WO2011129012A1 - 太陽電池用コート層およびその製造方法 - Google Patents

太陽電池用コート層およびその製造方法 Download PDF

Info

Publication number
WO2011129012A1
WO2011129012A1 PCT/JP2010/056825 JP2010056825W WO2011129012A1 WO 2011129012 A1 WO2011129012 A1 WO 2011129012A1 JP 2010056825 W JP2010056825 W JP 2010056825W WO 2011129012 A1 WO2011129012 A1 WO 2011129012A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
parts
solar cell
coating layer
mass
Prior art date
Application number
PCT/JP2010/056825
Other languages
English (en)
French (fr)
Inventor
吉田 統
泰一 岸本
Original Assignee
東ソー・エフテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー・エフテック株式会社 filed Critical 東ソー・エフテック株式会社
Priority to PCT/JP2010/056825 priority Critical patent/WO2011129012A1/ja
Priority to TW099114382A priority patent/TW201136856A/zh
Priority to US12/830,635 priority patent/US20110256375A1/en
Publication of WO2011129012A1 publication Critical patent/WO2011129012A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/38Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal at least one coating being a coating of an organic material
    • G02B1/105
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/478Silica
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/732Anti-reflective coatings with specific characteristics made of a single layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention is a technique for improving the ability to collect sunlight by forming a single low-refractive-index organic film layer on a protective layer such as a cover glass of a photovoltaic device called a solar cell by a simple method. About.
  • a glass material is mainly used for this protective layer, and the glass protective layer is generally called a cover glass.
  • Patent Document 2 discloses a method for manufacturing a glass plate with a low reflection film in which a low reflection film forming coating solution is applied on a cover glass and then baked to form a low reflection film. Is disclosed.
  • this document by controlling the refractive index of a silicon oxide film according to the firing conditions, the visible light reflectance is reduced, and it is excellent in durability such as wear resistance and chemical resistance, and is high in any film thickness.
  • an organic silicon compound (A) is thermally decomposed at 40 to 270 ° C. on the surface of a transparent glass substrate.
  • a treatment liquid containing a binder resin (B) and an organic solvent (C) to be applied is applied and dried, and the obtained glass substrate with a coating film is baked at 400 to 800 ° C., and the porosity of the film after baking is It is configured to be 15 to 25%.
  • Patent Document 1 provides a novel component for forming a cured product having a low refractive index and good adhesion to an optical component with an appropriate selection of the refractive index.
  • a composition having a perfluoroalkyl group-containing prepolymer obtained by copolymerization of a perfluoroalkyl group-containing (meth) acrylate and a cross-linking functional group-containing (meth) acrylic acid derivative is disclosed.
  • fluoroalkyl esters of methacrylic acid and acrylic acid are constituents of organic materials such as polymers, they can be provided with low refraction properties as well as workability and paintability at low cost, but with low mechanical strength. It is not suitable for applications that directly touch the atmosphere outdoors, and has not been put to practical use.
  • the object of the present invention can be formed by a simple method, has a single layer with a low refractive index, high mechanical strength, and can be coated on a cover glass of a solar cell module in particular to improve the light collection efficiency. It is providing the coating layer for solar cells, and its manufacturing method.
  • the present invention has the following configuration. (1) containing at least fluorine-containing resin and acrylic acid or methacrylic acid derivative, The fluorine content is 5% by mass or more, A solar battery coat layer formed on the protective layer of the solar battery module in direct contact with the atmosphere. (2) The solar cell coat layer according to (1), wherein the fluorine content is 20 to 80% by mass. (3) The solar cell coat layer according to the above (1) or (2), which has a film thickness of 30 nm to 300 nm and a refractive index of light having a wavelength of 400 nm of 1.30 to 1.50. (4) The solar cell coat layer according to any one of the above (1) to (3), wherein the contact angle with water is 65 ° to 120 °.
  • Component c) 1-50 parts by mass
  • the fluorine-containing polymer of component b) is Formula (1),
  • the present invention can be formed by a simple method, has a good low refractive index even in a single layer, and has high mechanical strength. It is possible to provide a solar cell coat layer and a method for producing the same.
  • FIG. 1 is an SEM image showing a cross section of a protective layer on which a coating layer of the present invention is formed.
  • the coating layer for a solar cell of the present invention contains at least a fluorine-containing resin and acrylic acid or a methacrylic acid derivative, the fluorine content is 5% by mass or more, and directly on the protective layer of the solar cell module with the atmosphere. It is formed in a contact state.
  • a resin containing at least fluorine and acrylic acid or a methacrylic acid derivative and forming a coat layer with a resin layer having a fluorine content of 5% by mass or more, a single layer has a low refractive index,
  • a resin layer having high mechanical strength can be formed. For this reason, it can form in the protective layer of a solar cell, and can be used in the state which touches air
  • the coating layer of the present invention contains fluorine in the constituent resin. By containing fluorine, the refractive index can be kept low, and the reflectance can be reduced.
  • the fluorine content in the coat layer is 5% by mass (% by weight) or more, preferably 20 to 80% by mass (% by weight), more preferably 30 to 76% by mass (% by weight).
  • the refractive index of the coating layer varies depending on the fluorine content, but is preferably from 1.30 to 1.50, more preferably from 1.34 to 1.49, in the light having a wavelength of 400 nm. is there.
  • the refractive index and the fluorine content are correlated, for example, the polytetrafluoroethylene (Polytetrafluoroethylene, PTFE) fluorine content: 75.98 mass% (wt%), the refractive index: 1.35, and poly (2 , 2,2-trifluoroethyl methacrylate): 33.9% by mass (% by weight) and a refractive index of 1.47.
  • the coating layer can be adjusted to the above fluorine content by adjusting the content of the resin containing fluorine, the fluorine content in the resin containing fluorine, and the like.
  • the film thickness of the coating layer is not particularly limited, but is preferably 30 nm to 300 nm, more preferably 50 nm to 200 nm when it is formed as a protective layer of a solar cell with a single layer. If the film thickness is too thin, the mechanical strength decreases or the antireflection effect decreases, and if the film thickness is too thick, uniform film formation becomes difficult or the expected characteristics are difficult to obtain.
  • the coating layer of the present invention is also characterized by a large contact angle, and the specific contact angle is preferably from 65 to 120 degrees, more preferably from 70 to 114 degrees with respect to water.
  • the light transmittance can be improved by providing the coating layer of the present invention.
  • the light transmittance of vertical light incident on the protective layer is preferably 100.1% to 104%, that is, 0.1% as compared with that of the protective layer, that is, glass alone, in the light beam having a wavelength of 350 nm to 1100 nm.
  • the light transmittance in the range of 380 nm to 750 nm improves 101% to 103%, that is, 1 to 3% of vertical light transmittance.
  • the coat layer of the present invention can be obtained by polymerizing and curing at least fluorine-containing resin and acrylic acid or methacrylic acid derivative, and it is considered that the resin material is contained in the formed coat layer.
  • the coating layer of the present invention includes at least component a) one or more of a methacrylate compound and an acrylate compound containing a fluoroalkyl group having 1 to 10 carbon atoms, Component b) fluorine-containing polymer, Component c) Any one or more of acrylic acid derivatives and methacrylic acid derivatives having 1 to 5 acryloyl groups or methacryloyl groups, Among them, a composition containing any one of component a) and component b), component c), and an organic solvent is formed into a film and polymerized and cured.
  • the composition may further contain fumed silica as component d).
  • the composition is polymerized and cured, and a coating layer having a low refractive index can be obtained very easily.
  • a fluorinated compound such as a methacrylate compound or acrylate compound containing a fluoroalkyl group as component a) or a fluorinated polymer as component b) mainly lowers the refractive index of the obtained thin film composition.
  • a fluorine-free compound such as component c) of an acrylic acid derivative or methacrylic acid derivative having 1 to 5 acryloyl or methacryloyl groups and component d) fumed silica is obtained as a thin film composition obtained. This improves the hardness and scratch resistance of the steel and improves the adhesion to the substrate. Therefore, an excellent coating layer having both the former and the latter characteristics can be obtained by combining these compositions.
  • each component of the composition described above is not particularly limited as long as it contains either component a) or component b), component c) component d), and if necessary, an organic solvent. Is preferably a combination of component b) and component c), or a combination containing all of component a), component b) and component c), and a combination of component a) and component c) further containing component d) Is also preferable.
  • a methacrylate compound and / or acrylate compound containing a fluoroalkyl group having 1 to 10 carbon atoms 1 to 90 parts by weight (parts by weight), more preferably 50 to 90 parts by weight (parts by weight), particularly 70 to 90 parts by weight.
  • the methacrylate compound and / or acrylate compound containing a fluoroalkyl group having 1 to 10 carbon atoms, preferably 2 to 10 carbon atoms is not particularly limited.
  • 2,2,2-trifluoroethyl methacrylate CF 3 CH 2 O 2 CCH ⁇ CH 2
  • the acrylic acid derivative and / or methacrylic acid derivative having 1 to 5 acryloyl groups or methacryloyl groups is not particularly limited, but preferably does not contain fluorine. By combining with an acryloyl (methacryloyl) compound containing no fluorine, the mechanical properties can be improved.
  • acrylic acid derivatives and / or methacrylic acid derivatives examples include CH 2 O 2 CC (CH 3 ) ⁇ CH 2 , CH 2 O 2 CCH ⁇ CH 2 , Shin-Nakamura Chemical Co., Ltd., and Nippon Kayaku.
  • the specific surface area is usually measured by a gas adsorption method (BET), a permeation method, or the like.
  • BET gas adsorption method
  • fumed silica manufactured by Evonik R202, R805, R812, R812S, RX200, RY200, R972, R972CF, 90G, 200V, 200CF, 200FAD, 300CF, and the like can be used.
  • finely divided titania, zirconia, alumina, silica-alumina and the like can be used alone or in admixture of two or more with fumed silica. These mixing amounts are arbitrary as long as they do not impair the function of the main composition.
  • the fluorine-containing polymer used in the composition is not particularly limited, but is required to be soluble or dispersible in an organic solvent.
  • formula (1)
  • the fluorine-containing polymer is available as a commercial product.
  • Teflon (registered trademark) AF series manufactured by DuPont
  • full-on series manufactured by Asahi Glass
  • Hyflon series manufactured by Solvay Solexis
  • Top manufactured by Asahi Glass Co., Ltd.
  • THV series manufactured by Sumitomo 3M Co., Ltd.
  • NEOFLON series manufactured by Daikin
  • Kyner series manufactured by Arkema
  • Tedlar series manufactured by DuPont
  • Dinion series manufactured by Dinion
  • the fluorine-containing polymer that can be used in the present invention, a polymer composed of a methacrylate compound and / or an acrylate compound containing a fluoroalkyl group having 1 to 10 carbon atoms exemplified for the component a can be used.
  • a polymer obtained by mixing one kind or two or more kinds of component a and thermally polymerizing is preferable, and preferred component a is the same as described above.
  • These polymers are preferably in the range of polystyrene, that is, when polystyrene is used as the polymer, the number average molecular weight is in the range of 5000 to 3000,000, preferably 5000 to 2000000, more preferably 5000 to 150,000.
  • these resin materials those corresponding to the above range in terms of molecular ratio with polystyrene are preferable.
  • the organic solvent used in the composition of the present invention is not particularly limited as long as it is a solvent capable of dissolving or dispersing the fluoropolymer.
  • Fluorine alcohol solvents such as H (CF 2 ) 2 CH 2 OH, H (CF 2 ) 3 CH 2 OH, H (CF 2 ) 4 CH 2 OH
  • fluorine-containing fragrances such as perfluorobenzene and meta-xylene hexafluoride Group solvents
  • the above-mentioned various fluorine-based solvents, ketone-based solvents, and ester-based solvents are preferable from the viewpoints of solubility, coating film appearance, and storage stability, and particularly methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, cellosolve acetate, and butyl acetate.
  • Ethyl acetate, perfluorobenzene, metaxylene hexafluoride, HCFC-225, CFC-113, HFC-134a, HFC-143a, and HFC-142b are preferably used alone or in combination.
  • the polymerization initiator added to the composition of the present invention is not particularly limited, and it may be used by selecting a polymerization initiator suitable for the purpose of use, desired film characteristics, and production method.
  • a photopolymerization initiator is particularly recommended. Particularly excellent performance can be obtained by using a photopolymerization initiator by UV curing.
  • the photopolymerization initiator is not particularly limited, but IRGACURE651, IRGACURE184, DAROCUR1173, IRGACURE2959, IRGACURE127, IIRGACURE907, IIRGACURE369, IIRGACURE379, DAROCURE8, IRGACURE8, IRGACURE8, IRGACURE8 And Lucirin TPO and Lucirin TPO-L manufactured by BASF can be used singly or in combination.
  • the content of the photopolymerization initiator is not particularly limited, but is preferably 0.1 to 20 parts by weight (parts by weight), more preferably 0.1 to 15 parts by weight (parts by weight), particularly 1 to 10 parts. Parts by mass (parts by weight). Also when using other polymerization initiators, it is good to use according to the said range.
  • a ketone compound such as benzophenone, a pigment such as rose bengal, or a conjugated compound such as fluorene, pyrene, or fullerene is used as a photosensitizer, and the mass ratio (weight) The ratio is 0.05 to 3 times, preferably 0.05 to 2 times, and more preferably 0.05 to 1.5 times, in combination with the photoinitiator.
  • the thermal initiator that generates radicals by heating in the photoinitiator is 0.05 to 3 times by mass ratio (weight ratio) to the photoinitiator, preferably 0.05. It can be used in an amount of ⁇ 2 times, more preferably 0.05 to 1.5 times, or a photoinitiator and a photosensitizer can be used in combination.
  • thermal initiators compounds such as AIBN (azobisisobutyronitrile), ketone peroxides, peroxyketals, hydroperoxides, diallyl peroxides, diacyl peroxides, peroxyesters, peroxycarbonates or their derivatives
  • AIBN azobisisobutyronitrile
  • ketone peroxides peroxyketals
  • hydroperoxides diallyl peroxides
  • diacyl peroxides diacyl peroxides
  • peroxyesters peroxyesters
  • peroxycarbonates or their derivatives commercially available products are Parroyl O, Parroyl L, Parroyl S, Paroctyl O, Parroyl SA, Parhexyl 250, Perhexyl O, Nyper PMB, Perbutyl O, Nyper BMT, Nyper BW, Perbutyl IB, Perhexa MC, manufactured by Nippon Oil & Fats Co., Ltd.
  • Perhexa TMH Perhexa HC, Perhexa C, Pertetra A, Perhexyl I, Perbutyl MA, Perbutyl 355, Perbutyl L, Perhexa 25MT, Perbutyl I, Perbutyl E, Parge Sill Z, Perhexa V, Perbutyl P, Percumyl D, PERHEXYL D, Perhexa 25B, Perbutyl D, Pamenta H, etc.
  • Pahekishin 25B can be exemplified.
  • 1 to 90 parts by mass (part by weight) of a methacrylate compound and / or acrylate compound containing a fluoroalkyl group having 1 to 10 carbon atoms and 1 to 50 0.1 to 50 parts by weight (weight) of acrylic acid derivative or methacrylic acid derivative having 1 to 5 acryloyl groups or methacryloyl groups not containing fluorine, and dissolved or dispersed in an organic solvent Part)) and a mixture of 0.1 to 20 parts by weight (parts by weight) of a photopolymerization initiator can be irradiated with light to obtain a film-like low refractive index coating layer.
  • a film-like low refractive index coat layer is obtained by irradiating a mixture of ⁇ 50 mass parts (weight%) of a fluorine-containing polymer and 0.1 to 10 mass parts (weight%) of a photopolymerization initiator. You can also.
  • a methacrylate compound or acrylate compound containing a fluoroalkyl group having 1 to 10 carbon atoms 1 to 50 parts by weight (parts by weight) containing no fluorine.
  • acrylic acid or methacrylic acid derivative having acryloyl group or methacryloyl group 0.01 to 10 parts by weight (parts by weight) of fumed silica, and 0.1 to 10 parts by weight (parts by weight) of photopolymerization
  • a film-like low refractive index coat layer can also be obtained by irradiating the composition comprising the agent with light.
  • a high pressure mercury lamp In the photocuring in the method of the present invention, a high pressure mercury lamp, a constant pressure mercury lamp, a thallium lamp, an indium lamp, a metal halide lamp, a xenon lamp, an ultraviolet LED, a blue LED, a white LED, an excimer lamp manufactured by Harrison Toshiba Lighting, an H bulb manufactured by Fusion , H plus bulb, D bulb, V bulb, Q bulb, M bulb, etc. can be used, and sunlight can also be used.
  • the photocuring reaction is difficult to proceed, it is desirable to carry out light irradiation in the absence of oxygen.
  • the surface of the film In the presence of oxygen, the surface of the film is not sticky due to oxygen inhibition, and it is necessary to increase the amount of initiator used.
  • a curing method in the absence of oxygen it may be performed in an atmosphere of nitrogen gas, carbon dioxide gas, helium gas, or the like.
  • the method for forming the composition into a film is not particularly limited, and it can be formed by various known film formation methods such as a coating method, a coating method, a printing method, a dipping method, and the like. Further, the film thickness of the film to be formed can be adjusted by the amount and type of the solvent, or a film forming process such as a thickener, an additive such as added fine particles, a film forming method, a curing method, or the like.
  • the protective layer on which the coating layer of the present invention is formed is not particularly limited, but glass materials such as synthetic quartz glass, quartz glass, borosilicate glass, soda lime glass, polymethacrylate, polycarbonate, polyethylene Terephthalate, polyimide, methyl methacrylate-styrene copolymer, polyfumarate, amorphous polyarylate, methyl methacrylate-butadiene-styrene copolymer, styrene-butadiene copolymer, polyethersulfone, polyetheretherketone, tri Transparent resin materials such as acetyl cellulose and polycycloolefin are preferred. These materials can be suitably used when used as a protective layer of a solar cell module.
  • glass materials such as synthetic quartz glass, quartz glass, borosilicate glass, soda lime glass, polymethacrylate, polycarbonate, polyethylene Terephthalate, polyimide, methyl methacrylate-styrene copolymer, poly
  • the thickness of the obtained coating layer was measured with PG-20 manufactured by Teclock Co., and the refractive index was measured with M-150 manufactured by JASCO Corporation.
  • the pencil hardness was measured with KT-VF2391 manufactured by Cortec.
  • a UV POWER PUCK manufactured by EIT was used as a light meter for measuring the amount of light during photocuring. Determination of photocuring was performed based on a tack-free test (finger touch test). That is, the time until tackiness (stickiness) of the coat layer obtained by light irradiation was taken was set as the curing time.
  • Photocuring was performed on white plate glass (50 mm ⁇ 50 mm ⁇ 1.0 mm) manufactured by Shinwa Seisakusho in the air. Condensing efficiency of the cured coating layer is 1100 nm using UV-1700 manufactured by Shimadzu Corporation, fixing a white plate glass with a coat layer formed on the sample optical path side, and fixing an uncoated white plate glass on the reference optical path side. And transmitted light in the wavelength range from 280 nm to 280 nm was compared. The contact angle was measured with DM-301 from Kyowa Interface Chemical Co., Ltd. Spin coating was performed using ACT-300AH manufactured by Active.
  • Example 1 9.0 g of 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech, 1.0 g of A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Kogyo Co., Ltd., IRGACURE 184 manufactured by Ciba-Geigy 200 mg was mixed and stirred until visually uniform. A portion of the solution was applied to one side of a glass plate, and when the composition on the glass plate was irradiated with a high-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co. for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ) A transparent coat layer without any film was obtained.
  • A-DCP tricyclodecane dimethanol diacrylate manufactured by Shin-Nakamura Kogyo Co., Ltd.
  • IRGACURE 184 manufactured by Ciba-Geigy 200 mg
  • the film thickness of the obtained coating layer was 8 ⁇ m, the pencil hardness was 5H, and the refractive index was 1.44. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.5%. Furthermore, when pure water (2 ⁇ L) was dropped onto the coating layer with a microsyringe and the contact angle was measured, it was 90 °.
  • Example 2 9.0 g of 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech, 1.0 g of A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Kogyo Co., Ltd., IRGACURE 184 manufactured by Ciba-Geigy 200 mg and 70 mg of azobisbutyronitrile manufactured by Wako Pure Chemical Industries, Ltd. were mixed and stirred until visually uniform. A portion of the solution was applied to one side of a glass plate and irradiated with the composition on the glass plate for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ) with a Fusion H bulb. A coating layer was obtained.
  • A-DCP tricyclodecane dimethanol diacrylate manufactured by Shin-Nakamura Kogyo Co., Ltd.
  • IRGACURE 184 manufactured by Ciba-Geigy 200 mg
  • the film thickness of the obtained coating layer was 8 ⁇ m, the pencil hardness was 5H, and the refractive index was 1.44. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.5%.
  • Example 3 9.0 g of 2,2,2-trifluoroethyl acrylate manufactured by Tosoh F-Tech, 1.0 g of A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Kogyo, IRGACURE 184 manufactured by Ciba-Geigy 100 mg, 1200 mg of IRGACURE 754, and 70 mg of azobisbutyronitrile manufactured by Wako Pure Chemical Industries, Ltd. were mixed and stirred until visually uniform.
  • A-DCP tricyclodecane dimethanol diacrylate
  • IRGACURE 184 manufactured by Ciba-Geigy 100 mg, 1200 mg of IRGACURE 754, and 70 mg of azobisbutyronitrile manufactured by Wako Pure Chemical Industries, Ltd.
  • a part of the solution was applied to one side of a glass plate, and the composition on the glass plate was irradiated for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ) with a high pressure mercury lamp H bulb manufactured by Fusion Harrison Toshiba Lighting. However, a transparent coating layer without stickiness was obtained.
  • the film thickness of the obtained coating layer was 8 ⁇ m, the pencil hardness was 5H, and the refractive index was 1.44. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.5%.
  • Example 4 9.0 g of 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech, 1.0 g of A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Kogyo Co., Ltd., IRGACURE 184 manufactured by Ciba-Geigy 200 mg, 5 mg of R202 (fumed silica treated with dimethylsilicone oil) manufactured by Evonik Co., Ltd. were mixed and stirred until visually uniform. A portion of the solution was applied to one side of a glass plate, and when the composition on the glass plate was irradiated with a high-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co. for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ) A transparent coat layer without any film was obtained.
  • A-DCP tricyclodecane dimethanol diacrylate
  • IRGACURE 184 manufactured by Ciba-Geigy 200 mg
  • the film thickness of the obtained coating layer was 10 ⁇ m, the pencil hardness was 5H, and the refractive index was 1.44. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.5%.
  • Example 5 9.0 g of 2,2,2-trifluoroethyl acrylate manufactured by Osaka Organic Industry Co., Ltd., 1.0 g of KAYARAD-R684 (tricyclodecane dimethanol diacrylate) manufactured by Nippon Kayaku Co., Ltd., IRGACURE 184 manufactured by Ciba Geigy Co., Ltd. 200 mg was stirred until visually uniform. A portion of the solution was applied to one side of a glass plate, and when the composition on the glass plate was irradiated with a high-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co. for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ) A transparent coat layer without any film was obtained.
  • the film thickness of the obtained coating layer was 9 ⁇ m, the pencil hardness was 5H, and the refractive index was 1.43. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.6%.
  • Example 6 9.0 g of 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech, 1.0 g of NK-NOD (1,9-nonanediol dimethacrylate) manufactured by Shin-Nakamura Kogyo, IRGACURE 184 manufactured by Ciba-Geigy 200 mg and 5 mg of R202 (fumed silica treated with dimethyl silicone oil) manufactured by Evonik Co., Ltd. were mixed and stirred until visually uniform.
  • NK-NOD 1,9-nonanediol dimethacrylate
  • IRGACURE 184 manufactured by Ciba-Geigy 200 mg
  • R202 fumed silica treated with dimethyl silicone oil
  • a portion of the solution was applied to one side of a glass plate and irradiated with the composition on the glass plate for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ) with a Fusion H bulb. A coating layer was obtained.
  • the obtained coating layer was 10 ⁇ m, the pencil hardness was H, and the refractive index was 1.44. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.5%.
  • Example 7 Poly 2,2,2-trifluoro obtained by a synthesis method described in Polymer Journal, 1994, Vol. 10, pages 1118 to 1123 using 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech. 9.0 g of ethyl methacrylate, 1.0 g of A-DCP (tricyclodecane dimethanol diacrylate) manufactured by Shin-Nakamura Kogyo Co., Ltd., 200 mg of IRGACURE 184 manufactured by Ciba-Geigy Co., Ltd., R202 manufactured by Evonik (fumes treated with dimethyl silicone oil) Dosilica) 5 mg and ethyl acetate 500 mL were mixed and stirred visually until uniform.
  • A-DCP tricyclodecane dimethanol diacrylate
  • IRGACURE 184 manufactured by Ciba-Geigy Co., Ltd.
  • R202 manufactured by Evonik (fumes treated with dimethyl silicone oil)
  • a portion of the solution was transferred to a glass plate with 54.3 mg with a dropper, and the composition on the glass plate was irradiated with a high-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co. for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ). However, a transparent coating layer without stickiness was obtained.
  • the film thickness of the obtained coating layer was 10 ⁇ m, the pencil hardness was 3H, and the refractive index was 1.42. In the wavelength range of 1100 nm to 450 nm, the light collection efficiency increased by 1.7%.
  • Example 8 Poly 2,2,2-trifluoro obtained by a synthesis method described in Polymer Journal, 1994, Vol. 10, pages 1118 to 1123 using 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech.
  • ethyl methacrylate 1.0 g of A-TMM-3L (pentaerythritol triacrylate) manufactured by Shin-Nakamura Kogyo Co., Ltd., 200 mg of IRGACURE 184 manufactured by Ciba-Geigy Co., Ltd., R202 manufactured by Evonik (fumed with dimethyl silicone oil treatment) 5 mg of silica) and 450 mL of methyl ethyl ketone were mixed and stirred until visually uniform. A portion of the solution was transferred to a glass plate with 54.3 mg with a dropper, and the composition on the glass plate was irradiated with a high-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co. for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ). However, a transparent coating layer without stickiness was obtained.
  • the film thickness of the obtained coating layer was 10 ⁇ m, the pencil hardness was 3H, and the refractive index was 1.42. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.7%. Furthermore, it was 88 degree
  • Example 9 Using Journal of Tosoh F-Tech Co., 2,2,2-trifluoroethyl acrylate 4.5 g and Tosoh F-Tech Co., Ltd. 2,2,2-trifluoroethyl methacrylate, 1994, Volume 10, Polymer Journal, 4.5 g of poly 2,2,2-trifluoroethyl methacrylate obtained by the synthesis method described on pages 1118 to 1123, 1.0 g of A-TMM-3L (pentaerythritol triacrylate) manufactured by Shin-Nakamura Kogyo Co., Ltd. 200 mg of IRGACURE 184 manufactured by Ciba Geigy Co., Ltd.
  • A-TMM-3L penentaerythritol triacrylate
  • the film thickness of the obtained coating layer was 10 ⁇ m, the pencil hardness was 3H, and the refractive index was 1.42. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.6%.
  • Example 10 (Example 10) 4.5 g of 2,2,2-trifluoroethyl acrylate manufactured by Tosoh F-Tech, and 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech, 1994, Volume 10, 1118- 4.5 g of poly 2,2,2-trifluoroethyl methacrylate obtained by the synthesis method described on page 1123, 1.0 g of A-TMM-3L (pentaerythritol triacrylate) manufactured by Shin-Nakamura Kogyo Co., Ltd., Ciba Geigy 200 mg of IRGACURE 184 made by Evonik and 5 mg of R202 made by Evonik (fumed silica treated with dimethyl silicone oil) were mixed and stirred until visually uniform.
  • A-TMM-3L penentaerythritol triacrylate
  • a portion of the solution was transferred to a glass plate with 54.3 mg using a dropper, and the composition on the glass plate was irradiated with a high-pressure mercury lamp manufactured by Harrison Toshiba Lighting Co. for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ). However, a transparent coating layer without stickiness was obtained.
  • the film thickness of the obtained coating layer was 11 ⁇ m, the pencil hardness was 3H, and the refractive index was 1.42. In the wavelength range from 1100 nm to 450 nm, the light collection efficiency increased by 1.6%.
  • Example 11 Poly 2,2,2-trifluoro obtained by a synthesis method described in Polymer Journal, 1994, Vol. 10, pages 1118 to 1123 using 2,2,2-trifluoroethyl methacrylate manufactured by Tosoh F-Tech.
  • a portion of the above solution was transferred onto a glass plate by 60 mg with a dropper, and the glass plate was adsorbed and fixed on the stage of a spin coater. After increasing the rotation speed from 0 rpm to 1000 rpm over 10 seconds, the spin coater was stopped.
  • the glass plate surface coated with the above solution was irradiated with the composition on the glass plate for about 1 second (320 nm to 390 nm, 500 mJ / cm 2 ) with a high-pressure mercury lamp manufactured by Harrison Toshiba Lighting, a non-sticky transparent coating A layer was obtained.
  • the obtained coating layer (AR) two layers of an aluminum vapor deposition film (AL) and a carbon vapor deposition film (C) were formed on the coating layer as a protective film for protecting the coating layer from damage received during cutting. .
  • the obtained glass plate with a coat layer was cut with a laser, and its cross section was observed with an SEM to obtain a cross section image. An image of the obtained cross section is shown in FIG. As is clear from FIG. 1, it was found that a uniform protective layer (AR) having a thickness of 90 nm was formed in close contact with the glass plate (GL).
  • the solar cell coating layer of the present invention can be used as a coating layer for improving the light collection efficiency of the solar cell, and can be easily formed on the solar cell protective layer by a simple method. It can be suitably used for various types of solar cells, without being limited to the type of power generation substrate such as silicon type such as mold, compound type such as CIGS, and organic type such as hue sensitized type and organic thin film type. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

【課題】 簡便な手法で太陽電池モジュール集光効率を向上させる太陽電池のカバーガラスに、単層の低屈折性有機薄膜層を施し、太陽光の集光能力を向上させる。 【解決手段】 太陽電池モジュールの保護層に直接形成でき、かつ大気と直接接触している状態で用いられる太陽電池用コート層であって、該太陽電池用含フッ素コート層のフッ素含有量が5質量%以上であることを特徴とする太陽電池用コート層とし、このコート層はフルオロアルキル基を含有するメタアクリレート化合物およびまたはアクリレート化合物およびまたは有機溶剤に溶解または分散させた含フッ素ポリマー、フッ素を含まない1~5個のアクリロイル基またはメタアクリロイル基を有する有機化合物と、光重合開始剤からなる組成物に、場合によりフュームドシリカを配合し、重合・硬化させて保護層を形成する。

Description

太陽電池用コート層およびその製造方法
 本発明は、太陽電池と称される光起電力装置のカバーガラス等の保護層に、簡便な手法で単層の低屈折性有機膜層を形成し、太陽光の集光能力を向上させる技術に関する。
 近年、地球温暖化の要因である炭酸ガス排出の削減、さらには化石燃料枯渇問題に対処するために太陽光発電が脚光を浴びており、その発電効率を上げる技術開発が活発に行われている。発電効率を上げるために、発電素子自体の光電変換率の向上は不可欠であるが、太陽電池の集光効率の向上も重要でな課題である。
 集光効率を向上させるには、例えば太陽電池発電モジュールの保護層の材質やコーティングを改良する手法が検討されており、その効果が期待されている。なお、この保護層は、主にガラス材が用いられ、ガラス保護層は、一般にカバーガラスと称されている。
 特開2004-292194号公報(特許文献2)には、カバーガラス上に、低反射膜形成用塗布液を塗布した後、焼成して低反射膜を形成する低反射膜付きガラス板の製造方法が開示されている。この文献では、焼成条件によって酸化珪素膜の屈折率を制御することにより、可視光線反射率を小さくし、しかも、耐磨耗性や耐薬品性などの耐久性に優れ、任意の膜厚で高硬度の酸化珪素膜で被覆された単層の低反射膜付きガラス板の製造方法を提供することを目的として、透明ガラス基板の表面に、有機珪素化合物(A)、40~270℃で熱分解するバインダー樹脂(B)および有機溶剤(C)を配合した処理液を塗布して乾燥し、得られた塗布膜付きのガラス基板を400~800℃で焼成し、焼成後の被膜の気孔率が15~25%になるように構成している。
 しかし、この文献の方法では焼成工程において薄膜を完全に焼成して低反射膜を形成させることが必要であるが、薄膜は焼成が進むにつれて結晶化し、緻密になることから完全に焼成させた薄膜は気孔率が低くなり、屈折率が高くなるため、集光効率の改善された太陽電池発電モジュールの保護層を得ることは容易ではなかった。
 集光効率向上を実現する他の手法として、例えば、カバーガラス上に高屈折率膜の層と低屈折膜の層とからなる多層膜を形成しする試みも検討されている。特開2008-260654号公報(特許文献3)には、太陽電池モジュール表面を保護するカバーガラスが太陽光を反射するため、太陽電池セル表面への光透過量が低下し、発電量が低下するという課題を解決することを目的として、当該カバーガラスの表裏両面若しくは表面のみに高屈折率と低屈折率から成る組合せ薄膜層を積層する手段により、太陽電池セルが有効に光電変換する波長域の反射を抑制し、光透過量を向上させる高い太陽光透過性能を有するガラスが開示されている。
 しかし、この文献のような多層膜を作製するためは、製造工程に多大な時間を要し、また、各薄膜の厚みも反射率に大きな影響を及ぼすため、所望の性能を得たり、均一な特性を再現良く得ることが困難であるという問題があった。
 このため、単一層で必要な性能が得られ、しかも低コストで簡便に作製できる太陽電池用コート層の開発が望まれている。
 なお、特開2002-332313号公報(特許文献1)には、屈折率を適宜選択でき低屈折率で光学部品との良好な密着性を有する硬化物を形成するための新規な成分を提供することを目的として、パーフルオロアルキル基含有(メタ)アクリレートと架橋官能基含有(メタ)アクリル酸誘導体が共重合したパーフルオロアルキル基含有プレポリマーを有する組成物が開示されている。
 しかし、メタクリル酸やアクリル酸のフルオロアルキルエステルが、ポリマーなどの有機材料の構成成分となる際に、材料に安価に低屈折性はもとより加工性や塗装性を付与しうるが、機械強度が低く、屋外で直接大気に触れるような用途には適さず実用には至っていない。
特開2002-332313号公報 特開2004-292194号公報 特開2008-260654号公報
 本発明の目的は、簡便な手法で形成でき、単層で低屈折率を有し、機械的強度も高く、特に太陽電池モジュールのカバーガラス等にコーティングして集光効率を向上させることが可能な太陽電池用コート層およびその製造方法を提供することである。
 上記課題を解決するため、本発明は以下の構成とした。
(1)少なくともフッ素を含む樹脂とアクリル酸またはメタクリル酸誘導体とを含有し、
 前記フッ素の含有量が5質量%以上であり、
 太陽電池モジュールの保護層に大気と直接接触する状態で形成されている太陽電池用コート層。
(2)前記フッ素の含有量が20~80質量%である上記(1)の太陽電池用コート層。
(3)膜厚30nm~300nmで、波長400nmの光の屈折率が1.30~1.50である上記(1)または(2)の太陽電池用コート層。
(4)水に対する接触角が65度~120度である上記(1)~(3)のいずれかの太陽電池用コート層。
(5)少なくとも下記成分a)および成分b)の何れかと、下記成分c)と、有機溶剤とを含有する組成物を成膜して得られる上記(1)~(4)のいずれかの太陽電池用コート層。
成分a)炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物およびアクリレート化合物の何れか1種または2種以上
成分b)含フッ素ポリマー
成分c)1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体およびメタクリル酸誘導体の何れか1種または2種以上
(6)少なくとも下記成分a)および成分b)の何れかと、下記成分c)と、有機溶剤とを含有する組成物を膜状に形成し、重合・硬化させて太陽電池用コート層を得る太陽電池用コート層の製造方法。
成分a)炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物およびアクリレート化合物の何れか1種または2種以上
成分b)含フッ素ポリマー
成分c)1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体およびメタクリル酸誘導体の何れか1種または2種以上
(7)前記成分b)および成分c)を
成分b)=0.1~50質量部
成分c)=1~50質量部
含有する上記(6)の太陽電池用コート層の製造方法。
(8)前記成分a)および成分b)の何れも含有し、各成分a~c)の含有量が
成分a)=1~90質量部
成分b)=0.1~50質量部
成分c)=1~50質量部
である上記(6)の太陽電池用コート層の製造方法。
(9)さらに、成分d)としてフュームドシリカを含有する上記(6)~(8)のいずれかの太陽電池用コート層の製造方法。
(10)前記成分a)および成分c)を
成分a)=1~90質量部
成分c)=1~50質量部
含有する上記(9)の太陽電池用コート層の製造方法。
(11)さらに、重合開始剤を含有する上記(6)~(10)の何れかの太陽電池用コート層の製造方法。
(12)前記成分b)の含フッ素ポリマーは、
式(1)、
Figure JPOXMLDOC01-appb-C000004
式(2)、
Figure JPOXMLDOC01-appb-C000005
または式(3)、
Figure JPOXMLDOC01-appb-C000006
で表される環状構造を有する含フッ素ポリマーおよびテトラフルオロエチレンの何れか1種または2種以上:10~50モル部、
ヘキサフルオロプロピレン:0~50モル部、
ビニリデンフルオライド:90~10モル部、
およびビニルフルオライド:10~100モル部を有する共重合体である上記(6)~(11)のいずれかの太陽電池用コート層の製造方法。
 本発明によれば、簡便な手法で形成可能で、単層でも良好な低屈折率を有し、機械的強度も高く、特に太陽電池モジュールのカバーガラス等の保護層にコーティングして集光効率を向上させることが可能な太陽電池用コート層およびその製造方法を提供することができる。
図1は、本発明のコート層が形成された保護層の断面を示すSEM画像である。
 本発明の太陽電池用コート層は、少なくともフッ素を含む樹脂とアクリル酸またはメタクリル酸誘導体とを含有し、前記フッ素の含有量が5質量%以上であり、太陽電池モジュールの保護層に大気と直接接触する状態で形成されているものである。このように、少なくともフッ素を含む樹脂とアクリル酸またはメタクリル酸誘導体とを含有し、前記フッ素の含有量が5質量%以上の樹脂層でコート層を構成することにより、単層で低屈折率、かつ機械強度の高い樹脂層を形成することができる。このため、太陽電池の保護層に形成して直接大気と接する状態で用いることができる。
 本発明のコート層は構成樹脂中にフッ素を含有する。フッ素を含有することで屈折率を低く抑えることができ、反射率を低減することができる。コート層におけるフッ素含有量は5質量%(重量%)以上であり、好ましくは20~80質量%(重量%)、より好ましくは30~76質量%(重量%)である。
 コート層の屈折率としては、上記フッ素含有量との関係で変化するが、波長400nmの光における屈折率で、好ましくは1.30~1.50、より好ましくは1.34~1.49である。屈折率とフッ素含有量は相関関係にあり、例えばポリテトラフルオロエチレン(Polytetrafluoroethylene, PTFE)のフッ素含有量:75.98質量%(重量%)で、屈折率:1.35であり、ポリ(2,2,2-trifluoroethyl methacrylate)のフッ素含有量:33.9質量%(重量%)で、屈折率:1.47になる。なお、これらの樹脂はその性質上単独でコート層に用いることは困難である。本発明では、フッ素を含む樹脂の含有量、フッ素を含む樹脂におけるフッ素含有量等を調整することで、コート層を上記のフッ素含有量に調整することができる。
 コート層の膜厚としては、特に限定されるものではないが、単層で太陽電池の保護層として形成する場合、好ましくは30nm~300nm、より好ましくは50nm~200nmである。膜厚が薄すぎると、機械強度が低下したり、反射防止効果が低下し、膜厚が厚すぎると均一な成膜が困難になったり、期待する特性が得難くなってくる。
 本発明のコート層は、接触角が大きいことも特徴であり、具体的な接触角としては、好ましくは水に対して65度~120度、より好ましくは70度~114度である。このような接触角を有することで、汚染に強くなり、大気と直接接する状態で使用しても長期間初期性能を維持することができる。また、清掃も容易になる。接触角θは、例えば次の式
 θ=2tan-1 (h/r ) :h=水滴の高さ、r=水滴の半径
により求めることができ(ATAN 1/2θ法)、例えば水滴の画像をPCで解析することで容易に求めることができる。
 本発明のコート層を設けることで、光線透過率を向上させることができる。具体的には波長350nm~1100nmの範囲の光線において、保護層に入射する垂直光の光線透過率を、保護層、つまりガラス単独に比べて好ましくは100.1%~104%、つまり0.1%~4%向上させることができ、さらに380nm~750nmの範囲の光線では101%~103%、つまり1~3%垂直光透過率が向上する。
 本発明のコート層は、少なくともフッ素を含む樹脂とアクリル酸またはメタクリル酸誘導体とを重合・硬化させて得ることができ、形成されたコート層中にも前期樹脂材が含まれていると考えられる。本発明のコート層のより具体的に製造方法としては、少なくとも
成分a)炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物およびアクリレート化合物の何れか1種または2種以上、
成分b)含フッ素ポリマー、
成分c)1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体およびメタクリル酸誘導体の何れか1種または2種以上、
のうち成分a)および成分b)の何れかと、成分c)と、有機溶剤とを含有する組成物を成膜し、重合硬化させて得ることができる。また、前記組成物にはさらに成分d)としてフュームドシリカ(Fumed Silica)を含有していてもよい。
 そして、前記組成物に重合開始剤を添加して、光、放射線、加熱など、重合に必要なエネルギーを加えることで重合、硬化し、極めて容易に低屈折率のコート層が得られる。
 本発明において、成分a)のフルオロアルキル基を含有するメタアクリレート化合物あるいはアクリレート化合物や、成分b)の含フッ素ポリマーなどの含フッ素化合物は、主に得られた薄膜組成物の屈折率を下げる。また、成分c)の1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体またはメタクリル酸誘導体や、成分d)のフュームドシリカなどのフッ素を含まない化合物は、得られた薄膜組成物の硬度や耐擦過性の向上あるいは基材への接着性を向上させる。従って、これらを組み合わせた組成物とすることで、前者と後者の特性を併せ持つ優れたコート層を得ることができる。
 全記組成物の各成分の組み合わせとしては、成分a)および成分b)の何れかと、成分c)必要により成分d)と、有機溶剤とを含有するものであれば特に限定されるものではないが、成分b)および成分c)の組み合わせ、あるいは成分a)、成分b)、成分c)の何れも含有する組み合わせが好ましく、また成分a)と成分c)にさらに成分d)を含有する組み合わせも好ましい。
 組成物中の各成分の含有量としては以下の範囲が好ましい。
成分a)
 炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物および/またはアクリレート化合物:1~90質量部(重量部)、より好ましくは50~90質量部(重量部)、特に70~90質量部(重量部)
成分b)
 含フッ素ポリマー:0.1~50質量部(重量部)、より好ましくは0.5~50質量部(重量部)、特に1~50質量部(重量部)
成分c)
 1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体および/またはメタクリル酸誘導体:1~50質量部(重量部)、より好ましくは1~30質量部(重量部)、特に1~25質量部(重量部)
成分d)
 フュームドシリカ:0.1~10質量部(重量部)、より好ましくは0.01~8質量部(重量部)、特に0.01~5質量部(重量部)
 〔成分a〕
 炭素数1~10、好ましくは炭素数2~10のフルオロアルキル基を含有するメタアクリレート化合物および/またはアクリレート化合物としては、特に制限されるものではないが、例えばCF3 (CF2)8CH22CCH=CH2、CF3 (CF2)8CH22CC(CH)=CH2、HCF2(CF2)7(CH2)22CCH=CH2、HCF2(CF2)7(CH2)22CC(CH)=CH2、CF3 (CF2)7CH22CCH=CH2、CF3 (CF2)7CH22CC(CH)=CH2、CF3 (CF2)6CH22CCH=CH2、CF3 (CF2)6CH22CC(CH)=CH2、CF3 (CF2)5CH22CCH=CH2、CF3 (CF2)5CH22CC(CH)=CH2、CF3 (CF2)4CH22CCH=CH2、CF3 (CF2)4CH22CC(CH)=CH2、CF3 (CF2)3CH22CCH=CH2、CF3 (CF2)3CH22CC(CH)=CH2、CF3 (CF2)2CH22CCH=CH2、CF3 (CF2)2CH22CC(CH)=CH2、(CF3 )3CCH22CCH=CH2、(CF3 )3CCH22CC(CH)=CH2、(CF3 )2CFCH22CCH=CH2、(CF3 )2CFCH22CC(CH)=CH2、CF3 CF2CH(CF3 )O2CCH=CH2、CF3 CF2CH(CF3 )O2CC(CH)=CH2、CF3 CF2CH22CCH=CH2、CF3CF2CH22CC(CH)=CH2、CF3 CF3CHO2CCH=CH2、CF3 CF3CHO2CC(CH)=CH2、H2CFCH22CCH=CH2、H2CFCH22CC(CH)=CH2、HCF2CH22CCH=CH2、HCF2CH22CC(CH)=CH2、CF3CH22CCH=CH2、CF3CH22CC(CH)=CH2、などが例示され、これらの中から単独あるいは2種以上を混合して用いることができる。これらの中でも特に、2,2,2-トリフルオロエチルメタクリレート:CF3CH22CCH=CH2、2,2,2-トリフルオロエチルアクリレート:CF3CH22CC(CH)=CH2が好ましい。
〔成分c〕
 1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体および/またはメタクリル酸誘導体としては、特に限定されるものではないが、フッ素を含有しないものであることが望ましい。フッ素を含まないアクリロイル(メタアクリロイル)化合物との組み合わせにより、機械物性を向上させることができる。
 このようなアクリル酸誘導体および/またはメタクリル酸誘導体としては、例えばCH22CC(CH)=CH2、CH22CCH=CH2や、新中村化学工業(株)や日本化薬(株)などで製造販売されている、CH=C(CH)O2C(CHO)COC(CH)=CH、CH=C(CH)O2C(CHO)COC(CH)=CH、CH=C(CH)O2C(CHO)3COC(CH)=CH、CH=C(CH)O2C(CHO)4COC(CH)=CH、CH=CHO2C(CHO)4COCH=CH、CH=CHO2C(CHO)6COCH=CH、CH=CHO2C(CHO)9COCH=CH、CH=CHO2C(CHO)10COCH=CH、CH=C(CH)O2C(CHO)9COC(CH)=CH、CH=C(CH)O2C(CHO)14COC(CH)=CH、CH=C(CH)O2C(CHO)23COC(CH)=CH、CH=C(CH)O2CCHC(CHCHCO2C(CH)=CH、CH=CHO2CCHC(CHCHCO2CH=CHCH=C(CH)O2CCHCH(OH)CHCO2C(CH)=CH、CH=C(CH)O2C(CH9CO2C(CH)=CH、CH=C(CH)O2C(CHO)(CC(CH)(CHO)COC(CH)=CH(m+n=2~30)、CH=CHO2C(CHO)(CC(CH)(CHO)COCCH=CH(m+n=2~30)、トリシクロデカンジメタノールジメタクリレート、トリシクロデカンジメタノールジアクリレート、CH=C(CH)O2C(CHC(C)(CHCC(CH)=CH)CH)OCC(CH)=CH、CH=CHO2C(CHC(C)(CHCCH=CH)CH)OCCH=CH、CH=CHO2C(CHC(CHCCH=CHCH)OCCH=CH、CH=CHO2C(CHC(CHCCH=CHCH)OCHC(CH(CHCCH=CH、や(株)トクシキ、新中村工業(株)あるいは日本化薬(株)で販売されているウレタン骨格を有するウレタンジメタクリレート化合物やウレタンジアクリレート化合物、あるいは昭和電工(株)で販売されているイソシアネートモノマーであるカレンズ・シリーズから誘導されるウレタンジメタクリレート化合物やウレタンジアクリレート化合物あるいは、ウレタンメタクリレートアクリレートなどが例示され、これらの中から単独あるいは2種以上を混合して用いることができる。
〔成分d〕
 さらに、組成物には必要に応じてフュームドシリカ(Fumed Silica)を含有させてもよい。フュームドシリカを含有することにより、得られる膜の屈折率などの性能が向上する。特に前記成分a+成分cの組合せの時に効果的である。本発明で用いることができるフュームドシリカは、一次粒子の平均径が1~100nmで、比表面積(Sm=S/ρV:表面積S、密度ρ、体積V)が10~1000m/gのもので、特に好ましくは、一次粒子の平均径が3~50nmで、比表面積が40~400m/gである。なお、比表面積は、通常気体吸着法(BET)、透過法等により測定される。例えば、エボニック社製のフュームドシリカであれば、R202、R805、R812、R812S、RX200、RY200,R972、R972CF,90G、200V,200CF、200FAD、300CF等を用いることが出来る。なお、本発明ではフュームドシリカと共に、微粒子状のチタニア、ジルコニア、アルミナ、シリカ-アルミナなども単独あるいは2種以上を混合して用いることができる。これらの混合量は、上記主組成の機能を害しない範囲で任意である。
〔成分b〕
 組成物に用いられる含フッ素ポリマーは、特に限定されるものではないが、有機溶剤に可溶または分散可能であることが必要である。特に
式(1)、
Figure JPOXMLDOC01-appb-C000007
式(2)、
Figure JPOXMLDOC01-appb-C000008
式(3)、
Figure JPOXMLDOC01-appb-C000009
で示される環状構造を有する含フッ素ポリマーおよび/またはテトラフルオロエチレン、ヘキサフルオロプロピレン、ビニリデンフルオライド、およびビニルフルオライドの各モノマーの共重合体が好ましい。
 上記各モノマーの含有量としては、以下の範囲が好ましい。
 式(1)乃至式(3)で示される環状構造を有する含フッ素ポリマーおよび/またはテトラフルオロエチレン:10~50モル部、より好ましくは10~45モル部、特に10~40モル部、ヘキサフルオロプロピレン:0~50モル部、より好ましくは0~45モル部、特に0~40モル部、ビニリデンフルオライド:90~10モル部、より好ましくは85モル~10モル部、特に80モル~10モル部、ビニルフルオライド:10~100モル部、好ましくは15~100モル部、特に20~100モル部。
 上記の含フッ素ポリマーとしては、市販品として入手可能であり、例えばテフロン(登録商標)AFシリーズ(デュポン社製)、フルオンシリーズ(旭硝子社製)、ハイフロンシリーズ(ソルベイ・ソレクシス社製)、サイトップ(旭硝子社製)、THVシリーズ(住友スリーエム社製)、ネオフロンシリーズ(ダイキン社製)、カイナーシリーズ(アルケマ社製)、テドラーシリーズ(デュポン社製)、ダイニオンシリーズ(ダイニオン社製)などが挙げられる。これらを単独あるいは2種以上混合して用いることができる。
 さらに、本発明で用いることができる含フッ素ポリマーとして、上記成分aで例示した炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物および/またはアクリレート化合物からなるポリマーを用いることができる。特に、前記成分aの1種または2種以上を混合し、熱重合させて得られるポリマーが好ましく、好ましい成分aとしては上記と同様である。これらのポリマーは、ポリスチレン換算、つまりポリマーにポリスチレンを用いる場合には、数平均分子量が5000~3000、000、好ましくは5000~2、000000、より好ましくは5000~1500000の範囲のポリマーが好ましく、他の樹脂材料でもポリスチレンとの分子比で前記範囲に対応したものが好ましい。
 本発明の組成物に用いられる有機溶剤としては、上記フッ素ポリマーを溶解あるいは分散させることが可能な溶剤であれば特に限定されるものではない。具体的には、CF3CH2OH、F(CF22CH2OH、(CF32CHOH、F(CF23CH2OH、F(CF2425OH、H(CF22CH2OH、H(CF23CH2OH、H(CF24CH2OHなどのフッ素アルコール系溶剤、パーフルオロベンゼン、メタキシレンヘキサフルオライドなどの含フッ素芳香族系溶剤、CF4(HFC-14)、CHClF2(HCFC-22)、CHF3(HFC-23)、CH2CF2(HFC-32)、CF3CF3(PFC-116)、CF2ClCFCl2(CFC-113)、C3HClF5(HCFC-225)、CH2FCF3(HFC-134a)、CH3CF3(HFC-143a)、CH3CHF2(HFC-152a)、CH3CCl2F(HCFC-141b)、CH3CClF2(HCFC-142b)、C48(PFC-C318)などのフルオロカーボン系溶剤などが例示される。
 さらに、例えば、キシレン、トルエン、ソルベッソ100、ソルベッソ150、ヘキサンなどの炭化水素系溶剤、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸エチレングリコールモノメチルエーテル、酢酸エチレングリコールモノエチルエーテル、酢酸エチレングリコールモノブチルエーテル、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノブチルエーテル、酢酸エチレングリコール、酢酸ジエチレングリコールなどのエステル系溶剤;ジメチルエーテル、ジエチルエーテル、ジブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、テトラヒドロフランなどのエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、アセトンなどのケトン系溶剤、N,N-ジメチルアセトアミド、N-メチルアセトアミド、アセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミドなどのアミド系溶剤、ジメチルスルホキシドなどのスルホン酸エステル系溶剤、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、ジエチレングリコール、ポリエチレングリコール(重合度3~100)などが例示され、これらを単独あるいは2種以上を混合して用いることができる。
 なお、これらのうち、溶解能、塗膜外観、貯蔵安定性の点から前記各種のフッ素系溶剤、ケトン系溶剤、エステル系溶剤が好ましく、特にメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、セロソルブアセテート、酢酸ブチル、酢酸エチル、パーフルオロベンゼン、メタキシレンヘキサフルオライド、HCFC-225、CFC-113、HFC-134a、HFC-143a、HFC-142bを単独あるいは2種以上混合して使用することが好ましい。
 本発明の組成物に添加される重合開始剤としては、特に限定されるものではなく、用途や、目的とする膜の特性、製造方法に適した重合開始剤を選択して用いればよいが、重合開始剤の中でも特に光重合開始剤が推奨される。UV硬化による光重合開始剤を用いると特にすぐれた性能を得ることができる。光重合開始剤は、特に制限されるものではないが、IRGACURE651、IRGACURE184、DAROCUR1173、IRGACURE2959、IRGACURE127、IIRGACURE907、IIRGACURE369、IIRGACURE379、DAROCUR TPO、IRGACURE819、IRGACURE784、IRGACURE OXE1、IRGACURE OXE2、IRGACURE754等のチバガイギー社製のものやBASF社製のLucirin TPO、Lucirin TPO-Lを単独あるいは二種以上混合して使用できる。光重合開始剤の含有量は特に限定されるものではないが、好ましくは0.1~20質量部(重量部)、より好ましくは0.1~15質量部(重量部)、特に1~10質量部(重量部)である。他の重合開始剤を用いる場合も、前記範囲に準じて用いると良い。
 光硬化を促進するため、例えば、ベンゾフェノン等のケトン化合物、ローズベンガル等の色素や、フルオレン、ピレン、あるいはフラーレン等の共役系化合物を光増感剤として、光開始剤に対して質量比(重量比)で0.05~3倍量、好ましくは0.05~2倍量、より好ましくは0.05~1.5倍量を光開始剤と併せて用いることが可能である。
 また、本発明における光硬化で、光開始剤に加熱によりラジカルを発生する熱開始剤を、光開始剤に対して質量比(重量比)で0.05~3倍量、好ましくは0.05~2倍量、より好ましくは0.05~1.5倍量を併用、あるいは光開始剤と光増感剤を併用することも出来る。熱開始剤としては、AIBN(アゾビスイソブチロニトリル)、ケトンパーオキサイドやパーオキシケタール、ハイドロパーオキサイド、ジアリルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル、パーオキシカーボネートなどの化合物またはその誘導体が好ましく、市販品では、日本油脂株式会社製パーロイルO、パーロイルL、パーロイルS、パーオクタO、パーロイルSA、パーヘキサ250、パーヘキシルO、ナイパーPMB、パーブチルO、ナイパーBMT、ナイパーBW、パーブチルIB、パーヘキサMC、パーヘキサTMH、パーヘキサHC、パーヘキサC、パーテトラA、パーヘキシルI、パーブチルMA、パーブチル355、パーブチルL、パーヘキサ25MT、パーブチルI、パーブチルE、パーヘキシルZ、パーヘキサV、パーブチルP、パークミルD、パーヘキシルD、パーヘキサ25B、パーブチルD、パーメンタH、パーヘキシン25Bなどが例示できる。
 上記組成物により本発明のコート層を得るには、例えば、1~90質量部(重量部)の炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物およびまたはアクリレート化合物と、1~50質量部(重量部)のフッ素を含まない1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体またはメタクリル酸誘導体と、有機溶剤に溶解または分散させた0.1~50質量部(重量部)の含フッ素ポリマー、および0.1~20質量部(重量部)の光重合開始剤からなる混合物に光照射して膜状の低屈折率のコート層を得ることができる。
 あるいは、1~50質量部%(重量%)のフッ素を含まない1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体またはメタクリル酸誘導体と、有機溶剤に溶解または分散させた0.1~50質量部%(重量%)の含フッ素ポリマーと、0.1~10質量部%(重量%)の光重合開始剤の混合物に光照射して膜状の低屈折率のコート層を得ることもできる。
 さらに、1~90質量部(重量部)の炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物あるいはアクリレート化合物と、1~50質量部(重量部)のフッ素を含まない1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体またはメタクリル酸誘導体と、0.01~10質量部(重量部)のフュームドシリカと、0.1~10質量部(重量部)の光重合開始剤からなる組成物に光照射し、膜状の低屈折率のコート層を得ることもできる。
 本発明方法における光硬化では、高圧水銀灯、定圧水銀灯、タリウムランプ、インジウムランプ、メタルハライドランプ、キセノンランプ、紫外線LED、青色LED,白色LED、ハリソン東芝ラィティング社製のエキシマランプ、フュージョン社製のHバルブ、Hプラスバルブ、Dバルブ、Vバルブ、Qバルブ、Mバルブ等の発光光が挙げられるほか、太陽光の使用も可能である。
 光硬化反応が進みにくい場合は、光照射を酸素非存在下で実施することが望ましい。酸素存在下では酸素阻害のためフィルム表面のべたつきがなかなか取れず、開始剤の使用量を増やすことが必要となる。なお、酸素非存在下での硬化方法としては、窒素ガス、炭酸ガス、ヘリウムガス等の雰囲気で行うことが挙げられる。
 組成物を膜状に形成するための方法としては特に限定されるものではなく、公知の種々の膜形成の方法、例えば塗布法、コート法、印刷法、ディップ法などにより形成することができる。また、形成される膜の膜厚は、前記溶剤の量や種類、あるいは増粘剤、添加微粒子等の添加物、成膜、硬化方法等の膜形成工程により調整することができる。
 本発明のコート層が形成される保護層としては、特に制限されるものではないが、合成石英ガラス、石英ガラス、ボロシリケートガラス、ソーダライムガラスなどのガラス材の他、ポリメタクリレート、ポリカーボネート、ポリエチレンテレフタレート、ポリイミド、メチルメタクリレート-スチレン共重合体、ポリフマル酸エステル、非晶性ポリアリレート、メチルメタクリレート-ブタジエン-スチレン共重合体、スチレン-ブタジエン共重合体、ポリエーテルサルホン、ポリエーテルエーテルケトン、トリアセチルセルロース、ポリシクロオレフィン等の透明樹脂材が好ましい。これらの材料を太陽電池モジュールの保護層とした際に好適に用いることができる。
 以下の実施例により本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
 以下の各実施例において、得られたコート層の厚みは、テクロック社製のPG-20で測定し、屈折率は、日本分光社製のM-150で測定した。鉛筆硬度は、コーテック社製のKT-VF2391で測定した。光硬化の際の光量を測定する光量計は、EIT社製のUV POWER PUCKを用いた。光硬化の判定は、タックフリーテスト(指触テスト)に基づいて行った。すなわち、光照射により得られたコート層のタック(べたつき)が取れるまでの時間を硬化時間とした。光硬化は、大気下で、信和製作所社製の白板ガラス(50mm×50mm×1.0mm)上で行った。硬化コート層の集光効率は、島津製作所社製のUV-1700を用い、サンプル光路側にコート層が形成された白板ガラスを固定し、リファレンス光路側に未コートの白板ガラスを固定し、1100nmから280nmの波長範囲の透過光を測定して比較した。また、接触角は、協和界面化学社のDM-301で測定した。スピンコートは、アクティブ社のACT-300AHを用いて行った。
(実施例1)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを9.0g、新中村工業社製のA-DCP(トリシクロデカンジメタノールジアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板の片面に塗布し、ハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は8μm、鉛筆硬度は、5Hで、屈折率は、1.44であった。1100nm~450nmの波長範囲で、集光効率は、1.5%増加した。さらに、純水(2μL)をマイクロシリンジによりコート層に滴下し接触角を測定したところ90度であった。
(実施例2)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを9.0g、新中村工業社製のA-DCP(トリシクロデカンジメタノールジアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、和光純薬社製のアゾビスブチロニトリルを70mg混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板の片面に塗布し、フュージョン社のHバルブで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は8μm、鉛筆硬度は、5Hで、屈折率は、1.44であった。1100nm~450nmの波長範囲で、集光効率は、1.5%増加した。
(実施例3)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルアクリレートを9.0g、新中村工業社製のA-DCP(トリシクロデカンジメタノールジアクリレート)を1.0g、チバガイギー社製のIRGACURE184を100mg、IRGACURE754を1200mg、和光純薬社製のアゾビスブチロニトリルを70mg混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板の片面に塗布し、フュージョン社ハリソン東芝ライティング社の高圧水銀灯Hバルブで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は8μm、鉛筆硬度は、5Hで、屈折率は、1.44であった。1100nm~450nmの波長範囲で、集光効率は、1.5%増加した。
(実施例4)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを9.0g、新中村工業社製のA-DCP(トリシクロデカンジメタノールジアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、エボニック社製のR202(ジメチルシリコンオイル処理のフュームドシリカ)を5mg混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板の片面に塗布し、ハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は10μm、鉛筆硬度は、5Hで、屈折率は、1.44であった。1100nm~450nmの波長範囲で、集光効率は、1.5%増加した。
(実施例5)
 大阪有機工業社製の2,2,2-トリフルオロエチルアクリレートを9.0g、日本化薬社製のKAYARAD-R684(トリシクロデカンジメタノールジアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、目視にて均一になるまで攪拌した。その溶液の一部をガラス板の片面に塗布し、ハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は9μmで、鉛筆硬度は、5Hで、屈折率は、1.43であった。1100nm~450nmの波長範囲で、集光効率は、1.6%増加した。
(実施例6)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを9.0g、新中村工業社製のNK-NOD(1,9-ノナンジオールジメタクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、エボニック社製のR202(ジメチルシリコンオイル処理のフュームドシリカ)を5mg混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板の片面に塗布し、フュージョン社のHバルブで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層は10μm、鉛筆硬度は、Hで、屈折率は、1.44であった。1100nm~450nmの波長範囲で、集光効率は、1.5%増加した。
(実施例7)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを用いてPolymer Journal誌の1994年、10巻、1118~1123ページに記載の合成法により得たポリ2,2,2-トリフルオロエチルメタクリレートを9.0g、新中村工業社製のA-DCP(トリシクロデカンジメタノールジアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、エボニック社製のR202(ジメチルシリコンオイル処理のフュームドシリカ)を5mg、酢酸エチルを500mL混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板上にスポイトで54.3mg移し、ハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は10μm、鉛筆硬度は、3Hで、屈折率は、1.42であった。1100nm~450nmの波長範囲で、集光効率は、1.7%増加した。
(実施例8)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを用いてPolymer Journal誌の1994年、10巻、1118~1123ページに記載の合成法により得たポリ2,2,2-トリフルオロエチルメタクリレートを9.0g、新中村工業社製のA-TMM-3L(ペンタエリスリトールトリアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、エボニック社製のR202(ジメチルシリコンオイル処理のフュームドシリカ)を5mg、メチルエチルケトンを450mL混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板上にスポイトで54.3mg移し、ハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は10μmで、鉛筆硬度は、3Hで、屈折率は、1.42であった。1100nm~450nmの波長範囲で、集光効率は、1.7%増加した。さらに、純水(2μL)をマイクロシリンジによりコート層に滴下し接触角を測定したところ88度であった。
(実施例9)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルアクリレート4.5gと、東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを用いてPolymer Journal誌の1994年、10巻、1118~1123ページに記載の合成法により得たポリ2,2,2-トリフルオロエチルメタクリレートを4.5g、新中村工業社製のA-TMM-3L(ペンタエリスリトールトリアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、酢酸ブチルを450mL混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板上にスポイトで54.3mg移し、ハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は10μm、鉛筆硬度は、3Hで、屈折率は、1.42であった。1100nm~450nmの波長範囲で、集光効率は、1.6%増加した。
(実施例10)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルアクリレート4.5gと、東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートをPolymer Journal誌の1994年、10巻、1118~1123ページに記載の合成法により得たポリ2,2,2-トリフルオロエチルメタクリレートを4.5g、新中村工業社製のA-TMM-3L(ペンタエリスリトールトリアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、エボニック社製のR202(ジメチルシリコンオイル処理のフュームドシリカ)を5mg混合し、目視にて均一になるまで攪拌した。その溶液の一部をガラス板上にスポイトで54.3mg移し、ハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層の膜厚は11μm、鉛筆硬度は、3Hで、屈折率は、1.42であった。1100nm~450nmの波長範囲で、集光効率は、1.6%増加した。
(実施例11)
 東ソー・エフテック社製の2,2,2-トリフルオロエチルメタクリレートを用いてPolymer Journal誌の1994年、10巻、1118~1123ページに記載の合成法により得たポリ2,2,2-トリフルオロエチルメタクリレートを4.5g、新中村工業社製のA-TMM-3L(ペンタエリスリトールトリアクリレート)を1.0g、チバガイギー社製のIRGACURE184を200mg、エボニック社製のR202(ジメチルシリコンオイル処理のフュームドシリカ)を1mg、メチルイソブチルケトンを200mgを混合し、目視にて均一になるまで攪拌した。
 上記溶液の一部をガラス板上にスポイトで60mg移し、そのガラス板をスピンコーターのステージ上に吸着固定し、0rpmから1000rpmまで10秒かけて回転数を上げた後、スピンコーターを停止した。上記溶液を塗布したガラス板面へハリソン東芝ライティング社の高圧水銀ランプで約1秒間(320nm~390nm、500mJ/cm)、そのガラス板上の組成物を照射したところ、べたつきのない透明なコート層が得られた。
 得られたコート層(AR)上に、切断時に受けるダメージからコート層を保護するための保護膜として、コート層上にアルミ蒸着膜(AL)とカーボン蒸着膜(C)の2層を形成した。得られたコート層付きガラス板をレーザーにより切断し、その断面をSEMにより観察して断面画像を得た。得られた断面の画像を図1に示す。図1から明らかなように、膜厚90nmの均一な保護層(AR)がガラス板(GL)に密着して形成されていることがわかった。
 本発明の太陽電池用コート層は、太陽電池の集光効率を向上させるコート層として用いることができ、簡単な方法で容易に太陽電池保護層に形成でき、単結晶、多結晶、アモルファスシリコン半導体型等のシリコン系や、CIGS等といった化合物系、色相増感型や有機薄膜型等の有機系など発電基板の種類に限定されることなく、種々のタイプの太陽電池に好適に用いることができる。
 

Claims (12)

  1.  少なくともフッ素を含む樹脂とアクリル酸またはメタクリル酸誘導体とを含有し、
     前記フッ素の含有量が5質量%以上であり、
     太陽電池モジュールの保護層に大気と直接接触する状態で形成されている太陽電池用コート層。
  2.  前記フッ素の含有量が20~80質量%である請求項1の太陽電池用コート層。
  3.  膜厚30nm~300nmで、波長400nmの光の屈折率が1.30~1.50である請求項1または2の太陽電池用コート層。
  4.  水に対する接触角が65度~120度である請求項1~3のいずれかの太陽電池用コート層。
  5.  少なくとも下記成分a)および成分b)の何れかと、下記成分c)と、有機溶剤とを含有する組成物を成膜して得られる請求項1~4のいずれかの太陽電池用コート層。
    成分a)炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物およびアクリレート化合物の何れか1種または2種以上
    成分b)含フッ素ポリマー
    成分c)1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体およびメタクリル酸誘導体の何れか1種または2種以上
  6.  少なくとも下記成分a)および成分b)の何れかと、下記成分c)と、有機溶剤とを含有する組成物を膜状に形成し、重合・硬化させて太陽電池用コート層を得る太陽電池用コート層の製造方法。
    成分a)炭素数1~10のフルオロアルキル基を含有するメタアクリレート化合物およびアクリレート化合物の何れか1種または2種以上
    成分b)含フッ素ポリマー
    成分c)1~5個のアクリロイル基またはメタアクリロイル基を有するアクリル酸誘導体およびメタクリル酸誘導体の何れか1種または2種以上
  7.  前記成分b)および成分c)を
    成分b)=0.1~50質量部
    成分c)=1~50質量部
    含有する請求項6の太陽電池用コート層の製造方法。
  8.  前記成分a)および成分b)の何れも含有し、各成分a~c)の含有量が
    成分a)=1~90質量部
    成分b)=0.1~50質量部
    成分c)=1~50質量部
    である請求項6の太陽電池用コート層の製造方法。
  9.  さらに、成分d)としてフュームドシリカを含有する請求項6~8のいずれかの太陽電池用コート層の製造方法。
  10.  前記成分a)および成分c)を
    成分a)=1~90質量部
    成分c)=1~50質量部
    含有する請求項9の太陽電池用コート層の製造方法。
  11.  さらに、重合開始剤を含有する請求項6~10の何れかの太陽電池用コート層の製造方法。
  12.  前記成分b)の含フッ素ポリマーは、
    式(1)、
    Figure JPOXMLDOC01-appb-I000001
    式(2)、
    Figure JPOXMLDOC01-appb-I000002
    または式(3)、
    Figure JPOXMLDOC01-appb-I000003
    で表される環状構造を有する含フッ素ポリマーおよびテトラフルオロエチレンの何れか1種または2種以上:10~50モル部、
    ヘキサフルオロプロピレン:0~50モル部、
    ビニリデンフルオライド:90~10モル部、
    およびビニルフルオライド:10~100モル部を有する共重合体である請求項6~11のいずれかの太陽電池用コート層の製造方法。
PCT/JP2010/056825 2010-04-16 2010-04-16 太陽電池用コート層およびその製造方法 WO2011129012A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2010/056825 WO2011129012A1 (ja) 2010-04-16 2010-04-16 太陽電池用コート層およびその製造方法
TW099114382A TW201136856A (en) 2010-04-16 2010-05-05 The coat layer for solar cells, and its production method
US12/830,635 US20110256375A1 (en) 2010-04-16 2010-07-06 Coating layer for solar batteries, and its production process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056825 WO2011129012A1 (ja) 2010-04-16 2010-04-16 太陽電池用コート層およびその製造方法

Publications (1)

Publication Number Publication Date
WO2011129012A1 true WO2011129012A1 (ja) 2011-10-20

Family

ID=44788413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056825 WO2011129012A1 (ja) 2010-04-16 2010-04-16 太陽電池用コート層およびその製造方法

Country Status (3)

Country Link
US (1) US20110256375A1 (ja)
TW (1) TW201136856A (ja)
WO (1) WO2011129012A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031315A1 (ja) * 2014-08-27 2017-04-27 株式会社Moresco 太陽光発電モジュール

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974894B2 (ja) * 2010-10-22 2016-08-23 大日本印刷株式会社 防眩性フィルム、偏光板及び画像表示装置
JP5916399B2 (ja) * 2012-01-27 2016-05-11 株式会社タムラ製作所 紫外線硬化性透明樹脂組成物
CN102584029B (zh) * 2012-02-09 2014-07-16 无锡市科虹标牌有限公司 采用数码喷绘制作的钢化玻璃装饰板及其制作方法
KR101671710B1 (ko) * 2015-06-09 2016-11-02 (주)지피엔이 방오 기능을 갖는 태양전지 모듈
US10870775B2 (en) * 2018-02-27 2020-12-22 Waymo Llc Optically transparent superhydrophobic thin film
US11603329B2 (en) 2020-04-22 2023-03-14 Waymo Llc Methods for preparing a superomniphobic coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125103A (ja) * 1991-08-26 1994-05-06 Canon Inc 太陽電池モジュール
JP2000178469A (ja) * 1998-12-17 2000-06-27 Sumitomo Chem Co Ltd 耐擦傷性コーティング組成物およびこれを被覆してなる基材
WO2007063698A1 (ja) * 2005-11-30 2007-06-07 Daikin Industries, Ltd. 太陽電池の保護カバー用塗料組成物
JP2007165485A (ja) * 2005-12-12 2007-06-28 Daido Steel Co Ltd 太陽光発電モジュールの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06125103A (ja) * 1991-08-26 1994-05-06 Canon Inc 太陽電池モジュール
JP2000178469A (ja) * 1998-12-17 2000-06-27 Sumitomo Chem Co Ltd 耐擦傷性コーティング組成物およびこれを被覆してなる基材
WO2007063698A1 (ja) * 2005-11-30 2007-06-07 Daikin Industries, Ltd. 太陽電池の保護カバー用塗料組成物
JP2007165485A (ja) * 2005-12-12 2007-06-28 Daido Steel Co Ltd 太陽光発電モジュールの製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016031315A1 (ja) * 2014-08-27 2017-04-27 株式会社Moresco 太陽光発電モジュール

Also Published As

Publication number Publication date
US20110256375A1 (en) 2011-10-20
TW201136856A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
WO2011129012A1 (ja) 太陽電池用コート層およびその製造方法
RU2613408C2 (ru) Композиция твердого покрытия на основе полиметилметакрилата и изделие с покрытием
US8137801B2 (en) Durable antireflective film
KR101247058B1 (ko) 개선된 피복 및 내구성 특성을 갖는 저굴절률 플루오로중합체 조성물
US8343624B2 (en) Durable antireflective film
WO2011129011A1 (ja) 低屈折率膜用組成物
TW201835308A (zh) 調光積層體及調光積層體用樹脂間隔件
JP4860952B2 (ja) 表面保護層用塗布組成物及びそれを用いてなる反射防止膜
JP2017519868A (ja) 光透過性フルオロポリマー組成物及び物品
JP5012025B2 (ja) 加水分解性金属アルコキシド部位を有する含フッ素化合物、該化合物から得られる硬化性含フッ素ポリマーおよび該ポリマーを含む硬化性含フッ素樹脂組成物
WO2004108772A1 (ja) 硬化性表面改質剤およびそれを用いた硬化性表面改質用組成物
WO1997030021A1 (fr) Esters (meth)acryliques polyfonctionnels fluores, composition de fluoromonomeres, materiau possedant un faible indice de refraction et film faiblement reflechissant
JP2007284623A (ja) 薄膜用塗布組成物
WO2017122561A1 (ja) 滑水性コート材料
JP6056155B2 (ja) 反射防止塗料組成物及び反射防止フィルム
WO2010055758A1 (ja) 含フッ素重合体、該含フッ素重合体よりなる硬化性樹脂組成物および反射防止膜
JP3940086B2 (ja) フッ素置換脂環基含有(メタ)アクリル酸エステルおよびその硬化物
JP2005099757A (ja) 反射防止膜
US20160208131A1 (en) Fluorine-containing urethane (meth)acrylate, curable composition, and antireflective film
JP2012126073A (ja) 撥水性フィルム
JP2010199143A (ja) 太陽電池カバーガラス用コート層及びその製造方法
JP2010195859A (ja) 低屈折率薄膜組成物及び低屈折率硬化薄膜
JP2001264507A (ja) 減反射材、製造方法および用途
JP3724132B2 (ja) 無機化合物微粒子含有含フッ素単量体組成物及び減反射フィルム
JP2013250504A (ja) 無機薄膜転写材及びその製造方法並びに無機薄膜付き成形品及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP