WO2012053632A1 - 防眩性フィルム、偏光板及び画像表示装置 - Google Patents

防眩性フィルム、偏光板及び画像表示装置 Download PDF

Info

Publication number
WO2012053632A1
WO2012053632A1 PCT/JP2011/074280 JP2011074280W WO2012053632A1 WO 2012053632 A1 WO2012053632 A1 WO 2012053632A1 JP 2011074280 W JP2011074280 W JP 2011074280W WO 2012053632 A1 WO2012053632 A1 WO 2012053632A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particles
antiglare
resin
layer
glare
Prior art date
Application number
PCT/JP2011/074280
Other languages
English (en)
French (fr)
Inventor
淳哉 江口
北村 祐
尚一郎 小久見
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020177024290A priority Critical patent/KR101898833B1/ko
Priority to KR1020137012951A priority patent/KR101775194B1/ko
Priority to CN2011800502623A priority patent/CN103154781A/zh
Priority to US13/879,535 priority patent/US10048407B2/en
Priority to JP2012539780A priority patent/JP5974894B2/ja
Publication of WO2012053632A1 publication Critical patent/WO2012053632A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0226Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures having particles on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/12Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/025Particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to an antiglare film, a polarizing plate, and an image display device.
  • image display devices such as cathode ray tube display (CRT), liquid crystal display (LCD), plasma display (PDP), electroluminescence display (ELD), electronic paper, tablet PC, touch panel, etc.
  • An optical laminate is provided. Such an anti-reflection optical laminated body suppresses reflection of an image or reduces reflectance by scattering or interference of light.
  • an antiglare film in which an antiglare layer having an uneven shape is formed on the surface of a transparent substrate.
  • This antiglare film can prevent external light from being scattered due to the uneven shape of the surface, thereby preventing a decrease in visibility due to reflection of external light or reflection of an image.
  • this optical laminated body is normally installed on the outermost surface of the image display device, it is also required to impart a hard coat property so as not to be damaged during handling.
  • a film in which an anti-glare layer is formed by applying a resin containing a filler such as silicon dioxide (silica) to the surface of a light-transmitting substrate is known (for example, Patent Documents 1 and 2).
  • These antiglare films are a type that forms an uneven shape on the surface of the antiglare layer by agglomeration of particles such as cohesive silica, a type that forms an uneven shape on the layer surface by adding an organic filler to the resin, or There is a type in which an uneven shape is transferred by laminating a film having unevenness on the layer surface.
  • the surface shape of the anti-glare layer is used to obtain light diffusion / anti-glare action.
  • the shape must be steep or increased, but if the irregularities are steep or increased, the haze value (cloudiness value) of the coating film increases and white blurring occurs and the contrast of the display image decreases.
  • haze value cloudiness value
  • conventional types of anti-glare films have a problem in that the surface of the film has a so-called surface glare that is brilliant, and the visibility of the display screen is reduced.
  • the image display device is turned on, when the transmitted light from the back reaches the screen, the surface glare appears on the surface of the screen with fine brightness irregularities. Is a phenomenon that appears to change, and is particularly noticeable when displaying a full white display or a full green display.
  • an anti-glare film formed by laminating a hard coat layer and an anti-glare layer is known (see, for example, Patent Document 3).
  • the antireflection film having such a layer structure has a smooth undulation by smoothing the fine uneven shape on the surface of the antiglare layer with the same resin as the hard coat layer, and has a small unevenness, and a convex portion. It was possible to suppress the occurrence of surface glare and white blurring while maintaining the hard coat property and the antiglare property by converting the height into irregularities lower than conventional ones. However, the film thickness is increased to 10 ⁇ m or more, and it has not been possible to sufficiently meet the recent demand for thinning of the antiglare film.
  • the present invention can prevent occurrence of surface glare while maintaining hard coat properties and antiglare properties even if the hard coat layer is a single layer and a thin layer of less than 10 ⁇ m.
  • an anti-glare film, a polarizing plate, and an image capable of obtaining an excellent glossy blackness (reproducibility of glossy black on the screen display) in a state in which the image display device is in black display An object is to provide a display device.
  • the glossy blackness in the bright room is evaluated by visual “white blur”, and the glossy blackness in the dark room is evaluated by “dark room contrast”. Therefore, in the present invention, “white blur” or “dark room”
  • the expression “contrast” is used.
  • the present invention is an antiglare film having an antiglare layer having an uneven shape on the surface of at least one surface of a light-transmitting substrate, and the antiglare layer is formed by aggregation of two or more kinds of spherical fine particles.
  • the anti-glare film is characterized in that a convex portion is formed on the surface of the anti-glare layer and the uneven shape of the surface of the anti-glare layer is formed by the aggregate. .
  • the two or more spherical fine particles include at least one or more organic fine particles and one or more inorganic fine particles.
  • the organic fine particles preferably have an average particle size of 0.3 to 10.0 ⁇ m, and the inorganic fine particles preferably have an average particle size of 500 nm to 5.0 ⁇ m.
  • the antiglare layer preferably further contains binder particles, and the binder particles are preferably unevenly distributed around the organic fine particles and inorganic fine particles.
  • the binder particles are preferably fumed silica, and the fumed silica is preferably surface-treated.
  • the fumed silica is preferably subjected to a hydrophobic treatment as a surface treatment, and the hydrophobic treatment is preferably a methyl treatment, an octylsilane treatment, or a dimethyl silicone oil treatment.
  • the organic fine particles are made of at least one material selected from the group consisting of acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride resin, and polyvinyl fluoride resin.
  • the inorganic fine particles are preferably at least one fine particle selected from the group consisting of aluminosilicate, talc, mica and silica.
  • This invention is also a polarizing plate provided with a polarizing element, Comprising: The said polarizing plate is provided with the above-mentioned anti-glare film on the polarizing element surface, It is also a polarizing plate characterized by the above-mentioned.
  • This invention is also an image display apparatus provided with the above-mentioned anti-glare film or the above-mentioned polarizing plate on the outermost surface. The present invention is described in detail below.
  • the present inventors have found an aggregate of two or more kinds of fine particles in the antiglare layer.
  • the aggregate part form convex portions on the surface of the antiglare layer, and as a result, the uneven shape of the surface of the antiglare layer is formed, fine particles of a single type and particle size (for example, Compared with the conventional antiglare layer in which the concavo-convex shape is formed by silica fine particles or acrylic styrene particles), the concavo-convex shape can be made smoother.
  • an antiglare film having excellent dark room contrast can be obtained by sufficiently suppressing generation of surface glare and white blurring while maintaining hard coat properties and antiglare properties.
  • the invention has been completed.
  • the aggregate when the aggregate is very smaller than the film thickness or when it is sinking under the antiglare layer, the aggregate is not only the position under the convex part forming the convex and concave part, It may also exist at a position below the recess.
  • the antiglare film of the present invention it is possible to observe that most of the aggregates form convex portions by reflection observation or transmission observation (100 to 300 times) with an optical microscope.
  • the antiglare film of the present invention has an antiglare layer having a concavo-convex shape on at least one surface of a light-transmitting substrate.
  • the light-transmitting substrate preferably has smoothness and heat resistance and is excellent in optical properties such as mechanical strength and light orientation.
  • the material forming the light-transmitting substrate include, for example, polyester (polyethylene terephthalate, polyethylene naphthalate), cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, polyester, polyamide, polyimide, polyethersulfone, poly Examples thereof include thermoplastic resins such as sulfone, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, polymethyl methacrylate, polycarbonate, and polyurethane.
  • polyester polyethylene terephthalate, polyethylene naphthalate
  • cellulose triacetate is preferable in terms of excellent optical properties.
  • the light-transmitting substrate preferably uses the thermoplastic resin as a flexible film-like body, but uses a plate of these thermoplastic resins depending on the use mode in which curability is required. It is also possible, or a glass plate plate may be used.
  • examples of the light transmissive substrate include an amorphous olefin polymer (Cyclo-Olefin-Polymer: COP) film having an alicyclic structure.
  • This is a base material in which a norbornene polymer, a monocyclic olefin polymer, a cyclic conjugated diene polymer, a vinyl alicyclic hydrocarbon polymer, or the like is used.
  • ZEONEX, ZEONOR norbornene resin
  • Sumitrite FS-1700 manufactured by Sumitomo Bakelite Co., Ltd.
  • Arton modified norbornene resin
  • Appel cyclic olefin copolymer
  • Topas cyclic olefin copolymer
  • Ticona Optretz OZ-1000 series (alicyclic acrylic resin) manufactured by Hitachi Chemical Co., Ltd., and the like.
  • the FV series low birefringence, low photoelastic modulus film
  • Asahi Kasei Chemicals Corporation is also preferable as an alternative base material for triacetylcellulose.
  • the thickness of the light transmissive substrate is preferably 20 to 300 ⁇ m, more preferably the lower limit is 30 ⁇ m and the upper limit is 200 ⁇ m. When the light-transmitting substrate is a plate-like body, the thickness may exceed these thicknesses.
  • the light-transmitting substrate is called an anchor agent or a primer in addition to physical treatment such as corona discharge treatment and oxidation treatment in order to improve adhesiveness when forming the hard coat layer or the like thereon. Application of the paint may be performed in advance.
  • the thickness of the light-transmitting substrate is preferably 20 to 65 ⁇ m, which enables display thinning.
  • the antiglare layer is formed on at least one surface of the light transmissive substrate, and has an uneven shape on the surface.
  • the antiglare layer contains an aggregate formed by agglomeration of fine particles having two or more kinds or particle sizes, and the surface irregularity shape is determined by the aggregate. It is formed by forming convex portions on the surface.
  • Such irregularities formed by aggregates are irregularities formed by fine particles of a single type and particle size (for example, when only silica fine particles or acrylic styrene particles are the same, and the particle size is the same) or the aggregates thereof.
  • the slope of the convex portion becomes gentler than the shape, resulting in a smooth shape.
  • the agglomerates are in a state in which the other fine particles enter between the one fine particles, whereby the uneven shape (convex portion) formed mainly on the surface of the antiglare layer formed by the one fine particles.
  • the inclination angle of the first and second fine particles becomes gentler than the inclination angle of the concavo-convex shape (convex portion) formed by the one fine particle alone.
  • the said glare-proof layer further contains the binder particle
  • the binder particles are localized in the vicinity of the fine particles, so that even if the aggregate is composed of a single fine particle, the single fine particle is difficult to aggregate in the height direction. .
  • the binder particles localized in the vicinity of the fine particles also show an effect of reducing the steepness of the inclination of the uneven shape (convex portion) of the fine particles.
  • the binder particles are unevenly distributed so as to surround the agglomerates, the steepness of the slope of the convex portions can be reduced well.
  • the two or more kinds of fine particles are two or more kinds of particles having different materials, or two or more kinds of fine particles having different particle diameters when the materials are the same.
  • the material of the fine particles may be the same or different.
  • the smooth uneven shape described above can be suitably formed on the surface of the antiglare layer.
  • the above-mentioned “fine particles having relatively uniform particle diameters” means that when the average particle diameter by weight average is MV, the cumulative 25% diameter is d25, and the cumulative 75% diameter is d75 (d75 ⁇ d25) This means the case where / MV is 0.25 or less, and the “fine particles having a broad particle size distribution” means the case where (d75 ⁇ d25) / MV exceeds 0.25.
  • the cumulative 25% diameter refers to the particle diameter when counted from a particle having a small particle diameter in the particle size distribution and reaches 25% by mass.
  • the cumulative 75% diameter is similarly counted to 75% by mass.
  • the particle size when The particle size distribution can be obtained by image processing of a photograph obtained through transmission observation with an optical microscope.
  • the two or more kinds of fine particles constituting the aggregate are spherical in shape.
  • spherical fine particles when the antiglare film of the present invention is applied to an image display device, a display image with a high contrast and a glossy blackness can be obtained.
  • the above “spherical” includes, for example, a true spherical shape, an elliptical spherical shape and the like, and has a meaning excluding so-called indefinite shape. This is because if the shape of the fine particles is irregular, total reflection tends to occur at the interface with the binder resin constituting the antiglare layer, which will be described later, and the black luminance increases and the glossy blackness decreases.
  • the above “constitutes an aggregate” means that the distance between one fine particle and the other fine particle of the two or more kinds of fine particles and the distance between the same kind of fine particles are any of two or more kinds of fine particles described later. It means that it is in the range of one average particle diameter.
  • the two or more kinds of fine particles preferably include at least one kind of organic fine particles and one or more kinds of inorganic fine particles.
  • the organic fine particles are preferably selected to have a relatively uniform particle size, while the inorganic fine particles are preferably selected to have a relatively large particle size variation.
  • the inorganic fine particles may have a higher specific gravity than the organic fine particles, and it is easy to form an aggregate in which the inorganic fine particles enter the lower portion between the organic fine particles. It can be set as the anti-glare layer which has the smooth uneven
  • the organic particles are those having a relatively uniform particle size, and the inorganic particles are fine particles having a relatively large particle size variation, a binder resin (radiation curing) described later is formed when the antiglare layer is formed.
  • the surface irregularities are formed by polymerization shrinkage of the resin
  • the organic particles that mainly form the surface irregularities are softer than the inorganic fine particles, as will be described later.
  • no sharp surface irregularities occur.
  • the antiglare film of the present invention can suppress surface glare in the antiglare film while achieving both antiglare property and white blur prevention property.
  • the antiglare layer has a minute internal scattering effect.
  • a minute internal scattering effect for example, it is effective to give a slight difference between the refractive index of the organic fine particles and the refractive index of the binder resin.
  • a slight difference between the refractive index of the organic fine particles and the refractive index of the binder resin is preferably 0.01 to 0.10.
  • the refractive index of the said organic fine particle and binder resin is a refractive index after setting it as an anti-glare layer.
  • the antiglare layer is cut in the thickness direction to obtain a cross section, and the cross-section pieces of organic fine particles and binder exposed in the cross section are shaved.
  • a method of directly measuring the refractive index with an Abbe refractometer for example, a method using a Cargill reagent such as the Becke method, a method of measuring the refractive index quantitatively by directly measuring an antiglare film by laser interference, measuring a spectral reflection spectrum or a spectral ellipsometry, etc. Can be mentioned.
  • the organic fine particles are fine particles that mainly form the surface unevenness shape of the antiglare layer, and are fine particles whose refractive index and particle size can be easily controlled.
  • the aggregate contains such organic fine particles, it is easy to control the size of the uneven shape formed in the antiglare layer and the refractive index of the antiglare layer. Occurrence can be suppressed.
  • the organic fine particles are made of at least one material selected from the group consisting of acrylic resin, polystyrene resin, styrene-acrylic copolymer resin, polyethylene resin, epoxy resin, silicone resin, polyvinylidene fluoride resin and polyvinyl fluoride resin. Fine particles are preferred. Among these, styrene-acrylic copolymer fine particles are preferably used because the refractive index can be easily controlled.
  • the content of the organic fine particles is preferably 0.5 to 15.0% by mass in the antiglare layer.
  • the amount is less than 0.5% by mass, the antiglare performance may be insufficient.
  • the amount exceeds 15.0% by mass the aggregates increase or the aggregates become too large. Gill problems may occur.
  • a more preferable lower limit is 2.0% by mass, and a more preferable upper limit is 10.0% by mass.
  • the size of the organic fine particles is appropriately determined according to the thickness of the antiglare layer and the like.
  • the average particle size is preferably 0.3 to 5.0 ⁇ m. If it is less than 0.3 ⁇ m, a sufficient uneven shape cannot be formed on the surface of the antiglare layer, and the antiglare performance of the antiglare film of the present invention may be insufficient, exceeding 5.0 ⁇ m. And the uneven
  • a more preferred lower limit is 1.0 ⁇ m, and a more preferred upper limit is 4.0 ⁇ m. More preferably, since the film thickness of the antiglare layer can be reduced, the upper limit is 3.0 ⁇ m.
  • the average particle diameter of the organic fine particles is preferably 20 to 80% with respect to the thickness of the antiglare layer.
  • the average particle diameter of the organic fine particles is a value calculated as an average value obtained by measuring the maximum diameter of 10 organic fine particles at a magnification of 200 to 1000 times in the transmission observation of the antiglare layer with an optical microscope. is there. Since the organic fine particles can be regarded as spherical, the particle diameter of the organic fine particles can be easily measured by using image processing software.
  • the thickness of the antiglare layer is preferably 2 to 6 ⁇ m. When it is less than 2 ⁇ m, the surface of the antiglare layer may be easily damaged, and when it exceeds 6 ⁇ m, the antiglare layer may be easily broken. A more preferable range of the thickness of the antiglare layer is 2 to 4 ⁇ m. Note that the thickness of the antiglare layer is an organic fine particle in a direction perpendicular to the light-transmitting substrate in the observation screen or observation photograph in an observation screen or observation photograph of 1000 to 3000 times the cross-sectional STEM of the antiglare layer. Is an average value obtained by measuring three points where no part is observed.
  • the surface of the organic fine particles is preferably subjected to a hydrophilic treatment since affinity with inorganic fine particles is increased and aggregates can be formed more suitably.
  • a hydrophilic treatment since affinity with inorganic fine particles is increased and aggregates can be formed more suitably.
  • a hydrophilic process and a well-known method is mentioned, For example, the method etc. which copolymerize the monomer which has functional groups, such as a carboxylic acid group and a hydroxyl group, on the surface of the said organic fine particle are mentioned.
  • the inorganic fine particles are contained in the antiglare layer so as to enter between adjacent organic fine particles or into an upper part and a lower part of the organic fine particles.
  • the interval between the adjacent organic fine particles can be maintained moderately, and the slope of the concavo-convex convex portions on the surface of the antiglare layer can be moderated. Therefore, it can play a role of smoothing the entire uneven shape.
  • Such inorganic fine particles are preferably at least one fine particle selected from the group consisting of aluminosilicate, talc, mica and silica, for example.
  • the rate of change is almost constant, so reflection at the interface between the particles and the binder resin is suppressed, and stray light is less generated, increasing the contrast in the dark room and the contrast in the bright room. It is more preferable because it is possible. Since it is easy to obtain spherical particles, aluminosilicate is preferably used.
  • the content of the inorganic fine particles is preferably 0.1 to 10.0% by mass in the antiglare layer.
  • the content is less than 0.1% by mass, it is difficult to form an aggregate in which inorganic fine particles enter the lower part between the organic fine particles, and the above-described antiglare layer having the smooth uneven shape may not be obtained. If it exceeds 10.0% by mass, the problem of white blur may occur.
  • a more preferred lower limit is 0.5% by mass, and a more preferred upper limit is 7.0% by mass.
  • the inorganic fine particles preferably have an average particle size of 500 nm to 5.0 ⁇ m. If the thickness is less than 500 nm, aggregates with the organic fine particles may not be sufficiently formed in the antiglare layer, and if it exceeds 5.0 ⁇ m, the problem of white blur may occur. Moreover, since it is easy to exist under the organic fine particles in the aggregate, it is preferable that the specific gravity of the organic fine particles is twice or more.
  • the average particle diameter of the inorganic fine particles is a value calculated as an average value obtained by measuring the maximum diameter of 10 inorganic fine particles at a magnification of 200 to 1000 times in transmission observation of the antiglare layer with an optical microscope. is there.
  • the antiglare layer preferably further contains binder particles, and the binder particles are preferably unevenly distributed around the organic fine particles and inorganic fine particles.
  • the binder particles are components that play a role in promoting the formation of aggregates of the organic fine particles and inorganic fine particles, and are components different from the binder resin described later. Since the binder particles are unevenly distributed around the organic fine particles and the inorganic fine particles, the aggregate can be suitably formed.
  • the binder particles are unevenly distributed around the organic fine particles and the inorganic fine particles” means that a small amount of the binder particles are present alone in the antiglare layer, and many of them are organic fine particles and It means a state where the inorganic fine particles are gathered around the periphery, and such a state can be easily discriminated by observing the antiglare layer with a cross-sectional microscope.
  • the binder particles are preferably materials that have high affinity for both organic fine particles and inorganic fine particles and are easy to aggregate themselves.
  • fumed silica is preferably used.
  • fumed silica refers to amorphous silica having a particle size of 200 nm or less prepared by a dry method, and is obtained by reacting a volatile compound containing silicon in a gas phase.
  • a silicon compound for example, one produced by hydrolyzing SiCl 4 in a flame of oxygen and hydrogen can be used.
  • the fumed silica products include Aerosil manufactured by Nippon Aerosil Co., Ltd.
  • Silanol groups are present on the surface of the fumed silica.
  • the fumed silica is preferably surface-treated, and the surface treatment is preferably a hydrophobic treatment. Since the fumed silica is surface-treated, the fumed silica can be suitably unevenly distributed on the surfaces of the organic fine particles and the inorganic fine particles, and the coagulation force of the fumed silica itself causes the coagulation by the organic fine particles and the inorganic fine particles. Aggregates can be formed. Moreover, the chemical resistance and saponification resistance of the fumed silica itself can be improved.
  • hydrophobization treatment When the surface treatment (hydrophobization treatment) is not performed, fumed silica is excessively present on the surface of the organic fine particles and inorganic fine particles, and the cohesive force is increased, so that a suitable uneven shape cannot be formed. May cause white blur.
  • the hydrophobizing treatment for example, methyl treatment, octylsilane treatment, dimethyl silicone oil treatment or the like is suitable.
  • the content of the fumed silica is not particularly limited, but is preferably 0.1 to 5.0% by mass in the antiglare layer. When the content is less than 0.1% by mass, the above-described aggregate may not be sufficiently formed. When the content exceeds 5.0% by mass, a problem of white blur may occur. A more preferable lower limit is 0.5% by mass, and a more preferable upper limit is 3.0% by mass. By being in this range, the fumed silica can be suitably unevenly distributed on the surface of the organic fine particles and inorganic fine particles, and the aggregates of the organic fine particles and inorganic fine particles are suitably formed by the cohesive force of the fumed silica itself. Can do.
  • the shape of the fumed silica is not particularly limited and may be any shape, but the average primary particle size is preferably 1 to 100 nm.
  • the average primary particle diameter is a value measured using image processing software from images of scanning and transmission electron microscopes.
  • the fumed silica having an average primary particle size in the above range is aggregated and connected in a bead shape to be enlarged.
  • the average particle diameter is 20 to 600 nm because the high transmittance of the antiglare layer can be maintained. If it exceeds 600 nm, transparency and dark room contrast may be lowered. More preferably, it is 20 to 400 nm.
  • the average particle diameter of the above-mentioned fumed silica that has been enlarged is obtained as an average value of the maximum diameter of 10 giant particles by observing a cross section of the antiglare layer with a STEM.
  • the specific surface area of the fumed silica by the BET method is preferably 100 to 200 m 2 / g, more preferably 120 to 180 m 2 / g.
  • the fumed silica preferably has a pH of 4.6 to 6.0.
  • the untreated (hydrophilic) pH of the fumed silica is usually 4.0 to 4.5. For this reason, in order to make it preferable pH, the said fumed silica is good to carry out the hydrophobic treatment as mentioned above.
  • the antiglare layer is preferably one in which the aggregate is dispersed in a binder resin.
  • a binder resin a transparent thing is preferable, for example, it is preferable that the ionizing radiation curable resin which is resin hardened
  • resin is a concept including monomers, oligomers and the like unless otherwise specified.
  • Examples of the ionizing radiation curable resin include compounds having one or more unsaturated bonds such as compounds having functional groups such as acrylates.
  • Examples of the compound having one unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
  • Examples of the compound having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( Polyfunctional compounds such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentylglycol di (meth) acrylate, or the above polyfunctional compound and (meth) acrylate And the like (eg, poly (meth) acrylate esters of polyhydric alcohols).
  • Polyfunctional compounds such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, n
  • (meth) acrylate refers to methacrylate and acrylate.
  • a compound obtained by modifying the above-described compound with PO, EO or the like can also be used as the ionizing radiation curable resin.
  • polyester resins having unsaturated double bonds polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, etc. It can be used as an ionizing radiation curable resin.
  • the ionizing radiation curable resin is used in combination with a solvent-drying resin (a thermoplastic resin or the like, which is a resin that forms a film only by drying the solvent added to adjust the solid content during coating). You can also.
  • a solvent-drying resin a thermoplastic resin or the like, which is a resin that forms a film only by drying the solvent added to adjust the solid content during coating. You can also.
  • the solvent-drying resin that can be used in combination with the ionizing radiation curable resin is not particularly limited, and a thermoplastic resin can be generally used.
  • the thermoplastic resin is not particularly limited.
  • a styrene resin for example, a (meth) acrylic resin, a vinyl acetate resin, a vinyl ether resin, a halogen-containing resin, an alicyclic olefin resin, a polycarbonate resin, or a polyester resin.
  • examples thereof include resins, polyamide-based resins, cellulose derivatives, silicone-based resins, rubbers, and elastomers.
  • the thermoplastic resin is preferably amorphous and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
  • styrene resins (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) and the like are preferable.
  • the antiglare layer may contain a thermosetting resin.
  • the thermosetting resin is not particularly limited.
  • the antiglare layer containing the aggregate and the binder resin includes, for example, two or more kinds of fine particles and binder particles described above, a binder resin such as the ionizing radiation curable resin, a photopolymerization initiator, and a solvent described later. It can form by coating the composition for glare-proof layers to contain on a transparent base material, and making it harden
  • the two or more kinds of fine particles do not form aggregates in the composition, and form the aggregates when the coating film is dried. It is preferable. This is because if the two or more kinds of fine particles form an aggregate in the antiglare layer composition, the antiglare layer having the smooth uneven shape described above cannot be formed.
  • one of the two or more kinds of fine particles is an aluminosilicate
  • the aluminosilicate has a relatively high specific gravity and tends to settle in the antiglare layer composition.
  • the fumed silica that is the binder particle described above can thicken the composition for the antiglare layer
  • the composition for an antiglare layer of an aluminosilicate can be obtained by containing the fumed silica as a binder particle. Sedimentation in objects can be suppressed.
  • the fumed silica is presumed to have a function of preventing the settling of aluminosilicate as well as a function of promoting the formation of aggregates (that is, a function of improving the pot life of the antiglare layer composition).
  • a solvent having a high polarity and a high relative evaporation rate As a solvent to be added to the antiglare layer composition, a solvent having a high polarity and a high relative evaporation rate The method of making a predetermined amount contain is mentioned.
  • a solvent having such a high polarity and a high relative evaporation rate it is possible to prevent the two kinds of fine particles from aggregating in the antiglare layer composition, and to stably store the coating composition for a long time.
  • the coating film when the coating film is dried, it volatilizes earlier than other solvents, so that the composition in the coating film is modified. Agglomerates of fine particles can be formed.
  • the relative evaporation rate is based on butyl acetate and represents the evaporation rate of each solvent (here, solvent A) as a ratio.
  • Relative evaporation rate (time required for n-butyl acetate to evaporate) / (time required for solvent A to evaporate) Is required.
  • Examples of the solvent having a high polarity and a high relative evaporation rate include ethanol (relative evaporation rate: 1.54) and isopropyl alcohol (relative evaporation rate: 1.5).
  • Alcohol is preferably used.
  • content of the isopropyl alcohol in the said solvent is 20 mass% or more in all the solvents. When the content is less than 20% by mass, the above-mentioned aggregate may be formed in the composition for the antiglare layer.
  • the content of isopropyl alcohol is preferably 40% by mass or less.
  • solvents contained in the antiglare layer composition include, for example, ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.), ethers (dioxane, tetrahydrofuran, etc.), aliphatic hydrocarbons (hexane, etc.) ), Alicyclic hydrocarbons (cyclohexane, etc.), aromatic hydrocarbons (toluene, xylene, etc.), halogenated carbons (dichloromethane, dichloroethane, etc.), esters (methyl acetate, ethyl acetate, butyl acetate, etc.), Examples include alcohols (butanol, cyclohexanol, etc.), cellosolves (methyl cellosolve, ethyl cellosolve, etc.), cellosolve acetates, sulfoxides (dimethylsulfoxide, etc.
  • the photopolymerization initiator is not particularly limited, and known ones can be used. For example, acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, thioxanthones, propiophenones, benzyls Benzoins and acylphosphine oxides. Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the photopolymerization initiator when the ionizing radiation curable resin is a resin system having a radical polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. may be used alone or in combination. It is preferable to use it.
  • the photopolymerization initiator may be an aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin sulfone. It is preferable to use acid esters alone or as a mixture.
  • the content of the photopolymerization initiator in the antiglare layer composition is preferably 0.5 to 10.0 parts by mass with respect to 100 parts by mass of the ionizing radiation former resin. If it is less than 0.5 part by mass, the hard coat performance of the antiglare layer to be formed may be insufficient, and if it exceeds 10.0 parts by mass, there is also a possibility of inhibiting curing. Is not preferable.
  • the content ratio (solid content) of the raw material in the antiglare layer composition is not particularly limited, but it is usually preferably 5 to 70% by mass, particularly preferably 25 to 60% by mass.
  • the antiglare layer composition includes conventionally known dispersants, surfactants, antistatic agents, depending on the purpose of increasing the hardness of the antiglare layer, suppressing curing shrinkage, controlling the refractive index, and the like.
  • Silane coupling agent, thickener, anti-coloring agent, coloring agent (pigment, dye), antifoaming agent, leveling agent, flame retardant, UV absorber, adhesion-imparting agent, polymerization inhibitor, antioxidant, surface modification An agent, a lubricant, etc. may be added.
  • the antiglare layer composition may be used by mixing with a photosensitizer.
  • a photosensitizer include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the method for preparing the composition for an antiglare layer is not particularly limited as long as each component can be uniformly mixed.
  • the composition can be performed using a known apparatus such as a paint shaker, a bead mill, a kneader, or a mixer.
  • the method for applying the antiglare layer composition on the light-transmitting substrate is not particularly limited, and examples thereof include spin coating, dipping, spraying, die coating, bar coating, roll coater, and meniscus coater.
  • Publicly known methods such as a method, a flexographic printing method, a screen printing method, and a speed coater method.
  • Examples of the method of irradiating ionizing radiation when curing the coating film include a method using a light source such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc lamp, a black light fluorescent lamp, and a metal halide lamp. It is done. Further, as the wavelength of ultraviolet rays, a wavelength range of 190 to 380 nm can be used.
  • Specific examples of the electron beam source include various electron beam accelerators such as a cockcroft-wald type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type.
  • the uneven shape is formed on the surface of the antiglare layer by the aggregate of two or more kinds of fine particles as described above, the uneven shape can be made smooth.
  • the uneven shape on the surface of the antiglare layer is, specifically, the average interval of the unevenness on the surface of the antiglare layer is Sm, the average inclination angle of the uneven portion is ⁇ a, and the arithmetic average roughness of the unevenness is Ra.
  • the ten-point average roughness of the unevenness is Rz, it is preferable to satisfy the following formula from the viewpoint that reflection by external light can be prevented. If ⁇ a, Ra, and Rz are less than the lower limit, reflection cannot be suppressed.
  • ⁇ a, Ra, Rz exceeds the upper limit, there is a risk that problems such as surface glare will occur. If Sm is less than the lower limit, white blur may occur. If Sm exceeds the upper limit, there is a risk of causing problems such as inability to suppress reflection.
  • the present inventors are influenced by the large difference in height between the convex and concave portions of the concavo-convex shape of the antiglare layer, the glossy black sensation in the bright room is influenced by the level of the concavo-convex portion. It has been found that not only the difference is large, but also the difference in height of the irregularities is affected. For this reason, in this invention, the uneven
  • “Sm” is the average interval between the irregularities
  • “ ⁇ a” is the average inclination angle of the irregularities.
  • the uneven shape present in the antiglare layer has a portion where the height of the protrusion is flat or large
  • “Sm” and “ ⁇ a” are numerical values obtained by averaging them.
  • Such an average value is averaged even when there are a plurality of protrusions having different heights.
  • this convex portion affects the glossy blackness. Therefore, in order to represent the limit range of the difference in height of the uneven portion, the parameter “Rz” is used in the antiglare film of the present invention. This “Rz” is an average value of five points although the height difference of the uneven portion is the largest by its definition.
  • the uneven shape of the antiglare layer is more preferably the following formula.
  • the following formula is satisfied, reflection can be prevented, and furthermore, excellent glossy blackness (reproducibility of glossy black on the screen display) with the image display device in black display It is more preferable in that it can be obtained.
  • ⁇ a, Ra, Rz and Sm exceed the upper limit or less than the lower limit, glossy blackness cannot be obtained.
  • the uneven shape of the antiglare layer satisfies the following formula.
  • the antiglare film of the present invention preferably has a total light transmittance of 85% or more. If it is less than 85%, the color reproducibility and visibility may be impaired when the antiglare film of the present invention is mounted on the surface of the image display device.
  • the total light transmittance is more preferably 90% or more, and still more preferably 91% or more.
  • the total light transmittance can be measured by Murakami Color Research Laboratory HM-150 according to JIS K7361.
  • the antiglare film of the present invention preferably has a haze value of less than 20%.
  • the haze may consist of a haze caused by internal diffusion due to fine particles contained in the antiglare layer and a surface haze caused by an uneven shape on the outermost surface, and a haze value due to internal diffusion ranges from 0.1% to less than 20%. Preferably, it is in the range of 0.1% or more and less than 10%, more preferably in the range of 0.1% or more and less than 5%.
  • the surface haze value is preferably 0.1% or more and less than 20%, more preferably 0.1% or more and less than 10%, and more preferably 0.1% or more and less than 5%. More preferably, it is in the range.
  • both the haze value due to internal diffusion and the surface haze value should be as small as possible. Therefore, the most preferable surface haze value range is 0.1% or more, 2 The range of haze values due to internal diffusion is less than 2% and less than 5%.
  • the haze value by internal diffusion is the haze when the surface unevenness shape is flattened by applying a transparent resin having a refractive index difference of less than 0.02 to the binder resin constituting the antiglare layer on the antiglare film. It can be measured as a value.
  • the haze value can be measured by Murakami Color Research Laboratory HM-150 according to JIS K7136.
  • the anti-glare film of this invention can prevent generation
  • the low refractive index layer is a layer that plays a role of reducing the reflectance when light from the outside (for example, a fluorescent lamp, natural light, etc.) is reflected on the surface of the optical laminate.
  • the low refractive index layer is preferably 1) a resin containing silica or magnesium fluoride, 2) a fluorine resin which is a low refractive index resin, 3) a fluorine resin containing silica or magnesium fluoride, and 4) silica.
  • the silica described above is preferably hollow silica fine particles, and such hollow silica fine particles can be produced by, for example, the production method described in Examples of Japanese Patent Application Laid-Open No. 2005-099778.
  • These low refractive index layers preferably have a refractive index of 1.45 or less, particularly 1.42 or less.
  • the thickness of the low refractive index layer is not limited, but it may be set appropriately from the range of about 30 nm to 1 ⁇ m.
  • the low refractive index layer is effective as a single layer, it is possible to provide two or more low refractive index layers as appropriate for the purpose of adjusting a lower minimum reflectance or a higher minimum reflectance. .
  • the two or more low refractive index layers it is preferable to provide a difference in the refractive index and thickness of each low refractive index layer.
  • a polymerizable compound containing a fluorine atom in at least a molecule or a polymer thereof can be used.
  • a polymeric compound For example, what has hardening reactive groups, such as a functional group hardened
  • the compound which has these reactive groups simultaneously may be sufficient.
  • a polymer has no reactive groups as described above.
  • fluorine-containing monomers having an ethylenically unsaturated bond can be widely used. More specifically, fluoroolefins (eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluorobutadiene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.) are exemplified. Can do.
  • fluoroolefins eg, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, perfluorobutadiene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.
  • Examples of those having (meth) acryloyloxy groups include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (perfluorobutyl).
  • thermosetting polar group examples include hydrogen bond forming groups such as a hydroxyl group, a carboxyl group, an amino group, and an epoxy group. These are excellent not only in adhesion to the coating film but also in affinity with inorganic ultrafine particles such as silica.
  • examples of the polymerizable compound having a thermosetting polar group include 4-fluoroethylene-perfluoroalkyl vinyl ether copolymer; fluoroethylene-hydrocarbon vinyl ether copolymer; epoxy, polyurethane, cellulose, phenol, polyimide, etc. Examples include fluorine-modified products of each resin.
  • Examples of the polymerizable compound having both a functional group curable by ionizing radiation and a polar group curable by heat include acrylic or methacrylic acid moieties and fully fluorinated alkyl, alkenyl, aryl esters, fully or partially fluorinated vinyl ethers, fully Alternatively, partially fluorinated vinyl esters, fully or partially fluorinated vinyl ketones and the like can be exemplified.
  • fluorine resin the following can be mentioned, for example.
  • Silicone-containing vinylidene fluoride copolymers obtained by adding a silicone component to these copolymers can also be used.
  • the silicone components in this case include (poly) dimethylsiloxane, (poly) diethylsiloxane, (poly) diphenylsiloxane, (poly) methylphenylsiloxane, alkyl-modified (poly) dimethylsiloxane, azo group-containing (poly) dimethylsiloxane, Dimethyl silicone, phenylmethyl silicone, alkyl aralkyl modified silicone, fluorosilicone, polyether modified silicone, fatty acid ester modified silicone, methyl hydrogen silicone, silanol group containing silicone, alkoxy group containing silicone, phenol group containing silicone, methacryl modified silicone, acrylic Modified silicone, amino modified silicone, carboxylic acid modified silicone, carbinol modified silicone, epoxy modified silicone, mercapto modified silicone Over emissions, fluorine-modified silicones,
  • non-polymers or polymers composed of the following compounds can also be used as the fluororesin. That is, a fluorine-containing compound having at least one isocyanato group in the molecule is reacted with a compound having at least one functional group in the molecule that reacts with an isocyanato group such as an amino group, a hydroxyl group, or a carboxyl group.
  • Compounds obtained compounds obtained by reacting fluorine-containing polyols such as fluorine-containing polyether polyols, fluorine-containing alkyl polyols, fluorine-containing polyester polyols, fluorine-containing ⁇ -caprolactone-modified polyols with compounds having isocyanato groups, etc. Can be used.
  • each binder resin as described in the said glare-proof layer can also be mixed and used with the polymeric compound and polymer which have the above-mentioned fluorine atom.
  • various additives and solvents can be used as appropriate in order to improve the curing agent for curing reactive groups and the like, to improve the coating property, and to impart antifouling properties.
  • the viscosity of the composition for the low refractive index layer obtained by adding the low refractive index agent and the resin is preferably 0.5 to 5 mPa ⁇ s (25 ° C.). Preferably, it is in the range of 0.7 to 3 mPa ⁇ s (25 ° C.).
  • An antireflection layer excellent in visible light can be realized, a uniform thin film with no coating unevenness can be formed, and a low refractive index layer particularly excellent in adhesion can be formed.
  • the resin curing means may be the same as described for the antiglare layer described above.
  • a heating means it is preferable to add a thermal polymerization initiator that generates, for example, a radical by heating to start polymerization of the polymerizable compound, to the fluororesin composition.
  • the low refractive index layer is represented by the following formula (2): 120 ⁇ n A d A ⁇ 145 (2) It is preferable from the viewpoint of low reflectivity.
  • the antiglare film of the present invention is also within the range where the effects of the present invention are not impaired, and other layers (antistatic layer, antifouling layer, adhesive layer, other hard coat layers, etc.) as necessary.
  • One layer or two or more layers can be formed as appropriate. Among these, it is preferable to have at least one of an antistatic layer and an antifouling layer. These layers may be the same as those of a known antireflection laminate.
  • the antiglare film of the present invention preferably has a contrast ratio in a dark room of 80% or more, more preferably 90% or more. If it is less than 80%, the visibility may be impaired when the antiglare film of the present invention is mounted on the display surface.
  • the contrast ratio is a value measured by the following method. That is, using a cold cathode tube light source with a diffuser plate as a backlight unit, using two polarizing plates (AMN-3244TP manufactured by Samsung), the light passing through when the polarizing plate is installed in parallel Nicol.
  • the value (L max / L min ) obtained by dividing the luminance (L max ) at the front by the luminance (L min ) at the front of the light passing through when installed in crossed Nicols is used as the contrast, and the antiglare film (light the contrast of the transparent substrate antiglare layer, etc.) (L 1), divided by the contrast (L 2) of the light-transmitting substrate (L 1 / L 2) ⁇ 100 (%) is the contrast ratio .
  • the luminance is measured with a color luminance meter (BM-5A manufactured by Topcon Corporation), the measurement angle of the color luminance meter is set to 1 °, and the visual field on the sample is 5 mm.
  • the light quantity of the backlight is set so that the luminance in the front when the two polarizing plates are set in parallel Nicol is 3600 cd / m 2 without the sample being set.
  • the contrast in the bright room is also preferably the same as the contrast ratio in the dark room.
  • the antiglare film of the present invention comprises a composition for an antiglare layer containing, for example, two or more kinds of fine particles, a binder particle, an ionizing radiation curable resin, a solvent and a photopolymerization initiator on a light transmissive substrate. It can be manufactured by using and forming an antiglare layer. About the composition for anti-glare layers and the method for forming the anti-glare layer, the same materials and methods as those described as the method for forming the anti-glare layer in the above-described anti-glare film can be used.
  • the antiglare film of the present invention is a polarizing plate by providing the antiglare film according to the present invention on the surface of the polarizing element opposite to the surface where the antiglare layer is present in the antiglare film. Can do. Such a polarizing plate is also one aspect of the present invention.
  • the polarizing element is not particularly limited, and for example, a polyvinyl alcohol film, a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or the like and stretched can be used.
  • a polyvinyl alcohol film a polyvinyl formal film, a polyvinyl acetal film, an ethylene-vinyl acetate copolymer saponified film, which is dyed with iodine or the like and stretched
  • the adhesiveness is improved and an antistatic effect can be obtained.
  • This invention is also an image display apparatus provided with the said anti-glare film or the said polarizing plate on the outermost surface.
  • the image display device may be an image display device such as an LCD, PDP, FED, ELD (organic EL, inorganic EL), CRT, tablet PC, touch panel, or electronic paper.
  • the LCD which is a typical example of the above, includes a transmissive display body and a light source device that irradiates the transmissive display body from the back.
  • the image display device of the present invention is an LCD
  • the antiglare film of the present invention or the polarizing plate of the present invention is formed on the surface of the transmissive display.
  • the light source of the light source device is irradiated from the lower side of the optical laminate.
  • a retardation plate may be inserted between the liquid crystal display element and the polarizing plate.
  • An adhesive layer may be provided between the layers of the liquid crystal display device as necessary.
  • the PDP which is the image display device, has a front glass substrate (electrode is formed on the surface) and a rear glass substrate (disposed with electrodes and minute grooves) disposed with a discharge gas sealed between the front glass substrate and the front glass substrate. Formed on the surface and forming red, green and blue phosphor layers in the grooves).
  • the image display device of the present invention is a PDP, the above-described antiglare film is also provided on the surface of the surface glass substrate or the front plate (glass substrate or film substrate).
  • the above image display device is a zinc sulfide or diamine substance that emits light when a voltage is applied: a light emitting material is deposited on a glass substrate, and an ELD device that performs display by controlling the voltage applied to the substrate, or converts an electrical signal into light Alternatively, it may be an image display device such as a CRT that generates an image visible to human eyes.
  • the antiglare film described above is provided on the outermost surface of each display device as described above or the surface of the front plate.
  • the image display device of the present invention can be used for display display of a television, a computer, electronic paper, a touch panel, a tablet PC, or the like.
  • it can be suitably used for the surface of high-definition image displays such as CRT, liquid crystal panel, PDP, ELD, FED, and touch panel.
  • the anti-glare film of the present invention is a single layer and a thin layer having the above-described configuration, it is inexpensive and excellent in crack resistance, while maintaining hard coat properties and anti-glare properties, Generation
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display
  • Example 1 A light-transmitting substrate (80 ⁇ m thick triacetylcellulose resin film, manufactured by Fuji Film Co., Ltd., TD80UL) was prepared, and an anti-glare layer composition having the composition shown below was applied to one side of the light-transmitting substrate. A coating film was formed. Next, the formed coating film is dried for 60 seconds in a thermal oven at a temperature of 50 ° C., the solvent in the coating film is evaporated, and the coating film is cured by irradiating with an ultraviolet ray so that the integrated light quantity becomes 50 mJ / cm 2 . Thus, an antiglare layer having a thickness of 4 ⁇ m (during curing) was formed, and an antiglare film according to Example 1 was produced.
  • TD80UL triacetylcellulose resin film
  • composition for anti-glare layer Organic fine particles (acryl-styrene copolymer particles, average particle size 2.0 ⁇ m, refractive index 1.515, manufactured by Sekisui Plastics Co., Ltd.) 1 part by mass spherical inorganic fine particles (aluminosilicate particles, average particle size 2.0 ⁇ m, refractive) 1.50 parts, manufactured by Mizusawa Chemical Co., Ltd.) 3 parts by mass fumed silica (AEROSIL R805, average particle size 12 nm, manufactured by Nippon Aerosil Co., Ltd.) 1 part by mass pentaerythritol triacrylate (PETA, manufactured by Daicel Cytec) 60 parts by mass urethane Acrylate (UV1700B, manufactured by Nippon Synthetic Chemical Co., Ltd.) 40 parts by mass Irgacure 184 (manufactured by BASF Japan) 6 parts by mass Irgacure 907 (manufactured by BASF Japan) 1 part by mass by mass
  • Example 2 A composition for an antiglare layer was prepared in the same manner as in Example 1 except that the blending amount of the organic fine particles was 5 parts by mass, and in the same manner as in Example 1 except that the composition for antiglare layer was used. An antiglare film according to Example 2 was produced.
  • Example 3 A composition for an antiglare layer was prepared in the same manner as in Example 1 except that the blending amount of the organic fine particles was 12 parts by mass, and in the same manner as in Example 1 except that the composition for antiglare layer was used. An antiglare film according to Example 3 was produced.
  • Example 4 An antiglare layer composition was prepared in the same manner as in Example 1 except that the amount of organic fine particles was 5 parts by mass and the amount of inorganic fine particles was 0.3 parts by mass. An antiglare film according to Example 4 was produced in the same manner as Example 1 except that was used.
  • Example 5 An antiglare layer composition was prepared in the same manner as in Example 1 except that the amount of organic fine particles was 5 parts by mass and the amount of inorganic fine particles was 8 parts by mass, and the antiglare layer composition was used. An antiglare film according to Example 5 was produced in the same manner as in Example 1 except that.
  • Example 6 An antiglare layer composition was prepared in the same manner as in Example 1 except that the amount of organic fine particles was 5 parts by mass, and the amount of fumed silica was 0.3 parts by mass. An antiglare film according to Example 6 was produced in the same manner as Example 1 except that the product was used.
  • Example 7 An antiglare layer composition was prepared in the same manner as in Example 1 except that the amount of organic fine particles was 5 parts by mass and the amount of fumed silica was 4 parts by mass. An antiglare film according to Example 7 was produced in the same manner as Example 1 except that it was used.
  • Example 8 Example 1 except that the blending amount of the organic fine particles was 5 parts by mass, and 1 part by mass of fumed silica (average particle size 12 nm, manufactured by Nippon Aerosil Co., Ltd., surface treatment with a silane coupling agent having octylsilane) was used. Then, an antiglare film according to Example 8 was produced in the same manner as in Example 1 except that the composition for antiglare layer was prepared and the composition for antiglare layer was used.
  • fumed silica average particle size 12 nm, manufactured by Nippon Aerosil Co., Ltd., surface treatment with a silane coupling agent having octylsilane
  • Example 9 The composition for the antiglare layer was prepared in the same manner as in Example 1 except that the blended amount of the organic fine particles was 5 parts by mass and no fumed silica was blended, and the composition for the antiglare layer was used except that the composition for the antiglare layer was used. In the same manner as in Example 1, an antiglare film according to Example 9 was produced.
  • Comparative Example 1 The composition for the antiglare layer was prepared in the same manner as in Example 1 except that the blending amount of the organic fine particles was 5 parts by mass and the inorganic fine particles were not blended, and the composition for the antiglare layer was used except that In the same manner as in Example 1, an antiglare film according to Comparative Example 1 was produced.
  • Comparative Example 2 A composition for an antiglare layer was prepared in the same manner as in Example 1 except that the organic fine particles were not blended, and in Comparative Example 2 in the same manner as in Example 1 except that the composition for antiglare layer was used. Such an antiglare film was produced.
  • Comparative Example 3 An antiglare layer composition was prepared in the same manner as in Example 1 except that the amount of the organic fine particles was 10 parts by mass, and the inorganic fine particles and fumed silica were not added, and the antiglare layer composition was used. An antiglare film according to Comparative Example 3 was produced in the same manner as in Example 1 except that.
  • Comparative Example 4 An antiglare layer composition was prepared in the same manner as in Example 1 except that 3 parts by mass of silica (average particle size: 2.0 ⁇ m, manufactured by Tosoh Silica Co., Ltd.) was blended as inorganic fine particles without blending organic fine particles. An antiglare film according to Comparative Example 4 was produced in the same manner as in Example 1 except that the antiglare layer composition was used.
  • Example 5 Example 1 except that the fumed silica was replaced with AEROSIL130 (pH 4.0 to 4.5, specific surface area 130 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.) having an average particle size of 16 nm and no surface treatment, that is, hydrophilic.
  • AEROSIL130 pH 4.0 to 4.5, specific surface area 130 m 2 / g, manufactured by Nippon Aerosil Co., Ltd.
  • a composition for an antiglare layer was prepared. However, since the antiglare layer composition gelled and precipitated from the beginning, an antiglare layer could not be formed.
  • Reference Example 1 Prevention was carried out in the same manner as in Example 1 except that the blending amount of organic fine particles was 5 parts by mass, and 3 parts by mass of amorphous aluminosilicate (manufactured by Mizusawa Chemical Co., Ltd., average particle size 2.0 ⁇ m) was used as inorganic fine particles.
  • An antiglare film according to Reference Example 1 was produced in the same manner as Example 1 except that the composition for glare layer was prepared and the composition for antiglare layer was used.
  • Acrylic-styrene copolymer particles (average particle size 10.0 ⁇ m, refractive index 1.515, manufactured by Sekisui Plastics Co., Ltd.) are used as the organic fine particles, and the blending amount is 5 parts by mass.
  • Example 1 except that silicate particles (average particle size 5 ⁇ m, refractive index 1.50, manufactured by Mizusawa Chemical Industry Co., Ltd.) were used, the mixing amount was 3 parts by mass, and the mixing amount of fumed silica was 2 parts by mass.
  • composition for an antiglare layer was prepared, and the antiglare layer according to Reference Example 5 was prepared in the same manner as in Example 1 except that the composition for antiglare layer was used and the thickness at curing was 15.0 ⁇ m. A dazzling film was produced.
  • the amount of light of the backlight was set such that the luminance when the two polarizing plates were set in parallel Nicol was 3600 cd / m 2 without the sample being set.
  • contrast ratio exceeds 90, it was evaluated as “high contrast and very dark gloss in the dark room”, and when it exceeded 80 and below 90, “high contrast and glossy black in the dark room”. It was evaluated that “feel is good”, and 80 or less were evaluated as “low contrast and no glossy blackness in a dark room”.
  • the obtained antiglare film was conditioned for 2 hours under the conditions of a temperature of 25 ° C. and a relative humidity of 60%, and then, using a test pencil specified by JIS-S-6006, JIS K5600-5-4 (1999).
  • the pencil hardness test (load of 500 g) specified in 1 was performed, and the highest hardness that was not damaged was measured.
  • the stylus of the surface roughness detector Model No./SE2555N (2 ⁇ stylus), manufactured by Kosaka Laboratory Ltd. (tip radius of curvature 2 ⁇ m / vertical angle: 90 degrees / material: diamond)
  • Measurement conditions of surface roughness measuring instrument Reference length (cutoff value ⁇ c of roughness curve: 2.5 mm Evaluation length (reference length (cutoff value ⁇ c) ⁇ 5): 12.5 mm
  • Feeding speed of stylus 0.5 mm / s
  • a cutoff value of 0.8 mm is used. In the present invention, the cutoff value is set to 2.5 mm.
  • the preferable uneven shape of the anti-glare film having an uneven shape on the surface in the present invention prevents reflection by external light as described above, and further makes the image display device display black.
  • This is because it has an uneven shape capable of obtaining an excellent glossy blackness (wet glossy black reproducibility on the screen display). That is, it is preferable to have a large and gentle uneven shape, and in order to measure this uneven shape, it is preferable to set the cut-off value to 2.5 mm.
  • the antiglare films according to the examples all have a high contrast ratio in a dark room, and are antiglare, anti-blurring, anti-glare, and hard coat properties (pencil hardness and crackability). Both were excellent.
  • FIGS. 2-1 and 2-2 are cross-sectional STEM photographs of the antiglare layer of the antiglare film according to Example 8, FIG. 2-1 is a magnification of 3000 times, and FIG. The magnification is 20,000 times. In FIG. 2-1, two aggregates of organic fine particles and inorganic fine particles were observed.
  • FIG. 3 is a cross-sectional STEM photograph of the antiglare layer of the antiglare film according to Example 9, wherein (a) is a magnification of 3000 times and (b) is a magnification of 10,000 times.
  • FIG. 3B two aggregates of organic fine particles and inorganic fine particles were observed.
  • organic fine particles and inorganic fine particles form aggregates in the antiglare layer.
  • fumed silica was unevenly distributed around the organic fine particles and the inorganic fine particles.
  • the coating liquid stability was superior to the case where it was not used.
  • the anti-glare film according to the example whose evaluation of white blur prevention property was “ ⁇ ” had a surface haze value in the range of 0.1% or more and less than 2%, and haze caused by internal diffusion. The value was in the range of 2% or more and less than 5%.
  • the antiglare films according to Comparative Examples 1 and 2 were all inferior in antiglare properties.
  • 4 is a cross-sectional STEM photograph of the antiglare layer of the antiglare film according to Comparative Example 1
  • FIG. 5 is a cross-sectional STEM photograph of the antiglare layer of the antiglare film according to Comparative Example 2. In either case, (a) has a magnification of 3000 times, and (b) has a magnification of 20,000 times.
  • the antiglare film according to Reference Example 1 was an aluminosilicate in which the inorganic fine particles were amorphous, the dark room contrast was inferior, and the antiglare film according to Reference Example 2 contained too much organic fine particles.
  • the anti-glare film according to Reference Example 3 was inferior to each evaluation of white blur and surface glare, and the anti-glare film according to Reference Example 4 was inferior to each evaluation of white blur and surface glare.
  • the anti-glare film has a thin anti-glare layer and a poor pencil hardness test, and the anti-glare film according to Reference Example 5 has a thick anti-glare layer and a poor cracking property. It was.
  • the composition for low refractive index layer having the following composition is dried (40 ° C. ⁇ 1 minute) so that the film thickness becomes 0.1 ⁇ m.
  • the low refractive index layer is produced by applying and curing with ultraviolet irradiation using an ultraviolet irradiation device (manufactured by Fusion UV Systems Japan, light source H bulb) at an irradiation dose of 100 mJ / cm 2 .
  • the antiglare film provided with the obtained low refractive index layer has a further excellent effect of preventing white blurring.
  • composition for low refractive index layer Hollow silica fine particles (solid content of the silica fine particles: 20% by mass, solution: methyl isobutyl ketone, average particle size: 50 nm) 40 parts by mass pentaerythritol triacrylate (PETA) (manufactured by Daicel Cytec) 10 parts by mass polymerization initiator (Irgacure 127: manufactured by BASF Japan) 0.35 parts by mass Modified silicone oil (X22164E: manufactured by Shin-Etsu Chemical Co., Ltd.) 0.5 parts by mass MIBK 320 parts by mass PGMEA 161 parts by mass
  • PETA pentaerythritol triacrylate
  • Irgacure 127 manufactured by BASF Japan
  • Modified silicone oil X22164E: manufactured by Shin-Etsu Chemical Co., Ltd.
  • the antiglare film of the present invention includes a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (ELD), a field emission display (FED), a touch panel, electronic paper, and a tablet PC. It can apply suitably to.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display
  • FED field emission display
  • touch panel electronic paper
  • tablet PC tablet PC

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Dispersion Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Wood Science & Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Abstract

ハードコート性と防眩性とを維持しつつ、面ギラの発生と、白ぼけの発生とを極めて高いレベルで抑制でき、高コントラストの優れた表示画像を得ることができる防眩性フィルムを提供する。 光透過性基材の少なくとも一方の面上に表面に凹凸形状を有する防眩層を有する防眩性フィルムであって、上記防眩層は、2種以上の微粒子が凝集した凝集体を含有し、上記凝集体により、上記防眩層の表面に凸部が形成され、上記防眩層の表面の凹凸形状が形成されていることを特徴とする防眩性フィルム。

Description

防眩性フィルム、偏光板及び画像表示装置
本発明は、防眩性フィルム、偏光板及び画像表示装置に関する。
陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、電子ペーパー、タブレットPC、タッチパネル等の画像表示装置においては、一般に最表面には反射防止のための光学積層体が設けられている。
このような反射防止用の光学積層体は、光の散乱や干渉によって、像の映り込みを抑制したり反射率を低減したりするものである。
反射防止用光学積層体の1つとして、透明性基材の表面に凹凸形状を有する防眩層を形成した防眩性フィルムが知られている。この防眩性フィルムは、表面の凹凸形状によって外光を散乱させて外光の反射や像の映り込みによる視認性の低下を防止することができる。
また、この光学積層体は、通常、画像表示装置の最表面に設置されるものであるため、取り扱い時に傷がつかないように、ハードコート性を付与することも要求される。
従来の防眩性フィルムとしては、例えば、光透過性基材の表面に、二酸化ケイ素(シリカ)等のフィラーを含む樹脂を塗工して防眩層を形成したものが知られている(例えば、特許文献1、2参照)。
これらの防眩性フィルムは、凝集性シリカ等の粒子の凝集によって防眩層の表面に凹凸形状を形成するタイプ、有機フィラーを樹脂中に添加して層表面に凹凸形状を形成するタイプ、あるいは層表面に凹凸をもったフィルムをラミネートして凹凸形状を転写するタイプ等がある。
ところが、このような従来の防眩性フィルムは、いずれのタイプでも、防眩層の表面形状の作用により、光拡散・防眩作用を得るようにしていて、防眩性を高めるためには凹凸形状を急峻にしたり、多くする必要があるが、凹凸が急峻であったり、多くなると、塗膜のヘイズ値(曇価)が上昇して白ぼけが発生し、表示画像のコントラストが低下するという問題があった。
また、従来のタイプの防眩性フィルムは、フィルム表面に、いわゆる面ギラと呼ばれるキラキラ光る輝きが発生し、表示画面の視認性が低下するという問題もあった。面ギラは、画像表示装置を点灯した際、背面からの透過光が画面に到達したときに、画面表面に細かい輝度のむらが現れ、観察者が見る角度を変えていくと、その輝度むらの位置が移り変わっていくように見える現象で、特に全面白色表示や全面緑色表示のときに顕著である。
ここで、例えば、ハードコート層と防眩層とをそれぞれ積層形成してなる防眩性フィルムが知られている(例えば、特許文献3参照)。このような層構成の反射防止フィルムは、防眩層表面の細かな凹凸形状をハードコート層と同様の樹脂によりスムージングすることで、滑らかなウネリを有し、微小凹凸が少なく、かつ、凸部高さが従来よりも低い凹凸に変換させて、ハードコート性と防眩性とを維持しつつ、面ギラ及び白ぼけの発生の抑制を図ることができるものであった。しかしながら、膜厚が10μm以上になるなど厚くなってしまい、近年の防眩性フィルムの薄膜化の要請に充分応えることができなかった。
また、有機微粒子或いは無機微粒子を単独で用いて層表面に凹凸形状を形成する場合、防眩性フィルムの薄膜化を図ると、微粒子が高さ方向に凝集することがあるため、表面凹凸が高くなってしまい、面ギラ或いは白ぼけが発生していた。この欠点を解消すべく、有機微粒子或いは無機微粒子の平均粒径を小さくして、表面凹凸の高さを低くしようとすると、反対に表面凹凸の高さが低くなりすぎて、防眩性がなくなってしまい易く、安定して良好な製品を得ることはできなかった。
このため、滑らかな凹凸表面を有する防眩層であって、ハードコート性と防眩性とを維持しつつ、面ギラ及び明室での白ぼけを充分に抑制でき、かつ暗室でのコントラストが優れる一層構成の防眩層を備えた防眩性フィルムが望まれていた。
特開平6-18706号公報 特開平10-20103号公報 WO2006/088202号公報
本発明は、上記現状に鑑みて、ハードコート層が単層で且つ10μm未満の薄層であってもハードコート性と防眩性とを維持しつつ、面ギラの発生を防止でき、明室でも暗室でも、画像表示装置を黒表示にした状態での優れた艶黒感(画面表示における濡れたような艶のある黒色の再現性)を得ることができる防眩性フィルム、偏光板及び画像表示装置を提供することを目的とする。なお、明室での艶黒感は、目視の「白ぼけ」で評価し、暗室での艶黒感は、「暗室コントラスト 」で評価するため、本発明においては、「白ぼけ」又は「暗室コントラスト」という表現を用いる。
本発明は、光透過性基材の少なくとも一方の面上に表面に凹凸形状を有する防眩層を有する防眩性フィルムであって、上記防眩層は、2種以上の球状の微粒子が凝集した凝集体を含有し、上記凝集体により、上記防眩層の表面に凸部が形成され、上記防眩層の表面の凹凸形状が形成されていることを特徴とする防眩性フィルムである。
本発明の防眩性フィルムにおいて、上記2種以上の球状の微粒子は、1種以上の有機微粒子及び1種以上の無機微粒子を少なくとも含むことが好ましい。
また、上記有機微粒子は、平均粒径が0.3~10.0μm、無機微粒子は、平均粒径が500nm~5.0μmであることが好ましい。
また、上記防眩層は、更にバインダー粒子を含有することが好ましく、上記バインダー粒子は、上記有機微粒子及び無機微粒子の周囲に偏在していることが好ましい。
また、上記バインダー粒子は、フュームドシリカであることが好ましく、上記フュームドシリカは、表面処理されていることが好ましい。
また、上記フュームドシリカは、表面処理として疎水化処理されており、前記疎水化処理は、メチル処理、オクチルシラン処理、又は、ジメチルシリコーンオイル処理であることが好ましい。
また、上記有機微粒子は、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合樹脂、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン樹脂及びポリフッ化エチレン樹脂からなる群より選択される少なくとも一種の材料からなる微粒子であることが好ましく、上記無機微粒子は、アルミノシリケート、タルク、マイカ及びシリカからなる群より選択される少なくとも1種の微粒子であることが好ましい。
本発明はまた、偏光素子を備えてなる偏光板であって、上記偏光板は、偏光素子表面に上述の防眩性フィルムを備えることを特徴とする偏光板でもある。
本発明は、最表面に上述の防眩性フィルム、又は、上述の偏光板を備えることを特徴とする画像表示装置でもある。
以下に、本発明を詳細に説明する。
本発明者らは、光透過性基材上に表面に凹凸形状を有する防眩層を備えた防眩性フィルムについて、鋭意検討した結果、防眩層中に2種以上の微粒子の凝集体を含有させ、この凝集体部分により防眩層表面に凸部が形成され、結果、防眩層表面の凹凸形状が形成されたものとすることで、単一の種類及び粒径の微粒子(例えば、シリカ微粒子やアクリルスチレン粒子)により凹凸形状を形成した従来の防眩層と比較して、より滑らかな凹凸形状とすることができ、その結果、防眩層が単層かつ10μm未満の薄層であっても、ハードコート性と防眩性とを維持しつつ、面ギラの発生と、白ぼけの発生とを充分に抑制し、暗室コントラストが優れる防眩性フィルムが得られることを見出し、本発明を完成するに至った。
なお、上記凝集体が膜厚よりも非常に小さい場合や防眩層の下に沈んでいる場合等には、凝集体は、凹凸形状の凸部を形成する凸部の下位置だけではなく、凹部の下位置にも存在することがある。しかし、本発明の防眩性フィルムにおいては、光学顕微鏡の反射観察や透過観察(100倍~300倍)によって、大部分の凝集体は、凸部を形成していることが観察できる。
本発明の防眩性フィルムは、光透過性基材の少なくとも一方の面上に表面に凹凸形状を有する防眩層を有する。
上記光透過性基材は、平滑性、耐熱性を備え、機械的強度及び光の配向を乱さない等の光学的特性に優れたものが好ましい。光透過性基材を形成する材料の具体例としては、例えば、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、又は、ポリウレタン等の熱可塑性樹脂が挙げられる。好ましくは、機械的強度に優れる点でポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、光学的特性に優れる点でセルローストリアセテートが挙げられる。
上記光透過性基材は、上記熱可塑性樹脂を柔軟性に富んだフィルム状体として使用することが好ましいが、硬化性が要求される使用態様に応じて、これら熱可塑性樹脂の板を使用することも可能であり、又は、ガラス板の板状体のものを使用してもよい。
その他、上記光透過性基材としては、脂環構造を有した非晶質オレフィンポリマー(Cyclo-Olefin-Polymer:COP)フィルムが挙げられる。これは、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体等が用いられる基材で、例えば、日本ゼオン(株)製のゼオネックスやゼオノア(ノルボルネン系樹脂)、住友ベークライト(株)製のスミライトFS-1700、JSR(株)製のアートン(変性ノルボルネン系樹脂)、三井化学(株)製のアペル(環状オレフィン共重合体)、Ticona社製のTopas(環状オレフィン共重合体)、日立化成(株)製のオプトレッツOZ-1000シリーズ(脂環式アクリル樹脂)等が挙げられる。
また、トリアセチルセルロースの代替基材として旭化成ケミカルズ株式会社製のFVシリーズ(低複屈折率、低光弾性率フィルム)も好ましい。
上記光透過性基材の厚さとしては、20~300μmであることが好ましく、より好ましくは下限が30μmであり、上限が200μmである。光透過性基材が板状体の場合には、これらの厚さを超える厚さであってもよい。上記光透過性基材は、その上に上記ハードコート層等を形成するのに際して、接着性向上のために、コロナ放電処理、酸化処理等の物理的な処理のほか、アンカー剤又はプライマーと呼ばれる塗料の塗布が予め行われていてもよい。LCD向けの光透過性基材として主に用いられることが多いトリアセチルセルロースを材料とする場合、上記光透過性基材の厚さは、ディスプレイ薄膜化ができる20~65μmが好ましい。
上記防眩層は、上記光透過性基材の少なくとも一方の面上に形成されており、表面に凹凸形状を有するものである。
本発明の防眩性フィルムにおいて、上記防眩層は、2種以上の種類又は粒径の微粒子が凝集して形成された凝集体を含有しており、表面の凹凸形状は、上記凝集体が表面に凸部を形成することにより形成されている。
このような凝集体による凹凸形状は、単一の種類及び粒径の微粒子(例えば、シリカ微粒子だけやアクリルスチレン粒子だけであり、かつ、粒径も同じ場合)又はその凝集体により形成された凹凸形状よりも、凸部の傾斜が緩やかとなり滑らかな形状となる。これは、上記凝集体が、一方の微粒子の間に他方の微粒子が入り込んだ状態となることにより、主として上記一方の微粒子により形成される防眩層の表面に形成される凹凸形状(凸部)の傾斜角が、該微粒子の間に入り込んだ他方の微粒子の影響により、上記一方の微粒子単体で形成される凹凸形状(凸部)の傾斜角よりも緩やかなものになるからであると推測される。
なお、上記防眩層が後述するバインダー粒子を更に含有する場合、上記凝集体は、単一の微粒子から構成されるものが含まれていてもよい。これは、上記微粒子の近傍に当該バインダー粒子が局在することで、上記凝集体が単一の微粒子から構成されるものであっても、該単一の微粒子は高さ方向に凝集しづらくなる。加えて、上記微粒子の近傍に局在する上記バインダー粒子が、上記微粒子の凹凸形状(凸部)の傾斜の急峻性を減じる効果も示していると推測している。特に、上記バインダー粒子が、上記凝集体の周囲を囲むように偏在することで、上記凸部の傾斜の急峻性をよく減じることができる。
本発明の防眩性フィルムにおいて、上記2種以上の微粒子は、材質の異なる2種以上の粒子であるか、材質が同じ場合は粒径が異なる2種以上の微粒子である。なかでも、主として防眩層の表面に凹凸形状(凸部)を形成する粒子径が比較的揃った微粒子と、粒子径のバラツキが比較的大きい(ブロードな粒度分布を有する)微粒子であることが特に好ましい。この場合は、上記微粒子の材質は同じであっても、異なっていてもよい。このような粒子径の関係を有する2種以上の微粒子であることで、粒子径の揃った一方の微粒子の間に粒子径のバラツキが大きい他方の微粒子が入り込んだ構造の凝集体を構成しやすく、上述した滑らかな凹凸形状を防眩層表面に好適に形成することができる。
ここで、上記「粒子径が比較的揃った微粒子」とは、重量平均による微粒子の平均粒径をMV、累積25%径をd25、累積75%径をd75としたとき、(d75-d25)/MVが0.25以下であった場合を意味し、上記「ブロードな粒度分布を有する微粒子」とは、上記(d75-d25)/MVが0.25を超える場合を意味する。なお、累積25%径とは、粒度分布における粒径の小さい粒子からカウントして、25質量%となったときの粒子径をいい、累積75%径とは、同様にカウントして75質量%となったときの粒子径をいう。
なお、上記粒度分布は、光学顕微鏡で透過観察して得た写真の画像処理により求めることができる。
また、上記防眩層において、凝集体を構成する2種以上の微粒子は、その形状が球状である。このような球状の微粒子を有することで、本発明の防眩性フィルムを画像表示装置に適用した場合、高コントラストで、艶黒感のある表示画像を得ることができる。
なお、上記「球状」とは、例えば、真球状、楕円球状等が挙げられ、いわゆる不定形を除く意味である。上記微粒子の形状が不定形であると、後述する防眩層を構成するバインダー樹脂との界面で全反射が起きやすく、黒輝度が上昇して艶黒感が低下するからである。
また、上記「凝集体を構成する」とは、上記2種以上の微粒子の一方の微粒子と他方の微粒子との距離、及び、同種の微粒子の距離が、後述する2種以上の微粒子のいずれか一方の平均粒径の範囲内にあることを意味する。
本発明の防眩性フィルムにおいて、上記2種以上の微粒子は、1種以上の有機微粒子及び1種以上の無機微粒子を少なくとも含むことが好ましい。
上記有機微粒子は、粒子径が比較的揃ったものを選択し、一方、無機微粒子は、粒子径のバラツキが比較的大きいものを選択することが好ましい。このような有機微粒子及び無機微粒子を選択することにより、無機微粒子は、有機微粒子に比べ比重が大きいこともあり、有機微粒子の間で下方部に無機微粒子が入り込んだ凝集体を構成しやすく、上述した滑らかな凹凸形状を有する防眩層とすることができる。更に、上記有機粒子が比較的粒子径の揃ったものであり、上記無機粒子が粒子径のバラツキが比較的大きい微粒子であると、防眩層を形成する際に、後述するバインダー樹脂(放射線硬化樹脂)の重合収縮により表面凹凸が形成されるときに、後述するように、主として表面の凹凸を形成する上記有機粒子は無機微粒子に比べて柔らかいため、上記重合収縮に追随し易く、当該観点からも急峻な表面凹凸(凸部)が発生しない。
このような滑らかな凹凸形状が形成されることにより、本発明の防眩性フィルムは、防眩性と白ぼけ防止性とを両立させつつ、その中で面ギラを抑制することもできる。
更に面ギラをよりよくするには、上記防眩層に、微小に内部散乱効果を持たせることが好ましい。上記防眩層に、微小に内部散乱効果を持たせる方法としては、例えば、有機微粒子の屈折率とバインダー樹脂の屈折率にわずかに差を持たせることが有効である。上記有機微粒子の屈折率とバインダー樹脂の屈折率にわずかに差を持たせるとは、具体的な屈折率差としては、0.01~0.10とすることが好ましい。
また、上記有機微粒子及びバインダー樹脂の屈折率とは、防眩層とした後の屈折率である。具体的な屈折率測定方法としては、例えば、防眩性フィルムを製造後、その防眩層を厚さ方向に切断して断面を出し、該断面に露出した有機微粒子やバインダーの断面片を削って取り出し、アッベ屈折計で直接屈折率を測定する方法が挙げられる。また、例えば、ベッケ法等カーギル試薬を用いる方法や、防眩性フィルムを直接、レーザー干渉により測定、分光反射スペクトルや分光エリプソメトリーを測定などして、上記屈折率を定量的に測定する方法も挙げられる。
上記有機微粒子は、主に防眩層の表面凹凸形状を形成する微粒子であり、屈折率や粒径の制御が容易な微粒子である。上記凝集体がこのような有機微粒子を含むことで、防眩層に形成される凹凸形状の大きさや防眩層の屈折率の制御が容易となり、防眩性の制御並びに面ギラ及び白ぼけの発生を抑制することができる。
上記有機微粒子としては、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合樹脂、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン樹脂及びポリフッ化エチレン樹脂からなる群より選択される少なくとも一種の材料からなる微粒子であることが好ましい。なかでも、屈折率の制御が容易なことからスチレン-アクリル共重合体微粒子が好適に用いられる。
上記有機微粒子の含有量としては、上記防眩層中0.5~15.0質量%であることが好ましい。0.5質量%未満であると、防眩性能が不充分となることがあり、15.0質量%を超えると、凝集体が多くなる或いは凝集体が大きくなりすぎ、白ぼけ及び/又は面ギラの問題が生じることがある。より好ましい下限は2.0質量%、より好ましい上限は10.0質量%である。
また、上記有機微粒子の大きさは、防眩層の厚さ等に合わせて適宜決定されるが、例えば、平均粒径が0.3~5.0μmであることが好ましい。0.3μm未満であると、充分な凹凸形状を防眩層表面に形成することができず、本発明の防眩性フィルムの防眩性能が不充分となることがあり、5.0μmを超えると、防眩層表面の凹凸形状が大きくなって、面ギラの問題が生じることがある。より好ましい下限は1.0μm、より好ましい上限は4.0μmである。更に好ましいのは、防眩層膜厚を薄くできるので上限が3.0μmである。
また、上記有機微粒子の平均粒径は、防眩層の厚さに対して20~80%であることが好ましい。
なお、上記有機微粒子の平均粒径は、防眩層の光学顕微鏡の透過観察において200~1000倍の倍率にし、10個の有機微粒子の最大径を測定し、その平均値として算出される値である。なお、上記有機微粒子は球状とみなすことができるため、画像処理ソフトを用いると簡便に上記有機微粒子の粒径測定ができる。
また、上記防眩層の厚さとしては、2~6μmであることが好ましい。2μm未満であると、防眩層表面が傷付きやすくなることがあり、6μmを超えると、防眩層が割れやすくなることがある。上記防眩層の厚さのより好ましい範囲は2~4μmである。なお、上記防眩層の厚さは、防眩層の断面STEMの1000倍~3000倍の観察において、その観察画面や観察写真中に層中で光透過性基材と垂直な方向に有機微粒子が観察されない部分3点を測定した平均値である。なお、上記防眩層の断面STEM観察時に最大粒径を有する有機微粒子が観察される部分であると、そこは防眩層の表面に凸部が形成されている部分であり、防眩層の厚さが極大値になる可能性があるため、有機微粒子が観察されない部分を選択する。
上記有機微粒子は、無機微粒子との親和性が高まり、凝集体をより好適に形成できることから、表面が親水処理されていることが好ましい。
上記親水処理としては特に限定されず公知の方法が挙げられるが、例えば、カルボン酸基や水酸基等の官能基を有するモノマーを上記有機微粒子の表面に共重合させる方法等が挙げられる。
上記無機微粒子は、上記凝集体において、隣接する上記有機微粒子の間や、有機微粒子の上方部、下方部に入り込むようにして防眩層中に含まれる。特に、隣接する上記有機粒子の間に上記無機微粒子が入り込むことにより、隣接する有機微粒子の間隔を適度に保つことができ、上記防眩層の表面の凹凸形状の凸部の傾斜を緩やかにできるので全体の凹凸形状を滑らかなものとする役割を果たすことができる。
このような無機微粒子としては、例えば、アルミノシリケート、タルク、マイカ及びシリカからなる群より選択される少なくとも一種の微粒子であることが好ましい。なかでも、その形状が球状であると、変化率がほぼ一定なので粒子とバインダー樹脂との界面での反射が抑制され、迷光の発生が少なく暗室でのコントラスト、明室でのコントラストを高めることができるのでより好ましい。球状粒子を得やすいことからアルミノシリケートが好適に用いられる。
上記無機微粒子の含有量としては、防眩層中0.1~10.0質量%であることが好ましい。0.1質量%未満であると、有機微粒子の間で下方部に無機微粒子が入り込んだ凝集体を構成しにくく、上述した滑らかな凹凸形状を有する防眩層とならないことがある。10.0質量%を超えると、白ぼけの問題が生じることがある。
より好ましい下限は0.5質量%、より好ましい上限は7.0質量%である。
上記無機微粒子は、平均粒径が500nm~5.0μmであることが好ましい。500nm未満であると、防眩層中で上記有機微粒子との凝集体を充分に形成できないことがあり、5.0μmを超えると、白ぼけの問題が生じることがある。また、凝集体中で有機微粒子の下方に存在させやすいので有機微粒子の比重より2倍以上大きいことが好ましい。
なお、上記無機微粒子の平均粒径は、防眩層の光学顕微鏡の透過観察において200~1000倍の倍率にし、10個の無機微粒子の最大径を測定し、その平均値として算出される値である。
本発明の防眩性フィルムにおいて、上記防眩層は、更に、バインダー粒子を含有することが好ましく、該バインダー粒子は、上記有機微粒子及び無機微粒子の周囲に偏在していることが好ましい。
上記バインダー粒子は、上記有機微粒子と無機微粒子との凝集体の形成を促進する役割を果たす成分であり、後述するバインダー樹脂とは異なる成分である。上記バインダー粒子が上記有機微粒子及び無機微粒子の周囲に偏在していることで、上記凝集体を好適に形成することができる。
ここで、上記「バインダー粒子は、上記有機微粒子及び無機微粒子の周囲に偏在している」とは、防眩層中でバインダー粒子が単独で存在している状態が少量で、多くが有機微粒子及び無機微粒子の周囲に偏って集まっている状態を意味し、このような状態は、防眩層の断面顕微鏡観察により容易に判別することができる。
上記バインダー粒子としては、有機微粒子及び無機微粒子の両方に対して親和性が高く、それ自身が凝集しやすい材料であることが好ましく、例えば、フュームドシリカが好適に用いられる。ここで、フュームドシリカとは、乾式法で作成された200nm以下の粒径を有する非晶質のシリカをいい、ケイ素を含む揮発性化合物を気相で反応させることにより得られる。具体的には、例えば、ケイ素化合物、例えば、SiClを酸素と水素の炎中で加水分解して生成されたもの等が挙げられる。上記フュームドシリカの商品としては、例えば、日本アエロジル社製のアエロジル等が挙げられる。
上記フュームドシリカの表面はシラノール基が存在するが、本発明においては上記フュームドシリカは、表面処理されていることが好ましく、該表面処理としては、疎水化処理であることが好ましい。
上記フュームドシリカが表面処理されていることで、フュームドシリカを有機微粒子及び無機微粒子の表面に好適に偏在させることができ、フュームドシリカ自体の凝集力によって、上記有機微粒子と無機微粒子による凝集体を形成することができる。また、フュームドシリカ自体の耐薬品性及び耐ケン化性の向上を図ることもできる。表面処理(疎水化処理)をしていない場合は、フュームドシリカが有機微粒子及び無機微粒子の表面に過剰に存在し、凝集力が増すことで、好適な凹凸形状を形成することができず、白ぼけの原因になることがある。
上記疎水化処理としては、例えば、メチル処理、オクチルシラン処理、又は、ジメチルシリコーンオイル処理等が好適である。
上記フュームドシリカの含有量としては特に限定されないが、上記防眩層中0.1~5.0質量%であることが好ましい。0.1質量%未満であると、上述した凝集体を充分に形成できないことがあり、5.0質量%を超えると、白ぼけの問題が生じることがある。より好ましい下限は0.5質量%、より好ましい上限は3.0質量%である。この範囲にあることで、フュームドシリカを有機微粒子及び無機微粒子の表面に好適に偏在させることができ、フュームドシリカ自体の凝集力による上記有機微粒子及び無機微粒子による凝集体を好適に形成することができる。
なお、上記フュームドシリカの形状としては特に限定されず、任意の形状でよいが、平均1次粒径が1~100nmであることが好ましい。1nm未満であると、上述した凝集体を充分に形成できないことがあり、100nmを超えると、凝集により暗室コントラストが劣化することがある。より好ましい下限は5nm、より好ましい上限は50nmである。なお、上記平均一次粒径とは、走査型と透過型電子顕微鏡の画像から、画像処理ソフトウェアーを用いて測定した値である。
ここで、上記防眩層をSTEM等で顕微鏡観察を行った場合、平均一次粒径が上記範囲のフュームドシリカは、凝集して数珠状に連結して巨大化している。このように巨大化している場合、その平均粒径は20~600nmになっているものであると、防眩層の高透過率性を保持できるので好ましい。600nmを超えると、透明性や暗室コントラストが低下することがある。より好ましくは、20~400nmである。なお、巨大化した上記フュームドシリカの平均粒径は、防眩層をSTEMにて断面観察し、巨大粒子10点の最大径の平均値として求められる。
また、BET法による上記フュームドシリカの比表面積としては、100~200m/gであることが好ましく、より好ましくは120~180m/gである。この比表面積であると、上記凝集後にできる凝集体全体の平均粒径を好ましい範囲とできる。
また、上記フュームドシリカは、pHが4.6~6.0であることが好ましい。上記フュームドシリカのpHは、未処理(親水性)であると、通常4.0~4.5である。このため、好ましいpHにするため、上記フュームドシリカは、上述したような疎水性処理をするのがよい。
本発明の防眩性フィルムにおいて、上記防眩層は、上記凝集体がバインダー樹脂中に分散されたものであることが好ましい。
上記バインダー樹脂としては、透明性のものが好ましく、例えば、紫外線又は電子線により硬化する樹脂である電離放射線硬化型樹脂が紫外線又は電子線の照射より硬化したものであることが好ましい。
なお、本明細書において、「樹脂」とは、特に言及しない限り、モノマー、オリゴマー等も包含する概念である。
上記電離放射線硬化型樹脂としては、例えば、アクリレート系等の官能基を有する化合物等の1又は2以上の不飽和結合を有する化合物が挙げられる。1の不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等を挙げることができる。2以上の不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能化合物、又は、上記多官能化合物と(メタ)アクリレート等の反応生成物(例えば多価アルコールのポリ(メタ)アクリレートエステル)、等を挙げることができる。なお、本明細書において「(メタ)アクリレート」は、メタクリレート及びアクリレートを指すものである。また、本発明では、上記電離放射線硬化型樹脂として、上述した化合物をPO、EO等で変性したものも使用できる。
上記化合物のほかに、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記電離放射線硬化型樹脂として使用することができる。
上記電離放射線硬化型樹脂は、溶剤乾燥型樹脂(熱可塑性樹脂等、塗工時に固形分を調整するために添加した溶剤を乾燥させるだけで、被膜となるような樹脂)と併用して使用することもできる。溶剤乾燥型樹脂を併用することによって、防眩層を形成する際に、塗液の粘度の調整が容易で塗液の塗布面の被膜欠陥を有効に防止することができる。
上記電離放射線硬化型樹脂と併用して使用することができる溶剤乾燥型樹脂としては特に限定されず、一般に、熱可塑性樹脂を使用することができる。
上記熱可塑性樹脂としては特に限定されず、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂及びゴム又はエラストマー等を挙げることができる。上記熱可塑性樹脂は、非結晶性で、かつ有機溶媒(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、製膜性、透明性や耐候性という観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。
また、上記防眩層は、熱硬化性樹脂を含有していてもよい。
上記熱硬化性樹脂としては特に限定されず、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。
上記凝集体及びバインダー樹脂を含有する防眩層は、例えば、上述した2種以上の微粒子及びバインダー粒子、並びに、上記電離放射線硬化型樹脂等のバインダー樹脂、光重合開始剤及び後述する溶剤等を含有する防眩層用組成物を、光透過性基材上に塗布し、乾燥させて形成した塗膜を電離放射線照射等により硬化させることで形成することができる。
上記防眩層用組成物において、上記2種以上の微粒子は、該組成物中では凝集体を形成しておらず、上記塗膜を乾燥させたときに、上記凝集体を形成するものであることが好ましい。上記防眩層用組成物中で上記2種以上の微粒子が凝集体を形成してしまうと、上述した滑らかな凹凸形状を有する防眩層を形成することができなくなるからである。
ここで、上記2種以上の微粒子の一方がアルミノシリケートである場合、該アルミノシリケートは、比較的比重が重く上記防眩層用組成物中で沈降しやすい。しかしながら、上述したバインダー粒子であるフュームドシリカは、上記防眩層用組成物を増粘させることができるため、上記フュームドシリカをバインダー粒子として含有することで、アルミノシリケートの防眩層用組成物中での沈降を抑制できる。すなわち、上記フュームドシリカは、上記凝集体の形成促進機能とともに、アルミノシリケートの沈降を防止する機能(すなわち、防眩層用組成物のポットライフの向上機能)も有すると推測される。
また、上記塗膜中で上記2種以上の微粒子の凝集体を形成する方法としては、例えば、上記防眩層用組成物に添加する溶剤として、極性が高く、かつ、相対蒸発速度が速い溶剤を所定量含有させる方法が挙げられる。このような極性が高く、相対蒸発速度が速い溶剤を含有することで、上記防眩層用組成物中で2種の微粒子が凝集することを防止でき、長時間の塗液組成物の安定保存性を得ることができる一方、上記塗膜を乾燥させた際、他の溶剤よりも先に揮発するため、塗膜中の組成が変性し、その結果、該塗膜中で上記2種以上の微粒子の凝集体を形成することができる。なお、上記相対蒸発速度とは、酢酸ブチルを基準とし、個々の溶媒(ここでは溶媒Aとする)の蒸発速度を比で表したもので、
 相対蒸発速度=(酢酸n-ブチルが蒸発するのに要する時間)/(溶媒Aが蒸発するのに要する時間)
で求められる。
上記極性が高く、かつ、相対蒸発速度が速い溶剤としては、例えば、エタノール(相対蒸発速度:1.54)、イソプロピルアルコール(相対蒸発速度:1.5)等が挙げられるが、その中でも、イソプロピルアルコールが好適に用いられる。
また、上記溶剤におけるイソプロピルアルコールの含有量は、全溶剤中20質量%以上であることが好ましい。20質量%未満であると、防眩層用組成物中で上記凝集体が生じてしまうことがある。上記イソプロピルアルコールの含有量は、40質量%以下であることが好ましい。
上記防眩層用組成物に含まれるその他の溶剤としては、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル類(ジオキサン、テトラヒドロフラン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル等)、アルコール類(ブタノール、シクロヘキサノール等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシド等)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド等)等が例示でき、これらの混合物であってもよい。
上記光重合開始剤としては特に限定されず、公知のものを用いることができ、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
上記光重合開始剤としては、上記電離放射線硬化型樹脂がラジカル重合性不飽和基を有する樹脂系の場合は、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましい。また、上記電離放射線硬化型樹脂がカチオン重合性官能基を有する樹脂系の場合は、上記光重合開始剤としては、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることが好ましい。
上記防眩層用組成物における上記光重合開始剤の含有量は、上記電離放射線甲型樹脂100質量部に対して、0.5~10.0質量部であることが好ましい。0.5質量部未満であると、形成する防眩層のハードコート性能が不充分となることがあり、10.0質量部を超えると、逆に硬化を阻害する可能性も出てくるため、好ましくない。
上記防眩層用組成物中における原料の含有割合(固形分)として特に限定されないが、通常は5~70質量%、特に25~60質量%とすることが好ましい。
上記防眩層用組成物には、防眩層の硬度を高くする、硬化収縮を抑える、屈折率を制御する等の目的に応じて、従来公知の分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、易滑剤等を添加していてもよい。
また、上記防眩層用組成物は、光増感剤を混合して用いてもよく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホソフィン等が挙げられる。
上記防眩層用組成物の調製方法としては各成分を均一に混合できれば特に限定されず、例えば、ペイントシェーカー、ビーズミル、ニーダー、ミキサー等の公知の装置を使用して行うことができる。
上記防眩層用組成物を光透過性基材上に塗布する方法としては特に限定されず、例えば、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の公知の方法を挙げることができる。
また、上記塗膜を硬化させる際の電離放射線の照射方法としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯、メタルハライドランプ灯等の光源を用いる方法が挙げられる。
また、紫外線の波長としては、190~380nmの波長域を使用することができる。電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、又は直線型、ダイナミトロン型、高周波型等の各種電子線加速器が挙げられる。
本発明の防眩性フィルムは、上述したように2種以上の微粒子の凝集体により防眩層の表面に凹凸形状が形成されているため、該凹凸形状を滑らかなものとすることができる。上記防眩層の表面の凹凸形状としては、具体的には、上記防眩層表面の凹凸の平均間隔をSmとし、凹凸部の平均傾斜角をθaとし、凹凸の算術平均粗さをRaとし、凹凸の十点平均粗さをRzとした場合に、外光による反射を防ぐことができるという観点により、下記式を満たすことが好ましい。θa、Ra、Rzが下限未満であると、映り込みを抑えることができない。また、θa、Ra、Rzが上限を超えると、面ギラ等の不具合が生じるおそれがある。Smが下限未満であると、白ぼけが発生するおそれがある。Smが上限を超えると、映り込みを抑えることができない等の不具合を生じるおそれがある。
  50μm<Sm<600μm
  0.1°<θa<1.5°
  0.02μm<Ra<0.25μm
  0.30μm<Rz<2.00μm
なお、本発明者らは、艶黒感は、主に防眩層の凹凸形状の凸部と凹部との高低差が大きいものの影響を受けるが、明室における艶黒感は、凹凸部の高低差が大きいもののみならず、凹凸部の高低差が小さいものによっても影響を受けることを見出した。このため、本発明においては、上記防眩層の表面の凹凸形状を4つのパラメータで制御している。
ここで、上述のように、「Sm」は凹凸の平均間隔であり、「θa」は凹凸部の平均傾斜角である。防眩層に存在する凹凸形状には、凸部の高さが平坦であったり、又は、大きかったりする部分があるが、「Sm」及び「θa」は、それを平均した数値である。このような平均値では凸部の高さが違うものが複数存在している場合であっても均されてしまう。しかしながら、この凸部分が、艶黒感を左右する。
そこで、凹凸部の高低差が大きいものの限度範囲を表わすために、本発明の防眩性フィルムでは、上記「Rz」というパラメータを用いた。この「Rz」は、その定義により最も凹凸部の高低差が大きいものの5点の平均値となっている。従って、「Rz」を用いることにより、凹凸部の高低差が大きいものの限度範囲を表わすことができる。
一方、「Rz」においては、凹凸部の高低差が小さい部分は反映されないため、凹凸部の高低差が小さいもの(小さい凹凸)を表わすことができない。この小さい凹凸もまた、明室の艶黒感を左右する。そこで、本発明においては、凹凸部の高低差が小さいものの最適範囲を表わすために、「Ra」というパラメータを用いたものである。
また、上記防眩層の凹凸形状は、より好ましくは、下記式を満たすことである。下記式を満たすと、映り込みを防ぐことができ、さらには、画像表示装置を黒表示にした状態での優れた艶黒感(画面表示における濡れたような艶のある黒色の再現性)を得ることができるという点において、より好ましい。θa、Ra、Rz及びSmが上限を超える、あるいは下限未満であると、艶黒感を得ることができない。
  100μm<Sm<400μm
  0.10°<θa<0.80°
  0.02μm<Ra<0.15μm
  0.30μm<Rz<1.20μm
上記防眩層の凹凸形状は、更に好ましくは、下記式を満たすことである。下記式を満たすと、映り込み防止と、画像表示装置を黒表示にした状態での艶黒感がより一層優れたものとなる。
  120μm<Sm<300μm
  0.10°<θa<0.42°
  0.02μm<Ra<0.12μm
  0.30μm<Rz<0.80μm
なお、本明細書において、上記Sm、Ra及びRzは、JIS B 0601-1994に準拠する方法で得られる値であり、θaは、表面粗さ測定器:SE-3400 取り扱い説明書(1995.07.20改訂)(株式会社小坂研究所)に記載の定義により得られる値であり、図1に示すように、基準長さLに存在する凸部高さの和(h+h+h+・・・+h)をLで割った値のアークタンジェント{θa=tan-1((h+h+h+・・・+h)/L)}で求めることができる。
このようなSm、θa、Ra、Rzは、例えば、表面粗さ測定器:SE-3400/株式会社小坂研究所製等により測定して求めることができる。
本発明の防眩性フィルムは、全光線透過率が85%以上であることが好ましい。85%未満であると、本発明の防眩性フィルムを画像表示装置の表面に装着した場合において、色再現性や視認性を損なうおそれがある。上記全光線透過率は、90%以上であることがより好ましく、91%以上であることが更に好ましい。
上記全光線透過率は、JIS K7361にしたがい、(株)村上色彩技術研究所HM-150などで測定できる。
また、本発明の防眩性フィルムは、ヘイズの値が20%未満であることが好ましい。上記ヘイズは、防眩層に含有された微粒子による内部拡散によるヘイズ及び最表面の凹凸形状による表面ヘイズからなってよく、内部拡散によるヘイズ値は、0.1%以上、20%未満の範囲であることが好ましく、0.1%以上、10%未満の範囲であることがより好ましく、0.1%以上、5%未満の範囲であることが更に好ましい。表面ヘイズ値は、0.1%以上、20%未満の範囲であることが好ましく、0.1%以上、10%未満の範囲であることがより好ましく、0.1%以上、5%未満の範囲であることが更に好ましい。好ましい艶黒感を得るためには、内部拡散によるへイズ及び表面ヘイズの値は、いずれも可能な限り小さいほうがよく、そのために最も好ましい表面へイズ値の範囲は、0.1%以上、2%未満、内部拡散によるへイズ値の範囲は、2%以上、5%未満の範囲である。
なお、内部拡散によるヘイズ値は、防眩層を構成するバインダー樹脂との屈折率差が0.02未満の透明樹脂を防眩性フィルム上に塗布し、表面凹凸形状を平坦にしたときのヘイズ値として測定できる。
上記ヘイズの値は、JIS K7136に従い、(株)村上色彩技術研究所HM-150などで測定できる。
また、本発明の防眩性フィルムは、白ぼけの発生をより好適に防止できることから、上記防眩層上に低屈折率層を有することが好ましい。
上記低屈折率層は、外部からの光(例えば蛍光灯、自然光等)が光学積層体の表面にて反射する際、その反射率を低くするという役割を果たす層である。低屈折率層としては、好ましくは1)シリカ又はフッ化マグネシウムを含有する樹脂、2)低屈折率樹脂であるフッ素系樹脂、3)シリカ又はフッ化マグネシウムを含有するフッ素系樹脂、4)シリカ又はフッ化マグネシウムの薄膜等のいずれかで構成される。フッ素樹脂以外の樹脂については、上述した防眩層を構成するバインダー樹脂と同様の樹脂を用いることができる。
また、上述したシリカは、中空シリカ微粒子であることが好ましく、このような中空シリカ微粒子は、例えば、特開2005-099778号公報の実施例に記載の製造方法にて作製できる。
これらの低屈折率層は、その屈折率が1.45以下、特に1.42以下であることが好ましい。
また、低屈折率層の厚みは限定されないが、通常は30nm~1μm程度の範囲内から適宜設定すれば良い。
また、上記低屈折率層は単層で効果が得られるが、より低い最低反射率、あるいはより高い最低反射率を調整する目的で、低屈折率層を2層以上設けることも適宜可能である。上記2層以上の低屈折率層を設ける場合、各々の低屈折率層の屈折率及び厚みに差異を設けることが好ましい。
上記フッ素系樹脂としては、少なくとも分子中にフッ素原子を含む重合性化合物又はその重合体を用いることができる。重合性化合物として特に限定されないが、例えば、電離放射線で硬化する官能基、熱硬化する極性基等の硬化反応性の基を有するものが好ましい。また、これらの反応性の基を同時に併せ持つ化合物でもよい。この重合性化合物に対し、重合体とは、上記のような反応性基などを一切もたないものである。
上記電離放射線で硬化する官能基を有する重合性化合物としては、エチレン性不飽和結合を有するフッ素含有モノマーを広く用いることができる。より具体的には、フルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロブタジエン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)を例示することができる。(メタ)アクリロイルオキシ基を有するものとしては、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、α-トリフルオロメタクリル酸メチル、α-トリフルオロメタクリル酸エチルのような、分子中にフッ素原子を有する(メタ)アクリレート化合物;分子中に、フッ素原子を少なくとも3個持つ炭素数1~14のフルオロアルキル基、フルオロシクロアルキル基又はフルオロアルキレン基と、少なくとも2個の(メタ)アクリロイルオキシ基とを有する含フッ素多官能(メタ)アクリル酸エステル化合物等もある。
上記熱硬化する極性基として好ましいのは、例えば、水酸基、カルボキシル基、アミノ基、エポキシ基等の水素結合形成基である。これらは、塗膜との密着性だけでなく、シリカ等の無機超微粒子との親和性にも優れている。熱硬化性極性基を持つ重合性化合物としては、例えば、4-フルオロエチレン-パーフルオロアルキルビニルエーテル共重合体;フルオロエチレン-炭化水素系ビニルエーテル共重合体;エポキシ、ポリウレタン、セルロース、フェノール、ポリイミド等の各樹脂のフッ素変性品等が挙げられる。
上記電離放射線で硬化する官能基と熱硬化する極性基とを併せ持つ重合性化合物としては、アクリル又はメタクリル酸の部分及び完全フッ素化アルキル、アルケニル、アリールエステル類、完全又は部分フッ素化ビニルエーテル類、完全又は部分フッ素化ビニルエステル類、完全又は部分フッ素化ビニルケトン類等を例示することができる。
また、フッ素系樹脂としては、例えば、次のようなものを挙げることができる。
上記電離放射線硬化性基を有する重合性化合物の含フッ素(メタ)アクリレート化合物を少なくとも1種類含むモノマー又はモノマー混合物の重合体;上記含フッ素(メタ)アクリレート化合物の少なくとも1種類と、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートの如き分子中にフッ素原子を含まない(メタ)アクリレート化合物との共重合体;フルオロエチレン、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、3,3,3-トリフルオロプロピレン、1,1,2-トリクロロ-3,3,3-トリフルオロプロピレン、ヘキサフルオロプロピレンのような含フッ素モノマーの単独重合体又は共重合体など。これらの共重合体にシリコーン成分を含有させたシリコーン含有フッ化ビニリデン共重合体も使うことができる。この場合のシリコーン成分としては、(ポリ)ジメチルシロキサン、(ポリ)ジエチルシロキサン、(ポリ)ジフェニルシロキサン、(ポリ)メチルフェニルシロキサン、アルキル変性(ポリ)ジメチルシロキサン、アゾ基含有(ポリ)ジメチルシロキサン、ジメチルシリコーン、フェニルメチルシリコーン、アルキル・アラルキル変性シリコーン、フルオロシリコーン、ポリエーテル変性シリコーン、脂肪酸エステル変性シリコーン、メチル水素シリコーン、シラノール基含有シリコーン、アルコキシ基含有シリコーン、フェノール基含有シリコーン、メタクリル変性シリコーン、アクリル変性シリコーン、アミノ変性シリコーン、カルボン酸変性シリコーン、カルビノール変性シリコーン、エポキシ変性シリコーン、メルカプト変性シリコーン、フッ素変性シリコーン、ポリエーテル変性シリコーン等が例示される。なかでも、ジメチルシロキサン構造を有するものが好ましい。
更には、以下のような化合物からなる非重合体又は重合体も、フッ素系樹脂として用いることができる。すなわち、分子中に少なくとも1個のイソシアナト基を有する含フッ素化合物と、アミノ基、ヒドロキシル基、カルボキシル基のようなイソシアナト基と反応する官能基を分子中に少なくとも1個有する化合物とを反応させて得られる化合物;フッ素含有ポリエーテルポリオール、フッ素含有アルキルポリオール、フッ素含有ポリエステルポリオール、フッ素含有ε-カプロラクトン変性ポリオールのようなフッ素含有ポリオールと、イソシアナト基を有する化合物とを反応させて得られる化合物等を用いることができる。
また、上記したフッ素原子を持つ重合性化合物や重合体とともに、上記防眩層に記載したような各バインダー樹脂を混合して使用することもできる。更に、反応性基等を硬化させるための硬化剤、塗工性を向上させたり、防汚性を付与させたりするために、各種添加剤、溶剤を適宜使用することができる。
上記低屈折率層の形成においては、上記低屈折率剤及び樹脂等を添加してなる低屈折率層用組成物の粘度を好ましい塗布性が得られる0.5~5mPa・s(25℃)、好ましくは0.7~3mPa・s(25℃)の範囲のものとすることが好ましい。可視光線の優れた反射防止層を実現でき、かつ、均一で塗布ムラのない薄膜を形成することができ、かつ、密着性に特に優れた低屈折率層を形成することができる。
樹脂の硬化手段は、上述した防眩層で説明したのと同様であってよい。硬化処理のために加熱手段が利用される場合には、加熱により、例えばラジカルを発生して重合性化合物の重合を開始させる熱重合開始剤がフッ素系樹脂組成物に添加されることが好ましい。
低屈折率層の層厚(nm)dは、下記式(1):
       d=mλ/(4n)  (1)
 (上記式中、
 nは低屈折率層の屈折率を表し、
 mは正の奇数を表し、好ましくは1を表し、
 λは波長であり、好ましくは480~580nmの範囲の値である)
を満たすものが好ましい。
また、本発明にあっては、低屈折率層は下記式(2):
       120<n<145    (2)
を満たすことが低反射率化の点で好ましい。
本発明の防眩性フィルムは、また、本発明の効果が損なわれない範囲内で、必要に応じて他の層(帯電防止層、防汚層、接着剤層、他のハードコート層等)の1層又は2層以上を適宜形成することができる。なかでも、帯電防止層及び防汚層のうち少なくとも一層を有することが好ましい。これらの層は、公知の反射防止用積層体と同様のものを採用することもできる。
本発明の防眩性フィルムは、暗室でのコントラスト比が80%以上であることが好ましく、より好ましくは90%以上である。80%未満であると、本発明の防眩性フィルムをディスプレイ表面に装着した場合において視認性を損なう恐れがある。なお、本明細書における、上記コントラスト比は、以下の方法により測定された値である。
すなわちバックライトユニットとして冷陰極管光源に拡散板を設置したものを用い、2枚の偏光板(サムスン社製 AMN-3244TP)を用い、該偏光板をパラレルニコルに設置したときに通過する光の正面での輝度(Lmax)を、クロスニコルに設置したときに通過する光の正面での輝度(Lmin)で割った値(Lmax/Lmin)をコントラストとし、防眩性フィルム(光透過性基材+防眩層等)のコントラスト(L)を、光透過性基材のコントラスト(L)で割った値(L/L)×100(%)をコントラスト比とする。
なお、上記輝度の測定には、色彩輝度計(トプコン社製 BM-5A)を用い、色彩輝度計の測定角は、1°に設定し、サンプル上の視野φ5mmで測定する。また、バックライトの光量は、サンプルを設置しない状態で、2枚の偏光板をパラレルニコルに設置したときの正面での輝度が3600cd/mになるように設置する。
なお、明室でのコントラストについても上記暗室でのコントラスト比と同様であることが好ましい。
本発明の防眩性フィルムは、光透過性基材上に、例えば、2種以上の微粒子、バインダー粒子、電離放射線硬化型樹脂、溶剤及び光重合開始剤を含有する防眩層用組成物を使用して防眩層を形成することにより製造することができる。
上記防眩層用組成物及び防眩層の形成方法については、上述した防眩性フィルムにおいて、防眩層の形成方法として説明したものと同様の材料、方法が挙げられる。
本発明の防眩性フィルムは、偏光素子の表面に、本発明による防眩性フィルムを該防眩性フィルムにおける防眩層が存在する面と反対の面に設けることによって、偏光板とすることができる。このような偏光板も、本発明の一つである。
上記偏光素子としては特に限定されず、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン-酢酸ビニル共重合体系ケン化フィルム等を使用することができる。上記偏光素子と本発明の光学積層体とのラミネート処理においては、光透過性基材(トリアセチルセルロースフィルム)にケン化処理を行うことが好ましい。ケン化処理によって、接着性が良好になり帯電防止効果も得ることができる。
本発明は、最表面に上記防眩性フィルム又は上記偏光板を備えてなる画像表示装置でもある。
上記画像表示装置は、LCD、PDP、FED、ELD(有機EL、無機EL)、CRT、タブレットPC、タッチパネル、電子ペーパー等の画像表示装置であってよい。
上記の代表的な例であるLCDは、透過性表示体と、上記透過性表示体を背面から照射する光源装置とを備えてなるものである。本発明の画像表示装置がLCDである場合、この透過性表示体の表面に、本発明の防眩性フィルム又は本発明の偏光板が形成されてなるものである。
本発明が上記防眩性フィルムを有する液晶表示装置の場合、光源装置の光源は光学積層体の下側から照射される。なお、STN型の液晶表示装置には、液晶表示素子と偏光板との間に、位相差板が挿入されてよい。この液晶表示装置の各層間には必要に応じて接着剤層が設けられてよい。
上記画像表示装置であるPDPは、表面ガラス基板(表面に電極を形成)と当該表面ガラス基板に対向して間に放電ガスが封入されて配置された背面ガラス基板(電極および、微小な溝を表面に形成し、溝内に赤、緑、青の蛍光体層を形成)とを備えてなるものである。本発明の画像表示装置がPDPである場合、上記表面ガラス基板の表面、又はその前面板(ガラス基板又はフィルム基板)に上述した防眩性フィルムを備えるものでもある。
上記画像表示装置は、電圧をかけると発光する硫化亜鉛、ジアミン類物質:発光体をガラス基板に蒸着し、基板にかける電圧を制御して表示を行うELD装置、又は、電気信号を光に変換し、人間の目に見える像を発生させるCRTなどの画像表示装置であってもよい。この場合、上記のような各表示装置の最表面又はその前面板の表面に上述した防眩性フィルムを備えるものである。
本発明の画像表示装置は、いずれの場合も、テレビジョン、コンピュータ、電子ペーパー、タッチパネル、タブレットPCなどのディスプレイ表示に使用することができる。特に、CRT、液晶パネル、PDP、ELD、FED、タッチパネルなどの高精細画像用ディスプレイの表面に好適に使用することができる。
本発明の防眩性フィルムは、上述した構成からなる単層で且つ薄層であるため、安価で耐割れ性に優れ、ハードコート性及び防眩性を維持しつつ、面ギラ及び白ぼけの発生が充分に抑制され、その結果、暗室でも高コントラストの表示画像を得ることができる防眩性フィルムとすることができる。
このため、本発明の防眩性フィルムは、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)等に好適に適用することができる。
θaの測定方法の説明図である。 実施例8に係る防眩性フィルムの防眩層の断面STEM写真であり、倍率3000倍である。 実施例8に係る防眩性フィルムの防眩層の断面STEM写真であり、倍率2万倍である。 実施例9に係る防眩性フィルムの防眩層の断面STEM写真であり、(a)は、倍率3000倍であり、(b)は、倍率1万倍である。 比較例1に係る防眩性フィルムの防眩層の断面STEM写真であり、(a)は、倍率3000倍であり、(b)は、倍率2万倍である。 比較例2に係る防眩性フィルムの防眩層の断面STEM写真であり、(a)は、倍率3000倍であり、(b)は、倍率2万倍である。
本発明の内容を下記の実施例により説明するが、本発明の内容はこれらの実施態様に限定して解釈されるものではない。特別に断りの無い限り、「部」及び「%」は質量基準である。
(実施例1)
光透過性基材(厚み80μmトリアセチルセルロース樹脂フィルム、富士フィルム社製、TD80UL)を準備し、該光透過性基材の片面に、下記に示した組成の防眩層用組成物を塗布し、塗膜を形成した。次いで、形成した塗膜を温度50℃の熱オーブン中で60秒間乾燥し、塗膜中の溶剤を蒸発させ、紫外線を積算光量が50mJ/cmになるように照射して塗膜を硬化させることにより、4μm厚み(硬化時)の防眩層を形成し、実施例1に係る防眩性フィルムを作製した。
(防眩層用組成物)
有機微粒子(アクリル-スチレン共重合体粒子、平均粒径2.0μm、屈折率1.515、積水化成品工業社製) 1質量部
球状無機微粒子(アルミノシリケート粒子、平均粒径2.0μm、屈折率1.50、水澤化学工業社製) 3質量部
フュームドシリカ(AEROSIL R805 平均粒径12nm、日本アエロジル社製) 1質量部
ペンタエリスリトールトリアクリレート(PETA、ダイセル・サイテック社製) 60質量部
ウレタンアクリレート(UV1700B、日本合成化学社製) 40質量部
イルガキュア184(BASFジャパン社製) 6質量部
イルガキュア907(BASFジャパン社製) 1質量部
ポリエーテル変性シリコーン(TSF4460、モメンティブ・パフォーマンス・マテリアルズ社製) 0.025質量部
トルエン 105質量部
イソプロピルアルコール 30質量部
シクロヘキサノン 15質量部
なお、フュームドシリカは、メチル基を有するシランカップリング剤で表面処理されたものである。
(実施例2)
有機微粒子の配合量を5質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例2に係る防眩性フィルムを製造した。
(実施例3)
有機微粒子の配合量を12質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例3に係る防眩性フィルムを製造した。
(実施例4)
有機微粒子の配合量を5質量部とし、無機微粒子の配合量を0.3質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例4に係る防眩性フィルムを製造した。
(実施例5)
有機微粒子の配合量を5質量部とし、無機微粒子の配合量を8質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例5に係る防眩性フィルムを製造した。
(実施例6)
有機微粒子の配合量を5質量部とし、フュームドシリカの配合量を0.3質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例6に係る防眩性フィルムを製造した。
(実施例7)
有機微粒子の配合量を5質量部とし、フュームドシリカの配合量を4質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例7に係る防眩性フィルムを製造した。
(実施例8)
有機微粒子の配合量を5質量部とし、フュームドシリカ(平均粒径12nm、日本アエロジル社製、オクチルシランを有するシランカップリング剤で表面処理)を1質量部用いた以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例8に係る防眩性フィルムを製造した。
(実施例9)
有機微粒子の配合量を5質量部とし、フュームドシリカを配合しなかった以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして実施例9に係る防眩性フィルムを製造した。
(比較例1)
有機微粒子の配合量を5質量部とし、無機微粒子を配合しなかった以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして比較例1に係る防眩性フィルムを製造した。
(比較例2)
有機微粒子を配合しなかった以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして比較例2に係る防眩性フィルムを製造した。
(比較例3)
有機微粒子の配合量を10質量部とし、無機微粒子及びフュームドシリカを配合しなかった以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして比較例3に係る防眩性フィルムを製造した。
(比較例4)
有機微粒子を配合せず、無機微粒子としてシリカ(平均粒径2.0μm、東ソー・シリカ社製)を3質量部配合した以外は、実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして比較例4に係る防眩性フィルムを製造した。
(比較例5)
フュームドシリカを、平均粒径16nmで表面処理のない、つまり親水性であるAEROSIL130(日本アエロジル社製 pH4.0~4.5、比表面積130m/g)に代えた以外は、実施例1と同様にして防眩層用組成物を調製した。しかしながら、当該防眩層用組成物は、初期からゲル化、沈殿を生じたため、防眩層を形成することができなかった。
(参考例1)
有機微粒子の配合量を5質量部とし、無機微粒子として、不定形のアルミノシリケート(水澤化学工業社製、平均粒径2.0μm)を3質量部用いた以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして参考例1に係る防眩性フィルムを製造した。
(参考例2)
有機微粒子の配合量を18質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして参考例2に係る防眩性フィルムを製造した。
(参考例3)
有機微粒子の配合量を5質量部とし、無機微粒子の配合量を12質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いた以外は、実施例1と同様にして参考例3に係る防眩性フィルムを製造した。
(参考例4)
有機微粒子としてアクリル-スチレン共重合体粒子(平均粒径1.0μm、屈折率1.515、積水化成品工業社製)を用い、その配合量を10質量部とし、無機微粒子として球状アルミノシリケート粒子(平均粒径0.5μm、屈折率1.50、水澤化学工業社製)を用い、その配合量を7質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いて、硬化時の厚みを1.5μmとした以外は、実施例1と同様にして参考例4に係る防眩性フィルムを製造した。
(参考例5)
有機微粒子としてアクリル-スチレン共重合体粒子(平均粒径10.0μm、屈折率1.515、積水化成品工業社製)を用い、その配合量を5質量部とし、無機微粒子として不定形のアルミノシリケート粒子(平均粒径5μm、屈折率1.50、水澤化学工業社製)を用い、その配合量を3質量部とし、フュームドシリカの配合量を2質量部とした以外は実施例1と同様にして防眩層用組成物を調製し、該防眩層用組成物を用いて、硬化時の厚みを15.0μmとした以外は、実施例1と同様にして参考例5に係る防眩性フィルムを製造した。
得られた実施例1~9、比較例1~5及び参考例1~5に係る防眩性フィルムを下記項目について評価した。評価結果を表1に示した。
(塗液安定性)
防眩性フィルム作製後、塗液タンク中に沈殿物が無いものを○、防眩層に異物はみられないがタンクに沈殿物が存在したものを△、防眩層に異物がみられタンクに沈殿物が存在したものを×とした。
(防眩性)
得られた防眩性フィルムの防眩性について、黒アクリル板、透明粘着、評価フィルム(粘着側は非塗工面)の順に貼付したものを明室環境下で目視にて、下記の基準により評価した。
○:周囲の写り込みがなく良好
×:周囲の写りこみが目立ってみえる
(明室の艶黒感の評価:白ぼけがなく艶黒にみえるかどうか)
得られた防眩性フィルムの白ぼけについて、黒アクリル板、透明粘着、評価フィルム(粘着側は非塗工面)の順に貼付したものを明室環境下で目視にて、下記の基準により評価した。
◎:表面が白ぼけせず、明室で艶黒感が非常に良好
○:表面が白ぼけせず、明室で艶黒感が良好
×:表面が全面的に白ぼけてみえる
(面ギラ評価)
得られた防眩性フィルムの防眩性について、暗室において、ライトボックス、140ppiのブラックマトリクスガラス、評価フィルムの順に下から重ねた状態を目視にて、下記の基準により評価した。
◎:面ギラが殆ど確認されない
○:面ギラが充分良化される
×:面ギラ防止効果なし
(暗室での艶黒感の評価:暗室コントラスト比)
暗室において、バックライトユニットとして冷陰極管光源に拡散板を設置したものを用い、2枚の偏光板(サムスン社製 AMN-3244TP)を用い、該偏光板をパラレルニコルに設置したときに通過する光の正面での輝度(Lmax)を、クロスニコルに設置したときに通過する光の正面での輝度(Lmin)で割ることで、防眩性フィルム(光透過性基材+防眩層)のコントラスト(L)と、光透過性基材のコントラスト(L)を求め、(L/L)×100(%)を算出することでコントラスト比を算出した。
なお、輝度の測定には、色彩輝度計(トプコン社製 BM-5A)を用いた。色彩輝度計の測定角は1°に設定し、サンプル上の視野φ5mmで測定した。バックライトの光量は、サンプルを設置しない状態で、2枚の偏光板をパラレルニコルに設置したときの輝度が3600cd/mになるように設置した。
なお、上記コントラスト比が、90を超えるものを「コントラストが高く、暗室で艶黒感が非常に良好である」と評価し、80を超え90以下のものを「コントラストが高く、暗室で艶黒感が良好である」と評価し、80以下のものを「コントラストが低く、暗室で艶黒感がない」と評価した。
(鉛筆硬度)
得られた防眩性フィルムを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(500g荷重)を行い、傷がつかなかった最も高い硬度を測定した。
(割れ性)
JIS-K5600-5-1に記載されているマンドレル試験(金属製円柱にサンプルを巻きつける試験)に準じ、φ8mmのマンドレル棒に防眩層を外側にして、得られた防眩性フィルムの長さ方向で巻き付け、クラック(ひび)の発生の有無を評価した。
なお、クラックが発生しなかったものを「○」と表記し、クラックが発生したものを「×」と表記した。
(凹凸の平均間隔(Sm)、凹凸の算術平均粗さ(Ra)、凹凸部の平均傾斜角(θa)、十点平均粗さ(Rz))
表面に凹凸形状を有する防眩性フィルムについて、JIS B 0601-1994に準拠して凹凸の平均間隔(Sm)、凹凸の算術平均粗さ(Ra)及び十点平均粗さ(Rz)を測定し、図1に示した方法で凹凸部の平均傾斜角(θa)を測定した。なお、上記Sm、Ra、θa及びRzの測定には、表面粗さ測定器:SE-3400/株式会社小坂研究所製を用い、以下の条件で測定した。
(1)表面粗さ検出部の触針:
型番/SE2555N(2μ触針)、株式会社小坂研究所製
(先端曲率半径2μm/頂角:90度/材質:ダイヤモンド)
(2)表面粗さ測定器の測定条件:
基準長さ(粗さ曲線のカットオフ値λc:2.5mm
評価長さ(基準長さ(カットオフ値λc)×5):12.5mm
触針の送り速さ:0.5mm/s
なお、通常カットオフ値は0.8mmが使用されることが多いが、本発明においては、カットオフ値を2.5mmに設定して測定を行った。その理由は、本発明における表面に凹凸形状を有する防眩性フィルムの好ましい凹凸形状としては、上記に記載しているように、外光による反射を防ぎ、さらには、画像表示装置を黒表示にした状態での優れた艶黒感(画面表示における濡れたような艶のある黒色の再現性)を得ることができる凹凸形状だからである。すなわち、大きくなだらかな凹凸形状を有することが好ましく、この凹凸形状を測定するには、カットオフ値を2.5mmに設定して測定することが好ましいからである。
(微粒子凝集状態)
防眩性フィルムの断面を、STEMにより、2000倍~30000倍で観察し、有機微粒子と無機微粒子とが凝集体を形成していたものを○、それ以外を×と評価した。
Figure JPOXMLDOC01-appb-T000001
表1より、実施例に係る防眩性フィルムは、いずれも高い暗室でのコントラスト比を有するとともに、防眩性、白ぼけ防止性、面ギラ防止性、ハードコート性(鉛筆硬度及び割れ性)のいずれも優れたものであった。なお、図2-1、2-2は、実施例8に係る防眩性フィルムの防眩層の断面STEM写真であり、図2-1は、倍率3000倍であり、図2-2は、倍率2万倍である。なお、図2-1では、有機微粒子及び無機微粒子の凝集体が2つ観察された。また、図3は、実施例9に係る防眩性フィルムの防眩層の断面STEM写真であり、(a)は、倍率3000倍であり、(b)は、倍率1万倍である。なお、図3(b)では、有機微粒子及び無機微粒子の凝集体が2つ観察された。図2-1、2-2、3に示したように、実施例8及び9に係る防眩性フィルムでは、防眩層中で有機微粒子と無機微粒子とが凝集体を形成しており、特に実施例8では有機微粒子及び無機微粒子の周囲にフュームドシリカが偏在していることが確認できた。また、実施例9の結果より、フュームドシリカを使用した場合には、これを使用しなかった場合よりも塗液安定性に優れていた。
なお、白ぼけ防止性の評価が「◎」であった実施例に係る防眩性フィルムは、表面ヘイズの値が0.1%以上、2%未満の範囲内にあり、内部拡散によるヘイズの値が2%以上、5%未満の範囲内にあった。
一方、比較例1、2に係る防眩性フィルムは、いずれも防眩性に劣るものであった。なお、図4は、比較例1に係る防眩性フィルムの防眩層の断面STEM写真であり、図5は、比較例2に係る防眩性フィルムの防眩層の断面STEM写真であり、いずれも、(a)は、倍率3000倍であり、(b)は、倍率2万倍である。図4、5に示したように、比較例1、2に係る防眩性フィルムでは、防眩層には凝集体が形成されていなかった。フュームドシリカも、粒子周りに偏在しているというよりも、防眩層全体に分散していた。
また、防眩層に無機微粒子を含まない比較例3に係る防眩性フィルムは、白ぼけの評価に劣り、防眩層に有機微粒子を含ない比較例4に係る防眩性フィルムは、白ぼけ及び面ギラに劣るものであった。
また、参考例1に係る防眩性フィルムは、無機微粒子が不定形のアルミノシリケートであったため、暗室コントラストに劣り、参考例2に係る防眩性フィルムは、有機微粒子の配合量が多すぎたため、白ぼけ及び面ギラの各評価に劣り、参考例3に係る防眩性フィルムは、無機微粒子の配合量が多すぎたため、白ぼけ及び面ギラの各評価に劣り、参考例4に係る防眩性フィルムは、防眩層の厚さが薄く、鉛筆硬度試験が劣るものであり、参考例5に係る防眩性フィルムは、防眩層の厚さが厚く、割れ性に劣るものであった。
実施例で得られた防眩性フィルムの防眩層の表面に、下記組成の低屈折率層用組成物を、乾燥後(40℃×1分)の膜厚が0.1μmとなるように塗布し、紫外線照射装置(フュージョンUVシステムズ・ジャパン社製、光源Hバルブ)を用いて、照射線量100mJ/cmで紫外線照射を行って硬化させて低屈折率層を製造する。得られた低屈折率層を備えた防眩性フィルムは、白ぼけの防止効果が更に優れたものである。
(低屈折率層用組成物)
中空シリカ微粒子(該シリカ微粒子の固形分:20質量%、溶液:メチルイソブチルケトン、平均粒径:50nm) 40質量部
ペンタエリスリトールトリアクリレート(PETA)(ダイセル・サイテック社製) 10質量部
重合開始剤(イルガキュア127:BASFジャパン社製) 0.35質量部
変性シリコーンオイル(X22164E:信越化学社製) 0.5質量部
MIBK 320質量部
PGMEA 161質量部
本発明の防眩性フィルムは、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー、タブレットPC等に好適に適用することができる。

Claims (12)

  1. 光透過性基材の少なくとも一方の面上に表面に凹凸形状を有する防眩層を有する防眩性フィルムであって、
    前記防眩層は、2種以上の球状の微粒子が凝集した凝集体を含有し、
    前記凝集体により、前記防眩層の表面に凸部が形成され、前記防眩層の表面の凹凸形状が形成されている
    ことを特徴とする防眩性フィルム。
  2. 2種以上の球状の微粒子は、1種以上の有機微粒子及び1種以上の無機微粒子を少なくとも含む請求項1記載の防眩性フィルム。
  3. 有機微粒子は、平均粒径が0.3~10.0μm、無機微粒子は、平均粒径が500nm~5.0μmである請求項2記載の防眩性フィルム。
  4. 防眩層は、更にバインダー粒子を含有する請求項1、2又は3記載の防眩性フィルム。
  5. バインダー粒子は、有機微粒子及び無機微粒子の周囲に偏在している請求項2、3又は4記載の防眩性フィルム。
  6. バインダー粒子は、フュームドシリカである請求項4又は5記載の防眩性フィルム。
  7. フュームドシリカは、表面処理されている請求項6記載の防眩性フィルム。
  8. フュームドシリカは、表面処理として疎水化処理されており、前記疎水化処理は、メチル処理、オクチルシラン処理、又は、ジメチルシリコーンオイル処理である請求項7記載の防眩性フィルム。
  9. 有機微粒子は、アクリル樹脂、ポリスチレン樹脂、スチレン-アクリル共重合体、ポリエチレン樹脂、エポキシ樹脂、シリコーン樹脂、ポリフッ化ビニリデン樹脂及びポリフッ化エチレン樹脂からなる群より選択される少なくとも1種の材料からなる微粒子である請求項2、3、4、5、6、7又は8記載の防眩性フィルム。
  10. 無機微粒子は、アルミノシリケート、タルク、マイカ及びシリカからなる群より選択される少なくとも一種の微粒子である請求項2、3、4、5、6、7、8又は9記載の防眩性フィルム。
  11. 偏光素子を備えてなる偏光板であって、
    前記偏光板は、偏光素子表面に請求項1、2、3、4、5、6、7、8、9又は10記載の防眩性フィルムを備えることを特徴とする偏光板。
  12. 最表面に請求項1、2、3、4、5、6、7、8、9若しくは10記載の防眩性フィルム、又は、請求項11記載の偏光板を備えることを特徴とする画像表示装置。
     
     
PCT/JP2011/074280 2010-10-22 2011-10-21 防眩性フィルム、偏光板及び画像表示装置 WO2012053632A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177024290A KR101898833B1 (ko) 2010-10-22 2011-10-21 방현성 필름, 편광판 및 화상 표시 장치
KR1020137012951A KR101775194B1 (ko) 2010-10-22 2011-10-21 방현성 필름, 편광판 및 화상 표시 장치
CN2011800502623A CN103154781A (zh) 2010-10-22 2011-10-21 防眩性膜、偏振片和图像显示装置
US13/879,535 US10048407B2 (en) 2010-10-22 2011-10-21 Antiglare film, polarizer, and image display device
JP2012539780A JP5974894B2 (ja) 2010-10-22 2011-10-21 防眩性フィルム、偏光板及び画像表示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-237832 2010-10-22
JP2010237832 2010-10-22
JP2011193278 2011-09-05
JP2011-193278 2011-09-05

Publications (1)

Publication Number Publication Date
WO2012053632A1 true WO2012053632A1 (ja) 2012-04-26

Family

ID=45975340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074280 WO2012053632A1 (ja) 2010-10-22 2011-10-21 防眩性フィルム、偏光板及び画像表示装置

Country Status (6)

Country Link
US (1) US10048407B2 (ja)
JP (1) JP5974894B2 (ja)
KR (2) KR101775194B1 (ja)
CN (2) CN103154781A (ja)
TW (1) TWI618950B (ja)
WO (1) WO2012053632A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026122A (ja) * 2012-07-26 2014-02-06 Dainippon Printing Co Ltd 防眩性フィルム、偏光板及び画像表示装置
JP2014149504A (ja) * 2013-02-04 2014-08-21 Dainippon Printing Co Ltd 防眩フィルム、偏光板、液晶パネルおよび画像表示装置
JPWO2013168569A1 (ja) * 2012-05-09 2016-01-07 大日本印刷株式会社 光学フィルム、偏光板、液晶パネルおよび画像表示装置
WO2016017816A1 (ja) * 2014-08-01 2016-02-04 日東電工株式会社 防眩フィルムおよび画像表示装置
JP2016212269A (ja) * 2015-05-08 2016-12-15 株式会社ダイセル 反射防止材
JPWO2018159727A1 (ja) * 2017-03-03 2019-11-07 富士フイルム株式会社 光学フィルムならびにこれを有する画像表示装置の前面板、画像表示装置、画像表示機能付きミラ−、抵抗膜式タッチパネルおよび静電容量式タッチパネル
JP2020052433A (ja) * 2014-08-01 2020-04-02 日東電工株式会社 防眩フィルムおよび画像表示装置
JP2020109460A (ja) * 2019-01-02 2020-07-16 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ウィンドウ及びそのウィンドウを含む表示装置
WO2022220276A1 (ja) * 2021-04-16 2022-10-20 パナソニックIpマネジメント株式会社 光拡散部を有する伸縮性樹脂シート、及び、それを用いた発光シート
US11548992B2 (en) 2016-01-07 2023-01-10 Lg Chem, Ltd. Antireflection film

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101273789B1 (ko) 2012-04-19 2013-06-11 다이니폰 인사츠 가부시키가이샤 방현성 필름, 편광판 및 화상 표시 장치
US9207824B2 (en) 2014-03-25 2015-12-08 Hailiang Wang Systems and methods for touch sensors on polymer lenses
KR102308494B1 (ko) * 2014-04-14 2021-10-01 고쿠리츠다이가쿠호진 토쿄고교 다이가꾸 투명 스크린용 필름 및 그 제조방법과 그것을 구비한 투명 스크린
TWI628457B (zh) * 2014-04-17 2018-07-01 日商大日本印刷股份有限公司 防眩膜、偏光板、液晶面板以及影像顯示裝置
US10205127B2 (en) * 2014-07-04 2019-02-12 Nec Lighting, Ltd. Organic EL panel-use transparent resin layer, organic EL panel, organic EL lighting device, and organic EL display
KR20160040922A (ko) * 2014-10-06 2016-04-15 삼성전자주식회사 방현 필름을 포함하는 편광판 및 이를 포함하는 디스플레이 장치
WO2016063792A1 (ja) * 2014-10-24 2016-04-28 三菱瓦斯化学株式会社 光拡散フィルム
US10747372B2 (en) 2015-03-25 2020-08-18 Hailiang Wang Systems and high throughput methods for touch sensors
US10294422B2 (en) 2015-07-16 2019-05-21 Hailiang Wang Etching compositions for transparent conductive layers comprising silver nanowires
US10372246B2 (en) 2015-07-16 2019-08-06 Hailiang Wang Transferable nanocomposites for touch sensors
JP6676325B2 (ja) * 2015-10-01 2020-04-08 リンテック株式会社 粘着シート
JP6676930B2 (ja) * 2015-11-09 2020-04-08 コニカミノルタ株式会社 光学フィルム
TWI652167B (zh) * 2016-02-10 2019-03-01 凸版巴川光學薄膜股份有限公司 光學積層體、偏光板及顯示裝置
CN108603954B (zh) * 2016-02-16 2019-12-13 株式会社凸版巴川光学薄膜 光学层叠体、偏光板及显示装置
KR101951864B1 (ko) 2016-03-14 2019-02-25 주식회사 엘지화학 반사 방지 필름 및 디스플레이 장치
KR101948821B1 (ko) 2016-03-14 2019-02-15 주식회사 엘지화학 반사 방지 필름 및 디스플레이 장치
KR101951863B1 (ko) 2016-03-14 2019-02-25 주식회사 엘지화학 반사 방지 필름 및 디스플레이 장치
JP6498146B2 (ja) * 2016-04-19 2019-04-10 富士フイルム株式会社 積層フィルムおよびその製造方法、偏光板、液晶パネル、液晶表示装置ならびにタッチパネル
CN107562251B (zh) * 2016-06-30 2020-09-15 宁波科廷光电科技有限公司 用于触摸传感器的可转移纳米复合材料
WO2018111054A2 (ko) * 2016-12-16 2018-06-21 주식회사 엘지화학 광학 필름 형성용 조성물, 광학 필름 및 이를 포함하는 편광판
KR102090810B1 (ko) 2016-12-16 2020-03-18 주식회사 엘지화학 광학 필름 형성용 조성물, 광학 필름 및 이를 포함하는 편광판
CN107290809A (zh) * 2017-07-20 2017-10-24 武汉华星光电技术有限公司 抗眩层的制作方法及显示面板
JP7121479B2 (ja) * 2017-11-14 2022-08-18 株式会社トッパンTomoegawaオプティカルフィルム 光学積層体、偏光板及び表示装置
CN108663732B (zh) * 2018-05-10 2021-09-14 明基材料有限公司 一种低雾度防眩膜及偏光板
TWI667303B (zh) * 2018-08-02 2019-08-01 明基材料股份有限公司 硬塗層光學膜、具有此硬塗層光學膜的偏光板、及含此硬塗層光學膜及/或偏光板的影像顯示裝置
JP6683983B2 (ja) * 2018-09-27 2020-04-22 大和製罐株式会社 撥液性の膜
US12078777B2 (en) 2018-11-15 2024-09-03 Lg Chem, Ltd. Optical laminate, polarizing plate, and display device
KR102428883B1 (ko) * 2018-11-15 2022-08-03 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
KR102440277B1 (ko) * 2018-11-15 2022-09-02 주식회사 엘지화학 광학 적층체, 편광판, 및 디스플레이 장치
KR102212837B1 (ko) * 2018-12-26 2021-02-05 세종대학교산학협력단 유/무기 하이브리드 광결정 필름 및 이의 제조 방법
KR102608213B1 (ko) * 2019-01-14 2023-11-29 주식회사 엘지화학 편광판, 및 디스플레이 장치
US12092794B2 (en) 2019-11-23 2024-09-17 Lg Chem, Ltd. Anti-glare film, polarizing plate and display apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335893A (ja) * 2005-06-02 2006-12-14 Sumitomo Dow Ltd 光反射性に優れた難燃性ポリカーボネート樹脂組成物およびそれからなる光反射板
JP2008304638A (ja) * 2007-06-06 2008-12-18 Sony Corp 防眩性フィルムおよびその製造方法、偏光子ならびに表示装置

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0618706A (ja) 1992-01-24 1994-01-28 Dainippon Printing Co Ltd 耐擦傷性防眩フィルム、偏光板及びその製造方法
JPH1020103A (ja) 1996-07-05 1998-01-23 Dainippon Printing Co Ltd 防眩フィルム
JP2001002799A (ja) 1999-06-17 2001-01-09 Konica Corp セルロースエステルフィルム、その製造方法及びそれを用いる偏光板用保護フィルム
JP4215458B2 (ja) * 2002-06-26 2009-01-28 日本製紙株式会社 防眩フィルム
JP4506070B2 (ja) * 2002-11-01 2010-07-21 コニカミノルタホールディングス株式会社 防眩層の形成方法、防眩フィルムの製造方法及び防眩層形成用のインクジェット装置
KR100799146B1 (ko) * 2003-08-21 2008-01-29 아사히 가세이 케미칼즈 가부시키가이샤 감광성 조성물 및 그 경화물
US7828889B2 (en) * 2003-12-18 2010-11-09 The Clorox Company Treatments and kits for creating transparent renewable surface protective coatings
JP4641829B2 (ja) * 2004-03-29 2011-03-02 大日本印刷株式会社 防眩性積層体
JP2006143873A (ja) 2004-11-19 2006-06-08 Fuji Photo Film Co Ltd セルロースアシレート樹脂膜、その製造方法および液晶表示素子
JP5102955B2 (ja) * 2005-01-06 2012-12-19 株式会社ジロオコーポレートプラン 光拡散シート及びこれを用いたバックライトユニット
DE102005007753A1 (de) 2005-02-18 2006-08-31 Wacker Chemie Ag Partikel mit geringer spezifischer Oberfläche und hoher Verdickungswirkung
TW200641387A (en) 2005-02-21 2006-12-01 Dainippon Printing Co Ltd Anti-glare optical multilayer body
US7505104B2 (en) * 2005-09-16 2009-03-17 Fujifilm Corporation Antiglare antireflective film, polarizing plate and liquid crystal display
US20070177271A1 (en) * 2006-02-02 2007-08-02 Fujifilm Corporation Antireflection film, polarizing plate and image display
JP2009066757A (ja) 2006-02-03 2009-04-02 Nakajima Kogyo Kk 防眩フィルム
JP5554885B2 (ja) * 2006-04-18 2014-07-23 恵和株式会社 液晶表示モジュール
JP2007322779A (ja) 2006-06-01 2007-12-13 Nitto Denko Corp 防眩性ハードコートフィルム、偏光板及びそれを用いた液晶表示装置
JP2008040063A (ja) * 2006-08-04 2008-02-21 Toppan Printing Co Ltd 防眩性光拡散部材
JPWO2008020587A1 (ja) * 2006-08-14 2010-01-07 大日本印刷株式会社 防眩性光学積層体
WO2008020612A1 (fr) * 2006-08-18 2008-02-21 Dai Nippon Printing Co., Ltd. Procédé de fabrication de stratifié optique, équipement de fabrication, stratifié optique, plaque de polarisation et appareil d'affichage d'images
EP2080613B1 (en) * 2006-11-16 2016-03-16 Mitsubishi Plastics, Inc. Gas barrier film laminate
US8163393B2 (en) * 2007-03-19 2012-04-24 Dai Nippon Printing Co., Ltd. Anti-dazzling optical laminate
WO2008140283A1 (en) * 2007-05-16 2008-11-20 Lg Chem, Ltd. Composition for anti-glare film and anti-glare film prepared using the same
PL2147067T3 (pl) * 2007-05-16 2016-06-30 Lg Chemical Ltd Kompozycja na folię przeciwodblaskową i folia przeciwodblaskowa wytworzona z jej użyciem
JP2008287072A (ja) * 2007-05-18 2008-11-27 Fujifilm Corp 防眩性フィルム及びそれを用いた反射防止フィルム
JP2009058862A (ja) * 2007-09-03 2009-03-19 Toppan Printing Co Ltd 防眩フィルム
JP5216501B2 (ja) * 2007-09-28 2013-06-19 富士フイルム株式会社 光学フィルム、偏光板、及び画像表示装置
JP5114438B2 (ja) * 2008-02-13 2013-01-09 富士フイルム株式会社 光学フィルム、その製造方法、偏光板および画像表示装置
JP5422150B2 (ja) * 2008-07-30 2014-02-19 富士フイルム株式会社 防眩フィルム、偏光板、および画像表示装置
JP2010085759A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 防眩フィルム、反射防止フィルム、偏光板及び画像表示装置
KR101034712B1 (ko) * 2008-12-24 2011-05-17 제일모직주식회사 두 개의 방현입자가 중첩된 형태의 방현제를 포함하는 방현필름 및 그 제조방법
US20110232761A1 (en) * 2010-03-18 2011-09-29 Lomasney Henry L Solar photovoltaic devices having optional batteries
WO2011129011A1 (ja) * 2010-04-16 2011-10-20 東ソー・エフテック株式会社 低屈折率膜用組成物
WO2011129012A1 (ja) * 2010-04-16 2011-10-20 東ソー・エフテック株式会社 太陽電池用コート層およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006335893A (ja) * 2005-06-02 2006-12-14 Sumitomo Dow Ltd 光反射性に優れた難燃性ポリカーボネート樹脂組成物およびそれからなる光反射板
JP2008304638A (ja) * 2007-06-06 2008-12-18 Sony Corp 防眩性フィルムおよびその製造方法、偏光子ならびに表示装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295706B2 (en) 2012-05-09 2019-05-21 Dai Nippon Printing Co., Ltd. Optical film, polarizing plate, liquid crystal panel, and image display apparatus
JPWO2013168569A1 (ja) * 2012-05-09 2016-01-07 大日本印刷株式会社 光学フィルム、偏光板、液晶パネルおよび画像表示装置
JP2014026122A (ja) * 2012-07-26 2014-02-06 Dainippon Printing Co Ltd 防眩性フィルム、偏光板及び画像表示装置
JP2014149504A (ja) * 2013-02-04 2014-08-21 Dainippon Printing Co Ltd 防眩フィルム、偏光板、液晶パネルおよび画像表示装置
WO2016017816A1 (ja) * 2014-08-01 2016-02-04 日東電工株式会社 防眩フィルムおよび画像表示装置
JP2016035574A (ja) * 2014-08-01 2016-03-17 日東電工株式会社 防眩フィルムおよび画像表示装置
JP2020052433A (ja) * 2014-08-01 2020-04-02 日東電工株式会社 防眩フィルムおよび画像表示装置
JP2016212269A (ja) * 2015-05-08 2016-12-15 株式会社ダイセル 反射防止材
US11548992B2 (en) 2016-01-07 2023-01-10 Lg Chem, Ltd. Antireflection film
JPWO2018159727A1 (ja) * 2017-03-03 2019-11-07 富士フイルム株式会社 光学フィルムならびにこれを有する画像表示装置の前面板、画像表示装置、画像表示機能付きミラ−、抵抗膜式タッチパネルおよび静電容量式タッチパネル
JP2020109460A (ja) * 2019-01-02 2020-07-16 三星ディスプレイ株式會社Samsung Display Co.,Ltd. ウィンドウ及びそのウィンドウを含む表示装置
JP7350251B2 (ja) 2019-01-02 2023-09-26 三星ディスプレイ株式會社 ウィンドウ及びそのウィンドウを含む表示装置
WO2022220276A1 (ja) * 2021-04-16 2022-10-20 パナソニックIpマネジメント株式会社 光拡散部を有する伸縮性樹脂シート、及び、それを用いた発光シート

Also Published As

Publication number Publication date
CN107718800A (zh) 2018-02-23
US20130250414A1 (en) 2013-09-26
JP5974894B2 (ja) 2016-08-23
TW201219861A (en) 2012-05-16
TWI618950B (zh) 2018-03-21
CN103154781A (zh) 2013-06-12
CN107718800B (zh) 2021-05-18
KR20170103983A (ko) 2017-09-13
KR20130127984A (ko) 2013-11-25
KR101898833B1 (ko) 2018-09-13
US10048407B2 (en) 2018-08-14
KR101775194B1 (ko) 2017-09-05
JPWO2012053632A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
JP5974894B2 (ja) 防眩性フィルム、偏光板及び画像表示装置
JP5874740B2 (ja) 防眩性フィルム、偏光板及び画像表示装置
JP6476582B2 (ja) 積層体の製造方法、積層体、偏光板及び画像表示装置
JP5948763B2 (ja) 防眩性フィルム、偏光板及び画像表示装置
JP5974709B2 (ja) 防眩性フィルム、偏光板及び画像表示装置
JP6064406B2 (ja) 光学積層体、偏光板及び画像表示装置
JPWO2006088204A1 (ja) 防眩性光学積層体
JP6035764B2 (ja) 光学積層体、偏光板及び画像表示装置
JP2014016476A (ja) 光学フィルム、偏光板、液晶パネルおよび画像表示装置
JP6044118B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6314384B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6171262B2 (ja) 光学積層体、偏光板及び画像表示装置
JP2013134358A (ja) 防眩層用組成物、防眩層用組成物の調製方法及び防眩性フィルムの製造方法
JP6167487B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6451717B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6171261B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6288228B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6381186B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6721067B2 (ja) 積層体の製造方法、積層体、偏光板及び画像表示装置
JP6292287B2 (ja) 光学積層体、偏光板及び画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180050262.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834471

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012539780

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012951

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879535

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11834471

Country of ref document: EP

Kind code of ref document: A1