基板(10)と、活性層(20)と、ゲート酸化膜(30)と、ゲート電極(40)とを備えている。活性層(20)は、ゲート電極(40)に電圧が印加されることによりゲート酸化膜(30)に接触する領域に反転層(29)が形成されるボディ領域(22)を含む。ボディ領域(22)は、反転層(29)が形成される領域に配置され、低濃度の不純物を含む低濃度領域(22B)と、反転層(29)におけるキャリアの移動方向において低濃度領域(22B)に隣接し、反転層(29)が形成される領域に配置され、低濃度領域(22B)よりも高濃度の不純物を含む高濃度領域(22A)とを有している。

Description

半導体装置およびその製造方法
 本発明は半導体装置およびその製造方法に関し、より特定的には、パンチスルーの発生を抑制しつつオン抵抗を低減することが可能な半導体装置およびその製造方法に関するものである。
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 このような炭化珪素を材料として用いた半導体装置のうち、たとえばMOSFET(Metal Oxide Semiconductor Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)など、所定の閾値電圧を境にチャネル領域における反転層の形成の有無をコントロールし、電流を導通および遮断する半導体装置においては、チャネル領域における抵抗を抑制してオン抵抗を低減する方策について種々の検討がなされている(たとえば特開2007-80971号公報(特許文献1)および特開2002-261095号公報(特許文献2)参照)。
特開2007-80971号公報 特開2002-261095号公報
 ここで、炭化珪素が材料として採用され、上記反転層が形成される半導体装置においては、反転層が形成されるボディ領域の不純物濃度を高くするとチャネル移動度が低下するという問題が生じる。そのため、ボディ領域における不純物濃度は所定値以下、たとえば2×1016cm-3以下程度に抑制される。しかし、この場合、ボディ領域が完全に空乏化する状態(パンチスルー)を回避するためには、チャネル長を所定値以下、たとえば0.6μm以下にすることができない。その結果、チャネル長短縮によるオン抵抗の低減には限界がある。つまり、従来の技術では、パンチスルーの発生を抑制しつつオン抵抗を低減することは難しいという問題があった。
 そこで、本発明の目的は、パンチスルーの発生を抑制しつつオン抵抗を低減することが可能な半導体装置およびその製造方法を提供することである。
 本発明に従った半導体装置は、炭化珪素からなる基板と、炭化珪素からなり、基板上に形成されたエピタキシャル成長層と、絶縁体からなり、エピタキシャル成長層に接触して配置されたゲート絶縁膜と、ゲート絶縁膜に接触して配置されたゲート電極とを備えている。エピタキシャル成長層は、ゲート電極に電圧が印加されることによりゲート絶縁膜に接触する領域に反転層が形成されるボディ領域を含んでいる。そして、ボディ領域は、反転層が形成される領域に配置され、低濃度の不純物を含む低濃度領域と、反転層におけるキャリアの移動方向において低濃度領域に隣接し、反転層が形成される領域に配置され、低濃度領域よりも高濃度の不純物を含む高濃度領域とを有している。
 本発明の半導体装置においては、ボディ領域のうち反転層が形成されるべき領域に低濃度の不純物を含む低濃度領域が配置されるため、チャネル移動度の低下が抑制される。そして、反転層が形成されるべき領域においてこの低濃度領域に隣接するように低濃度領域よりも高濃度の不純物を含む高濃度領域が配置されている。そのため、ボディ領域のうち反転層が形成されるべき領域における空乏層の広がりを小さくすることができる。その結果、チャネル長を短くしてもパンチスルーを有効に抑制することができる。つまり、本発明の半導体装置によれば、高いチャネル移動度を確保可能な低濃度領域とパンチスルーを抑制可能な高濃度領域とが反転層が形成されるべき領域に組み合わせて配置される。そのため、チャネル長を短くした場合でも、パンチスルーを抑制しつつ高いチャネル移動度を確保することができる。その結果、本発明の半導体装置によれば、パンチスルーの発生を抑制しつつオン抵抗を低減することができる。
 なお、低濃度領域における不純物濃度は、十分に高いチャネル移動度を確保可能な濃度に抑制されることが好ましく、具体的には低濃度領域における不純物濃度は2×1016cm-3以下とされることが望ましい。
 上記半導体装置においては、高濃度領域は、キャリアの移動方向において低濃度領域の下流側に配置されてもよい。これにより、高濃度領域の配置によるパンチスルーの抑制効果を高めることができる。
 上記半導体装置においては、チャネル長が0.5μm以下であってもよい。このようなチャネル長の短い半導体装置に、本発明の半導体装置を好適に採用することができる。
 上記半導体装置においては、高濃度領域の不純物濃度は1×1017cm-3以上1×1018cm-3以下となっていてもよい。不純物濃度が1×1017cm-3未満の場合、パンチスルーの抑制効果が不十分となるおそれがある。一方、不純物濃度が1×1018cm-3を超える場合、キャリア移動度の低下が大きくなりすぎるおそれがある。したがって、キャリア移動度への悪影響とパンチスルーの抑制効果とのバランスを考慮すると、高濃度領域の不純物濃度は1×1017cm-3以上1×1018cm-3以下であることが好ましい。
 本発明に従った半導体装置の製造方法は、炭化珪素からなる基板を準備する工程と、基板上に炭化珪素からなるエピタキシャル成長層を形成する工程と、エピタキシャル成長層にボディ領域を形成する工程と、エピタキシャル成長層上に接触するように絶縁体からなるゲート絶縁膜を形成する工程と、電圧が印加されることによりボディ領域のゲート絶縁膜に接触する領域に反転層を形成するゲート電極を形成する工程とを備えている。ボディ領域を形成する工程は、エピタキシャル成長層上に開口を有するマスク層を形成する工程と、マスク層をマスクとしてイオン注入を実施することにより、第1の不純物濃度を有する第1濃度領域を反転層が形成される領域に形成する工程と、マスク層をエッチングすることにより開口を拡大する工程と、開口が拡大されたマスク層をマスクとしてイオン注入を実施することにより、第1の不純物濃度とは異なる第2の不純物濃度を有する第2濃度領域を、反転層におけるキャリアの移動方向において第1濃度領域に隣接し、かつ反転層が形成される領域に形成する工程とを含んでいる。
 本発明の半導体装置の製造方法によれば、セルフアラインによるイオン注入を採用することにより、上記本発明の半導体装置を容易に製造することができる。
 以上の説明から明らかなように、本発明の半導体装置およびその製造方法によれば、パンチスルーの発生を抑制しつつオン抵抗を低減することが可能な半導体装置およびその製造方法を提供することができる。
本発明の一実施の形態におけるMOSFETの構造を示す概略断面図である。 MOSFETの製造手順の概略を示すフローチャートである。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 MOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの構造を示す概略断面図である。 実施の形態2におけるMOSFETの製造手順の概略を示すフローチャートである。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。 実施の形態2におけるMOSFETの製造方法を説明するための概略断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。
 (実施の形態1)
 図1を参照して、本発明の一実施の形態である本実施の形態における半導体装置としてのMOSFET1は、炭化珪素基板10と、炭化珪素基板10の一方の主面上に配置され、炭化珪素からなるエピタキシャル成長層である活性層20とを備えている。
 炭化珪素基板10は、単結晶炭化珪素からなり、窒素、リンなどの不純物(n型不純物)を含むことにより導電型がn型(第1導電型)となっている。活性層20には、炭化珪素基板10とは反対側の主面において開口し、炭化珪素基板10に向けて延びるとともに、活性層20内に底部を有するトレンチ28が形成されている。そして、活性層20は、ドリフト層21と、ボディ領域22と、nソース領域24と、pコンタクト領域25と、p電界緩和領域27とを含んでいる。
 ドリフト層21は、炭化珪素基板10上に配置され、炭化珪素基板10よりも低濃度のn型不純物を含むことにより導電型がn型となっている。トレンチ28の底部は、ドリフト層21内に位置する。ボディ領域22は、ドリフト層21上であってトレンチ28の側壁に接するように配置されている。ボディ領域22は、アルミニウム、硼素などの不純物(p型不純物)を含むことにより導電型がp型(第2導電型)となっている。nソース領域24は、ボディ領域22上であってトレンチ28の側壁に接するとともに、活性層20の炭化珪素基板10とは反対側の主面を含むように配置されている。nソース領域24は、ドリフト層21よりも高濃度のn型不純物を含むことにより、導電型がn型となっている。
 pコンタクト領域25は、ボディ領域22上であってnソース領域24から見てトレンチ28とは反対側に位置するとともに、活性層20の炭化珪素基板10とは反対側の主面を含むように配置されている。pコンタクト領域25は、p型不純物を含むことにより導電型がp型となっている。p電界緩和領域27は、ドリフト層21内においてトレンチ28の底部全域に接するとともに、トレンチ28の側壁の一部に接する位置にまで延在している。p電界緩和領域27は、p型不純物を含むことにより導電型がp型となっている。
 また、ボディ領域22は、nソース領域24およびpコンタクト領域25に接するように配置され、低濃度のp型不純物を含む低濃度領域22Bと、低濃度領域22Bおよびドリフト層21に挟まれるように配置され、低濃度領域22Bよりも高濃度のp型不純物を含む高濃度領域22Aとを含んでいる。低濃度領域22Bにおけるp型不純物の濃度は、たとえば2×1016cm-3以下となっている。一方、高濃度領域22Aにおけるp型不純物の濃度は、たとえば1×1017cm-3以上1×1018cm-3以下となっている。
 MOSFET1は、さらにゲート酸化膜30と、ゲート電極40と、ソースコンタクト電極60と、層間絶縁膜50と、ソース配線70と、ドレインコンタクト電極80と、裏面保護電極90とを備えている。
 ゲート酸化膜30は、たとえば二酸化珪素などの絶縁体からなり、トレンチ28の底壁および側壁を覆うとともに、活性層20の炭化珪素基板10とは反対側の主面上にまで延在するように配置されている。ゲート電極40は、ゲート酸化膜30により覆われたトレンチ28の内部を充填するように配置され、たとえばアルミニウムなどの導電体からなっている。
 ソースコンタクト電極60は、活性層20上においてnソース領域24およびpコンタクト領域25に接するように配置されている。すなわち、ソースコンタクト電極60は、活性層20上のゲート酸化膜30に覆われていない領域に接するように配置されている。ソースコンタクト電極60は、ニッケルなどの導電体からなっており、少なくとも活性層20に接する領域がシリサイド化することによりnソース領域24とオーミックコンタクトを形成している。
 層間絶縁膜50は、ゲート電極40上を覆うとともに、ゲート酸化膜30上にまで延在するように配置されている。層間絶縁膜50は、二酸化珪素などの絶縁体からなっている。ソース配線70は、ソースコンタクト電極60に接触し、ソースコンタクト電極60および層間絶縁膜50上を覆うように配置されている。ソース配線70は、アルミニウムなどの導電体からなっている。
 ドレインコンタクト電極80は、炭化珪素基板10の活性層20とは反対側の主面上に接触して配置されている。ドレインコンタクト電極80は、ニッケルなどの導電体からなっており、少なくとも炭化珪素基板10に接する領域がシリサイド化することにより炭化珪素基板10とオーミックコンタクトを形成している。裏面保護電極90は、ドレインコンタクト電極80上に接触し、ドレインコンタクト電極80上を覆うように配置されている。裏面保護電極90はアルミニウムなどの導電体からなっている。
 次に、MOSFET1の動作について説明する。図1を参照して、ゲート電極40の電圧が閾値電圧未満の状態、すなわちオフ状態では、ドレインコンタクト電極80および裏面保護電極90に電圧が印加されても、ボディ領域22とドリフト層21との間のpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極40に閾値電圧以上の電圧を印加すると、ボディ領域22のゲート酸化膜30と接触する付近に反転層29が形成される。その結果、nソース領域24とドリフト層21とが電気的に接続され、矢印αに沿ってキャリアである電子が移動し、電流が流れる。
 すなわち、トレンチ型MOSFETであるMOSFET1は、炭化珪素からなる炭化珪素基板10と、炭化珪素からなり、炭化珪素基板10上に形成されたエピタキシャル成長層としての活性層20と、絶縁体からなり、活性層20に接触して配置されたゲート絶縁膜としてのゲート酸化膜30と、ゲート酸化膜30に接触して配置されたゲート電極40とを備えている。活性層20は、ゲート電極40に電圧が印加されることによりゲート酸化膜30に接触する領域に反転層29が形成されるボディ領域22を含んでいる。そして、ボディ領域22は、反転層29が形成される領域を含むように配置され、低濃度の不純物を含む低濃度領域22Bと、反転層29におけるキャリアの移動方向(矢印αの方向)において低濃度領域22Bに隣接し、反転層29が形成される領域を含むように配置され、低濃度領域22Bよりも高濃度の不純物を含む高濃度領域22Aとを有している。
 ここで、本実施の形態のMOSFET1においては、高いチャネル移動度を確保可能な低濃度領域22Bとパンチスルーを抑制可能な高濃度領域22Aとが、反転層29が形成されるべきボディ領域22中の領域に組み合わせて配置されている。そのため、チャネル長を短くした場合でも、パンチスルーを抑制しつつ高いチャネル移動度を確保することが可能となっている。その結果、本実施の形態のMOSFET1は、パンチスルーの発生を抑制しつつオン抵抗を低減することが可能な半導体装置となっている。
 また、上記MOSFET1においては、高濃度領域22Aをキャリアの移動方向(矢印αの方向)において低濃度領域22Bの上流側に配置することも可能であるが、図1に示すように高濃度領域22Aをキャリアの移動方向(矢印αの方向)において低濃度領域22Bの下流側に配置することにより、高濃度領域22Aの配置によるパンチスルーの抑制効果を高めることができる。
 また、上記MOSFET1においては、高濃度領域22Aおよび低濃度領域22Bを含むボディ領域22が採用されているため、チャネル長を0.5μm以下にまで短くしても、パンチスルーの発生を抑制することができる。さらに、このパンチスルーだけでなく、チャネル長を0.5μm以下にまで短くした場合に発生するおそれのある閾値電圧の低下、ドレイン電圧が高い場合に電流が飽和しなくなる現象、サブスレッショルド係数が劣化する現象なども、本実施の形態におけるMOSFET1においては上記構成により抑制される。
 また、上記MOSFET1においては、高濃度領域22Aの不純物濃度は1×1017cm-3以上1×1018cm-3以下であることが好ましい。これにより、パンチスルーの抑制効果とキャリア移動度への悪影響とのバランスが良好に確保される。
 次に、本実施の形態におけるMOSFET1の製造方法の一例について、図2~図8を参照して説明する。図2を参照して、本実施の形態におけるMOSFET1の製造方法では、まず工程(S10)として基板準備工程が実施される。この工程(S10)では、図3を参照して、たとえば昇華法により作製された単結晶炭化珪素のインゴットから採取された炭化珪素基板10が準備される。
 次に、工程(S20)としてエピタキシャル成長工程が実施される。この工程(S20)では、図3を参照して、エピタキシャル成長により炭化珪素基板10の一方の主面上に、導電型がn型のドリフト層21、導電型がp型の高濃度領域22A、導電型がp型の低濃度領域22Bおよび導電型がn型のnソース領域24が順次形成される。ここで、導電型をn型とするためのn型不純物としては窒素、リンなどを採用することができる。また、導電型をp型とするためのp型不純物としては、アルミニウム、硼素などを採用することができる。
 次に、工程(S30)としてトレンチ形成工程が実施される。この工程(S30)では、nソース領域24の炭化珪素基板10とは反対側の主面から低濃度領域22Bおよび高濃度領域22Aを貫通し、ドリフト層21にまで延在するトレンチ28が形成される。具体的には、トレンチ28は、たとえば以下手順により形成することができる。まず、nソース領域24上に二酸化珪素からなる酸化物層を形成する。次に、酸化物層上にレジストを塗布し、露光および現像することによりトレンチ28を形成すべき所望の領域に開口を有するレジスト膜を形成する。次に、当該レジスト膜をマスクとして酸化物層をエッチングし、トレンチ28を形成すべき領域に開口を形成する。そして、レジスト膜を除去した後、開口が形成された酸化物層をマスクとして用いて、たとえばRIE(Reactive Ion Etching)によりトレンチ28を形成する。
 次に、工程(S40)としてイオン注入工程が実施される。この工程(S40)では、図4および図5を参照して、イオン注入によりpコンタクト領域25およびp電界緩和領域27が形成される。具体的には、上記工程(S30)の場合と同様にイオン注入を実施すべき所望の領域に開口を有する酸化物層を形成し、これをマスクとして用いてp型不純物をイオン注入する。その後、所定の温度に加熱する活性化アニールが実施されることにより、pコンタクト領域25およびp電界緩和領域27が形成される。
 次に、工程(S50)としてゲート酸化膜形成工程が実施される。この工程(S50)では、図5および図6を参照して、熱酸化処理が実施されることにより、ゲート酸化膜30となるべき熱酸化膜30が形成される。この熱酸化膜30は、トレンチの側壁および底壁を覆うとともに、nソース領域24の上部表面を覆うように形成される。
 次に、工程(S60)としてゲート電極形成工程が実施される。この工程(S60)では、図6および図7を参照して、工程(S30)において形成され、工程(S50)において側壁および底壁が熱酸化膜30で覆われたトレンチ28を充填するように、ゲート電極40が形成される。ゲート電極40の形成は、たとえばスパッタリングにより実施することができる。
 次に、工程(S70)としてコンタクト電極形成工程が実施される。この工程(S70)では、図7および図8を参照して、ソースコンタクト電極60およびドレインコンタクト電極80が形成される。具体的には、たとえば二酸化珪素からなる層間絶縁膜50が少なくともゲート電極40の上部表面を覆うように形成される。次に、nソース領域24およびpコンタクト領域25においてソースコンタクト電極60と接触すべき領域上の熱酸化膜30および層間絶縁膜50が、エッチングにより除去される。次に、たとえばソースコンタクト電極60およびドレインコンタクト電極80を形成すべき所望の領域にニッケル膜が蒸着法により形成される。その後、合金化アニールが実施されることにより、ニッケル膜の少なくとも一部がシリサイド化する。その結果、nソース領域24とオーミックコンタクトを形成するソースコンタクト電極60、および炭化珪素基板10とオーミックコンタクトを形成するドレインコンタクト電極80が形成される。
 次に、工程(S80)として配線形成工程が実施される。この工程(S80)では、図8および図1を参照して、ソース配線70と、裏面保護電極90とが形成される。具体的には、たとえばソースコンタクト電極60および層間絶縁膜50を覆うとともに、ドレインコンタクト電極80を覆うように、アルミニウムを蒸着する。以上のプロセスにより、本実施の形態におけるMOSFET1の製造方法は完了する。上記製造方法により、本実施の形態におけるMOSFET1を容易に製造することができる。
 (実施の形態2)
 次に、本発明の他の実施の形態である実施の形態2について説明する。図9を参照して、実施の形態2における半導体装置は、基本的には実施の形態1の半導体装置と同様の構造を有し、同様の効果を奏する。しかし、トレンチ型MOSFET(UMOSFET)である実施の形態1の半導体装置とは異なり、実施の形態2の半導体装置はDMOSFET(プレーナ型MOSFET)の構造を有している。
 具体的には、実施の形態2における半導体装置であるMOSFET101は、炭化珪素基板110と、炭化珪素基板110の一方の主面上に配置され、炭化珪素からなるエピタキシャル成長層である活性層120とを備えている。
 炭化珪素基板110は、単結晶炭化珪素からなり、窒素、リンなどの不純物(n型不純物)を含むことにより導電型がn型(第1導電型)となっている。活性層120は、ドリフト層121と、ボディ領域122と、nソース領域124と、pコンタクト領域125とを含んでいる。
 ドリフト層121は、炭化珪素基板110上に配置され、炭化珪素基板110よりも低濃度のn型不純物を含むことにより導電型がn型となっている。ボディ領域122は、活性層120の炭化珪素基板110とは反対側の主面を含むように配置されている。ボディ領域122は、アルミニウム、硼素などの不純物(p型不純物)を含むことにより導電型がp型(第2導電型)となっている。nソース領域124は、活性層120の炭化珪素基板110とは反対側の主面を含むようにボディ領域122内に形成されている。nソース領域124は、ドリフト層121よりも高濃度のn型不純物を含むことにより、導電型がn型となっている。
 pコンタクト領域125は、活性層120の炭化珪素基板110とは反対側の主面を含むようにボディ領域122内に形成され、nソース領域124から見てボディ領域122の中央側に配置されている。pコンタクト領域125は、p型不純物を含むことにより導電型がp型となっている。
 また、ボディ領域122は、nソース領域124およびpコンタクト領域125を取り囲むように配置され、高濃度のp型不純物を含む高濃度領域122Aと、高濃度領域122Aを取り囲むように配置され、高濃度領域122Aよりも低濃度のp型不純物を含む低濃度領域122Bとを含んでいる。
 MOSFET101は、さらにゲート酸化膜130と、ゲート電極140と、ソースコンタクト電極160と、層間絶縁膜150と、ソース配線170と、ドレインコンタクト電極180と、裏面保護電極190とを備えている。
 ゲート酸化膜130は、たとえば二酸化珪素などの絶縁体からなり、活性層120の炭化珪素基板110とは反対側の主面上においてnソース領域124、高濃度領域122Aおよび低濃度領域122Bに接触するように延在している。ゲート電極140は、ゲート酸化膜130上に接触して配置され、高濃度領域122A上から低濃度領域122B上にまで延在している。ゲート電極140は、アルミニウムなどの導電体からなっている。
 ソースコンタクト電極160は、活性層120上においてnソース領域124およびpコンタクト領域125に接するように配置されている。ソースコンタクト電極160は、活性層120上のゲート酸化膜130に覆われていない領域に接するように配置されている。ソースコンタクト電極160は、ニッケルなどの導電体からなっており、少なくとも活性層120に接する領域がシリサイド化することによりnソース領域124とオーミックコンタクトを形成している。
 層間絶縁膜150は、ゲート電極140上を覆うとともに、ゲート酸化膜130上にまで延在するように配置されている。層間絶縁膜150は、二酸化珪素などの絶縁体からなっている。ソース配線170は、ソースコンタクト電極160に接触し、ソースコンタクト電極160および層間絶縁膜150上を覆うように配置されている。ソース配線170は、アルミニウムなどの導電体からなっている。
 ドレインコンタクト電極180は、炭化珪素基板110の活性層120とは反対側の主面上に接触して配置されている。ドレインコンタクト電極180は、ニッケルなどの導電体からなっており、少なくとも炭化珪素基板110に接する領域がシリサイド化することにより炭化珪素基板110とオーミックコンタクトを形成している。裏面保護電極190は、ドレインコンタクト電極180上に接触し、ドレインコンタクト電極180上を覆うように配置されている。裏面保護電極190はアルミニウムなどの導電体からなっている。
 次に、MOSFET101の動作について説明する。図1を参照して、ゲート電極140の電圧が閾値電圧未満の状態、すなわちオフ状態では、ドレインコンタクト電極180および裏面保護電極190に電圧が印加されても、ボディ領域122とドリフト層121との間のpn接合が逆バイアスとなり、非導通状態となる。一方、ゲート電極140に閾値電圧以上の電圧を印加すると、ボディ領域122のゲート酸化膜130と接触する付近に反転層129が形成される。その結果、nソース領域124とドリフト層121とが電気的に接続され、矢印αに沿ってキャリアである電子が移動し、電流が流れる。
 すなわち、プレーナ型MOSFETであるMOSFET101は、炭化珪素からなる炭化珪素基板110と、炭化珪素からなり、炭化珪素基板110上に形成されたエピタキシャル成長層としての活性層120と、絶縁体からなり、活性層120に接触して配置されたゲート絶縁膜としてのゲート酸化膜130と、ゲート酸化膜130に接触して配置されたゲート電極140とを備えている。活性層120は、ゲート電極140に電圧が印加されることによりゲート酸化膜130に接触する領域に反転層129が形成されるボディ領域122を含んでいる。そして、ボディ領域122は、反転層129が形成される領域を含むように配置され、低濃度の不純物を含む低濃度領域122Bと、反転層129におけるキャリアの移動方向(矢印αの方向)において低濃度領域122Bに隣接し、反転層129が形成される領域を含むように配置され、低濃度領域122Bよりも高濃度の不純物を含む高濃度領域122Aとを有している。
 ここで、本実施の形態のMOSFET101においては、高いチャネル移動度を確保可能な低濃度領域122Bとパンチスルーを抑制可能な高濃度領域122Aとが、反転層129が形成されるべきボディ領域122中の領域に組み合わせて配置されている。そのため、チャネル長を短くした場合でも、パンチスルーを抑制しつつ高いチャネル移動度を確保することが可能となっている。その結果、本実施の形態のMOSFET101は、パンチスルーの発生を抑制しつつオン抵抗を低減することが可能な半導体装置となっている。
 次に、本実施の形態におけるMOSFET101の製造方法の一例について、図10~図18を参照して説明する。図10を参照して、本実施の形態におけるMOSFET101の製造方法では、まず工程(S110)として基板準備工程が実施される。この工程(S110)では、図11を参照して、たとえば昇華法により作製された単結晶炭化珪素のインゴットから採取された炭化珪素基板110が準備される。
 次に、工程(S120)としてエピタキシャル成長工程が実施される。この工程(S120)では、図11を参照して、エピタキシャル成長により炭化珪素基板110の一方の主面上に、導電型がn型のドリフト層121が形成される。ここで、導電型をn型とするためのn型不純物としては窒素、リンなどを採用することができる。
 次に、工程(S130)として第1イオン注入工程が実施される。この工程(S130)では、図12を参照して、まずドリフト層121上に開口199Aを有するマスク層199が形成される。マスク層119は、たとえば二酸化珪素からなるものを採用することができる。その後、マスク層199をマスクとしてイオン注入を実施することにより、ドリフト層121よりも高濃度のn型不純物を含むn領域124Aが形成される。
 次に、工程(S140)として第1等方性エッチング工程が実施される。この工程(S140)では、図13を参照して、工程(S130)において使用されたマスク層199に対して等方性エッチングを実施することにより、矢印で示すように開口199Aが拡大される。
 次に、工程(S150)として、第2イオン注入工程が実施される。この工程(S150)では、工程(S140)において開口199Aが拡大されたマスク層199をマスクとしてイオン注入を実施することにより、高濃度のp型不純物を含む高濃度領域122Aが形成される。
 次に、工程(S160)として第2等方性エッチング工程が実施される。この工程(S160)では、図14を参照して、工程(S150)において使用されたマスク層199に対して等方性エッチングを実施することにより、矢印で示すように開口199Aがさらに拡大される。
 次に、工程(S170)として、第3イオン注入工程が実施される。この工程(S170)では、工程(S160)において開口199Aが拡大されたマスク層199をマスクとしてイオン注入を実施することにより、高濃度領域122Aよりも低い不純物濃度を有する低濃度領域122Bが形成される。
 次に、工程(S180)として、第4イオン注入工程が実施される。この工程(S180)では、図15を参照して、工程(S170)において使用されたマスク層199が一旦除去された後、適切な位置に開口199Aを有するマスク層199が改めて形成される。その後、当該マスク層199をマスクとしてイオン注入を実施することにより、高濃度のp型不純物を含むpコンタクト領域125が形成される。このとき、n領域124Aのうちpコンタクト領域125が形成されなかった領域がnソース領域124となる。
 次に、工程(S190)としてゲート酸化膜形成工程が実施される。この工程(S190)では、図15および図16を参照して、工程(S180)において使用されたマスク層199が除去された上で、熱酸化処理が実施されることにより、ゲート酸化膜130となるべき熱酸化膜130が形成される。この熱酸化膜130は、ドリフト層121の炭化珪素基板110とは反対側の主面全体を覆うように形成される。
 次に、工程(S200)としてゲート電極形成工程が実施される。この工程(S200)では、図16および図17を参照して、熱酸化膜130上に接触するように、ゲート電極140が形成される。ゲート電極140の形成は、たとえばスパッタリングにより実施することができる。
 次に、工程(S210)としてコンタクト電極形成工程が実施される。この工程(S210)では、図17および図18を参照して、ソースコンタクト電極160およびドレインコンタクト電極180が形成される。具体的には、まずnソース領域124およびpコンタクト領域125においてソースコンタクト電極160と接触すべき領域上の熱酸化膜130が、エッチングにより除去される。次に、たとえばソースコンタクト電極160およびドレインコンタクト電極180を形成すべき所望の領域にニッケル膜が蒸着法により形成される。また、二酸化珪素からなる層間絶縁膜150がゲート電極140、ソースコンタクト電極160となるべきニッケル膜および熱酸化膜130の上部表面を覆うように形成される。次に、合金化アニールが実施されることにより、ニッケル膜の少なくとも一部がシリサイド化する。その結果、nソース領域124とオーミックコンタクトを形成するソースコンタクト電極160、炭化珪素基板110とオーミックコンタクトを形成するドレインコンタクト電極180、および層間絶縁膜150が形成される。
 次に、工程(S220)として配線形成工程が実施される。この工程(S220)では、図18および図9を参照して、ソース配線170と、裏面保護電極190とが形成される。具体的には、たとえばソースコンタクト電極160上の層間絶縁膜150が除去された上で、ソースコンタクト電極160および層間絶縁膜150を覆うとともに、ドレインコンタクト電極180を覆うように、アルミニウムを蒸着する。以上のプロセスにより、本実施の形態におけるMOSFET101の製造方法は完了する。
 つまり、本実施の形態におけるMOSFET101の製造方法は、炭化珪素基板110を準備する工程と、炭化珪素基板110上に炭化珪素からなるエピタキシャル成長層としてのドリフト層121を形成する工程と、ドリフト層121にボディ領域122を形成する工程と、ドリフト層121上に接触するように絶縁体からなるゲート酸化膜130を形成する工程と、電圧が印加されることによりボディ領域122のゲート酸化膜130に接触する領域に反転層129を形成するゲート電極140を形成する工程とを備えている。ボディ領域122を形成する工程は、ドリフト層121上に開口199Aを有するマスク層199を形成する工程と、マスク層199をマスクとしてイオン注入を実施することにより、第1の不純物濃度を有する高濃度領域122Aを反転層129が形成される領域に形成する工程と、マスク層199をエッチングすることにより開口199Aを拡大する工程と、開口199Aが拡大されたマスク層199をマスクとしてイオン注入を実施することにより、高濃度領域122Aよりも不純物濃度が小さい低濃度領域122Bを、反転層129におけるキャリアの移動方向αにおいて高濃度領域122Aに隣接し、かつ反転層129が形成される領域に形成する工程とを含んでいる。上記製造方法により、本実施の形態におけるMOSFET101を容易に製造することができる。
 なお、上記実施の形態においては、本発明の半導体装置がトレンチ型MOSFET(UMOSFET)およびDMOSFET(プレーナ型MOSFET)に適用される場合について説明したが、本発明の半導体装置はこれに限られず、所定の閾値電圧を境にチャネル領域における反転層の形成の有無をコントロールし、電流を導通および遮断する種々の半導体装置に適用することができる。具体的には、本発明の半導体装置は、たとえばVMOSFET、IGBTなどの半導体装置に広く適用することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の半導体装置は、パンチスルーの発生を抑制しつつオン抵抗を低減することが求められる半導体装置に、特に有利に適用され得る。
 1,101 MOSFET、10、110 炭化珪素基板、20,120 活性層、21,121 ドリフト層、22,122 ボディ領域、22A,122A 高濃度領域、22B,122B 低濃度領域、24,124 nソース領域、124A n領域、25,125 pコンタクト領域、27 p電界緩和領域、28 トレンチ、29,129 反転層、30,130 ゲート酸化膜(熱酸化膜)、40,140 ゲート電極、50,150 層間絶縁膜、60,160 ソースコンタクト電極、70,170 ソース配線、80,180 ドレインコンタクト電極、90,190 裏面保護電極、199 マスク層、199A 開口。

Claims (5)

  1.  炭化珪素からなる基板(10,110)と、
     炭化珪素からなり、前記基板(10,110)上に形成されたエピタキシャル成長層(20,120)と、
     絶縁体からなり、前記エピタキシャル成長層(20,120)に接触して配置されたゲート絶縁膜(30,130)と、
     前記ゲート絶縁膜(30,130)に接触して配置されたゲート電極(40,140)とを備え、
     前記エピタキシャル成長層(20,120)は、前記ゲート電極(40,140)に電圧が印加されることにより前記ゲート絶縁膜(30,130)に接触する領域に反転層(29,129)が形成されるボディ領域(22,122)を含み、
     前記ボディ領域(22,122)は、
     前記反転層(29,129)が形成される領域に配置され、低濃度の不純物を含む低濃度領域(22B,122B)と、
     前記反転層(29,129)におけるキャリアの移動方向において前記低濃度領域(22B,122B)に隣接し、前記反転層(29,129)が形成される領域に配置され、前記低濃度領域(22B,122B)よりも高濃度の不純物を含む高濃度領域(22A,122A)とを有する、半導体装置(1,101)。
  2.  前記高濃度領域(22A)は、前記キャリアの移動方向において前記低濃度領域(22B)の下流側に配置される、請求項1に記載の半導体装置(1)。
  3.  チャネル長が0.5μm以下である、請求項1に記載の半導体装置(1,101)。
  4.  前記高濃度領域(22A,122A)の不純物濃度は1×1017cm-3以上1×1018cm-3以下となっている、請求項1に記載の半導体装置(1,101)。
  5.  炭化珪素からなる基板(110)を準備する工程と、
     前記基板(110)上に炭化珪素からなるエピタキシャル成長層(120)を形成する工程と、
     前記エピタキシャル成長層(120)にボディ領域(122)を形成する工程と、
     前記エピタキシャル成長層(120)上に接触するように絶縁体からなるゲート絶縁膜(130)を形成する工程と、
     電圧が印加されることにより前記ボディ領域(122)の前記ゲート絶縁膜(130)に接触する領域に反転層(129)を形成するゲート電極(140)を形成する工程とを備え、
     前記ボディ領域(122)を形成する工程は、
     前記エピタキシャル成長層(120)上に開口(199A)を有するマスク層(199)を形成する工程と、
     前記マスク層(199)をマスクとしてイオン注入を実施することにより、第1の不純物濃度を有する第1濃度領域(122A)を前記反転層(129)が形成される領域に形成する工程と、
     前記マスク層(199)をエッチングすることにより前記開口(199A)を拡大する工程と、
     前記開口(199A)が拡大された前記マスク層(199)をマスクとしてイオン注入を実施することにより、前記第1の不純物濃度とは異なる第2の不純物濃度を有する第2濃度領域(122B)を、前記反転層(129)におけるキャリアの移動方向において前記第1濃度領域(122A)に隣接し、かつ前記反転層(129)が形成される領域に形成する工程とを含む、半導体装置(101)の製造方法。
PCT/JP2011/074511 2010-11-01 2011-10-25 半導体装置およびその製造方法 WO2012060248A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201180010752.0A CN102770960B (zh) 2010-11-01 2011-10-25 半导体器件及其制造方法
CA 2789371 CA2789371A1 (en) 2010-11-01 2011-10-25 Semiconductor device and fabrication method thereof
US13/522,216 US9006745B2 (en) 2010-11-01 2011-10-25 Semiconductor device and fabrication method thereof
EP11837899.1A EP2637212A4 (en) 2010-11-01 2011-10-25 SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
KR20127019707A KR20130121668A (ko) 2010-11-01 2011-10-25 반도체 장치 및 그 제조 방법
US14/643,140 US9443960B2 (en) 2010-11-01 2015-03-10 Semiconductor device and fabrication method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010245187A JP2012099601A (ja) 2010-11-01 2010-11-01 半導体装置およびその製造方法
JP2010-245187 2010-11-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/522,216 A-371-Of-International US9006745B2 (en) 2010-11-01 2011-10-25 Semiconductor device and fabrication method thereof
US14/643,140 Continuation US9443960B2 (en) 2010-11-01 2015-03-10 Semiconductor device and fabrication method thereof

Publications (1)

Publication Number Publication Date
WO2012060248A1 true WO2012060248A1 (ja) 2012-05-10

Family

ID=46024365

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074511 WO2012060248A1 (ja) 2010-11-01 2011-10-25 半導体装置およびその製造方法

Country Status (8)

Country Link
US (2) US9006745B2 (ja)
EP (1) EP2637212A4 (ja)
JP (1) JP2012099601A (ja)
KR (1) KR20130121668A (ja)
CN (1) CN102770960B (ja)
CA (1) CA2789371A1 (ja)
TW (1) TW201222678A (ja)
WO (1) WO2012060248A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8686439B2 (en) * 2011-06-27 2014-04-01 Panasonic Corporation Silicon carbide semiconductor element
JP6168732B2 (ja) * 2012-05-11 2017-07-26 株式会社日立製作所 炭化珪素半導体装置およびその製造方法
KR102062676B1 (ko) * 2012-12-06 2020-01-06 삼성전자주식회사 반도체 소자의 미세 패턴 형성 방법
JP6143490B2 (ja) 2013-02-19 2017-06-07 ローム株式会社 半導体装置およびその製造方法
WO2014178262A1 (ja) * 2013-04-30 2014-11-06 日産自動車株式会社 半導体装置及びその製造方法
JP6048317B2 (ja) 2013-06-05 2016-12-21 株式会社デンソー 炭化珪素半導体装置
US10211304B2 (en) * 2013-12-04 2019-02-19 General Electric Company Semiconductor device having gate trench in JFET region
CN104795328B (zh) * 2014-01-16 2017-11-21 北大方正集团有限公司 一种沟槽型vdmos制造方法和一种沟槽型vdmos
CN104795327B (zh) * 2014-01-16 2017-12-15 北大方正集团有限公司 一种制作平面型vdmos的方法及平面型vdmos
JP6279927B2 (ja) * 2014-02-17 2018-02-14 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子を製造する方法及び絶縁ゲート型スイッチング素子
JP2016054181A (ja) * 2014-09-03 2016-04-14 トヨタ自動車株式会社 絶縁ゲート型スイッチング素子
JP6335089B2 (ja) * 2014-10-03 2018-05-30 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6115678B1 (ja) 2016-02-01 2017-04-19 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
DE102016226237B4 (de) 2016-02-01 2024-07-18 Fuji Electric Co., Ltd. Siliziumcarbid-halbleitervorrichtung
JP6708954B2 (ja) 2016-03-31 2020-06-10 住友電気工業株式会社 炭化珪素半導体装置
JP6617657B2 (ja) 2016-07-29 2019-12-11 富士電機株式会社 炭化ケイ素半導体装置および炭化ケイ素半導体装置の製造方法
JP6919159B2 (ja) 2016-07-29 2021-08-18 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6848316B2 (ja) * 2016-10-05 2021-03-24 富士電機株式会社 半導体装置および半導体装置の製造方法
US11011618B2 (en) 2017-11-30 2021-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Circuit devices with gate seals
JP7119814B2 (ja) 2018-09-14 2022-08-17 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
CN109309009B (zh) * 2018-11-21 2020-12-11 长江存储科技有限责任公司 一种半导体器件及其制造方法
JP7275573B2 (ja) * 2018-12-27 2023-05-18 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
CN110047757A (zh) * 2019-04-24 2019-07-23 贵州芯长征科技有限公司 低成本的沟槽型功率半导体器件的制备方法
CN111627987A (zh) * 2020-05-29 2020-09-04 东莞南方半导体科技有限公司 一种Fin沟道结构SiC场效应晶体管器件
JP7331783B2 (ja) * 2020-05-29 2023-08-23 豊田合成株式会社 半導体装置の製造方法
CN112563142B (zh) * 2021-02-20 2021-06-04 中芯集成电路制造(绍兴)有限公司 一种提高uis能力的超结mosfet制造方法
US20230411446A1 (en) * 2022-06-21 2023-12-21 Wolfspeed, Inc. Gate trench power semiconductor devices having trench shielding patterns formed during the well implant and related methods
CN116845098B (zh) * 2023-08-25 2023-12-19 成都森未科技有限公司 一种自对准微沟槽结构及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974674A (ja) * 1982-10-22 1984-04-27 Hitachi Ltd 絶縁ゲ−ト半導体装置とその製造法
JPH0758332A (ja) * 1993-07-05 1995-03-03 Philips Electron Nv 半導体装置
JPH10229191A (ja) * 1997-02-17 1998-08-25 Denso Corp 絶縁ゲート型電界効果トランジスタ及びその製造方法
JP2001127285A (ja) * 1999-10-27 2001-05-11 Nec Kansai Ltd 縦型電界効果トランジスタ
JP2001250947A (ja) * 2000-03-06 2001-09-14 Toshiba Corp 電力用半導体素子およびその製造方法
JP2002261095A (ja) 2001-03-05 2002-09-13 Shikusuon:Kk SiC半導体における酸化膜形成方法およびSiC半導体装置
JP2005252157A (ja) * 2004-03-08 2005-09-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2007059805A (ja) * 2005-08-26 2007-03-08 Nec Electronics Corp 半導体装置及びその製造方法
JP2007080971A (ja) 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd 半導体素子およびその製造方法
WO2008072482A1 (ja) * 2006-12-13 2008-06-19 Sumitomo Electric Industries, Ltd. 半導体装置の製造方法
JP2009194164A (ja) * 2008-02-14 2009-08-27 Sumitomo Electric Ind Ltd 絶縁ゲート型電界効果トランジスタおよびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802717B2 (ja) * 1994-01-20 1998-09-24 エルジイ・セミコン・カンパニイ・リミテッド Mosトランジスタ及びその製造方法
US6573558B2 (en) * 2001-09-07 2003-06-03 Power Integrations, Inc. High-voltage vertical transistor with a multi-layered extended drain structure
US6620697B1 (en) * 2001-09-24 2003-09-16 Koninklijke Philips Electronics N.V. Silicon carbide lateral metal-oxide semiconductor field-effect transistor having a self-aligned drift region and method for forming the same
EP1306890A2 (en) * 2001-10-25 2003-05-02 Matsushita Electric Industrial Co., Ltd. Semiconductor substrate and device comprising SiC and method for fabricating the same
JP3661664B2 (ja) * 2002-04-24 2005-06-15 日産自動車株式会社 炭化珪素半導体装置及びその製造方法
US7221010B2 (en) * 2002-12-20 2007-05-22 Cree, Inc. Vertical JFET limited silicon carbide power metal-oxide semiconductor field effect transistors
TWI222685B (en) * 2003-12-18 2004-10-21 Episil Technologies Inc Metal oxide semiconductor device and fabricating method thereof
JP4903439B2 (ja) 2005-05-31 2012-03-28 株式会社東芝 電界効果トランジスタ
US8188539B2 (en) * 2005-08-10 2012-05-29 Freescale Semiconductor, Inc. Field-effect semiconductor device and method of forming the same
JP5194380B2 (ja) 2006-04-28 2013-05-08 日産自動車株式会社 半導体装置
JP5211468B2 (ja) * 2006-11-24 2013-06-12 日産自動車株式会社 半導体装置の製造方法
CN101548386B (zh) 2006-12-04 2011-11-09 三垦电气株式会社 绝缘栅型场效应晶体管及其制造方法
JP5026801B2 (ja) 2007-01-17 2012-09-19 株式会社日立製作所 半導体装置の製造方法
JP5119806B2 (ja) 2007-08-27 2013-01-16 三菱電機株式会社 炭化珪素半導体装置およびその製造方法
EP2081231A2 (en) * 2008-01-15 2009-07-22 Yokogawa Electric Corporation Semiconductor device with an extended base region
JP5561922B2 (ja) 2008-05-20 2014-07-30 三菱電機株式会社 パワー半導体装置
EP4156302A1 (en) * 2008-05-20 2023-03-29 Rohm Co., Ltd. Semiconductor device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974674A (ja) * 1982-10-22 1984-04-27 Hitachi Ltd 絶縁ゲ−ト半導体装置とその製造法
JPH0758332A (ja) * 1993-07-05 1995-03-03 Philips Electron Nv 半導体装置
JPH10229191A (ja) * 1997-02-17 1998-08-25 Denso Corp 絶縁ゲート型電界効果トランジスタ及びその製造方法
JP2001127285A (ja) * 1999-10-27 2001-05-11 Nec Kansai Ltd 縦型電界効果トランジスタ
JP2001250947A (ja) * 2000-03-06 2001-09-14 Toshiba Corp 電力用半導体素子およびその製造方法
JP2002261095A (ja) 2001-03-05 2002-09-13 Shikusuon:Kk SiC半導体における酸化膜形成方法およびSiC半導体装置
JP2005252157A (ja) * 2004-03-08 2005-09-15 Mitsubishi Electric Corp 半導体装置及びその製造方法
JP2007059805A (ja) * 2005-08-26 2007-03-08 Nec Electronics Corp 半導体装置及びその製造方法
JP2007080971A (ja) 2005-09-12 2007-03-29 Fuji Electric Holdings Co Ltd 半導体素子およびその製造方法
WO2008072482A1 (ja) * 2006-12-13 2008-06-19 Sumitomo Electric Industries, Ltd. 半導体装置の製造方法
JP2009194164A (ja) * 2008-02-14 2009-08-27 Sumitomo Electric Ind Ltd 絶縁ゲート型電界効果トランジスタおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2637212A4

Also Published As

Publication number Publication date
US20150179765A1 (en) 2015-06-25
EP2637212A1 (en) 2013-09-11
US9006745B2 (en) 2015-04-14
CA2789371A1 (en) 2012-05-10
US20120280255A1 (en) 2012-11-08
US9443960B2 (en) 2016-09-13
EP2637212A4 (en) 2014-08-06
KR20130121668A (ko) 2013-11-06
CN102770960A (zh) 2012-11-07
CN102770960B (zh) 2015-08-12
TW201222678A (en) 2012-06-01
JP2012099601A (ja) 2012-05-24

Similar Documents

Publication Publication Date Title
WO2012060248A1 (ja) 半導体装置およびその製造方法
WO2012105088A1 (ja) 半導体装置
JP5628462B1 (ja) 半導体装置およびその製造方法
US8653535B2 (en) Silicon carbide semiconductor device having a contact region that includes a first region and a second region, and process for production thereof
WO2013105353A1 (ja) 半導体装置およびその製造方法
JP2014236189A (ja) 炭化珪素半導体装置およびその製造方法
WO2014068813A1 (ja) 半導体装置
JP2012164707A (ja) 半導体装置およびその製造方法
WO2012165008A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2017112161A (ja) 半導体装置
CN111149213A (zh) 碳化硅半导体装置及其制造方法
JP6295797B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6207627B2 (ja) 半導体装置
WO2015076020A1 (ja) 半導体装置
JP5412730B2 (ja) 半導体装置の製造方法
JP2019165166A (ja) 炭化珪素半導体装置およびその製造方法
WO2014203645A1 (ja) 炭化珪素半導体装置およびその製造方法
WO2013051343A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2023104657A (ja) 炭化珪素半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010752.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837899

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13522216

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127019707

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011837899

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2789371

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE