WO2012036011A1 - 培養基材 - Google Patents

培養基材 Download PDF

Info

Publication number
WO2012036011A1
WO2012036011A1 PCT/JP2011/070170 JP2011070170W WO2012036011A1 WO 2012036011 A1 WO2012036011 A1 WO 2012036011A1 JP 2011070170 W JP2011070170 W JP 2011070170W WO 2012036011 A1 WO2012036011 A1 WO 2012036011A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture substrate
culture
substrate according
depressions
spheroid
Prior art date
Application number
PCT/JP2011/070170
Other languages
English (en)
French (fr)
Inventor
伊藤 亨
豊 多田
綾 和田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45831478&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012036011(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP11825017.4A priority Critical patent/EP2617807B1/en
Priority to CN201180044182.7A priority patent/CN103119151B/zh
Priority to SG2013017942A priority patent/SG188505A1/en
Priority to JP2012533946A priority patent/JP5921437B2/ja
Publication of WO2012036011A1 publication Critical patent/WO2012036011A1/ja
Priority to US13/828,657 priority patent/US20130203159A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish

Definitions

  • the present invention relates to a culture substrate for producing a spheroid by culturing a culture object such as a cell or a tissue piece.
  • spheroid culture in which cells are cultured and aggregated three-dimensionally is attracting attention instead of monolayer culture in which cells are cultured two-dimensionally.
  • monolayer culture in which cells are cultured two-dimensionally.
  • spheroid culture can construct a state close to cells in a living body, and can draw out specific functions that cells have in vivo.
  • a conventional culture substrate 101 for performing spheroid culture for example, the container shown in FIG. As shown in FIG. 12, a plurality of depressions 120 are formed on the bottom surface 114 of the container at intervals.
  • the bottom surface 114 of the container is coated with a cell adhesion inhibitor (not shown) (see Patent Document 1).
  • a culture solution 50 in which cells as spheroid precursors are agitated is poured into a culture vessel, and the cells are cultured in the recess 120. Then, as shown in FIG. 12, the cells in the depression 120 are cultured according to the shape and size of the depression 120 and aggregate three-dimensionally to form the spheroid 60.
  • the conventional culture substrate 101 has a flat surface 130 formed on the substrate surface between the recesses 120 adjacent to each other as shown in FIG. As described above, when the flat surface 130 is formed, when the culture solution 50 in which the cells are stirred is poured into the culture vessel, the cells are also precipitated on the flat surface 130.
  • spheroids having a random size that is cultured two-dimensionally or is not affected by the size of the depression. It is because it is formed.
  • the conventional culture substrate 101 it is not possible to efficiently perform culture for uniformly forming spheroids of a desired size.
  • These monolayer-cultured cells and random spheroids have different physiological functions compared to uniform spheroids corresponding to the size of the depression, and in the case of stem cell culture, the stage of differentiation is different.
  • the uniformity of the cell group in the culture vessel becomes low due to differences, which hinders the evaluation of experimental data.
  • an object of the present invention is to provide a culture substrate that can uniformly form spheroids of a desired size and that can be cultured efficiently.
  • the culture substrate according to the present invention has a plurality of recesses formed on the surface of the culture substrate, which form a compartment in which the culture object is cultured, and the recesses adjacent to each other.
  • the culture substrate surface in between is a non-flat surface.
  • spheroid culture can be performed efficiently.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 3. It is the top view which showed typically the irradiation spot of the laser beam on the surface of the culture base material which concerns on the 1st Embodiment of this invention.
  • FIG. 1 is a perspective view of a culture vessel having the culture substrate of the present invention.
  • FIG. 2 is a longitudinal sectional view of the culture vessel.
  • FIG. 3 is a partial perspective view of a well formation region of the culture substrate.
  • 4 is a cross-sectional view taken along arrows IV-IV in FIG. 5 is a cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a plan view showing an irradiation spot of laser light irradiated on the surface of the culture substrate.
  • the culture substrate 1 is a main part of a culture vessel for producing spheroids (cell aggregates) obtained by culturing cells and aggregating them three-dimensionally.
  • the culture container includes a container body 10 and a lid 12.
  • the bottom plate portion 14 inside the container body 10 is a portion corresponding to the culture substrate 1.
  • the bottom plate portion 14 inside the container main body 10, that is, the culture substrate 1 is made of a synthetic resin material such as polystyrene.
  • the culture substrate 1 is obtained by injection molding using a synthetic resin material.
  • the container body 10 has a disk-like bottom plate portion 14 and an annular side wall portion 16.
  • the side wall portion 16 stands from the outer peripheral edge of the bottom plate portion 14.
  • the diameter of the bottom plate portion 14 is designed to be 85 mm
  • the thickness of the bottom plate portion 14 is designed to be 1 mm.
  • the height of the side wall portion 16 is designed to be 20 mm.
  • the lid 12 is formed in the container body 10 in a shape corresponding to the upper opening.
  • the lid 12 is used by being put on the container body 10 in order to maintain a cell culture environment.
  • a plurality of depressions 20 are formed.
  • the inner surface of the recess 20 is a smooth concave surface.
  • the hollow part 20 forms a compartment (well) in which the culture object is cultured.
  • about 14200 (about 250 / cm 2 ) depressions 20 are formed in a circular well formation region 24 having a diameter of 85 mm.
  • the recess 20 is formed by irradiating the well formation region 24 on the culture substrate surface with laser light. As shown in FIG. 6, laser irradiation is performed by irradiating the upper surface of the bottom plate portion 14 installed on the xy plane with laser light in the z-axis direction.
  • laser light is irradiated at regular intervals (for example, 800 ⁇ m) to form a plurality of depressions 20 aligned in the x axis direction.
  • the laser beam is irradiated at regular intervals (for example, 800 ⁇ m) while the irradiation unit is scanned in the negative direction of the x-axis.
  • a plurality of depressions 20 arranged in the x-axis direction are formed.
  • the irradiation unit is scanned by a certain distance (eg, 400 ⁇ m) in the y-axis direction. By repeating this, a plurality of depressions 20 regularly arranged on the upper surface of the bottom plate part 14 are formed.
  • the center coordinate (x, y) of the irradiation spot A is the origin (0, 0)
  • the center of the irradiation spot B close to the irradiation spot A is (0. 8, 0)
  • the center of the irradiation spot C is (0.4, 0.4)
  • the center of the irradiation spot D is ( ⁇ 0.4, 0.4).
  • the depressions 20 are preferably formed at 10 pieces / cm 2 to 10,000 pieces / cm 2 per unit area of the well formation region 24 of the culture substrate 1. More preferably, it is 20 pieces / cm 2 to 8000 pieces / cm 2 , and more preferably 20 pieces / cm 2 to 3000 pieces / cm 2 , which indicates the above numerical range, is not particularly defined. As long as the numerical value described before and after that is used as a lower limit value and an upper limit value, it is used, and hereinafter, “ ⁇ ” is used with the same meaning.
  • a CO 2 laser is used as the laser light source, and the laser beam is pulse-irradiated at an output of 10 W and an irradiation speed of 6100 mm / min.
  • the shape of the irradiation spot is circular and its diameter is about 400 ⁇ m. If the spheroid is too small, a desired physiological function does not occur, and if it is too large, the center part of the spheroid is necrotized. Considering this, the diameter of the irradiation spot is appropriately 20 to 1500 ⁇ m.
  • the opening shape of the hollow portion 20 is flattened into a substantially elliptical shape.
  • the flatness of the opening shape is considered to be caused by the direction in which the synthetic resin material is poured into the mold when the container body 10 is molded.
