WO2014196204A1 - 培養容器及び培養方法 - Google Patents

培養容器及び培養方法 Download PDF

Info

Publication number
WO2014196204A1
WO2014196204A1 PCT/JP2014/002993 JP2014002993W WO2014196204A1 WO 2014196204 A1 WO2014196204 A1 WO 2014196204A1 JP 2014002993 W JP2014002993 W JP 2014002993W WO 2014196204 A1 WO2014196204 A1 WO 2014196204A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
medium
cells
spheroids
recess
Prior art date
Application number
PCT/JP2014/002993
Other languages
English (en)
French (fr)
Inventor
洋子 江尻
賢 綾野
直人 福原
英樹 谷口
貴則 武部
Original Assignee
株式会社クラレ
公立大学法人横浜市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to SG11201509870QA priority Critical patent/SG11201509870QA/en
Priority to CN201480032635.8A priority patent/CN105308170B/zh
Priority to CA2914463A priority patent/CA2914463C/en
Priority to BR112015030041-3A priority patent/BR112015030041B1/pt
Priority to JP2015521306A priority patent/JPWO2014196204A1/ja
Priority to EP14808113.6A priority patent/EP3006553B1/en
Priority to AU2014276229A priority patent/AU2014276229B2/en
Priority to US14/896,251 priority patent/US10494593B2/en
Application filed by 株式会社クラレ, 公立大学法人横浜市立大学 filed Critical 株式会社クラレ
Priority to KR1020167000067A priority patent/KR102359408B1/ko
Publication of WO2014196204A1 publication Critical patent/WO2014196204A1/ja
Priority to ZA2015/09018A priority patent/ZA201509018B/en
Priority to US16/668,701 priority patent/US11473046B2/en
Priority to AU2020201221A priority patent/AU2020201221B2/en
Priority to US18/521,821 priority patent/US20240093134A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/08Flask, bottle or test tube
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates

Definitions

  • the present invention relates to cell culture and recovery thereof.
  • spheroid culture is an excellent method that can maintain cell interaction, and is applied to various cells such as islet cells, hepatocytes, stem cells, and cancer cells.
  • indices the diameter and volume of spheroids are used as indices.
  • size of a spheroid nonpatent literature 2, 3.
  • a technique for controlling the size of spheroids has been attracting attention.
  • the specific functions of cells can be reproduced in this way, it is expected to be used in fields such as artificial organs and bioreactors. In such applications, techniques for producing and collecting spheroids in large quantities are important.
  • Patent Document 1 discloses a method for controlling the size of a spheroid formed by changing the number of cells to be seeded in 96WP having a U-shaped bottom provided with a hydrophilic film. is there.
  • the number of spheroids per culture area is small, and it is difficult to produce a large amount of spheroids.
  • Patent Documents 2-4 there is a method of forming spheroids in a micro space disclosed in Patent Documents 2-4.
  • JP-A-8-131153 JP 2010-88347 A International Publication No. 2012/036011 International Publication No. 2013/042360
  • Patent Document 1 has a very low culture efficiency and is a bottleneck for mass culture.
  • the spheroid formation efficiency per unit area is high in the culture methods of Patent Documents 2 and 3, there is a possibility that the spheroids are detached from the space when the medium is changed. Therefore, care must be taken when changing the medium.
  • Patent Document 4 a method of bonding a part of the spheroids in the micro space has been studied (Patent Document 4).
  • Patent Document 4 since the adhesiveness of cells varies from cell to cell, it is necessary to study the surface treatment method for each cell to be used, which puts it to practical use.
  • the present invention has been made in view of such circumstances, and enables medium exchange and cell recovery to be easily performed in order to produce spheroids of uniform size with high efficiency or high efficiency and in large quantities. It is an object of the present invention to design a micro space structure that can be implemented, and to provide a culture vessel having the designed micro space structure and a culture method using the same.
  • One aspect of the culture vessel according to one embodiment of the present invention is such that a plurality of dents composed of a bottom and an opening are arranged.
  • the bottom has a shape of either a hemisphere or a truncated cone, and the opening is configured by a wall having a taper angle of 1 to 20 degrees surrounding the boundary with the bottom to the end of the recess. Is done.
  • the equivalent diameter of the boundary is not less than 50 ⁇ m and not more than 2.5 mm
  • the depth from the bottom of the bottom to the end is not less than 0.6 times and not more than 3 times the equivalent diameter
  • the constituting wall forms a surface continuous with the bottom, and the inclination of the continuous surface changes at the boundary.
  • the shape of the end is preferably a hemispherical shape, a trapezoidal shape, or an inverted triangle, and a space between two adjacent recesses is flat, and the two recesses are The distance is preferably 5 ⁇ m to 50 ⁇ m.
  • the culture vessel may be an acrylic resin, polylactic acid, polyglycolic acid, styrene resin, acrylic / styrene copolymer resin, polycarbonate resin, polyester resin, polyvinyl alcohol resin. It is preferably a resin molded product made of one or a combination of ethylene / vinyl alcohol copolymer resin, thermoplastic elastomer, vinyl chloride resin, and silicon resin.
  • a functional group is formed on the recess by a surface modification treatment method comprising plasma treatment, glass coating, corona discharge, UV ozone treatment, or a combination thereof, so that the water contact angle is 45 degrees or less. It is preferred that It is preferable that a hydrophilic polymer chain that inhibits cell adhesion is immobilized in the recess. It is preferable that a phospholipid or a phospholipid / polymer complex is immobilized in the recess.
  • a functional group is formed on the recess by a surface modification treatment method comprising any one of plasma treatment, glass coating, corona discharge, UV ozone treatment, or a combination thereof, so that the water contact angle is 45 degrees or less.
  • the hydrophilic polymer chain that inhibits cell adhesion and the cell non-adherent surface on which any one polymer of phospholipid or phospholipid / polymer complex is immobilized.
  • the hydrophilic polymer chain is polyhydroxyethyl methacrylate, and it is more preferable that the average molecular weight of the polyhydroxyethyl methacrylate is 100,000 or more.
  • One aspect of the culture method according to one embodiment of the present invention uses any of the culture vessels described above.
  • the total number of cells is equal to or greater than the number of the recesses (N) of the culture container, and the volume of the space (V1) formed by the recesses is divided by the volume of cells to be seeded (V2).
  • the number of cells equal to or less than the number of depressions (N) is dispersed in the medium, and the medium is added to the culture vessel.
  • the culture method it is preferable to form one spheroid per one space formed by the recess, and to grow (proliferate) the spheroid by forming a spheroid in the space. It is more preferable. In order to induce differentiation, it is preferable to induce in a state where spheroids are formed in the space. It is preferable that 60% or more of the total number of spheroids formed in the culture vessel has a diameter within a range of plus or minus 5% of the average spheroid diameter. It is preferable to collect the cells in the dent by stirring the medium, and stirring the medium is performed by shaking the culture vessel and stirring the medium, and sucking and discharging the medium.
  • the method is a method of stirring a medium, stirring a medium by installing a stirring blade in the culture container, stirring a medium by adding a stirring bar to the culture container, or a combination thereof.
  • the medium is replaced at least once, and the ratio of the medium to be replaced is 20% or more.
  • Another aspect of the culture method according to one embodiment of the present invention uses any of the culture vessels described above. In the culture method, the cells are seeded, cultured, medium exchanged, and recovered by performing the following steps.
  • a microspace structure capable of producing a spheroid having a uniform size with high efficiency and a large amount and easily performing medium replacement and recovery is designed. It is possible to provide a culture container having the above and a culture method using the same.
  • FIG. 1 It is a figure which shows an example of the culture container of one Embodiment. It is sectional drawing which shows the example of a shape which looked at the dent of Embodiment 1 from the side. It is a figure which shows the example of a shape which looked at the dent of Embodiment 1 from the top. It is a figure which shows the example of a shape of the dent using a part of spherical shape of Embodiment 2. It is a figure which shows the other example of a shape of the dent using a spherical part of Embodiment 2. It is a figure which shows the example of a shape of the dent using the truncated cone of Embodiment 2.
  • FIG. 1 It is a figure which shows an example of the culture container of one Embodiment. It is sectional drawing which shows the example of a shape which looked at the dent of Embodiment 1 from the side. It is a figure which shows the example of a shape which looked at the dent of Em
  • FIG. 10 is a diagram illustrating a shape example of an opening according to a third embodiment. It is a figure which shows the other example of a shape of the opening part of Embodiment 3. It is a figure which shows the structural example of the culture container of Embodiment 4. FIG. It is a figure which shows the structural example of the other culture container of Embodiment 4. FIG. It is a figure which shows the structural example of the further another culture container of Embodiment 4. FIG. It is a figure which shows the residual rate of the spheroid at the time of culture medium replacement
  • FIG. 1 is a diagram illustrating an example of a culture container according to an embodiment.
  • FIG. 1 shows a part of a culture plate 3 having a plurality of culture vessels 1.
  • the culture container 1 is provided with a plurality of recesses 10.
  • the plurality of dents 10 are preferably arranged regularly from the viewpoint of manufacturing the culture vessel 1 and the efficiency of cell culture.
  • the culture container 1 corresponds to one well of a well plate having a plurality of wells, for example.
  • a well plate is an experimental / inspection instrument composed of a flat plate with a number of indentations (holes or wells), and each well is used as a test tube or petri dish.
  • the number of wells includes, for example, 6, 24, 96, 384, and others.
  • the bottom of the well is flat, round, or a combination of many elongated microtubes (deep well plate).
  • the dent 10 forms a micro space, which is a minute space for culturing cells, it can also be called a micro container.
  • FIG. 2 and 3 are diagrams illustrating examples of the shape of the recess according to the first embodiment.
  • FIG. 2 shows a cross-sectional view when one recess 10 is viewed from the side
  • FIG. 3 shows a view when one recess 10 is viewed from above.
  • the dent 10 shown in FIG. 3 is a detailed configuration example of the dent 10 in the upper stage of FIG.
  • Each recess 10 includes a bottom 11 and an opening 12.
  • the bottom portion 11 is a portion that becomes the bottom of the culture vessel 1
  • the opening portion 12 is a portion that is disposed on the top of the bottom portion 11.
  • a portion where the bottom 11 and the opening 12 are in contact is referred to as a boundary.
  • the length indicated by the arrow R corresponds to the boundary position.
  • the position of the boundary is indicated by a two-dot broken line.
  • the bottom part 11 and the opening part 12 are comprised by the continuous surface, and are manufactured as integral.
  • the equivalent diameter R is a diameter of an inscribed circle inscribed in the bottom 11 of the recess 10. Here, it refers to the diameter of an inscribed circle inscribed at the boundary between the bottom 11 and the opening 12. More specifically, the equivalent diameter R refers to the diameter of an inscribed circle in the shape of a surface perpendicular to the direction of the height H of the recess 10 at the boundary.
  • the depth D is the length from the inner bottom of the bottom 11 to the upper end of the recess 10. The upper end of the recess 10 is the same as the end (upper end) of the opening 12. The depth D is the depth of the space formed by the recess 10.
  • FIG. 2 shows the depth D1 of the bottom 11 and the depth D2 of the opening 12 in addition to the depth D of the recess 10.
  • the bottom 11 forms a space for culturing cells (first space).
  • the bottom 11 has, for example, a hemispherical shape.
  • a shape in which a spherical shape having an equivalent diameter R as a diameter is halved can be used.
  • the shape of the bottom 11 is not limited to a hemisphere.
  • Other specific examples will be described in the second embodiment.
  • the opening 12 forms a space (second space) that works to assist cell culture and recovery.
  • the opening 12 is configured by a wall having a taper angle of 1 degree or more and 20 degrees or less that surrounds the boundary from the bottom part 11 to the end part (tip) of the recess 10.
  • the taper angle of the wall constituting the opening 12 is preferably 5 degrees or more and 15 degrees or less, and more preferably 10 degrees. The reason is that if the taper angle is too small, the cells cannot be transferred from the dent to the medium when collected, and conversely if too large, the cells are detached during the medium exchange.
  • the taper angles are indicated by the symbols ⁇ 1 and ⁇ 2.
  • the taper angles ⁇ 1 and ⁇ 2 are substantially the same.
  • the boundary between the bottom 11 and the opening 12 is formed such that the equivalent diameter R is 50 ⁇ m or more and 1 mm or less.
  • the equivalent diameter is preferably 50 ⁇ m or more and 500 ⁇ m or less, more preferably 100 ⁇ m or more and 500 ⁇ m or less.
  • the equivalent diameter R is preferably 400 ⁇ m or more and less than 2 mm.
  • the reason is that, as described above, at 300 ⁇ m, it can be considered that no nutrients reach the center and no necrosis occurs. Therefore, in order to obtain a spheroid having a diameter of 300 ⁇ m or more, it must be 400 ⁇ m or more.
  • the depth D from the bottom to the end of the bottom is formed to be not less than 0.6 times and not more than 3 times the equivalent diameter R.
  • the depth D is preferably an equivalent diameter R 0.7 times or more and 1.2 times or less, and more preferably 0, 8 to 1 times.
  • the culture container 1 is flat between two adjacent dents 10.
  • the distance between the two recesses 10 is preferably in the range of 5 ⁇ m to 50 ⁇ m.
  • the distance between the two recesses 10 is preferably in the range of 5 ⁇ m to 50 ⁇ m.
  • the distance between the two recesses 10 is preferably in the range of 5 ⁇ m to 50 ⁇ m.
  • the distance between the two recesses 10 is preferably in the range of 5 ⁇ m to 50 ⁇ m.
  • the distance between the two recesses 10 is preferably in the range of 5 ⁇ m to 50 ⁇ m. The reason is that in order to efficiently obtain a large amount of spheroids, it is preferable to increase the number of spheroids per unit area and culture at a high density. For that purpose, the smaller the upper surface of the wall on which spheroids are not formed, the better.
  • the taper angle is small, if the wall is thin, cracks may easily occur due to vibration during cell seeding or medium exchange
  • the case where two adjacent dents 10 contact may be sufficient.
  • a part of the end portions of the two recesses 10 may be in contact with each other, and the slope of the taper angle of the opening 12 may be in contact with the mountain shape.
  • the culture vessel 1 is preferably manufactured as follows.
  • the culture vessel 1 is an acrylic resin, polylactic acid, polyglycolic acid, styrene resin, acrylic / styrene copolymer resin, polycarbonate resin, polyester resin, polyvinyl alcohol resin, ethylene / vinyl alcohol copolymer resin, A resin molded article made of one or a combination of a thermoplastic elastomer, a vinyl chloride resin, and a silicon resin is preferable.
  • a functional group is formed on each recess 10 of the culture vessel 1 by a surface modification treatment method comprising any one of plasma treatment, glass coating, corona discharge, UV ozone treatment, or a combination thereof, and the water contact angle is 45 degrees. It is preferable to process so that it may become the following.
  • a hydrophilic polymer chain that inhibits cell adhesion is preferably immobilized in each recess 10. More preferably, the hydrophilic polymer chain is fixed to each of the recesses 10 treated so that the water contact angle is 45 degrees or less.
  • a phospholipid or a phospholipid / polymer complex is immobilized in each recess 10. This immobilization treatment is performed on each of the dents 10 processed so that the water contact angle is 45 degrees or less, each of the dents 10 on which the hydrophilic polymer chain is fixed, or each of the dents 10 in combination thereof. More preferably it is implemented.
  • a functional group is formed on each recess 10 by a surface modification treatment method comprising any one of plasma treatment, glass coating, corona discharge, UV ozone treatment, or a combination thereof, so that the water contact angle is 45 degrees or less.
  • a hydrophilic polymer chain that inhibits cell adhesion and a cell non-adherent surface on which any one polymer of phospholipid or phospholipid / polymer complex is immobilized Preferably there is.
  • This process is more preferably performed together with the processes described above or a combination of the processes.
  • the hydrophilic polymer chain described above is preferably polyhydroxyethyl methacrylate, and the average molecular weight of polyhydroxyethyl methacrylate is more preferably 100,000 or more.
  • a cell culture method using the culture vessel 1 shown in FIGS. 1 to 3 will be described.
  • Cell culture is performed by the following steps. a) Step of adding a medium in which cells are dispersed to the culture vessel 1 b) Step of culturing cells c) Step of replacing the medium d) Step of growing spheroids e) Step of floating the spheroids in the medium f) Step of recovering cells
  • a) Step of adding a medium in which cells are dispersed to the culture vessel 1 b) Step of culturing cells c) Step of replacing the medium d) Step of growing spheroids e) Step of floating the spheroids in the medium f) Step of recovering cells
  • Each of the steps described above is a step (cell culture step) in which cells are cultured from a) to d), and is divided from a step of recovering cells (cell recovery step) in e) and f). You can also.
  • the spheroid is a three-dimensional state in which
  • Step of adding the medium in which the cells are dispersed to the culture vessel 1 the following total number of cells are dispersed in the medium and added to the culture vessel 1.
  • the lower limit of the total number of cells is equal to or more than the number (n) of the recesses 10 present in the culture vessel 1.
  • the upper limit of the total number of cells is not more than the number obtained by multiplying the volume (v) of the dent 10 of the culture vessel 1 by the volume (v) of the cells to be seeded and the number of dents (n).
  • the upper limit value of the total number of cells V / v ⁇ n.
  • the volumes (V) of the plurality of recesses 10 are the same. If they are different, use the average value.
  • the medium is adjusted according to the cells to be cultured.
  • Step of culturing cells Cells are cultured in the culture vessel 1 for 12 hours or longer to form spheroids.
  • the culture medium is added to the culture vessel 1, the cells dispersed in the culture medium are taken into the recesses 10 and cultured in each recess 10.
  • One cell is preferably taken into each recess 10, and one spheroid is preferably formed in the space formed by the bottom 11.
  • cells grow in the bottom 11 of the recess 10. If there is not at least one cell at the time of culture seeding, the cell will not move from the adjacent recess 10 during the culture, so that no spheroid is formed in the recess 10.
  • spheroids are formed in all the recesses 10, and therefore it is preferable that at least one cell exists in the recesses 10. From the viewpoint of production efficiency, it is preferable that many spheroids can be recovered while reducing the initial number of cells as much as possible. Therefore, the smaller the number of cells present in the recess 10, the better. Therefore, it is preferable that one cell exists in the recess 10.
  • Step of replacing the medium the medium in the culture vessel 1 is aspirated by 20% or more, and then the same amount of fresh medium is injected. The medium exchange is preferably performed at least once during cell culture.
  • Steps a) to c) described above are performed a plurality of times to grow spheroids.
  • inducing differentiation it is preferable to grow in a space formed by the bottom 11 of the dent 10 until the spheroids do not become large, and then change to a differentiation-inducing medium for differentiation.
  • 60% or more of the total number of spheroids formed in the culture vessel 1 is more preferably a diameter within a range of plus or minus 5% of the average spheroid diameter.
  • Step of floating spheroids in medium After growing spheroids to a desired size, the medium in culture vessel 1 is stirred and the cells cultured in each recess 11 are suspended in the medium. For example, it is carried out by stirring the medium. Specifically, the medium is agitated by (1) shaking the culture vessel 1 to stir the medium, (2) aspirating and discharging the medium (pipetting operation) and stirring the medium (3 ) Install a stirring blade in the culture vessel 1 and stir the medium; (4) Add a stir bar to the culture vessel 1 and stir the medium; (5) At least two of the above (1) to (4) Any of the methods of combining and stirring the media can be used. f) Step of collecting cells The medium containing the cells in the culture vessel 1 is sucked with a suction machine, and the cells (spheroids) suspended in the medium are collected.
  • Embodiment 1 in addition to being able to perform cell seeding, medium exchange, and recovery in the same container, the description has been made regarding the nutrient container that can recover spheroids.
  • spheroids having a desired size can be formed on the bottom 11.
  • the cultured spheroid can be efficiently recovered.
  • the recess 10 has an opening 12 in addition to the bottom 11 to facilitate maintaining a state in which cells adhere to or float on the bottom 11 but are not detached when the medium is sucked in the medium exchange. It can be expected to suppress detachment of cells from the bottom 11.
  • the flow of the medium is easily generated by the opening 12 when the medium in the bottom portion 11 is sucked and discharged.
  • a hemispherical shape for the bottom portion 11 it can be expected to contribute to making the shape and size of the spheroid uniform.
  • FIG. 4 to FIG. 7 show examples of the shape of the recess according to this embodiment. 4 to 7 show the recesses 20A to 20D having bottom portions 21A to 21D different from the bottom portion 11 of the first embodiment, but the opening 12 can be realized in the same shape as that of the first embodiment, and thus the same ones are combined.
  • the example of a shape of a dent is shown.
  • FIG. 4 and 5 show an example in which the hemispherical shape used for the bottom portion is different from that of the first embodiment in which a hemispherical shape in which the sphere is halved is used for the bottom portion 11.
  • FIG. 4 shows a bottom 21A that uses less than half of a sphere. In other words, the bottom 21A uses a hemispherical part.
  • FIG. 5 shows a bottom 21B using a cylindrical shape with a hemispherical bottom. In the case of the shape of the bottom portion 21B shown in FIG. 5, if the tube portion becomes long, the cells will not float from the bottom portion 21B to the culture medium when the cells are collected. Therefore, it is preferable to adjust the length of the tube portion.
  • the depth (height) of the bottom 21B and the opening 12 be the same ratio (1: 1).
  • FIG. 6 shows a bottom 21C using a truncated cone. When the bottom is flat, light refraction and interference can be reduced, which is useful for microscopic observation.
  • FIG. 7 shows an example of the shape of the recess 20D in which the bottom 21D is linear, in other words, the bottom 21D does not form a space.
  • the dent 20D is advantageous in that the manufacturing process of the culture container is easy, although the efficiency of culturing and collecting cells is inferior to that of other shape culture containers.
  • Embodiment 3 In each of the above-described embodiments, the mode in which the shape of the opening 12 is circular or substantially circular has been described. However, a culture vessel having an opening having another shape will be described.
  • the shape of the end of the opening may be other shapes such as a hemispherical shape, a trapezoidal shape, or a tri inverted triangle.
  • the shape of the boundary where the opening contacts the bottom (the boundary of the opening) needs to be the same shape as the boundary of the bottom. 8 and 9 show dents 30 ⁇ / b> A and 30 ⁇ / b> B having end shapes different from those of the opening 12 of the first embodiment.
  • the same bottom portion 11 as that of the first embodiment is shown, but it can be combined with any of the bottom portions 21A to 21D of the second embodiment, and may be a bottom portion having another shape.
  • the shape of a bottom part and an opening part should just be a combination which can form a slope continuously in the boundary.
  • FIG. 8 shows an example of a shape in which the end of the opening 32A draws a curve.
  • FIG. 8 is a view of the recess 30A as viewed from above, in which the end of the bottom 11 is indicated by a circle having an equivalent diameter R, and the outer periphery of the opening 32A is indicated by a curve.
  • the end of the opening 32A is a curved line that is not symmetrical left and right and up and down, but may have a shape that is symmetrical left and right or up and down.
  • FIG. 9 shows an example in which the end of the opening 32B is rectangular. Although FIG. 9 shows an example of a square, other polygons, combinations of curves and straight lines may be used.
  • FIG. 9 shows an example of a square, other polygons, combinations of curves and straight lines may be used.
  • the taper angle is important. 8 and 9, the taper angle has a different value depending on the shape of the openings 32A and 32B. This is because the slopes of the slopes forming the walls differ depending on the shapes of the openings 32A and 32B.
  • each shape of the opening shown in this embodiment can be combined with each shape of the bottom 11 of Embodiment 1 or the bottom described in Embodiment 2.
  • shapes and combinations other than the bottom shown in the above-described embodiments are possible. Since the cell culture method using the culture container of the present embodiment is the same as that of the first embodiment, description thereof is omitted.
  • the culture container of the present embodiment can also achieve the same effects as those of the first embodiment.
  • FIG. 10 is a schematic view showing a configuration example using a flask-shaped culture flask.
  • FIG. 11 is a schematic diagram showing a configuration example using a frame of a culture plate.
  • FIG. 12 is a schematic diagram showing a configuration example in which the culture plate shown in FIG. 11 is used in a stack shape.
  • the bottom surface of the culture flask 4 is defined as a culture surface 4A (culture bottom surface). Since the culture surface 4A corresponds to the culture vessel 1 shown in FIG. 1, it can also be called a culture vessel.
  • the culture surface 4A is a unit using the same medium as in the culture container 1 of FIG.
  • the culture flask 4 has a cap 4B. What is necessary is just to design the area of 4 A of culture surfaces according to a use.
  • General culture flask there is 25,75,225cm 2.
  • a plurality of recesses 40 are formed on the culture surface 4 ⁇ / b> A of the culture flask 4.
  • the shaded portion of the bottom surface of the culture flask 4 is designed as the culture surface 4A, and a plurality of recesses 40 are formed on the culture surface 4A.
  • the shape of the recess 40 may be any of the above embodiments.
  • FIG. 11 shows an example in which only the frame of the culture plate is used.
  • the culture vessel 1 (well) is formed on the culture plate 3.
  • the bottom surface of the culture plate 5 is defined as a culture surface 5A (culture bottom surface). Since the culture surface 5A corresponds to the culture container 1 shown in FIG. 1, it can also be called a culture container.
  • the culture surface 5A is a unit using the same medium.
  • FIG. 12 shows a configuration example of a cell stack configuration in which a plurality of culture plates 5 shown in FIG. 11 are stacked, in other words, a multi-stage configuration example.
  • FIG. 12 shows an example in which the culture plates 5 shown in FIG. 11 are stacked, the culture plates 3 shown in FIG. 1 may be stacked.
  • a container for storing a stack of a plurality of culture containers and providing a mechanism for exchanging the medium is omitted.
  • a container for storing a plurality of culture plates for example, a general stack-shaped culture container can be used. The description is omitted here.
  • the boundary between the bottom and the opening is shown to be parallel to the bottom of the culture vessel, but it is not necessarily parallel to the bottom.
  • the boundary may be inclined with respect to the bottom, and the boundary may be formed to draw a curve. It is sufficient that a sufficient space can be formed so that spheroids are formed at the bottom 11.
  • Example The following Examples and Comparative Examples were tested for cell aggregate culture containers and collection methods.
  • (1) Culture container The culture container shown in Table 1 was used.
  • the culture container of the example was prepared by forming a well (culture container 1) having a recess 10 shown in FIG. 1-3 on a culture plate.
  • the micro container corresponds to the recess 10 in FIGS. 1-3, and the micro space is a space formed by the recess 10 (micro space). It can be said that the number of microspaces per well is the number of recesses per well.
  • the spheroid residual rate was calculated by the following formula.
  • Spheroid residual rate (%) number of spheroids ⁇ 100 / number of microspaces Several hours after cell seeding (zero day), spheroid-like lumps were formed in each culture container in 90% or more of microspace. The value obtained by dividing the number of spheroids after medium change on day 10 and day 20 by the number of spheroids on day 0 was defined as the spheroid residual rate.
  • (4) Recovery method After completion of the culture, the solution was stirred using a pipette (manufacturer, model number), and the floating spheroids were recovered.
  • a 24-well plate contains 500 ⁇ L to 1 mL of medium, it is suitable to use a pipette that can aspirate a maximum of 1 mL of medium.
  • Recovery efficiency Images were acquired with a confocal laser microscope before and after recovery.
  • FIG. 13 shows the remaining rate of spheroids at the time of medium exchange.
  • the vertical axis represents the spheroid survival rate (Sphere Number), and the horizontal axis represents the number of days of culture.
  • FIG. 13 shows data from the start of culture to 20 days. As shown in FIG. 13, it is shown that the comparative example is greatly reduced from the embodiment. After culturing for 20 days, the spheroid survival rate in the Examples was 60% or more, which was 1.5 times that of the Comparative Examples.
  • FIG. 14 the image of the spheroid before and behind the culture medium exchange of an Example and a comparative example is shown.
  • FIG. 14 shows images of spheroids in the culture container on the fourth day of culture and before and after the second medium change.
  • the left side of FIG. 14 is a photograph of an example (Kuraray p-HEMA), and the right side is a photograph of a comparative example (Iwaki MPC).
  • the upper image shows the image before the medium exchange
  • the lower image (below the arrow) shows the image after the medium exchange. More specifically, the lower image shows a state in which half of the medium is exchanged (half quantity exchange) from the state before the medium exchange, and after two medium exchanges.
  • the part that appears white in the image is a spheroid. Spheroids are confirmed throughout the culture medium exchange. After the medium exchange, there is no significant difference between before and after the medium exchange in the examples, and most of the spheroids remain, but only about half remains in the comparative example.
  • FIG. 15 shows images before and after the cells of Examples were collected.
  • the left side (BEFORE) is an image before collection
  • the right side (AFTER) is an image after collection.
  • the upper part shows an image of the entire culture container, and the lower part shows an enlarged image of a part of the culture container.
  • recovering from the culture container of an Example is shown in FIG.
  • a spheroid is a dot-like one in a black circular micro container (dent). There is no dot-like image after collection, and almost 100% is collected.
  • recovery was a favorable spheroid form, and the spheroid was not destroyed by collection

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)

Abstract

 均一な大きさのスフェロイドを高効率に作製し、容易に培地交換と回収とを実施するマイクロ空間構造を設計し、設計したマイクロ空間構造を有する培養容器を提供する。培養容器は、底部(11)と開口部(12)とからなる複数の凹み(10)が配列している。底部(11)が、半球状と円錐台とのいずれかの形状を有し、開口部(12)が、底部(11)との境界から凹み(10)の端部までを囲むテーパ角1度以上20度以下の壁で構成される。加えて、境界の相当直径が50μm以上2mm以下であり、底部(11)の底から端部までの深さが相当直径の0.6倍以上3倍以下であり、開口部(12)を構成する壁が底部(11)と連続する面を形成し、かつ、連続する面の傾斜が境界で変化する。

Description

培養容器及び培養方法
 本発明は、細胞の培養及びその回収に関するに関する。
 近年の細胞工学の発展に伴い、生体内の細胞周囲環境や形態を模倣してより生体内に近い機能をもつ細胞を取得する新たな培養方法が開発されている。このような方法で培養した細胞を治療や生体反応のシミュレーターとして使用する試みがなされるようになってきた。スポンジや繊維などで構成された培養担体を用いて培養する方法、培地中に細胞を浮遊させて自然にスフェロイドを形成させる浮遊培養、従来の培養容器(フラスコ等)に細胞非接着処理を施しスフェロイドを形成させる方法など様々な方法が開発されている。特にスフェロイド培養は細胞の相互作用を維持できる優れた方法であり、膵島細胞、肝細胞、幹細胞、ガン細胞など様々な細胞に応用されている。近年、スフェロイドの大きさに着目した研究がなされるように成っており、例えばガン細胞を使った医薬品スクリーニング試験では、スフェロイドの直径や体積を指標にしている(非特許文献1)。また、スフェロイドの大きさに依存して細胞の持つ機能が異なること(非特許文献2,3)が示されている。このようにスフェロイドを形成させる技術に加えて、スフェロイドの大きさをコントロールする技術が注目されるようになってきた。さらに、このように細胞の特異的な機能を再現できることから、人工臓器やバイオリアクターなどの分野において利用されることが期待されている。このような用途において、大量にスフェロイドを作製し回収する技術が重要となってくる。
 均一な直径のスフェロイドを作成する手段として、特許文献1に親水性膜を設けたU字ボトムを有する96WPに播種する細胞数の個数を変えることにより形成されるスフェロイドの大きさをコントロールする方法がある。しかし、培養面積あたりのスフェロイド数の数はすくなく、大量のスフェロイドを作製することは困難である。他の方法として、特許文献2-4に開示されている、マイクロ空間内でスフェロイドを形成する方法がある。
特開平8-131153号公報 特開2010-88347号公報 国際公開第2012/036011号 国際公開第2013/042360号
Juergen Friedrich1、他著、"Spheroid-based drug screen: considerations and practical approach"、PROTOCOL、2009年2月12日(Published online)pp.309-324 Franziska Hirschhaeuser,他著、"Multicellular tumor spheroids: An underestimated tool is catching up again"、Journal of Biotechnology 148、 2010年、pp.3-15 C´ELINE LIU BAUWENS、他著、"Control of Human Embryonic Stem Cell Colony and Aggregate Size Heterogeneity Influences Differentiation Trajectories"、STEM CELL、2008年、pp.2300-2310
 しかしながら、特許文献1の培養方法は、培養の効率が極めて低く、大量培養を行う際のボトルネックになっている。また、特許文献2,3の培養方法は、単位面積当たりのスフェロイド形成効率は高いが、培地交換時にスフェロイドが空間内から離脱する恐れがある。このため、培地交換時に注意を要する。さらに、スフェロイドの離脱を防ぐためにスフェロイドの一部をマイクロ空間内に接着させる方法が検討されている(特許文献4)。しかし、細胞の接着性は各種細胞毎に異なるため、使用する細胞毎に表面処理方法を検討する必要があり実用性にかける。
 本発明は、このような事情に鑑みてなされたものであり、均一な大きさのスフェロイドを高効率にまたは高効率かつ大量に作製することを可能とするため、培地交換と細胞回収とが容易に実施可能となるマイクロ空間構造を設計し、設計したマイクロ空間構造を有する培養容器及びそれを用いる培養方法を提供することを目的とする。
 本発明の一実施形態の係る培養容器の一態様は、底部と開口部とからなる複数の凹みが配列するものである。前記底部が、半球状と円錐台とのいずれかの形状を有し、前記開口部が、前記底部との境界から前記凹みの端部までを囲むテーパ角1度以上20度以下の壁で構成される。加えて、前記境界の相当直径が50μm以上2.5mm以下であり、前記底部の底から前記端部までの深さが前記相当直径の0.6倍以上3倍以下であり、前記開口部を構成する壁が前記底部と連続する面を形成し、かつ、前記連続する面の傾斜が前記境界で変化する。
 また、一実施形態の培養容器において、前記端部の形状が半球状、台形、または逆三角形のいずれかであることが好ましく、隣り合う二つの凹みの間が平坦であり、前記二つの凹みの距離が5μmから50μmであることが好ましい。
 さらに、一実施形態の培養用において、前記培養容器が、アクリル系樹脂、ポリ乳酸、ポリグリコール酸、スチレン系樹脂、アクリル・スチレン系共重合樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレン・ビニルアルコール系共重合樹脂、熱可塑性エラストマー、塩化ビニル系樹脂、及びシリコン樹脂のうちの1つまたはこれらの組み合わせからなる樹脂成形品であることが好ましい。前記凹みへ、プラズマ処理、ガラスコート、コロナ放電、UVオゾン処理のいいずれかまたはこれら組み合わせからなる表面改質処理方法により官能基を形成させて、水接触角が45度以下になるように処理されたことが好ましい。
 前記凹みへ、細胞接着を阻害する親水性のポリマー鎖が固定化されていることが好ましい。
 前記凹みへ、リン脂質、または、リン脂質・高分子複合体が固定化されていることが好ましい。
 前記凹みへ、プラズマ処理、ガラスコート、コロナ放電、UVオゾン処理のいいずれかまたはこれら組み合わせからなる表面改質処理方法により官能基を形成させて、水接触角を45度以下になるように処理した後、細胞接着を阻害する親水性のポリマー鎖、及び、リン脂質、または、リン脂質・高分子複合体のうちのいずれか一つのポリマーが固定化されている細胞非接着表面であることが好ましい。
 前記親水性のポリマー鎖がポリヒドロキシエチルメタクリレートであることが好ましく、前記ポリヒドロキシエチルメタクリレートの平均分子量が10万以上であることがより好ましい。
 本発明の一実施形態の係る培養方法の一態様は、上述したいずれかの培養容器を用いる。そして、この培養方法は、総細胞数が、前記培養容器が有する前記凹みの数(N)以上であり、前記凹みが形成する空間の体積(V1)を播種する細胞の体積(V2)で割った値に前記凹みの数(N)を掛けた数以下である細胞を培地に分散させ、前記培地を前記培養容器に添加する。
 本発明の一実施形態の係る培養方法の一態様において、前記凹みが形成する空間1個につき1個のスフェロイドを形成させることが好ましく、前記空間にスフェロイドを形成させてスフェロイドを成長(増殖)させることがより好ましい。
 分化誘導させる場合は、前記空間にスフェロイドを形成させた状態で誘導することが好ましい。
 前記培養容器内に形成されたスフェロイドの総数の60%以上が、平均スフェロイド直径のプラスマイナス5%の範囲内の直径であることが好ましい。
 前記培地を攪拌することで前記凹み内の細胞を回収することが好ましく、前記培地の攪拌が、前記培養容器を振とうして前記培地を攪拌すること、前記培地を吸引及び排出して前記培地を攪拌すること、前記培養容器に攪拌羽を設置し培地を攪拌すること、前記培養容器に攪拌子をいれ培地を攪拌すること、またはこれら組みあわせからなる方法のいずれかであることがより好ましい。
 前記培地を少なくとも1回以上交換し、交換する培地の割合が20%以上であることが好ましい。
 本発明の一実施形態の係る培養方法の他の一態様は、上述したいずれかの培養容器を用いる。そして、培養方法は、以下の各工程を実施することにより細胞を播種、培養、培地交換、回収する。
a)培養容器に存在する凹みの数(n)と同数以上、前記凹みの体積(V)を播種する細胞の体積(v)で割った値に前記凹みの数(n)を掛けた数以下の細胞数を培地に分散させ、前記培地を培養容器に添加する工程、
b)12時間以上前記培養容器内で前記細胞を培養してスフェロイドを形成させる工程、
c)前記培地を20%以上吸引した後、同量の新鮮な培地を注入する工程、
d)前記a)からc)の工程を複数回行い、スフェロイドを成長させる工程、
e)前記スフェロイドを所望の大きさに成長させた後、前記培地を攪拌して各凹み内の細胞を前記培地中に浮遊させる工程、及び
f)前記培地ごと前記細胞を吸引機にて吸い取り前記細胞を回収する工程。
 本発明によれば、均一な大きさのスフェロイドを高効率かつ大量に作製することが可能な上、容易に培地交換と回収との実施を可能するマイクロ空間構造を設計し、設計したマイクロ空間構造を有する培養容器及びそれを用いる培養方法を提供することが可能となる。
一実施形態の培養容器の一例を示す図である。 実施形態1の凹みを横から見た形状例を示す断面図である。 実施形態1の凹みを上から見た形状例を示す図である。 実施形態2の球形状の一部分を用いる凹みの形状例を示す図である。 実施形態2の球形状の一部分を用いる凹みの他の形状例を示す図である。 実施形態2の円錐台を用いる凹みの形状例を示す図である。 実施形態2の凹みの他の形状例を示す図である。 実施形態3の開口部の形状例を示す図である。 実施形態3の開口部の他の形状例を示す図である。 実施形態4の培養容器の構成例を示す図である。 実施形態4の他の培養容器の構成例を示す図である。 実施形態4のさらに他の培養容器の構成例を示す図である。 実施例及び比較例の培地交換時のスフェロイドの残存率を示す図である。 実施例及び比較例の培地交換前後のスフェロイドの画像を示す写真である。 実施例の細胞を回収した前後の画像を示す写真である。 実施例の培養容器から回収したスフェロイドの写真である。
 以下、実施形態について、図面を参照しながら説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において同一の構成または機能を有する構成要素および相当部分には、同一の符号を付し、その説明は省略する。
 実施形態1. 
<培養容器>
 図1は、一実施形態の培養容器の一例を示す図である。図1では、複数の培養容器1を有する培養プレート3の一部分を示す。図1の上段には、培養容器1の底に形成される複数の凹み10の一部分を、培養プレート3の上からみた図を示す。培養容器1は、複数の凹み10が配置される。複数の凹み10は、培養容器1の製造や細胞培養の効率の観点から、規則的に配置されることが好ましい。培養容器1は例えば複数のウェルを有するウェルプレートの一つのウェルに相当する。言い換えると、ウェルプレートの各ウェルに複数の凹み10が配置されることになる。
 ウェルプレートは、多数のくぼみ(穴またはウェル)のついた平板からなる実験・検査器具であり、各ウェルを試験管あるいはシャーレとして利用するものをいう。ウェルの数には例えば、6、24、96、384などがあり、それ以上の数のものもある。ウェルの底は平らなもの、丸いもののほか、細長いマイクロチューブを多数組み合わせた形式のもの(ディープウェルプレート)もある。
 また、凹み10は、細胞を培養するための微小な空間であるマイクロ空間を形成することから、マイクロ容器ということもできる。
 図2、3は、実施形態1の凹みの形状例を示す図である。図2では、一つの凹み10を横から見たときの断面図を示し、図3は、一つの凹み10を上から見たときの図を示す。図3に示す凹み10は、図1の上段の凹み10の詳細な構成例となる。
 各凹み10は、底部11と開口部12とから構成される。底部11は、培養容器1の底になる部分であり、開口部12は、底部11の上部に配置される部分である。底部11と開口部12とが接する部分を境界と記載する。図2では、符号Rの矢印で示す長さの部分が境界の位置に対応する。また、図3では、境界の位置を2点破線で示している。ただし、底部11と開口部12とは連続した面で構成され、一体として製造される。
 図2,3では、培養容器1に形成される複数の凹み10に関して、相当直径R、深さ(高さ)D、を示す。
 相当直径Rは、凹み10の底部11に内接する内接円の直径をいう。ここでは、底部11と開口部12との境界において内接する内接円の直径をいう。より詳しくは、相当直径Rは、境界における、凹み10の高さHの方向と垂直になる面の形状の内接円の直径をいう。
 深さDは、底部11の内側の底から凹み10の上端までの長さである。凹みの10の上端は、開口部12の端部(上端)と同じである。深さDは、凹み10が形成する空間の深さである。言い換えると、底部11が形成する空間の底から開口部12が形成する空間の上端までの深さである。図2では凹み10の深さDに加え、底部11の深さD1及び開口部12の深さD2を示している。
 底部11は、細胞を培養する空間(第1空間)を形成する。底部11は、例えば、半球状の形状を有する。例えば、相当直径Rを直径とする球形を半分にした形状を用いることができる。底部11の形状について半球状に限定されるものではない。他の具体例については実施形態2で説明する。
 開口部12は、細胞の培養及び回収を補助するように働く空間(第2空間)を形成する。開口部12は、底部11との境界から凹み10の端部(先端)までを囲むテーパ角が1度以上20度以下の壁で構成される。開口部12を構成する壁のテーパ角が5度以上15度以下であることが好ましく、10度がより好ましい。その理由は、テーパ角が小さすぎると回収する際に細胞が凹みから培地に移行できず、逆に大きすぎると培地交換中に細胞が離脱するからである。
 図2ではテーパ角を符号θ1、θ2で示す。図2,3に示す凹み10の形状例では、テーパ角θ1、θ2は略同じ場合を示している。
 底部11と開口部12との境界は、相当直径Rが50μm以上1mm以下となるように形成される。スフェロイドの中心部まで栄養を供給したい場合は相当直径50μm以上500μm以下が好ましく、より好ましくは100μm以上500μm以下が好ましい。その理由は、栄養分や酸素は拡散によってのみ細胞内に移行するが、中心部が壊死しない大きさは300μmといわれており(Efrem Curcio et al.,"Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system", Biomaterials 28 (2007) 5487-5497)、その大きさ以上にならないようにするためには、上記直径が好ましい。
 逆にガン細胞のように細胞の中心部にネクローシスを作製したいような場合(Franziska Hirschhaeuser et al.,"Multicellular tumor spheroids: An underestimated tool is catching up again", Journal of Biotechnology 148 (2010) 3-15, Fig1)には、相当直径Rが400μm以上2mm未満であることが好ましい。その理由は、上述したように300μmでは中心部まで栄養がいきわたりネクローシスを起こさない場合考えられるからである。よって300μm以上の直径のスフェロイドを得るためには、400μm以上なければならない。
 加えて、底部の底から端部までの深さDが相当直径Rの0.6倍以上3倍以下となるように形成される。好ましくは、深さDが相当直径R0.7倍以上1.2倍以下であり、より好ましくは、0、8~1倍である。
 また、培養容器1は、隣り合う二つの凹み10の間が平坦であることが好ましい。例えば、二つの凹み10の距離が5μmから50μmの範囲であることが好ましい。その理由は、大量のスフェロイドを効率的に得るためには、単位面積あたりのスフェロイド数を多くし高密度で培養することが好ましいからである。そのためにはスフェロイドが形成されない壁の上面は小さいほどよい。ただし、テーパ角が小さい場合は壁が薄いと細胞播種時や培地交換時の振動により容易に亀裂が生じる可能性がある。そのため5μm以上であることが好ましい。このような観点から5~20μmが好ましい。
 これに対して、隣り合う二つの凹み10が接触する場合であってもよい。例えば、二つの凹み10の端部の一部分が接触し、開口部12のテーパ角の斜面が接触して山形の形状となっていてもよい。
 上述した形状に加え、培養容器1は以下のように製造されることが好ましい。
 培養容器1が、アクリル系樹脂、ポリ乳酸、ポリグリコール酸、スチレン系樹脂、アクリル・スチレン系共重合樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレン・ビニルアルコール系共重合樹脂、熱可塑性エラストマー、塩化ビニル系樹脂、及びシリコン樹脂のうちの1つまたはこれらの組み合わせからなる樹脂成形品であることが好ましい。
 培養容器1が有する各凹み10へ、プラズマ処理、ガラスコート、コロナ放電、UVオゾン処理のいいずれかまたはこれら組み合わせからなる表面改質処理方法により官能基を形成させて、水接触角が45度以下になるように処理されることが好ましい。
 加えて、各凹み10へ、細胞接着を阻害する親水性のポリマー鎖が固定化されていることが好ましい。親水性のポリマー鎖は、上述した水接触角が45度以下になるように処理された各凹み10へ固定化されることがより好ましい。
 さらに加えて、各凹み10へ、リン脂質、または、リン脂質・高分子複合体が固定化されていることが好ましい。この固定化の処理は、上述した水接触角が45度以下になるように処理された各凹み10、親水性のポリマー鎖が固定化された各凹み10、またはこれらを組合せた各凹み10へ実施されることがより好ましい。
 さらに、各凹み10へ、プラズマ処理、ガラスコート、コロナ放電、UVオゾン処理のいいずれかまたはこれら組み合わせからなる表面改質処理方法により官能基を形成させて、水接触角を45度以下になるように処理した後、細胞接着を阻害する親水性のポリマー鎖、及び、リン脂質、または、リン脂質・高分子複合体のうちのいずれか一つのポリマーが固定化されている細胞非接着表面であることが好ましい。この処理は、上述した各処理、または各処理の組合せた処理とともに実施されることがより好ましい。
 また、上述した親水性のポリマー鎖がポリヒドロキシエチルメタクリレートであることが好ましく、さらに、ポリヒドロキシエチルメタクリレートの平均分子量が10万以上であることがより好ましい。
<培養方法>
 次に、図1乃至3に示す培養容器1を用いる細胞の培養方法について説明する。
 細胞の培養は次の各工程により実施する。
a)細胞を分散させた培地を培養容器1へ添加する工程
b)細胞を培養する工程
c)培地を交換する工程
d)スフェロイドを成長させる工程
e)スフェロイドを培地の中に浮遊させる工程
f)細胞を回収する工程
 上述した各工程は、a)からd)が細胞を培養する工程(細胞培養工程)であり、e)、f)が細胞を回収する工程(細胞回収工程)と区分することもできる。
 ここで、スフェロイドは、細胞が多数凝集して細胞塊を形成し、3次元状態になったものである。
 以下に各工程について説明する。
a)細胞を分散させた培地を培養容器1へ添加する工程
 細胞を培養する準備を行う工程であり、培地に以下の総数の細胞を分散させ、培養容器1へ添加する。
 総細胞数の下限は、培養容器1に存在する凹み10の数(n)と同数以上とする。
 総細胞数の上限は、培養容器1が有する凹み10の体積(V)を播種する細胞の体積(v)で割った値に、凹みの数(n)を掛けた数以下とする。記号を用いた数式で表すと、細胞総数の上限値=V/v×n、と表すことができる。ここで、複数の凹み10の体積(V)は同じであることを前提とする。異なる場合には平均値を用いる。
 培地は培養する細胞に応じて調整する。
b)細胞を培養する工程
 培養容器1内で12時間以上、細胞を培養し、スフェロイドを形成させる。培地に分散させた細胞は、培養容器1へ培地を添加すると、凹み10へ取り込まれ、各凹み10内で培養される。各凹み10に細胞が1個取り込まれることが好ましく、底部11が形成する空間に1個のスフェロイドが形成されることが好ましい。各凹み10内では、細胞が凹み10の底部11内で増殖する。培養播種時に細胞が最低1個なければ、培養中に隣の凹み10から細胞が移動することはないので、その凹み10にスフェロイドは形成されない。スフェロイドを高密度に培養するためには、全ての凹み10にスフェロイドが形成されることが好ましいことから、最低1個の細胞が凹み10に存在することが好ましい。生産効率の観点から、初期の細胞数はできる限り少なくする一方で多くのスフェロイドを回収できることが好ましいため、凹み10に存在する細胞数は少ないほどよい。そのため、1個の細胞が凹み10に存在することが好ましい。
c)培地を交換する工程
 培地交換では、培養容器1内の培地を20%以上吸引した後、同量の新鮮な培地を注入する。培地交換は、細胞培養中少なくとも1回以上実施されることが好ましい。
d)スフェロイドを成長させる工程
 上述したa)からc)の工程を複数回行い、スフェロイドを成長させる。分化誘導させる場合は、凹み10の底部11が形成する空間において、スフェロイドが大きくならない状態まで成長させた後、分化誘導培地に交換して分化させることが好ましい。加えて、培養容器1内に形成されたスフェロイドの総数の60%以上が、平均スフェロイド直径のプラスマイナス5%の範囲内の直径であることがより好ましい。
e)スフェロイドを培地中に浮遊させる工程
 スフェロイドを所望の大きさに成長させた後、培養容器1の培地を攪拌して各凹み11内で培養した細胞を培地中に浮遊させる。例えば、培地を攪拌することによって実施する。具体的には、培地の攪拌は、(1)培養容器1を振とうして培地を攪拌すること、(2)培地を吸引及び排出(ピペッティング操作)して培地を攪拌すること、(3)培養容器1に攪拌羽を設置し培地を攪拌すること、(4)培養容器1に攪拌子をいれ培地を攪拌すること、(5)上述した(1)から(4)の二つ以上を組合せて培地を攪拌すること、のうちのいずれかの方法を用いることができる。
f)細胞を回収する工程
 培養容器1内の細胞含む培地を吸引機にて吸い取り、培地に浮遊させた細胞(スフェロイド)を回収する。
 以上説明したように、実施形態1では、細胞の播種、培地交換、回収を同じ容器で行うことができることに加えて、スフェロイドを回収可能な養容器に関して説明した。
 実施形態1の培養容器1を用いて細胞を培養することにより、底部11に所望の大きさのスフェロイドを形成することができる。そして、培養したスフェロイドを効率よく回収することができる。具体的には、凹み10が底部11に加え、開口部12を有することにより、培地交換では培地を吸い取るときに細胞が底部11に接着または浮遊しているが離脱しない状態を維持しやすくし、底部11からの細胞の離脱を抑制することが期待できる。一方、細胞の回収では、底部11の培地を吸引及び排出するときに、開口部12により培地の流れを生じやすくすることが期待できる。加えて、底部11に半球状の形状を用いることにより、スフェロイドの形状、大きさを均一にすることに寄与することが期待できる。
 実施形態2.
 実施形態1では、底部11が半球状の形状を有する構成例を説明したが、実施形態2では他の形状について説明する。底部は、球形状の一部分からなる形状、円錐台の形状、あるいは、線状から形成されている態様であってもよい。底部が線状とは、実質的な底部がなく、凹みが開口部のみから形成されている態様である。図4から図7に本実施形態の凹みの形状例を示す。図4から図7は、実施形態1の底部11と異なる底部21A~21Dを有する凹み20A~20Dを示すが、開口部12については実施形態1と同様の形状で実現できるため同じものを組み合わせた凹みの形状例を示す。
 図4,5は、実施形態1が底部11に球を半分にした半球状を用いることに対して、底部に用いる半球形の形状が異なる例を示している。図4は、球形の半分よりさらに少ない部分を用いる底部21Aを示す。言い換えると、底部21Aが半球状の一部分を用いる場合である。図5は、底が半球形である筒型の形状を用いる底部21Bを示す。図5に示す底部21Bの形状の場合、筒の部分が長くなると細胞を回収するときに細胞が底部21Bから培地へ浮遊しなくなるため、筒の部分の長さを調整することが好ましい。例えば、底部21Bと開口部12との深さ(高さ)が同じ割合(1:1)となるように構成することが好ましい。
 図6は、円錐台を用いる底部21Cを示す。底部が平らである場合、光の屈折・干渉が軽減でき顕微鏡観察を行う際には有用である。
 図7は、底部21Dが線状、言い換えると底部21Dが空間を形成しない凹み20Dの形状例を示す。凹み20Dは、他の形状の培養容器に比べて細胞の培養・回収の効率は劣るものの、培養容器の製造工程が容易であるという利点がある。
 なお、本実施形態では上述した通り開口部12を実施形態1と同様の形状で実現する場合を説明したが、これに限られるわけではない。
 本実施形態の培養容器を用いる細胞の培養方法は実施形態1と同様であるため説明を省略する。
 本実施形態の培養容器も実施形態1と同様の効果を奏することができる。
 実施形態3.
 上述した各実施形態では、開口部12の形状を円形または略円形である態様を説明したが、他の形状の開口部を有する培養容器について説明する。開口部の端部の形状は、半球状、台形、または三逆三角形等の他の形状であってもよい。一方、開口部が底部と接する境界の形状(開口部の境界部分)は、底部の境界部分と同じ形状であることが必要である。図8,9は、実施形態1の開口部12と異なる端部の形状を有する凹み30A、30Bを表している。図8,9では、実施形態1と同じ底部11を表しているが、実施形態2の底部21A~21Dのいずれかと組み合わせることも可能であり、他の形状の底部であってもよい。底部及び開口部の形状は、その境界において斜面が連続して形成できる組合せであればよい。
 図8は、開口部32Aの端部が曲線を描く形状の一例を示している。図8は、凹み30Aを上から見た図であり、底部11の端部を相当直径Rの円で示し、開口部32Aの外周を曲線で示している。開口部32Aの端部は左右及び上下が対称とならない曲線であるが、左右対称、または上下対称となるような形状であっても構わない。図9は、開口部32Bの端部が矩形である例を示している。図9では、正方形の例を示しているが、他の多角形、曲線と直線との組合せであってもよい。図9は、凹み30Bを上から見た図であり、底部11の端部を相当直径Rの円で示し、開口部32Bの外周を正方形の実線で示している。例えば、隣接する凹みとの間の空間の面積を調整するために端部の形状を変形させてもよい。開口部の端部の形状は細胞の浮遊を促進する役割を果たすことが必要であるため、テーパ角が重要となる。
 図8,9の形状例では、テーパ角は開口部32A、32Bの形状に応じて異なる値となる。これは、開口部32A、32Bの形状に応じて、壁を形成する斜面の傾斜が異なるからである。
 本実施形態で示した開口部の各形状は、実施形態1の底部11または実施形態2で説明した底部の各形状と組合せることが可能である。加えて、上述した実施形態で示す底部以外の形状と組合せも可能であることは言うまでもない。
 本実施形態の培養容器を用いる細胞の培養方法は実施形態1と同様であるため説明を省略する。
 本実施形態の培養容器も実施形態1と同様の効果を奏することができる。
 実施形態4.
 図1では、一実施形態の培養容器1を培養プレート3(ウェルプレート)に配置した態様を説明した。一実施形態の培養容器1は、図1の培養プレート3以外の容器(器具)にも形成することができる。図10から12に実施形態4の培養容器の構成例を示す。図10は、フラスコ形状の培養フラスコを用いる構成例を示す概略図である。図11は、培養プレートの枠を用いる構成例を示す概略図である。図12は、図11に示す培養プレートをスタック形状にして用いる構成例を示す概略図である。
 図10では、培養フラスコ4の底の面を培養面4A(培養底面)とする。培養面4Aは図1に示す培養容器1に相当するため、培養容器ということもできる。培養面4Aは、図1の培養容器1と同様に、同じ培地を用いる単位となる。培養フラスコ4は、キャップ4Bを有する。培養面4Aの面積は、用途に応じて設計すればよい。一般的な培養フラスコは、25,75,225cmがある。培養フラスコ4の培養面4Aには、複数の凹み40が形成される。例えば、培養フラスコ4の底の面のうち、網掛け部分を培養面4Aとして設計し、培養面4Aに複数の凹み40を形成する。凹み40の形状(底部及び開口部の形状)は、上記各実施形態のいずれであってもよい。
 図11では、培養プレートの枠のみを用いる例である。図1では培養プレート3に培養容器1(ウェル)が形成されているが、図11では培養プレート5の底の面を培養面5A(培養底面)とする。培養面5Aは、図1に示す培養容器1に相当するため、培養容器ということもできる。培養面5Aは、同じ培地を用いる単位となる。培養面5Aの構成例(概略断面図)を図11の下段に示している。例えば、培養プレート5の底の面のうち、網掛け部分を培養面5Aとして設計し、培養面5Aに複数の凹み50を形成する。図11に示す凹み50は、模式的に示したものであり、凹み50の数、大きさい等は、用途に応じて設計されるものである。凹み50の形状(底部及び開口部の形状)は、上記各実施形態のいずれであってもよい。
 図12に、図11に示す培養プレート5を複数積み上げて構成するセルスタック形態の構成例、言い換えると多段式の構成例を示す。より大面積化し閉鎖系で培養する場合には、セルスタック形態を用いるのが一般的である。図12では、図11に示す培養プレート5を積み上げた例を示したが、図1に示す培養プレート3を積み上げてもよい。図12中、複数の培養容器を積み上げたものを収納し、培地を交換するための仕組みを提供する容器については、省略している。複数の培養プレートを収納する容器は、例えば、一般的なスタック形状の培養容器を用いることができる。ここでは説明を省略する。
 その他の実施形態.
 上記各実施形態では、底部と開口部との境界を培養容器の底と平行するようにあらわしているが、必ずしも底と平行でなくてもよい。例えば、境界が底に対して傾斜していてもよく、境界が曲線を描くように形成されていてもよい。底部11においてスフェロイドが形成されるように十分な空間が形成できればよい。
[実施例]
 細胞凝集体の培養容器及び回収方法について、次の実施例、比較例の試験を行った。
(1)培養容器
 表1に示す培養容器を用いた。
Figure JPOXMLDOC01-appb-T000001
 実施例の培養容器は、図1-3に示す凹み10を有するウェル(培養容器1)を培養プレートに形成したものを作製した。
 表1中、マイクロ容器は、図1-3の凹み10に相当し、マイクロ空間は、凹み10(マイクロ空間)が形成する空間である。一ウェル当たりのマイクロ空間の数は、一ウェル当たりの凹みの数であるともいえる。
(2)培養方法
 後述する残存率及び回収率を画像解析により算出するため、GFPで蛍光標識した内胚葉細胞を用いた。この内胚葉細胞、血管内皮細胞とヒト間葉系幹細胞各々10:5-10:2の割合で混合し、内皮細胞培地キット-2:EGM-2 BulletKit(製品コード CC-3162:Lonza)で30日間培養を行った。培地は2日に1回交換した。
(3)スフェロイド残存率の測定
 共焦点レーザ顕微鏡を用い、ウェル全体を観察、画像解析ソフトを用いてスフェロイドを認識させ、その数をカウントし、スフェロイド数とした。以下の式でスフェロイド残存率を計算した。
スフェロイド残存率(%)=スフェロイド数×100/マイクロ空間の数
 細胞播種後数時間後(ゼロ日)、いずれの培養容器も90%以上のマイクロ空間でスフェロイド様の塊が形成されていた。培養10日目、20日目の培地交換後のスフェロイドの数をゼロ日目のスフェロイド数で其々割った値をスフェロイド残存率とした。
(4)回収方法
 培養終了後、ピペット(メーカ、型番)を用いて溶液を攪拌し、浮遊してきたスフェロイドを回収した。例えば、24ウェルプレートでは500μL~1mLの培地が入っているので、最大1mLの培地が吸引できるピペットを用いるのが適している。
(5)回収効率
 回収前後に共焦点レーザ顕微鏡で画像を取得した。
(6)結果
 図13に培地交換時のスフェロイドの残存率を示す。縦軸にスフェロイドの残存率(Sphere Number)を、横軸に培養日数を示す。
 図13では、培養開始から20日までのデータを示す。図13に示すように、実施例より比較例が大きく減少していることが示されている。20日培養した後、実施例は、スフェロイドの残存率が60%以上となり、比較例の1.5倍に向上した。
 図14に、実施例及び比較例の培地交換前後のスフェロイドの画像を示す。図14では、培養四日目、2回目の培地交換前後の培養容器内のスフェロイドの画像を示す。図14の左側が実施例(Kuraray p-HEMA)、右側が比較例(Iwaki MPC)の写真である。また、上段に培地交換前、下段(矢印より下)に培地交換後の画像を示す。より詳細には、下段の画像は、培地交換前の状態から、培地の半量を交換する(半量交換)、二度の培地交換を実施した後を示す。
 画像中、白色に見える部分がスフェロイドである。培地交換前は全体にスフェロイドが確認される。培地交換後は、実施例では培地交換前後で大きな違いはなく、ほとんどのスフェロイドが残存しているが、比較例では約半分程度しか残存していない。
 図15に、実施例の細胞を回収した前後の画像を示す。図15中、左側(BEFORE)は回収前の画像、右側(AFTER)は回収後の画像である。上段に培養容器全体の画像を、下段に培養容器の一部分を拡大した画像を示す。図16に実施例の培養容器から回収した後のスフェロイドの写真を示す。
 黒色の円形のマイクロ容器(凹み)内の点状のものがスフェロイドである。回収後の画像には点状のものがなく、ほぼ100%回収できている。また、図16に示すように、回収後の細胞の形態は良好なスフェロイドの形をしており、回収操作によりスフェロイドが破壊されることはなかった。
 なお、本発明は上記に示す実施形態に限定されるものではない。本発明の範囲において、上記実施形態の各要素を、当業者であれば容易に考えうる内容に変更、追加、変換することが可能である。
 この出願は、2013年6月7日に出願された日本出願特願2013-120915を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 培養容器
3、5 培養プレート
4A、5A 培養面
5 培養フラスコ
10、20A~20D、30A、30B、40、50 凹み
11、21A~21D 底部
12、32A、32B 開口部 

Claims (19)

  1.  底部と開口部とからなる複数の凹みが配列し、
     前記底部が、半球状と円錐台とのいずれかの形状を有し、
     前記開口部が、前記底部との境界から前記凹みの端部までを囲むテーパ角1度以上20度以下の壁で構成され、
     前記境界の相当直径が50μm以上2mm以下であり、前記底部の底から前記端部までの深さが前記相当直径の0.6倍以上3倍以下であり、
     前記開口部を構成する壁が前記底部と連続する面を形成し、かつ、前記連続する面の傾斜が前記境界で変化する培養容器。
  2.  前記端部の形状が半球状、台形、または逆三角形のいずれかであることを特徴とする請求項1記載の培養容器。
  3.  隣り合う二つの凹みの間が平坦であり、前記二つの凹みの距離が5μmから50μmであることを特徴とする請求項1または2記載の培養容器。
  4.  前記培養容器が、アクリル系樹脂、ポリ乳酸、ポリグリコール酸、スチレン系樹脂、アクリル・スチレン系共重合樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレン・ビニルアルコール系共重合樹脂、熱可塑性エラストマー、塩化ビニル系樹脂、及びシリコン樹脂のうちの1つまたはこれらの組み合わせからなる樹脂成形品であることを特徴とする請求項1乃至3のいずれか一項に記載の培養容器。
  5.  前記凹みへ、プラズマ処理、ガラスコート、コロナ放電、UVオゾン処理のいいずれかまたはこれら組み合わせからなる表面改質処理方法により官能基を形成させて、水接触角が45度以下になるように処理されたことを特徴とする請求項1乃至4のいずれか一項に記載の培養容器。
  6.  前記凹みへ、細胞接着を阻害する親水性のポリマー鎖が固定化されていることを特徴とする請求項1乃至5のいずれか一項に記載の培養容器。
  7.  前記凹みへ、リン脂質、または、リン脂質・高分子複合体が固定化されていることを特徴とする請求項1乃至6のいずれか一項に記載の培養容器。
  8.  前記凹みへ、プラズマ処理、ガラスコート、コロナ放電、UVオゾン処理のいいずれかまたはこれら組み合わせからなる表面改質処理方法により官能基を形成させて、水接触角を45度以下になるように処理した後、細胞接着を阻害する親水性のポリマー鎖、及び、リン脂質、または、リン脂質・高分子複合体のうちのいずれか一つのポリマーが固定化されている細胞非接着表面であることを特徴とする請求項1乃至7のいずれか一項に記載の培養容器。
  9.  前記親水性のポリマー鎖がポリヒドロキシエチルメタクリレートであることを特徴とする請求項8記載の培養容器。
  10.  前記ポリヒドロキシエチルメタクリレートの平均分子量が10万以上であることを特徴とする請求項9記載の培養容器。
  11.  前記請求項1乃至10のいずれか一項に記載の培養容器を用い、
     総細胞数が、前記培養容器が有する前記凹みの数N以上であり、前記凹みが形成する空間の体積V1を播種する細胞の体積V2で割った値に前記凹みの数Nを掛けた数以下である細胞を培地に分散させ、
     前記培地を前記培養容器に添加する培養方法。
  12.  前記凹みが形成する空間1個につき1個のスフェロイドを形成させることを特徴とする請求項11記載の培養方法。
  13.  前記空間にスフェロイドを形成させてスフェロイドを成長させることを特徴とする請求項12記載の培養方法。
  14.  前記空間にスフェロイドを形成させて分化誘導することを特徴とする請求項12または13に記載の培養方法。
  15.  前記培養容器内に形成されたスフェロイドの総数の60%以上が、平均スフェロイド直径のプラスマイナス5%の範囲内の直径であることを特徴とする請求項11乃至14のいずれか一項に記載の培養方法。
  16.  前記培地を攪拌することで前記凹み内の細胞を回収することを特徴とする請求項11乃至15のいずれか一項に記載の培養方法。
  17.  前記培地の攪拌が、前記培養容器を振とうして前記培地を攪拌すること、前記培地を吸引及び排出して前記培地を攪拌すること、前記培養容器に攪拌羽を設置し培地を攪拌すること、前記培養容器に攪拌子をいれ培地を攪拌すること、またはこれら組みあわせからなる方法のいずれかであることを特徴とする請求項16記載の培養方法。
  18.  前記培地を少なくとも1回以上交換し、交換する培地の割合が20%以上であることを特徴とする請求項11乃至17のいずれか一項に記載の培養方法。
  19.  前記請求項1乃至10のいずれか一項に記載の培養容器を用い、
    a)培養容器に存在する凹みの数nと同数以上、前記凹みの体積Vを播種する細胞の体積vで割った値に前記凹みの数nを掛けた数以下の細胞数を培地に分散させ、前記培地を培養容器に添加する工程、
    b)12時間以上前記培養容器内で前記細胞を培養してスフェロイドを形成させる工程、
    c)前記培地を20%以上吸引した後、同量の新鮮な培地を注入する工程、
    d)前記a)からc)の工程を複数回行い、スフェロイドを成長させる工程、
    e)前記スフェロイドを所望の大きさに成長させた後、前記培地を攪拌して各凹み内の細胞を前記培地の中に浮遊させる工程、及び
    f)前記培地ごと前記細胞を吸引機にて吸い取り前記細胞を回収する工程、
    を実施することにより細胞を播種、培養、培地交換、回収する培養方法。
PCT/JP2014/002993 2013-06-07 2014-06-05 培養容器及び培養方法 WO2014196204A1 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
AU2014276229A AU2014276229B2 (en) 2013-06-07 2014-06-05 Culture vessel and culture method
CA2914463A CA2914463C (en) 2013-06-07 2014-06-05 Culture chamber and culture method
BR112015030041-3A BR112015030041B1 (pt) 2013-06-07 2014-06-05 câmara de cultura e método de cultura
JP2015521306A JPWO2014196204A1 (ja) 2013-06-07 2014-06-05 培養容器及び培養方法
EP14808113.6A EP3006553B1 (en) 2013-06-07 2014-06-05 Culture vessel and culture method
SG11201509870QA SG11201509870QA (en) 2013-06-07 2014-06-05 Culture vessel and culture method
US14/896,251 US10494593B2 (en) 2013-06-07 2014-06-05 Culture chamber and culture method
CN201480032635.8A CN105308170B (zh) 2013-06-07 2014-06-05 培养容器和培养方法
KR1020167000067A KR102359408B1 (ko) 2013-06-07 2014-06-05 배양 용기 및 배양 방법
ZA2015/09018A ZA201509018B (en) 2013-06-07 2015-12-10 Culture vessel and culture method
US16/668,701 US11473046B2 (en) 2013-06-07 2019-10-30 Culture chamber and culture method
AU2020201221A AU2020201221B2 (en) 2013-06-07 2020-02-20 Culture vessel and culture method
US18/521,821 US20240093134A1 (en) 2013-06-07 2023-11-28 Culture chamber and culture method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-120915 2013-06-07
JP2013120915 2013-06-07

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/896,251 A-371-Of-International US10494593B2 (en) 2013-06-07 2014-06-05 Culture chamber and culture method
US16/668,701 Continuation US11473046B2 (en) 2013-06-07 2019-10-30 Culture chamber and culture method
US16/668,701 Division US11473046B2 (en) 2013-06-07 2019-10-30 Culture chamber and culture method

Publications (1)

Publication Number Publication Date
WO2014196204A1 true WO2014196204A1 (ja) 2014-12-11

Family

ID=52007861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002993 WO2014196204A1 (ja) 2013-06-07 2014-06-05 培養容器及び培養方法

Country Status (11)

Country Link
US (4) US10494593B2 (ja)
EP (1) EP3006553B1 (ja)
JP (3) JPWO2014196204A1 (ja)
KR (1) KR102359408B1 (ja)
CN (1) CN105308170B (ja)
AU (2) AU2014276229B2 (ja)
BR (1) BR112015030041B1 (ja)
CA (1) CA2914463C (ja)
SG (1) SG11201509870QA (ja)
WO (1) WO2014196204A1 (ja)
ZA (1) ZA201509018B (ja)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015167518A (ja) * 2014-03-07 2015-09-28 大日本印刷株式会社 細胞培養容器
WO2016069885A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Perfusion bioreactor platform
CN106047690A (zh) * 2015-04-16 2016-10-26 爱科来株式会社 细胞培养装置
JP2017153388A (ja) * 2016-02-29 2017-09-07 米満 吉和 規則的に配置された同一サイズのスフェロイド及びその利用
US9790465B2 (en) 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof
WO2018123663A1 (ja) * 2016-12-28 2018-07-05 Agcテクノグラス株式会社 細胞培養基材及びその製造方法
JP2018174824A (ja) * 2017-04-14 2018-11-15 株式会社クラレ マイクロパターンの表面を濡らす方法
WO2019151114A1 (ja) 2018-02-01 2019-08-08 Agc株式会社 細胞培養容器
JP2019193666A (ja) * 2014-05-30 2019-11-07 コーニング インコーポレイテッド 培養方法
WO2020166452A1 (ja) * 2019-02-13 2020-08-20 古河電気工業株式会社 格納容器
WO2021166977A1 (ja) * 2020-02-19 2021-08-26 凸版印刷株式会社 細胞移植前処理方法、細胞移植前処理装置、および細胞移植前処理ユニット
JP2022501002A (ja) * 2018-07-13 2022-01-06 コーニング インコーポレイテッド 液体培地送達面を含む側壁を有するマイクロキャビティ皿
WO2022024886A1 (ja) * 2020-07-27 2022-02-03 株式会社コーセー 全分泌調節剤の評価及び/又は選択方法
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
WO2023176949A1 (ja) * 2022-03-17 2023-09-21 日産化学株式会社 細胞利用効率の高い細胞培養容器
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3511700B1 (en) * 2016-09-06 2023-10-04 Keio University Method for measuring a uv or infrared protection effect of an aqueous composition and device for preparing a measurement sample
KR101949856B1 (ko) * 2017-06-28 2019-02-20 한국과학기술원 웰 플레이트, 이의 제조방법, 및 이를 이용하여 세포를 배양하는 방법
CN110997894B (zh) * 2017-07-22 2023-08-25 东洋制罐集团控股株式会社 培养容器、培养容器的制造方法、层叠结构体、以及层叠结构体的制造方法
KR101965900B1 (ko) * 2017-11-03 2019-04-05 한국화학연구원 스페로이드 형성 및 카운팅 기기 및 이의 제조 방법, 그리고 이를 이용한 스페로이드 배양 방법 및 계수 방법
WO2019092813A1 (ja) * 2017-11-08 2019-05-16 株式会社Ihi 細胞培養装置用接続ユニット、インキュベータ装置及び細胞培養装置
US20190382701A1 (en) * 2018-06-18 2019-12-19 SageMedic Corporation System for Obtaining 3D Micro-Tissues
JP7271903B2 (ja) * 2018-10-20 2023-05-12 東洋製罐グループホールディングス株式会社 スフェア培養部材、培養容器、穴開き部材の加工方法、及び洗浄容器
KR102237425B1 (ko) * 2018-12-26 2021-04-08 주식회사 넥스트앤바이오 암을 가진 대상체의 항암제 및/또는 방사선 내성 진단에 필요한 정보를 제공하는 방법
WO2020175592A1 (ja) * 2019-02-26 2020-09-03 国立大学法人東北大学 iPS細胞を用いた骨芽細胞塊の作製法
JP7057878B2 (ja) * 2019-10-25 2022-04-21 東洋製罐グループホールディングス株式会社 接着細胞培養用器材、培養容器、細胞の剥離方法、及び接着細胞培養用器材の製造方法
EP4174173A4 (en) * 2020-06-25 2024-03-27 Next & Bio Inc. METHOD FOR MANUFACTURING BRAIN ORGANOIDS
EP4174169A4 (en) * 2020-06-25 2024-03-27 Next & Bio Inc. PROCESS FOR PRODUCING STANDARD ORGANOIDS
JP2023538207A (ja) * 2020-06-25 2023-09-07 ネクストアンドバイオ インコーポレイテッド ハイドロゲルを用いない幹細胞の大量増殖方法
EP4242292A1 (en) * 2020-11-05 2023-09-13 S&E Bio Co., Ltd. Method for producing extracellular vesicles derived from three-dimensional spheroid-type cell aggregate
CN113189317A (zh) * 2021-04-29 2021-07-30 广东省人民医院 一套人工血管三维静态培养的实验装置及其使用方法
KR20230108960A (ko) * 2022-01-12 2023-07-19 전남대학교산학협력단 내이 오가노이드 제조 방법
CN115141752A (zh) * 2022-06-28 2022-10-04 上海划创科技发展有限公司 细胞培养与原位检测容器及制备方法、细胞原位检测方法
GB2628007A (en) * 2023-03-10 2024-09-11 Cn Bio Innovations Ltd Adjustable bottom platform for cell seeding into an open bottom well

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131153A (ja) 1994-09-16 1996-05-28 Sumitomo Bakelite Co Ltd 細胞培養容器とその製造方法、及び細胞培養方法
JP2001509272A (ja) * 1997-01-17 2001-07-10 コーニング インコーポレイテッド マルチウェルプレート
WO2008130025A1 (ja) * 2007-04-18 2008-10-30 Public University Corporation Yokohama City University 肝細胞培養容器及び肝細胞培養方法
JP2010088347A (ja) 2008-10-08 2010-04-22 Tohoku Univ スフェロイド培養方法及びスフェロイド培養容器
WO2012036011A1 (ja) 2010-09-14 2012-03-22 旭硝子株式会社 培養基材
WO2013042360A1 (ja) 2011-09-20 2013-03-28 株式会社クラレ 接着性細胞の培養方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101749A1 (de) 1982-08-26 1984-03-07 Westerwald AG für Silikatindustrie Glasbausteinwand
EP1944584B1 (en) * 2001-05-24 2017-03-29 Hitachi, Ltd. Heating resistor type flow measuring device
GB0200721D0 (en) * 2002-01-14 2002-02-27 Univ Bristol Toxicity test
JP2005027598A (ja) * 2003-07-09 2005-02-03 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 細胞培養チップ及び培養器、それらを用いた細胞培養方法、球状細胞組織体を担持させた細胞担持モジュール、球状細胞組織体
NL2000159C2 (nl) * 2006-07-24 2008-01-25 Stork Pmt Inrichting, werkwijze en productielijn voor het conditioneren van geslacht pluimvee.
US20080227664A1 (en) * 2007-03-16 2008-09-18 Canon Kabushiki Kaisha Cell array structural body and cell array
DK2173853T3 (da) * 2007-06-29 2011-07-04 Unisense Fertilitech As Indretning, system og fremgangsmåde til at overvåge og/eller dyrke mikroskopiske objekter
US8533234B2 (en) * 2008-10-07 2013-09-10 Aspect Software, Inc. Custom data display
JP4724854B2 (ja) * 2009-02-09 2011-07-13 大日本印刷株式会社 細胞培養容器
US8278511B2 (en) * 2009-07-16 2012-10-02 Monsanto Technology Llc Soybean variety A1016184
EP2522716B1 (en) * 2010-01-08 2019-08-28 Sumitomo Bakelite Company Limited Culture vessel for formation of aggregated cell mass
JP2012157267A (ja) * 2011-01-31 2012-08-23 Hitachi Maxell Ltd 微細パターンを有するプレート部材
JP2012210166A (ja) * 2011-03-30 2012-11-01 Sumitomo Bakelite Co Ltd 胚様体形成用培養容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08131153A (ja) 1994-09-16 1996-05-28 Sumitomo Bakelite Co Ltd 細胞培養容器とその製造方法、及び細胞培養方法
JP2001509272A (ja) * 1997-01-17 2001-07-10 コーニング インコーポレイテッド マルチウェルプレート
WO2008130025A1 (ja) * 2007-04-18 2008-10-30 Public University Corporation Yokohama City University 肝細胞培養容器及び肝細胞培養方法
JP2010088347A (ja) 2008-10-08 2010-04-22 Tohoku Univ スフェロイド培養方法及びスフェロイド培養容器
WO2012036011A1 (ja) 2010-09-14 2012-03-22 旭硝子株式会社 培養基材
WO2013042360A1 (ja) 2011-09-20 2013-03-28 株式会社クラレ 接着性細胞の培養方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C'ELINE LIU BAUWENS ET AL.: "Control of Human Embryonic Stem Cell Colony and Aggregate Size Heterogeneity Influences Differentiation Trajectories", STEM CELL, 2008, pages 2300 - 2310
EFREM CURCIO ET AL.: "Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system", BIOMATERIALS, vol. 28, 2007, pages 5487 - 5497, XP022308847, DOI: doi:10.1016/j.biomaterials.2007.08.033
FRANZISKA HIRSCHHAEUSER ET AL.: "Multicellular tumor spheroids: An underestimated tool is catching up again", JOURNAL OF BIOTECHNOLOGY, vol. 148, 2010, pages 3 - 15, XP027096372
JUERGEN FRIEDRICHL ET AL.: "Spheroid-based drug screen: considerations and practical approach", PROTOCOL, 12 February 2009 (2009-02-12), pages 309 - 324, XP055150985, DOI: doi:10.1038/nprot.2008.226
See also references of EP3006553A4

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441121B2 (en) 2013-04-30 2022-09-13 Corning Incorporated Spheroid cell culture article and methods thereof
US9790465B2 (en) 2013-04-30 2017-10-17 Corning Incorporated Spheroid cell culture well article and methods thereof
JP2015167518A (ja) * 2014-03-07 2015-09-28 大日本印刷株式会社 細胞培養容器
JP7125717B2 (ja) 2014-05-30 2022-08-25 コーニング インコーポレイテッド 培養方法
US10752879B2 (en) 2014-05-30 2020-08-25 Corning Incorporated Culture method and cell cluster
JP2019193666A (ja) * 2014-05-30 2019-11-07 コーニング インコーポレイテッド 培養方法
US11613722B2 (en) 2014-10-29 2023-03-28 Corning Incorporated Perfusion bioreactor platform
WO2016069885A1 (en) * 2014-10-29 2016-05-06 Corning Incorporated Perfusion bioreactor platform
US11976263B2 (en) 2014-10-29 2024-05-07 Corning Incorporated Cell culture insert
CN106047690A (zh) * 2015-04-16 2016-10-26 爱科来株式会社 细胞培养装置
JP2017153388A (ja) * 2016-02-29 2017-09-07 米満 吉和 規則的に配置された同一サイズのスフェロイド及びその利用
WO2017150366A1 (ja) * 2016-02-29 2017-09-08 米満 吉和 規則的に配置された同一サイズのスフェロイド及びその利用
WO2018123663A1 (ja) * 2016-12-28 2018-07-05 Agcテクノグラス株式会社 細胞培養基材及びその製造方法
JP2018174824A (ja) * 2017-04-14 2018-11-15 株式会社クラレ マイクロパターンの表面を濡らす方法
US11584906B2 (en) 2017-07-14 2023-02-21 Corning Incorporated Cell culture vessel for 3D culture and methods of culturing 3D cells
US11767499B2 (en) 2017-07-14 2023-09-26 Corning Incorporated Cell culture vessel
US11345880B2 (en) 2017-07-14 2022-05-31 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11970682B2 (en) 2017-07-14 2024-04-30 Corning Incorporated 3D cell culture vessels for manual or automatic media exchange
US11857970B2 (en) 2017-07-14 2024-01-02 Corning Incorporated Cell culture vessel
WO2019151114A1 (ja) 2018-02-01 2019-08-08 Agc株式会社 細胞培養容器
US11661574B2 (en) 2018-07-13 2023-05-30 Corning Incorporated Fluidic devices including microplates with interconnected wells
US11732227B2 (en) 2018-07-13 2023-08-22 Corning Incorporated Cell culture vessels with stabilizer devices
JP7171695B2 (ja) 2018-07-13 2022-11-15 コーニング インコーポレイテッド 液体培地送達面を含む側壁を有するマイクロキャビティ皿
US11912968B2 (en) 2018-07-13 2024-02-27 Corning Incorporated Microcavity dishes with sidewall including liquid medium delivery surface
JP2022501002A (ja) * 2018-07-13 2022-01-06 コーニング インコーポレイテッド 液体培地送達面を含む側壁を有するマイクロキャビティ皿
JP2020129981A (ja) * 2019-02-13 2020-08-31 古河電気工業株式会社 格納容器
WO2020166452A1 (ja) * 2019-02-13 2020-08-20 古河電気工業株式会社 格納容器
JP7019618B2 (ja) 2019-02-13 2022-02-15 古河電気工業株式会社 格納容器
WO2021166977A1 (ja) * 2020-02-19 2021-08-26 凸版印刷株式会社 細胞移植前処理方法、細胞移植前処理装置、および細胞移植前処理ユニット
WO2022024886A1 (ja) * 2020-07-27 2022-02-03 株式会社コーセー 全分泌調節剤の評価及び/又は選択方法
WO2023176949A1 (ja) * 2022-03-17 2023-09-21 日産化学株式会社 細胞利用効率の高い細胞培養容器

Also Published As

Publication number Publication date
CA2914463C (en) 2023-01-03
US11473046B2 (en) 2022-10-18
JPWO2014196204A1 (ja) 2017-02-23
EP3006553A4 (en) 2017-01-04
EP3006553A1 (en) 2016-04-13
ZA201509018B (en) 2024-07-31
US20160137962A1 (en) 2016-05-19
BR112015030041B1 (pt) 2021-01-12
AU2020201221B2 (en) 2021-12-23
JP2020000255A (ja) 2020-01-09
JP2021129590A (ja) 2021-09-09
EP3006553B1 (en) 2020-09-02
JP6892486B2 (ja) 2021-06-23
US20240093134A1 (en) 2024-03-21
CN105308170B (zh) 2018-04-10
CN105308170A (zh) 2016-02-03
AU2014276229A1 (en) 2016-01-21
KR20160017036A (ko) 2016-02-15
SG11201509870QA (en) 2016-02-26
KR102359408B1 (ko) 2022-02-07
US20200063080A1 (en) 2020-02-27
JP7219303B2 (ja) 2023-02-07
US10494593B2 (en) 2019-12-03
AU2020201221A1 (en) 2020-03-12
US11866682B1 (en) 2024-01-09
BR112015030041A2 (pt) 2017-07-25
CA2914463A1 (en) 2014-12-11
AU2014276229B2 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
JP7219303B2 (ja) 培養方法
CN201193228Y (zh) 三维细胞培养插入件、其制造设备及成套用具
CN109689366B (zh) 用于细胞扩增和相关应用的三维生物反应器
Bruzewicz et al. Fabrication of a modular tissue construct in a microfluidic chip
JP5074382B2 (ja) 新規細胞培養方法、およびその方法を用いた細胞塊の生産および回収方法
JP2016093149A (ja) 細胞培養装置および細胞培養方法
JPWO2013042360A1 (ja) 接着性細胞の培養方法
CN108474140A (zh) 大规模细胞生产系统
CN102719391A (zh) 双相多孔三维细胞培养支架
WO2015129263A1 (ja) スフェロイド作製用デバイス、スフェロイドの回収方法及び製造方法
JP2016103982A (ja) 細胞培養容器、細胞培養装置、及び細胞培養方法
CN103608451A (zh) 培养方法、成熟脂肪细胞群和药物筛选方法
Sun et al. A superhydrophobic chip integrated with an array of medium reservoirs for long-term hanging drop spheroid culture
JP2011507499A (ja) 3次元サポートにおける細胞培養のための動的システム
CN202643702U (zh) 双相多孔三维细胞培养支架
US20200148989A1 (en) Cell culture vessel for 3d culture and methods of culturing 3d cells
CN218811793U (zh) 一种悬滴培养板及悬滴培养装置
EP4289932A1 (en) Cell cultivation by using removable top-loaded chambers in cell culture plates
CN117025391A (zh) 一种悬滴培养板及悬滴培养装置
US20230112108A1 (en) Microcarrier based-4 dimensional cell culture apparatus and method for monitoring cell culture using the same
KR20240049382A (ko) 오가노이드 생산용 생체반응기
JP5636207B2 (ja) 微生物凝集膜中の微生物細胞数の計測方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480032635.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14808113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015521306

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: P1593/2015

Country of ref document: AE

ENP Entry into the national phase

Ref document number: 2914463

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14896251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014808113

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015030041

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167000067

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014276229

Country of ref document: AU

Date of ref document: 20140605

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015030041

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151130