JP6288228B2 - 光学積層体、偏光板及び画像表示装置 - Google Patents

光学積層体、偏光板及び画像表示装置 Download PDF

Info

Publication number
JP6288228B2
JP6288228B2 JP2016236108A JP2016236108A JP6288228B2 JP 6288228 B2 JP6288228 B2 JP 6288228B2 JP 2016236108 A JP2016236108 A JP 2016236108A JP 2016236108 A JP2016236108 A JP 2016236108A JP 6288228 B2 JP6288228 B2 JP 6288228B2
Authority
JP
Japan
Prior art keywords
coat layer
hard coat
fine particles
optical laminate
inorganic oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016236108A
Other languages
English (en)
Other versions
JP2017054146A (ja
Inventor
尚一郎 小久見
尚一郎 小久見
淳哉 江口
淳哉 江口
玄 古井
玄 古井
清馨 皆越
清馨 皆越
岩田 行光
行光 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2016236108A priority Critical patent/JP6288228B2/ja
Publication of JP2017054146A publication Critical patent/JP2017054146A/ja
Application granted granted Critical
Publication of JP6288228B2 publication Critical patent/JP6288228B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Polarising Elements (AREA)

Description

本発明は、光学積層体、偏光板及び画像表示装置に関する。
陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)等の画像表示装置においては、反射防止性能、帯電防止性能、ハードコート性や防汚性等の種々の性能を有する機能層からなる光学積層体が設けられている。
このような光学積層体は、光透過性基材上に種々の機能層を積層してなるものである。このため、光透過性基材上に、例えばハードコートを形成させた場合、光透過性基材とハードコート層との界面の反射光と、ハードコート表面の反射光とが干渉して、膜厚のムラに起因して干渉縞と呼ばれるムラ模様が現れ、外観が損なわれるという問題点が生じていた。
そのような干渉縞の発生を防ぐために、例えば、光透過性基材上にハードコート層を形成する場合、ハードコート層を形成するための樹脂組成物に、光透過性基材に浸透して膨潤又は溶解させることができる溶剤を使用することが知られている(例えば、特許文献1、2参照)。このような溶剤を含む樹脂組成物を使用することで、溶剤の光透過性基材への浸透に伴い樹脂組成物中の樹脂が光透過性基材中に含浸した含浸層が形成され、その結果、光透過性基材とハードコート層との界面を実質上無くすことができ、干渉縞の発生を防ぐことができる。
しかしながら、このような含浸層を形成することで干渉縞の防止を図った従来の光学積層体では、干渉縞の発生を充分に防ぐためには含浸層を厚く形成しなければならず、必然的にハードコート層を形成する際に使用する組成物の塗布量を多くする必要があった。
このため、光学積層体の薄膜化が難しくなったり、カールが発生したりするといった問題があり、また、ハードコート層形成時の組成物が多くなると、形成するハードコート層の厚みムラの原因となるとともに、製造コストが高くつくという問題もあった。
特開2003−131007号公報 特開2003−205563号公報
本発明は、上記現状に鑑みて、干渉縞及びカールの発生を充分に抑制しつつ、ハードコート層の薄膜化を図ることができ、製造コストが高くなることを防止できる光学積層体、該光学積層体を用いてなる偏光板及び画像表示装置を提供することを目的とするものである。
本発明は、光透過性基材の一方の面上に、ハードコート層を有する光学積層体であって、上記ハードコート層は、表面に凹凸形状を有し、該凹凸形状は、凹凸部の平均傾斜角をθaとし、凹凸のクルトシスをKrとしたとき、上記θa及びKrが以下の式を満たし、上記ハードコート層は、無機酸化物微粒子及びバインダー樹脂を含有し、上記ハードコート層の表面に有する凹凸形状は、上記無機酸化物微粒子により形成されており、上記ハードコート層の厚さは、2.0〜7.0μmであり、上記光学積層体は、透過画像鮮明度が0.125mm櫛において75〜95%であることを特徴とする光学積層体である。
0.01°≦θa≦0.10°
1≦Kr≦3
また、上記ハードコート層の凹凸形状は、凹凸の算術平均粗さをRaとしたとき、以下の式を満たすことが好ましい。
0.02μm≦Ra≦0.10μm
また、上記ハードコート層の凹凸形状は、λa=2π×(Ra/tan(θa))にて表される平均波長λaが下記式を満たすことが好ましい。
200μm≦λa≦800μm
本発明の光学積層体において、上記無機酸化物微粒子は、疎水化処理無機酸化物微粒子であることが好ましい。
また、上記無機酸化物微粒子は、凝集体を形成してハードコート層に含有されており、上記凝集体の平均粒子径が100nm〜2.0μmであることが好ましい。
本発明はまた、偏光素子を備えてなる偏光板であって、上記偏光板は、偏光素子表面に上述の光学積層体を備えることを特徴とする偏光板でもある。
本発明は、上述の光学積層体、又は、上述の偏光板を備えることを特徴とする画像表示装置でもある。
以下に、本発明を詳細に説明する。
本発明者らは、光透過性基材の一方の面上に、ハードコート層を有する構成の光学積層体について鋭意検討した結果、ハードコート層の表面(光透過性基材と反対側面)に、特定の凹凸形状を形成することで、干渉縞の発生を好適に防止することができ、光透過性基材への含浸層を形成する必要がないため薄膜化を図ることができ、更に、カールの発生の防止及び製造コストの高騰を防ぐことができることを見出し、本発明を完成するに至った。
また、本発明の光学積層体によると、光透過性基材に含浸層を形成する必要がないため、光透過性基材の材料の選択の幅、及び、ハードコート層を形成に用いられる組成物に使用できる溶剤の材料の選択の幅が、いずれも従来の光学積層体と比較して広がるという効果がある。
なお、従来、防眩性付与を目的として、ハードコート層の表面に凹凸形状を有する光学積層体(防眩性フィルム)が知られているが、本発明の光学積層体は、このような防眩性フィルムとは異なるものである。すなわち、本発明の光学積層体のハードコート層表面に形成された凹凸形状は、従来の防眩性フィルムの表面に形成された凹凸形状と比較して、凹凸の高さがより低く、更に、凹凸部の傾斜角度がよりなだらかである。従って、ハードコート層にこのような凹凸形状が形成された本発明の光学積層体では、従来の防眩性フィルムのような防眩性は得られない。一方で、本発明によると、防眩性フィルムで問題となる外光による白濁感の発生が生じず、コントラストに優れた映像を提供する光学積層体を得ることができる。
本発明の光学積層体は、光透過性基材の一方の面上に、ハードコート層を有する。
上記光透過性基材は、平滑性、耐熱性を備え、機械的強度に優れたものが好ましい。光透過性基材を形成する材料の具体例としては、例えば、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、又は、ポリウレタン等の熱可塑性樹脂やガラスが挙げられる。好ましくは、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテートが挙げられる。
上記光透過性基材は、上記材料を柔軟性に富んだフィルム状体として使用することが好ましいが、硬化性が要求される使用態様に応じて、板状体のものを使用してもよい。
その他、上記光透過性基材としては、脂環構造を有した非晶質オレフィンポリマー(Cyclo−Olefin−Polymer:COP)フィルムが挙げられる。これは、ノルボルネン系重合体、単環の環状オレフィン系重合体、環状共役ジエン系重合体、ビニル脂環式炭化水素系重合体等が用いられる基材で、例えば、日本ゼオン社製のゼオネックスやゼオノア(ノルボルネン系樹脂)、住友ベークライト社製のスミライトFS−1700、JSR社製のアートン(変性ノルボルネン系樹脂)、三井化学社製のアペル(環状オレフィン共重合体)、Ticona社製のTopas(環状オレフィン共重合体)、日立化成社製のオプトレッツOZ−1000シリーズ(脂環式アクリル樹脂)等が挙げられる。
また、トリアセチルセルロースの代替基材として旭化成ケミカルズ社製のFVシリーズ(低複屈折率、低光弾性率フィルム)も好ましい。
上記光透過性基材の厚さとしては、フィルム状体の場合、20〜300μmであることが好ましく、より好ましくは下限が30μmであり、上限が200μmである。光透過性基材が板状体の場合には、これらの厚さを超える厚さであってもよい。
上記光透過性基材は、その上に上記ハードコート層を形成するのに際して、接着性向上のために、コロナ放電処理、酸化処理等の物理的又は化学的な処理のほか、アンカー剤又はプライマーと呼ばれる塗料の塗布が予め行われていてもよい。
また、LCD向けの光透過性基材として主に用いられることが多いトリアセチルセルロースを材料とし、かつ、ディスプレイ薄膜化を目指す場合は、上記光透過性基材の厚さとして20〜65μmが好ましい。
上記ハードコート層は、硬度が、JIS K5600−5−4(1999)による鉛筆硬度試験(荷重4.9N)において、H以上であることが好ましく、2H以上であることがより好ましい。
本発明の光学積層体において、上記ハードコート層は、上記光透過性基材の一方の面上に形成されており、表面に凹凸形状を有するものである。
本発明の光学積層体において、上記ハードコート層の表面に形成された凹凸形状は、凹凸部の平均傾斜角をθaとし、凹凸のクルトシスをKrとしたとき、上記θa及びKrが以下の式を満たすものである。
0.01°≦θa≦0.10°
1≦Kr≦3
上記ハードコート層の表面に形成された凹凸形状により、干渉縞が防止できる理由は、ハードコート層表面で反射する光が拡散し、非干渉性の光となるためである。光を拡散させるためには凹凸表面に傾斜があることが必要であり、その指標が平均傾斜角θaである。
本発明の光学積層体において、上記凹凸部の平均傾斜角θaの下限は0.01°である。0.01°未満であると、傾斜が充分でなく、干渉縞を防止することができない。より好ましい下限は0.03°であり、更に好ましい下限は0.04°である。また、上記凹凸部の平均傾斜角θaの上限は0.10°である。0.10°を超えると、上記凹凸部の傾斜角度が過度に大きいため、外光の拡散反射による白濁感の問題が生じる。より好ましい上限は0.09°であり、更に好ましい上限は0.08°である。
また、本発明においては上記凹凸のクルトシスKrが1以上3以下である。上記クルトシスKrは、トガリとも言い、その値が大きいほど、凸部または凹部が急峻な形状となることを表す。これは、平均傾斜角が上記範囲を満たしていても、その傾斜角分布に偏りが生じていることを示している。すなわち、局所的には傾斜角が大きいが、その他の部分では傾斜角が小さいことを表している。このような場合、局所的に傾斜角が大きい部分では、光の拡散が過度に大きくなり白濁感の問題が生じる恐れがある一方、傾斜角が小さい部分では、好適に干渉縞が防止できない恐れがある。Krが3以下であれば、傾斜角度分布の偏りが適度に抑えられ、干渉縞を好適に防止することができると同時に白濁感も抑えることができる。また、Krの値は、定義上、最小値は1である。
また、本発明においては、凹凸の算術平均粗さをRaとしたとき、以下の式を満たすことが好ましい。
0.02μm≦Ra≦0.10μm
本発明においては、凹凸形状の各凸部の大きさ(高さ)を制御することが好ましいが、その指標が算術平均粗さRaである。
上記凹凸の算術平均粗さRaの下限は0.02μmである。上記Raが0.02μm未満であると、光の波長に対し各凸部の大きさ(高さ)が小さすぎることになり、拡散効果が得られないことがある。より好ましい下限は0.03μmであり、更に好ましい下限は0.04μmである。また、上記Raの上限は0.10μmである。Raが0.10μm超過であると、各凸部が大きくなりすぎ、透過光をゆがませるため、鮮明な画像が得られなくなることがある。より好ましい上限は0.09μmであり、更に好ましい上限は0.08μmである。
また、本発明においては、λa=2π×(Ra/tan(θa))で表される平均波長λaが200μm以上800μm以下であることが好ましい。
上記平均波長λaは、凹凸の平均的な間隔を示すパラメータである。平均波長λaが200μm未満であると、凹凸が小さすぎて干渉縞が防止できないか、あるいは、凹凸平面での傾斜角の変化が大きすぎて、白濁感が見られる恐れがある。平均波長λaが800μm超過であると、凹凸平面での傾斜角の変化が少なくなり、好適に干渉縞を防止できない恐れがある。上記平均波長λaのより好ましい下限は300μm、より好ましい上限は600μmである。
また、上記ハードコート層の表面に形成された凹凸形状の十点平均粗さ(Rz)は、0.5μm未満であることが好ましく、より好ましい上限は0.3μmである。上記Rzが0.5μm以上であると、凹凸が大きすぎて白濁感が見られる恐れがある。上記Rzの下限は特に限定されず、拡散効果が得られる範囲で適宜調整される。
なお、本明細書において、上記のθa、Kr、Ra及びRzは、JIS B 0601−1994に準拠する方法で得られた粗さ曲線から基準長さ毎に求められる値である。Ra及びRzはJIS B 0601−1994に定義された値であり、θaは、表面粗さ測定器:SE−3400 取り扱い説明書(1995.07.20改訂)(株式会社小坂研究所)に記載の定義による値であり、図1に示すように、基準長さLに存在する凸部高さの和(h+h+h+・・・+h)のアークタンジェントθa=tan−1{(h+h+h+・・・+h)/L}で求めることができる。
また、上記Krは下記の式により定義される値である。
Figure 0006288228
ここで、lは基準長さを表し、f(x)は粗さ曲線を表し、Rqは二乗平均平方根粗さであり下記の式により定義される。
Figure 0006288228
このようなθa、Kr、Ra及びRzは、例えば、表面粗さ測定器:SE−3400/株式会社小坂研究所製等により測定して求めることができる。
上記ハードコート層は、無機酸化物微粒子を含有していることが好ましい。
上記無機酸化物微粒子は、上記ハードコート層の表面の凹凸形状を形成する材料であり、本発明の光学積層体では、上記無機酸化物微粒子は、凝集体を形成して上記ハードコート層中に含有され、該無機酸化物微粒子の凝集体により上記ハードコート層の表面の凹凸形状が形成されていることが好ましい。
無機酸化物粒子としては、例えば、シリカ微粒子、アルミナ微粒子、ジルコニア微粒子、チタニア微粒子、酸化スズ微粒子、ATO粒子、酸化亜鉛微粒子等が挙げられる。
また、上記無機酸化物微粒子は、表面処理されていることが好ましい。上記無機酸化物微粒子が表面処理されていることで、該無機酸化物微粒子の凝集体の上記ハードコート層中での分布を好適に制御することができ、また、無機酸化物微粒子自体の耐薬品性及び耐ケン化性の向上を図ることもできる。
上記表面処理としては、疎水化処理が好ましく、例えば、上記無機酸化物微粒子を、メチル基あるいはオクチル基を有するシラン化合物で処理する方法等が挙げられる。
ここで、通常、上記無機酸化物微粒子の表面には水酸基が存在しているが、上記表面処理がされることで上記無機酸化物微粒子表面の水酸基が少なくなり、上記無機酸化物微粒子のBET法により測定される比表面積が小さくなるとともに、上記無機酸化物微粒子が過度に凝集することを防止でき、上述した特定の凹凸形状をハードコート層の表面に形成することができる。
また、上記無機酸化物微粒子は、非晶質であることが好ましい。上記無機酸化物微粒子が結晶性である場合、その結晶構造中に含まれる格子欠陥により、無機酸化物微粒子のルイス酸性が強くなってしまい、無機酸化物微粒子の過度の凝集を制御できなくなることがある。
このような無機酸化物微粒子としては、それ自身が凝集しやすく後述する凝集体を形成しやすいことから、例えば、フュームドシリカが好適に用いられる。ここで、上記フュームドシリカとは、乾式法で作製された200nm以下の粒径を有する非晶質のシリカをいい、ケイ素を含む揮発性化合物を気相で反応させることにより得られる。具体的には、例えば、ケイ素化合物、例えば、SiClを酸素と水素の炎中で加水分解して生成されたもの等が挙げられる。具体的には、例えば、AEROSIL R805(日本アエロジル社製)等が挙げられる。
上記無機酸化物微粒子の含有量としては特に限定されないが、上記ハードコート層中0.1〜5.0質量%であることが好ましい。0.1質量%未満であると、上述した特定の凹凸形状をハードコート層の表面に形成できず、干渉縞が防止できないことがあり、5.0質量%を超えると、凝集体が過度に生じ、内部拡散及び/又はハードコート層に大きな表面凹凸が生じるため、白濁感の問題が生じることがある。より好ましい下限は0.5質量%、より好ましい上限は3.0質量%である。
上記無機酸化物微粒子は、平均1次粒子径が1〜100nmであることが好ましい。1nm未満であると、上述した特定の凹凸形状をハードコート層の表面に形成できないことがあり、100nmを超えると、無機酸化物微粒子により光が拡散され、本発明の光学積層体を用いた画像表示装置の暗室コントラストが劣ることがある。より好ましい下限は5nm、より好ましい上限は50nmである。
なお、上記無機酸化物微粒子の平均1次粒子径は、断面電子顕微鏡(TEM、STEM等の透過型で倍率は5万倍以上が好ましい)の画像から、画像処理ソフトウェアーを用いて測定される値である。
上記無機酸化物微粒子は、単粒子状態での形状が球状であることが好ましい。上記無機酸化物微粒子の単粒子がこのような球状であることで、本発明の光学積層体を画像表示装置に適用した場合、高コントラストの表示画像を得ることができる。
なお、上記「球状」とは、例えば、真球状、楕円球状等が挙げられ、いわゆる不定形を除く意味である。
また、本発明において、上記無機酸化物微粒子の凝集体は、上記ハードコート層中で上述した無機酸化物微粒子が数珠状(真珠のネックレス状)に連なった構造を形成していることが好ましい。
上記ハードコート層中で上記無機酸化物微粒子が数珠状に連なった凝集体を形成していることで、該凝集体に基づく凸部が傾斜の少ないなだらかな形状となるため、上記ハードコート層の表面凹凸形状を上述した特定の凹凸形状とすることが容易になる。
なお、上記無機酸化物微粒子が数珠状に連なった構造とは、例えば、上記無機酸化物微粒子が直線状に連続して連なった構造(直鎖構造)、該直鎖構造が複数絡み合った構造、上記直鎖構造に無機酸化物微粒子が複数連続して形成された側鎖を1又は2以上有する分岐構造等、任意の構造が挙げられる。
また、上記無機酸化物微粒子の凝集体は、平均粒子径が100nm〜2.0μmであることが好ましい。100nm未満であると、上述した特定の凹凸形状をハードコート層の表面に形成できないことがあり、2.0μmを超えると、上記無機酸化物微粒子の凝集体により光が拡散され、本発明の光学積層体を用いた画像表示装置の暗室コントラストが劣ることがある。上記凝集体の平均粒子径のより好ましい下限は200nm、より好ましい上限は1.5μmである。
なお、上記無機酸化物微粒子の凝集体の平均粒子径は、断面電子顕微鏡による観察(1万〜2万倍程度)から無機酸化物微粒子の凝集体が多く含まれる5μm四方の領域を選び、その領域中の無機酸化物微粒子の凝集体の粒子径を測定し、上位10個の無機酸化物微粒子の凝集体の粒子径を平均したものである。なお、上記「無機酸化物微粒子の凝集体の粒子径」は、無機酸化物微粒子の凝集体の断面を任意の平行な2本の直線で挟んだとき、該2本の直線間距離が最大となるような2本の直線の組み合わせにおける直線間距離として測定される。また、上記無機酸化物微粒子の凝集体の粒子径は、画像解析ソフトを用いて算出してもよい。
上記ハードコート層の厚さとしては、2.0〜7.0μmであることが好ましい。2.0μm未満であると、ハードコート層表面が傷付きやすくなることがあり、7.0μmを超えると、ハードコート層の薄膜化を図れないだけでなく、ハードコート層が割れやすくなったり、カールが問題となることがある。上記ハードコート層の厚さのより好ましい範囲は2.0〜5.0μmである。なお、上記ハードコート層の厚さは、断面顕微鏡観察により測定することができる。
上記ハードコート層は、上記無機酸化物微粒子がバインダー樹脂中に分散されている。
上記バインダー樹脂としては、上記疎水化処理した無機酸化物微粒子の疎水性に応じて、極性が調整されていることが好ましい。バインダー樹脂の極性を調整する方法としては、例えば、バインダー樹脂の水酸基価を調整することが挙げられる。バインダー樹脂の極性を好適にすることで、上記無機酸化物微粒子の凝集・分散性を好適に制御し、上述した特定の凹凸形状を形成させやすくなる。
バインダー樹脂としては、透明性のものが好ましく、例えば、紫外線又は電子線により硬化する樹脂である電離放射線硬化型樹脂が紫外線又は電子線の照射により硬化したものであることが好ましい。
なお、本明細書において、「樹脂」とは、特に言及しない限り、モノマー、オリゴマー、ポリマー等も包含する概念である。
上記電離放射線硬化型樹脂としては、例えば、アクリレート系等の官能基を有する化合物等の1又は2以上の不飽和結合を有する化合物が挙げられる。1の不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N−ビニルピロリドン等を挙げることができる。2以上の不飽和結合を有する化合物としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、トリペンタエリスリトールオクタ(メタ)アクリレート、テトラペンタエリスリトールデカ(メタ)アクリレート、イソシアヌル酸トリ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、ポリエステルトリ(メタ)アクリレート、ポリエステルジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、ジグリセリンテトラ(メタ)アクリレート、アダマンチルジ(メタ)アクリレート、イソボロニルジ(メタ)アクリレート、ジシクロペンタンジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート等の多官能化合物等を挙げることができる。なかでも、ペンタエリスリトールテトラアクリレート(PETTA)が好適に用いられる。なお、本明細書において「(メタ)アクリレート」は、メタクリレート及びアクリレートを指すものである。また、本発明では、上記電離放射線硬化型樹脂として、上述した化合物をPO、EO等で変性したものも使用できる。
上記化合物のほかに、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記電離放射線硬化型樹脂として使用することができる。
上記電離放射線硬化型樹脂は、溶剤乾燥型樹脂(熱可塑性樹脂等、塗工時に固形分を調整するために添加した溶剤を乾燥させるだけで、被膜となるような樹脂)と併用して使用することもできる。溶剤乾燥型樹脂を併用することによって、ハードコート層を形成する際に、塗液の塗布面の被膜欠陥を有効に防止することができる。
上記電離放射線硬化型樹脂と併用して使用することができる溶剤乾燥型樹脂としては特に限定されず、一般に、熱可塑性樹脂を使用することができる。
上記熱可塑性樹脂としては特に限定されず、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂及びゴム又はエラストマー等を挙げることができる。上記熱可塑性樹脂は、非結晶性で、かつ有機溶媒(特に複数のポリマーや硬化性化合物を溶解可能な共通溶媒)に可溶であることが好ましい。特に、透明性や耐候性という観点から、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。
また、上記ハードコート層は、熱硬化性樹脂を含有していてもよい。
上記熱硬化性樹脂としては特に限定されず、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン−尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。
上記無機酸化物微粒子及びバインダー樹脂を含有するハードコート層は、例えば、上述した無機酸化物微粒子、バインダー樹脂のモノマー成分及び溶剤を含有するハードコート層用組成物を、光透過性基材上に塗布し、乾燥させて形成した塗膜を電離放射線照射等により硬化させることで形成することができる。
上記ハードコート層用組成物に含まれる溶剤としては、例えば、アルコール(例、メタノール、エタノール、プロパノール、イソプロパノール、n−ブタノール、s−ブタノール、t−ブタノール、ベンジルアルコール、PGME、エチレングリコール)、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等)、エーテル類(ジオキサン、テトラヒドロフラン等)、脂肪族炭化水素類(ヘキサン等)、脂環式炭化水素類(シクロヘキサン等)、芳香族炭化水素類(トルエン、キシレン等)、ハロゲン化炭素類(ジクロロメタン、ジクロロエタン等)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチル等)、セロソルブ類(メチルセロソルブ、エチルセロソルブ等)、セロソルブアセテート類、スルホキシド類(ジメチルスルホキシド等)、アミド類(ジメチルホルムアミド、ジメチルアセトアミド等)等が例示でき、これらの混合物であってもよい。
上記ハードコート層用組成物は、更に光重合開始剤を含有することが好ましい。
上記光重合開始剤としては特に限定されず、公知のものを用いることができ、具体例には、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α−アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n−ブチルアミン、トリエチルアミン、ポリ−n−ブチルホスフィン等が挙げられる。
上記光重合開始剤としては、上記バインダー樹脂がラジカル重合性不飽和基を有する樹脂系の場合は、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましい。また、上記バインダー樹脂がカチオン重合性官能基を有する樹脂系の場合は、上記光重合開始剤としては、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることが好ましい。
上記ハードコート層用組成物における上記光重合開始剤の含有量は、上記バインダー樹脂100質量部に対して、0.5〜10.0質量部であることが好ましい。0.5質量部未満であると、形成するハードコート層のハードコート性能が不充分となることがあり、10.0質量部を超えると、逆に硬化を阻害する可能性も出てくるため、好ましくない。
上記ハードコート層用組成物中における原料の含有割合(固形分)としては特に限定されないが、通常は5〜70質量%、特に25〜60質量%とすることが好ましい。
上記ハードコート層用組成物には、ハードコート層の硬度を高くする、硬化収縮を抑える、屈折率を制御する等の目的に応じて、従来公知の分散剤、界面活性剤、帯電防止剤、シランカップリング剤、増粘剤、着色防止剤、着色剤(顔料、染料)、消泡剤、レベリング剤、難燃剤、紫外線吸収剤、接着付与剤、重合禁止剤、酸化防止剤、表面改質剤、易滑剤等を添加していてもよい。
上記レベリング剤としては、例えば、シリコーンオイル、フッ素系界面活性剤等が、ハードコート層がベナードセル構造となることを回避することから好ましい。溶剤を含む樹脂組成物を塗工し、乾燥する場合、塗膜内において塗膜表面と内面とに表面張力差等を生じ、それによって塗膜内に多数の対流が引き起こされる。この対流により生じる構造はベナードセル構造と呼ばれ、形成するハードコート層にゆず肌や塗工欠陥といった問題の原因となる。
また、上記ベナードセル構造は、ハードコート層の表面の凹凸が大きくなりすぎて光学積層体の外観を損なう恐れがある。前述のようなレベリング剤を用いると、この対流を防止することができるため、欠陥やムラのないハードコート層膜が得られるだけでなく、ハードコート層表面の凹凸形状の調整も容易となる。
上記ハードコート層用組成物の調製方法としては各成分を均一に混合できれば特に限定されず、例えば、ペイントシェーカー、ビーズミル、ニーダー、ミキサー等の公知の装置を使用して行うことができる。
上記ハードコート層用組成物を光透過性基材上に塗布する方法としては特に限定されず、例えば、スピンコート法、ディップ法、スプレー法、ダイコート法、バーコート法、ロールコーター法、メニスカスコーター法、フレキソ印刷法、スクリーン印刷法、ピードコーター法等の公知の方法を挙げることができる。
上記の方法のいずれかでハードコート層用組成物を塗布した後、形成した塗膜を乾燥させるために加熱されたゾーンに搬送され各種の公知の方法で塗膜を乾燥させ溶剤を蒸発させる。ここで溶剤相対蒸発速度、固形分濃度、塗布液温度、乾燥温度、乾燥風の風速、乾燥時間、乾燥ゾーンの溶剤雰囲気濃度等を選定することにより、無機酸化物微粒子の凝集体の分布状態を調整できる。
特に、乾燥条件の選定によって無機酸化物微粒子の凝集体の分布状態を調整する方法が簡便で好ましい。具体的な乾燥温度としては、30〜120℃、乾燥風速では0.2〜50m/sであることが好ましく、この範囲内で適宜調整した乾燥処理を、1回又は複数回行うことで無機酸化物微粒子の凝集体の分布状態を所望の状態に調整することができる。
また、上記乾燥後の塗膜を硬化させる際の電離放射線の照射方法としては、例えば、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク灯、ブラックライト蛍光灯、メタルハライドランプ灯等の光源を用いる方法が挙げられる。
また、紫外線の波長としては、190〜380nmの波長域を使用することができる。電子線源の具体例としては、コッククロフトワルト型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、又は直線型、ダイナミトロン型、高周波型等の各種電子線加速器が挙げられる。
本発明の光学積層体は、全光線透過率が90%以上であることが好ましい。90%未満であると、本発明の光学積層体を画像表示装置の表面に装着した場合において、色再現性や視認性を損なうおそれがある。上記全光線透過率は、91%以上であることがより好ましい。
なお、上記全光線透過率は、ヘイズメーター(村上色彩技術研究所製、製品番号;HM−150)を用いてJIS K−7361に準拠した方法により測定することができる。
また、本発明の光学積層体は、ヘイズが1%未満であることが好ましい。1%を超えると、所望の光学特性が得られず、本発明の光学積層体を画像表示表面に設置した際の視認性が低下することがある。好ましくは0.5%以下、更に好ましくは0.3%以下である。
上記ヘイズは、ヘイズメーター(村上色彩技術研究所製、製品番号;HM−150)を用いてJIS K−7136に準拠した方法により測定することができる。
また、本発明の光学積層体は、透過画像鮮明度が0.125mm櫛において75〜95%であり、かつ、2.0mm櫛において95%以上であることが好ましい。0.125mm櫛における透過画像鮮明度が75%未満であると、画像を表示させた際の画像の鮮明性を損ない、画質に劣る恐れがある。95%超過であると、干渉縞が好適に防止できない恐れがある。0.125mm櫛における透過画像鮮明度は80〜90%であることがより好ましい。また、2.0mm櫛における透過画像鮮明度が95%未満であると、画像の鮮明性が損なわれ、また、外光の拡散反射による白濁感が生じる恐れがある。
上記透過画像鮮明度は写像性測定器(スガ試験機製、製品番号;ICM−1T)を用いて、JIS K−7105の像鮮明度の透過法に準拠した方法により測定することができる。
また、本発明の光学積層体は、周囲からの映り込みを低減し、透過率を向上させることができることから、上記ハードコート層上に低屈折率層を有することが好ましい。
なお、本発明の光学積層体が、上記低屈折率層を上記ハードコート層上に有する場合、該低屈折率層の表面に上述した特定の凹凸形状が形成されていることが必要である。
上記低屈折率層は、外部からの光(例えば蛍光灯、自然光等)が光学積層体の表面にて反射する際、その反射率を低くするという役割を果たす層である。
上記低屈折率層としては、好ましくは1)シリカ、フッ化マグネシウム等の低屈折率粒子を含有する樹脂、2)低屈折率樹脂であるフッ素系樹脂、3)シリカ又はフッ化マグネシウムを含有するフッ素系樹脂、4)シリカ、フッ化マグネシウム等の低屈折率物質の薄膜等のいずれかで構成される。フッ素系樹脂以外の樹脂については、上述したハードコート層を構成するバインダー樹脂と同様の樹脂を用いることができる。
また、上述したシリカは、中空シリカ微粒子であることが好ましく、このような中空シリカ微粒子は、例えば、特開2005−099778号公報の実施例に記載の製造方法にて作製できる。
これらの低屈折率層は、その屈折率が1.45以下、特に1.42以下であることが好ましい。
また、低屈折率層の厚みは限定されないが、通常は30nm〜1μm程度の範囲内から適宜設定すれば良い。
また、上記低屈折率層は単層で効果が得られるが、より低い最低反射率、あるいはより高い最低反射率を調整する目的で、低屈折率層を2層以上設けることも適宜可能である。上記2層以上の低屈折率層を設ける場合、各々の低屈折率層の屈折率及び厚みに差異を設けることが好ましい。
上記フッ素系樹脂としては、少なくとも分子中にフッ素原子を含む重合性化合物又はその重合体を用いることができる。重合性化合物としては特に限定されないが、例えば、電離放射線で硬化する官能基、熱硬化する極性基等の硬化反応性の基を有するものが好ましい。また、これらの反応性の基を同時に併せ持つ化合物でもよい。この重合性化合物に対し、重合体とは、上記のような反応性基などを一切もたないものである。
上記電離放射線で硬化する官能基を有する重合性化合物としては、エチレン性不飽和結合を有するフッ素含有モノマーを広く用いることができる。より具体的には、フルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロブタジエン、パーフルオロ−2,2−ジメチル−1,3−ジオキソール等)を例示することができる。(メタ)アクリロイルオキシ基を有するものとしては、2,2,2−トリフルオロエチル(メタ)アクリレート、2,2,3,3,3−ペンタフルオロプロピル(メタ)アクリレート、2−(パーフルオロブチル)エチル(メタ)アクリレート、2−(パーフルオロヘキシル)エチル(メタ)アクリレート、2−(パーフルオロオクチル)エチル(メタ)アクリレート、2−(パーフルオロデシル)エチル(メタ)アクリレート、α−トリフルオロメタクリル酸メチル、α−トリフルオロメタクリル酸エチルのような、分子中にフッ素原子を有する(メタ)アクリレート化合物;分子中に、フッ素原子を少なくとも3個持つ炭素数1〜14のフルオロアルキル基、フルオロシクロアルキル基又はフルオロアルキレン基と、少なくとも2個の(メタ)アクリロイルオキシ基とを有する含フッ素多官能(メタ)アクリル酸エステル化合物等もある。
上記熱硬化する極性基として好ましいのは、例えば、水酸基、カルボキシル基、アミノ基、エポキシ基等の水素結合形成基である。これらは、塗膜との密着性だけでなく、シリカ等の無機超微粒子との親和性にも優れている。熱硬化性極性基を持つ重合性化合物としては、例えば、4−フルオロエチレン−パーフルオロアルキルビニルエーテル共重合体;フルオロエチレン−炭化水素系ビニルエーテル共重合体;エポキシ、ポリウレタン、セルロース、フェノール、ポリイミド等の各樹脂のフッ素変性品等が挙げられる。
上記電離放射線で硬化する官能基と熱硬化する極性基とを併せ持つ重合性化合物としては、アクリル又はメタクリル酸の部分及び完全フッ素化アルキル、アルケニル、アリールエステル類、完全又は部分フッ素化ビニルエーテル類、完全又は部分フッ素化ビニルエステル類、完全又は部分フッ素化ビニルケトン類等を例示することができる。
また、フッ素系樹脂としては、例えば、次のようなものを挙げることができる。
上記電離放射線硬化性基を有する重合性化合物の含フッ素(メタ)アクリレート化合物を少なくとも1種類含むモノマー又はモノマー混合物の重合体;上記含フッ素(メタ)アクリレート化合物の少なくとも1種類と、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレートの如き分子中にフッ素原子を含まない(メタ)アクリレート化合物との共重合体;フルオロエチレン、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、3,3,3−トリフルオロプロピレン、1,1,2−トリクロロ−3,3,3−トリフルオロプロピレン、ヘキサフルオロプロピレンのような含フッ素モノマーの単独重合体又は共重合体など。これらの共重合体にシリコーン成分を含有させたシリコーン含有フッ化ビニリデン共重合体も用いることができる。この場合のシリコーン成分としては、(ポリ)ジメチルシロキサン、(ポリ)ジエチルシロキサン、(ポリ)ジフェニルシロキサン、(ポリ)メチルフェニルシロキサン、アルキル変性(ポリ)ジメチルシロキサン、アゾ基含有(ポリ)ジメチルシロキサン、ジメチルシリコーン、フェニルメチルシリコーン、アルキル・アラルキル変性シリコーン、フルオロシリコーン、ポリエーテル変性シリコーン、脂肪酸エステル変性シリコーン、メチル水素シリコーン、シラノール基含有シリコーン、アルコキシ基含有シリコーン、フェノール基含有シリコーン、メタクリル変性シリコーン、アクリル変性シリコーン、アミノ変性シリコーン、カルボン酸変性シリコーン、カルビノール変性シリコーン、エポキシ変性シリコーン、メルカプト変性シリコーン、フッ素変性シリコーン、ポリエーテル変性シリコーン等が例示される。なかでも、ジメチルシロキサン構造を有するものが好ましい。
更には、以下のような化合物からなる非重合体又は重合体も、フッ素系樹脂として用いることができる。すなわち、分子中に少なくとも1個のイソシアナト基を有する含フッ素化合物と、アミノ基、ヒドロキシル基、カルボキシル基のようなイソシアナト基と反応する官能基を分子中に少なくとも1個有する化合物とを反応させて得られる化合物;フッ素含有ポリエーテルポリオール、フッ素含有アルキルポリオール、フッ素含有ポリエステルポリオール、フッ素含有ε−カプロラクトン変性ポリオールのようなフッ素含有ポリオールと、イソシアナト基を有する化合物とを反応させて得られる化合物等を用いることができる。
また、上記したフッ素原子を持つ重合性化合物や重合体とともに、上記ハードコート層に記載したような各バインダー樹脂を混合して使用することもできる。更に、反応性基等を硬化させるための硬化剤、塗工性を向上させたり、防汚性を付与させたりするために、各種添加剤、溶剤を適宜使用することができる。
上記低屈折率層の形成においては、上述した材料を添加してなる低屈折率層用組成物の粘度を好ましい塗布性が得られる0.5〜5mPa・s(25℃)、好ましくは0.7〜3mPa・s(25℃)の範囲のものとすることが好ましい。可視光線の優れた反射防止層を実現でき、かつ、均一で塗布ムラのない薄膜を形成することができ、かつ、密着性に特に優れた低屈折率層を形成することができる。
樹脂の硬化手段は、上述したハードコート層で説明したものと同様であってよい。硬化処理のために加熱手段が利用される場合には、加熱により、例えばラジカルを発生して重合性化合物の重合を開始させる熱重合開始剤がフッ素系樹脂組成物に添加されることが好ましい。
低屈折率層の層厚(nm)dは、下記式(1):
=mλ/(4n) (1)
(上記式中、
は低屈折率層の屈折率を表し、
mは正の奇数を表し、好ましくは1を表し、
λは波長であり、好ましくは480〜580nmの範囲の値である)
を満たすものが好ましい。
また、本発明にあっては、低屈折率層は下記式(2):
120<n<145 (2)
を満たすことが低反射率化の点で好ましい。
本発明の光学積層体は、コントラスト比が80%以上であることが好ましく、より好ましくは90%以上である。80%未満であると、本発明の光学積層体をディスプレイ表面に装着した場合において、暗室コントラストに劣り視認性を損なう恐れがある。なお、本明細書における、上記コントラスト比は、以下の方法により測定された値である。
すなわちバックライトユニットとして冷陰極管光源に拡散板を設置したものを用い、2枚の偏光板(サムスン社製 AMN−3244TP)を用い、該偏光板をパラレルニコルに設置したときに通過する光の輝度のLmaxを、クロスニコルに設置したときに通過する光の輝度のLminで割った値(Lmax/Lmin)をコントラストとし、光学積層体(光透過性基材+ハードコート層等)のコントラスト(L)を、光透過性基材のコントラスト(L)で割った値(L/L)×100(%)をコントラスト比とする。
なお、上記輝度の測定は暗室下で行う。上記輝度の測定には、色彩輝度計(トプコン社製 BM−5A)を用い、色彩輝度計の測定角は、1°に設定し、サンプル上の視野φ5mmで測定する。また、バックライトの光量は、サンプルを設置しない状態で、2枚の偏光板をパラレルニコルに設置したときの輝度が3600cd/mになるように設置する。
本発明の光学積層体は、光透過性基材上に、例えば、無機酸化物微粒子、バインダー樹脂のモノマー成分及び溶剤を含有するハードコート層用組成物を使用してハードコート層を形成することにより製造することができる。
上記ハードコート層用組成物及びハードコート層の形成方法については、上述したハードコート層の形成方法として説明したものと同様の材料、方法が挙げられる。
本発明の光学積層体は、偏光素子の表面に、本発明による光学積層体を該光学積層体におけるハードコート層が存在する面と反対の面に設けることによって、偏光板とすることができる。このような偏光板もまた、本発明の一つである。
上記偏光素子としては特に限定されず、例えば、ヨウ素等により染色し、延伸したポリビニルアルコールフィルム、ポリビニルホルマールフィルム、ポリビニルアセタールフィルム、エチレン−酢酸ビニル共重合体系ケン化フィルム等を使用することができる。上記偏光素子と本発明の光学積層体とのラミネート処理においては、光透過性基材(トリアセチルセルロースフィルム)にケン化処理を行うことが好ましい。ケン化処理によって、接着性が良好になり帯電防止効果も得ることができる。
本発明は、上記光学積層体又は上記偏光板を備えてなる画像表示装置でもある。
上記画像表示装置は、LCD、PDP、FED、ELD(有機EL、無機EL)、CRT、タブレットPC、タッチパネル、電子ペーパー等の画像表示装置であってもよい。
上記の代表的な例であるLCDは、透過性表示体と、上記透過性表示体を背面から照射する光源装置とを備えてなるものである。本発明の画像表示装置がLCDである場合、この透過性表示体の表面に、本発明の光学積層体又は本発明の偏光板が形成されてなるものである。
本発明が上記光学積層体を有する液晶表示装置の場合、光源装置の光源は光学積層体の下側から照射される。なお、液晶表示素子と偏光板との間に、位相差板が挿入されてよい。この液晶表示装置の各層間には必要に応じて接着剤層が設けられてよい。
上記画像表示装置であるPDPは、表面ガラス基板(表面に電極を形成)と当該表面ガラス基板に対向して間に放電ガスが封入されて配置された背面ガラス基板(電極および、微小な溝を表面に形成し、溝内に赤、緑、青の蛍光体層を形成)とを備えてなるものである。本発明の画像表示装置がPDPである場合、上記表面ガラス基板の表面、又はその前面板(ガラス基板又はフィルム基板)に上述した光学積層体を備えるものでもある。
上記画像表示装置は、電圧をかけると発光する硫化亜鉛、ジアミン類物質:発光体をガラス基板に蒸着し、基板にかける電圧を制御して表示を行うELD装置、又は、電気信号を光に変換し、人間の目に見える像を発生させるCRTなどの画像表示装置であってもよい。この場合、上記のような各表示装置の最表面又はその前面板の表面に上述した光学積層体を備えるものである。
本発明の画像表示装置は、いずれの場合も、テレビジョン、コンピュータ、電子ペーパー、タッチパネル、タブレットPCなどのディスプレイ表示に使用することができる。特に、CRT、液晶パネル、PDP、ELD、FED、タッチパネルなどの高精細画像用ディスプレイの表面に好適に使用することができる。
本発明の光学積層体は、上述した構成からなるものであるため、干渉縞及びカールの発生を充分に抑制しつつ、ハードコート層の薄膜化を図ることができ、製造コストが高くなることを防止できる。
このため、本発明の光学積層体は、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、電子ペーパー等に好適に適用することができる。
θaの測定方法の説明図である。
本発明の内容を下記の実施例により説明するが、本発明の内容はこれらの実施態様に限定して解釈されるものではない。
(実施例1)
光透過性基材(厚み60μmトリアセチルセルロース樹脂フィルム、富士フィルム社製、TD60UL)を準備し、該光透過性基材の片面に、下記に示した組成のハードコート層用組成物を塗布し、塗膜を形成した。次いで、形成した塗膜に対して、0.2m/sの流速で70℃の乾燥空気を15秒間流通させた後、さらに10m/sの流速で70℃の乾燥空気を30秒間流通させて乾燥させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を窒素雰囲気(酸素濃度200ppm以下)下にて積算光量が100mJ/cmになるように照射して塗膜を硬化させることにより、4μm厚み(硬化時)のハードコート層を形成し、実施例1に係る光学積層体を作製した。
(ハードコート層用組成物)
フュームドシリカ(オクチルシラン処理;平均粒子径12nm、日本アエロジル社製)
1質量部
ペンタエリスリトールテトラアクリレート(PETTA)(製品名:PETA、ダイセル
・サイテック社製) 60質量部
ウレタンアクリレート(製品名:UV1700B、日本合成化学社製) 40質量部
イルガキュア184(BASFジャパン社製) 5質量部
ポリエーテル変性シリコーン(TSF4460、モメンティブ・パフォーマンス・マテリ
アルズ社製) 0.025質量部
トルエン 105質量部
イソプロピルアルコール 30質量部
シクロヘキサノン 15質量部
なお、フュームドシリカは、オクチル基を有するシラン化合物(例えば、オクチルシラン)により、シラノール基をオクチルシリル基で置換して疎水化処理されたものである。
(実施例2)
フュームドシリカの配合量を1.5質量部とした以外は実施例1と同様にしてハードコート層用組成物を調製し、該ハードコート層用組成物を用いた以外は、実施例1と同様にして実施例2に係る光学積層体を作製した。
(実施例3)
フュームドシリカの配合量を0.5質量部とした以外は実施例1と同様にしてハードコート層用組成物を調製し、該ハードコート層用組成物を用いた以外は、実施例1と同様にして実施例3に係る光学積層体を作製した。
(実施例4)
フュームドシリカの配合量を2.5質量部とした以外は実施例1と同様にしてハードコート層用組成物を調製し、該ハードコート層用組成物を用いた以外は、実施例1と同様にして実施例4に係る光学積層体を作製した。
(比較例1)
フュームドシリカを配合しなかった以外は実施例1と同様にしてハードコート層用組成物を調製し、該ハードコート層用組成物を用いた以外は、実施例1と同様にして比較例1に係る光学積層体を作製した。
(比較例2)
下記に示した組成のハードコート層用組成物を用いた以外は、実施例1と同様にして塗布し、塗膜を形成した。次いで、形成した塗膜に対して、0.2m/sの流速で70℃の乾燥空気を15秒間流通させた後、さらに10m/sの流速で70℃の乾燥空気を30秒間流通させて乾燥させることにより塗膜中の溶剤を蒸発させ、紫外線照射装置(フュージョンUVシステムジャパン社製、光源Hバルブ)を用いて、紫外線を窒素雰囲気(酸素濃度200ppm以下)下にて積算光量が100mJ/cmになるように照射して塗膜を硬化させることにより、10μm厚み(硬化時)のハードコート層を形成し、比較例2に係る光学積層体を作製した。
(ハードコート層用組成物)
ペンタエリスリトールトリアクリレート(PETA)(製品名:PET30、日本化薬社
製) 100質量部
イルガキュア184(BASFジャパン社製) 5質量部
ポリエーテル変性シリコーン(TSF4460、モメンティブ・パフォーマンス・マテリ
アルズ社製) 0.025質量部
メチルエチルケトン(MEK) 80質量部
メチルイソブチルケトン(MIBK) 35質量部
(比較例3)
有機微粒子(親水化処理アクリル−スチレン共重合体粒子、平均粒子径2.0μm、屈折率1.55、積水化成品工業社製)を3質量部加えた以外は、実施例1と同様にしてハードコート層用組成物を調製し、該ハードコート層用組成物を用いた以外は、実施例1と同様にして比較例3に係る光学積層体を作製した。
(比較例4)
有機微粒子(親水化処理アクリル−スチレン共重合体粒子、平均粒子径2.0μm、屈折率1.515、積水化成品工業社製)を1.5質量部加えた以外は、実施例1と同様にしてハードコート層用組成物を調製し、該ハードコート層用組成物を用いた以外は、実施例1と同様にして比較例4に係る光学積層体を作製した。
(比較例5)
フュームドシリカの配合量を4質量部とした以外は実施例1と同様にしてハードコート層用組成物を調製し、該ハードコート層用組成物を用いた以外は、実施例1と同様にして比較例5に係る光学積層体を作製した。
得られた実施例及び比較例に係る光学積層体を下記項目について評価した。
全ての結果を表1に示した。
(凹凸部の平均傾斜角(θa)、凹凸のクルトシス(Kr)、凹凸の算術平均粗さ(Ra))
表面粗さ測定器:SE−3400/株式会社小坂研究所製を用いて、JIS B 0601−1994に準拠し、かつ、以下の条件にて粗さ曲線を測定して、θa、Kr及びRaを測定した。
(1)表面粗さ検出部の触針:
型番/SE2555N(2μ触針)、株式会社小坂研究所製
(先端曲率半径2μm/頂角:90度/材質:ダイヤモンド)
(2)表面粗さ測定器の測定条件:
基準長さ(粗さ曲線のカットオフ値λc):2.5mm
評価長さ(基準長さ(カットオフ値λc)×5):12.5mm
触針の送り速さ:0.5mm/s
予備長さ:(カットオフ値λc)×2
縦倍率:2000倍
横倍率:10倍
なお、通常カットオフ値は0.8mmが使用されることが多いが、本発明においては、カットオフ値を2.5mmに設定して測定を行った。
また、λa=2π×(Ra/tan(θa))の式により、λaを算出した。
(ヘイズ)
JIS K7136に準拠し、ヘイズメーターHM−150(村上色彩技術研究所製)を用いて、得られた光学積層体のヘイズを測定した。
(透過画像鮮明度)
JIS K7105に準拠し、写像性測定器ICM−1T(スガ試験機製)を用いて、透過測定により、得られた光学積層体の0.125mm櫛及び2.0mm櫛における透過画像鮮明度を測定した。
(干渉縞)
実施例及び比較例で得られた各光学積層体のハードコート層と逆の面(光透過性基材面)を、透明粘着剤を介して、裏面反射を防止するための黒アクリル板に貼り、ハードコート層の面から各光学積層体にナトリウムランプを照射し、目視で観察し、干渉縞の発生の有無を以下の基準により評価した。
◎:干渉縞の発生は全くなかった。
○:干渉縞の発生が若干あるが、問題ないレベルであった。
×:干渉縞の発生があった。
(白濁感)
実施例及び比較例で得られた各光学積層体のハードコート層と逆の面(光透過性基材面)を、透明粘着剤を介して、黒アクリル板に貼り、暗室にて卓上スタンド(3波長蛍光灯管)の下で、白濁感を観察し、以下の基準により評価した。
○:白さが観察されなかった。
×:白さが観察された。
(カール)
光学積層体のカールの度合いは、実施例及び比較例に係る光学積層体を10cm×10cmにカットしたサンプル片を水平な台(平面)の上に置き、ハードコート層の端点間の距離を測定したときの当該距離の平均値(mm)を以下のように表した。
○:80mm以上
×:80mm未満
Figure 0006288228
表1に示したように、実施例に係る光学積層体は、干渉縞、白濁感、カールの全ての評価において良好であった。
一方、比較例1に係る光学積層体は、ハードコート層表面の平均傾斜角が小さすぎるため、干渉縞を防止することができなかった。比較例2に係る光学積層体は、ハードコート層用組成物として光透過性基材を膨潤させるMEKを用い、さらにハードコート層膜厚を10μmになるよう塗布量を多くすることで、ハードコート層と光透過性基材との界面からの反射光を低減させることにより、干渉縞を防止しているが、カールの評価に劣るものであった。比較例3〜5に係る光学積層体は、平均傾斜角、又は、クルトシスの一方、もしくは両方が大きすぎ、白濁感に劣るものであった。
本発明の光学積層体は、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー、タブレットPC等に好適に適用することができる。

Claims (7)

  1. 光透過性基材の一方の面上に、ハードコート層を有する光学積層体であって、
    前記ハードコート層は、表面に凹凸形状を有し、該凹凸形状は、凹凸部の平均傾斜角をθaとし、凹凸のクルトシスをKrとしたとき、前記θa及びKrが以下の式を満たし、
    前記ハードコート層は、無機酸化物微粒子及びバインダー樹脂を含有し、
    前記ハードコート層の表面に有する凹凸形状は、前記無機酸化物微粒子により形成されており、
    前記ハードコート層の厚さは、2.0〜7.0μmであり、
    前記光学積層体は、透過画像鮮明度が0.125mm櫛において75〜95%である
    ことを特徴とする光学積層体。
    0.01°≦θa≦0.10°
    1≦Kr≦3
  2. ハードコート層の凹凸形状は、凹凸の算術平均粗さをRaとしたとき、以下の式を満たす請求項1記載の光学積層体。
    0.02μm≦Ra≦0.10μm
  3. ハードコート層の凹凸形状は、λa=2π×(Ra/tan(θa))にて表される平均波長λaが下記式を満たす請求項2記載の光学積層体。
    200μm≦λa≦800μm
  4. 無機酸化物微粒子は、疎水化処理無機酸化物微粒子である請求項1、2又は3記載の光学積層体。
  5. 無機酸化物微粒子は、凝集体を形成してハードコート層に含有されており、前記凝集体の平均粒子径が100nm〜2.0μmである請求項1、2、3、又は4記載の光学積層体。
  6. 偏光素子を備えてなる偏光板であって、
    前記偏光板は、偏光素子表面に請求項1、2、3、4又は5記載の光学積層体を備えることを特徴とする偏光板。
  7. 請求項1、2、3、4若しくは5記載の光学積層体、又は、請求項6記載の偏光板を備えることを特徴とする画像表示装置。
JP2016236108A 2016-12-05 2016-12-05 光学積層体、偏光板及び画像表示装置 Active JP6288228B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016236108A JP6288228B2 (ja) 2016-12-05 2016-12-05 光学積層体、偏光板及び画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016236108A JP6288228B2 (ja) 2016-12-05 2016-12-05 光学積層体、偏光板及び画像表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012029706A Division JP6171261B2 (ja) 2012-02-14 2012-02-14 光学積層体、偏光板及び画像表示装置

Publications (2)

Publication Number Publication Date
JP2017054146A JP2017054146A (ja) 2017-03-16
JP6288228B2 true JP6288228B2 (ja) 2018-03-07

Family

ID=58316549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016236108A Active JP6288228B2 (ja) 2016-12-05 2016-12-05 光学積層体、偏光板及び画像表示装置

Country Status (1)

Country Link
JP (1) JP6288228B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019082663A1 (ja) * 2017-10-25 2020-04-02 株式会社ダイセル 低摩擦フィルム及びその製造方法、成形体並びに指滑り性向上方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101237822B1 (ko) * 2003-08-28 2013-02-28 니끼 쇼꾸바이 카세이 가부시키가이샤 반사 방지 적층체
JP5062509B2 (ja) * 2006-06-30 2012-10-31 大日本印刷株式会社 反射防止積層体
JP2008238646A (ja) * 2007-03-28 2008-10-09 Toray Ind Inc ハードコートフィルムおよび反射防止フィルム
TW200909868A (en) * 2007-08-22 2009-03-01 Far Eastern Textile Ltd Optical film and method of making the same
JP5540495B2 (ja) * 2008-11-17 2014-07-02 大日本印刷株式会社 ハードコート層用硬化性樹脂組成物、及びハードコートフィルム
KR20130014538A (ko) * 2010-03-05 2013-02-07 가부시끼가이샤 다이셀 광학 필름 및 그 제조 방법

Also Published As

Publication number Publication date
JP2017054146A (ja) 2017-03-16

Similar Documents

Publication Publication Date Title
JP6476582B2 (ja) 積層体の製造方法、積層体、偏光板及び画像表示装置
JP5874740B2 (ja) 防眩性フィルム、偏光板及び画像表示装置
JP5974894B2 (ja) 防眩性フィルム、偏光板及び画像表示装置
JP6078938B2 (ja) 光学フィルム、偏光板、液晶パネルおよび画像表示装置
JP6212844B2 (ja) 光学フィルム、偏光板、液晶パネルおよび画像表示装置
JP6035764B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6064406B2 (ja) 光学積層体、偏光板及び画像表示装置
KR102001807B1 (ko) 광학 적층체, 편광판 및 화상 표시 장치
JP6314384B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6044118B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6171262B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6167487B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6171261B2 (ja) 光学積層体、偏光板及び画像表示装置
JP2013134358A (ja) 防眩層用組成物、防眩層用組成物の調製方法及び防眩性フィルムの製造方法
JP6451717B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6288228B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6381186B2 (ja) 光学積層体、偏光板及び画像表示装置
JP6292287B2 (ja) 光学積層体、偏光板及び画像表示装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180122

R150 Certificate of patent or registration of utility model

Ref document number: 6288228

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150