WO2019151114A1 - 細胞培養容器 - Google Patents

細胞培養容器 Download PDF

Info

Publication number
WO2019151114A1
WO2019151114A1 PCT/JP2019/002323 JP2019002323W WO2019151114A1 WO 2019151114 A1 WO2019151114 A1 WO 2019151114A1 JP 2019002323 W JP2019002323 W JP 2019002323W WO 2019151114 A1 WO2019151114 A1 WO 2019151114A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
cell culture
surface layer
formula
Prior art date
Application number
PCT/JP2019/002323
Other languages
English (en)
French (fr)
Inventor
亮平 小口
創 江口
麗君 朱
今日子 山本
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2019569068A priority Critical patent/JPWO2019151114A1/ja
Priority to EP19747524.7A priority patent/EP3747985A4/en
Publication of WO2019151114A1 publication Critical patent/WO2019151114A1/ja
Priority to US16/895,485 priority patent/US20200299626A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/22Transparent or translucent parts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/025Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells

Definitions

  • the present invention relates to a cell culture container, and more particularly, to a cell culture container capable of producing a spheroid of uniform size with high efficiency and easily performing microscopic observation.
  • a new culturing method has been developed to obtain cells having functions closer to the living body by imitating the surrounding environment and morphology of the living body.
  • spheroid (cell aggregate) culture technology is an excellent method that can maintain cell interactions, and is expected to be applied to drug discovery screening applications that produce cardiomyocytes and cancer cell spheroids and investigate their efficacy and toxicity. ing.
  • a technique for controlling the size of spheroids has been attracting attention.
  • Patent Document 1 describes the size of a spheroid by defining the size and shape of a recess in a cell culture container that contains cells and is provided with a plurality of recesses capable of culturing and observing the cell. A technique for producing a large amount while controlling is described.
  • a resin cell culture container is used to define the size and shape of the recess.
  • fluorescence emission due to the container material is used. It was difficult to observe with high accuracy.
  • the present invention has been made from the above viewpoint, and an object of the present invention is to provide a cell culture vessel capable of producing a spheroid of uniform size with high efficiency and easily performing microscopic observation, particularly fluorescence microscopic observation.
  • the gist of the present invention is as follows. [1] A side wall forming an opening, a bottom made of a light-transmitting glass material, closing a lower end of the opening, and having a plurality of recesses in a region where the upper surface faces the opening; And a surface layer for suppressing cell adhesion formed on the inner surface of the recess. [2] The cell culture vessel according to [1], wherein a ratio of a total area in a plan view occupied by the concave portion is 40% or more with respect to a total area in a plan view of a region facing the opening on the bottom upper surface.
  • the elution amount of total organic carbon (TOC) per 1 cm 2 of unit area of the surface layer is 10 mg / L or less. 5].
  • the biocompatible group includes at least one selected from the group consisting of a group represented by Formula 1 below, a group represented by Formula 2 below, and a group represented by Formula 3 below [8].
  • Cell culture container. [10] A drug discovery screening method using the cell culture container of any one of [1] to [9].
  • n is an integer of 1 to 300
  • 50 to 100 mol% of the groups represented by Formula 1 is a group represented by Formula 1 in the group represented by Formula 4 below.
  • N in Formula 4 is an integer of 1 to 300
  • R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 1 to R 3 are each independently an alkyl group having 1 to 5 carbon atoms
  • a is an integer of 1 to 5.
  • R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms
  • X ⁇ is a group represented by Formula 3-1 or a group represented by Formula 3-2 below.
  • B is an integer of 1-5.
  • a cell culture container capable of producing spheroids of uniform size with high efficiency and easily performing microscopic observation, particularly fluorescence microscopic observation.
  • FIG. 2 is a schematic sectional view taken along line XX of the cell culture container shown in FIG. It is a top view of the bottom part of the cell culture container shown in FIG.
  • FIG. 3B is a schematic cross-sectional view taken along line XX of the bottom shown in FIG. 3A. It is a top view which shows another example of the cell culture container of embodiment of this invention. It is a graph which shows distribution of the diameter of the spheroid obtained with the cell culture container of an Example.
  • a compound or group represented by the formula is also represented as a compound or group with the number of the formula, for example, a compound represented by formula 1 is also represented as compound 1.
  • “to” representing a numerical range includes upper and lower limits.
  • (Meth) acrylate” is a general term for acrylate and methacrylate.
  • the “unit” in the copolymer means a portion derived from the monomer formed by polymerization of the monomer.
  • Bioaffinity group means a group having the property of inhibiting cells from adhering to the surface of a material and becoming immobile.
  • Cell is the most basic unit constituting a living body, and means a substance having a cytoplasm and various organelles inside a cell membrane.
  • the nucleus containing DNA may or may not be contained inside the cell.
  • Animal-derived cells include germ cells (sperm, ova, etc.), somatic cells that make up the living body, stem cells, progenitor cells, cancer cells separated from the living body, acquired from the living body and acquired immortalizing ability, and are stable outside the body.
  • Maintained cells cells isolated from living organisms and artificially genetically modified, cells isolated from living organisms and artificially exchanged nuclei, and the like.
  • the somatic cells constituting the living body include fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monocytes, bone cells, bone marrow cells, pericytes, dendritic cells , Keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatocytes, chondrocytes, cumulus cells, neural cells, glial cells, neurons, oligodendrocytes, microglia, Astrocytes, heart cells, esophageal cells, muscle cells (eg, smooth muscle cells, skeletal muscle cells), pancreatic beta cells, melanocytes, hematopoietic progenitor cells, mononuclear cells and the like are included.
  • Somatic cells include skin, kidney, spleen, adrenal gland, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thymus, muscle, connective tissue, bone, cartilage, vascular tissue , Cells collected from any tissue such as blood, heart, eye, brain, nerve tissue and the like.
  • Stem cells are cells that have the ability to replicate themselves and to differentiate into other types of cells.
  • Embryonic stem cells ES cells
  • embryonic tumor cells embryonic germ stem cells
  • induced pluripotency Examples include stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, muscle stem cells, reproductive stem cells, intestinal stem cells, cancer stem cells, hair follicle stem cells and the like.
  • iPS cells stem cells
  • neural stem cells hematopoietic stem cells
  • mesenchymal stem cells mesenchymal stem cells
  • hepatic stem cells pancreatic stem cells
  • muscle stem cells reproductive stem cells
  • intestinal stem cells cancer stem cells
  • hair follicle stem cells hair follicle stem cells and the like.
  • Progenitor cells are cells that are in the process of being differentiated from the stem cells into specific somatic cells or germ cells.
  • Cancer cells are cells that have been derived from somatic cells and have acquired unlimited proliferative capacity.
  • a cell line is a cell that has acquired infinite proliferation ability by artificial manipulation in vitro, and is HCT116, Huh7, HEK293 (human embryonic kidney cell), HeLa (human cervical cancer cell line), HepG2 (human) Hepatoma cell line), UT7 / TPO (human leukemia cell line), CHO (Chinese hamster ovary cell line), MDCK, MDBK, BHK, C-33A, HT-29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five, Vero, and the like are included.
  • FIG. 1 is a plan view schematically showing an example of a cell culture container according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view of the cell culture container shown in FIG.
  • FIG. 3A shows a plan view of the bottom
  • FIG. 3B shows a schematic cross-sectional view taken along the line XX of the bottom in FIG. 3A.
  • the cell culture vessel of the present invention is used for producing a spheroid, in which cells to be cultured are cultured while the cells are three-dimensionally aggregated to obtain a spheroid having a desired size. It is done.
  • a cell culture vessel 10 shown in FIGS. 1 and 2 has a side wall 2 that forms an opening 1 and a bottom 3 made of a translucent glass material that closes the lower end of the opening 1.
  • the bottom 3 has a shape in which the upper surface 3 a of the bottom 3 has a plurality of recesses 4 in a region S facing the opening 1.
  • the upper surface 3 a of the bottom 3 has a configuration in which the entire surface including the inner surface of the recess 4 is covered with a surface layer 5 that suppresses cell adhesion in the region S facing the opening 1.
  • the entire area of the upper surface 3 a excluding the recess 4 and the entire lower surface 3 b facing the upper surface 3 a are flat.
  • region except the recessed part 4 of the lower surface 3b and the upper surface 3a has a mutually parallel relationship, and the bottom part 3 exhibits the substantially flat plate shape as a whole.
  • the region S of the upper surface 3a the region excluding the recess 4 is referred to as a flat region Sf.
  • the bottom 3 may be a plate-like body in which the lower surface 3b and the flat region Sf have the same curvature as necessary.
  • the entire bottom portion 3 has a substantially flat plate shape.
  • the thickness of the surface layer 5 is basically much smaller than the thickness of the bottom 3, and the surface shape of the surface layer 5 formed on the upper surface 3 a of the bottom 3 in the region S follows the surface shape of the upper surface 3 a of the bottom 3. To do. Therefore, the shape of the upper surface 3 a of the bottom 3 can be directly replaced with the surface shape of the surface layer 5.
  • the concave surface of the surface layer 5 formed on the inner surface of the recess 4 and the surface of the surface layer 5 formed on the flat region Sf of the upper surface 3 a of the bottom 3 are extended on the recess 4.
  • Cells are mainly cultured in the enclosed macro space M.
  • the macro space M can be handled as the same shape and size as the space (the space surrounded by the inner surface of the recess 4 and the recess opening surface 4a) that the recess 4 of the bottom 3 has inside. Accordingly, in FIG. 1 and FIG. 2, M (4) is added to the macro space by combining the symbol M indicating the macro space itself with the symbol 4 indicating the recess.
  • the recess opening surface 4 a is an opening surface constituting the upper end of the recess 4.
  • the thickness of the bottom portion 3 is a distance between the flat region Sf on the upper surface 3a and the lower surface 3b, and is preferably 0.3 mm or more and 1.75 mm or less in that it is easily observed with a microscope and has sufficient strength.
  • the thickness of the bottom 3 is more preferably 0.35 mm or more, and further preferably 0.45 mm or more.
  • the thickness of the bottom 3 is more preferably 1.70 mm or less, and further preferably 1.50 mm or less. From the viewpoint of ease of microscopic observation and cell culture vessel strength, the thickness of the bottom 3 is more preferably 0.35 mm or more and 1.70 mm or less, and further preferably 0.40 mm or more and 1.50 mm or less.
  • the shape and size of the recess 4 are appropriately adjusted depending on the type of cells to be cultured, the size of the target spheroid, the culture conditions, and the like.
  • the shape of the recess 4 is preferably a hemisphere, a conical shape that expands from the deepest portion 4b of the recess 4 toward the recess opening surface 4a, and a truncated cone shape.
  • the shape is particularly preferred.
  • the hemispherical shape refers to a shape in which approximately half of a sphere is missing, and is not limited to the shape of a half of a sphere.
  • the shape of the recess 4 when the recess is viewed in plan view is a circular shape, but is not limited to this, and may be, for example, an elliptical shape.
  • the recess 4 in the bottom 3 shown in FIGS. 3A and 3B is formed in a hemispherical shape.
  • the size of the concave portion 4 will be described by taking the case where the concave portion 4 has a hemispherical shape as an example.
  • the deepest portion 4b refers to the deepest position from the flat region Sf. Further, in the thickness direction of the bottom portion 3, the concave opening surface 4a and the flat region Sf are at the same position.
  • the diameter Dh of the recessed opening surface 4a is preferably 10 ⁇ m or more and 1000 ⁇ m or less from the viewpoint of dispersibility of the seeded cells.
  • the diameter Dh of the concave opening surface 4a is more preferably 100 ⁇ m or more, and further preferably 150 ⁇ m or more.
  • the diameter Dh of the concave opening surface 4a is more preferably 800 ⁇ m or less, and further preferably 700 ⁇ m or less. From the viewpoint of cell dispersibility, the diameter Dh is more preferably from 100 ⁇ m to 800 ⁇ m, and even more preferably from 150 ⁇ m to 700 ⁇ m.
  • the depth H of the concave portion 4 corresponding to the distance from the deepest portion 4b of the concave portion 4 to the concave opening surface 4a is from the viewpoint of processing stability that allows the concave portion 4 to be stably molded at the bottom made of a light-transmitting glass material.
  • the diameter is preferably equal to or smaller than the diameter Dh of the concave opening surface 4a. That is, the value (H / Dh) obtained by dividing the depth H of the recess 4 by the diameter Dh of the recess opening surface 4a is preferably 1 or less. H / Dh is more preferably 0.7 or less. Moreover, H / Dh is preferably 0.25 or more from the viewpoint of dispersibility of the seeded cells.
  • the depth H of the recess 4 is preferably 50 ⁇ m or more and 500 ⁇ m or less from the viewpoint of processing stability that allows the recess 4 to be stably formed.
  • the depth H of the recess 4 is more preferably 75 ⁇ m or more, and further preferably 100 ⁇ m or more.
  • the depth H of the recess 4 is more preferably 450 ⁇ m or less, and further preferably 400 ⁇ m or less. From the viewpoint of processing stability, the depth H is more preferably 75 ⁇ m or more and 450 ⁇ m or less, and more preferably 100 ⁇ m or more and 400 ⁇ m or less.
  • the volume of the recess 4 is the volume of the space surrounded by the recess opening surface 4 a and the inner surface of the recess 4, and corresponds to the volume of the space in which cells are cultured and spheroids are produced in the cell culture container 10.
  • the volume of the recess 4 is preferably 2.0 ⁇ 10 3 to 2.0 ⁇ 10 9 ⁇ m 3 and preferably 2.0 ⁇ 10 6 to 2.0 ⁇ 10 9 ⁇ m 3 from the viewpoint of dispersibility of the seeded cells. More preferred.
  • the recesses 4 are arranged in the region S without any gaps. From such a viewpoint, the value (Dx / Dh) obtained by dividing the distance Dx between the centers of the recess opening surfaces 4a in the adjacent recesses 4 by the diameter Dh of the recess opening surfaces 4a is 1.0 or more and 1.2 or less. Is preferred. When Dx / Dh is 1.0, the adjacent recesses 4 are configured such that the recess opening surfaces 4a are in contact with each other. Dx / Dh is more preferably 1.05 or more from the ease of production of the bottom 3, and Dx / Dh is more preferably 1.15 or less from the efficiency of spheroid production.
  • the bottom 3 has a plurality of recesses 4 in the region S.
  • the numerical ranges of the diameter Dh of the recess opening surface 4a, the depth H of the recess 4, and Dx / Dh shown above are ranges as an average value of the plurality of recesses 4 existing in the region S. Deviations of the diameter Dh of the recess opening surface 4a, the depth H of the recess 4 and the Dx / Dh in the plurality of recesses 4 existing in the region S are preferably within 10% above and below the average value, and more preferably within 5%. .
  • the number of the recesses 4 provided in the region S is preferably the maximum number that can be provided in the region S.
  • the number of the recesses 4 in the region S depends on the area of the region S and the shape and size of the recess opening surface 4a.
  • the area of the region S in plan view that is, the total area of the recess opening surface 4a of the recess 4 in the region S with respect to the total area of the top surface 3a of the bottom 3 facing the opening 1, that is, the total in plan view of the recess 4
  • the area ratio is preferably 40% or more, more preferably 45% or more, and particularly preferably 50% or more.
  • the area of the region S in plan view is preferably 1 to 50 mm 2 from the viewpoint of dispersibility of the seeded cells, and more preferably 2 to 25 mm 2 .
  • the number of recesses 4 per unit area of the region S in plan view is preferably 2 to 50 / mm 2, and more preferably 5 to 20 / mm 2 .
  • the shape of the region S is preferably a rectangle including a square or a circle in terms of dispersibility of seeded cells and spheroid production efficiency.
  • the shape of the region S is preferably a rectangle, and a square is particularly preferable from the viewpoints of miniaturization, ease of manufacture, and the like.
  • the constituent material of the bottom part 3 is a glass material having translucency.
  • the glass material having translucency means that the spectral transmittance in the wavelength region of 500 to 700 nm measured by a glass plate having a thickness of 0.5 mm made of the glass material is 90% or more.
  • the glass material preferably has a spectral transmittance at a wavelength of 400 nm of the bottom part 3 of 70% or more, and more preferably 80% or more.
  • the glass material has less auto-fluorescence than the resin, regardless of the composition. For this reason, the background noise can be lowered in the observation of the spheroid obtained by cell culture with a fluorescence microscope, and observation at a high magnification is possible.
  • Specific examples of the glass material include soda lime glass, aluminosilicate glass, quartz glass, alkali-free glass, and borosilicate glass.
  • the glass material it is preferable that autofluorescence is less because high-precision fluorescence microscope observation at a high magnification can be performed.
  • the value divided by the value of fluorescence intensity at (hereinafter also referred to as “ratio of fluorescence intensity to quartz glass”) is preferably 10 or less, and more preferably 9 or less.
  • Micro Raman spectroscopy is measured using, for example, Thermo-Fisher-Scientific Co., Ltd. Almega (trade name).
  • quartz glass for example, AQ (trade name) manufactured by AGC is used.
  • Quartz glass is the glass with the lowest fluorescence intensity value at 584 nm when excited with 532 nm light.
  • the ratio of fluorescence intensity to quartz glass is 10 or less, for example, a glass substrate is prepared using the glass material, and stained cells (TIG-3 cells stained with calcein-AM) are formed on the glass substrate. Stained cells can be visually recognized when seeded and observed with a fluorescence microscope using a 20 ⁇ objective lens.
  • the ratio of the fluorescence intensity to the quartz glass takes a value of about 50 to 500 regardless of the type.
  • the glass material having a fluorescence intensity ratio of 10 or less with respect to the quartz glass include aluminosilicate glass, quartz glass, borosilicate glass, and the like.
  • SiO 2 is 60 to 70%
  • Al 2 O 3 is 2 to 20%
  • B 2 O 3 is 0 to 15%
  • Li 2 O is 0 to 10 in terms of mol% based on oxide. %, Na 2 O 0-20%, K 2 O 0-10%, MgO 0-15%, CaO 0-10%, SrO 0-10%, ZrO 2 0-10% Glass is preferred.
  • Dragontrail manufactured by AGC, registered trademark, ratio of fluorescence intensity to quartz glass; 8.5
  • Quartz glass is glass having a SiO 2 content of 100%.
  • AQ manufactured by AGC, trade name
  • the fluorescence intensity value at 584 nm when excited with 532 nm light has the same value.
  • SiO 2 is 70 to 90%
  • Al 2 O 3 is 0 to 5%
  • B 2 O 3 is 7 to 20%
  • Li 2 O is 0 to 5 in terms of mol% based on oxide.
  • %, Na 2 O 0-10%, K 2 O 0-5% and ZrO 2 0-10% are preferred.
  • Examples of commercially available borosilicate glass include D263Teco (manufactured by SCHOTT, trade name, ratio of fluorescence intensity to quartz glass; 7.4).
  • the bottom 3 is made of, for example, a light-transmitting glass material, a glass plate (hereinafter referred to as “matrix glass plate”) whose both main surfaces serving as the base material of the bottom 3 are flat and whose thickness is the same as the thickness of the bottom 3. ) And providing a plurality of recesses at predetermined positions on one of the main surfaces. Specifically, the following method 1 and method 2 are mentioned as a method of providing the recess.
  • Method 1 A protective film such as a PET (polyethylene terephthalate) film is attached to both main surfaces of the base glass plate. Subsequently, a plurality of seed holes serving as the base of the recess 4 are drilled at a predetermined pitch on the formation surface of the recess 4 using a CO 2 laser. After forming the seed holes, the protective film is peeled off from the base glass plate and annealed. The purpose of annealing is to remove residual stress caused by irradiation of the glass with a CO 2 laser, and the conditions are appropriately adjusted according to the composition of the glass.
  • a PET polyethylene terephthalate
  • a protective film is attached to the non-formation surface of the seed glass of the base material glass plate in which the seed holes are formed, and shower etching is performed by pouring an etching solution containing hydrogen fluoride. After the etching, the protective film is peeled to obtain the bottom 3 in which a plurality of recesses 4 are formed on the upper surface 3a as shown in FIGS. 3A and 3B. Since the etching in this case is isotropic etching, the depth H of the concave portion 4 becomes the depth of the seed hole, and the size in the width direction of the concave portion 4, that is, the diameter Dh of the concave opening surface 4a is determined by etching. Depends on time. Therefore, in order to obtain the recesses 4 having a desired size, the conditions for forming the seed holes and the time for shower etching are appropriately adjusted.
  • the etching solution is an aqueous solution of hydrogen fluoride, and can contain an acid other than hydrogen fluoride such as sulfuric acid, hydrochloric acid, nitric acid, citric acid and the like as a component other than hydrogen fluoride.
  • an acid other than hydrogen fluoride such as sulfuric acid, hydrochloric acid, nitric acid, citric acid and the like.
  • Metal 2 A metal protective layer made of a metal that can be etched with an etchant containing hydrogen fluoride is formed on both main surfaces of the base glass plate, and a photosensitive resin composition is applied on the metal protective layer.
  • the formation surface of the recess 4 is irradiated with active energy rays such as ultraviolet rays through a photomask having an opening other than the formation region of the recess 4, that is, a portion corresponding to the flat region Sf. Only the flat region Sf of the resin composition is cured.
  • active energy rays, such as an ultraviolet-ray are irradiated to the whole surface, and the photosensitive resin composition is hardened. Then, the photosensitive resin composition of the unexposed area
  • the base glass plate having the metal protective layer obtained above and a partially cured film of the photosensitive resin composition is immersed in an etching solution containing hydrogen fluoride for a predetermined time, and then immersed in a stripping solution. Then, the metal protective layer and the cured film of the photosensitive resin composition are removed. Thereby, as shown to FIG. 3A and FIG. 3B, the bottom part 3 in which the some recessed part 4 was formed on the upper surface 3a is obtained.
  • the etching solution in method 2 can be the same as in method 1. Note that the base glass plate having the protective layer may be swung in order to shorten the processing time when immersed in the etching solution.
  • the side wall 2 is provided on the peripheral edge of the upper surface 3 a of the bottom 3.
  • the inner wall surface of the side wall 2 may be configured to be perpendicular to the flat region Sf of the upper surface 3a of the bottom 3, or may be configured to be tapered so that the opening 1 expands from the lower end toward the upper end.
  • a configuration in which the outer wall surface of the side wall 2 is perpendicular to the flat region Sf of the upper surface 3a of the bottom 3 is preferable.
  • the height of the side wall 2, that is, the depth of the opening 1 is preferably 1 to 10 mm, more preferably 2 to 10 mm, in view of the required amount of the dispensing culture solution.
  • the width of the side wall 2 is preferably 0.5 to 2 mm, more preferably 0.5 to 3 mm, in view of the required amount of the dispensing culture solution.
  • the side wall 2 may be provided outside the outer periphery of the bottom portion 3 in such a manner that the end surface of the bottom portion 3 and the lower region of the inner wall surface of the side wall 2 are joined.
  • the depth of the opening 1 is preferably the same as described above, and the height of the side wall 2 is preferably the sum of the depth of the opening 1 and the thickness of the bottom 3.
  • Examples of the constituent material of the side wall 2 include inorganic materials such as glass, resins, and the like, and resins are preferable from the viewpoint of ease of manufacture.
  • Resins include acrylic resin, polylactic acid, polyglycolic acid, styrene resin, acrylic / styrene copolymer resin, polycarbonate resin, polyester resin, polyvinyl alcohol resin, ethylene / vinyl alcohol copolymer resin, heat Examples thereof include a plastic elastomer, a vinyl chloride resin, a silicone resin, and the like, and a styrene resin is preferable in terms of ease of molding.
  • the joining method of the side wall 2 and the bottom 3 is appropriately selected according to the constituent material of the side wall 2. Since the bottom 3 is made of a glass material, when the side wall 2 is made of a glass material, these may be integrally formed or may be joined by heat fusion or the like. When the constituent material of the side wall 2 is a resin, the side wall 2 and the bottom 3 are preferably bonded through an adhesive layer appropriately selected according to the type of resin.
  • the surface layer 5 has a property of suppressing cell adhesion.
  • the surface layer 5 is provided on the entire inner surface of the recess 4 and the region S including the flat region Sf.
  • the surface layer is provided on at least the inner surface of the recess. It only has to be done.
  • cell culture is performed in the micro space M surrounded by the surface of the surface layer 5, so that the cells are efficiently aggregated to form spheroids without adhering to the surface layer 5.
  • the surface region 5 is also provided in the flat region Sf, it is easy to take out the spheroid from the cell culture container 10.
  • the surface layer 5 may be formed on the inner wall surface of the side wall 2.
  • the surface layer 5 preferably has a property of suppressing cell adhesion by having a biocompatible group.
  • a biocompatible group conventionally known organic groups such as a polyoxyalkylene group and a phosphorylcholine group can be used.
  • the biocompatible group possessed by the surface layer 5 is at least one selected from the group consisting of a group represented by the following formula 1, a group represented by the following formula 2, and a group represented by the following formula 3. It is preferable to contain.
  • n is an integer of 1 to 300
  • 50 to 100 mol% of the groups represented by Formula 1 is a group represented by Formula 1 in the group represented by Formula 4 below.
  • N in Formula 4 is an integer of 1 to 300
  • R 6 is a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 1 to R 3 are each independently an alkyl group having 1 to 5 carbon atoms
  • a is an integer of 1 to 5.
  • R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms
  • X ⁇ is a group represented by Formula 3-1 or a group represented by Formula 3-2 below.
  • B is an integer of 1-5.
  • the alkyl group may be linear, branched or cyclic, or a combination thereof.
  • the biocompatible group which the surface layer 5 has may include any one of group 1 (4), group 2 and group 3, or may include two or more of these.
  • group 1 (4) is preferred.
  • the surface layer 5 may have a bioaffinity group other than the group 1 (4), the group 2 and the group 3 as necessary, but preferably, the bioaffinity group which the surface layer 5 has is a group 1 (4 ), At least one selected from group 2 and group 3.
  • a covalent bond is preferably present between the surface layer 5 and the bottom 3.
  • the surface layer 5 has sufficient durability because the surface layer 5 and the bottom part 3 are joined via a covalent bond.
  • the elution amount of total organic carbon (TOC; total organic carbon) per 1 cm 2 of unit area of the surface layer 5 Is also preferably 1 mg / L or less.
  • the TOC elution amount is the mass [mg] of TOC that is eluted in water when a surface layer having an area of 1 cm 2 is immersed in 1 L of water at 40 ° C. for 7 days.
  • the TOC elution amount is preferably 1 mg / L or less.
  • the TOC elution amount is more preferably 0.5 mg / L or less, and further preferably 0.3 mg / L or less.
  • TOC is the total amount of organic matter expressed in terms of carbon.
  • the TOC elution amount of the surface layer can be specifically measured as follows.
  • the TOC concentration [mg / L] of the treated water after immersing the surface layer in a predetermined amount of water at 40 ° C. for 7 days is measured.
  • the water used for the immersion is distilled water or ion exchange water.
  • the TOC elution amount [mg / L] can be obtained by dividing the TOC concentration obtained above by the area (unit: cm 2 ) of the immersed surface layer.
  • the TOC concentration in water can be measured with a general TOC meter such as TNC-6000 (manufactured by Toray Engineering Co., Ltd.).
  • a surface layer alone obtained by preparing a surface layer on a peelable substrate and peeling off may be used, and the TOC under the above conditions (40 ° C., 7 days).
  • the surface layer 5 having a covalent bond with the bottom 3 and suppressing cell adhesion includes a group capable of forming a covalent bond with the bottom 3 made of a glass material, A surface layer 5 made of a cured product of a composition containing a compound having a biocompatible group is preferred.
  • the group capable of forming a covalent bond with the bottom 3 made of the glass material of the compound is preferably a hydrolyzable silyl group, and more preferably an alkoxysilyl group.
  • the compound is a compound having a biocompatible group consisting of at least one selected from Group 1 (4), Group 2 and Group 3 and an alkoxysilyl group (hereinafter referred to as Compound (X)).
  • Compound (X) an alkoxysilyl group
  • the composition used for forming the surface layer 5 contains the compound (X), the content of the biocompatible group in the solid content in the composition is 25 to 83% by mass, and the alkoxysilyl group A composition having a content of 2 to 70% by mass (hereinafter referred to as composition (Y)) is preferred.
  • composition (Y) will be described as an example of the composition for forming the surface layer 5, but the composition for forming the surface layer 5 is limited to this as long as the obtained surface layer is within the scope of the present invention. Not.
  • the solid content in the composition means a residue obtained by removing the volatile components by vacuum drying the composition at 80 ° C. for 3 hours.
  • the cured product of the composition is a cured product of the solid content.
  • the “biocompatible group” includes a group represented by the above formula 1, a group represented by the above formula 2, and a group represented by the above formula 3. It is a biocompatible group consisting of at least one selected from the group.
  • the surface layer 5 being made of a cured product of the composition (Y) containing the compound (X) means that the surface layer 5 contains at least a cured product of a component containing the compound (X) capable of hydrolytic condensation.
  • the compound (X) has an alkoxysilyl group, and thus hydrolyzes to form a silanol group (Si—OH).
  • the silanol groups are dehydrated and condensed to form a siloxane bond (Si—O—Si) to form a cured product.
  • composition (Y) contains a hydrolyzable silyl group-containing component other than the compound (X), preferably an alkoxysilyl group-containing component, the component and the compound (X) similarly form a siloxane bond. .
  • the silanol group produced by the hydrolysis reaction of the hydrolyzable silyl group-containing component in the composition (Y) containing the compound (X) is In parallel with the formation of the Si—O—Si bond, a covalent bond (glass material—O—Si) is formed by a dehydration condensation reaction with the hydroxyl group (glass material—OH) on the surface of the bottom 3.
  • a covalent bond glass material—O—Si
  • the obtained surface layer 5 has a sufficient amount of bioaffinity groups and can more effectively suppress cell adhesion.
  • Water resistance can be imparted when the content of the biocompatible group is 83% by mass or less.
  • the content of the biocompatible group in the solid content in the composition (Y) is preferably 30 to 83% by mass, and more preferably 40 to 83% by mass.
  • the alkoxysilyl group when the content of the alkoxysilyl group is 2% by mass or more, the alkoxysilyl group forms a sufficient amount of covalent bonds with the surface of the bottom 3 when the composition (Y) is cured. And the surface layer 5 obtained is excellent in durability, for example, water resistance.
  • the content of the alkoxysilyl group is 70% by mass or less, a sufficient amount of the biocompatible group can be introduced.
  • the content of the alkoxysilyl group in the solid content in the composition (Y) is preferably 2 to 40% by mass, and more preferably 2 to 30% by mass.
  • the cell culture vessel 10 may have a silicon oxide layer between the surface layer 5 and the bottom portion 3 in order to strengthen the covalent bond between the surface layer 5 and the bottom portion 3.
  • the silicon oxide layer is preferably a silicon oxide layer having a thickness of about 1 to 2 nm obtained by vapor deposition, for example.
  • the surface layer 5 and the silicon oxide layer, and the silicon oxide layer and the bottom portion 3 are bonded to each other by a covalent bond, even when a silicon oxide layer is provided between the surface layer 5 and the bottom portion 3, “between the surface layer 5 and the bottom portion 3 And has a covalent bond ”.
  • Examples of the alkoxysilyl group possessed by the compound (X) include a group represented by the formula 5. -Si (R 7 ) 3-t (OR 8 ) t Formula 5
  • R 7 is an alkyl group having 1 to 18 carbon atoms
  • R 8 is an alkyl group having 1 to 18 carbon atoms
  • t is an integer of 1 to 3.
  • R 7 and R 8 may be the same or different. From the viewpoint of production, R 7 and R 8 are preferably the same.
  • t is preferably 2 or more, and more preferably 3.
  • R 7 is preferably an alkyl group having 1 to 7 carbon atoms, more preferably a methyl group or an ethyl group.
  • R 8 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group.
  • the compound (X) for example, a compound (X1) having a polyoxyethylene chain as the main chain and having an alkoxysilyl group at the terminal or side chain, which satisfies the requirements as the compound (X), an ethylenic double bond And a compound (X2) having a hydrocarbon chain polymerized as a main chain and having a bioaffinity group and an alkoxysilyl group in the side chain.
  • Compound (X1) is, for example, a polyoxyethylene polyol or a polyoxyethylene alkyl ether having at least one hydroxyl group (wherein the alkyl has 1 to 5 carbon atoms), a hydroxyl group and a linking group possessed by these compounds.
  • the compound (X1) is, for example, a polyoxyalkylene polyol containing a polyoxyethylene chain or a polyoxyalkylene alkyl ether containing a polyoxyethylene chain and having at least one hydroxyl group (provided that the carbon number of alkyl is 1 to 5) and a silane compound having a hydroxyl group reactive group and an alkoxysilyl group (hereinafter also referred to as silane compound (S)) at a predetermined ratio.
  • silane compound (S) silane compound having a hydroxyl group reactive group and an alkoxysilyl group
  • polyoxyalkylene polyol to be used examples include compounds obtained by ring-opening addition polymerization of an alkylene monoepoxide containing at least ethylene oxide to a relatively low molecular weight polyol such as an alkane polyol, an etheric oxygen atom-containing polyol or a sugar alcohol.
  • a relatively low molecular weight polyol such as an alkane polyol, an etheric oxygen atom-containing polyol or a sugar alcohol.
  • oxyalkylene group in the polyoxyalkylene polyol include an oxyethylene group, an oxypropylene group, an oxy1,2-butylene group, an oxy2,3-butylene group, and an oxyisobutylene group.
  • polyoxyalkylene alkyl ether examples include compounds in which a part of the hydroxyl group of such a polyoxyalkylene polyol is ether-bonded with an aliphatic alcohol having 1 to 5 carbon atoms.
  • polyoxyalkylene alkyl ether refers to a polyoxyalkylene alkyl ether having at least one hydroxyl group (wherein the alkyl has 1 to 5 carbon atoms). The same applies when “oxyalkylene” is changed to “oxyethylene”.
  • the oxyalkylene group possessed by the polyoxyalkylene polyol and the polyoxyalkylene alkyl ether may be composed only of an oxyethylene group or a combination of an oxyethylene group and another oxyalkylene group. From the viewpoint of easy molecular design as the compound (X1), polyoxyethylene polyol or polyoxyethylene alkyl ether having only an oxyethylene group is preferred.
  • polyoxyethylene polyol and polyoxyethylene alkyl ether may be collectively referred to as polyoxyethylene polyol.
  • the compound (X1) is preferably a reaction product of polyoxyethylene polyol or the like and a silane compound (S).
  • the number of hydroxyl groups such as polyoxyethylene polyol include 1 to 6, preferably 1 to 4 and particularly preferably 1 to 3 from the viewpoint of easy molecular design as the compound (X1).
  • Specific examples of polyoxyethylene polyols include polyoxyethylene glycol, polyoxyethylene glyceryl ether, trimethylolpropane trioxyethylene ether, pentaerythritol polyoxyethylene ether, dipentaerythritol polyoxyethylene ether, polyoxyethylene glycol And monoalkyl ether (wherein the alkyl has 1 to 5 carbon atoms).
  • polyoxyethylene polyol or the like is polyoxyethylene glycol having 2 hydroxyl groups
  • compound (X1) polyoxyethylene glycol and R 9 -Q 11 -Si (R 7 ) 3- t (OR 8 )
  • the compound (X11) represented by the symbol (X11) in the formula obtained by reacting the silane compound (S1) represented by t is mentioned.
  • n1 in the polyoxyethylene glycol is an integer of 1 to 300, preferably 2 to 100, more preferably 4 to 20.
  • R 7 , R 8 , and t in the silane compound (S1) are the same as those in the above formula 5 including preferred embodiments.
  • R 9 in the silane compound (S1) is a group reactive with a hydroxyl group, and examples thereof include a hydroxyl group, a carboxyl group, an isocyanate group, and an epoxy group.
  • Q 11 may have an etheric oxygen atom between carbon atoms having 2 to 20 carbon atoms, and the hydrogen atom is substituted with a halogen atom such as a chlorine atom, a fluorine atom or a hydroxyl group. It is also a good divalent hydrocarbon group.
  • the number of substituted hydroxyl groups is preferably 1 to 5.
  • Q 1 is a residue obtained by reacting R 9 -Q 11 of the silane compound (S1) with a hydroxyl group of polyoxyethylene glycol, and R 9 ′ -Q 11 (the side bonded to O is R 9 a ', can be shown in the side that bind to alkoxysilyl group is Q 11.).
  • —C ( ⁇ O) NH— is represented as —CONH—.
  • Q 1 is preferably — (CH 2 ) k —, —CONH (CH 2 ) k —, — (CF 2 ) k — (k represents an integer of 2 to 4), —CH 2 OC 3 H 6- , -CF 2 OC 3 H 6- and the like.
  • any one selected from —C 2 F 4 — is more preferable.
  • —CONHC 3 H 6 —, —CONHC 2 H 4 —, —C 2 H 4 —, and —C 3 H 6 — are preferred.
  • the compound (X11) may be obtained by hydrosilane modification.
  • the ratio of the group 1 in the compound (X11) to the group 1 in the group 4 is 100 mol%. That is, the group 1 in the compound (X11) is a group 1 that is entirely contained in the group 4.
  • the content of the biocompatible group in the compound (X11) is mass% of n1 (OCH 2 CH 2 ) —O in the formula (X11), and the content of the alkoxysilyl group is ⁇ It is the mass% of Si (R 7 ) 3-t (OR 8 ) t .
  • the content of the biocompatible group and the alkoxysilyl group in the compound (X11) is appropriately adjusted according to the solid content composition of the composition (Y).
  • the content of the biocompatible group in the compound (X11) is preferably, for example, 10 to 90% by mass, more preferably 25 to 83% by mass, further preferably 40 to 83% by mass, and particularly preferably 60 to 83% by mass.
  • the content of the alkoxysilyl group in the compound (X11) is preferably 1 to 70% by mass, more preferably 2 to 70% by mass, further preferably 2 to 45% by mass, and particularly preferably 10 to 30% by mass.
  • a compound in which the terminal hydrogen atom in compound (X11) is replaced with R 6 other than a hydrogen atom can also be used as compound (X1). That is, in the above reaction formula, a compound obtained by using polyoxyethylene glycol monoalkyl ether (alkyl is R 6 ) instead of polyoxyethylene glycol having 2 hydroxyl groups can also be used as compound (X1). .
  • R 6 is preferably a methyl group or an ethyl group, and more preferably a methyl group.
  • polyoxyethylene polyol is a polyoxyethylene glyceryl ether having 3 hydroxyl groups
  • polyoxyethylene glyceryl ether and R 9 -Q 11 -Si (R 7 ) 3 are represented by the following formula.
  • -T (OR 8 ) The compound (X12) represented by the symbol (X12) in the formula, obtained by reacting the silane compound (S1) represented by t , can be mentioned.
  • n1 in the polyoxyethylene glyceryl ether can be the same as n1 in the polyoxyethylene glycol, including preferred embodiments.
  • the silane compound (S1) can be the same as described above.
  • Q 1 may be similarly including preferred embodiments and Q 1 in the compound (X11).
  • the ratio of the group 1 in the compound (X12) to the group 1 in the group 4 is 67 mol%.
  • the content of the biocompatible group in the compound (X12) is the total mass% of O— (CH 2 CH 2 O) n1 — and O— (CH 2 CH 2 O) n1 —H in the formula (X12). It is adjusted to 25 to 83% by mass.
  • the content of the biocompatible group and the content of the alkoxysilyl group in the compound (X12) can be the same as in the case of the compound (X11) including the preferred range.
  • R 6 is preferably a methyl group.
  • the content of the structure other than the biocompatible group and the alkoxysilyl group is preferably 10 to 50% by mass from the viewpoint of coexistence of cell non-adhesion and durability on the surface layer, particularly water resistance, More preferable is 30% by mass.
  • the weight average molecular weight of the compound (X1) is preferably from 100 to 10,000, more preferably from 500 to 2,000, from the viewpoint of easy availability of raw materials.
  • the weight average molecular weight of the compound (X1) (hereinafter sometimes referred to as “Mw”) is calculated by size exclusion chromatography.
  • the compound (X1) has been described above by taking polyoxyethylene glycol and polyoxyethylene glyceryl ether as examples of polyoxyethylene polyol.
  • polyoxyethylene polyols and the like similarly, the ratio of the group 1 to the group 1 in the group 4, the content of the bioaffinity group, the content of the alkoxysilyl group, etc. are appropriately adjusted to a desired ratio.
  • Compound (X1) can be produced.
  • Compound (X1) may further be a partially hydrolyzed condensate thereof.
  • the degree of condensation is appropriately adjusted so that the viscosity does not hinder the formation of the surface layer 5 on the surface of the bottom 3 as described below.
  • the Mw of the partially hydrolyzed condensate is preferably 1,000 to 1,000,000, more preferably 1,000 to 100,000.
  • the preferable range of Mw is the same also about the following partial hydrolysis cocondensates.
  • content (mass%) of the alkoxysilyl group in a partial hydrolysis-condensation product is handled as equivalent to content (mass%) of the alkoxy silyl group of a raw material silane compound.
  • the content (mass%) of the alkoxysilyl group can be calculated from the mixing ratio of the raw material silane compound.
  • Compound (X1) may be a partially hydrolyzed cocondensate obtained by partially hydrolyzing and condensing two or more kinds of compounds (X1) so as to contain a biocompatible group and an alkoxysilyl group in a desired ratio.
  • Compound (X1) is an alkoxysilane compound that does not have a biocompatible group with compound (X1), and the resulting partially hydrolyzed condensate is compound (X) in a desired ratio between the biocompatible group and the alkoxysilyl group. It may be a partially hydrolyzed cocondensate that is partially hydrolyzed and cocondensed so as to contain.
  • alkoxysilane compound having no biocompatible group examples include an alkoxysilane compound represented by the following formula 6. Si (R 20 ) 4-p (OR 21 ) p formula 6
  • R 20 is a monovalent organic group having no polyoxyethylene chain
  • R 21 is an alkyl group having 1 to 18 carbon atoms
  • p is an integer of 1 to 4.
  • R 20 and R 21 may be the same or different. From the viewpoint of production, R 20 and R 21 are preferably the same.
  • R 20 include alkyl groups having 1 to 18 carbon atoms, and a methyl group is preferred from the viewpoint of steric hindrance during the condensation reaction.
  • R 21 is preferably an alkyl group having 1 to 6 carbon atoms, more preferably a methyl group or an ethyl group.
  • the compound (X2) for example, a monomer containing a (meth) acrylate having a biocompatible group and a (meth) acrylate having an alkoxysilyl group, and optionally containing other (meth) acrylates other than these is included.
  • a copolymerized (meth) acrylate copolymer may be mentioned.
  • the raw material monomer contains each of the (meth) acrylates so that the obtained (meth) acrylate copolymer contains a biocompatible group and an alkoxysilyl group at a desired ratio as the compound (X). Adjust the amount.
  • Examples of the (meth) acrylate copolymer include a copolymer (X21) represented by the following formula (X21).
  • R 1 to R 6 , X ⁇ and a and b are the same as those in the formulas 1 to 4.
  • R 1 to R 3 are independently preferably a methyl group
  • R 4 and R 5 are independently preferably a methyl group.
  • R 6 is preferably a methyl group or a hydrogen atom.
  • a and b are preferably 2 independently.
  • n2 is an integer of 1 to 300, preferably 1 to 100, more preferably 1 to 20.
  • R 7 , R 8 , and t are the same as those in the above formula 5 including preferred embodiments.
  • R is a hydrogen atom or a methyl group independently in each unit.
  • R 10 is a hydrogen atom or a monovalent organic group having no bioaffinity group and alkoxysilyl group.
  • R 10 is preferably a hydrogen atom or an alkyl group having 1 to 100 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms.
  • the copolymer (X21) may be a random copolymer or a block copolymer.
  • Q 2 , Q 4 , and Q 5 may have an etheric oxygen atom between 2 and 10 carbon atoms, and the hydrogen atom may be a halogen atom such as a chlorine atom, a fluorine atom, It is a divalent hydrocarbon group which may be substituted with a hydroxyl group.
  • Q 2 is, -C 2 H 4 -, - C 3 H 6 -, - C 4 H 8 - are preferred, -C 3 H 6 -, - C 4 H 8 - are more preferable, and -C 3 H 6 -Is preferred.
  • Q 4 and Q 5 each independently, -C 2 H 4 -, - C 3 H 6 -, - C 4 H 8 - are preferred, -C 2 H 4 -, - C 3 H 6 - Gayori More preferred is —C 2 H 4 —.
  • Q 3 is a single bond or —O—Q 6 —, and Q 6 is the same as Q 2 .
  • Q 3 is preferably a single bond.
  • e represents the number of units having an alkoxysilyl group (hereinafter referred to as unit (A)) when the total number of units of the copolymer is 100.
  • f, g, h, and i are a unit having group 1 (4) (hereinafter referred to as unit (B1)), a unit having group 2 (hereinafter referred to as unit (B2)), and a unit having group 3. (Hereinafter referred to as the unit (B3)) and-(C—C (R) (C ( ⁇ O) OR 10 )) i — a copolymer (hereinafter referred to as the unit (C)).
  • the number when the total number of units is 100 is shown.
  • the content of the biocompatible group and the alkoxysilyl group (—Si (R 7 ) 3-t (OR 8 ) t ) in the copolymer (X21) can be adjusted.
  • the ratio of e to i in the copolymer (X21) is appropriately adjusted according to the solid content composition of the composition (Y).
  • the content of the biocompatible group in the copolymer (X21) is, for example, preferably 20 to 90% by mass, more preferably 25 to 83% by mass, further preferably 30 to 83% by mass, and 40 to 83% by mass. Particularly preferred.
  • the content of the alkoxysilyl group in the copolymer (X21) is preferably 1 to 70% by mass, more preferably 2 to 70% by mass, further preferably 2 to 25% by mass, and particularly preferably 2 to 15% by mass.
  • the copolymer (X21) is preferably a copolymer composed only of units (A) and units (B1).
  • the (meth) acrylate (A), (meth) acrylate ((meth) acrylate (A), unit (B1), unit (B2), unit (B3), and (meth) acrylate as a raw material of the unit (C) are respectively represented by ( B1), (meth) acrylate (B2), (meth) acrylate (B3), and (meth) acrylate (C).
  • (meth) acrylate (B1), (meth) acrylate (B2) and (meth) acrylate (B3) are collectively referred to as (meth) acrylate (B).
  • the meanings of the symbols are the same as those in the copolymer (X21).
  • (Meth) acrylate (A) is CH 2 ⁇ CR—COO—Q 2 —Si (R 7 ) 3 ⁇ t (OR 8 ) t , and CH 2 ⁇ CR—COO—Q 2 —Si (OR 8 ) 3 is preferable, and CH 2 ⁇ CR—COO— (CH 2 ) 3 —Si (OCH 3 ) 3 and CH 2 ⁇ CR—COO— (CH 2 ) 3 —Si (OC 2 H 5 ) 3 are particularly preferable.
  • n2 is more preferably 1-20.
  • the (meth) acrylate (B2) is CH 2 ⁇ CR—COO—Q 4 — (PO 4 ⁇ ) — (CH 2 ) a —N + R 1 R 2 R 3 , and CH 2 ⁇ CR—COO— ( CH 2 ) 2 — (PO 4 ⁇ ) — (CH 2 ) 2 —N + (CH 3 ) 3 is preferred.
  • the (meth) acrylate (B3) is CH 2 ⁇ CR—COO—Q 5 —N + R 4 R 5 — (CH 2 ) b —X — , and CH 2 ⁇ CR—COO— (CH 2 ) 2 — N + (CH 3 ) 2 —CH 2 —COO — is preferred.
  • (Meth) acrylate (C) is CH 2 ⁇ CR—COO—R 10 and includes methyl methacrylate, butyl methacrylate, dodecyl methacrylate and the like.
  • a raw material (meth) acrylate is prepared so that e to i are in the above predetermined ratio, and in the presence of a polymerization initiator, conventionally known solution polymerization, bulk polymerization, suspension It can be obtained by copolymerization by a method such as turbid polymerization or emulsion polymerization.
  • the content of the structure other than the bioaffinity group and the alkoxysilyl group is preferably 15 to 55% by mass from the viewpoint of coexistence of cell non-adhesion and durability on the surface layer, particularly water resistance. 15 to 40% by mass is more preferable.
  • Mw of compound (X2) is preferably from 1,000 to 1,000,000, more preferably from 20,000 to 100,000, from the viewpoint of ease of production. Mw of compound (X2) is calculated by size exclusion chromatography.
  • Compound (X2) may further be a partially hydrolyzed condensate thereof.
  • the degree of condensation is appropriately adjusted so that the viscosity does not hinder the formation of the surface layer 5 on the surface of the bottom 3 as described below.
  • the Mw of the partially hydrolyzed condensate is preferably 2,000 to 2,000,000, and more preferably 30,000 to 300,000. The preferable range of Mw is the same also about the following partial hydrolysis-condensation products.
  • Compound (X2) may be a partially hydrolyzed cocondensate obtained by partially hydrolyzing and condensing two or more kinds of compounds (X2) so as to contain a biocompatible group and an alkoxysilyl group in a desired ratio.
  • Compound (X2) is an alkoxysilane compound having no biocompatible group with compound (X2), and the resulting partially hydrolyzed condensate is compound (X) in a desired ratio between the biocompatible group and the alkoxysilyl group. It may be a partially hydrolyzed cocondensate that is partially hydrolyzed and cocondensed so as to contain.
  • Composition (Y) may contain one type of compound (X) alone, or may contain two or more types. When using 2 or more types of compounds (X), it is preferable to comprise 2 or more types only by a compound (X1), or to comprise 2 or more types only by a compound (X2).
  • the solid content contained in the composition (Y) is composed only of the compound (X)
  • the content of the biocompatible group and the content of the alkoxysilyl group in the compound (X) are within the predetermined range.
  • the ratio of the compound (X) in the solid content in the composition (Y) is, for example, preferably 25 to 100% by mass, more preferably 50 to 100% by mass, and further preferably 75 to 100% by mass.
  • Composition (Y) may contain other components other than compound (X). As other components, other solid content other than the compound (X) contained as solid content in the surface layer 5 is mentioned. When the surface layer 5 is formed by dry coating, the composition (Y) contains only solid content. On the other hand, when the surface layer is formed by wet coating, a liquid medium that is removed during the surface layer formation is further contained as the other component.
  • Other solid content may be a component that cures similarly to the compound (X), or may be a non-curable component.
  • examples of other solids include impurities, functional additives, catalysts, and the like that could not be removed from the raw materials and by-products used in the production process of compound (X).
  • the functional additive include an ultraviolet absorber, a light stabilizer, an antioxidant, and a leveling agent.
  • the other solid content is solid content in which the obtained surface layer 5 can satisfy the range of the TOC elution amount.
  • the other solid content is preferably a component capable of hydrolytic condensation with the compound (X), more preferably a hydrolyzable silyl group-containing component other than the compound (X), and more preferably an alkoxysilyl group-containing component.
  • the composition (Y) does not contain a solid content other than the compound (X).
  • the compound (X) contains a bioaffinity group in a proportion of 25 to 83% by mass and an alkoxysilyl group of 2 to 70% by mass. % Content is preferable.
  • the catalyst a conventionally known catalyst used for the hydrolysis-condensation reaction of an alkoxysilyl group is used without particular limitation.
  • the catalyst include hydrochloric acid, nitric acid, acetic acid, sulfuric acid, phosphoric acid, sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid, bases such as sodium hydroxide, potassium hydroxide and ammonia, and aluminum.
  • titanium based metal catalysts include hydrochloric acid, nitric acid, acetic acid, sulfuric acid, phosphoric acid, sulfonic acids such as methanesulfonic acid and p-toluenesulfonic acid, bases such as sodium hydroxide, potassium hydroxide and ammonia, and aluminum.
  • titanium based metal catalysts titanium based metal catalysts.
  • an alkoxysilane compound having no biocompatible group and / or a partial hydrolysis condensate thereof may be used as the other solid content.
  • the alkoxysilane compound not having a biocompatible group the above compound 6 is preferable.
  • an alkoxysilane compound having no biocompatible group is used as a partially hydrolyzed condensate, its Mw is preferably 100 to 100,000, more preferably 100 to 10,000.
  • the composition (Y) contains the compound (X1) as a solid content and an alkoxysilane compound having no biocompatible group
  • the total of the compound (X1) and the alkoxysilane compound having no biocompatible group is preferably 25 to 83% by mass
  • the alkoxysilyl group content is preferably 2 to 70% by mass. That is, it is preferable not to contain a compound having a biocompatible group and / or an alkoxysilyl group other than these as a solid content.
  • the ratio of the alkoxysilane compound having no biocompatible group to 100 parts by mass of the compound (X1) is preferably 50 to 200 parts by mass, and more preferably 50 to 100 parts by mass.
  • the content of the solid (other than the compound (X1), the alkoxysilane compound having no bioaffinity group, and the catalyst in the total solid content is the total. Is preferably 40% by mass or less, more preferably 20% by mass or less, and most preferably not contained.
  • an alkoxysilane compound other than the compound (X2) may be used as necessary.
  • the total content of compound (X2) and other solids other than the catalyst in the total solid content is preferably 40% by mass or less, and 20% by mass. The following is more preferable and most preferably not included.
  • the liquid medium contained in the composition (Y) only needs to be able to uniformly dissolve or disperse the solid content including the compound (X). It can select suitably from them. Since the liquid medium needs to be finally removed when the surface layer is formed, the boiling point thereof is preferably in the range of 60 to 160 ° C., more preferably 60 to 120 ° C.
  • liquid medium specifically, alcohols, ethers, ketones, acetate esters and the like are preferable.
  • Specific examples of the liquid medium satisfying the boiling point conditions include isopropyl alcohol (IPA), ethanol, propylene glycol monomethyl ether, 2-butanone and the like. These may be used alone or in combination of two or more.
  • the liquid medium can contain water for hydrolyzing the hydrolyzable silyl group-containing component containing the compound (X), but preferably contains no water from the viewpoint of storage stability. However, even when the liquid medium does not contain water, the hydrolyzable silyl group-containing component containing the compound (X) can be hydrolyzed by moisture in the atmosphere, so the water content in the liquid medium is not essential. .
  • the solid content concentration in the composition (Y) is preferably 0.1 to 50% by mass, more preferably 1 to 30% by mass, and further preferably 1 to 15% by mass.
  • the film thickness of the surface layer formed by wet coating using the composition (Y) tends to be within a suitable range that can sufficiently exhibit the anti-algae property and its durability.
  • the solid content concentration of the composition (Y) can be calculated from the mass after the composition (Y) is vacuum-dried at 80 ° C. for 3 hours and the mass of the composition (Y) before heating. You may calculate from the quantity of the total solid and liquid medium mix
  • composition (Y) in the case of containing a liquid medium preferably contains 50 to 99.5% by mass of the liquid medium, more preferably 65 to 99% by mass, and further preferably 70 to 99% by mass. .
  • the method for producing the composition (Y) is not particularly limited.
  • the solid content containing the compound (X) further includes a liquid medium
  • the solid content and the liquid medium may be mixed so as to have the above content.
  • the compound (X) is contained, the content of the biocompatible group in the solid content is 25 to 83% by mass, and the content of the alkoxysilyl group is Since it is 2 to 70% by mass, the surface layer 5 made of a cured product of the composition formed on the surface of the bottom 3 using the composition (Y) has excellent ability to suppress cell adhesion and durability. Particularly excellent in water resistance.
  • the thickness of the surface layer 5 is preferably 0.5 to 20 nm, particularly preferably 0.5 to 10 nm. If the thickness of the surface layer 5 is equal to or greater than the lower limit of the above range, the performance of suppressing cell adhesion and durability, particularly water resistance, is easily exhibited. If the thickness of the surface layer 5 is not more than the upper limit of the above range, the strength is excellent.
  • the thickness of the surface layer 5 is determined by measurement with an X-ray reflectivity measuring apparatus typified by Rigaku ATX-G.
  • Examples of dry coating include vacuum deposition, CVD, and sputtering.
  • a vacuum deposition method can be suitably used.
  • the vacuum deposition method can be subdivided into resistance heating method, electron beam heating method, high frequency induction heating method, reactive deposition, molecular beam epitaxy method, hot wall deposition method, ion plating method, cluster ion beam method, etc. Any method can be applied.
  • a resistance heating method can be suitably used.
  • the vacuum deposition apparatus is not particularly limited, and a known apparatus can be used.
  • the film forming conditions when using the vacuum deposition method vary depending on the type of the vacuum deposition method to be applied, but in the case of the resistance heating method, the degree of vacuum before deposition is preferably 1 ⁇ 10 ⁇ 2 Pa or less, and preferably 1 ⁇ 10 ⁇ 3 Pa.
  • the heating temperature of the vapor deposition source is not particularly limited as long as the vapor deposition source (the composition for dry coating (Y)) has a sufficient vapor pressure. Specifically, 30 to 400 ° C is preferable, and 50 to 300 ° C is particularly preferable.
  • the heating temperature is equal to or higher than the lower limit of the above range, the film formation rate is good. If it is below the upper limit of the said range, the surface layer 5 can be formed in the predetermined area
  • the temperature of the bottom 3 during vacuum deposition is preferably in the range from room temperature (20 to 25 ° C.) to 200 ° C. If the temperature of the bottom part 3 is room temperature or higher, the film formation rate is good. If the temperature of the bottom 3 is 200 ° C. or lower, a film can be formed on the substrate without performing a condensation reaction, and can be covalently bonded to the substrate immediately after the film formation. As for the upper limit of the temperature of the bottom part 3, 100 degreeC is more preferable.
  • the composition (Y) is adhered to a predetermined region of the upper surface 3a of the bottom 3 so that the surface layer 5 to be obtained has the above preferable thickness. It is preferably carried out so as to be 5 to 10 mg / m 2 .
  • Adhesion amount of the compound (X) is more preferably 0.5 ⁇ 5mg / m 2, particularly preferably 1.0 ⁇ 5.0mg / m 2.
  • the reaction of the compound (X) proceeds substantially simultaneously by adjusting the temperature of the bottom 3 as described above during the film formation.
  • the silanol group produced by the hydrolysis reaction from the alkoxysilyl group of the compound (X) is partially condensed to bond the molecules.
  • the silanol group generated from the compound (X) undergoes a condensation reaction with the glass material —OH group of the upper surface 3a of the bottom 3, and the bottom 3 and the surface layer 5 are bonded by a covalent bond.
  • the composition (Y) containing the liquid medium described above is applied to a predetermined surface of the bottom 3 to obtain a coating film (hereinafter also referred to as “application process”). ) And obtaining a surface layer by curing the coating film (hereinafter also referred to as “curing step”).
  • Examples of the method for applying the composition (Y) to the surface of the bottom 3 in the application step include dip coating, spin coating, wipe coating, spray coating, squeegee coating, die coating, ink jet, and flow coating. , Roll coating method, casting method, Langmuir-Blodgett method, gravure coating method and the like.
  • Heating is preferred as a method for curing the coating film in the curing step.
  • the heating temperature is preferably 50 to 200 ° C., more preferably 80 to 150 ° C., depending on the type of compound (X).
  • the heating temperature is preferably a temperature equal to or higher than the boiling point of the liquid medium.
  • process treatments other than the coating process and the drying process may be included as necessary.
  • a treatment such as humidification may be performed at the same time as the curing step, or before or after the curing step.
  • the excess compound which is a compound in the surface layer 5 may be removed as necessary.
  • Specific methods include, for example, a method of pouring a solvent, for example, a compound used as a liquid medium of the composition (Y), into the surface layer 5, or a solvent, for example, a compound used as a liquid medium of the composition (Y).
  • a method of wiping with a damp cloth is mentioned.
  • the cell culture container of the present invention has been described above by taking the cell culture container 10 shown in FIGS. 1 and 2 as an example. Further, the surface layer 5 has been described by taking the surface layer 5 formed using the composition (Y) as an example.
  • the configuration of the cell culture vessel 10 can be appropriately changed as long as it does not contradict the gist of the present invention and if necessary.
  • the cell culture container of the present invention has one opening 1 formed by the bottom 3 and the side wall 2 as shown in FIGS. 1 and 2, and the region of the upper surface 3 a of the bottom 3 facing the opening 1.
  • S may be a cell culture container having a plurality of the units, where the structure having the plurality of recesses 4 in which the surface layer 5 is formed is a unit.
  • FIG. 4 is a plan view schematically showing an example of a cell culture container having a plurality of the units.
  • the cell culture container 20 shown in FIG. 4 has a rectangular shape in plan view, and has a configuration in which four units are arranged vertically at substantially equal intervals, and the configuration is arranged in four rows at substantially equal intervals in the horizontal direction. It is.
  • Each unit such as the opening 1, the side wall 2, the bottom 3, the recess 4, the surface layer 5, and the microspace M in one unit can be the same as described in the cell culture container 10.
  • the side wall 2 is set as the structure shared by adjacent units.
  • the symbol M (4) is a symbol that indicates the micro space M and the concave portion 4 together, similarly to M (4) in FIG. 1.
  • the size and shape of the cell culture container 20 in plan view can be adjusted as appropriate according to the application. From the viewpoint of handleability, the shape is preferably rectangular, and the length and width are each preferably in the range of 75 to 150 mm.
  • the number of units that the cell culture container 20 has is appropriately adjusted according to the size of the cell culture container 20 and the size of the unit.
  • the number of units in the cell culture vessel 20 is usually about 6 to 1536, preferably 6 to 384.
  • the bottom 3 is a substantially plate-like glass plate having an outer periphery having the same shape and size as the outer periphery of the cell culture container 20, for example, in a predetermined region S corresponding to each unit on the upper surface 3 a.
  • the number of the concave portions 4 can be as follows.
  • the side wall 2 may be a side wall 2 integrally formed in a lattice shape so that a plurality of openings 1 having a predetermined size are formed in a predetermined arrangement on the upper surface 3a of the bottom portion 3.
  • the cell culture container of the present invention is subjected to sterilization treatment such as EOG sterilization (sterilization using ethylene oxide gas at 60 ° C.) or autoclave sterilization (sterilization in saturated water vapor at 121 ° C. for 20 minutes). Subject to culture.
  • sterilization treatment such as EOG sterilization (sterilization using ethylene oxide gas at 60 ° C.) or autoclave sterilization (sterilization in saturated water vapor at 121 ° C. for 20 minutes).
  • the cell culture container of the present invention is suitably used for producing spheroids.
  • the main body of the cell culture container 10 is rocked.
  • a plurality of cells are uniformly distributed and arranged in the plurality of microspaces M.
  • the cells are cultured and incubated for several hours to several days, for example, in a culture apparatus maintained at 37 ° C. under saturated steam in a 5% carbon dioxide atmosphere.
  • the cells in the micro space M adhere to each other without forming an adhesion to the inner surface to form a spheroid. At this time, the cells aggregate three-dimensionally according to the shape and size of the micro space M. In the cell culture container of the present invention, this makes it possible to obtain spheroids having a uniform size with high efficiency.
  • the bottom 3 is made of a glass material, and after producing the spheroid, the cell culture container 10 can be used as it is for microscopic observation, in particular, fluorescence microscopic observation, so that high-precision observation is possible.
  • the ratio of ⁇ 5% of the average diameter of spheroids is 20% or more, preferably 30% or more, and more preferably 50% or more.
  • Examples 1 to 9 are production examples of the bottom with a surface layer (however, Example 9 is only the bottom), Examples 1 to 7 are Examples, and Examples 8 and 9 are Comparative Examples. Examples 11 to 19 are examples of cell culture vessels.
  • the configuration of the recesses is substantially the same as that shown in FIGS. 3A and 3B, except that the following predetermined number of regions S in which the number and size of the recesses are as shown below are arranged: Produced two types of bottom parts having a configuration substantially similar to that of the bottom part 3 of the cell culture container 20 shown in FIG.
  • the bottom 3X has a configuration in which 384 regions S having the following concave configuration 1 are arranged on one main surface of a glass substrate having a length of 108 mm, a width of 75 mm, and a thickness of 0.6 mm. Each region S is arranged so that a lattice-shaped side wall is provided in a flat region Sf between the regions S.
  • Concave configuration 1 is that the region S is 3.0 mm ⁇ 3.0 mm, the shape of the concave portion 4 is hemispherical, the number of the concave portions 4 in the region S is 156, the depth H of the concave portion 4 is 100 ⁇ m, and the concave opening surface
  • the diameter Dh of 4a is 200 ⁇ m, the distance Dx between the centers of the recess opening surfaces 4a in the adjacent recesses 4 is 240 ⁇ m, and Dx / Dh is 1.2.
  • the bottom 3Y has a configuration in which 96 regions S having the following recess configuration 2 are arranged on one main surface of a glass substrate having a length of 108 mm, a width of 75 mm, and a thickness of 0.6 mm. Each region S is arranged so that a lattice-shaped side wall is provided in a flat region Sf between the regions S.
  • Concave configuration 2 is that the region S is 12.0 mm ⁇ 12.0 mm, the shape of the concave portion 4 is hemispherical, the number of the concave portions 4 in the region S is 250, the depth H of the concave portions 4 is 250 ⁇ m, and the concave opening surface
  • the diameter Dh of 4a is 500 ⁇ m
  • the distance Dx between the centers of the recess opening surfaces 4a in the adjacent recesses 4 is 500 ⁇ m
  • Dx / Dh is 2.0.
  • a photosensitive resin composition with a spin coater on Cr layers on both main surfaces of a glass substrate having a Cr layer on both main surfaces (Dragonrail (registered trademark), manufactured by AGC, length 108 mm, width 75 mm, thickness 0.6 mm) (Product name: Glives N-100, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was applied, and soft baking and pre-baking were performed.
  • the non-exposed portion is irradiated with ultraviolet rays through the Cr mask corresponding to the concave opening surface 4a, and the other main surface is not passed through the mask, and post-exposure baking is performed. went.
  • the unexposed part was dissolved and removed with a developing solution to obtain a glass substrate on which a cured film (protective film) of the photosensitive resin composition was formed except for the recessed part forming region.
  • etching was performed until the concave portion 4 having a predetermined size was formed.
  • the glass substrate with the protective film after etching is immersed in a stripping solution, the cured film of the photosensitive resin composition and the Cr layer are stripped, and a predetermined size in the predetermined region on one main surface that becomes the upper surface 3a.
  • the bottom 3X and the bottom 3Y having the shape-shaped recess 4 were obtained.
  • Compound (X11-1) compound of the structure below (X11-1), namely, 2- [methoxy (polyoxyethylene) 9-12 propyl] as trimethoxysilane, commercially available, SIM6492.72 (trade name, Gelest)) was prepared.
  • Compound (X11-1) is a compound in which the terminal hydrogen atom of compound (X11) is substituted with a methyl group, n1 is 9 to 12, Q 1 is —C 3 H 6 —, t is 3, and R 8 is a methyl group It is.
  • Compound (X11-2) Compound (X11-2) having the same molecular structure except that the number of repeating oxyethylene groups in the compound (X11-1) is 6 to 9, ie, 2- [methoxy (polyethyleneoxy) 6 A commercially available product, SIM6492.7 (trade name, manufactured by Gelest Co., Ltd.) was prepared as -9 propyl] trimethoxysilane.
  • Compound (X12-1) Compound (X12-1) having the following structure is the same as Compound (X12), in which n1 is 7 to 8, Q 1 is —CONHC 3 H 6 —, t is 3, and R 8 is ethyl. This compound was synthesized by the following method.
  • reaction mixture was heated and decompressed by a rotary evaporator to remove triethylamine to obtain a compound (X12-1) as a colorless transparent liquid.
  • the yield was 327 g, and the yield was 100%.
  • Example 1 Two types of bottoms 3X and 3Y having different recess configurations prepared above were cleaned, and the compound (X11-1) was vacuum-deposited on the surface on which the recess 4 was formed (back pressure 3.4 ⁇ 10 ⁇ 4 Pa, substrate The surface layer 5 having a film thickness of 2 nm was formed, and the bottom portion AX with the surface layer was obtained from the bottom portion 3X, and the bottom portion AY with the surface layer was obtained from the bottom portion 3Y.
  • Example 2 In Example 1, except that compound (X11-2) was used instead of compound (X11-1), bottom BX with a surface layer was obtained from bottom 3X, and bottom BY with a surface layer was obtained from bottom 3Y.
  • Example 3 A solution (solid content concentration: 30% by mass) containing the copolymer (X21-1) was mixed with 1-methoxy-2-propanol, diacetone alcohol and a 0.1% by mass nitric acid aqueous solution at a mass ratio of 51: 9: 40. Was added to the solvent so that the solid content concentration would be 10% by mass and stirred at 50 ° C. for 16 hours to obtain a liquid composition containing a partial hydrolysis-condensation product of copolymer (X21-1).
  • Table 2 shows Mw of the obtained partial hydrolysis-condensation product.
  • this liquid composition was dissolved in a mixed solvent of 85:15 (mass ratio) of methoxypropanol and diacetone alcohol so that the solid content concentration was 1.0% by mass to obtain a surface layer forming composition. .
  • Examples 4, 5, and 6 In the same manner as in Example 3, except that the copolymer (X21-1) was changed to the copolymer (X21-2), the copolymer (X21-3), or the compound (X12-1), The bottom portions DX, EX, FX with surface layer were obtained from 3X, and the bottom portions DY, EY, FY with surface layer were obtained from the bottom portion 3Y.
  • Table 2 or Table 1 shows Mw of the partially hydrolyzed condensate of copolymer (X21-2), copolymer (X21-3), or compound (X12-1).
  • Example 7 The homopolymer (M) was dissolved in a mixed solvent of 85:15 (mass ratio) of methoxypropanol and diacetone alcohol so that the solid content concentration was 1.0% by mass to obtain a surface layer forming composition. Using the obtained composition for forming a surface layer, a bottom portion GX with a surface layer was obtained from the bottom portion 3X and a bottom portion GY with a surface layer was obtained from the bottom portion 3Y in the same manner as in Example 3.
  • Example 8 In the same manner as in Example 3, except that the copolymer (X21-1) was changed to the compound (Cf1), a bottom HX with a surface layer was obtained from the bottom 3X, and a bottom HY with a surface layer was obtained from the bottom 3Y.
  • Table 1 shows Mw of the partial hydrolysis-condensation product of the compound (Cf1).
  • Example 9 As Example 9, two types of bottom portions 3X and 3Y having different recess configurations produced as described above were used as they were.
  • the obtained washed substrate of 23 mm ⁇ 25 mm was placed in a 35 mm ⁇ polystyrene petri dish (1000-035: manufactured by AGC Techno Glass), and sterilized by UV irradiation on a clean bench for 16 hours.
  • Cell suspension using MEM supplemented with 10% FBS as a medium so that TIG-3 cells confirmed to have a cell survival rate of 97% or more at seeding were 130,000 cells per 3 mL.
  • Cells were seeded by dispensing 3 mL of the cell suspension into a petri dish on which the evaluation substrate was installed, and cultured in a 37 ° C. incubator for 24 hours. Thereafter, the observation area was set to a range of 1.8 mm ⁇ 1.3 mm, and in three observation areas, microscopic observation (10 times) was performed, and adhesion was determined based on the presence or absence of cell extension based on the following criteria.
  • the state in which the cells spread in an elliptical shape or a perfect circular shape with respect to the evaluation substrate is defined as cell extension.
  • cells are not attached to the observation area at all locations. “ ⁇ ”: In at least one observation region, cells are attached to a part thereof. “X”: The cell has adhered to the whole observation area about all the places.
  • Example 11 to 14 The bottom portions AX to DX with the surface layer having 384 regions S of the concave structure 1 obtained as described above were washed by the same washing method as in the cell adhesion evaluation.
  • the outer periphery size is 108 ⁇ 75 mm, the number of partitions (corresponding to the region S) partitioned by the lattice so as to correspond to the flat region Sf of the bottom portions AX to DX with the surface layer, and the height is 10 mm.
  • the side walls 2X (manufactured by AGC Co., Ltd., material: polystyrene) were adhered to the surface layer of the flat region Sf between the regions S of the bottom portions AX to DX with the surface layer after washing with a double-sided tape, and the cell shown in plan view in FIG. 384-well microwell plate type culture vessels (bottom size: 108 ⁇ 75 mm, depth: 10 mm) 11 to 14 of Examples 11 to 14 having the same number as the culture vessel 20 but 384 units were prepared.
  • Example 15 to 19 Similarly to the above, the outer peripheral size formed in a lattice shape so as to correspond to the bottom areas AY, CY to FY having 96 regions S of the concave structure 2 and the flat areas Sf of the bottom areas AY, CY to FY with the surface layers.
  • FIG. 5 shows the spheroid diameter distribution when evaluated using the cell culture vessel 11 of Example 11.
  • the number of spheroids having a diameter of 60 ⁇ m is the number of spheroids having a diameter of more than 55 ⁇ m and not more than 60 ⁇ m.
  • the cell culture container of the present invention If the cell culture container of the present invention is used, spheroids having a uniform size can be produced with high efficiency, and microscopic observation, particularly fluorescence microscopic observation, can be easily performed. Therefore, it is suitable for use in drug discovery screening for investigating drug efficacy and toxicity.
  • the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2018-016737 filed on Feb. 1, 2018 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

均一な大きさのスフェロイドを高効率に作製し、顕微鏡観察、特には蛍光顕微鏡観察を簡便に実施できる細胞培養容器の提供。 開口部を形成する側壁と、透光性のガラス材料からなり、前記開口部の下端を塞ぐとともに、上面が前記開口部から臨む領域に複数の凹部を有する形状である底部と、前記凹部の内面に形成された細胞接着を抑制する表層と、を有する細胞培養容器。

Description

細胞培養容器
 本発明は、細胞培養容器に関し、特には、均一な大きさのスフェロイドを高効率に作製し、顕微鏡観察を簡便に実施できる細胞培養容器に関する。
 生体内の細胞周囲環境や形態を模倣してより生体内に近い機能をもつ細胞を取得する新たな培養方法が開発されている。特にスフェロイド(細胞凝集塊)培養技術は細胞の相互作用を維持できる優れた方法であり、心筋細胞、がん細胞スフェロイドを作製し、薬効や毒性を調査する創薬スクリーニング用途への応用が期待されている。近年、このようにスフェロイドを形成させる技術に加えて、スフェロイドの大きさをコントロールする技術が注目されるようになってきた。
 例えば、特許文献1には、細胞を収容し、該細胞の培養と観察が可能な凹部が複数設けられた細胞培養容器において、凹部の大きさおよび形状を規定することで、スフェロイドの大きさをコントロールしながら大量に作製する技術が記載されている。特許文献1では、凹部の大きさおよび形状を規定するために樹脂製の細胞培養容器を用いているが、創薬スクリーニング用途において、樹脂製の細胞培養容器を用いた場合、容器材質による蛍光発光が高く、高精度な観察が困難であった。高解像度での観察が可能、もしくは、細胞内蛍光を即時的にかつ高精度に観察できるスフェロイド作製の可能な低蛍光性の細胞培養容器が求められている。
国際公開第2014/196204号
 本発明は、上記観点からなされたものであって、均一な大きさのスフェロイドを高効率に作製し、顕微鏡観察、特には蛍光顕微鏡観察を簡便に実施できる細胞培養容器の提供を目的とする。
 本発明は、以下の構成を要旨とする。
[1]開口部を形成する側壁と、透光性のガラス材料からなり、前記開口部の下端を塞ぐとともに、上面が前記開口部から臨む領域に複数の凹部を有する形状である底部と、前記凹部の内面に形成された細胞接着を抑制する表層と、を有する細胞培養容器。
[2]前記底部上面の前記開口部から臨む領域の平面視における全面積に対して、前記凹部の占める平面視における合計面積の割合が40%以上である[1]の細胞培養容器。
[3]前記開口部と、前記開口部から臨む前記底部上面の領域に、前記表層が形成された複数の凹部を有する構成を、複数備えた[1]または[2]の細胞培養容器。
[4]顕微Raman分光により100倍の対物レンズを用いて測定される、前記ガラス材料を532nmの光で励起した際の584nmでの蛍光強度の値を、石英ガラスを532nmの光で励起した際の584nmでの蛍光強度の値で除した値が、10以下である[1]~[3]のいずれかの細胞培養容器。
[5]前記表層は前記底部との間で共有結合を有する[1]~[4]のいずれかの細胞培養容器。
[6]前記表層は40℃の水に7日間浸漬した場合に、前記表層の単位面積1cm当たりの水に対する全有機炭素(TOC)の溶出量が10mg/L以下である[1]~[5]のいずれかの細胞培養容器。
[7]前記表層と前記底部の間に酸化ケイ素層を有する[1]~[6]のいずれかの細胞培養容器。
[8]前記表層が生体親和性基を有する[1]~[7]のいずれかの細胞培養容器。
[9]前記生体親和性基は、下式1で表される基、下式2で表される基および下式3で表される基からなる群から選ばれる少なくとも1種を含む[8]の細胞培養容器。
[10][1]~[9]のいずれかの細胞培養容器を用いる、創薬スクリーニング方法。 
Figure JPOXMLDOC01-appb-C000003
 ただし、式1中、nは1~300の整数であり、式1で表される基のうち50~100モル%は、下式4で表される基中の式1で表される基である。式4におけるnは1~300の整数であり、Rは水素原子または炭素数1~5のアルキル基である。
 式2中、R~Rはそれぞれ独立に炭素数1~5のアルキル基であり、aは1~5の整数である。
 式3中、RおよびRはそれぞれ独立に炭素数1~5のアルキル基であり、Xは下式3-1で表される基または下式3-2で表される基であり、bは1~5の整数である。
Figure JPOXMLDOC01-appb-C000004
 本発明によれば、均一な大きさのスフェロイドを高効率に作製し、顕微鏡観察、特には蛍光顕微鏡観察を簡便に実施できる細胞培養容器が提供できる。
本発明の実施形態の細胞培養容器の一例における平面図である。 図1に示す細胞培養容器のX-X線における断面模式図である。 図1に示す細胞培養容器の底部の平面図である。 図3Aに示す底部のX-X線における断面模式図である。 本発明の実施形態の細胞培養容器の他の一例を示す平面図である。 実施例の細胞培養容器で得られたスフェロイドの直径の分布を示すグラフである。
 以下に、本発明の実施形態を図面を参照しながら説明する。本発明は下記説明に限定して解釈されるものではない。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に属し得る。また、以下の実施形態、および変形例を任意に組み合わせた態様も好適な例である。
 本明細書において、式で表される化合物または基は、その式の番号を付した化合物または基としても表記し、例えば、式1で表される化合物は、化合物1とも表記する。
 本明細書において、数値範囲を表す「~」では、上下限を含む。
 「(メタ)アクリレート」は、アクリレートとメタクリレートの総称である。
 共重合体における「単位」とは、単量体が重合することによって形成される該単量体に由来する部分を意味する。
 「生体親和性基」とは、細胞が材料表面に接着して動かなくなることを抑制する性質を有する基を意味する。
 「細胞」とは、生体を構成する最も基本的な単位であり、細胞膜の内部に細胞質と各種の細胞小器官をもつものを意味する。DNAを内包する核は、細胞内部に含まれても含まれなくてもよい。
 動物由来の細胞には、生殖細胞(精子、卵子等)、生体を構成する体細胞、幹細胞、前駆細胞、生体から分離された癌細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変された細胞、生体から分離され人為的に核が交換された細胞等が含まれる。
 生体を構成する体細胞には、線維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、骨髄細胞、周皮細胞、樹枝状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(例えば、平滑筋細胞、骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、単核細胞等が含まれる。
 体細胞には、皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液、心臓、眼、脳、神経組織等の任意の組織から採取される細胞等が含まれる。
 幹細胞とは、自分自身を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞であり、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞等が含まれる。
 前駆細胞とは、前記幹細胞から特定の体細胞または生殖細胞に分化する途中の段階にある細胞である。
 癌細胞とは、体細胞から派生して無限の増殖能を獲得した細胞である。
 細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞であり、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮頸癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、CHO(チャイニーズハムスター卵巣細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five、Vero等が含まれる。
 図1は本発明の実施形態の細胞培養容器の一例を概略的に示す平面図であり、図2は、図1に示す細胞培養容器の断面模式図である。図3Aは底部の平面図を示し、図3Bは図3Aにおける底部のX-X線における断面模式図を示す。本発明の細胞培養容器は、具体的には、被培養物である細胞を培養しつつ培養の過程で細胞を三次元的に凝集させて所望の大きさのスフェロイドを得る、スフェロイドの作製に用いられる。
 図1および図2に示す細胞培養容器10は、開口部1を形成する側壁2と、開口部1の下端を塞ぐ、透光性のガラス材料からなる底部3を有する。図3A、図3Bに示すとおり底部3は、底部3の上面3aが、開口部1から臨む領域Sに、複数の凹部4を有する形状である。細胞培養容器10において、底部3の上面3aは、開口部1から臨む領域Sにおいて、凹部4の内面を含む、全面が細胞接着を抑制する表層5で覆われた構成である。
 底部3において、上面3aの凹部4を除く領域および上面3aに対向する下面3bの全体は平坦である。底部3において下面3bと上面3aの凹部4を除く領域は互いに平行の関係にあり、底部3は全体が略平板状の形状を呈する。以下、上面3aの領域Sにおいて、凹部4を除く領域を、平坦領域Sfという。なお、底部3は、必要に応じて、下面3bと平坦領域Sfとが同じ曲率を有する板状体であってもよい。ただし、細胞培養後、細胞培養容器10をそのまま、蛍光顕微鏡観察等の顕微鏡観察に用いる場合には、底部3は全体が略平板状であるのが好ましい。
 表層5の厚さは基本的に底部3の厚さに比べて極めて小さく、領域Sにおいて底部3の上面3a上に形成された表層5の表面形状は、底部3の上面3aの表面形状に追従する。したがって、底部3の上面3aの形状は、表層5の表面形状にそのまま置き換えることができる。細胞培養容器10においては、凹部4の内面に形成された表層5の凹状の表面と、底部3の上面3aの平坦領域Sf上に形成された表層5の表面を凹部4上に延長した面で囲まれたマクロ空間Mで主として細胞が培養される。マクロ空間Mは、底部3が有する凹部4が内側に有する空間(凹部4の内面と凹部開口面4aで囲まれる空間)と同じ形状、大きさとして扱うことができる。したがって、図1および図2においては、マクロ空間に対して、マクロ空間自体を示す符号Mに凹部を示す符号4を合わせて、M(4)を付した。ここで、凹部開口面4aとは、凹部4の上端を構成する開口面である。
 底部3の厚さは、上面3aの平坦領域Sfと下面3bとの距離であり、顕微鏡観察しやすくかつ十分な強度を持つという点で、0.3mm以上1.75mm以下が好ましい。底部3の厚さは、0.35mm以上がより好ましく、0.45mm以上がさらに好ましい。底部3の厚さは、1.70mm以下がより好ましく、1.50mm以下がさらに好ましい。顕微鏡観察のしやすさ及び細胞培養容器強度の観点から、底部3の厚さは、0.35mm以上1.70mm以下がより好ましく、0.40mm以上1.50mm以下がさらに好ましい。
 凹部4の形状および大きさは培養する細胞の種類、目標とするスフェロイドの大きさ、培養条件等により適宜調整される。所望の大きさのスフェロイドを効率よく作製する観点から、凹部4の形状は、半球状、凹部4の最深部4bから凹部開口面4aに向かって拡開する円錐状、円錐台状が好ましく、半球状が特に好ましい。なお、半球状とは、球の略半分が欠けた形状をいい、球の半分の形状に限定されない。さらに、図3Aに示すように平面視で凹部を見た場合の凹部4の形状は円形状であるが、これに限定されず、例えば、楕円形状であってもよい。
 図3Aおよび図3Bに示す底部3における凹部4は、半球状に形成されている。凹部4の形状が半球状の場合を例に、凹部4の大きさを説明する。凹部4において、最深部4bとは平坦領域Sfから最も深い位置をいう。また、底部3の厚さ方向において、凹部開口面4aと平坦領域Sfとは同じ位置にある。
 凹部開口面4aの直径Dhは、播種した細胞の分散性の点から10μm以上1000μm以下が好ましい。凹部開口面4aの直径Dhは、100μm以上がより好ましく、150μm以上がさらに好ましい。凹部開口面4aの直径Dhは、800μm以下がより好ましく、700μm以下がさらに好ましい。細胞分散性の観点から、直径Dhは、100μm以上800μm以下がより好ましく、150μm以上700μm以下がさらに好ましい。
 凹部4の最深部4bから凹部開口面4aまでの距離に相当する凹部4の深さHは、透光性のガラス材料からなる底部において、凹部4を安定して成形できる加工安定性の点から凹部開口面4aの直径Dh以下であることが好ましい。すなわち、凹部4の深さHを凹部開口面4aの直径Dhで除した値(H/Dh)は、1以下が好ましい。H/Dhは0.7以下がより好ましい。また、播種した細胞の分散性の点からH/Dhは0.25以上が好ましい。凹部4の深さHは、凹部4を安定して成形できる加工安定性の点から50μm以上500μm以下が好ましい。凹部4の深さHは、75μm以上がより好ましく、100μm以上がさらに好ましい。凹部4の深さHは、450μm以下がより好ましく、400μm以下がさらに好ましい。加工安定性の観点から、深さHは、75μm以上450μm以下がより好ましく、100μm以上400μm以下がより好ましい。
 凹部4の容積は、凹部開口面4aと凹部4の内面で囲まれた空間の容積であり、細胞培養容器10において、細胞が培養されスフェロイドが作製される空間の容積に相当する。凹部4の容積は、播種した細胞の分散性の点から、2.0×10~2.0×10μmが好ましく、2.0×10~2.0×10μmがより好ましい。
 スフェロイド作製の効率を考慮すれば、領域Sには凹部4が隙間なく配置されることが好ましい。このような観点から、隣り合う凹部4における凹部開口面4aの中心間の距離Dxを、凹部開口面4aの直径Dhで除した値(Dx/Dh)は、1.0以上、1.2以下が好ましい。Dx/Dhが1.0である場合、隣り合う凹部4は、凹部開口面4a同士が互いに接した構成である。底部3の製造容易性から、Dx/Dhは、1.05以上がより好ましく、スフェロイド作製の効率性からは、Dx/Dhは、1.15以下がより好ましい。
 底部3は、領域Sに複数の凹部4を有する。上に示した凹部開口面4aの直径Dh、凹部4の深さH、Dx/Dhの数値範囲は、領域S内に存在する複数の凹部4の平均値としての範囲である。領域S内に存在する複数の凹部4における、凹部開口面4aの直径Dh、凹部4の深さH、Dx/Dhの偏差は、平均値の上下10%以内が好ましく、5%以内がより好ましい。なお、領域S内に設ける凹部4の数は、好ましくは、領域S内に設けることができる最大の数である。領域S内の凹部4の数は、領域Sの面積と凹部開口面4aの形状および大きさによる。
 領域Sの平面視の面積、すなわち、開口部1から臨む底部3の上面3aの平面視の全面積に対する領域S内の凹部4の凹部開口面4aの合計面積、すなわち凹部4の平面視における合計面積の割合は、40%以上が好ましく、45%以上がより好ましく、50%以上が特に好ましい。ここで、領域Sの平面視の面積は、播種細胞の分散性の点から1~50mmが好ましく、2~25mmがより好ましい。その場合、領域Sの平面視の単位面積当たりの凹部4の個数は、2~50個/mmが好ましく、5~20個/mmがより好ましい。
 領域Sの形状は、播種細胞の分散性およびスフェロイドの作製効率の点で、正方形を含む矩形または円形が好ましい。領域Sを複数有する後述の細胞培養容器の形態においては、小型化、製造容易性等の観点から領域Sの形状は矩形が好ましく、正方形が特に好ましい。
 底部3の構成材料は、透光性を有するガラス材料である。ガラス材料が透光性を有するとは、該ガラス材料で作製される0.5mm厚のガラス板で測定される500~700nmの波長領域の分光透過率が90%以上であることをいう。ガラス材料は、底部3を構成した場合に、底部3の波長400nmにおける分光透過率を70%以上とできるのが好ましく、80%以上とできるのがより好ましい。
 ガラス材料は、組成によらず、樹脂に比べて自家蛍光が少ない。このため、細胞培養して得られたスフェロイドの蛍光顕微鏡観察においてバックグランドノイズを低くでき、高倍率での観察が可能である。ガラス材料として具体的には、ソーダライムガラス、アルミノシリケートガラス、石英ガラス、無アルカリガラス、ホウケイ酸ガラスが挙げられる。
 ガラス材料としては、高倍率での高精度な蛍光顕微鏡観察が行えることから、自家蛍光がより少ないことが好ましい。例えば、顕微Raman分光により100倍の対物レンズを用いて測定される、ガラス材料を532nmの光で励起した際の584nmでの蛍光強度の値を、石英ガラスを532nmの光で励起した際の584nmでの蛍光強度の値で除した値(以下、「石英ガラスに対する蛍光強度の比」ともいう。)が、10以下であることが好ましく、9以下がより好ましい。顕微Raman分光の測定は、例えば、Thermo Fisher Scientific社製 Almega(商品名)を用いて行う。石英ガラスとしては、例えば、AGC社製、AQ(商品名)を用いる。
 染色した細胞を観察する際、青色(435nmで励起、485nmで検出)、緑色(488nmで励起、520nmで検出)、赤色(555nmで励起、584nmで検出)の光が使用されることが多い。よって、底部3に用いるガラス材料としては、532nmの光で励起した際の584nmでの蛍光強度の値が低いほど、染色した細胞とのコントラスト差が大きくなり、高倍率観察が可能になり細胞の蛍光顕微鏡観察に適していると言える。
 石英ガラスは、ガラスの中でも532nmの光で励起した際の584nmでの蛍光強度の値が最も低いガラスである。石英ガラスに対する蛍光強度の比が10以下であることで、例えば、該ガラス材料を用いてガラス基板を作製し、そのガラス基板上に染色細胞(Calcein-AMにより染色されたTIG-3細胞)を播種して、20倍の対物レンズを用いて蛍光顕微鏡観察を行った際に、染色細胞を視認できる。なお、樹脂材料では、石英ガラスに対する蛍光強度の比は、種類によらず、概ね50~500の値をとる。
 上記石英ガラスに対する蛍光強度の比が10以下のガラス材料として、具体的には、アルミノシリケートガラス、石英ガラス、ホウケイ酸ガラス等が挙げられ、それぞれ以下の組成のガラスまたは市販品が好ましい。
 アルミノシリケートガラスとしては、酸化物基準のモル%表示で、SiOを60~70%、Alを2~20%、Bを0~15%、LiOを0~10%、NaOを0~20%、KOを0~10%、MgOを0~15%、CaOを0~10%、SrOを0~10%、ZrOを0~10%含有するガラスが好ましい。アルミノシリケートガラスの市販品としては、Dragontrail(AGC社製、登録商標、石英ガラスに対する蛍光強度の比;8.5)が挙げられる。
 石英ガラスは、SiO含有量が100%のガラスである。石英ガラスの市販品としては、AQ(AGC社製、商品名)が挙げられる。石英ガラスはいずれのガラスであっても、532nmの光で励起した際の584nmでの蛍光強度の値は同じ値をとる。
 ホウケイ酸ガラスとしては、酸化物基準のモル%表示で、SiOを70~90%、Alを0~5%、Bを7~20%、LiOを0~5%、NaOを0~10%、KOを0~5%、ZrOを0~10%含有するガラスが好ましい。ホウケイ酸ガラスの市販品としては、D263Teco(SCHOTT社製、商品名、石英ガラスに対する蛍光強度の比;7.4)が挙げられる。
 底部3は、例えば、透光性のガラス材料を用いて、底部3の母材となる両主面が平坦で、板厚が底部3の厚さと同じガラス板(以下、「母材ガラス板」)を作製し、その一方の主面の所定の位置に複数の凹部を設けることで製造できる。凹部を設ける方法として、具体的には、以下の方法1および方法2が挙げられる。
(方法1)
 母材ガラス板の両主面にPET(ポリエチレンテレフタレート)フィルム等の保護フィルムを貼り付ける。続いて、CO2レーザを用い凹部4の形成面に、凹部4の基になる複数の種穴を所定のピッチで穿孔する。種穴の形成後、保護フィルムを母材ガラス板から剥離し、アニールを行う。アニールの目的はCOレーザのガラスへの照射による残留応力を取り除くためであり、その条件はガラスの組成により適宜調節される。
 次いで、種穴の形成された母材ガラス板の種穴の非形成面に保護フィルムを貼り付け、フッ化水素を含有するエッチング液のかけ流しによるシャワーエッチングを行う。エッチング後、保護フィルムを剥離することで、図3A、図3Bに示すように、上面3a上に複数の凹部4が形成された底部3が得られる。なお、この場合のエッチングは、等方エッチングであるため、凹部4の深さHは、種穴の深さとなり、凹部4の幅方向のサイズ、すなわち、凹部開口面4aの直径Dhは、エッチング時間に依存する。したがって、所望の大きさの凹部4を得るためには、種穴の形成条件、およびシャワーエッチングの時間を適宜調整する。
 なお、上記シャワーエッチングに代えて、エッチング液に種穴の形成された母材ガラス板の全体を浸漬させる一般的なエッチングを適用してもよい。エッチング液は、フッ化水素の水溶液であり、フッ化水素以外の成分として、硫酸、塩酸、硝酸、クエン酸等のフッ化水素以外の酸を含有できる。フッ化水素以外の酸を含有することで、ガラス中のアルカリ成分とフッ化水素とが反応して析出反応が局所的におきることを抑えることができ、エッチングを面内均一に進行させることができる。
(方法2)
 母材ガラス板の両主面にフッ化水素を含有するエッチング液でエッチングが可能な金属からなる金属保護層を形成し、金属保護層上に感光性樹脂組成物を塗布する。次いで、凹部4の形成面については、凹部4の形成領域以外の領域、すなわち、平坦領域Sfに対応する部分が開口したフォトマスクを介して、紫外線等の活性エネルギー線を照射して、感光性樹脂組成物の平坦領域Sfのみを硬化させる。また、凹部4を形成しない面については、全面に紫外線等の活性エネルギー線を照射して感光性樹脂組成物を硬化させる。その後、現像により凹部4の形成領域に対応する未露光領域の感光性樹脂組成物を除去する。
 次いで、上記で得られた金属保護層と部分的に感光性樹脂組成物の硬化膜を有する母材ガラス板を、フッ化水素を含有するエッチング液に所定の時間浸漬した後、剥離液に浸漬して金属保護層および感光性樹脂組成物の硬化膜を除去する。これにより、図3A、図3Bに示すように、上面3a上に複数の凹部4が形成された底部3が得られる。方法2におけるエッチング液は、方法1と同様にできる。なお、エッチング液への浸漬に際し、処理時間の短縮のために保護層を有する母材ガラス板を揺動してもよい。
 細胞培養容器10において、側壁2は底部3の上面3aの周縁部に設けられる。側壁2の内壁面は、底部3の上面3aの平坦領域Sfに対して垂直となる構成でもよく、開口部1が下端から上端に向かって拡開するようにテーパー状に構成されてもよい。側壁2の外壁面は底部3の上面3aの平坦領域Sfに対して垂直となる構成が好ましい。側壁2高さ、すなわち開口部1の深さは、分注培養液の必要量の点で、1~10mmが好ましく、2~10mmがより好ましい。側壁2の幅は、分注培養液の必要量の点で、0.5~2mmが好ましく、0.5~3mmがより好ましい。
 なお、側壁2は底部3の外周の外側に、底部3の端面と側壁2の内壁面の下部領域が接合する形で設けられていてもよい。その場合、開口部1の深さは、上記と同様であるのが好ましく、側壁2の高さは、開口部1の深さと底部3の厚さの合計となるのが好ましい。
 側壁2の構成材料としては、ガラス等の無機材料、樹脂等が挙げられ、製造容易性の観点から樹脂が好ましい。樹脂としては、アクリル系樹脂、ポリ乳酸、ポリグリコール酸、スチレン系樹脂、アクリル・スチレン系共重合樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアルコール系樹脂、エチレン・ビニルアルコール系共重合樹脂、熱可塑性エラストマー、塩化ビニル系樹脂、シリコーン樹脂等が挙げられ、成形容易性の点でスチレン系樹脂が好ましい。
 側壁2と底部3の接合方法は、側壁2の構成材料に応じて適宜選択される。底部3はガラス材料からなることから側壁2がガラス材料からなる場合は、これらは一体成形されてもよく熱融着等で接合されてもよい。側壁2の構成材料が樹脂である場合、好ましくは、樹脂の種類に応じて適宜選択された接着層を介して側壁2と底部3を接合する。
 表層5は、細胞接着を抑制する性質を有する。図2に示す細胞培養容器10において、表層5は凹部4の内面および平坦領域Sfを含む領域Sの全体に設けられているが、本発明の細胞培養容器において、表層は少なくとも凹部の内面に設けられればよい。細胞培養容器10においては、表層5の表面で囲まれたマイクロ空間Mで、細胞培養が行われることで、細胞が表層5に接着することなく細胞同士で効率的に凝集してスフェロイドを形成し、また、マイクロ空間Mからのスフェロイドの取り出しが容易である。また、平坦領域Sfにも表層5を有することで、細胞培養容器10からのスフェロイドの取り出しが容易でとある。表層5は、側壁2の内壁面上に形成されてもよい。
 表層5は生体親和性基を有することで、細胞接着を抑制する性質を持つことが好ましい。生体親和性基としては、ポリオキシアルキレン基、ホスホリルコリン基等の従来公知の有機基が使用可能である。具体的には、表層5が有する生体親和性基は、下式1で表される基、下式2で表される基および下式3で表される基からなる群から選ばれる少なくとも1種を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000005
 ただし、式1中、nは1~300の整数であり、式1で表される基のうち50~100モル%は、下式4で表される基中の式1で表される基である。式4におけるnは1~300の整数であり、Rは水素原子または炭素数1~5のアルキル基である。
 式2中、R~Rはそれぞれ独立に炭素数1~5のアルキル基であり、aは1~5の整数である。
 式3中、RおよびRはそれぞれ独立に炭素数1~5のアルキル基であり、Xは下式3-1で表される基または下式3-2で表される基であり、bは1~5の整数である。
Figure JPOXMLDOC01-appb-C000006
 本明細書において、アルキル基は、直鎖、分岐鎖および環状のいずれであってもよく、これらの組み合わせであってもよい。
 以下、基1(ただし、50~100モル%は基4中の基1である)を、「基1(4)」と示す。表層5が有する生体親和性基は、基1(4)、基2および基3のうちのいずれか1種を含んでもよく、これらの2種以上を含有してもよい。生体親和性基としては、基1(4)が好ましい。表層5は、必要に応じて基1(4)、基2および基3以外の生体親和性基を有してもよいが、好ましくは、表層5が有する生体親和性基は、基1(4)、基2および基3から選ばれる少なくとも1種のみからなる。
 表層5と底部3の間には共有結合が存在することが好ましい。表層5と底部3が共有結合を介して接合されていることで、表層5は十分な耐久性を有する。また、表層5は、40℃の水に7日間浸漬した場合に、表層5の単位面積1cm当たりの水に対する全有機炭素(TOC;Total Organic Carbon)の溶出量(以下、「TOC溶出量」ともいう。)が1mg/L以下であるのが好ましい。TOC溶出量は、言い換えれば、面積1cmの表層を40℃の水1Lに7日間浸漬した際に、水に溶出するTOCの質量[mg]である。表層5から構成成分が溶出すると、細胞培養や、顕微鏡観察に影響を及ぼすことがあるため、TOC溶出量が1mg/L以下であるのが好ましい。TOC溶出量は、0.5mg/L以下がより好ましく、0.3mg/L以下がさらに好ましい。
 TOCとは、有機物の全量を炭素の量で示したものである。本明細書において、表層のTOC溶出量は、具体的には、次のようにして測定できる。表層を所定量の水に40℃で7日間浸漬した後の処理水のTOC濃度[mg/L]を測定する。浸漬に使用する水は、蒸留水またはイオン交換水とする。上記で得られたTOC濃度を浸漬した表層の面積(単位;cm)で除すことで、TOC溶出量[mg/L]が得られる。水中のTOC濃度測定は、一般的なTOC計、例えば、TNC-6000(東レエンジニアリング社製)で行える。
 なお、TOC溶出量の測定に用いる表層の試料としては、剥離性基材上に表層を作製し、剥離して得られる表層単体を用いてもよく、上記条件(40℃、7日間)においてTOC溶出量が0[mg/L]の基材上に表層を形成した、表層付き基材を用いてもよい。
 底部3との間に共有結合を有し、細胞接着を抑制する性質、具体的には生体親和性基を有する表層5としては、ガラス材料からなる底部3と共有結合を形成し得る基と、生体親和性基と、を有する化合物を含む組成物の硬化物からなる表層5が好ましい。該化合物が有するガラス材料からなる底部3と共有結合を形成し得る基としては、加水分解性シリル基が好ましく、アルコキシシリル基がより好ましい。
 また、該化合物は、基1(4)、基2および基3から選ばれる少なくとも一種からなる生体親和性基とアルコキシシリル基とを有する化合物(以下、化合物(X)で示す。)であるのが好ましい。また、表層5を形成するために用いる上記組成物は、化合物(X)を含有し、組成物中の固形分における上記生体親和性基の含有量が25~83質量%であり、アルコキシシリル基の含有量が2~70質量%である組成物(以下、組成物(Y)で示す。)であるのが好ましい。以下、表層5を形成するための組成物として、組成物(Y)を例に説明するが、得られる表層が本発明の範疇にある限り、表層5を形成するための組成物はこれに限定されない。
 なお、組成物中の固形分とは、組成物を80℃、3時間で真空乾燥して揮発成分を除去した残留分をいう。組成物の硬化物とは、該固形分の硬化物である。また、以下の説明において、特に断りのない限り「生体親和性基」とは、上記式1で表される基、上記式2で表される基、および上記式3で表される基からなる群から選ばれる少なくとも一種からなる生体親和性基である。
 ここで、表層5が化合物(X)を含む組成物(Y)の硬化物からなるとは、表層5が少なくとも、化合物(X)を含む加水分解縮合が可能な成分の硬化物を含むことをいう。なお、組成物(Y)が硬化する際に、化合物(X)はアルコキシシリル基を有することで、加水分解反応しシラノール基(Si-OH)を形成する。次いで、該シラノール基同士が脱水縮合反応してシロキサン結合(Si-O-Si)して硬化物となる。この際、組成物(Y)が化合物(X)以外の加水分解性シリル基含有成分、好ましくはアルコキシシリル基含有成分を含有する場合も同様に該成分と化合物(X)がシロキサン結合を形成する。
 組成物(Y)を、底部3の表面で硬化させる場合、化合物(X)を含む組成物(Y)中の加水分解性シリル基含有成分が加水分解反応することで生成したシラノール基は、上記Si-O-Si結合を形成するのと並行して、底部3の表面の水酸基(ガラス材料-OH)と脱水縮合反応して共有結合(ガラス材料-O-Si)が形成される。これにより、得られる表層5は底部3の表面と強固に密着することから、高い耐久性、例えば、耐水性を有する。
 組成物(Y)において、生体親和性基の含有量が25質量%以上であることで、得られる表層5は十分な量の生体親和性基を有し、細胞接着をより効果的に抑制できる。上記生体親和性基の含有量が83質量%以下であることで耐水性を付与できる。組成物(Y)中の固形分における生体親和性基の含有量は、30~83質量%が好ましく、40~83質量%がより好ましい。
 組成物(Y)において、アルコキシシリル基の含有量が2質量%以上であることで、組成物(Y)が硬化する際にアルコキシシリル基が底部3の表面と十分な量の共有結合を形成し、得られる表層5は耐久性、例えば、耐水性に優れる。アルコキシシリル基の含有量が70質量%以下であることで十分な量の生体親和性基を導入することができる。組成物(Y)中の固形分におけるアルコキシシリル基の含有量は、2~40質量%が好ましく、2~30質量%がより好ましい。
 なお、例えば、細胞培養容器10においては、表層5と底部3の共有結合をより強固にするために、表層5と底部3の間に酸化ケイ素層を有してもよい。該酸化ケイ素層は、例えば、蒸着により得られる1~2nm程度の厚さの酸化ケイ素層が好ましい。なお、表層5と酸化ケイ素層、酸化ケイ素層と底部3はそれぞれ共有結合で接合されるので、表層5と底部3の間に酸化ケイ素層を有する場合も、「表層5と底部3との間で共有結合を有する。」の範疇に含まれる。
 化合物(X)が有する、アルコキシシリル基は、例えば、式5で示される基が挙げられる。
 -Si(R3-t(OR   式5
 ただし、式5中、Rは、炭素数1~18のアルキル基であり、Rは炭素数1~18のアルキル基であり、tは1~3の整数である。RおよびORが複数存在する場合、RおよびRは同一であっても異なってもよい。製造上の観点から、RおよびRは同一であることが好ましい。
 底部3と表層5の密着性の観点から、tは2以上が好ましく、3がより好ましい。縮合反応時の立体障害の観点から、Rは炭素数1~7のアルキル基が好ましく、メチル基またはエチル基がより好ましい。加水分解反応速度及び加水分解反応時の副生成物の揮発性の観点から、Rは、炭素数1~6のアルキル基が好ましく、メチル基またはエチル基がより好ましい。
 化合物(X)としては、例えば、上記化合物(X)としての要件を満足する、ポリオキシエチレン鎖を主鎖とし、末端または側鎖にアルコキシシリル基を有する化合物(X1)、エチレン性二重結合が重合した炭化水素鎖を主鎖とし、側鎖に生体親和性基とアルコキシシリル基を有する化合物(X2)等が挙げられる。
 化合物(X1)は、例えば、ポリオキシエチレンポリオールまたは少なくとも1つの水酸基を有するポリオキシエチレンアルキルエーテル(ただし、アルキルの炭素数は1~5である。)に、これらの化合物が有する水酸基および連結基を介してアルコキシシリル基を導入することで得られる。より具体的には、化合物(X1)は、例えば、ポリオキシエチレン鎖を含むポリオキシアルキレンポリオールまたはポリオキシエチレン鎖を含み少なくとも1つの水酸基を有するポリオキシアルキレンアルキルエーテル(ただし、アルキルの炭素数は1~5である。)に、所定の割合で、水酸基に反応性の基およびアルコキシシリル基を有するシラン化合物(以下、シラン化合物(S)ともいう。)を反応させて得られる。
 用いるポリオキシアルキレンポリオールとしては、アルカンポリオール、エーテル性酸素原子含有ポリオール、糖アルコールなどの比較的低分子量のポリオールに、少なくともエチレンオキシドを含むアルキレンモノエポキシドを開環付加重合して得られる化合物が挙げられる。ポリオキシアルキレンポリオールにおける、オキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシ1,2-ブチレン基、オキシ2,3-ブチレン基、オキシイソブチレン基等が挙げられる。
 用いるポリオキシアルキレンアルキルエーテルとしては、このようなポリオキシアルキレンポリオールの水酸基の一部を炭素数1~5の脂肪族アルコールとエーテル結合させた化合物が挙げられる。以下の説明において、特に断りのない限り「ポリオキシアルキレンアルキルエーテル」は、少なくとも1個の水酸基を有するポリオキシアルキレンアルキルエーテル(ただし、アルキルの炭素数は1~5である。)をいう。「オキシアルキレン」が「オキシエチレン」に変わった場合も同様である。
 上記ポリオキシアルキレンポリオールおよびポリオキシアルキレンアルキルエーテルが有するオキシアルキレン基はオキシエチレン基のみからなってもよく、オキシエチレン基と他のオキシアルキレン基の組み合わせからなってもよい。化合物(X1)としての分子設計のし易さから、オキシエチレン基のみを有するポリオキシエチレンポリオールまたはポリオキシエチレンアルキルエーテルが好ましい。以下、ポリオキシエチレンポリオールとポリオキシエチレンアルキルエーテルをまとめて、ポリオキシエチレンポリオール等ということもある。
 すなわち化合物(X1)は、ポリオキシエチレンポリオール等とシラン化合物(S)の反応生成物が好ましい。ポリオキシエチレンポリオール等の水酸基の数としては、1~6が挙げられ、化合物(X1)としての分子設計のし易さの観点から、1~4が好ましく、1~3が特に好ましい。ポリオキシエチレンポリオール等として、具体的には、ポリオキシエチレングリコール、ポリオキシエチレングリセリルエーテル、トリメチロールプロパントリオキシエチレンエーテル、ペンタエリスリトールポリオキシエチレンエーテル、ジペンタエリスリトールポリオキシエチレンエーテル、ポリオキシエチレングリコールモノアルキルエーテル(ただし、アルキルの炭素数は1~5である。)等が挙げられる。
 例えば、ポリオキシエチレンポリオール等が、水酸基数が2のポリオキシエチレングリコールの場合、化合物(X1)として、下記式のようにポリオキシエチレングリコールとR-Q11-Si(R3-t(ORで示されるシラン化合物(S1)が反応して得られる、式中、符号(X11)で示される化合物(X11)が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記反応式において、ポリオキシエチレングリコールにおけるn1は1~300の整数であり、好ましくは2~100、より好ましくは4~20である。シラン化合物(S1)における、R、R、およびtは、好ましい態様を含めて上記式5の場合と同様である。シラン化合物(S1)における、Rは、水酸基と反応性の基であり、水酸基、カルボキシル基、イソシアネート基、エポキシ基が挙げられる。Q11は、炭素数2~20の、炭素原子-炭素原子間に、エーテル性酸素原子を有してもよく、水素原子がハロゲン原子、例えば、塩素原子、フッ素原子や水酸基に置換されていてもよい2価炭化水素基である。水素原子が水酸基に置換される場合、置換する水酸基の個数は1~5個が好ましい。
 式(X11)において、Qは、シラン化合物(S1)のR-Q11がポリオキシエチレングリコールの水酸基と反応した残基であり、R’-Q11(Oに結合する側がR’であり、アルコキシシリル基に結合する側がQ11である。)で示すことができる。R’としては、Rに対応して、単結合、-C(=O)-、-C(=O)NH-、-C(=O)N(CH)-、-C(=O)N(C)-、-CHCH(-OH)CHO-が挙げられる。以下、-C(=O)N…は、-CON…と示す。例えば、-C(=O)NH-は、-CONH-と示す。
 Qとして、好ましくは、-(CH-、-CONH(CH-、-(CF-(kは、2~4の整数を表す)、-CHOC-、-CFOC-等が挙げられる。これらのなかでも、-CONHC-、-CONHC-、-CHOC-、-CFOC-、-C-、-C-、および-C-から選択されるいずれかがより好ましい。さらに、-CONHC-、-CONHC-、-C-、-C-が好ましい。
 なお、ポリオキシエチレングリコールを塩基性条件下で塩化アリルと反応させた後、ヒドロシリル化反応によってシラン変性することで、化合物(X11)を得てもよい。
 化合物(X11)における基1は、基4中の基1である割合が、100モル%である。すなわち、化合物(X11)における基1は、すべてが基4に含まれる基1である。化合物(X11)における生体親和性基の含有量は、式(X11)中のn1(OCHCH)-Oの質量%であり、アルコキシシリル基の含有量は、式(X11)中の-Si(R3-t(ORの質量%である。化合物(X11)における生体親和性基およびアルコキシシリル基の含有量は、組成物(Y)の固形分組成に応じて適宜調整される。化合物(X11)における生体親和性基の含有量は、例えば、10~90質量%が好ましく、25~83質量%がより好ましく、40~83質量%がさらに好ましく、60~83質量%が特に好ましい。化合物(X11)におけるアルコキシシリル基の含有量は、1~70質量%が好ましく、2~70質量%がより好ましく、2~45質量%がさらに好ましく、10~30質量%が特に好ましい。
 なお、化合物(X11)における末端の水素原子が、水素原子以外のRと置き換わった化合物も化合物(X1)として使用できる。すなわち、上記反応式において、水酸基数が2のポリオキシエチレングリコールの代わりにポリオキシエチレングリコールモノアルキルエーテル(アルキルはRである。)を用いて得られる化合物も、化合物(X1)として使用できる。その場合のRとしては、メチル基、エチル基が好ましく、メチル基がより好ましい。
 例えば、ポリオキシエチレンポリオールが、水酸基数が3のポリオキシエチレングリセリルエーテルの場合、化合物(X1)として、下記式のようにポリオキシエチレングリセリルエーテルとR-Q11-Si(R3-t(ORで示されるシラン化合物(S1)が反応して得られる、式中、符号(X12)で示される化合物(X12)が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記反応式において、ポリオキシエチレングリセリルエーテルにおけるn1は、ポリオキシエチレングリコールにおけるn1と好ましい態様を含めて同様にできる。シラン化合物(S1)は上記同様とできる。化合物(X12)における、Qは、化合物(X11)におけるQと好ましい態様を含めて同様にできる。
 化合物(X12)における基1は、基4中の基1である割合が、67モル%である。化合物(X12)における生体親和性基の含有量は、式(X12)中のO-(CHCHO)n1-およびO-(CHCHO)n1-Hの合計質量%であり25~83質量%に調整される。化合物(X12)における生体親和性基の含有量およびアルコキシシリル基の含有量は、好ましい範囲を含めて化合物(X11)の場合と同様にできる。
 なお、化合物(X12)におけるO-(CHCHO)n1-Hの末端の水素原子が、水素原子以外のRと置き換わった化合物も化合物(X1)として使用できる。その場合のRとしては、メチル基が好ましい。
 化合物(X1)において、生体親和性基およびアルコキシシリル基以外の構造の含有量は、表層における細胞非接着性および耐久性、特に耐水性の両立の観点から、10~50質量%が好ましく、20~30質量%がより好ましい。化合物(X1)の重量平均分子量は、原料入手の容易性の観点から、100~10000が好ましく、500~2000がより好ましい。化合物(X1)の重量平均分子量(以下、「Mw」と示すこともある)は、サイズ排除クロマトグラフィーによって算出される。
 以上、ポリオキシエチレンポリオール等として、ポリオキシエチレングリコールおよびポリオキシエチレングリセリルエーテルを例に化合物(X1)を説明した。これら以外のポリオキシエチレンポリオール等についても同様に、基1が基4中の基1である割合、生体親和性基の含有量、アルコキシシリル基の含有量等を所望の割合に適宜調整して、化合物(X1)を製造することが可能である。
 化合物(X1)は、さらにその部分加水分解縮合物であってもよい。化合物(X1)を部分加水分解縮合物とする場合、後述のようにして底部3の表面に表層5を形成する際に支障をきたさない程度の粘度となるように、縮合度を適宜調整する。このような粘度の観点から部分加水分解縮合物のMwは、1,000~1,000,000が好ましく、1,000~100,000がより好ましい。以下の部分加水分解共縮合物についても、Mwの好ましい範囲は同様である。なお、部分加水分解縮合物におけるアルコキシシリル基の含有量(質量%)は、原料のシラン化合物のアルコキシシリル基の含有量(質量%)と同等として扱う。部分加水分解共縮合物においては、原料のシラン化合物の混合割合からアルコキシシリル基の含有量(質量%)を算出できる。
 化合物(X1)は、2種以上の化合物(X1)を、所望の割合で生体親和性基とアルコキシシリル基を含有するように、部分加水分解共縮合した部分加水分解共縮合物であってもよい。化合物(X1)は、また、化合物(X1)と生体親和性基を有しないアルコキシシラン化合物を、得られる部分加水分解縮合物が化合物(X)として所望の割合で生体親和性基とアルコキシシリル基を含有するように、部分加水分解共縮合した部分加水分解共縮合物であってもよい。
 生体親和性基を有しないアルコキシシラン化合物としては、下式6のアルコキシシラン化合物が挙げられる。
 Si(R204-p(OR21   式6
 ただし、式6中、R20は、ポリオキシエチレン鎖を有しない一価有機基であり、R21は炭素数1~18のアルキル基であり、pは1~4の整数である。R20およびOR21が複数存在する場合、R20およびR21は同一であっても異なってもよい。製造上の観点から、R20およびR21は同一であることが好ましい。
 R20として具体的には、炭素数1~18のアルキル基が挙げられ、縮合反応時の立体障害の観点からメチル基が好ましい。
 底部3と表層5の密着性の観点から、pは2以上が好ましく、3または4がより好ましく、4が特に好ましい。加水分解反応速度及び加水分解反応時の副生成物の揮発性の観点から、R21は、炭素数1~6のアルキル基が好ましく、メチル基、エチル基がより好ましい。
 化合物(X2)としては、例えば、生体親和性基を有する(メタ)アクリレートとアルコキシシリル基を有する(メタ)アクリレートを必須とし、任意にこれら以外のその他(メタ)アクリレートを、含む単量体を共重合させた(メタ)アクリレート共重合体が挙げられる。この場合、原料単量体は、得られる(メタ)アクリレート共重合体が化合物(X)として所望の割合で生体親和性基とアルコキシシリル基を含有するように、上記各(メタ)アクリレートの含有量を調整する。
 上記(メタ)アクリレート共重合体としては、例えば、下記式(X21)で示される共重合体(X21)が挙げられる。
Figure JPOXMLDOC01-appb-C000009
 ただし、式(X21)において、R~R、Xおよびa、bは、式1~式4におけるのと同様である。R~Rは、独立にメチル基が好ましく、RおよびRは独立にメチル基が好ましい。Rはメチル基または水素原子が好ましい。a、bはそれぞれ独立に2が好ましい。
 n2は1~300の整数であり、好ましくは1~100、より好ましくは1~20である。R、R、およびtは、好ましい態様を含めて上記式5の場合と同様である。
 Rは各単位で独立に水素原子またはメチル基である。R10は、水素原子、または、生体親和性基およびアルコキシシリル基を有しない一価有機基である。R10は、水素原子または炭素原子数1~100のアルキル基が好ましく、炭素原子数1~20のアルキル基がより好ましい。
 共重合体(X21)は、ランダム共重合体であってもブロック共重合体であってもよい。
 Q、Q、Qは、炭素数2~10の、炭素原子-炭素原子間に、エーテル性酸素原子を有してもよく、水素原子がハロゲン原子、例えば、塩素原子、フッ素原子や水酸基に置換されていてもよい2価炭化水素基である。
 Qは、-C-、-C-、-C-が好ましく、-C-、-C-がより好ましく、さらに-C-が好ましい。
 QおよびQは、それぞれ独立して、-C-、-C-、-C-が好ましく、-C-、-C-がより好ましく、さらに-C-が好ましい。
 Qは、単結合または、-O-Q-であり、QはQと同様である。Qは単結合が好ましい。
 共重合体(X21)において、eは、共重合体の全単位数を100とした場合の、アルコキシシリル基を有する単位(以下、単位(A)という)の個数を示す。f、g、h、iは、同様に、基1(4)を有する単位(以下、単位(B1)という)、基2を有する単位(以下、単位(B2)という)、基3を有する単位(以下、単位(B3)という)、および-(C-C(R)(C(=O)OR10))-で示される単位(以下、単位(C)という)の、それぞれ共重合体の全単位数を100とした場合の個数を示す。以下、-C(=O)O…は、-COO…と示す。
 式(X21)においてe~iの割合を調整することで、共重合体(X21)における生体親和性基およびアルコキシシリル基(-Si(R3-t(OR)の含有量が調整できる。共重合体(X21)におけるe~iの割合は、組成物(Y)の固形分組成に応じて適宜調整される。共重合体(X21)における生体親和性基の含有量は、例えば、20~90質量%が好ましく、25~83質量%がより好ましく、30~83質量%がさらに好ましく、40~83質量%が特に好ましい。共重合体(X21)におけるアルコキシシリル基の含有量は、1~70質量%が好ましく、2~70質量%がより好ましく、2~25質量%がさらに好ましく、2~15質量%が特に好ましい。
 共重合体(X21)としては、単位(A)および単位(B1)のみで構成される共重合体が好ましい。以下、単位(A)、単位(B1)、単位(B2)、単位(B3)、単位(C)の原料となる(メタ)アクリレートをそれぞれ、(メタ)アクリレート(A)、(メタ)アクリレート(B1)、(メタ)アクリレート(B2)、(メタ)アクリレート(B3)、(メタ)アクリレート(C)という。また、(メタ)アクリレート(B1)、(メタ)アクリレート(B2)および(メタ)アクリレート(B3)をまとめて(メタ)アクリレート(B)という。以下の(メタ)アクリレートの説明において、符号の意味はすべて共重合体(X21)におけるのと同じである。
 (メタ)アクリレート(A)は、CH=CR-COO-Q-Si(R3-t(ORであり、CH=CR-COO-Q-Si(ORが好ましく、CH=CR-COO-(CH-Si(OCH、CH=CR-COO-(CH-Si(OCが特に好ましい。
 (メタ)アクリレート(B1)は、CH=CR-CO-Q-O-(CHCHO)n2-Rであり、CH=CR-COO-(CHCHO)n2-R(n2=1~300、RはHまたはCHである。)が好ましい。n2はさらに好ましくは1~20である。
 (メタ)アクリレート(B2)は、CH=CR-COO-Q-(PO )-(CH-Nであり、CH=CR-COO-(CH-(PO )-(CH-N(CHが好ましい。
 (メタ)アクリレート(B3)は、CH=CR-COO-Q-N-(CH-Xであり、CH=CR-COO-(CH-N(CH-CH-COOが好ましい。
 (メタ)アクリレート(C)は、CH=CR-COO-R10であり、メチルメタクリレート、ブチルメタクリレート、ドデシルメタクリレート等が挙げられる。
 共重合体(X21)は、例えば、原料(メタ)アクリレートを、e~iが上記所定の割合となるように準備し、重合開始剤の存在下、従来公知の、溶液重合、塊状重合、懸濁重合、乳化重合等の方法で共重合させることで得られる。
 なお、化合物(X2)において、生体親和性基およびアルコキシシリル基以外の構造の含有量は、表層における細胞非接着性および耐久性、特に耐水性の両立の観点から、15~55質量%が好ましく、15~40質量%がより好ましい。化合物(X2)のMwは、製造容易性の観点から、1,000~1,000,000が好ましく、20,000~100,000がより好ましい。化合物(X2)のMwは、サイズ排除クロマトグラフィーにより算出される。
 化合物(X2)は、さらにその部分加水分解縮合物であってもよい。化合物(X2)を部分加水分解縮合物とする場合、後述のようにして底部3の表面に表層5を形成する際に支障をきたさない程度の粘度となるように、縮合度を適宜調整する。このような粘度の観点から部分加水分解縮合物のMwは、2,000~2,000,000が好ましく、30,000~300,000がより好ましい。以下の部分加水分解縮合物についても、Mwの好ましい範囲は同様である。
 化合物(X2)は、2種以上の化合物(X2)を、所望の割合で生体親和性基とアルコキシシリル基を含有するように、部分加水分解共縮合した部分加水分解共縮合物であってもよい。化合物(X2)は、また、化合物(X2)と生体親和性基を有しないアルコキシシラン化合物を、得られる部分加水分解縮合物が化合物(X)として所望の割合で生体親和性基とアルコキシシリル基を含有するように、部分加水分解共縮合した部分加水分解共縮合物であってもよい。
 組成物(Y)は、化合物(X)の1種を単独で含有してもよく、2種以上を含有してもよい。化合物(X)を2種以上用いる場合には、化合物(X1)のみで2種以上を構成する、または化合物(X2)のみで2種以上を構成することが好ましい。組成物(Y)が含有する固形分が化合物(X)のみで構成される場合、化合物(X)は、生体親和性基の含有量および、アルコキシシリル基の含有量が上記所定の範囲となるように選択される。組成物(Y)における固形分中の化合物(X)の割合は、例えば、25~100質量%が好ましく、50~100質量%がより好ましく、75~100質量%がさらに好ましい。
 組成物(Y)は、化合物(X)以外のその他成分を含有してもよい。その他成分としては、表層5に固形分として含有される化合物(X)以外のその他の固形分が挙げられる。表層5の形成をドライコーティングで行う場合には、組成物(Y)は固形分のみを含有する。一方、表層の形成をウェットコーティングで行う場合には、その他成分として、さらに、表層形成に際して除去される液状媒体を含有する。
 その他の固形分は、化合物(X)と同様に硬化する成分であってもよく、非硬化性の成分であってもよい。その他の固形分としては、化合物(X)の製造過程で用いた原料や副生成物のうち除去しきれなかった不純物、機能性の添加剤、触媒等が挙げられる。機能性の添加剤としては、紫外線吸収剤、光安定剤、酸化防止剤、レベリング剤等が挙げられる。
 なお、その他の固形分は、得られる表層5が上記TOC溶出量の範囲を満足できる固形分であるのが好ましい。その他の固形分は、具体的には、化合物(X)と加水分解縮合が可能な成分が好ましく、化合物(X)以外の加水分解性シリル基含有成分、さらにはアルコキシシリル基含有成分がより好ましい。特に好ましくは、組成物(Y)は、化合物(X)以外の固形分を含有しない。組成物(Y)が固形分として化合物(X)のみを含有する場合、化合物(X)は、生体親和性基を25~83質量%の割合で含有し、かつアルコキシシリル基を2~70質量%含有するのが好ましい。
 触媒としては、アルコキシシリル基の加水分解縮合反応に用いる従来公知の触媒が特に制限なく用いられる。触媒として、具体的には、塩酸、硝酸、酢酸、硫酸、燐酸、スルホン酸例えば、メタンスルホン酸、p-トルエンスルホン酸、等の酸、水酸化ナトリウム、水酸化カリウム、アンモニア等の塩基やアルミ系、チタン系の金属触媒が挙げられる。
 化合物(X)として、化合物(X1)を用いる場合には、その他の固形分として、生体親和性基を有しないアルコキシシラン化合物および/またはその部分加水分解縮合物を用いてもよい。生体親和性基を有しないアルコキシシラン化合物としては、上記化合物6が好ましい。生体親和性基を有しないアルコキシシラン化合物を部分加水分解縮合物とする場合には、そのMwは100~100,000が好ましく、100~10,000がより好ましい。
 組成物(Y)が、固形分として化合物(X1)と、生体親和性基を有しないアルコキシシラン化合物を含有する場合、化合物(X1)と生体親和性基を有しないアルコキシシラン化合物の合計における、生体親和性基の含有量は25~83質量%であり、アルコキシシリル基の含有量が2~70質量%であるのが好ましい。すなわち、固形分としてこれら以外の、生体親和性基および/またはアルコキシシリル基を有する化合物を含有しないことが好ましい。この場合、化合物(X1)100質量部に対する生体親和性基を有しないアルコキシシラン化合物の割合は、50~200質量部が好ましく、50~100質量部がより好ましい。
 化合物(X)として、化合物(X1)を用いる場合には、全固形分中の化合物(X1)、生体親和性基を有しないアルコキシシラン化合物および触媒以外のその他の固形分の含有量は、合計で40質量%以下が好ましく、20質量%以下がより好ましく、含有しないことが最も好ましい。
 化合物(X)として、化合物(X2)を用いる場合にも、必要に応じて化合物(X2)以外のアルコキシシラン化合物を用いてもよい。化合物(X)として、化合物(X2)を用いる場合には、全固形分中の化合物(X2)および触媒以外のその他の固形分の含有量は、合計で40質量%以下が好ましく、20質量%以下がより好ましく、含有しないことが最も好ましい。
 表層5の形成をウェットコーティングで行う場合に組成物(Y)が含有する液状媒体は、化合物(X)を含む固形分を均一に溶解または分散可能であればよく、公知の各種の液状媒体のなかから適宜選択できる。液状媒体は、表層の形成に際して、最終的には除去される必要があるため、その沸点は60~160℃の範囲にあることが好ましく、60~120℃がより好ましい。
 液状媒体として、具体的には、アルコール類、エーテル類、ケトン類、酢酸エステル類等が好ましい。上記沸点の条件を満足する液状媒体として、具体的には、イソプロピルアルコール(IPA)、エタノール、プロピレングリコールモノメチルエーテル、2-ブタノン等が挙げられる。これらは、1種を単独で使用しても、2種以上を組み合わせて使用してもよい。
 液状媒体は、化合物(X)を含む加水分解性シリル基含有成分が加水分解反応するための水を含有することができるが、貯蔵安定性の観点からは水を含有しないことが好ましい。ただし、液状媒体が水を含有しない場合でも、化合物(X)を含む加水分解性シリル基含有成分は大気中の水分により加水分解反応が可能であるため、液状媒体における水の含有は必須ではない。
 液状媒体を含有する場合の組成物(Y)中の固形分濃度は、0.1~50質量%が好ましく、1~30質量%がより好ましく、1~15質量%がさらに好ましい。固形分濃度が上記範囲内であると、組成物(Y)を用いてウェットコーティングで形成される表面層の膜厚が、防藻性とその耐久性を十分に発揮できる好適な範囲内となりやすい。組成物(Y)の固形分濃度は、組成物(Y)を80℃3時間の真空乾燥した後の質量と、加熱前の組成物(Y)の質量とから算出できる。組成物(Y)の製造時に配合される全固形分と液状媒体の量から算出してもよい。
 液状媒体を含有する場合の組成物(Y)は、液状媒体を50~99.5質量%含むことが好ましく、65~99質量%含むことがより好ましく、70~99質量%含むことがさらに好ましい。
 組成物(Y)の製造方法は特に限定されない。化合物(X)を含む固形分を、さらに液状媒体を含む場合は、これら固形分と液状媒体を、上記含有量となるように混合すればよい。組成物(Y)にあっては、上記に説明したとおり、化合物(X)を含み、固形分中の生体親和性基の含有量が25~83質量%であり、アルコキシシリル基の含有量が2~70質量%であるため、組成物(Y)を用いて底部3の表面に形成される該組成物の硬化物からなる表層5は、細胞の接着を抑制する能力に優れるとともに、耐久性、特に耐水性に優れる。
 表層5の厚さは、0.5~20nmが好ましく、0.5~10nmが特に好ましい。表層5の厚さが上記範囲の下限値以上であれば、細胞の接着を抑制する性能、および耐久性、特に耐水性を発現しやすい。表層5の厚さが上記範囲の上限値以下であれば、強度が優れる。表層5の厚さは、リガク社ATX-Gに代表されるX線反射率測定装置での測定により求められる。
 底部3上面の所定の領域に組成物(Y)を用いて表層5を形成する方法としては、ドライコーティングまたはウェットコーティングが挙げられ、ドライコーティングが好ましい。
 ドライコーティングとしては、真空蒸着、CVD、スパッタリング等の手法が挙げられる。化合物(X)の分解を抑える点、および装置の簡便さの点から、真空蒸着法が好適に利用できる。真空蒸着法は、抵抗加熱法、電子ビーム加熱法、高周波誘導加熱法、反応性蒸着、分子線エピタキシー法、ホットウォール蒸着法、イオンプレーティング法、クラスターイオンビーム法等に細分することができるが、いずれの方法も適用できる。化合物(X)の分解を抑制する点、および装置の簡便さの点から、抵抗加熱法が好適に利用できる。真空蒸着装置は特に制限なく、公知の装置が利用できる。
 真空蒸着法を用いる場合の成膜条件は、適用する真空蒸着法の種類によって異なるが、抵抗加熱法の場合、蒸着前真空度は1×10-2Pa以下が好ましく、1×10-3Pa以下が特に好ましい。蒸着源の加熱温度は、蒸着源(ドライコーティング用の組成物(Y))が十分な蒸気圧を有する温度であれば特に制限はない。具体的には30~400℃が好ましく、50~300℃が特に好ましい。
 加熱温度が上記範囲の下限値以上であれば、成膜速度が良好になる。上記範囲の上限値以下であれば、化合物(X)の分解が生じることなく、底部3の上面3aの所定の領域に表層5を形成できる。真空蒸着時の底部3の温度は、室温(20~25℃)から200℃までの範囲であることが好ましい。底部3の温度が室温以上であれば、成膜速度が良好になる。底部3の温度が200℃以下であれば縮合反応せずに基板に成膜することができ、成膜後速やかに基板と共有結合することが可能である。底部3の温度の上限値は100℃がより好ましい。
 ドライコーティング法に際して、底部3の上面3aの所定の領域への組成物(Y)の付着は、得られる表層5の厚みを上記好ましい厚みとするために、化合物(X)の付着量として0.5~10mg/mとなるように行うことが好ましい。化合物(X)の付着量は、0.5~5mg/mがより好ましく、1.0~5.0mg/mが特に好ましい。
 ドライコーティング法に際して、化合物(X)の反応は、上記成膜の際に底部3の温度を上記のとおり調整することにより略同時に進行する。この際、化合物(X)が有するアルコキシシリル基から加水分解反応により生成したシラノール基は、その一部が縮合反応して分子間が結合される。化合物(X)から生成したシラノール基は、底部3の上面3aが有するガラス材料-OH基と縮合反応して底部3と表層5は共有結合で接合される。
 ウェットコーティングにより表層を形成する方法としては、底部3の所定の表面に、上記で説明した液状媒体を含む組成物(Y)を塗布し塗膜を得ること(以下、「塗布工程」ともいう。)、および該塗膜を硬化して表層を得ること(以下、「硬化工程」ともいう。)を含む方法が挙げられる。
 塗布工程における、組成物(Y)の底部3表面への塗布方法としては、例えばディップコート法、スピンコート法、ワイプコート法、スプレーコート法、スキージーコート法、ダイコート法、インクジェット法、フローコート法、ロールコート法、キャスト法、ラングミュア・ブロジェット法、グラビアコート法等が挙げられる。
 硬化工程における、塗膜の硬化方法としては、加熱が好ましい。加熱温度は、化合物(X)の種類によるが、50~200℃が好ましく、80~150℃がより好ましい。なお、硬化工程においては、通常、液状媒体の除去も同時に行う。したがって、加熱温度は、液状媒体の沸点以上の温度が好ましい。
 ウェットコーティングによる表層5の形成においては、必要に応じて塗布工程、乾燥工程以外の工程処理を有してよい。例えば、組成物(Y)が水を含有しない場合、硬化工程と同時、または、硬化工程の前、後に、加湿等の処理を行ってもよい。
 また、表層5の形成後、表層5中の化合物であって余剰の化合物は、必要に応じて除去してもよい。具体的な方法としては、例えば、表層5に溶剤、例えば組成物(Y)の液状媒体として用いた化合物をかけ流す方法や、溶剤、例えば組成物(Y)の液状媒体として用いた化合物をしみ込ませた布でふき取る方法が挙げられる。
 以上、本発明の細胞培養容器を、図1および図2に示す細胞培養容器10を一例として説明した。また、表層5については、特に組成物(Y)を用いて形成される表層5を例に説明した。細胞培養容器10においては、本発明の趣旨に反しない限度において、また必要に応じて、その構成を適宜変更することができる。例えば、本発明の細胞培養容器は、図1および図2に示すような、底部3と側壁2とで形成される開口部1を1つ有し、開口部1から臨む底部3上面3aの領域Sに、表層5が形成された複数の凹部4を有する構成を1ユニットとして、該ユニットを複数有する細胞培養容器であってもよい。
 図4は、上記ユニットを複数有する細胞培養容器の一例を概略的に示す平面図である。図4に示す細胞培養容器20は、平面視が矩形であり、上記ユニットを縦に略等間隔に4個配置した構成を一列として、該構成を横方向に略等間隔に4列配した構成である。1ユニットにおける、開口部1、側壁2、底部3、凹部4、表層5、マイクロ空間M等の各構成要素については、細胞培養容器10で説明したのと同様にできる。なお、細胞培養容器20において、側壁2は隣り合うユニット同士で共用した構成としている。また、図4において、符号M(4)は、図1におけるM(4)と同様に、マイクロ空間Mと凹部4を合わせて示す符号である。
 細胞培養容器20の平面視における大きさ、形状は、用途に応じて適宜調整できる。取り扱い性の観点から、形状は矩形が好ましく、縦、横がそれぞれ独立して、75~150mmの範囲にあるのが好ましい。細胞培養容器20が有するユニットの数は、細胞培養容器20の大きさおよびユニットの大きさにより適宜調整される。細胞培養容器20におけるユニット数は、通常、6~1536個程度であり、6~384個が好ましい。
 細胞培養容器20において、底部3は、例えば、細胞培養容器20の外周と同じ形状、大きさの外周を有する略板状のガラス板であって、上面3aの各ユニットに対応する領域Sに所定の個数の凹部4を有する構成とすることができる。また、側壁2は、底部3の上面3a上に、所定の大きさの開口部1が所定の配列で複数個形成されるように格子状に一体成形された側壁2とすることができる。
 本発明の細胞培養容器は、例えば、EOG滅菌(60℃のエチレンオキサイドガスを用いた滅菌)、オートクレーブ滅菌(121℃の飽和水蒸気中での20分間の滅菌)の滅菌処理を施した後に、細胞培養に供される。本発明の細胞培養容器は、スフェロイドの作製に好適に用いられる。
 例えば、細胞培養容器10を用いてスフェロイドを作製する場合、培養の対象となる複数の細胞(細胞懸濁液)を細胞培養容器10内に投入した後、細胞培養容器10本体を揺動させることで、複数のマイクロ空間Mに対して、複数の細胞を均一的に分散して配置する。その後、数時間~数日間、例えば37℃、飽和水蒸気下、5%炭酸ガス雰囲気に保たれた培養装置内で培養やインキュベートが行われる。
 マイクロ空間Mの内面が表層5の表面で形成されているため、マイクロ空間M内の細胞は、その内面に接着することなく、細胞同士が接着して、スフェロイドを形成する。この際、細胞は、マイクロ空間Mの形状および大きさに対応して、三次元的に凝集する。本発明の細胞培養容器においては、これにより、大きさの均一化されたスフェロイドを高効率に得ることが可能である。
 さらに、底部3はガラス材料からなり、スフェロイドを作製した後、細胞培養容器10をそのまま、顕微鏡観察、特には、蛍光顕微鏡観察に用いても、高精度な観察が可能である。
 心筋細胞、がん細胞スフェロイドを作製し、薬効や毒性を調査する創薬スクリーニング用途への応用を考えた際、大きさの均一性を表す指標であるスフェロイドの平均直径の±5%の割合は、20%以上であることが好ましく、30%以上であることが特に好ましく、50%以上であることがさらに好ましい。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。「%」は、特に規定のない限り、「質量%」を示す。例1~9は表層付き底部の作製例(ただし、例9は底部のみ)であり、例1~7が実施例、例8、9が比較例である。例11~19は、細胞培養容器の実施例である。
(ガラス基板上面への凹部の形成)
 以下の方法で、凹部の構成が図3A、図3Bに示すのと概略同様であるが、凹部の個数、サイズ等が以下に示すとおりである領域Sが、以下の所定の個数配置された以外は、図4に示す細胞培養容器20の底部3と概略同様の構成の底部を2種類作製した。
<底部の構成1;底部3X>
 底部3Xは、以下の凹部構成1を有する領域Sが、縦108mm、横75mm、厚さ0.6mmのガラス基板の一方の主面に384個配置された構成である。各領域Sは、領域S間の平坦領域Sfに格子状の側壁が設けられるように配置されている。
 凹部構成1は、領域Sが3.0mm×3.0mm、凹部4の形状が半球状であり、領域S内の凹部4の個数が156個、凹部4の深さHが100μm、凹部開口面4aの直径Dhが200μm、隣り合う凹部4における凹部開口面4aの中心間の距離Dxが240μm、Dx/Dhが1.2である。
<底部の構成2;底部3Y>
 底部3Yは、以下の凹部構成2を有する領域Sが、縦108mm、横75mm、厚さ0.6mmのガラス基板の一方の主面に96個配置された構成である。各領域Sは、領域S間の平坦領域Sfに格子状の側壁が設けられるように配置されている。
 凹部構成2は、領域Sが12.0mm×12.0mm、凹部4の形状が半球状であり、領域S内の凹部4の個数が250個、凹部4の深さHが250μm、凹部開口面4aの直径Dhが500μm、隣り合う凹部4における凹部開口面4aの中心間の距離Dxが500μm、Dx/Dhが2.0である。
<ガラス基板への凹部形成>
 両主面にCr層を有するガラス基板(Dragontrail(登録商標)、AGC社製、縦108mm、横75mm、厚さ0.6mm)の両主面のCr層上にスピンコーターで感光性樹脂組成物(商品名:Glibes N-100、東京応化工業株式会社製)を塗布し、ソフトベークおよびプリベークを行った。次に、一方の主面については、非露光部が凹部開口面4aに相当するCrマスクを介して、他方の主面についてはマスクを介さず全面に、紫外線を照射し、ポストエクスポジャーベークを行った。次いで、現像液により未露光部分を溶解除去して、凹部形成領域を除いて感光性樹脂組成物の硬化膜(保護膜)が形成されたガラス基板を得た。
 得られた保護膜付きのガラス基板の全体を、フッ化水素/硫酸/水=15/15/70(質量比)のエッチング液に浸漬し、エッチング液中で保護膜付きのガラス基板を揺動することにより所定の大きさの凹部4が形成されるまでエッチングを行った。次いで、エッチング後の保護膜付きのガラス基板を剥離液に浸漬し、感光性樹脂組成物の硬化膜およびCr層を剥離し、上面3aとなる一方の主面に上記所定の領域に所定の大きさ、形状の凹部4を有する底部3Xおよび底部3Yを得た。
(化合物(X)の合成、準備)
<化合物(X1)>
 化合物(X1)に分類される化合物および比較例用の生体親和性基を有しない化合物を以下のとおり合成または準備した。
 化合物(X11-1);以下に構造を示す化合物(X11-1)、すなわち、2-[メトキシ(ポリオキシエチレン)9-12プロピル]トリメトキシシランとして、市販品、SIM6492.72(商品名、Gelest社製))を準備した。化合物(X11-1)は、化合物(X11)の末端水素原子がメチル基に置換され、n1が9~12、Qが-C-、tが3、Rがメチル基の化合物である。
Figure JPOXMLDOC01-appb-C000010
 化合物(X11-2);化合物(X11-1)においてオキシエチレン基の繰り返し数が6~9である以外は同じ分子構造の化合物(X11-2)、すなわち、2-[メトキシ(ポリエチレンオキシ)6-9プロピル]トリメトキシシランとして、市販品、SIM6492.7(商品名、Gelest社製))を準備した。
 化合物(X12-1);以下に構造を示す化合物(X12-1)は、化合物(X12)において、n1が7~8、Qが-CONHC-、tが3、Rがエチル基の化合物であり、次の方法で合成した。
Figure JPOXMLDOC01-appb-C000011
 300mLナス型フラスコに、n1が7~8のポリオキシエチレングリセリルエーテル(表1中、「ポリオキシエチレンポリオールA」と示す。)263g(259mmol)、KBE-9007(信越シリコーン社製、製品名、トリエトキシシリルプロピルイソシアネート)64.1g(259mmol)を加えた。続いて、得られた混合物に対して1質量%のトリエチルアミン3.27g(32.4mmol)を加え、その後80℃で16時間撹拌した。続いて、得られた反応混合物をロータリーエバポレーターによって加熱減圧しトリエチルアミンを除去して無色透明液体として化合物(X12-1)を得た。収量は327g、収率は100%であった。
 化合物(Cf1);化合物(Cf1)として(3-メトキシプロピル)トリメトキシシラン(CH-O-(CH-Si(OCH)、市販品、SIM6493.0(商品名、Gelest社製))を準備した。
 化合物(X12-1)の合成に用いたポリオキシエチレンポリオールの種類およびポリオキシエチレンポリオールに対するKBE-9007の添加量(当量)、および、上記各化合物における、Mw、基1(4)における(CHCHO)の繰り返し数(n1)、基1が基4中の基1である割合(モル%)、化合物中の生体親和性基(基1(4)の割合(質量%))、アルコキシシリル基の割合(質量%)を表1に示す。
Figure JPOXMLDOC01-appb-T000012
<共重合体(X21)>
 化合物(X2)として、共重合体(X21-1)~共重合体(X21-3)を以下の表2に示す単量体組成(質量比)で製造して用いた。また、生体親和性基を有する単量体の単独重合体(M)(化合物(X)ではない)を製造して用いた。なお、用いた単量体とその略号を以下に示す。表2に示す単量体組成、例えば、製造例2におけるHEMA/KBM-503=95/5は、HEMAとKBM-503を質量比で95:5の割合で用いたことを示す。他の製造例においても同様である。
<単量体略号>
(1)単量体(A)
KBM-503;信越シリコーン社製、製品名、トリメトキシシリルプロピルメタクリレート(CH=C(CH)-COO-(CH-Si(OCH
KBM-5103;信越シリコーン社製、製品名、トリメトキシシリルプロピルアクリレート(CH=CH-COO-(CH-Si(OCH
(2)単量体(B1)
AME-400;ブレンマーAME-400(日油社製、商品名、CH=CH-COO-(CHCHO)-CH
HEMA;CH=C(CH)-COO-CHCHO-H
HEA;CH=CH-COO-CHCHO-H
[製造例1]
 500mL3つ口フラスコに、HEMAの57.0g(438mmol)、KBM-503の3.00g(12.1mmol)、1-メトキシ‐2-プロパノールの119g、ジアセトンアルコールの21g、および2,2’-アゾビス(2-メチルプロピオン酸)ジメチルの600mg(2.61mmol)を加えた。反応液中の単量体の濃度を30質量%、開始剤濃度を1質量%とした。続いて、得られた混合物を75℃、窒素雰囲気下で16時間撹拌し、室温まで空冷し無色透明液体(共重合体(X21-1)を30質量%含む溶液)を得た。収量は200g、収率は100%であった。
[製造例2~4]
 製造例1において、単量体組成を表2に示すとおりに変更した以外は同様にして、(共重合体(X21-2)、(X21-3)を製造した。また、生体親和性基を有する単量体の単独重合体(M)を製造した。
 製造例1~4で得られた化合物(共重合体)における、Mw、基1(4)における(CHCHO)の繰り返し数(n2)、化合物中の生体親和性基(基1(4)の割合(質量%))、アルコキシシリル基の割合(質量%)を表2に示す。
Figure JPOXMLDOC01-appb-T000013
[例1]
 上記で作製した凹部構成が異なる2種類の底部3X、3Yを洗浄し、その凹部4が形成された表面に化合物(X11-1)を真空蒸着(背圧3.4×10-4Pa、基板温度25℃)することにより、膜厚2nmの表層5を形成して、底部3Xから表層付き底部AXを、底部3Yから表層付き底部AYを得た。
[例2]
 例1において、化合物(X11-1)の代わりに化合物(X11-2)を用いた以外は同様にして、底部3Xから表層付き底部BXを、底部3Yから表層付き底部BYを得た。
[例3]
 共重合体(X21-1)を含む溶液(固形分濃度:30質量%)を1-メトキシ-2-プロパノールとジアセトンアルコールと0.1質量%硝酸水溶液を質量比51:9:40で混合した溶媒に、固形分濃度10質量%になるように添加し、50℃、16時間撹拌して、共重合体(X21-1)の部分加水分解縮合物を含む液状組成物を得た。得られた部分加水分解縮合物のMwを表2に示す。さらに、この液状組成物を、固形分濃度が1.0質量%となるように、メトキシプロパノールとジアセトンアルコールの85:15(質量比)の混合溶媒に溶解させ、表層形成用組成物とした。
 上記で作製した凹部構成が異なる2種類の底部3X、3Yを洗浄し、表層形成用組成物を用いてディップコート法により、底部3X、3Yの凹部4が形成された表面に表層形成用組成物の塗膜を形成した。次いで、これを、150℃の熱風循環オーブンで1時間乾燥して、膜厚1.8nmの表層5を形成して、底部3Xから表層付き底部CXを、底部3Yから表層付き底部CYを得た。
[例4、5、6]
 例3において、共重合体(X21-1)を、共重合体(X21-2)、共重合体(X21-3)、または化合物(X12-1)に変えた以外は、同様にして、底部3Xから表層付き底部DX、EX、FXを、底部3Yから表層付き底部DY、EY、FY、を得た。なお、共重合体(X21-2)、共重合体(X21-3)、または化合物(X12-1)の部分加水分解縮合物のMwを表2または表1に示す。
[例7]
 単独重合体(M)を固形分濃度が1.0質量%となるように、メトキシプロパノールとジアセトンアルコールの85:15(質量比)の混合溶媒に溶解させ、表層形成用組成物とした。得られた表層形成用組成物を用いて、例3と同様にして底部3Xから表層付き底部GXを、底部3Yから表層付き底部GYを得た。
[例8]
 例3において、共重合体(X21-1)を、化合物(Cf1)に変えた以外は、同様にして、底部3Xから表層付き底部HXを、底部3Yから表層付き底部HYを得た。なお、化合物(Cf1)の部分加水分解縮合物のMwを表1に示す。
[例9]
 例9として、上記で作製した凹部構成が異なる2種類の底部3X、3Yをそのまま用いた。
[評価]
 上記で底部3Xから得られた表層付き底部AX~HX、および、底部3Xについて、細胞非接着性、溶出量を評価した。結果を表3に示す。
(細胞非接着性)
 上記で底部3Xから得られた表層付き底部AX~HX、底部3Xをそれぞれ、23mm×25mm(凹部構成1の領域Sを20~30個含む)に切断し、50ccのガラスバイアル瓶に入れ、さらにIPAを10cc加えて超音波で10分洗浄を行った。IPAを吸引した後、同様にエタノールを10cc入れ超音波で10分洗浄行い、乾燥させることで評価用基板を準備した。
 得られた洗浄済みの23mm×25mmの評価用基板を35mmφのポリスチレン製シャーレ(1000-035:AGCテクノグラス社製)に設置し、16時間クリーンベンチでUV照射滅菌を行った。
 播種時の細胞生存割合が97%以上であることが確認されたTIG-3細胞が3mLあたり13万細胞になるように、10%FBSが添加されたMEMを培地として用いて、細胞懸濁液の調製を行った。細胞懸濁液の3mLを上記評価基板が設置されたシャーレに分注することで細胞を播種し37℃のインキュベーターで24時間培養した。その後、観察領域を1.8mm×1.3mmの範囲として、3箇所の観察領域において、顕微鏡観察(10倍)を行い細胞の伸展の有無で接着の判定を以下の基準で行った。なお、細胞が評価用基板に対して楕円状または正円状に広がっている状態を細胞の伸展と定義する。
 「○」;全ての箇所の観察領域に細胞が付着していない。
 「△」;少なくとも1箇所の観察領域において、その一部に細胞が付着している。
 「×」;全箇所について観察領域の略全体に細胞が付着している。
(溶出量測定)
 上記で底部3Xから得られた表層付き底部AX~HX、底部3Xをそれぞれ、108mm×25mm(面積;27cm)に切断した検体を、100mLのガラス製バイアル瓶に蒸留水30mLとともに入れ7日間40℃で静置してTOCを溶出させた。得られた溶出液の、TOC濃度[mg/L]をTOC計TNC-6000(東レエンジニアリング社製)により測定し、上記検体の面積(27cm)で除して表層の単位面積1cm当たりのTOC溶出量[mg/L]を算出した。底部3XからのTOC溶出量は0mg/Lであることから、得られたTOC溶出量は、表層からのTOC溶出量を意味する。
Figure JPOXMLDOC01-appb-T000014
[例11~14]
 上記で得られた凹部構成1の領域Sを384個有する表層付き底部AX~DXを、細胞接着性の評価の際と同様の洗浄方法で洗浄した。表層付き底部AX~DXの平坦領域Sfに対応するように格子状に成形された、外周サイズが108×75mm、格子で仕切られた区画(領域Sに対応する)の数384個、高さ10mmの側壁2X(AGC社製、材質;ポリスチレン)を、洗浄後の表層付き底部AX~DXの領域S間の平坦領域Sfの表層上に両面テープにより貼りあわせて、平面視が図4に示す細胞培養容器20と概略同様であるがユニット数が384個である例11~14の384穴マイクロウェルプレート型培養容器(底部のサイズ;108×75mm、深さ;10mm)11~14を作製した。
[例15~19]
 上記と同様に凹部構成2の領域Sを96個有する表層付き底部AY、CY~FYと、表層付き底部AY、CY~FYの平坦領域Sfに対応するように格子状に成形された外周サイズが108×75mm、格子で仕切られた区画(領域Sに対応する)の数96個、高さ10mmの側壁2Y(AGC社製、材質;ポリスチレン)を用いて、例15~19の96穴マイクロウェルプレート型培養容器(底部のサイズ;108×75mm、深さ;10mm)15~19を作製した。
[評価]
(スフェロイド作製効率)
 上記マイクロウェルプレート型培養容器11~20のそれぞれに、1mLあたり200,000細胞に調整した細胞懸濁液を50μL分注することで細胞を播種し37℃のインキュベーターで24時間培養した。その後、マイクロウェルプレート型培養容器内の細胞をCalcein-AM を用いて染色し、蛍光顕微鏡によりスフェロイドの観察を行った。蛍光顕微鏡(5倍)の観察画像をImage-J(アメリカ国立衛生研究所 (NIH)製、Ver.1,47)を用いて、画像解析をすることで、観察領域(2.34mm)において、スフェロイドの大きさの定量化を行い、スフェロイドの平均直径およびスフェロイド平均直径±5%の割合(%)の算出を行った。なお、スフェロイドの平均直径は、スフェロイドを円と仮定し、Image-Jで画像解析することによって算出した。結果を表4に示す。
 図5に、例11の細胞培養容器11を用いて評価した際の、スフェロイド直径の分布状態を示す。図5おいて、例えば、スフェロイド直径が60μmで示される個数は、55μm超60μm以下の直径のスフェロイドの個数である
Figure JPOXMLDOC01-appb-T000015
 表4からわかるように本発明の実施例である例11~19の細胞培養容器を用いれば、均一な大きさのスフェロイドが効率よく生産できる。さらに、例11~19の細胞培養容器においては、上記のとおり蛍光顕微鏡観察が容易である。
 本発明の細胞培養容器を用いれば、均一な大きさのスフェロイドを高効率に作製し、顕微鏡観察、特には蛍光顕微鏡観察を簡便に実施できる。そのため、薬効や毒性を調査する創薬スクリーニング用途での使用に好適である。
 なお、2018年2月1日に出願された日本特許出願2018-016737号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10、20…細胞培養容器、1…開口部、2…側壁、3…底部、4…凹部、5…表層。

Claims (10)

  1.  開口部を形成する側壁と、
     透光性のガラス材料からなり、前記開口部の下端を塞ぐとともに、上面が前記開口部から臨む領域に複数の凹部を有する形状である底部と、
     前記凹部の内面に形成された細胞接着を抑制する表層と、
     を有する細胞培養容器。
  2.  前記底部上面の前記開口部から臨む領域の平面視における全面積に対して、前記凹部の占める平面視における合計面積の割合が40%以上である、請求項1に記載の細胞培養容器。
  3.  前記開口部と、前記開口部から臨む前記底部上面の領域に、前記表層が形成された複数の凹部を有する構成を、複数備えた、請求項1または2に記載の細胞培養容器。
  4.  顕微Raman分光により100倍の対物レンズを用いて測定される、前記ガラス材料を532nmの光で励起した際の584nmでの蛍光強度の値を、石英ガラスを532nmの光で励起した際の584nmでの蛍光強度の値で除した値が、10以下である、請求項1~3のいずれかに記載の細胞培養容器。
  5.  前記表層は前記底部との間で共有結合を有する、請求項1~4のいずれかに記載の細胞培養容器。
  6.  前記表層は40℃の水に7日間浸漬した場合に、前記表層の単位面積1cm当たりの水に対する全有機炭素(TOC)の溶出量が10mg/L以下である、請求項1~5のいずれかに記載の細胞培養容器。
  7.  前記表層と前記底部の間に酸化ケイ素層を有する、請求項1~6のいずれかに記載の細胞培養容器。
  8.  前記表層が生体親和性基を有する、請求項1~7のいずれかに記載の細胞培養容器。
  9.  前記生体親和性基は、下式1で表される基、下式2で表される基および下式3で表される基からなる群から選ばれる少なくとも1種を含む、請求項8に記載の細胞培養容器。
    Figure JPOXMLDOC01-appb-C000001
     ただし、式1中、nは1~300の整数であり、式1で表される基のうち50~100モル%は、下式4で表される基中の式1で表される基である。式4におけるnは1~300の整数であり、Rは水素原子または炭素数1~5のアルキル基である。
     式2中、R~Rはそれぞれ独立に炭素数1~5のアルキル基であり、aは1~5の整数である。
     式3中、RおよびRはそれぞれ独立に炭素数1~5のアルキル基であり、Xは下式3-1で表される基または下式3-2で表される基であり、bは1~5の整数である。
    Figure JPOXMLDOC01-appb-C000002
  10.  請求項1~9のいずれかに記載の細胞培養容器を用いる、創薬スクリーニング方法。
PCT/JP2019/002323 2018-02-01 2019-01-24 細胞培養容器 WO2019151114A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019569068A JPWO2019151114A1 (ja) 2018-02-01 2019-01-24 細胞培養容器
EP19747524.7A EP3747985A4 (en) 2018-02-01 2019-01-24 CELL CULTURE CONTAINER
US16/895,485 US20200299626A1 (en) 2018-02-01 2020-06-08 Cell culture container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-016737 2018-02-01
JP2018016737 2018-02-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/895,485 Continuation US20200299626A1 (en) 2018-02-01 2020-06-08 Cell culture container

Publications (1)

Publication Number Publication Date
WO2019151114A1 true WO2019151114A1 (ja) 2019-08-08

Family

ID=67479975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002323 WO2019151114A1 (ja) 2018-02-01 2019-01-24 細胞培養容器

Country Status (4)

Country Link
US (1) US20200299626A1 (ja)
EP (1) EP3747985A4 (ja)
JP (1) JPWO2019151114A1 (ja)
WO (1) WO2019151114A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054454A1 (ja) * 2018-09-11 2020-03-19 Agc株式会社 医療用デバイス
US20210062152A1 (en) * 2019-09-04 2021-03-04 Metatech (Ap) Inc. Three-dimensional cell spheroid with high proliferation activity, and producing method and use therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198374A1 (ja) * 2018-04-10 2019-10-17 Agc株式会社 医療用デバイス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058721A1 (ja) * 2009-11-13 2011-05-19 株式会社 日立ハイテクノロジーズ 細胞接着性光制御基材,細胞の解析分別方法及び細胞の解析分別装置
JP2012187097A (ja) * 2010-12-13 2012-10-04 Shiseido Co Ltd 細胞凝集塊の形成方法
JP2013208086A (ja) * 2012-03-30 2013-10-10 Covalent Materials Corp 細胞培養担体
WO2014196204A1 (ja) 2013-06-07 2014-12-11 株式会社クラレ 培養容器及び培養方法
JP2018016737A (ja) 2016-07-28 2018-02-01 村上産業株式会社 炭化物の製造方法
JP2018085978A (ja) * 2016-11-30 2018-06-07 旭硝子株式会社 培養容器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537712A (ja) * 2000-10-18 2004-12-16 バーチャル・アレイズ・インコーポレーテッド 多重細胞分析システム
JP2004279143A (ja) * 2003-03-14 2004-10-07 Shimadzu Corp 時間分解蛍光偏光解消法による分析方法及び装置
US9121003B2 (en) * 2007-09-12 2015-09-01 Kitakyushu Foundation For The Advancement Of Industry, Science And Technology Cell culture instrument and cell culture method using the same
JP2009143739A (ja) * 2007-12-11 2009-07-02 Olympus Corp 光学ガラス及びこれを使用した光学装置
JP2009151022A (ja) * 2007-12-19 2009-07-09 Olympus Corp 低自家蛍光かつ良細胞付着性な光学基材を用いた蛍光観察又は蛍光測光システム、及び蛍光観察又は蛍光測光方法
JP2010083723A (ja) * 2008-09-30 2010-04-15 Ohara Inc 光学ガラス、試料保持器具及び光学素子
US8895048B2 (en) * 2010-04-06 2014-11-25 The University Of Kansas Templated islet cells and small islet cell clusters for diabetes treatment
AU2012236748B2 (en) * 2011-03-31 2015-11-26 Bio-Rad Laboratories, Inc. Scalable spectroscopic detection and measurement
US9340561B2 (en) * 2011-09-16 2016-05-17 Nissan Chemical Industries, Ltd. Organic silicon compound and silane coupling agent containing the same
JP5365736B1 (ja) * 2012-07-24 2013-12-11 富山県 マイクロウェルアレイチップおよび細胞の回収方法
CN112625535A (zh) * 2013-06-07 2021-04-09 日产化学工业株式会社 具有抑制生物物质附着的能力的离子络合材料及其制造方法
TWI692459B (zh) * 2015-05-29 2020-05-01 日商Agc股份有限公司 紫外線透射玻璃
JP2017003330A (ja) * 2015-06-05 2017-01-05 シャープ株式会社 封止シート、検査キットおよび取付け方法
JP6949014B2 (ja) * 2015-10-22 2021-10-13 コーニング インコーポレイテッド 高透過率ガラス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058721A1 (ja) * 2009-11-13 2011-05-19 株式会社 日立ハイテクノロジーズ 細胞接着性光制御基材,細胞の解析分別方法及び細胞の解析分別装置
JP2012187097A (ja) * 2010-12-13 2012-10-04 Shiseido Co Ltd 細胞凝集塊の形成方法
JP2013208086A (ja) * 2012-03-30 2013-10-10 Covalent Materials Corp 細胞培養担体
WO2014196204A1 (ja) 2013-06-07 2014-12-11 株式会社クラレ 培養容器及び培養方法
JP2018016737A (ja) 2016-07-28 2018-02-01 村上産業株式会社 炭化物の製造方法
JP2018085978A (ja) * 2016-11-30 2018-06-07 旭硝子株式会社 培養容器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEN, Z. ET AL.: "In vitro model on glass surfaces for complex interactions between different types of cells", LANGMUIR, vol. 26, no. 23, 2010, pages 17790 - 17794, XP055628054 *
See also references of EP3747985A4
TONG, W. H. ET AL.: "Constrained spheroids for prolonged hepatocyte culture", BIOMATERIALS, vol. 80, 2016, pages 106 - 120, XP055628056 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054454A1 (ja) * 2018-09-11 2020-03-19 Agc株式会社 医療用デバイス
US20210062152A1 (en) * 2019-09-04 2021-03-04 Metatech (Ap) Inc. Three-dimensional cell spheroid with high proliferation activity, and producing method and use therefor

Also Published As

Publication number Publication date
JPWO2019151114A1 (ja) 2021-01-28
US20200299626A1 (en) 2020-09-24
EP3747985A4 (en) 2021-10-27
EP3747985A1 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
US20200239854A1 (en) Adherent cell culture method
WO2019151114A1 (ja) 細胞培養容器
US9657150B2 (en) Reactive superhydrophobic surfaces, patterned superhydrophobic surfaces, methods for producing the same and use of the patterned superhydrophobic surfaces
KR101960203B1 (ko) 의료 기구, 세포 배양 방법, 불소 함유 환상 올레핀 폴리머, 불소 함유 환상 올레핀 폴리머 조성물, 및 배양 세포
US8916189B2 (en) Cell culture support for forming string-shaped cardiomyocyte aggregates
KR101965998B1 (ko) 의료 기구, 불소 함유 환상 올레핀 폴리머, 불소 함유 환상 올레핀 폴리머 조성물, 및 세포 배양 방법
CN108102913A (zh) 基于软光刻技术的三维细胞培养芯片、其制备方法及应用
Versaevel et al. Micropatterning hydroxy-PAAm hydrogels and Sylgard 184 silicone elastomers with tunable elastic moduli
JPWO2017204306A1 (ja) タンパク質付着防止剤、硬化物、硬化物の製造方法、および物品
Beckwith et al. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly (vinyl alcohol) hydrogels
JP2010252631A (ja) 細胞培養基板
US8129188B2 (en) Cell culture apparatus and method of fabricating the apparatus
CN104689860A (zh) 一种用于单球水平的抗肿瘤药物筛选微流控芯片及应用
EP2444477A1 (en) Container for formation of aggregated cell mass, and method for formation of aggregated cell mass
JP2017205021A (ja) 初代癌細胞のスフェロイド作製方法、スフェロイド、スクリーニング方法、及び、診断方法
Park et al. Microfluidic‐Printed Microcarrier for In Vitro Expansion of Adherent Stem Cells in 3D Culture Platform
CN108148756A (zh) 一种低粘附培养板的制备方法
JP7192856B2 (ja) 医療用デバイス
JP7219891B2 (ja) 細胞培養用積層体、医療器具および医療器具の使用方法
JP6332646B2 (ja) 活性エステル基を含有するシラン化合物とそれを用いた材料
JP7334738B2 (ja) 医療用デバイス
JP5862061B2 (ja) 胚性幹細胞の培養方法
JP2023064377A (ja) 細胞培養基材
Aydin et al. Tumor-Microenvironment-on-Chip Platform for Assessing Drug Response in 3D Dynamic Culture
JP2023178108A (ja) 細胞培養基材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019569068

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019747524

Country of ref document: EP

Effective date: 20200901