  • the synthetic resin material constituting the bottom plate portion 14 is dissolved to form the depression 20. Further, as shown in FIGS. 3 to 5, the melted synthetic resin material rises around the opening of the recess 20 to form the bank 22.
  • two recesses 20 adjacent to each other are formed via one or two bank portions 22, and the surface of the culture substrate between the recesses 20 adjacent to each other is flat. There is no surface left. That is, the culture substrate surface between the recesses 20 adjacent to each other is a non-flat surface 30.
  • the two bank portions 22 interposed between the two adjacent recesses 20 are connected to each other, and the non-flat surface 30 Is forming.
  • the distance between the adjacent depressions 20, the diameter / depth of the depressions 20, the width / height of the bank 22, etc. can be adjusted.
  • a flat surface does not remain on the culture substrate surface between the recesses 20 adjacent to each other, that is, the culture substrate surface between the recesses 20 adjacent to each other is a non-flat surface 30.
  • Laser irradiation conditions are set and laser irradiation is performed.
  • the depth of the recess 20 (that is, the depth based on the upper surface of the bottom plate 14 (that is, the culture substrate) before laser irradiation) d is 10 to 10 as shown in FIGS. Desirably, it is designed to be 1500 ⁇ m, and in this embodiment, it is designed to be 200 ⁇ 20 ⁇ m. Note that the thickness of the bottom plate portion 14 is appropriately designed so as not to penetrate depending on the depth d. In addition, it is desirable that the major axis (major axis on the upper surface of the bottom plate part 14 before laser irradiation) D of the opening of the substantially elliptical dent part 20 is designed to be 10 to 1500 ⁇ m, and in this embodiment, 500 ⁇ 20 ⁇ m. Designed.
  • the height of the bank portion 22 (that is, the height with respect to the upper surface of the bottom plate portion 14 before laser irradiation as shown in FIGS. 4 and 5) h is preferably designed to be 10 to 50 ⁇ m. In this embodiment, it is designed to be 25 ⁇ 5 ⁇ m.
  • the upper surface of the bottom plate part 14, that is, the surface of the portion corresponding to the culture substrate is preferably coated with a cell adhesion inhibitor (not shown).
  • the culture substrate cell adhesion inhibitor plays a role in inhibiting cells from adhering to the upper surface of the bottom plate portion 14, particularly the inner surface of the recess 20.
  • the cell adhesion inhibitor for example, phospholipid polymer, polyhydroxyethyl methacrylate, polyethylene glycol or the like is used.
  • Cells to be cultured as spheroid precursors are placed in the culture solution 50 and stirred. After stirring, the culture solution 50 is poured into the container body 10 (see FIG. 2). Then, the cells in the culture solution 50 are settled and fit in the recess 20.
  • the cells in the depression 20 are cultured and proliferated. At this time, since the inner surface of the depression 20 is coated with the cell adhesion inhibitor, the cells aggregate three-dimensionally according to the shape and size of the depression 20. Thus, a spheroid is obtained.
  • the culture substrate surface between the recesses 20 adjacent to each other is the non-flat surface 30. Therefore, the to-be-cultured object which settles is easy to be settled in the hollow part 20.
  • a flat surface 130 is formed on the culture substrate surface between adjacent recesses 120. Therefore, on the flat surface 130, cells are monolayer cultured, or spheroids having a random size that is not affected by the size of the recess 120 are formed.
  • the culture substrate surface between the adjacent depressions 20 is a non-flat surface 30. Therefore, it is difficult to form a monolayer culture or heterogeneous spheroids, the probability that uniform spheroids are formed is high, and spheroid culture can be performed efficiently.
  • the size of the spheroid to be produced varies. Therefore, when producing a spheroid, it is necessary to prepare the culture base material 1 provided with the hollow part 20 corresponding to the magnitude
  • the recessed part 20 and the bank part 22 are formed by laser irradiation. Therefore, by adjusting the irradiation conditions such as the irradiation position and the output amount, the dent portion 20 and the bank portion 22 of any size can be easily formed on the culture substrate 1.
  • the cross-sectional shape of the depression 20 becomes an open top,
  • the inner surface of the recess 20 is smoothed by the heat of the laser light, and the diffuse reflection of the transmitted light can be reduced, so that the observation of the spheroid cultured in the recess 20 with a microscope can be easily performed. Can do.
  • FIG. 7 is a partial cross-sectional view of a well formation region of a culture substrate.
  • this embodiment is a modification of 1st Embodiment, Comprising: The same code
  • the plurality of depressions 20 and the bank 22 were formed by irradiating the surface of the culture substrate with laser light.
  • the culture substrate 1 is obtained by injection-molding a synthetic resin material using a mold having a convex portion that forms a plurality of hollow portions 20 and a concave portion that forms a bank portion 22. .
  • the plurality of depressions 20 and the bank 22 are formed simultaneously with the formation of the culture substrate 1.
  • a hemispherical depression 20 and a semicircular bank portion 22 are formed on the surface of the culture substrate 1.
  • FIG. 8 is a vertical cross-sectional view of a state in which the culture substrate is installed in the petri dish.
  • this embodiment is a modification of 1st Embodiment, Comprising: The same code
  • the culture substrate 1 according to the first embodiment has a plurality of depressions 20 formed on the bottom surface inside the culture vessel (the top surface of the bottom plate portion 14).
  • the culture substrate 1 according to the present embodiment is made of a synthetic resin material formed in a disc shape.
  • the culture substrate 1 is formed by injection-molding a synthetic resin material onto a disk-shaped substrate, and then irradiated with laser light on one surface thereof, so that a plurality of depressions 20 are formed on one surface of the culture substrate 1. Is formed.
  • the culture substrate 1 according to the present embodiment is used by being installed in a glass petri dish 40, for example.
  • molding of the culture base material 1 is easy, and it can suppress manufacturing cost.
  • FIG. 9 is a plan view of the culture substrate.
  • FIG. 10 is a longitudinal cross-sectional view of a culture vessel having a vessel body provided with a culture substrate and a lid.
  • this embodiment is a modification of 1st Embodiment, Comprising: The same code
  • the culture substrate 1 corresponds to the bottom plate portion 14 of the container body 10, and has four circular well formation regions 24 on the upper surface of the bottom plate portion 14. .
  • the four well formation regions 24 are spaced from each other.
  • a plurality of depressions that form compartments in which the culture object is cultured are formed in each of the well formation regions 24 of the culture substrate 1, and the substrate between the depressions adjacent to each other is formed.
  • the surface is a non-flat surface.
  • each above-mentioned embodiment is a typical illustration, Comprising: This invention is not limited to these.
  • the material of the culture substrate 1 may be glass instead of a synthetic resin material.
  • the shape and size of the culture substrate 1 can be arbitrarily designed.
  • the shape and size of the depression 20 and the bank 22 can be arbitrarily designed according to the shape and size of the cells to be cultured and the desired spheroid.
  • the to-be-cultivated material tends to fit in the recess and is a non-flat surface. It is difficult to form dimensional spheroids or heterogeneous spheroids, and there is a high probability that spheroids that are uniformly aggregated three-dimensionally are formed, and spheroid culture can be performed efficiently.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-205305 filed on September 14, 2010 are incorporated herein as the disclosure of the present invention. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 スフェロイド培養を効率的に行う。 培養基材は、細胞を培養して三次元的に凝集させてなるスフェロイドを作製する培養容器である。培養基材は、合成樹脂材からなる。培養基材の表面には、細胞が培養される隔室となる複数の窪み部20が形成されている。複数の窪み部20は、培養基材表面にレーザ照射することにより形成される。窪み部20の開口周辺には、合成樹脂材が溶解して盛り上がった土手部22が形成されている。互いに近接する2個の窪み部20の間の培養基材表面は、非平坦面となっている。

Description

培養基材
 本発明は、細胞や組織片などの被培養物を培養してスフェロイドを作製する培養基材に関する。
 近年、細胞を二次元的に培養する単層培養に代わって、細胞を培養して三次元的に凝集させるスフェロイド培養が注目されている。スフェロイド培養は、単層培養に比べて、生体内の細胞に近い状態を構築することができ、細胞が生体内で有する特異的な機能を引き出すことができる。
 スフェロイド培養を行う従来の培養基材101の一例として、例えば、図11に示した容器が挙げられる。この容器の底面114には、図12に示したように、互いに間隔を空けて複数の窪み部120が形成されている。容器の底面114は、細胞接着抑制剤(図示省略)で被膜されている(特許文献1参照)。
 スフェロイド培養は、スフェロイド前駆体としての細胞が撹拌された培養液50を培養容器内に流し込み、窪み部120内で細胞を培養する。そうすると、窪み部120内の細胞は、図12に示したように、窪み部120の形状・大きさに対応して培養されて、三次元的に凝集して、スフェロイド60を形成する。
国際公開第2007/055056号パンフレット
 ところが、上述した従来の培養基材101を用いてスフェロイド培養を行うと、スフェロイド60の他に、単層培養された細胞62や、不均一な大きさのスフェロイドも多く形成されるという問題点が見い出された。この原因は、従来の培養基材101には、図12に示したように、互いに近接する窪み部120間の基板表面に平坦面130が形成されているからと考えられた。このように、この平坦面130が形成されている場合、培養容器内に、細胞が攪拌された培養液50を流し込むと、平坦面130上にも細胞が沈殿する。このような細胞が培養容器内に存在すると、窪み部の大きさに対応したスフェロイド60の他に、二次元的に培養されたり、窪みの大きさの影響を受けないランダムな大きさのスフェロイドが形成されたりするからである。このように、従来の培養基材101では、所望の大きさのスフェロイドを均一に形成させる培養を効率的に行うことができない。これら、単層培養された細胞や、ランダムな大きさのスフェロイドは、窪みの大きさに対応した均一なスフェロイドと比較して、生理機能が異なったり、幹細胞培養の場合には、分化のステージが異なったりなど、培養容器内の細胞群の均一性が低くなり、実験データの評価等に支障をきたす。
 そこで、本発明は、上記の課題を解決するためになされたものであり、所望の大きさのスフェロイドを均一に形成でき、培養を効率的に行える培養基材の提供を目的とする。
 上記の目的を達成するために、本発明に係る培養基材は、被培養物が培養される隔室を形成する窪み部が培養基材表面に複数形成されており、互いに近接する前記窪み部の間の培養基材表面が非平坦面であることを特徴とする。
 本発明によれば、スフェロイド培養を効率的に行うことができる。
本発明の第1の実施形態に係る培養基材の斜視図である。 本発明の第1の実施形態に係る培養基材の縦断面図である。 本発明の第1の実施形態に係る培養基材のウェル形成領域の一部斜視図である。 図3のIV-IV矢視断面図である。 図3のV-V矢視断面図である。 本発明の第1の実施形態に係る培養基材の表面上にレーザ光の照射スポットを模式的に示した平面図である。 本発明の第2の実施形態に係る培養基材のウェル形成領域の一部断面図である。 本発明の第3の実施形態に係る培養基材がシャーレ内に設置された状態の縦断面図である。 本発明の第4の実施形態に係る培養基材の平面図である。 本発明の第4の実施形態に係る培養基材の縦断面図である。 従来の培養基材の縦断面図である。 従来の培養基材の表面上に被培養物を模式的に示した断面図である。
[第1の実施形態]
 本発明の第1の実施形態に係る培養基材について、図1ないし図6を用いて説明する。
 図1は、本発明の培養基材を有する培養容器の斜視図である。図2は、培養容器の縦断面図である。図3は、培養基材のウェル形成領域の一部斜視図である。図4は、図3のIV-IV矢視断面図である。図5は、図3のV-V矢視断面図である。図6は、培養基材の表面上に照射するレーザ光の照射スポットを示した平面図である。
 本実施形態に係る培養基材1は、細胞を培養して三次元的に凝集させてなるスフェロイド(細胞凝集塊)を作製する培養容器の主要部である。
 まず、本実施形態に係る培養基材1の構成について説明する。
 培養容器は、図1および図2に示したように、容器本体10および蓋12を備えている。この例において、容器本体10の内側の底板部14が、培養基材1に相当する部分となる。かかる容器本体10の内側の底板部14、すなわち培養基材1は、例えばポリスチレンなどの合成樹脂材から構成されている。本実施形態では、培養基材1は、合成樹脂材料を用いた射出成形により得られる。
 容器本体10は、円板状の底板部14、および、環状の側壁部16を有している。側壁部16は、底板部14の外周縁から起立している。本実施形態では、底板部14の直径は、85mm、底板部14の厚さは、1mmに設計されている。また、側壁部16の高さは、20mmに設計されている。
 蓋12は、容器本体10に上方の開口部に対応した形状に形成されている。蓋12は、細胞の培養環境を維持するために、容器本体10に被せられて使用される。
 底板部14の上面(すなわち、容器本体10の内側の面に相当する培養基材の上面)のウェル形成領域24(すなわち、被培養物が培養される隔室が形成される領域)には、図2ないし図5に示したように、複数の窪み部20が形成されている。窪み部20の内面は、滑らかな凹面になっている。窪み部20は、被培養物が培養される隔室(ウェル:well)を形成する。本実施形態では、直径85mmの円形のウェル形成領域24に14200個程度(約250個/cm)の窪み部20が形成されている。
 本実施形態では、窪み部20は、培養基材表面のウェル形成領域24に対してレーザ光を照射することにより形成される。レーザ照射は、図6に示したように、x-y面上に設置された底板部14の上面に対して、レーザ光をz軸方向に照射して行う。
 まず、レーザ照射装置の照射部をx軸の正方向に走査させつつ、一定の間隔(例えば800μm)ごとにレーザ光を照射して、x軸方向に並んだ複数の窪み部20を形成する。続けて、照射部をy軸方向に一定の距離(例えば400μm)だけ走査させた後、照射部をx軸の負方向に走査させつつ、一定の間隔(例えば800μm)ごとにレーザ光を照射して、x軸方向に並んだ複数の窪み部20を形成する。同様に、照射部をy軸方向に一定の距離(例えば400μm)だけ走査させる。これを繰り返して、底板部14の上面に規則的に配列された複数の窪み部20を形成する。
 本実施形態では、図6に示したように、照射スポットAの中心座標(x,y)を原点(0,0)とすると、照射スポットAに近接した照射スポットBの中心は、(0.8,0)、照射スポットCの中心は、(0.4,0.4)、照射スポットDの中心は、(-0.4,0.4)に位置する。このように、照射スポットA,Bのx座標と照射スポットC,Dのx座標とをずらすことにより、ウェル形成領域24に複数の窪み部20を稠密に形成することができる。窪み部20は、培養基材1のウェル形成領域24の単位面積あたり、10個/cm~10000個/cm、形成するのが好ましい。さらに好ましくは、20個/cm~8000個/cm、さらに好ましくは、20個/cm~3000個/cmである
 上記した数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用され、以下本明細書において「~」は、同様の意味をもって使用される。
 本実施形態では、レーザ光源には、COレーザを用い、レーザ光は、出力10W、照射速度6100mm/minでパルス照射される。照射スポットの形状は、円形であり、その直径は、約400μmである。スフェロイドは、小さすぎると所望の生理機能が生じず、また、大きすぎるとスフェロイドの中心部が壊死してしまう。これを考慮すると、照射スポットの直径は、20~1500μmが適当である。
 なお、照射スポットの形状は、円形であるのに対して、窪み部20の開口形状は、略楕円形に偏平している。この開口形状の偏平は、容器本体10の成形時において金型に合成樹脂材を流し込む方向に起因するものと考えられる。
 培養基材表面(底板部14の上面)にレーザ光が照射されると、底板部14を構成する合成樹脂材が溶解して、窪み部20が形成される。さらに、窪み部20の開口周辺には、図3ないし図5に示したように、溶解した合成樹脂材が盛り上がって、土手部22が形成される。
 本実施形態では、互いに隣り合った2個の窪み部20は、1個または2個の土手部22を介して形成されており、互いに近接する窪み部20間の培養基材表面には、平坦面が残らない。すなわち、互いに近接する窪み部20間の培養基材表面が非平坦面30になっている。なお、図4に示した図3のIV-IV矢視断面において、隣り合った2個の窪み部20の間に介在する2個の土手部22は、互いに連結していて、非平坦面30を形成している。
 レーザ光の照射位置や出力量などの照射条件を調節することにより、近接する窪み部20間の距離、窪み部20の径・深さ、土手部22の幅・高さなどを調節できる。本実施形態では、互いに近接する窪み部20間の培養基材表面に平坦面が残らないように、すなわち、互いに近接する窪み部20間の培養基材表面が非平坦面30になるように、レーザ光の照射条件が設定されて、レーザ照射が行われる。
 なお、窪み部20の深さ(すなわち、図4、5に示したように、レーザ照射前の底板部14(すなわち、培養基材))の上面を基準とした深さ)dは、10~1500μmに設計されることが望ましく、本実施形態では、200±20μmに設計されている。なお、底板部14の厚さは、深さdに応じて貫通しないよう適宜設計される。また、略楕円形の窪み部20の開口の長径(レーザ照射前の底板部14の上面での長径)Dは、10~1500μmに設計されることが望ましく、本実施形態では、500±20μmに設計されている。さらに、土手部22の高さ(すなわち、図4、5に示したように、レーザ照射前の底板部14の上面を基準とした高さ)hは、10~50μmに設計されることが望ましく、本実施形態では、25±5μmに設計されている。
 底板部14の上面、すなわち培養基材相当部分の表面は、細胞接着抑制剤(図示省略)により被膜されているのが好ましい。培養基材細胞接着抑制剤は、細胞が底板部14の上面、特に、窪み部20の内面に接着するのを抑制する役割を果たす。細胞接着抑制剤としては、例えば、リン脂質ポリマー、ポリヒドロキシエチルメタアクリレート、あるいは、ポリエチレングリコールなどが用いられる。
 次に、本実施形態に係る培養基材1を用いた被培養物の培養方法について説明する。
 被培養物であるスフェロイド前駆体としての細胞を培養液50に入れて、撹拌する。撹拌後、培養液50を容器本体10内に流し入れる(図2参照)。そうすると、培養液50中の細胞は、沈殿して、窪み部20内に収まる。
 その後、容器本体10に蓋12を被せて、数日~数十日間放置する。窪み部20内の細胞は、培養され、増殖する。このとき、窪み部20の内面が細胞接着抑制剤により被膜されているため、細胞は、窪み部20の形状・大きさに対応して、三次元的に凝集する。こうして、スフェロイドが得られる。
 次に、本実施形態に係る培養基材1の効果について説明する。
 本実施形態によれば、互いに近接する窪み部20間の培養基材表面が非平坦面30になっている。そのため、沈殿する被培養物が窪み部20に収まりやすい。
 従来の培養基材101では、隣接する窪み部120間の培養基材表面に平坦面130が形成されている。そのため、平坦面130において、細胞が単層培養されたり、窪み部120の大きさの影響を受けないランダムな大きさのスフェロイドが形成してしまう。一方、本実施形態に係る培養基材1では、隣接する窪み部20間の培養基材表面は、非平坦面30になっている。そのため、単層培養されたり、不均一なスフェロイドが形成されにくく、均一なスフェロイドが形成される確率が高く、スフェロイド培養を効率良く行うことができる。
 スフェロイドの用途や培養する細胞の種類などに応じて、作製すべきスフェロイドの大きさはそれぞれ異なる。そのため、スフェロイドの作製にあたっては、所望するスフェロイドの大きさに対応した窪み部20を備えた培養基材1を用意する必要がある。ここで、本実施形態では、レーザ照射により窪み部20および土手部22を形成する。したがって、照射位置や出力量などの照射条件を調節することによって、培養基材1に任意の大きさの窪み部20および土手部22を容易に形成することができる。
 また、培養基材として、ポリスチレンなどの透明な合成樹脂材を使用し、この合成樹脂材に対して、レーザ光照射加工により窪み部を形成した場合、窪み部20の断面形状は上開きとなり、かつ、レーザ光の熱により窪み部20の内面が滑らかになって、透過光が乱反射するのを低減することができ、窪み部20内で培養されるスフェロイドの顕微鏡による観察を、容易に行うことができる。
[第2の実施形態]
 本発明の第1の実施形態に係る培養基材について、図7を用いて説明する。図7は、培養基材のウェル形成領域の一部断面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。
 第1の実施形態では、複数の窪み部20および土手部22は、培養基材表面にレーザ光を照射することにより形成された。一方、本実施形態では、培養基材1は、複数の窪み部20を形成する凸部および土手部22を形成する凹部を備えた金型を用いて、合成樹脂材料を射出成形して得られる。複数の窪み部20および土手部22は、培養基材1の成形と同時に形成される。
 本実施形態では、図7に示したように、培養基材1の培養基材表面には、半球状の窪み部20および断面半円状の土手部22が形成されている。金型を用いて射出成型により培養基材1を製造することにより、より均一性の高い窪み部20を形成することができ、形成されるスフェロイドの均一性を高くすることができる。
[第3の実施形態]
 本発明の第1の実施形態に係る培養基材について、図8を用いて説明する。図8は、培養基材がシャーレ内に設置された状態の縦断面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。
 第1の実施形態に係る培養基材1は、培養容器の内側の底面(底板部14の上面)に複数の窪み部20が形成されている。一方、本実施形態に係る培養基材1は、円板状に形成された合成樹脂材からなる。培養基材1は、合成樹脂材料を円板状の基板に射出成形された後、その一方の表面に対してレーザ光が照射されて、培養基材1の一方の表面に複数の窪み部20が形成されている。
 本実施形態に係る培養基材1は、図8に示したように、例えばガラス製のシャーレ40内に設置されて使用される。本実施形態によれば、第1の実施形態に比べて、培養基材1の成形が容易であり、製造コストを抑えることができる。
[第4の実施形態]
 本発明の第4の実施形態に係る培養基材について、図9および図10を用いて説明する。図9は、培養基材の平面図である。図10は、培養基材を備えた容器本体と蓋を有する培養容器の縦断面図である。なお、本実施形態は、第1の実施形態の変形例であって、第1の実施形態と同一部分または類似部分には、同一符号を付して、重複説明を省略する。
 本実施形態に係る培養基材1は、図9に示したように、容器本体10の底板部14が相当し、この底板部14の上面に4つの円形のウェル形成領域24を有している。4つのウェル形成領域24は、互いに間隔を空けて配置されている。そして、培養基材1のウェル形成領域24のそれぞれに被培養物が培養される隔室を形成する窪み部が基材表面に複数形成されており、互いに近接する前記窪み部の間の基材表面が非平坦面とされている。
 本実施形態では、ピペットなどを用いて、スフェロイド前駆体としての細胞が入れられ、撹拌された培養液50や受精卵を含む培養液50を4つのウェル形成領域24上に滴下する。続いて、図10に示したように、容器本体10内にミネラルオイル52を流し入れる。このとき、培養液50とミネラルオイル52とは、混ざり合わない。この状態で数日~数十日間放置して、スフェロイドを作製したり、受精卵を培養したりする。
 本実施形態によれば、1つの培養基材1で数種類のスフェロイドを作製することができる。
[他の実施形態]
 上記の各実施形態は、代表的な例示であって、本発明は、これらに限定されるものではない。例えば、培養基材1の材料は、合成樹脂材ではなく、ガラスであっても良い。また、培養基材1の形状・大きさについては、任意に設計できる。さらに、窪み部20および土手部22の形状・大きさについても、培養する細胞や所望するスフェロイドの形状・大きさに応じて、任意に設計できる。
 また、上記の実施形態を組み合わせても良い。例えば、第3の実施形態に係る円板状の培養基材1の窪み部20を、第2の実施形態で説明したように、射出成形により形成しても良い。
 本発明によれば、互いに近接する窪み部間の培養基材表面が非平坦面になっているため、沈殿する被培養物が窪み部に収まりやすく、また非平坦面になっているため、二次元的に単層に培養されたり、不均一なスフェロイドが形成されにくく、三次元的に均一に凝集されたスフェロイドが形成される確率が高く、スフェロイド培養を効率良く行うことができる。
 なお、2010年9月14日に出願された日本特許出願2010-205305号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
1…培養基材、10…容器本体、12…蓋、14…底板部、16…側壁部、20…窪み部、22…土手部、24…ウェル形成領域、30…非平坦面、40…シャーレ、50…培養液、52…ミネラルオイル

Claims (11)

  1.  被培養物が培養される隔室を形成する窪み部が培養基材表面に複数形成されており、互いに近接する前記窪み部の間の培養基材表面が非平坦面であることを特徴とする培養基材。
  2.  互いに近接する前記窪み部の間に介在する前記非平坦面が土手部を有することを特徴とする請求項1に記載の培養基材。
  3.  少なくとも前記窪み部の内面が細胞接着抑制剤により被膜されていることを特徴とする請求項1または2に記載の培養基材。
  4.  前記窪み部の開口の直径が20μm以上1500μm以下であることを特徴とする請求項1ないし3のいずれか一項に記載の培養基材。
  5.  前記窪み部の深さが10μm以上1500μm以下であることを特徴とする請求項1ないし4のいずれか一項に記載の培養基材。
  6.  前記複数の窪み部が前記培養基材表面に稠密に配置されていることを特徴とする請求項1ないし5のいずれか一項に記載の培養基材。
  7.  前記窪み部が前記培養基材表面のウェル形成領域の表面に複数形成されていることを特徴とする請求項1ないし6のいずれか一項に記載の培養基材。
  8.  前記複数の窪み部が、前記培養基材表面のウェル形成領域の表面に、10個/cm~10000個/cm、形成されていることを特徴とする請求項1ないし7のいずれか一項に記載の培養基材。
  9.  前記窪み部が前記培養基材表面へのレーザ照射により形成されていることを特徴とする請求項1ないし8のいずれか一項に記載の培養基材。
  10.  前記培養基材の材質が合成樹脂からなることを特徴とする請求項1ないし9のいずれか一項に記載の培養基材。
  11.  請求項1ないし10のいずれか一項に記載の培養基材を備えた培養容器。
PCT/JP2011/070170 2010-09-14 2011-09-05 培養基材 WO2012036011A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11825017.4A EP2617807B1 (en) 2010-09-14 2011-09-05 Culture substrate
CN201180044182.7A CN103119151B (zh) 2010-09-14 2011-09-05 培养基材
SG2013017942A SG188505A1 (en) 2010-09-14 2011-09-05 Culture substrate
JP2012533946A JP5921437B2 (ja) 2010-09-14 2011-09-05 培養基材
US13/828,657 US20130203159A1 (en) 2010-09-14 2013-03-14 Culture substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-205305 2010-09-14
JP2010205305 2010-09-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/828,657 Continuation US20130203159A1 (en) 2010-09-14 2013-03-14 Culture substrate

Publications (1)

Publication Number Publication Date
WO2012036011A1 true WO2012036011A1 (ja) 2012-03-22

Family

ID=45831478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070170 WO2012036011A1 (ja) 2010-09-14 2011-09-05 培養基材

Country Status (6)

Country Link
US (1) US20130203159A1 (ja)
EP (1) EP2617807B1 (ja)
JP (1) JP5921437B2 (ja)
CN (1) CN103119151B (ja)
SG (1) SG188505A1 (ja)
WO (1) WO2012036011A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014196204A1 (ja) 2013-06-07 2014-12-11 株式会社クラレ 培養容器及び培養方法
JP2015073520A (ja) * 2013-10-11 2015-04-20 Agcテクノグラス株式会社 細胞培養容器
JP2015181424A (ja) * 2014-03-25 2015-10-22 大日本印刷株式会社 細胞培養用電極及びその製造方法
WO2015182159A1 (ja) * 2014-05-30 2015-12-03 株式会社クラレ 培養方法及び細胞塊
WO2017047735A1 (ja) * 2015-09-17 2017-03-23 Agcテクノグラス株式会社 細胞培養容器
JPWO2015129263A1 (ja) * 2014-02-25 2017-03-30 株式会社クラレ スフェロイド作製用デバイス、スフェロイドの回収方法及び製造方法
WO2017057547A1 (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 シート状細胞構造体の製造方法及びシート状細胞構造体
US9790465B2 (en) 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof
JP2017532974A (ja) * 2014-10-29 2017-11-09 コーニング インコーポレイテッド 3d細胞凝集体の生成及び培養のための装置及び方法
WO2018169065A1 (ja) 2017-03-17 2018-09-20 富士フイルム株式会社 細胞構造体の製造方法
WO2018180320A1 (ja) * 2017-03-31 2018-10-04 富士フイルム株式会社 細胞培養構造体
WO2019021748A1 (ja) 2017-07-22 2019-01-31 東洋製罐グループホールディングス株式会社 培養容器、培養容器の製造方法、積層構造体、及び積層構造体の製造方法
JP2019022453A (ja) * 2017-07-22 2019-02-14 東洋製罐グループホールディングス株式会社 培養容器、及び培養容器の製造方法
JP2019071845A (ja) * 2017-10-17 2019-05-16 東洋製罐グループホールディングス株式会社 積層構造体、及び積層構造体の製造方法
KR20200021227A (ko) * 2018-08-20 2020-02-28 (주)에이치피케이 3차원 세포 배양체의 제조 장치 및 방법
JP2020043866A (ja) * 2014-10-29 2020-03-26 コーニング インコーポレイテッド スフェロイド捕捉用挿入体
WO2021024943A1 (ja) * 2019-08-02 2021-02-11 積水化学工業株式会社 細胞培養用足場材及び細胞培養用容器
WO2021039882A1 (ja) * 2019-08-28 2021-03-04 学校法人東海大学 培養基材を用いたTie2陽性幹/前駆細胞を含む細胞集団の培養方法およびその利用
JP2022501002A (ja) * 2018-07-13 2022-01-06 コーニング インコーポレイテッド 液体培地送達面を含む側壁を有するマイクロキャビティ皿
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
WO2023176949A1 (ja) * 2022-03-17 2023-09-21 日産化学株式会社 細胞利用効率の高い細胞培養容器
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170130195A1 (en) * 2014-06-10 2017-05-11 Korea Advanced Institute Of Science And Technology Cell culture substrate, manufacturing method therefor, and use thereof
JP5768174B1 (ja) * 2014-06-24 2015-08-26 日本写真印刷株式会社 培養容器
US20170342377A1 (en) * 2016-05-27 2017-11-30 Coorstek Kk Cell culture carrier and cell culture module
WO2020234170A1 (en) 2019-05-17 2020-11-26 Medizinische Universität Wien Cell-spheroid production in 2d cell culture system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522242A (ja) * 1997-04-09 2001-11-13 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー 生物試料液体を微容量に分割するための方法と装置
JP2003503021A (ja) * 1999-06-17 2003-01-28 ユニバーシティ オブ ウェールズ カレッジ オブ メディスン スフェロイドの調製
WO2007055056A1 (ja) 2005-11-14 2007-05-18 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology 組織体形成方法及び組織体形成キット
WO2008156041A1 (ja) * 2007-06-18 2008-12-24 Kuraray Co., Ltd. 細胞培養容器及び細胞培養方法
JP2009050194A (ja) * 2007-08-27 2009-03-12 Sumitomo Bakelite Co Ltd 細胞凝集塊形成培養用容器
JP2010088347A (ja) * 2008-10-08 2010-04-22 Tohoku Univ スフェロイド培養方法及びスフェロイド培養容器
JP2010205305A (ja) 2010-06-21 2010-09-16 Asahi Kasei Homes Co 住宅ローン債権の情報提供方法及びそれを備えた住宅ローン債権の情報提供システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2186755Y (zh) * 1994-03-25 1995-01-04 中国科学院成都生物研究所 多用途培养板
US6027695A (en) * 1998-04-01 2000-02-22 Dupont Pharmaceuticals Company Apparatus for holding small volumes of liquids
US7186548B2 (en) * 2003-11-10 2007-03-06 Advanced Pharmaceutical Sciences, Inc. Cell culture tool and method
WO2008106771A1 (en) * 2007-03-02 2008-09-12 Mark Ungrin Devices and methods for production of cell aggregates
CN102046773A (zh) * 2008-05-30 2011-05-04 康宁股份有限公司 具有不同微孔外形的细胞培养装置
US20100107497A1 (en) * 2008-11-05 2010-05-06 Magna Mirrors Of America, Inc. Full view storm door
US20120129208A1 (en) * 2009-03-18 2012-05-24 Michelle Khine Honeycomb shrink wells for stem cell culture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522242A (ja) * 1997-04-09 2001-11-13 ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー 生物試料液体を微容量に分割するための方法と装置
JP2003503021A (ja) * 1999-06-17 2003-01-28 ユニバーシティ オブ ウェールズ カレッジ オブ メディスン スフェロイドの調製
WO2007055056A1 (ja) 2005-11-14 2007-05-18 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology 組織体形成方法及び組織体形成キット
WO2008156041A1 (ja) * 2007-06-18 2008-12-24 Kuraray Co., Ltd. 細胞培養容器及び細胞培養方法
JP2009050194A (ja) * 2007-08-27 2009-03-12 Sumitomo Bakelite Co Ltd 細胞凝集塊形成培養用容器
JP2010088347A (ja) * 2008-10-08 2010-04-22 Tohoku Univ スフェロイド培養方法及びスフェロイド培養容器
JP2010205305A (ja) 2010-06-21 2010-09-16 Asahi Kasei Homes Co 住宅ローン債権の情報提供方法及びそれを備えた住宅ローン債権の情報提供システム

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790465B2 (en) 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
KR102359408B1 (ko) 2013-06-07 2022-02-07 코닝 인코포레이티드 배양 용기 및 배양 방법
AU2020201221B2 (en) * 2013-06-07 2021-12-23 Corning Incorporated Culture vessel and culture method
KR20160017036A (ko) 2013-06-07 2016-02-15 가부시키가이샤 구라레 배양 용기 및 배양 방법
EP3006553A4 (en) * 2013-06-07 2017-01-04 Kuraray Co., Ltd. Culture vessel and culture method
US10494593B2 (en) 2013-06-07 2019-12-03 Corning Incorporated Culture chamber and culture method
US11866682B1 (en) 2013-06-07 2024-01-09 Corning Incorporated Culture chamber and culture method
AU2014276229B2 (en) * 2013-06-07 2019-11-21 Corning Incorporated Culture vessel and culture method
US11473046B2 (en) 2013-06-07 2022-10-18 Corning Incorporated Culture chamber and culture method
WO2014196204A1 (ja) 2013-06-07 2014-12-11 株式会社クラレ 培養容器及び培養方法
JP2015073520A (ja) * 2013-10-11 2015-04-20 Agcテクノグラス株式会社 細胞培養容器
US11208625B2 (en) 2014-02-25 2021-12-28 Corning Incorporated Spheroid-producing device, method for recovering spheroids, and method for producing spheroids
JPWO2015129263A1 (ja) * 2014-02-25 2017-03-30 株式会社クラレ スフェロイド作製用デバイス、スフェロイドの回収方法及び製造方法
JP2015181424A (ja) * 2014-03-25 2015-10-22 大日本印刷株式会社 細胞培養用電極及びその製造方法
US10752879B2 (en) 2014-05-30 2020-08-25 Corning Incorporated Culture method and cell cluster
JPWO2015182159A1 (ja) * 2014-05-30 2017-04-20 株式会社クラレ 培養方法及び細胞塊
WO2015182159A1 (ja) * 2014-05-30 2015-12-03 株式会社クラレ 培養方法及び細胞塊
JP2022105173A (ja) * 2014-10-29 2022-07-12 コーニング インコーポレイテッド 3d細胞凝集体の生成及び培養のための装置及び方法
JP7071553B2 (ja) 2014-10-29 2022-05-19 コーニング インコーポレイテッド 3d細胞凝集体の生成及び培養のための装置及び方法
US11667874B2 (en) 2014-10-29 2023-06-06 Corning Incorporated Perfusion bioreactor platform
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
JP2020043866A (ja) * 2014-10-29 2020-03-26 コーニング インコーポレイテッド スフェロイド捕捉用挿入体
JP2021072811A (ja) * 2014-10-29 2021-05-13 コーニング インコーポレイテッド 3d細胞凝集体の生成及び培養のための装置及び方法
JP2017532974A (ja) * 2014-10-29 2017-11-09 コーニング インコーポレイテッド 3d細胞凝集体の生成及び培養のための装置及び方法
JPWO2017047735A1 (ja) * 2015-09-17 2018-07-05 Agcテクノグラス株式会社 細胞培養容器
JP2020195412A (ja) * 2015-09-17 2020-12-10 Agc株式会社 細胞培養容器
WO2017047735A1 (ja) * 2015-09-17 2017-03-23 Agcテクノグラス株式会社 細胞培養容器
WO2017057547A1 (ja) * 2015-09-30 2017-04-06 富士フイルム株式会社 シート状細胞構造体の製造方法及びシート状細胞構造体
JPWO2017057547A1 (ja) * 2015-09-30 2018-06-14 富士フイルム株式会社 シート状細胞構造体の製造方法及びシート状細胞構造体
US11027044B2 (en) 2015-09-30 2021-06-08 Fujifilm Corporation Method for producing sheet-like cell structure and sheet-like cell structure
WO2018169065A1 (ja) 2017-03-17 2018-09-20 富士フイルム株式会社 細胞構造体の製造方法
JPWO2018169065A1 (ja) * 2017-03-17 2020-01-16 富士フイルム株式会社 細胞構造体の製造方法
WO2018180320A1 (ja) * 2017-03-31 2018-10-04 富士フイルム株式会社 細胞培養構造体
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11970682B2 (en) 2017-07-14 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
TWI718392B (zh) * 2017-07-22 2021-02-11 日商東洋製罐集團控股股份有限公司 培養容器、培養容器之製造方法、積層構造體、以及積層構造體之製造方法
EP3971281A1 (en) 2017-07-22 2022-03-23 Toyo Seikan Group Holdings, Ltd. Laminated structure and method for manufacturing laminated structure
JP2019022453A (ja) * 2017-07-22 2019-02-14 東洋製罐グループホールディングス株式会社 培養容器、及び培養容器の製造方法
WO2019021748A1 (ja) 2017-07-22 2019-01-31 東洋製罐グループホールディングス株式会社 培養容器、培養容器の製造方法、積層構造体、及び積層構造体の製造方法
JP7047321B2 (ja) 2017-10-17 2022-04-05 東洋製罐グループホールディングス株式会社 積層構造体、及び積層構造体の製造方法
JP2019071845A (ja) * 2017-10-17 2019-05-16 東洋製罐グループホールディングス株式会社 積層構造体、及び積層構造体の製造方法
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
JP7171695B2 (ja) 2018-07-13 2022-11-15 コーニング インコーポレイテッド 液体培地送達面を含む側壁を有するマイクロキャビティ皿
JP2022501002A (ja) * 2018-07-13 2022-01-06 コーニング インコーポレイテッド 液体培地送達面を含む側壁を有するマイクロキャビティ皿
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
KR102136324B1 (ko) * 2018-08-20 2020-07-21 (주)에이치피케이 3차원 세포 배양체의 제조 장치 및 방법
KR20200021227A (ko) * 2018-08-20 2020-02-28 (주)에이치피케이 3차원 세포 배양체의 제조 장치 및 방법
CN113924356A (zh) * 2019-08-02 2022-01-11 积水化学工业株式会社 细胞培养用支架材料及细胞培养用容器
WO2021024943A1 (ja) * 2019-08-02 2021-02-11 積水化学工業株式会社 細胞培養用足場材及び細胞培養用容器
WO2021039882A1 (ja) * 2019-08-28 2021-03-04 学校法人東海大学 培養基材を用いたTie2陽性幹/前駆細胞を含む細胞集団の培養方法およびその利用
WO2023176949A1 (ja) * 2022-03-17 2023-09-21 日産化学株式会社 細胞利用効率の高い細胞培養容器

Also Published As

Publication number Publication date
CN103119151B (zh) 2015-02-04
JP5921437B2 (ja) 2016-05-24
CN103119151A (zh) 2013-05-22
EP2617807A4 (en) 2016-01-13
US20130203159A1 (en) 2013-08-08
EP2617807B1 (en) 2020-10-21
JPWO2012036011A1 (ja) 2014-02-03
SG188505A1 (en) 2013-05-31
EP2617807A1 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5921437B2 (ja) 培養基材
JP6313043B2 (ja) 接着性細胞の培養方法
JP6185816B2 (ja) 細胞培養容器
JP2018108032A (ja) 培養容器
JP6892486B2 (ja) 培養方法
JP6767375B2 (ja) 細胞培養容器
EP2917326B1 (en) Cell culture device for generating and cultivating cell aggregates, method of producing said device and use of said device
WO2018123663A1 (ja) 細胞培養基材及びその製造方法
KR20100020524A (ko) 세포 배양 용기 및 세포 배양 방법
KR101746864B1 (ko) 세포 보존 방법 및 세포 수송 방법
JPWO2008130025A1 (ja) 肝細胞培養容器及び肝細胞培養方法
KR20200021108A (ko) 배양 방법, 성숙 지방 세포군 및 약물 스크리닝 방법
JP2009050201A (ja) 初期胚等用培養器具
JP5940758B2 (ja) 細胞培養方法
JP3214876U (ja) 培養基材
JP2013034396A (ja) 細胞培養シャーレ
JP2010200679A (ja) 細胞培養容器、細胞培養方法、および細胞評価方法
JP2022071581A (ja) マイクロプレート
WO2021132480A1 (ja) 培養基材および培養容器
JP2022067072A (ja) 培養容器
JP2018085978A (ja) 培養容器
JP2022095001A (ja) マイクロプレート

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044182.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012533946

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2011825017

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE