WO2012056623A1 - 二段昇圧式冷凍サイクル装置 - Google Patents

二段昇圧式冷凍サイクル装置 Download PDF

Info

Publication number
WO2012056623A1
WO2012056623A1 PCT/JP2011/004971 JP2011004971W WO2012056623A1 WO 2012056623 A1 WO2012056623 A1 WO 2012056623A1 JP 2011004971 W JP2011004971 W JP 2011004971W WO 2012056623 A1 WO2012056623 A1 WO 2012056623A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression mechanism
stage
low
pressure
refrigerant
Prior art date
Application number
PCT/JP2011/004971
Other languages
English (en)
French (fr)
Inventor
亮 瀧澤
雅巳 谷口
山崎 淳
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US13/881,945 priority Critical patent/US9389005B2/en
Priority to CN201180051644.8A priority patent/CN103180677B/zh
Publication of WO2012056623A1 publication Critical patent/WO2012056623A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/02Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for several pumps connected in series or in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/06Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids specially adapted for stopping, starting, idling or no-load operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/19Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/21Pressure difference
    • F04C2270/215Controlled or regulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a two-stage boosting refrigeration cycle apparatus that includes a low-stage compression mechanism and a high-stage compression mechanism and boosts refrigerant in multiple stages.
  • Patent Document 1 discloses a two-stage boosting type refrigeration cycle apparatus that boosts a refrigerant (for example, helium gas) in multiple stages by using a plurality of compression mechanisms connected in series. Furthermore, in the two-stage boost type refrigeration cycle apparatus of Patent Document 1, in order to reduce the load on each compression mechanism, the discharge capacity of the low-stage compression mechanism is larger than the discharge capacity of the high-stage compression mechanism. The thing is adopted.
  • a refrigerant for example, helium gas
  • the high-low pressure difference in the cycle is equalized as in the initial startup. Reversal of pressure that causes the discharge-side refrigerant pressure of the low-stage compression mechanism with a large discharge capacity to be higher than the discharge-side refrigerant pressure of the high-stage compression mechanism when both compression mechanisms are started simultaneously in the equalized pressure state A phenomenon may occur.
  • Patent Document 1 describes the starting sequence of the compression mechanism at the start of the pressure equalization state, but the compression mechanism in the state where the high-low pressure difference in the cycle remains. There is no description about the activation order.
  • the compression mechanism may be intermittently operated to set the refrigerant evaporation temperature in the evaporator to a desired target temperature. .
  • the operating member of the compression mechanism receives a load caused by the high / low pressure difference and is pressed against the fixed member side or the like, so when the compression mechanism is started in this state, Wear or the like occurs in the structural members of the compression mechanism, which adversely affects the durability life of the compression mechanism.
  • each compression is simply performed by starting the high-stage compression mechanism and then starting the low-stage compression mechanism. There is a risk of adversely affecting the durability of the mechanism.
  • the present invention aims to protect a low-stage compression mechanism and a high-stage compression mechanism in a two-stage boost refrigeration cycle apparatus that intermittently operates a low-stage compression mechanism and a high-stage compression mechanism. For the purpose.
  • a low-stage compression mechanism that compresses and discharges low-pressure refrigerant until it becomes intermediate-pressure refrigerant, and intermediate-pressure refrigerant discharged from the low-stage compression mechanism is high-pressure refrigerant.
  • a high-stage compression mechanism that compresses and discharges until a high pressure is achieved, a radiator that heat-exchanges the high-pressure refrigerant discharged from the high-stage compression mechanism with heat from the outdoor air, and a high-pressure refrigerant that flows out of the radiator
  • An intermediate pressure expansion valve that expands under reduced pressure until it becomes a refrigerant and flows out to the suction side of the high-stage compression mechanism, a low pressure expansion valve that decompresses and expands the high pressure refrigerant flowing out from the radiator until it becomes a low pressure refrigerant, and a low pressure expansion valve
  • the low-pressure refrigerant expanded under reduced pressure is evaporated by exchanging heat with the blown air blown into the space to be cooled, and flows out to the suction side of the low-stage compression mechanism.
  • the temperature of the heat exchange target fluid that exchanges heat with the low-pressure refrigerant in the evaporator is controlled by intermittently driving the low-stage compression mechanism and the high-stage compression mechanism. Adjusted to approach temperature.
  • the low-stage pressure difference obtained by subtracting the low-stage suction-side refrigerant pressure from the low-stage discharge-side refrigerant pressure of the low-stage compression mechanism One of the compression mechanisms that has the lower pressure difference between the high-stage pressure difference obtained by subtracting the low-stage discharge-side refrigerant pressure from the high-stage discharge-side refrigerant pressure of the high-stage compression mechanism, and then Then, the higher one of the low-stage pressure difference and the high-stage pressure difference is reduced to activate the other compression mechanism.
  • the state where the high / low pressure difference of the cycle remains means a state where at least one of the low-stage pressure difference and the high-stage pressure difference exists.
  • the discharge side of the low-stage side compression mechanism and the suction side of the high-stage side compression mechanism have the same pressure, so that one of the compression mechanisms is activated as will be described in an embodiment described later.
  • the pressure difference obtained by subtracting the suction-side refrigerant pressure from the discharge-side refrigerant pressure of one compression mechanism increases, and the pressure difference in the other compression mechanism that is not operating can be reduced.
  • the other compression mechanism can also be activated with its pressure difference reduced. As a result, it is possible to protect both the one compression mechanism activated first and the other compression mechanism activated thereafter.
  • one compression mechanism when stopping the low-stage compression mechanism and the high-stage compression mechanism, one compression mechanism may be stopped, and then the other compression mechanism may be stopped.
  • the pressure difference in one compression mechanism can be reduced by the pressure increase capability of the other compression mechanism that is not stopped.
  • the low-stage pressure difference and the high-stage pressure difference are reliably set to different values to reliably protect one of the compression mechanisms that is activated first. it can.
  • the low-stage side compression mechanism and the high-stage side compression mechanism are simultaneously stopped, and either one of the intermediate pressure expansion valve and the low pressure expansion valve
  • the throttle opening may be increased.
  • the high-stage pressure difference can be quickly reduced, and the low-stage pressure difference can be quickly reduced by increasing the throttle opening of the low-pressure expansion valve.
  • the low-stage pressure difference and the high-stage pressure difference are reliably set to different values to reliably protect one of the compression mechanisms that is activated first. it can.
  • an oil separator may be provided that separates refrigeration oil mixed in the refrigerant discharged from one compression mechanism and returns it to the suction side of one compression mechanism.
  • an oil separator may be provided that separates refrigeration oil mixed in the refrigerant discharged from one compression mechanism and returns it to the suction side of one compression mechanism.
  • the oil separator may be provided on the one compression mechanism side to be stopped first.
  • the oil separator is preferably provided on the high-stage compression mechanism side.
  • one compression mechanism may be a high-stage compression mechanism and the other compression mechanism may be a low-stage compression mechanism.
  • the low-stage compression mechanism connected to the evaporator that evaporates the refrigerant and exerts an endothermic action becomes the other compression mechanism, even if the high-stage compression mechanism is stopped, the low-stage pressure difference is reduced. Variation can be suppressed. Therefore, when stopping the high stage side compression mechanism and the low stage side compression mechanism, it is possible to suppress the refrigerant evaporation pressure (refrigerant evaporation temperature) of the evaporator from fluctuating.
  • the high-stage compression mechanism which is one of the compression mechanisms, is started, so that the suction-side refrigerant pressure of the high-stage compression mechanism, that is, the discharge-side refrigerant pressure of the low-stage compression mechanism is Even if the pressure difference decreases and the low-stage pressure difference decreases, the suction-side refrigerant pressure of the low-stage compression mechanism hardly changes.
  • the refrigerant evaporation temperature of the evaporator can be prevented from changing.
  • the power consumption of the low-stage compression mechanism and the high-stage compression mechanism for reducing the refrigerant evaporation temperature of the evaporator can be reduced.
  • the compression mechanism when the low-stage side compression mechanism and the high-stage side compression mechanism are activated, after the activation of one compression mechanism, when the pressure difference in the other compression mechanism becomes equal to or less than a predetermined reference pressure difference, The compression mechanism may be activated.
  • the other compression mechanism may be activated when a predetermined reference waiting time has elapsed after activation of one compression mechanism. In this case, it is possible to wait until the pressure difference in the other compression mechanism is sufficiently reduced, and it is possible to reliably protect the other compression mechanism.
  • the intermediate pressure expansion valve decompresses and expands one high-pressure refrigerant branched at the branching portion that branches the flow of the high-pressure refrigerant flowing out of the radiator, and the low-pressure expansion valve is the other branched at the branching portion.
  • An intermediate heat exchanger may be provided that expands the high-pressure refrigerant under reduced pressure, and further exchanges heat between the low-pressure refrigerant decompressed and expanded by the intermediate pressure expansion valve and the other high-pressure refrigerant branched at the branch portion.
  • 1 is an overall configuration diagram of a two-stage boost type refrigeration cycle apparatus according to a first embodiment. It is a Mollier diagram which shows the state of the refrigerant
  • (A) is a time chart which shows the change of the refrigerant
  • (b) is the two-stage pressure
  • (A) is a time chart which shows changes, such as air temperature Tfr of the in-compartment air at the time of intermittent control of the 2 step
  • (b) is the 2 step
  • FIG. 1 is an overall configuration diagram of a two-stage booster refrigeration cycle apparatus 10 of the present embodiment.
  • This two-stage booster type refrigeration cycle apparatus 10 is applied to a refrigerator and has a function of cooling the blown air blown into a freezer that is a space to be cooled until it reaches an extremely low temperature of about ⁇ 30 ° C. to 0 ° C. Fulfill.
  • the two-stage booster refrigeration cycle apparatus 10 includes two compressors, a high-stage compressor 11 and a low-stage compressor 12, and the refrigerant circulating through the cycle is multistage.
  • Boost to.
  • a normal chlorofluorocarbon refrigerant for example, R404A
  • the refrigerant is mixed with refrigerating machine oil (oil) for lubricating the sliding parts in the low-stage compressor 12 and the high-stage compressor 11, and a part of the refrigerating machine oil is cycled together with the refrigerant. It is circulating.
  • the low-stage compressor 12 includes an electric compressor having a low-stage compression mechanism 12a that compresses and discharges low-pressure refrigerant until it becomes an intermediate-pressure refrigerant, and a low-stage electric motor 12b that rotationally drives the low-stage compression mechanism 12a. It is a compressor.
  • the low-stage compression mechanism 12a is a fixed-capacity compression mechanism having a fixed discharge capacity. Specifically, various compressions such as a scroll-type compression mechanism, a vane-type compression mechanism, and a rolling piston-type compression mechanism are provided. The mechanism can be adopted.
  • the low-stage electric motor 12b is an AC motor whose operation (number of rotations) is controlled by an alternating current output from the low-stage inverter 22. Moreover, the low stage side inverter 22 outputs the alternating current of the frequency according to the control signal output from the refrigerator control apparatus 20 mentioned later. And by this frequency control, the refrigerant
  • the low stage electric motor 12b constitutes the discharge capacity changing means of the low stage compressor 12.
  • a DC motor may be employed as the low-stage electric motor 12b, and the rotation speed may be controlled by a control voltage output from the refrigerator control device 20.
  • the suction port side of the high-stage compressor 11 is connected to the discharge port of the low-stage compressor 12 (specifically, the low-stage compression mechanism 12a).
  • the low-stage discharge-side refrigerant pressure Pm of the low-stage compression mechanism 12a is a value equivalent to the high-stage suction-side refrigerant pressure of the high-stage compression mechanism 11a.
  • the basic configuration of the high stage compressor 11 is the same as that of the low stage compressor 12. Accordingly, the high-stage compressor 11 includes a high-stage compression mechanism 11a that compresses and discharges the intermediate-pressure refrigerant discharged from the low-stage compressor 12 until it becomes a high-pressure refrigerant, and a high-stage electric motor 11b. It is an electric compressor having.
  • the high-stage compression mechanism 11a is a fixed-capacity compression mechanism with a fixed discharge capacity, and the rotation speed of the high-stage electric motor 11b is controlled by an alternating current output from the high-stage inverter 21.
  • the compression ratio of the high stage side compression mechanism 11a of this embodiment and the compression ratio of the low stage side compression mechanism 12a are substantially equal.
  • the high stage side compressor 11 and the low stage side compressor 12 of this embodiment have a discharge valve (not shown).
  • the discharge valve functions as a check valve for suppressing the refrigerant discharged from the compression mechanisms 11a and 12a from flowing back into the compressors 11 and 12.
  • the refrigerant inlet side of the radiator 13 is connected to the discharge port of the high stage compressor 11 (specifically, the high stage compression mechanism 11a).
  • the heat dissipator 13 is a heat dissipating member that dissipates and cools the high-pressure refrigerant by heat-exchanging the high-pressure refrigerant discharged from the high-stage compressor 11 and the outside air (outdoor air) blown by the cooling fan 13a. It is a heat exchanger.
  • the cooling fan 13a is an electric blower in which the number of rotations (the amount of blown air) is controlled by a control voltage output from the refrigerator control device 20.
  • a refrigerant is used as a refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • Reference numeral 13 functions as a condenser for condensing the refrigerant.
  • a branching portion 14 for branching the flow of the refrigerant flowing out of the radiator 13 is connected to the refrigerant outlet of the radiator 13.
  • the branch portion 14 has a three-way joint structure having three inflow / outflow ports, and one of the inflow / outflow ports is a refrigerant inflow port and two of the inflow / outlet ports are refrigerant outflow ports.
  • Such a branch part 14 may be configured by joining pipes, or may be configured by providing a plurality of refrigerant passages in a metal block or a resin block.
  • the inlet side of the intermediate pressure expansion valve 15 is connected to one refrigerant outlet of the branch part 14, and the inlet side of the high-pressure refrigerant flow path 16 a of the intermediate heat exchanger 16 is connected to the other refrigerant outlet of the branch part 14.
  • the intermediate pressure expansion valve 15 is an electric expansion valve that decompresses and expands the high-pressure refrigerant flowing out of the radiator 13 until it becomes an intermediate-pressure refrigerant.
  • the intermediate pressure expansion valve 15 includes a valve body that can change the throttle opening degree and an electric actuator that includes a stepping motor that changes the throttle opening degree of the valve body. Yes.
  • the operation of the intermediate pressure expansion valve 15 is controlled by a control signal output from the refrigerator control device 20.
  • the throttle opening degree (refrigerant flow rate) of the intermediate pressure expansion valve 15 is controlled so that the superheat degree of the high-stage compressor 11 suction-side refrigerant falls within a predetermined range.
  • the intermediate pressure expansion valve 15 is provided in a refrigerant pipe extending from one refrigerant outlet of the branch portion 14 to the inlet side of the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 by fully closing the throttle opening. It is also possible to block the flow of the refrigerant.
  • the inlet side of the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 is connected to the outlet side of the intermediate pressure expansion valve 15.
  • the intermediate heat exchanger 16 includes an intermediate pressure refrigerant decompressed and expanded by the intermediate pressure expansion valve 15 flowing through the intermediate pressure refrigerant flow path 16b, and the other branch branched by the branch portion 14 flowing through the high pressure refrigerant flow path 16a. Heat exchange is performed with the high-pressure refrigerant.
  • the intermediate-pressure refrigerant flowing through the intermediate-pressure refrigerant channel 16b is heated, and the high-pressure refrigerant flowing through the high-pressure refrigerant channel 16a is cooled. Will be.
  • the intermediate heat exchanger 16 a double-pipe heat exchanger configuration in which an inner tube forming the intermediate pressure refrigerant flow channel 16b is arranged inside the outer tube forming the high pressure refrigerant flow channel 16a.
  • the high-pressure refrigerant channel 16a may be an inner tube
  • the intermediate-pressure refrigerant channel 16b may be an outer tube.
  • coolant piping which forms the high pressure refrigerant flow path 16a and the intermediate pressure refrigerant flow path 16b, and heat-exchange may be employ
  • the intermediate heat exchanger 16 a meandering tube or a plurality of tubes for circulating the refrigerant is adopted as the high-pressure refrigerant channel 16a, and the intermediate-pressure refrigerant channel 16b is provided between adjacent tubes.
  • a heat exchanger configuration may be employed in which wavy corrugated fins or plate-like plate fins that promote heat exchange between the high-pressure refrigerant and the intermediate-pressure refrigerant are provided.
  • the flow direction of the high-pressure refrigerant flowing through the high-pressure refrigerant flow path 16a and the flow direction of the intermediate pressure refrigerant flowing through the intermediate-pressure refrigerant flow path 16b are the same.
  • a heat exchanger is adopted, of course, the flow direction of the high-pressure refrigerant flowing through the high-pressure refrigerant channel 16a and the flow direction of the intermediate-pressure refrigerant flowing through the intermediate-pressure refrigerant channel 16b are opposite to each other.
  • a heat exchanger may be employed.
  • the outlet of the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 is sucked into the high-stage compressor 11 (specifically, the high-stage compression mechanism 11a) via a check valve (not shown).
  • the mouth side is connected. Therefore, in the high-stage compression mechanism 11a of the present embodiment, a mixed refrigerant of the intermediate-pressure refrigerant flowing out from the intermediate-pressure refrigerant flow path 16b and the intermediate-pressure refrigerant discharged from the low-stage compressor 12 is sucked.
  • the inlet side of the low-pressure expansion valve 17 is connected to the outlet side of the high-pressure refrigerant channel 16a of the intermediate heat exchanger 16.
  • the low-pressure expansion valve 17 is an electric expansion valve that expands the high-pressure refrigerant flowing out of the radiator 13 under reduced pressure until it becomes a low-pressure refrigerant.
  • the basic configuration of the low pressure expansion valve 17 is the same as that of the intermediate pressure expansion valve 15.
  • the low-pressure expansion valve 17 is configured to include a valve body that can change the throttle opening degree and an electric actuator that changes the throttle opening degree of the valve body, and is output from the refrigerator control device 20. The operation is controlled by a control signal.
  • the throttle opening degree (refrigerant flow rate) of the low-pressure expansion valve 17 is controlled so that the degree of superheat of the low-stage compressor 12 suction side refrigerant falls within a predetermined range.
  • the low pressure expansion valve 17 blocks the refrigerant flow in the refrigerant piping from the high pressure refrigerant flow path 16a of the intermediate heat exchanger 16 to the inlet side of the evaporator 18 by fully closing the throttle opening. You can also.
  • the refrigerant inlet side of the evaporator 18 is connected to the outlet side of the low pressure expansion valve 17.
  • the evaporator 18 evaporates the low-pressure refrigerant and exhibits an endothermic effect by exchanging heat between the low-pressure refrigerant decompressed and expanded by the low-pressure expansion valve 17 and the blown air circulated through the freezer by the blower fan 18a.
  • This is an endothermic heat exchanger. Therefore, the heat exchange target fluid of this embodiment is blown air that is circulated through the interior of the warehouse.
  • the blower fan 18a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the refrigerator control device 20. Furthermore, the refrigerant outlet of the evaporator 18 is connected to the suction port side of the low-stage compressor 12 (specifically, the low-stage compression mechanism 12a).
  • the refrigerator control device 20 outputs a control signal or control voltage to a well-known microcomputer including a CPU that performs control processing and arithmetic processing, and a storage circuit such as ROM and RAM that stores programs and data, and various control target devices. Output circuit, an input circuit to which detection signals of various sensors are input, a power supply circuit, and the like.
  • the refrigerator control device 20 controls the operation of these control target devices.
  • the refrigerator control apparatus 20 controls the action
  • FIG. The configuration constitutes control means for each control target device.
  • the configuration (hardware and software) for controlling the refrigerant discharge capacity of the low-stage compression mechanism 12a by controlling the operation of the low-stage inverter 22 is the low-stage discharge capacity control means 20a
  • the high-stage side A configuration that controls the operation of the inverter 21 to control the refrigerant discharge capacity of the high-stage compression mechanism 11a is referred to as a high-stage discharge capacity control unit 20b.
  • the rotation speed of the low-stage side electric motor 12b and the rotation speed of the high-stage side electric motor 11b can be controlled independently by the low-stage side discharge capacity control means 20a and the high-stage side discharge capacity control means 20b, respectively. It has become.
  • a configuration for controlling the throttle opening of the low pressure expansion valve 17 by controlling the operation of the intermediate pressure expansion valve 15 to control the throttle opening of the intermediate pressure expansion valve 15 is the intermediate pressure throttle opening control means 20c.
  • the low-pressure throttle opening control means 20d is used.
  • the low-stage and high-stage discharge capacity control means 20a and 20b, the intermediate pressure, and the low-pressure throttle opening control means 20c and 20d may be configured as separate control devices for the refrigerator control device 20, respectively. Good.
  • an outside air temperature sensor 23 which is an outside air temperature detecting means for detecting the outside air temperature Tam of the outside air (outdoor air) which exchanges heat with the high-pressure refrigerant by the radiator 13, an evaporation
  • An internal temperature sensor 24 that is an internal temperature detection means for detecting the air temperature Tfr of the blown air that exchanges heat with the low-pressure refrigerant in the cooler 18 is connected, and detection signals from these sensors are input to the refrigerator control device 20. Is done.
  • an operation panel 30 is connected to the input side of the refrigerator control device 20.
  • the operation panel 30 has an operation / stop switch as a request signal output means for outputting an operation request signal or a stop request signal for the refrigerator, and a temperature as a target temperature setting means for setting the internal temperature (target cooling temperature) Tset. Setting switches and the like are provided, and operation signals of these switches are input to the refrigerator control device 20.
  • the refrigerator control device 20 of the present embodiment executes a program for refrigerator control stored in advance in a storage circuit. To do.
  • the refrigerator control device 20 reads the detection signals of the various sensors 23 and 24 connected to the input side thereof, the operation signals of the operation panel 30, and the like, and the read detection signals and operation signals. Based on the above, the control signal is output to the control target devices such as the high stage compressor 11 and the low stage compressor 12 connected to the output side, and the operation is controlled.
  • the air temperature Tfr corresponding to the inside temperature of the freezer adds the first reference temperature (2 ° C. in this embodiment) to the target temperature Tset.
  • the low-stage compressor 12 and the high-stage compressor 11 are operated so as to exhibit a predetermined predetermined refrigerant discharge capacity, and the second reference temperature is determined from the target temperature Tset.
  • the stop temperature obtained by subtracting (2 ° C. in this embodiment) the low-stage compressor 12 and the high-stage compressor 11 are stopped.
  • the refrigerator control device 20 of the present embodiment by performing intermittent control that intermittently drives the high-stage compression mechanism 11a and the low-stage compression mechanism 12a, the blast air circulated into the freezer The temperature is adjusted to approach the target temperature Tset set by the operation panel 30.
  • the temperature difference between the operating temperature and the stop temperature is set as a hysteresis width for preventing control hunting.
  • the detection signal and the operation signal are read at every predetermined control period until the operation / stop switch of the operation panel 30 is turned OFF and the operation of the refrigerator is requested to stop. ⁇ Repeat the control routine such as the operation control of the controlled device.
  • the state of the refrigerant is as shown in the Mollier diagram of FIG. Change. Specifically, the high-pressure refrigerant discharged from the high-pressure stage compressor 11 (a 2 points in FIG. 2) flows into the radiator 13, is cooled by heat with external air exchange which is blown from the cooling fan 13a (Point a ⁇ b in FIG. 2).
  • the flow of the refrigerant flowing out from the radiator 13 is branched at the branching portion 14, and the refrigerant flowing out from one refrigerant outlet of the branching portion 14 is decompressed and expanded at the intermediate pressure expansion valve 15 until it becomes an intermediate pressure refrigerant. (B point ⁇ c point in FIG. 2).
  • the throttle opening degree of the intermediate pressure expansion valve 15 is controlled such that the degree of superheat of the high-stage compressor 11 suction-side refrigerant (point i in FIG. 2) falls within a predetermined range.
  • the intermediate pressure refrigerant decompressed and expanded by the intermediate pressure expansion valve 15a flows into the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16, flows out from the other refrigerant outlet of the branch portion 14, and flows through the high pressure refrigerant flow path 16a.
  • Heat exchange with the circulating high-pressure refrigerant increases the enthalpy (point c ⁇ point d in FIG. 2).
  • the high-pressure refrigerant flowing through the high-pressure refrigerant flow path 16a is cooled to reduce its enthalpy (point b ⁇ point e in FIG. 2).
  • the refrigerant that has flowed out of the high-pressure refrigerant flow path 16a is decompressed and expanded at the low-pressure expansion valve 17 until it becomes a low-pressure refrigerant (point e ⁇ f in FIG. 2).
  • the throttle opening degree of the low-pressure expansion valve 17 is controlled so that the degree of superheat of the low-stage compressor 12 suction-side refrigerant (g point in FIG. 2) falls within a predetermined range. Thereby, the problem of the liquid compression of the low stage side compressor 12 can be avoided.
  • the low-pressure refrigerant decompressed and expanded by the low-pressure expansion valve 17 flows into the evaporator 18 and evaporates by exchanging heat with the internal air circulated and blown by the blower fan 18a, thereby exhibiting an endothermic effect (point f in FIG. 2). ⁇ g point). Thereby, the air in a warehouse is cooled.
  • the refrigerant that has flowed out of the evaporator 18 is sucked into the low-stage compressor 12, compressed, and discharged (point g ⁇ point h in FIG. 2).
  • the refrigerant discharged from the low-stage compressor 12 merges with the refrigerant that flows out from the intermediate pressure refrigerant flow path 16b of the intermediate heat exchanger 16 (point h ⁇ point i and point d ⁇ point i in FIG. 2), It is sucked again into the high stage compressor 11.
  • intermittent control for intermittently driving the high-stage compression mechanism 11a and the low-stage compression mechanism 12a is performed. That is, when the internal temperature (air temperature Tfr) becomes equal to or lower than the stop temperature by operating both the low-stage compressor 12 and the high-stage compressor 11, the internal temperature is brought close to the target temperature Tset. Therefore, the low stage compressor 12 and the high stage compressor 11 are stopped.
  • the refrigerator control device 20 stops the high-stage compression mechanism 11a prior to the low-stage compression mechanism 12a and makes the low-pressure expansion valve 17 fully closed.
  • the discharge side refrigerant pressure Pm) increases.
  • the high stage pressure difference PHd obtained by subtracting the low stage discharge side refrigerant pressure Pm of the low stage side compression mechanism 12a from the high stage discharge side refrigerant pressure Pd of the high stage side compression mechanism 11a is reduced.
  • the refrigerant pressure Ps is subtracted to increase the low-stage pressure difference PLd.
  • C1 indicates the low pressure difference PLd and the high pressure difference PHd when both compression mechanisms 11a and 12a are operated, and C2 is the low pressure when both compression mechanisms 11a and 12a are stopped.
  • the side pressure difference PLd and the high stage side pressure difference PHd are shown, and C3 shows the low stage side pressure difference PLd and the high stage side pressure difference PHd when the high stage compression mechanism 12a is restarted.
  • the high-stage side compressor is reduced in a state where the high-stage side pressure difference PHd is smaller than the low-stage side pressure difference PLd.
  • 11 and the low-stage compressor 12 are both stopped.
  • 3 shows changes in the low-stage pressure difference PLd and the high-stage pressure difference PHd of the high-stage compressor 11 and the low-stage compressor 12 during intermittent control when compared with the Mollier diagram of FIG. It is explanatory drawing which shows.
  • the low-stage compressor 12 is provided with a discharge valve and the low-pressure expansion valve 17 is in a fully closed state, the low-stage compressor 12a is discharged from the discharge side (evaporator 18). Side) is suppressed from flowing into the refrigerant. Accordingly, the change in the low-stage suction side refrigerant pressure Ps, that is, the change in the refrigerant evaporation pressure in the evaporator 18 is suppressed.
  • the refrigerator control device 20 activates the high-stage compression mechanism 11a prior to the low-stage compression mechanism 12a.
  • the compression mechanism having the lower pressure difference between the low pressure difference PLd and the high pressure difference PHd is activated. That is, in the present embodiment, the high stage compression mechanism 11a is one compression mechanism, and the low stage compression mechanism 12a is the other compression mechanism.
  • the suction side refrigerant pressure of the high stage side compressor 11 decreases, the low stage side pressure difference PLd decreases as shown in FIG.
  • the low-stage compressor 12 is provided with a discharge valve and the low-pressure expansion valve 17 is in a fully closed state, the low-stage compressor 12a is discharged from the discharge side (evaporator 18). Side) is suppressed from flowing into the refrigerant. Therefore, even if the high-stage compression mechanism 11a is activated prior to the low-stage compression mechanism 12a, the change in the low-stage suction-side refrigerant pressure Ps, that is, the change in the refrigerant evaporation pressure in the evaporator 18 is suppressed. .
  • the low-pressure expansion valve 17 is set to a predetermined throttle opening. Then, the low-stage compression mechanism 12a is activated. In addition, even if the low stage side compression mechanism 12a is started after starting the high stage side compression mechanism 11a, the reference waiting time is low until the pressure does not adversely affect the durability life of the low stage side compression mechanism 12a. This value is determined so that the pressure difference PLd can be reduced.
  • the low-stage compression mechanism 12a is activated, and the two-stage boost refrigeration cycle apparatus 10 in a state where both the low-stage compressor 12 and the high-stage compressor 11 are activated.
  • the operation of is as described with reference to FIG.
  • the level in the cycle It may be necessary to restart the high-stage compression mechanism 11a and the low-stage compression mechanism 12a while the pressure difference remains.
  • the operating member of the compression mechanism receives the load generated by the high / low pressure difference and is pressed against the fixed member side or the like.
  • the low-stage compression mechanism 12a When the low-stage compression mechanism 12a is activated, the components of the compression mechanisms 11a and 12a are worn, and the durability life of the compression mechanism is adversely affected. Therefore, when starting the compression mechanism with the high and low pressure difference remaining in the cycle, it is desirable to reduce the high and low pressure difference as much as possible.
  • FIGS. 4A and 4B in comparison with the present embodiment and the intermittent control of a general two-stage booster refrigeration cycle apparatus.
  • HC1 indicates the rotational speed of the high-stage compression mechanism 11a of the present embodiment
  • LC1 indicates the rotational speed of the low-stage compression mechanism 12a of the present embodiment
  • HC2 indicates the rotational speed of the high-stage compression mechanism 11a of the comparative example
  • LC2 indicates the rotational speed of the low-stage compression mechanism 12a of the comparative example.
  • FIG. 4A shows the high-stage discharge-side refrigerant pressure Pd (solid line), the low-stage discharge-side refrigerant pressure Pm (broken line), and the low-stage during the intermittent control of the two-stage booster type refrigeration cycle apparatus 10 of the present embodiment.
  • FIG. 4B is a time chart showing a change in the suction side refrigerant pressure Ps (one-dot chain line), and FIG. 4B shows the high stage discharge side refrigerant pressure Pd and the low stage during the intermittent control of the two-stage booster type refrigeration cycle apparatus of the comparative example. It is a time chart which shows the change of the discharge side refrigerant
  • the throttle opening of the intermediate pressure expansion valve 15 is increased when the compression mechanisms 11a and 12a are stopped.
  • the high-stage compression mechanism 11a and the low-stage compression mechanism 12a are stopped, Since the stage side compression mechanism 11a is stopped, the high stage side pressure difference PHd can be reduced by the pressure increasing capability of the low stage side compression mechanism 12a that is not stopped. Therefore, the high-stage compression mechanism 11a that is activated first can be reliably protected.
  • the low stage side compression mechanism 12a can be started in a state where the low pressure side pressure difference PLd is reduced. Therefore, it is possible to protect both of the low-stage compression mechanisms 12a that are activated later.
  • the low-stage compression mechanism 12a is started after the reference standby time (10 seconds) has elapsed.
  • the low-stage compression mechanism 12a can be started in a state where the pressure is reliably set to a pressure that does not adversely affect the durability life of the low-stage compression mechanism 12a. As a result, it is possible to reliably protect both the high stage compression mechanism 11a and the low stage compression mechanism 12a.
  • the throttle openings of both the intermediate pressure expansion valve 15 and the low pressure expansion valve 17 are set. Means to increase are conceivable. However, if both throttle openings of the low-pressure expansion valve 17 are increased, refrigerant flows from the discharge side of the low-stage compression mechanism 12a to the suction side (evaporator 18 side), and the evaporator 18 The refrigerant evaporation pressure will increase.
  • FIG. 5A shows the air temperature Tfr (solid line) of the air in the warehouse at the time of intermittent control of the two-stage booster type refrigeration cycle apparatus 10 of the present embodiment, the air temperature blown from the evaporator 18 (broken line), and FIG. 5B is a time chart showing a change in refrigerant evaporation temperature (one-dot chain line) in the evaporator 18, and FIG. 5B is an air temperature Tfr of the internal air during the intermittent control of the two-stage booster refrigeration cycle apparatus of the comparative example. 4 is a time chart showing changes in the temperature of air blown from the evaporator 18 and the refrigerant evaporation temperature in the evaporator 18.
  • FIG. 5 for the sake of clarity of illustration, a time chart showing the operation timing of the low stage compression mechanism 12 a and the high stage compression mechanism 11 a is omitted from FIG.
  • the state in which the compression mechanism 11a, 12a is not operating is represented as OFF.
  • the throttle openings of the intermediate pressure expansion valve 15 and the low pressure expansion valve 17 are increased when the compression mechanisms 11a and 12a are stopped. Therefore, the refrigerant evaporation temperature in the evaporator 18 changes greatly. That is, the refrigerant evaporation pressure (low stage suction side refrigerant pressure Ps) in the evaporator 18 changes greatly.
  • the above-described intermittent control of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a is performed as described above.
  • the evaporator 18 side since the refrigerant flow from the discharge side of the low-stage compression mechanism 12a to the suction side (evaporator 18 side) is suppressed and the low-stage suction side refrigerant pressure Ps is not changed, the evaporator 18 The fluctuation of the refrigerant evaporation pressure in can be suppressed.
  • the fact that the fluctuation of the refrigerant evaporation pressure in the evaporator 18 can be suppressed can reduce the power consumption of the high stage compression mechanism 11a and the low stage compression mechanism 12a for reducing the refrigerant evaporation pressure of the evaporator 18. It is extremely effective.
  • the high-stage compression mechanism 11a is stopped first, and then the low-stage compression mechanism 12a is stopped.
  • the high-stage compression mechanism 11a and the low-stage compression mechanism 12a are simultaneously stopped, the throttle opening of the intermediate pressure expansion valve 15 is increased, and the low pressure expansion valve 17 is fully closed.
  • Other configurations and operations are the same as those in the first embodiment.
  • the bypass passage 19 that guides the refrigerant from the discharge side to the suction side of the high-stage compression mechanism 11 a and the bypass passage 19 are opened and closed.
  • An example in which the opening / closing valve 19a is provided will be described.
  • the operation of the on-off valve 19a is controlled by a control signal output from the refrigerator control device 20.
  • FIG. 6 the same or equivalent parts as those in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings. Moreover, in FIG. 6, illustration of the refrigerator control apparatus 20, the high stage side inverter 21, the low stage side inverter 22, the operation panel 30, and these connection relations is abbreviate
  • the high-stage compression mechanism 11a and the low-stage compression mechanism 12a are simultaneously stopped, and the on-off valve 19a is opened.
  • the on-off valve 19a is closed when the high-stage compression mechanism 11a is driven before the low-stage compression mechanism 12a.
  • the high-stage pressure difference PHd is more reliably reduced than the low-stage pressure difference PLd by opening the on-off valve 19a. be able to. Therefore, when starting each compression mechanism 11a, 12a during intermittent control, as in the first embodiment, by driving the high-stage compression mechanism 11a and then driving the low-stage compression mechanism 12a, The same effect as that of the first embodiment can be obtained.
  • FIG. 7 In the present embodiment, an example in which an oil separator 19b is provided in the high-stage compressor 11 as shown in the overall configuration diagram of FIG. 7 will be described with respect to the first embodiment.
  • the oil separator 19b functions to separate the refrigeration oil contained in the refrigerant discharged from the high stage compressor 11 from the refrigerant and return it to the suction side of the high stage compressor 11.
  • FIG. 7 as in FIG. 6 of the third embodiment, the connection relationship of the refrigerator control device 20 and the like is not shown for clarity of illustration.
  • the oil separator 19b is a centrifugal type that generates a swirling flow in the refrigerant discharged from the high stage compressor 11 and separates the oil from the refrigerant by centrifugal force, or the refrigerant discharged from the high stage compressor 11
  • a gravity separation type that separates the oil from the refrigerant by utilizing the difference in specific gravity between the refrigerant and the oil by lowering the flow velocity of the oil and colliding with the wall or the like can be employed.
  • the oil separator 19b of the present embodiment is provided only in the high stage compressor 11 and is not provided in the low stage compressor 12.
  • the high-stage compression mechanism 11a and the low-stage compression mechanism 12a are simultaneously stopped during the intermittent control of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a.
  • Other configurations and operations are the same as those in the first embodiment.
  • the oil separator 19b is provided only in the high-stage compressor 11, so that the high-stage via the oil separator 19b.
  • the refrigerant on the discharge side of the side compression mechanism 11a can be returned to the suction side. Therefore, the high pressure difference PHd can be reduced more reliably than the low pressure difference PLd without reducing the low pressure difference PLd.
  • the cycle configuration employing the intermediate heat exchanger 16 has been described, but the cycle configuration of the two-stage booster refrigeration cycle apparatus of the present invention is not limited to this.
  • the intermediate gas / liquid separator 40 that separates the gas / liquid of the refrigerant flowing out from the intermediate pressure expansion valve 15 may be provided by eliminating the branch portion 14 and the intermediate heat exchanger 16.
  • the intermittent control described in the first to fourth embodiments may be performed by configuring as a so-called economizer refrigeration cycle.
  • the high-stage side and low-stage side compressors 11 and 12 are It is not limited to this.
  • one of the high-stage compression mechanism 11a and the low-stage compression mechanism 12a may be an electric motor, and the other drive means may be an internal combustion engine.
  • the refrigerant discharge capacity control of each compression mechanism 11a, 12a by the rotational speed control of the electric motors 11b, 12b and the intermittent control described in each of the above embodiments are performed. You may combine. That is, when the target temperature Tset of the internal temperature is set lower than the outside air temperature, the refrigerant discharge capacity control is performed, and the difference between the external temperature and the target temperature Tset of the internal temperature is small, and the compressors 11 and 12 are controlled. When it is not necessary to operate continuously, the intermittent control described in the above embodiments may be performed.
  • the throttle opening degree of the low-pressure expansion valve 17 is extremely small, when the high-stage compression mechanism 11a is stopped first, the suction-side (evaporator) of the low-stage compression mechanism 12a is connected via the low-pressure expansion valve 17. The amount that flows into (18 side) is also small. Therefore, even if the throttle opening degree of the low-pressure expansion valve 17 is only maintained or reduced, an increase in the refrigerant evaporation pressure of the evaporator 18 can be suppressed.
  • the high stage compression mechanism 11a is one compression mechanism described in the claims
  • the low stage compression mechanism 12a is the other compression mechanism described in the claims.
  • the compression mechanisms 11a and 12a can be protected even if the low-stage compression mechanism 12a is one compression mechanism and the high-stage compression mechanism 11a is the other compression mechanism.
  • the oil separator 19b is preferably provided on the low-stage compressor 12 side when the throttle opening of the low-pressure expansion valve 17 is increased.
  • the low-stage compression is performed when the low-stage pressure difference PLd is equal to or smaller than a predetermined reference pressure difference after the high-stage compression mechanism 11a is activated.
  • the mechanism 12a may be activated.
  • the reference pressure difference is not more than a value that does not adversely affect the durability life of the low-stage compression mechanism 12a even if the low-stage compression mechanism 12a is driven when the low-stage pressure difference PLd remains. Just decide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

二段昇圧式冷凍サイクル装置において、低段側圧縮機構(12a)および高段側圧縮機構(11a)を断続的に作動させて冷凍庫内に送風される送風空気を目標温度(Tset)に近づけるように制御する際に、まず、高段側圧縮機構(11a)を停止させた後に、低段側圧縮機構(12a)を停止させる。さらに、高段側圧縮機構(11a)を駆動した後、基準待機時間の経過後に、低段側圧縮機構(12a)を駆動する。これにより、高段側圧縮機構(11a)の駆動時には高段側圧力差(PHd)を低下させ、低段側圧縮機構(12a)の駆動時には低段側圧力差(PLd)を低下させることができるので、双方の圧縮機構(11a、12a)の保護を図ることができる。

Description

二段昇圧式冷凍サイクル装置 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2010年10月29日に出願された日本特許出願2010-244556を基にしている。
 本発明は、低段側圧縮機構と高段側圧縮機構とを備え、冷媒を多段階に昇圧させる二段昇圧式冷凍サイクル装置に関する。
 従来、特許文献1に、直列に接続された複数の圧縮機構によって、冷媒(例えば、ヘリウムガス)を多段階に昇圧させる二段昇圧式冷凍サイクル装置が開示されている。さらに、この特許文献1の二段昇圧式冷凍サイクル装置では、それぞれの圧縮機構の負荷を軽減するために、低段側圧縮機構として、その吐出容量が高段側圧縮機構の吐出容量よりも大きいものを採用している。
 このように、低段側圧縮機構として、高段側圧縮機構よりも吐出容量が大きいものを採用する二段昇圧式冷凍サイクル装置では、初期起動時のように、サイクル内の高低圧差が均圧化された均圧状態において双方の圧縮機構を同時に起動すると、吐出容量の大きい低段側圧縮機構の吐出側冷媒圧力が高段側圧縮機構の吐出側冷媒圧力よりも高くなってしまう圧力の逆転現象が生じることがある。
 そこで、特許文献1の冷凍サイクルでは、均圧状態で各圧縮機構を起動させる際には、まず吐出容量の小さい高段側圧縮機構を起動させ、その後に、低段側圧縮機構を起動させることで、上述の圧力の逆転現象の発生を抑制しているようにしている。
特開61-235648号公報 ところで、特許文献1には、均圧状態の起動時における圧縮機構の起動順序については記載されているものの、サイクル内の高低圧差が残存している状態における圧縮機構の起動順序等については何ら記載されていない。
 しかしながら、例えば、圧縮機構に対して電磁クラッチ等を介して駆動力を伝達する冷凍サイクルでは、蒸発器における冷媒蒸発温度を所望の目標温度とするために圧縮機構を断続的に作動させることがある。このような冷凍サイクルでは、サイクル内の高低圧差が残存する状態で、圧縮機構を起動させなければならないことがある。
 さらに、サイクル内の高低圧差が残存する状態では、圧縮機構の稼動部材が、高低圧差によって生じる荷重を受けて、固定部材側等に押し付けられているので、この状態で圧縮機構を起動させると、圧縮機構の構成部材に摩耗等が生じ、圧縮機構の耐久寿命に悪影響を与えてしまう。
 すなわち、サイクル内の高低圧差が残存している状態では、特許文献1のように、単に、高段側圧縮機構を起動させて、その後に、低段側圧縮機構を起動させるだけでは、各圧縮機構の耐久寿命に悪影響を与えてしまうおそれがある。
 本発明は、上記点に鑑み、低段側圧縮機構および高段側圧縮機構を断続的に作動させる二段昇圧式冷凍サイクル装置において、低段側圧縮機構および高段側圧縮機構の保護を図ることを目的とする。
 本発明の一例の二段昇圧式冷凍サイクル装置では、低圧冷媒を中間圧冷媒となるまで圧縮して吐出する低段側圧縮機構と、低段側圧縮機構から吐出された中間圧冷媒を高圧冷媒となるまで圧縮して吐出する高段側圧縮機構と、高段側圧縮機構から吐出された高圧冷媒を室外空気と熱交換させて放熱させる放熱器と、放熱器から流出した高圧冷媒を中間圧冷媒となるまで減圧膨張させて高段側圧縮機構吸入側へ流出する中間圧膨張弁と、放熱器から流出した高圧冷媒を低圧冷媒となるまで減圧膨張させる低圧膨張弁と、低圧膨張弁にて減圧膨張された低圧冷媒を冷却対象空間に送風される送風空気と熱交換させて蒸発させ、低段側圧縮機構吸入側へ流出する蒸発器とを備える。また、この二段昇圧式冷凍サイクル装置では、低段側圧縮機構および高段側圧縮機構を断続的に駆動することによって、蒸発器にて低圧冷媒と熱交換する熱交換対象流体の温度が目標温度に近づくように調整される。さらに、低段側圧縮機構および高段側圧縮機構を停止させて再び起動させる際に、低段側圧縮機構の低段吐出側冷媒圧力から低段吸入側冷媒圧力を減算した低段側圧力差と高段側圧縮機構の高段吐出側冷媒圧力から低段吐出側冷媒圧力を減算した高段側圧力差とのうち低い方の圧力差となっている一方の圧縮機構を起動させ、その後に、低段側圧力差および高段側圧力差のうち高い方の圧力差を縮小させて他方の圧縮機構を起動させる。
 これによれば、低段側圧縮機構および高段側圧縮機構を停止させて再び起動させる際に、サイクル内の高低圧差が残存する状態であっても、低段側圧力差および高段側圧力差のうち低い方の圧力差となっている一方の圧縮機構を起動させるので、高い方の圧力差となっている他方の圧縮機構を起動させる場合よりも、圧縮機構の保護を図ることができる。
 なお、二段昇圧式冷凍サイクル装置において、サイクルの高低圧差が残存する状態とは、低段側圧力差および高段側圧力差のうち、少なくとも一方が存在している状態を意味している。
 さらに、二段昇圧式冷凍サイクル装置では、低段側圧縮機構の吐出側と高段側圧縮機構の吸入側が同じ圧力となるので、後述する実施形態に説明するように、一方の圧縮機構を起動させると、一方の圧縮機構の吐出側冷媒圧力から吸入側冷媒圧力を減算した圧力差が拡大して、作動していない他方の圧縮機構における圧力差を縮小させることができる。
 従って、他方の圧縮機構についても、その圧力差を縮小させた状態で起動させることができる。その結果、先に起動させる一方の圧縮機構およびその後に起動させる他方の圧縮機構の双方の保護を図ることができる。
 例えば、低段側圧縮機構および高段側圧縮機構を停止させる際に、一方の圧縮機構を停止させ、その後、他方の圧縮機構を停止させてもよい。この場合、まず一方の圧縮機構を停止させるので、停止していない他方の圧縮機構の昇圧能力によって、一方の圧縮機構における圧力差を縮小させることができる。その結果、双方の圧縮機構を停止させて再び起動させる際に、確実に低段側圧力差および高段側圧力差を異なる値として、先に起動させる一方の圧縮機構を確実に保護することができる。
 あるいは、低段側圧縮機構および高段側圧縮機構を停止させる際に、低段側圧縮機構および高段側圧縮機構を同時に停止させるとともに、中間圧膨張弁および低圧膨張弁のうち、いずれか一方の絞り開度を増加させてもよい。この場合、高段側圧力差を速やかに縮小させることができ、低圧膨張弁の絞り開度を増加させることで、低段側圧力差を速やかに縮小させることができる。
 その結果、双方の圧縮機構を停止させて再び起動させる際に、確実に低段側圧力差および高段側圧力差を異なる値として、先に起動させる一方の圧縮機構を確実に保護することができる。
 あるいは、一方の圧縮機構から吐出された冷媒に混入している冷凍機油を分離して、一方の圧縮機構の吸入側に戻すオイルセパレータを備えてもよい。これによれば、低段側圧縮機構および高段側圧縮機構を停止させることで、一方の圧縮機構側に設けられたオイルセパレータを介して、一方の圧縮機構の高圧側と低圧側とを連通させて圧力差を縮小することができる。その結果、双方の圧縮機構を停止させて再び起動させる際に、確実に低段側圧力差および高段側圧力差を異なる値として、先に起動させる一方の圧縮機構を確実に保護することができる。
 なお、低段側圧縮機構および高段側圧縮機構を停止させる際に、いずれか一方を先に停止させる場合には、オイルセパレータは、先に停止させる一方の圧縮機構側に設けてもよい。
 また、低段側圧縮機構および高段側圧縮機構を同時に停止させ、中間圧膨張弁の絞り開度を増加させる場合には、オイルセパレータは、高段側圧縮機構側に設けることが望ましく、低圧膨張弁の絞り開度を増加させる場合には、オイルセパレータは、低段側圧縮機構側に設けることが望ましい。
 二段昇圧式冷凍サイクル装置において、一方の圧縮機構は、高段側圧縮機構であり、他方の圧縮機構は、低段側圧縮機構であってもよい。この場合、冷媒を蒸発させて吸熱作用を発揮させる蒸発器に接続される低段側圧縮機構が他方の圧縮機構となるので、高段側圧縮機構を停止させても、低段側圧力差の変動を抑制できる。従って、高段側圧縮機構および低段側圧縮機構を停止させる際に、蒸発器の冷媒蒸発圧力(冷媒蒸発温度)が変動してしまうことを抑制できる。
 さらに、圧縮機構を再び起動させる際に、一方の圧縮機構である高段側圧縮機構を起動させるので、高段側圧縮機構の吸入側冷媒圧力、すなわち低段側圧縮機構の吐出側冷媒圧力が低下して、低段側圧力差が縮小しても、低段側圧縮機構の吸入側冷媒圧力は変化しにくい。
 従って、高段側圧縮機構および低段側圧縮機構を再び起動させる際に、蒸発器の冷媒蒸発圧力(冷媒蒸発温度)が変動してしまうことを抑制できる。
 その結果、低段側圧縮機構および高段側圧縮機構を断続的に作動させたとしても、蒸発器の冷媒蒸発温度が変化してしまうことを抑制できる。延いては、蒸発器の冷媒蒸発温度を低下させるための低段側圧縮機構および高段側圧縮機構の消費動力を低減できる。
 あるいは、低段側圧縮機構および高段側圧縮機構を起動させる際に、一方の圧縮機構の起動後、他方の圧縮機構における圧力差が予め定めた基準圧力差以下となった際に、他方の圧縮機構を起動させてもよい。
 あるいは、低段側圧縮機構および高段側圧縮機構を起動させる際に、一方の圧縮機構を起動後、予め定めた基準待機時間が経過した際に、他方の圧縮機構を起動させてもよい。この場合、他方の圧縮機構における圧力差が充分に縮小するまで待つことができ、確実に他方の圧縮機構の保護を図ることができる。
 さらに、中間圧膨張弁は、放熱器から流出した高圧冷媒の流れを分岐する分岐部にて分岐された一方の高圧冷媒を減圧膨張させ、低圧膨張弁は、分岐部にて分岐された他方の高圧冷媒を減圧膨張させ、さらに、中間圧膨張弁にて減圧膨張された低圧冷媒と分岐部にて分岐された他方の高圧冷媒とを熱交換させる中間熱交換器を備えていてもよい。
第1実施形態の二段昇圧式冷凍サイクル装置の全体構成図である。 第1実施形態の二段昇圧式冷凍サイクル装置の冷媒の状態を示すモリエル線図である。 第1実施形態の二段昇圧式冷凍サイクル装置の断続制御時の高圧側圧力差と低圧側圧力差の変化を示す説明図である。 (a)は、第1実施形態の二段昇圧式冷凍サイクル装置の断続制御時の冷媒圧力Pd、Pm、Psの変化を示すタイムチャートであり、(b)は、比較例の二段昇圧式冷凍サイクル装置の断続制御時の冷媒圧力Pd、Pm、Psの変化を示すタイムチャートである。 (a)は、第1実施形態の二段昇圧式冷凍サイクル装置の断続制御時の庫内空気の空気温度Tfr等の変化を示すタイムチャートであり、(b)は、比較例の二段昇圧式冷凍サイクル装置の断続制御時の庫内空気の空気温度Tfr等の変化を示すタイムチャートでる。 第3実施形態の二段昇圧式冷凍サイクル装置の全体構成図である。 第4実施形態の二段昇圧式冷凍サイクル装置の全体構成図である。 他の実施形態の二段昇圧式冷凍サイクル装置の全体構成図である。
 (第1実施形態)
 図1~図5により、本発明の第1実施形態を説明する。図1は、本実施形態の二段昇圧式冷凍サイクル装置10の全体構成図である。この二段昇圧式冷凍サイクル装置10は、冷凍機に適用されており、冷却対象空間である冷凍庫内へ送風される送風空気を-30℃~0℃程度の極低温となるまで冷却する機能を果たす。
 まず、二段昇圧式冷凍サイクル装置10は、図1に示すように、高段側圧縮機11および低段側圧縮機12の2つの圧縮機を備えており、サイクルを循環する冷媒を多段階に昇圧する。なお、本実施形態では冷媒として、通常のフロン系冷媒(例えば、R404A)を採用している。さらに、冷媒には、低段側圧縮機12および高段側圧縮機11内の摺動部位を潤滑するための冷凍機油(オイル)が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 低段側圧縮機12は、低圧冷媒を中間圧冷媒となるまで圧縮して吐出する低段側圧縮機構12a、および、低段側圧縮機構12aを回転駆動する低段側電動モータ12bを有する電動圧縮機である。低段側圧縮機構12aは、その吐出容量が固定された固定容量型圧縮機構で構成されており、具体的には、スクロール型圧縮機構、ベーン型圧縮機構、ローリングピストン型圧縮機構等の各種圧縮機構を採用できる。
 低段側電動モータ12bは、低段側インバータ22から出力される交流電流によって、その作動(回転数)が制御される交流モータである。また、低段側インバータ22は、後述する冷凍機制御装置20から出力される制御信号に応じた周波数の交流電流を出力する。そして、この周波数制御によって低段側圧縮機12(具体的には、低段側圧縮機構12a)の冷媒吐出能力が変更される。
 従って、本実施形態では、低段側電動モータ12bが低段側圧縮機12の吐出能力変更手段を構成している。もちろん、低段側電動モータ12bとして、直流モータを採用し、冷凍機制御装置20から出力される制御電圧によって、その回転数を制御するようにしてもよい。また、低段側圧縮機12(具体的には、低段側圧縮機構12a)の吐出口には、高段側圧縮機11の吸入口側が接続されている。
 従って、低段側圧縮機構12aの低段吐出側冷媒圧力Pmは、高段側圧縮機構11aの高段吸入側冷媒圧力と同等の値となる。高段側圧縮機11の基本的構成は、低段側圧縮機12と同様である。従って、高段側圧縮機11は、低段側圧縮機12から吐出された中間圧冷媒を高圧冷媒となるまで圧縮して吐出する高段側圧縮機構11a、および、高段側電動モータ11bを有する電動圧縮機である。
 さらに、高段側圧縮機構11aは、吐出容量が固定された固定容量型圧縮機構で構成され、高段側電動モータ11bは、高段側インバータ21から出力される交流電流によって回転数が制御される。なお、本実施形態の高段側圧縮機構11aの圧縮比および低段側圧縮機構12aの圧縮比は略同等となっている。
 また、本実施形態の高段側圧縮機11および低段側圧縮機12は、図示しない吐出弁を有している。この吐出弁は、各圧縮機構11a、12aから吐出された冷媒が、各圧縮機11、12の内部へ逆流することを抑制するための逆止弁として機能する。
 高段側圧縮機11(具体的には、高段側圧縮機構11a)の吐出口には、放熱器13の冷媒入口側が接続されている。放熱器13は、高段側圧縮機11から吐出された高圧冷媒と冷却ファン13aにより送風される庫外空気(室外空気)とを熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。
 冷却ファン13aは、冷凍機制御装置20から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。なお、本実施形態の二段昇圧式冷凍サイクル装置10では、冷媒としてフロン系冷媒を採用し、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているので、放熱器13は冷媒を凝縮させる凝縮器として機能する。
 放熱器13の冷媒出口には、放熱器13から流出した冷媒の流れを分岐する分岐部14が接続されている。分岐部14は、3つの流入出口を有する三方継手構造のもので、流入出口のうち1つを冷媒流入口とし、2つを冷媒流出口としたものである。このような分岐部14は、配管を接合して構成してもよいし、金属ブロックや樹脂ブロックに複数の冷媒通路を設けて構成してもよい。
 分岐部14の一方の冷媒出口には中間圧膨張弁15の入口側が接続され、分岐部14の他方の冷媒出口には中間熱交換器16の高圧冷媒流路16aの入口側が接続されている。中間圧膨張弁15は、放熱器13から流出した高圧冷媒を中間圧冷媒となるまで減圧膨張させる電気式膨張弁である。
 具体的には、中間圧膨張弁15は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させるステッピングモータからなる電動アクチュエータとを有して構成されている。また、中間圧膨張弁15は、冷凍機制御装置20から出力される制御信号によって、その作動が制御される。
 本実施形態では、具体的に、高段側圧縮機11吸入側冷媒の過熱度が予め定めた所定範囲となるように、中間圧膨張弁15の絞り開度(冷媒流量)が制御される。さらに、中間圧膨張弁15は、その絞り開度を全閉とすることで、分岐部14の一方の冷媒出口から中間熱交換器16の中間圧冷媒流路16bの入口側へ至る冷媒配管における冷媒の流れを遮断することもできる。
 中間圧膨張弁15の出口側には、中間熱交換器16の中間圧冷媒流路16bの入口側が接続されている。中間熱交換器16は、中間圧冷媒流路16bを流通する中間圧膨張弁15にて減圧膨張された中間圧冷媒と、高圧冷媒流路16aを流通する分岐部14にて分岐された他方の高圧冷媒との間で熱交換を行うものである。
 なお、高圧冷媒は減圧されることによって温度低下するので、中間熱交換器16では、中間圧冷媒流路16bを流通する中間圧冷媒が加熱され、高圧冷媒流路16aを流通する高圧冷媒が冷却されることになる。
 また、中間熱交換器16の具体的構成としては、高圧冷媒流路16aを形成する外側管の内側に中間圧冷媒流路16bを形成する内側管を配置する二重管方式の熱交換器構成を採用している。もちろん、高圧冷媒流路16aを内側管として、中間圧冷媒流路16bを外側管としてもよい。さらに、高圧冷媒流路16aと中間圧冷媒流路16bとを形成する冷媒配管同士を接合して熱交換させる構成等を採用してもよい。
 その他にも、中間熱交換器16の具体的構成として、高圧冷媒流路16aとして冷媒を流通させる蛇行状のチューブあるいは複数本のチューブを採用し、隣り合うチューブ間に中間圧冷媒流路16bを形成し、さらに、高圧冷媒と中間圧冷媒との熱交換を促進する波状のコルゲートフィンあるいは板状のプレートフィンを設ける熱交換器構成を採用してもよい。
 さらに、図1に示す中間熱交換器16では、高圧冷媒流路16aを流通する高圧冷媒の流れ方向と中間圧冷媒流路16bを流通する中間圧冷媒の流れ方向が同一となる並行流型の熱交換器を採用しているが、もちろん、高圧冷媒流路16aを流通する高圧冷媒の流れ方向と中間圧冷媒流路16bを流通する中間圧冷媒の流れ方向が逆方向となる対交流型の熱交換器を採用してもよい。
 中間熱交換器16の中間圧冷媒流路16bの出口側には、図示しない逆止弁を介して、前述の高段側圧縮機11(具体的には、高段側圧縮機構11a)の吸入口側が接続されている。従って、本実施形態の高段側圧縮機構11aでは、中間圧冷媒流路16bから流出した中間圧冷媒と低段側圧縮機12から吐出された中間圧冷媒との混合冷媒を吸入する。
 一方、中間熱交換器16の高圧冷媒流路16aの出口側には、低圧膨張弁17の入口側が接続されている。低圧膨張弁17は、放熱器13から流出した高圧冷媒を低圧冷媒となるまで減圧膨張させる電気式膨張弁である。この低圧膨張弁17の基本的構成は、中間圧膨張弁15と同様である。
 従って、低圧膨張弁17は、絞り開度を変更可能に構成された弁体と、この弁体の絞り開度を変化させる電動アクチュエータとを有して構成され、冷凍機制御装置20から出力される制御信号によって、その作動が制御される。本実施形態では、具体的に、低段側圧縮機12吸入側冷媒の過熱度が予め定めた所定範囲となるように、低圧膨張弁17の絞り開度(冷媒流量)が制御される。
 さらに、低圧膨張弁17は、その絞り開度を全閉とすることで、中間熱交換器16の高圧冷媒流路16aから蒸発器18の入口側へ至る冷媒配管における冷媒の流れを遮断することもできる。
 低圧膨張弁17の出口側には、蒸発器18の冷媒流入口側が接続されている。蒸発器18は、低圧膨張弁17にて減圧膨張された低圧冷媒と、送風ファン18aによって冷凍庫内を循環送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。従って、本実施形態の熱交換対象流体は、庫内を循環送風される送風空気である。
 送風ファン18aは、冷凍機制御装置20から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。さらに、蒸発器18の冷媒流出口には、低段側圧縮機12(具体的には、低段側圧縮機構12a)の吸入口側が接続されている。
 次に、本実施形態の電気制御部について説明する。冷凍機制御装置20は、制御処理や演算処理を行うCPUおよびプログラムやデータ等を記憶するROMおよびRAM等の記憶回路を含む周知のマイクロコンピュータ、各種制御対象機器への制御信号あるいは制御電圧を出力する出力回路、各種センサの検出信号が入力される入力回路、並びに、電源回路等から構成されている。
 冷凍機制御装置20の出力側には、制御対象機器として上述の低段側インバータ22、高段側インバータ21、冷却ファン13a、中間圧膨張弁15、低圧膨張弁17、送風ファン18a等が接続され、冷凍機制御装置20は、これらの制御対象機器の作動を制御する。
 なお、冷凍機制御装置20は、これらの制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、冷凍機制御装置20のうち、それぞれの制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が、それぞれの制御対象機器の制御手段を構成している。
 本実施形態では、低段側インバータ22の作動を制御して低段側圧縮機構12aの冷媒吐出能力を制御する構成(ハードウェアおよびソフトウェア)を低段側吐出能力制御手段20aとし、高段側インバータ21の作動を制御して高段側圧縮機構11aの冷媒吐出能力を制御する構成を高段側吐出能力制御手段20bとする。
 従って、低段側電動モータ12bの回転数および高段側電動モータ11bの回転数は、それぞれ低段側吐出能力制御手段20aおよび高段側吐出能力制御手段20bによって、互いに独立して制御できるようになっている。
 また、中間圧膨張弁15の作動を制御して中間圧膨張弁15の絞り開度を制御する構成を中間圧絞り開度制御手段20cとし、低圧膨張弁17の絞り開度を制御する構成を低圧絞り開度制御手段20dとする。もちろん、低段側、高段側吐出能力制御手段20a、20b、中間圧、低圧絞り開度制御手段20c、20dを、冷凍機制御装置20に対してそれぞれ別体の制御装置として構成してもよい。
 一方、冷凍機制御装置20の入力側には、放熱器13にて高圧冷媒と熱交換する庫外空気(室外空気)の外気温度Tamを検出する外気温度検出手段である外気温センサ23、蒸発器18にて低圧冷媒と熱交換する送風空気の空気温度Tfrを検出する庫内温度検出手段である庫内温度センサ24等が接続され、これらのセンサの検出信号が冷凍機制御装置20へ入力される。
 さらに、冷凍機制御装置20の入力側には、操作パネル30が接続されている。この操作パネル30には、冷凍機の作動要求信号あるいは停止要求信号を出力する要求信号出力手段としての作動・停止スイッチ、庫内温度(目標冷却温度)Tsetを設定する目標温度設定手段としての温度設定スイッチ等が設けられ、これらのスイッチの操作信号が冷凍機制御装置20へ入力される。
 次に、上記構成における本実施形態の二段昇圧式冷凍サイクル装置10の作動を説明する。本実施形態の冷凍機制御装置20は、操作パネル30の作動・停止スイッチが投入(ON)されて作動要求信号が出力されると、予め記憶回路に記憶されている冷凍機制御用のプログラムを実行する。
 このプログラムが実行されると、冷凍機制御装置20が、その入力側に接続された上述の各種センサ23、24の検出信号および操作パネル30の操作信号等を読み込み、読み込んだ検出信号および操作信号等に基づいて、出力側に接続された高段側圧縮機11、低段側圧縮機12等の制御対象機器に制御信号を出力して、その作動を制御する。
 例えば、高段側圧縮機構11aおよび低段側圧縮機構12aについては、冷凍庫の庫内温度に相当する空気温度Tfrが、目標温度Tsetに第1基準温度(本実施形態では、2℃)を加えた作動温度以上になっている場合には、予め定めた所定の冷媒吐出能力を発揮するように低段側圧縮機12および高段側圧縮機11を作動させ、目標温度Tsetから第2基準温度(本実施形態では、2℃)を減算した停止温度以下になっている場合に低段側圧縮機12および高段側圧縮機11を停止させる。
 換言すると、本実施形態の冷凍機制御装置20では、高段側圧縮機構11aおよび低段側圧縮機構12aを断続的に駆動する断続制御を行うことによって、冷凍庫内に循環送風される送風空気の温度が操作パネル30によって設定された目標温度Tsetに近づくように調整している。なお、上述の作動温度と停止温度との温度差は、制御ハンチング防止のためのヒステリシス幅として設定されている。
 さらに、冷凍機制御装置20では、操作パネル30の作動・停止スイッチがOFFとされて、冷凍機の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→制御対象機器の作動制御といった制御ルーチンを繰り返す。
 従って、二段昇圧式冷凍サイクル装置10では、高段側圧縮機構11aおよび低段側圧縮機構12aの双方が作動している際には、図2のモリエル線図に示すように冷媒の状態が変化する。具体的には、高段側圧縮機11から吐出された高圧冷媒(図2のa2点)が放熱器13へ流入し、冷却ファン13aから送風された庫外空気と熱交換して冷却される(図2のa点→b点)。
 放熱器13から流出した冷媒の流れは分岐部14にて分岐され、分岐部14の一方の冷媒出口から流出した冷媒は、中間圧膨張弁15にて、中間圧冷媒となるまで減圧膨張される(図2のb点→c点)。この際、中間圧膨張弁15の絞り開度は、高段側圧縮機11吸入側冷媒(図2のi点)の過熱度が予め定めた所定範囲となるように制御される。
 中間圧膨張弁15aにて減圧膨張された中間圧冷媒は、中間熱交換器16の中間圧冷媒流路16bへ流入し、分岐部14の他方の冷媒出口から流出して高圧冷媒流路16aを流通する高圧冷媒と熱交換して、そのエンタルピを増加させる(図2のc点→d点)。逆に、高圧冷媒流路16aを流通する高圧冷媒は冷却されて、そのエンタルピを減少させる(図2のb点→e点)。
 高圧冷媒流路16aから流出した冷媒は、低圧膨張弁17にて、低圧冷媒となるまで減圧膨張される(図2のe点→f点)。この際、低圧膨張弁17の絞り開度は、低段側圧縮機12吸入側冷媒(図2のg点)の過熱度が予め定めた所定範囲となるように制御される。これにより、低段側圧縮機12の液圧縮の問題を回避できる。
 低圧膨張弁17にて減圧膨張された低圧冷媒は蒸発器18へ流入し、送風ファン18aにより循環送風される庫内空気と熱交換して蒸発し、吸熱作用を発揮する(図2のf点→g点)。これにより、庫内空気が冷却される。蒸発器18から流出した冷媒は、低段側圧縮機12へ吸入され、圧縮されて吐出される(図2のg点→h点)。
 低段側圧縮機12から吐出された冷媒は、中間熱交換器16の中間圧冷媒流路16bから流出した冷媒と合流して(図2のh点→i点およびd点→i点)、再び高段側圧縮機11へ吸入される。
 さらに、本実施形態では、庫内温度を目標温度Tsetに近づけるために、高段側圧縮機構11aおよび低段側圧縮機構12aを断続的に駆動する断続制御を行っている。つまり、低段側圧縮機12および高段側圧縮機11の双方を作動させることによって庫内温度(空気温度Tfr)が停止温度以下になった際には、庫内温度を目標温度Tsetに近づけるために、低段側圧縮機12および高段側圧縮機11を停止させる。
 この際、冷凍機制御装置20は、低段側圧縮機構12aよりも先に、高段側圧縮機構11aを停止させるとともに、低圧膨張弁17を全閉状態とする。これにより、高段側圧縮機構11aの高段吐出側冷媒圧力Pdが低下するとともに、低段側圧縮機構12aの昇圧能力によって、高段側圧縮機構11aの高段吸入側冷媒圧力(=低段吐出側冷媒圧力Pm)が上昇する。
 すなわち、高段側圧縮機構11aの高段側吐出側冷媒圧力Pdから低段側圧縮機構12aの低段吐出側冷媒圧力Pmを減算した高段側圧力差PHdが縮小する。一方、高段側圧縮機11の高段吸入側冷媒圧力(=低段吐出側冷媒圧力Pm)が上昇することによって、低段側圧縮機構12aの低段吐出側冷媒圧力Pmから低段吸入側冷媒圧力Psを減算し低段側圧力差PLdが拡大する。図3において、C1は、双方の圧縮機構11a、12aの作動時の低段側圧力差PLdと高段側圧力差PHdを示し、C2は、双方の圧縮機構11a、12aの停止時の低段側圧力差PLdと高段側圧力差PHdを示し、C3は、高段側圧縮機構12aの再起動時の低段側圧力差PLdと高段側圧力差PHdを示す。
 そして、この状態で低段側圧縮機構12aを停止させることによって、図3に示すように、低段側圧力差PLdよりも高段側圧力差PHdを縮小させた状態で、高段側圧縮機11および低段側圧縮機12の双方を停止させている。なお、図3は、図2のモリエル線図と比較した場合の断続制御時おける高段側圧縮機11および低段側圧縮機12の低段側圧力差PLdおよび高段側圧力差PHdの変化を示す説明図である。
 この際、低段側圧縮機12には吐出弁が設けられているとともに、低圧膨張弁17が全閉状態となっているので、低段側圧縮機構12aの吐出側から吸入側(蒸発器18側)への冷媒の流れ込みが抑制される。従って、低段吸入側冷媒圧力Psの変化、すなわち蒸発器18における冷媒蒸発圧力の変化が抑制される。
 さらに、高段側圧縮機11および低段側圧縮機12の双方を停止させて、庫内温度(空気温度Tfr)が作動温度以上になった際には、再び低段側圧縮機12および高段側圧縮機11を作動させる。
 この際、冷凍機制御装置20は、低段側圧縮機構12aよりも先に、高段側圧縮機構11aを起動させる。換言すると、低段側圧力差PLdと高段側圧力差PHdとのうち低い方の圧力差となっている圧縮機構を起動させる。つまり、本実施形態では、高段側圧縮機構11aが一方の圧縮機構となり、低段側圧縮機構12aが他方の圧縮機構となる。
 これにより、高段側圧縮機構11aの高段吐出側冷媒圧力Pdが上昇するとともに、高段側圧縮機構11aの高段吸入側冷媒圧力(=低段吐出側冷媒圧力Pm)が低下する。すなわち、高段側圧縮機構11aの高段側圧力差PHdが拡大する。一方、高段側圧縮機11の吸入側冷媒圧力が低下することによって、図3に示すように、低段側圧力差PLdが縮小する。
 この際、低段側圧縮機12には吐出弁が設けられているとともに、低圧膨張弁17が全閉状態となっているので、低段側圧縮機構12aの吐出側から吸入側(蒸発器18側)への冷媒の流れ込みが抑制される。従って、低段側圧縮機構12aよりも先に、高段側圧縮機構11aを起動させたとしても、低段吸入側冷媒圧力Psの変化、すなわち蒸発器18における冷媒蒸発圧力の変化が抑制される。
 そして、高段側圧縮機構11aの起動後、さらに、予め定めた基準待機時間(本実施形態では、10秒)が経過した後に、低圧膨張弁17を予め定めた所定の絞り開度にするとともに、低段側圧縮機構12aを起動させる。なお、この基準待機時間は、高段側圧縮機構11aの起動後、低段側圧縮機構12aを起動させたとしても、低段側圧縮機構12aの耐久寿命に悪影響を与えない圧力まで低段側圧力差PLdを低下させることができるように決定された値である。
 高段側圧縮機構11aを起動した後、低段側圧縮機構12aを起動させて、低段側圧縮機12および高段側圧縮機11の双方が作動した状態における二段昇圧式冷凍サイクル装置10の作動は、図2を用いて説明した通りである。
 本実施形態の二段昇圧式冷凍サイクル装置10は、以上の如く作動するので、以下のような優れた効果を得ることができる。
 まず、本実施形態のように、庫内空気の空気温度Tfrを目標温度Tsetに近づけるために、高段側圧縮機構11aおよび低段側圧縮機構12aの断続制御を行う構成では、サイクル内の高低圧差が残存した状態で、高段側圧縮機構11aおよび低段側圧縮機構12aの再起動させなければならないことがある。
 このようにサイクル内の高低圧差が残存する状態では、圧縮機構の稼動部材が、高低圧差によって生じる荷重を受けて、固定部材側等に押し付けられているので、この状態で高段側圧縮機構11aおよび低段側圧縮機構12aを起動させると、各圧縮機構11a、12aの構成部材に摩耗等が生じ、圧縮機構の耐久寿命に悪影響を与えてしまう。従って、サイクル内の高低圧差が残存した状態で、圧縮機構を起動させる際には、その高低圧差を極力小さくすることが望ましい。
 これに対して、本実施形態では、各圧縮機構11a、12aを起動させる際に、それぞれの圧縮機構11a、12aの高低圧差を縮小して、圧縮機構11a、12aの保護を図ることができる。このことを、図4(a)と(b)を用いて、本実施例と一般的な二段昇圧式冷凍サイクル装置の断続制御と比較して説明する。図4(a)において、HC1は、本実施形態の高段側圧縮機構11aの回転数を示し、LC1は、本実施形態の低段側圧縮機構12aの回転数を示す。図4(b)において、HC2は、比較例の高段側圧縮機構11aの回転数を示し、LC2は、比較例の低段側圧縮機構12aの回転数を示す。
 なお、図4(a)は、本実施形態の二段昇圧式冷凍サイクル装置10の断続制御時における高段吐出側冷媒圧力Pd(実線)、低段吐出側冷媒圧力Pm(破線)および低段吸入側冷媒圧力Ps(一点鎖線)の変化を示すタイムチャートであり、図4(b)は、比較例の二段昇圧式冷凍サイクル装置の断続制御時における高段吐出側冷媒圧力Pd、低段吐出側冷媒圧力Pmおよび低段吸入側冷媒圧力Psの変化を示すタイムチャートである。
 また、比較例の二段昇圧式冷凍サイクル装置では、各圧縮機構11a、12aの断続制御を行う際に、各圧縮機構11a、12aを停止させる場合は双方を同時に停止させるとともに、中間圧膨張弁15の絞り開度を増加させ、各圧縮機構11a、12aを起動させる場合は双方を同時に起動させるとともに、中間圧膨張弁15の開度を、各圧縮機構11a、12aを停止させる前の絞り開度に戻す制御を行う。
 図4(b)から明らかなように、比較例の二段昇圧式冷凍サイクル装置では、各圧縮機構11a、12aを停止させる際に中間圧膨張弁15の絞り開度を増加させるので、高段側圧力差PHd(=Pd-Pm)については略0とすることができるものの、低段側圧力差PLd(=Pm-Ps)が低下しないので、この状態で双方の圧縮機構11a、12aを同時に起動させると、低段側圧縮機構12aの耐久寿命に悪影響を与える可能性が高い。
 一方、図4(a)に示すように、本実施形態の二段昇圧式冷凍サイクル装置10によれば、高段側圧縮機構11aおよび低段側圧縮機構12aを停止させる際に、まず、高段側圧縮機構11aを停止させるので、停止していない低段側圧縮機構12aの昇圧能力によって、高段側圧力差PHdを縮小することができる。従って、先に起動させる高段側圧縮機構11aを確実に保護することができる。
 さらに、高段側圧縮機構11aが起動することによって、低圧側圧力差PLdを縮小させた状態で低段側圧縮機構12aを起動させることができる。従って、後に起動させる低段側圧縮機構12aの双方の保護を図ることができる。
 この際、本実施形態では、高段側圧縮機構11aを起動後、さらに、基準待機時間(10秒)が経過した後に低段側圧縮機構12aを起動させているので、低段側圧力差PLdを、確実に低段側圧縮機構12aの耐久寿命に悪影響を与えない圧力とした状態で、低段側圧縮機構12aを起動できる。その結果、高段側圧縮機構11aおよび低段側圧縮機構12aの双方の保護を確実に図ることができる。
 次に、比較例のサイクルにおいて、双方の圧縮機構についても保護を図るためには、各圧縮機構11a、12aを停止させる際に中間圧膨張弁15および低圧膨張弁17の双方の絞り開度を増加させる手段が考えられる。ところが、低圧膨張弁17の双方の絞り開度を増加させしまうと、低段側圧縮機構12aの吐出側から吸入側(蒸発器18側)への冷媒の流れ込みが発生して、蒸発器18における冷媒蒸発圧力が上昇してしまう。
 これに対して、本実施形態では、各圧縮機構11a、12aの断続制御を行う際に、図3にて説明したように、低段側圧縮機構12aの吐出側から吸入側(蒸発器18側)への冷媒の流れ込みを抑制して、低段吸入側冷媒圧力Psを変化させないようにしているので、蒸発器18における冷媒蒸発圧力の変動を抑制できる。このことを、図5を用いて、上述の一般的な二段昇圧式冷凍サイクル装置の断続制御と比較して説明する。
 なお、図5(a)は、本実施形態の二段昇圧式冷凍サイクル装置10の断続制御時における庫内空気の空気温度Tfr(実線)、蒸発器18から吹き出される空気温度(破線)および蒸発器18における冷媒蒸発温度(一点鎖線)の変化を示すタイムチャートであり、図5(b)は、比較例の二段昇圧式冷凍サイクル装置の断続制御時における庫内空気の空気温度Tfr、蒸発器18から吹き出される空気温度および蒸発器18における冷媒蒸発温度の変化を示すタイムチャートである。
 また、図5では、図示の明確化のため、図4に対して低段側圧縮機構12aおよび高段側圧縮機構11aの作動タイミングを示すタイムチャートを省略して、いずれかの圧縮機構が作動している状態をON、いずれの圧縮機構11a、12aも作動していない状態をOFFとして表している。
 さらに、比較例の二段昇圧式冷凍サイクル装置では、各圧縮機構11a、12aの断続制御を行う際に、各圧縮機構11a、12aを停止させる場合は双方を同時に停止させるとともに、中間圧膨張弁15および低圧膨張弁17の絞り開度を増加させ、各圧縮機構11a、12aを起動させる場合は双方を同時に起動させるとともに、中間圧膨張弁15および低圧膨張弁17の開度を、各圧縮機構11a、12aを停止させる前の絞り開度に戻す制御を行う。
 図5(b)から明らかなように、比較例の二段昇圧式冷凍サイクル装置では、各圧縮機構11a、12aを停止させる際に中間圧膨張弁15および低圧膨張弁17の絞り開度を増加させるので、蒸発器18における冷媒蒸発温度が大きく変化する。つまり、蒸発器18における冷媒蒸発圧力(低段吸入側冷媒圧力Ps)が大きく変化する。
 一方、図5(a)に示すように、本実施形態の二段昇圧式冷凍サイクル装置10によれば、高段側圧縮機構11aおよび低段側圧縮機構12aの断続制御を行う際に、前述の如く、低段側圧縮機構12aの吐出側から吸入側(蒸発器18側)への冷媒の流れ込みを抑制して、低段吸入側冷媒圧力Psを変化させないようにしているので、蒸発器18における冷媒蒸発圧力の変動を抑制できる。
 このように、蒸発器18における冷媒蒸発圧力の変動を抑制できることは、蒸発器18の冷媒蒸発圧力を低下させるための高段側圧縮機構11aおよび低段側圧縮機構12aの消費動力を低減できる点で極めて有効である。
 (第2実施形態)
 第1実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aの断続制御時に、先に高段側圧縮機構11aを停止させ、その後、低段側圧縮機構12aを停止させた例を説明したが、本実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aを同時に停止させるとともに、中間圧膨張弁15の絞り開度を増加させ、低圧膨張弁17を全閉状態とする。その他の構成および作動は第1実施形態と同様である。
 本実施形態の如く、断続制御時に各圧縮機構11a、12aを同時停止させたとしても、中間圧膨張弁15の絞り開度を増加させ、低圧膨張弁17を全閉状態とすることで、高段側圧力差PHdを低段側圧力差PLdよりも確実に縮小することができる。従って、断続制御時に各圧縮機構11a、12aを起動させる際に、第1実施形態と同様に、高段側圧縮機構11aを駆動し、その後に、低段側圧縮機構12aを駆動することで、第1実施形態と全く同様の効果を得ることができる。
 (第3実施形態)
 本実施形態では、第1実施形態に対して、図6の全体構成図に示すように、高段側圧縮機構11aの吐出側から吸入側へ冷媒を導くバイパス通路19およびこのバイパス通路19を開閉する開閉弁19aを設けた例を説明する。なお、開閉弁19aは、冷凍機制御装置20から出力される制御信号によって、その作動が制御される。
 なお、図6では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。また、図6では、図示の明確化のため、冷凍機制御装置20、高段側インバータ21、低段側インバータ22、操作パネル30およびこれらの接続関係の図示を省略している。
 さらに、本実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aの断続制御時に、高段側圧縮機構11aおよび低段側圧縮機構12aを同時に停止させるとともに、開閉弁19aを開き、低段側圧縮機構12aよりも先に高段側圧縮機構11aを駆動する際に、開閉弁19aを閉じる。その他の構成および作動は第1実施形態と同様である。
 本実施形態の如く、断続制御時に各圧縮機構11a、12aを同時停止させたとしても、開閉弁19aを開くことで、高段側圧力差PHdを低段側圧力差PLdよりも確実に縮小することができる。従って、断続制御時に各圧縮機構11a、12aを起動させる際に、第1実施形態と同様に、高段側圧縮機構11aを駆動し、その後に、低段側圧縮機構12aを駆動することで、第1実施形態と全く同様の効果を得ることができる。
 (第4実施形態)
 本実施形態では、第1実施形態に対して、図7の全体構成図に示すように、高段側圧縮機11にオイルセパレータ19bを設けた例を説明する。オイルセパレータ19bは、高段側圧縮機11吐出冷媒に含有される冷凍機油を冷媒から分離して、高段側圧縮機11の吸入側に戻す機能を果たすものである。なお、図7においても第3実施形態の図6と同様に、図示の明確化のため、冷凍機制御装置20等の接続関係の図示を省略している。
 具体的には、オイルセパレータ19bとしては、高段側圧縮機11吐出冷媒に旋回流を発生させて遠心力によって冷媒からオイルを分離する遠心分離タイプのもの、あるいは高段側圧縮機11吐出冷媒を壁部などに衝突させて、その流速を低下させて、冷媒とオイルとの比重の違いを利用して冷媒からオイルを分離する重力分離タイプのもの等を採用できる。
 さらに、本実施形態のオイルセパレータ19bは、高段側圧縮機11のみに設けられており、低段側圧縮機12には設けられていない。また、本実施形態では、高段側圧縮機構11aおよび低段側圧縮機構12aの断続制御時に、高段側圧縮機構11aおよび低段側圧縮機構12aを同時に停止させる。その他の構成および作動は第1実施形態と同様である。
 本実施形態の如く、断続制御時に各圧縮機構11a、12aを同時停止させたとしても、高段側圧縮機11のみにオイルセパレータ19bが設けられていることによって、オイルセパレータ19bを介して高段側圧縮機構11aの吐出側の冷媒を吸入側へ戻すことができる。従って、低段側圧力差PLdを縮小させることなく、高段側圧力差PHdを低段側圧力差PLdよりも確実に縮小することができる。
 その結果、断続制御時に各圧縮機構11a、12aを起動させる際に、第1実施形態と同様に、高段側圧縮機構11aを駆動し、その後に、低段側圧縮機構12aを駆動することで、第1実施形態と全く同様の効果を得ることができる。
 (他の実施形態)
 本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 (1)上述の実施形態では、中間熱交換器16を採用したサイクル構成について説明したが、本発明の二段昇圧式冷凍サイクル装置のサイクル構成は、これに限定されない。例えば、図8に示すように、分岐部14および中間熱交換器16を廃止して、中間圧膨張弁15から流出した冷媒の気液を分離する中間気液分離器40を設けてもよい。
 そして、中間気液分離器40にて分離された気相冷媒を高段側圧縮機11へ吸入させ、中間気液分離器にて分離された液相冷媒を低圧膨張弁17へ流入させるようにした、いわゆるエコノマイザ式冷凍サイクルとして構成して、第1~第4実施形態にて説明した断続制御を行ってもよい。
 (2)上述の実施形態では、各圧縮機構11a、12aを電動モータ11b、12bにて駆動する電動圧縮機を採用した例を説明したが、高段側および低段側圧縮機11、12はこれに限定されない。例えば、内燃機関等の駆動源から伝達される駆動力を電磁クラッチ等を介して圧縮機構へ伝達するクラッチ式圧縮機を採用してもよい。もちろん、高段側圧縮機構11aおよび低段側圧縮機構12aのうち、一方の駆動手段を電動モータとして、他方の駆動手段を内燃機関としてもよい。
 また、本実施形態のように電動圧縮機を採用する場合は、電動モータ11b、12bの回転数制御による各圧縮機構11a、12aの冷媒吐出能力制御と上述の各実施形態で説明した断続制御を組み合わせてもよい。つまり、外気温に対して庫内温度の目標温度Tsetが低く設定されている際に冷媒吐出能力制御を行い、外気温と庫内温度の目標温度Tsetとの差が小さく圧縮機11、12を連続的に作動させる必要のない場合に、上述の各実施形態で説明した断続制御を行うようにしてもよい。
 (3)上述の実施形態では、断続制御において高段側圧縮機構11aおよび低段側圧縮機構12aを停止させる際に、低圧膨張弁17を全閉状態とした例を説明したが、低圧膨張弁17の絞り開度を維持あるいは低下させるだけでもよい。
 つまり、低圧膨張弁17の絞り開度は極めて小さいので、先に高段側圧縮機構11aを停止させた際に、低圧膨張弁17を介して、低段側圧縮機構12aの吸入側(蒸発器18側)へ流れ込む量も少ない。従って、低圧膨張弁17の絞り開度を維持あるいは低下させるだけであっても蒸発器18の冷媒蒸発圧力の上昇を抑制することができる。
 (4)上述の実施形態では、高段側圧縮機構11aを特許請求の範囲に記載された一方の圧縮機構とし、低段側圧縮機構12aを特許請求の範囲に記載された他方の圧縮機構としているが、もちろん、低段側圧縮機構12a一方の圧縮機構とし、高段側圧縮機構11aを他方の圧縮機構としても各圧縮機構11a、12aの保護を図ることができる。
 また、低段側圧縮機構12aおよび高段側圧縮機構11aを停止させる際に、低段側圧縮機構12aを先に停止させる場合には、第3実施形態で説明したバイパス通路19および開閉弁19a、あるいは、第4実施形態で説明したオイルセパレータ19bを低段側圧縮機12に設けることが望ましい。
 また、第2実施形態のように、低段側圧縮機構12aおよび高段側圧縮機構11aを同時に停止させ、中間圧膨張弁15の絞り開度を増加させる場合には、オイルセパレータ19bは、高段側圧縮機11側に設けることが望ましく、低圧膨張弁17の絞り開度を増加させる場合には、オイルセパレータ19bは、低段側圧縮機12側に設けることが望ましい。
 (5)上述の実施形態では、断続制御において高段側圧縮機構11aおよび低段側圧縮機構12aを起動させる際に、高段側圧縮機構11aを起動後、基準待機時間が経過した際に、低段側圧縮機構12aを起動させた例を説明したが、高段側圧縮機構11aを起動後、低段側圧力差PLdが予め定めた基準圧力差以下となった際に、低段側圧縮機構12aを起動させるようにしてもよい。
 なお、基準圧力差は、低段側圧力差PLdが残存している際に、低段側圧縮機構12aを駆動しても、低段側圧縮機構12aの耐久寿命に悪影響を与えない値以下に決定すればよい。
 (6)上述の実施形態では、本発明の二段昇圧式冷凍サイクル装置10を冷凍機に適用した例を説明したが、本発明の適用はこれに限定されない。例えば、空調装置、冷蔵庫等に適用してもよい。さらに、移動体(車両、船舶)等の冷蔵・冷凍コンテナに適用してもよい。

Claims (8)

  1.  低圧冷媒を中間圧冷媒となるまで圧縮して吐出する低段側圧縮機構(12a)と、
     前記低段側圧縮機構(12a)から吐出された前記中間圧冷媒を高圧冷媒となるまで圧縮して吐出する高段側圧縮機構(11a)と、
     前記高段側圧縮機構(11a)から吐出された前記高圧冷媒を室外空気と熱交換させて放熱させる放熱器(13)と、
     前記放熱器(13)から流出した前記高圧冷媒を前記中間圧冷媒となるまで減圧膨張させて前記高段側圧縮機構(11a)吸入側へ流出する中間圧膨張弁(15)と、
     前記放熱器(13)から流出した前記高圧冷媒を前記低圧冷媒となるまで減圧膨張させる低圧膨張弁(17)と、
     前記低圧膨張弁(17)にて減圧膨張された前記低圧冷媒を冷却対象空間に送風される送風空気と熱交換させて蒸発させ、前記低段側圧縮機構(12a)吸入側へ流出する蒸発器(18)とを備え、
     前記低段側圧縮機構(12a)および前記高段側圧縮機構(11a)を断続的に駆動することによって、前記蒸発器(18)にて前記低圧冷媒と熱交換する熱交換対象流体の温度が目標温度(Tset)に近づくように調整される二段昇圧式冷凍サイクル装置であって、
     前記低段側圧縮機構(12a)および前記高段側圧縮機構(11a)を停止させて再び起動させる際に、前記低段側圧縮機構(12a)の低段吐出側冷媒圧力(Pm)から低段吸入側冷媒圧力(Ps)を減算した低段側圧力差(PLd)と前記高段側圧縮機構(11a)の高段吐出側冷媒圧力(Pd)から前記低段吐出側冷媒圧力(Pm)を減算した高段側圧力差(PHd)とのうち低い方の圧力差となっている一方の圧縮機構(11a)を起動させ、
     その後に、前記低段側圧力差(PLd)および前記高段側圧力差(PHd)のうち高い方の圧力差を縮小させて他方の圧縮機構(12a)を起動させることを特徴とする二段昇圧式冷凍サイクル装置。
  2.  前記低段側圧縮機構(12a)および前記高段側圧縮機構(11a)を停止させる際に、前記一方の圧縮機構(11a)を停止させ、その後、他方の圧縮機構(12a)を停止させることを特徴とする請求項1に記載の二段昇圧式冷凍サイクル装置。
  3.  前記低段側圧縮機構(12a)および前記高段側圧縮機構(11a)を停止させる際に、前記低段側圧縮機構(12a)および前記高段側圧縮機構(11a)を同時に停止させるとともに、中間圧膨張弁(15)および低圧膨張弁(17)のうち、いずれか一方の絞り開度を増加させることを特徴とする請求項1に記載の二段昇圧式冷凍サイクル装置。
  4.  前記一方の圧縮機構(11a)から吐出された冷媒に混入している冷凍機油を分離して、前記一方の圧縮機構(11a)の吸入側に戻すオイルセパレータ(19b)を備えることを特徴とする請求項1に記載の二段昇圧式冷凍サイクル装置。
  5.  前記一方の圧縮機構は、前記高段側圧縮機構(11a)であり、
     前記他方の圧縮機構は、前記低段側圧縮機構(12a)であることを特徴とする請求項1ないし4のいずれか1つに記載の二段昇圧式冷凍サイクル装置。
  6.  前記低段側圧縮機構(12a)および前記高段側圧縮機構(11a)を起動させる際に、前記一方の圧縮機構(11a)を起動させ、その後に、前記他方の圧縮機構(12a)における圧力差が予め定めた基準圧力差以下となった際に、前記他方の圧縮機構(12a)を起動させることを特徴とする請求項1ないし5のいずれか1つに記載の二段昇圧式冷凍サイクル装置。
  7.  前記低段側圧縮機構(12a)および前記高段側圧縮機構(11a)を起動させる際に、前記一方の圧縮機構(11a)を起動後、予め定めた基準待機時間が経過した際に、前記他方の圧縮機構(12a)を起動させることを特徴とする請求項1ないし5のいずれか1つに記載の二段昇圧式冷凍サイクル装置。
  8.  前記中間圧膨張弁(15)は、前記放熱器(13)から流出した高圧冷媒の流れを分岐する分岐部(14)にて分岐された一方の高圧冷媒を減圧膨張させ、
     前記低圧膨張弁(17)は、前記分岐部(14)にて分岐された他方の高圧冷媒を減圧膨張させ、
     さらに、前記中間圧膨張弁(15)にて減圧膨張された低圧冷媒と前記分岐部(14)にて分岐された他方の高圧冷媒とを熱交換させる中間熱交換器(16)を備えることを特徴とする請求項1ないし7のいずれか1つに記載の二段昇圧式冷凍サイクル装置。
PCT/JP2011/004971 2010-10-29 2011-09-06 二段昇圧式冷凍サイクル装置 WO2012056623A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/881,945 US9389005B2 (en) 2010-10-29 2011-09-06 Two-stage compression refrigeration cycle device
CN201180051644.8A CN103180677B (zh) 2010-10-29 2011-09-06 两级压缩制冷循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010244556A JP5287831B2 (ja) 2010-10-29 2010-10-29 二段昇圧式冷凍サイクル
JP2010-244556 2010-10-29

Publications (1)

Publication Number Publication Date
WO2012056623A1 true WO2012056623A1 (ja) 2012-05-03

Family

ID=45993371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004971 WO2012056623A1 (ja) 2010-10-29 2011-09-06 二段昇圧式冷凍サイクル装置

Country Status (4)

Country Link
US (1) US9389005B2 (ja)
JP (1) JP5287831B2 (ja)
CN (1) CN103180677B (ja)
WO (1) WO2012056623A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117404870A (zh) * 2023-12-13 2024-01-16 珠海格力电器股份有限公司 冰箱控制方法、装置、电子设备及存储介质

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5482728B2 (ja) * 2011-05-20 2014-05-07 株式会社デンソー 冷凍サイクル装置
JP2014149103A (ja) * 2013-01-31 2014-08-21 Nippon Soken Inc 冷凍サイクル装置
KR102240070B1 (ko) * 2014-03-20 2021-04-13 엘지전자 주식회사 공기조화기 및 그 제어방법
KR101591191B1 (ko) * 2014-08-14 2016-02-02 엘지전자 주식회사 공기 조화기 및 그 제어방법
JP6441000B2 (ja) * 2014-08-27 2018-12-19 株式会社Nttファシリティーズ 蒸気圧縮式冷凍サイクル
CN107850363B (zh) 2015-08-03 2020-10-30 开利公司 恒温膨胀阀和控制方法
JP6443557B2 (ja) * 2015-09-15 2018-12-26 株式会社デンソー 複数段圧縮式冷凍サイクル装置
JP6747360B2 (ja) * 2017-03-31 2020-08-26 株式会社デンソー 冷凍サイクル
US11859874B1 (en) * 2018-02-26 2024-01-02 Regi U.S., Inc. Modified two-phase refrigeration cycle
US10663196B2 (en) * 2018-06-05 2020-05-26 Heatcraft Refrigeration Products Llc Cooling system
CN111051794A (zh) * 2018-06-07 2020-04-21 松下知识产权经营株式会社 制冷循环装置和具备它的液体加热装置
JP6866910B2 (ja) * 2019-09-30 2021-04-28 ダイキン工業株式会社 熱源ユニット及び冷凍装置
JP2021080966A (ja) * 2019-11-15 2021-05-27 大陽日酸株式会社 ヘリウムガスの回収装置及びガス圧縮方法
CN110887265B (zh) * 2019-11-25 2021-01-12 珠海格力电器股份有限公司 内循环叠加热泵系统、控制方法及热泵烘干机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544678A (ja) * 1991-08-13 1993-02-23 Matsushita Electric Ind Co Ltd 密閉型ロータリー圧縮機
JP2004028492A (ja) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Co2冷媒を用いた冷媒回路
JP2004108334A (ja) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd 冷媒回路装置
JP2008297991A (ja) * 2007-05-31 2008-12-11 Hitachi Ltd スクロール式増圧装置

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57131883A (en) * 1981-02-06 1982-08-14 Mitsubishi Electric Corp Parallel compression type refrigerator
JPH067024B2 (ja) 1985-04-09 1994-01-26 ダイキン工業株式会社 ヘリウム冷凍装置
US5369958A (en) * 1992-10-15 1994-12-06 Mitsubishi Denki Kabushiki Kaisha Air conditioner
US5586444A (en) * 1995-04-25 1996-12-24 Tyler Refrigeration Control for commercial refrigeration system
JPH09196478A (ja) * 1996-01-23 1997-07-31 Nippon Soken Inc 冷凍サイクル
KR100388675B1 (ko) * 2000-12-18 2003-06-25 삼성전자주식회사 압력조절장치를 구비한 공기조화기와 그 제어방법
KR100484799B1 (ko) * 2002-06-19 2005-04-22 엘지전자 주식회사 두개의 압축기를 채용한 공기조화기의 압축기 동작방법
TWI301188B (en) 2002-08-30 2008-09-21 Sanyo Electric Co Refrigeant cycling device and compressor using the same
KR20050061555A (ko) * 2002-10-24 2005-06-22 쇼와 덴코 가부시키가이샤 냉동 시스템, 압축 방열 장치, 및 방열기
KR100457569B1 (ko) * 2002-11-22 2004-11-18 엘지전자 주식회사 히트펌프 시스템의 전자 팽창밸브 제어방법
JP2005003239A (ja) * 2003-06-10 2005-01-06 Sanyo Electric Co Ltd 冷媒サイクル装置
JP4023415B2 (ja) * 2003-08-06 2007-12-19 株式会社デンソー 蒸気圧縮式冷凍機
KR20050042953A (ko) * 2003-11-04 2005-05-11 엘지전자 주식회사 인버터 압축기 및 정속 압축기를 구비한 공조시스템의운전제어방법
JP2006053390A (ja) * 2004-08-12 2006-02-23 Fuji Photo Film Co Ltd 感光性フィルムの製造ライン
KR100619733B1 (ko) * 2004-08-14 2006-09-08 엘지전자 주식회사 유니터리 공기조화기의 운전제어방법
WO2006025354A1 (ja) * 2004-09-01 2006-03-09 Matsushita Electric Industrial Co., Ltd. ヒートポンプ
JP4195031B2 (ja) * 2004-11-04 2008-12-10 ウィニアマンド インコーポレイテッド 空気調和機の容量制御装置
JP2006177632A (ja) * 2004-12-24 2006-07-06 Denso Corp 冷凍サイクル
US7631510B2 (en) * 2005-02-28 2009-12-15 Thermal Analysis Partners, LLC. Multi-stage refrigeration system including sub-cycle control characteristics
JP2006275495A (ja) * 2005-03-30 2006-10-12 Sanyo Electric Co Ltd 冷凍装置及び冷蔵庫
JP4765587B2 (ja) 2005-11-30 2011-09-07 ダイキン工業株式会社 冷凍装置
JP2009052752A (ja) * 2005-12-19 2009-03-12 Panasonic Corp 冷凍サイクル装置
JP2007170706A (ja) * 2005-12-20 2007-07-05 Sanyo Electric Co Ltd 冷凍システム
JP4715615B2 (ja) * 2006-04-20 2011-07-06 ダイキン工業株式会社 冷凍装置
JP2008032336A (ja) * 2006-07-31 2008-02-14 Sanyo Electric Co Ltd 二段膨張冷凍装置
JP2008064421A (ja) 2006-09-11 2008-03-21 Daikin Ind Ltd 冷凍装置
JP2008248865A (ja) * 2007-03-30 2008-10-16 Fujitsu General Ltd インジェクション対応2段圧縮ロータリ圧縮機およびヒートポンプシステム
JP2010112579A (ja) 2008-11-04 2010-05-20 Daikin Ind Ltd 冷凍装置
KR101155494B1 (ko) * 2009-11-18 2012-06-15 엘지전자 주식회사 히트 펌프

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544678A (ja) * 1991-08-13 1993-02-23 Matsushita Electric Ind Co Ltd 密閉型ロータリー圧縮機
JP2004028492A (ja) * 2002-06-27 2004-01-29 Sanyo Electric Co Ltd Co2冷媒を用いた冷媒回路
JP2004108334A (ja) * 2002-09-20 2004-04-08 Sanyo Electric Co Ltd 冷媒回路装置
JP2008297991A (ja) * 2007-05-31 2008-12-11 Hitachi Ltd スクロール式増圧装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117404870A (zh) * 2023-12-13 2024-01-16 珠海格力电器股份有限公司 冰箱控制方法、装置、电子设备及存储介质

Also Published As

Publication number Publication date
US9389005B2 (en) 2016-07-12
JP5287831B2 (ja) 2013-09-11
JP2012097936A (ja) 2012-05-24
CN103180677B (zh) 2015-03-25
US20130213084A1 (en) 2013-08-22
CN103180677A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
JP5287831B2 (ja) 二段昇圧式冷凍サイクル
EP2245387B1 (en) Capacity modulation of refrigerant vapor compression system
US8528359B2 (en) Economized refrigeration cycle with expander
US8584487B2 (en) Refrigerant system with expander speed control
EP2565555B1 (en) Refrigeration cycle apparatus
WO2012004987A1 (ja) 二段昇圧式冷凍サイクル装置
JP5195364B2 (ja) エジェクタ式冷凍サイクル
CN108027185B (zh) 制冷循环装置
JP3574447B2 (ja) 空気調和機の起動制御システム及びその制御方法
CN106796061B (zh) 二级升压式制冷循环装置
WO2012169146A1 (ja) 冷凍サイクル
JP5018724B2 (ja) エジェクタ式冷凍サイクル
JP5359231B2 (ja) エジェクタ式冷凍サイクル
EP3712541B1 (en) Heat pump system
JP6390796B2 (ja) 二段昇圧式冷凍サイクル
WO2020071293A1 (ja) 冷凍サイクル装置
JP6443557B2 (ja) 複数段圧縮式冷凍サイクル装置
JP2012207844A (ja) ヒートポンプ装置
KR100395920B1 (ko) 공기조화기의 기동 제어 시스템 및 그 제어 방법
WO2013014896A1 (ja) コンデンシングユニットセット
WO2018139066A1 (ja) 冷凍サイクル装置
JP2006064199A (ja) 冷凍装置
JP2014005949A (ja) 冷凍装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11835771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13881945

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11835771

Country of ref document: EP

Kind code of ref document: A1