WO2012026548A1 - タイヤ及びその製造方法 - Google Patents

タイヤ及びその製造方法 Download PDF

Info

Publication number
WO2012026548A1
WO2012026548A1 PCT/JP2011/069224 JP2011069224W WO2012026548A1 WO 2012026548 A1 WO2012026548 A1 WO 2012026548A1 JP 2011069224 W JP2011069224 W JP 2011069224W WO 2012026548 A1 WO2012026548 A1 WO 2012026548A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
thermoplastic elastomer
resin material
polyester
elastomer
Prior art date
Application number
PCT/JP2011/069224
Other languages
English (en)
French (fr)
Inventor
啓之 筆本
原田 高志
好秀 河野
誓志 今
圭一 長谷川
飯塚 宗紀
貴之 八子
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010188905A external-priority patent/JP5836575B2/ja
Priority claimed from JP2010188908A external-priority patent/JP5901106B2/ja
Priority claimed from JP2010188909A external-priority patent/JP6066541B2/ja
Priority claimed from JP2010188906A external-priority patent/JP5993544B2/ja
Priority claimed from JP2010203737A external-priority patent/JP5893242B2/ja
Priority to US13/818,348 priority Critical patent/US9387725B2/en
Priority to CN201180051344.XA priority patent/CN103201121B/zh
Priority to EP11820011.2A priority patent/EP2610071B1/en
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority claimed from JP2011183582A external-priority patent/JP5813416B2/ja
Priority claimed from JP2011183583A external-priority patent/JP5818578B2/ja
Publication of WO2012026548A1 publication Critical patent/WO2012026548A1/ja
Priority to US15/175,414 priority patent/US20160280008A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0678Injection moulding specially adapted for tyres or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/70Annular breakers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/007Inflatable pneumatic tyres or inner tubes made from other material than rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/01Inflatable pneumatic tyres or inner tubes without substantial cord reinforcement, e.g. cordless tyres, cast tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0064Reinforcements comprising monofilaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/04Carcasses the reinforcing cords of each carcass ply arranged in a substantially parallel relationship
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2019/00Use of rubber not provided for in a single one of main groups B29K2007/00 - B29K2011/00, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0046Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C2009/0035Reinforcements made of organic materials, e.g. rayon, cotton or silk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2214Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre characterised by the materials of the zero degree ply cords
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C2009/2228Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre characterised by special physical properties of the zero degree plies
    • B60C2009/2233Modulus of the zero degree ply
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T152/00Resilient tires and wheels
    • Y10T152/10Tires, resilient
    • Y10T152/10495Pneumatic tire or inner tube
    • Y10T152/10765Characterized by belt or breaker structure
    • Y10T152/1081Breaker or belt characterized by the chemical composition or physical properties of elastomer or the like

Definitions

  • the present invention relates to a tire mounted on a rim, and particularly relates to a tire at least partially formed of a thermoplastic material and a method for manufacturing the same.
  • pneumatic tires made of rubber, organic fiber materials, steel members, and the like are used for vehicles such as passenger cars.
  • JP 2003-104008 A and JP 03-143701 A disclose pneumatic tires molded using a thermoplastic polymer material.
  • a tire is provided with a reinforcing layer in which a reinforcing cord is spirally wound continuously in the tire circumferential direction on the outer surface in the tire radial direction of the tread bottom of a tire body (tire frame).
  • the cut resistance and puncture resistance of the main body are improved.
  • a tire using a thermoplastic polymer material is easier to manufacture and less expensive than a conventional rubber tire.
  • the tire frame is formed of a uniform thermoplastic polymer material that does not have a reinforcing member such as a carcass ply, it is improved in terms of stress resistance and internal pressure resistance compared to conventional rubber tires. There is room (see, for example, JP-A-2003-104008).
  • a reinforcing layer in which a reinforcing cord is continuously spirally wound in the tire circumferential direction is provided on the outer surface in the tire radial direction at the bottom of a tread of a tire body (tire frame). Improves cut resistance and puncture resistance.
  • a reinforcing layer is formed by directly spirally winding a reinforcing cord around a tire skeleton formed of a thermoplastic polymer material, and a tread is formed radially outside the reinforcing layer, an adhesive is applied to the reinforcing cord. Even if it is used, the adhesiveness is not sufficient, and air may remain around the reinforcing cord.
  • the reinforcing cord may move during traveling to cause separation between members, and there is room for improvement from the viewpoint of tire durability. Further, since the periphery of the reinforcement cord is covered with the cushion rubber, the reinforcement cord or the like may be peeled off due to the difference in material hardness between the tire body and the periphery of the reinforcement cord.
  • thermoplastic polymer material when a tire is manufactured using a thermoplastic polymer material, it is required to realize performance comparable to that of a conventional rubber tire while increasing manufacturing efficiency and realizing low cost.
  • a thermoplastic resin material when a thermoplastic resin material is used as a material for a tire frame body, a polymer material is injected into a mold by injection molding as described in Japanese Patent Laid-Open No. 03-143701 from the viewpoint of manufacturing efficiency and the like.
  • the thermoplastic polymer material it is desired to select a material excellent in durability when used as a tire and handleability (manufacturability) during molding.
  • the tire has a strong resistance to impact, and a tire molded using a thermoplastic polymer material has also been conventionally used. It is also required to have an impact resistance equal to or higher than that of a tire using the rubber.
  • thermoplastic resin material used for manufacturing the tire has heat resistance and small changes in physical properties due to temperature changes.
  • the required characteristics for the tire include, for example, that it has an elastic modulus within a certain range and a mechanical loss coefficient (rolling coefficient: Tan ⁇ ). ) Is low, it becomes one of important characteristics as well as excellent heat resistance. However, low tan ⁇ and high elastic modulus are generally in a trade-off relationship in a polymer material. For this reason, development of a tire capable of satisfying these characteristics at a high level is desired.
  • the tire skeleton in a tire using a thermoplastic polymer material is formed of a uniform thermoplastic polymer material that does not include a reinforcing member such as a carcass ply, it is compared to a conventional rubber tire. There is room for improvement in terms of stress resistance and internal pressure resistance.
  • a first aspect of the present invention is to provide a tire formed using a thermoplastic polymer material and having excellent durability and manufacturability.
  • the second aspect of the present invention is to provide a tire formed of a thermoplastic resin material and excellent in impact resistance.
  • the third aspect of the present invention is to provide a tire that is formed using a thermoplastic resin material, that suppresses air remaining in the periphery of the reinforcing cord member, and has excellent impact resistance.
  • a fourth aspect of the present invention is to provide a tire that is formed using a thermoplastic resin material and that suppresses an increase in rolling resistance even when the modulus of elasticity increases and is excellent in durability.
  • a tire formed from a thermoplastic polymer material and having excellent durability and manufacturability from a viewpoint different from the first aspect, and the manufacture of the tire. It is an object to provide a method.
  • a sixth aspect of the present invention is to provide a tire formed using a thermoplastic resin material and having excellent impact resistance from a viewpoint different from the second aspect, and excellent in productivity. It is an object of the present invention to provide a tire manufacturing method.
  • the seventh aspect of the present invention is to provide a tire that is formed using a thermoplastic polymer material, is highly elastic, has a low loss factor, and is excellent in heat resistance.
  • a tire according to the first aspect of the present invention is formed of at least a thermoplastic resin material and is an annular tire frame.
  • the tire has a reinforcing cord member that forms a reinforcing cord layer on an outer peripheral portion of the tire skeleton, and the thermoplastic resin material includes at least a polyester-based thermoplastic elastomer.
  • the reinforcing cord layer may be wound around the outer periphery of the tire frame body in the circumferential direction, or may be wound around the outer periphery.
  • the tire according to the first aspect of the present invention has an annular tire skeleton formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer.
  • thermoplastic resin material forming the tire skeleton includes a polyester-based thermoplastic elastomer
  • polyester thermoplastic elastomers have the advantages of having heat resistance, impact resistance, oil resistance, and excellent tensile modulus, tensile strength, and breaking strain. Therefore, when formed as a tire skeleton, the wear resistance, durability, impact resistance, oil resistance, and heat resistance of the tire can be improved.
  • the polyester-based thermoplastic elastomer has an advantage that the elastic modulus is less changed due to a temperature change than other thermoplastic elastomers.
  • polyester-based thermoplastic elastomers are less susceptible to changes in deformation and hardness due to temperature fluctuations in the environment of use, and are more resistant to impact, which affects the riding comfort of vehicles equipped with the tires. Will be less.
  • Polyester thermoplastic elastomer has a high deflection temperature under load, so when vulcanizing in the production of tires, it can be vulcanized at a high temperature, and firmly bonds the tire frame and cushion rubber, etc. be able to.
  • Polyester thermoplastic elastomers have the advantage of high bending fatigue resistance. Therefore, a tire configured to include a polyester-based thermoplastic elastomer exhibits high durability by suppressing the occurrence and growth of fatigue cracks against repeated bending.
  • the tire frame body is a polyester-based thermoplastic elastomer because bending occurs from the reinforcing cord member.
  • the above-mentioned advantages including The polyester-based thermoplastic elastomer is excellent in heat-fusibility with other resins (for example, polyester resin, polycarbonate resin, ABS resin, polybutylene terephthalate resin). Therefore, when the reinforcing cord layer includes a resin material as will be described later, the selection range of the resin material is widened, and a tire having a tire frame body excellent in adhesiveness with the reinforcing cord layer is realized. Can do.
  • thermoplastic resin material containing a polyester-based thermoplastic elastomer is used for the tire frame body, the structure of the tire can be simplified compared to conventional rubber tires, and as a result, the weight of the tire can be reduced. Become.
  • a reinforcing cord layer is formed by winding a reinforcing cord member around an outer peripheral portion of a tire skeleton formed of a thermoplastic resin material including a polyester-based thermoplastic elastomer. Is formed.
  • the reinforcing cord layer is formed on the outer peripheral portion of the tire frame body, the puncture resistance and cut resistance of the tire and the circumferential rigidity of the tire (tire frame body) are improved.
  • the improvement of the circumferential rigidity suppresses the creep of the tire frame formed of a thermoplastic material (a phenomenon in which the plastic deformation of the tire frame increases with time under a certain stress).
  • the polyester-based thermoplastic elastomer contained in the thermoplastic resin material has adhesion to the reinforcing cord member. For this reason, for example, it is possible to suppress a phenomenon (air entering) in which air remains around the reinforcing cord member in the winding step of the reinforcing cord member. If there is adhesion to the reinforcing cord and further the air entry to the periphery of the reinforcing cord member is suppressed, it is possible to effectively suppress the movement of the reinforcing cord member due to input during traveling. Thereby, for example, even when the tire constituent member is provided so as to cover the entire reinforcing cord member on the outer peripheral portion of the tire frame body, the movement of the reinforcing cord member is suppressed. The occurrence of peeling (including the tire skeleton) is suppressed, and the durability of the tire is improved.
  • the tire according to the first aspect of the present invention can be configured such that the reinforcing cord layer includes a resin material.
  • the reinforcing cord layer contains a resin material
  • the difference in hardness between the tire and the reinforcing cord layer can be reduced as compared with the case where the reinforcing cord member is fixed with cushion rubber.
  • the member can be adhered and fixed to the tire frame.
  • the reinforcing cord member is a steel cord
  • the resin material usually has a lower loss coefficient (Tan ⁇ ) than vulcanized rubber. For this reason, the rolling property of a tire can be improved.
  • a resin material having a relatively high elastic modulus as compared with vulcanized rubber has an advantage that the in-plane shear rigidity is large and the stability and wear resistance during running of the tire are excellent.
  • the “resin material” is a concept including a thermoplastic resin (including a thermoplastic elastomer) and a thermosetting resin, and does not include a vulcanized rubber.
  • the surface of the reinforcing cord member is 20% or more from the viewpoint of improving the pullability (hardness of being pulled out) of the reinforcing cord. It is preferably covered with a resin material, more preferably 50% or more. Further, the content of the resin material in the reinforcing cord layer is preferably 20% by mass or more from the viewpoint of improving the pullability of the reinforcing cord with respect to the total amount of the material constituting the reinforcing cord layer excluding the reinforcing cord, 50 mass% or more is still more preferable.
  • the tire in order to configure the reinforcing cord layer to include a resin material, for example, the tire is formed of a thermoplastic resin material in a cross-sectional view along the axial direction of the tire skeleton. It can be configured and formed such that at least a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame.
  • the thermoplastic resin material including the polyester-based thermoplastic elastomer on the outer periphery of the tire frame body in which the reinforcing cord member is embedded corresponds to the resin material constituting the reinforcing cord layer, and the polyester-based heat forming the tire frame body
  • the reinforcing cord layer is composed of a plastic elastomer (thermoplastic resin material) and a reinforcing cord member.
  • a coated cord member in which the reinforcing cord is covered with a resin material that is the same as or different from the resin material that forms the tire frame body is formed on the tire frame body. You may wind in the circumferential direction.
  • the same kind of resin material refers to forms such as ester series and styrene series.
  • the tire of the present invention according to the first aspect can be configured such that the thermoplastic resin material containing the polyester-based thermoplastic elastomer has a melting point of 100 ° C. to 260 ° C.
  • the thermoplastic resin material containing the polyester-based thermoplastic elastomer has a melting point of 100 ° C. to 260 ° C.
  • the tire of the present invention according to the first aspect can be configured such that the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is 50 to 100% by mass.
  • the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is 50 to 100% by mass, the performance of the polyester-based thermoplastic elastomer can be fully exerted, and the durability as tire performance, handling properties and manufacturing It is possible to achieve both productivity from the viewpoint of cost reduction.
  • the tire according to the first aspect of the present invention is a tire skeleton piece forming step of forming a tire skeleton piece constituting a part of an annular tire skeleton body with a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer,
  • a tire skeleton piece joining step of forming a tire skeleton by fusing two or more of the paired tire skeleton pieces by applying heat to a joining surface of the tire skeleton pieces; and a reinforcing cord on an outer periphery of the tire skeleton And a reinforcing cord member winding step of forming a reinforcing cord layer by winding the member in the circumferential direction.
  • a tire frame piece of an annular tire frame is formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer.
  • the tire skeleton pieces using a polyester-based thermoplastic elastomer have sufficient adhesion strength between the tire skeleton pieces when they are fused to form a tire skeleton body, and the performance of the skeleton body itself depends on the temperature at the time of fusion. Therefore, durability during running such as puncture resistance and wear resistance of the manufactured tire can be improved.
  • the tire of the present invention is a tire having at least an annular tire skeleton formed of a thermoplastic resin material.
  • a reinforcing cord member that forms a reinforcing cord layer on an outer peripheral portion of the tire frame body, wherein the thermoplastic resin material is at least a polyester-based thermoplastic elastomer and another elastomer other than the polyester-based thermoplastic elastomer including.
  • the reinforcing cord layer may be wound around the outer periphery of the tire frame body in the circumferential direction, or may be wound around the outer periphery.
  • the tire according to the second aspect of the present invention has an annular tire skeleton formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer.
  • the polyester-based thermoplastic elastomer contained in the thermoplastic resin material has heat resistance, impact resistance, and oil resistance, and is excellent in tensile modulus, tensile strength, and breaking strain.
  • the polyester-based thermoplastic elastomer has an advantage that its elastic modulus is less changed due to a temperature change than other thermoplastic elastomers. For this reason, tires that contain polyester-based thermoplastic elastomers are less susceptible to changes in deformation and hardness due to temperature fluctuations in the environment of use, and are more resistant to impact, which affects the riding comfort of vehicles equipped with the tires. Will be less.
  • the polyester-based thermoplastic elastomer since the polyester-based thermoplastic elastomer has a high deflection temperature under load, it can be vulcanized at a high temperature when vulcanizing in the production of a tire, and the tire frame body and the cushion rubber can be firmly reinforced. Can be glued. Furthermore, the polyester-based thermoplastic elastomer has an advantage of high bending fatigue resistance. Therefore, the tire of the present invention according to the second aspect, which is configured to include a polyester-based thermoplastic elastomer, exhibits high durability by suppressing the occurrence and growth of fatigue cracks against repeated bending.
  • the tire frame body is a polyester-based thermoplastic elastomer because bending occurs from the reinforcing cord member.
  • the ratio of the hard segment to the soft segment is controlled. Therefore, the adjustment of the ratio requires a complicated process.
  • the polyester thermoplastic elastomer is used alone by adjusting the content ratio between the two. Compared with the case where it was, the elasticity modulus of a thermoplastic resin composition can be adjusted easily.
  • the elastic modulus of the thermoplastic resin material can be easily set within a desired range, so that the impact resistance of the tire is easily improved.
  • the manufacturing cost is excellent.
  • thermoplastic resin material containing a polyester-based thermoplastic elastomer when used for a tire skeleton, the structure of the tire can be simplified compared to a conventional rubber tire, and as a result, the weight of the tire can be reduced. The fuel consumption of the automobile provided with the tire can be improved.
  • a reinforcing cord member is wound around an outer peripheral portion of a tire frame body formed of a thermoplastic resin material including a polyester-based thermoplastic elastomer and another elastomer.
  • a reinforcing cord layer is formed.
  • the puncture resistance and cut resistance of the tire and the circumferential rigidity of the tire (tire frame body) are improved.
  • the improvement of the circumferential rigidity suppresses the creep of the tire frame formed of a thermoplastic material (a phenomenon in which the plastic deformation of the tire frame increases with time under a certain stress).
  • thermoplastic resin material according to the second aspect of the present invention has high adhesion to the reinforcing cord member and is excellent in fixing performance such as welding strength. For this reason, when the thermoplastic resin material is used, for example, a phenomenon (air entering) in which air remains around the reinforcing cord member in the winding step of the reinforcing cord member can be suppressed.
  • a phenomenon air entering in which air remains around the reinforcing cord member in the winding step of the reinforcing cord member can be suppressed.
  • the adhesion to the reinforcing cord and the weldability are high and the air entering the periphery of the reinforcing cord member is suppressed, it is possible to effectively suppress the movement of the reinforcing cord member due to input during traveling.
  • the tire constituent member is provided so as to cover the entire reinforcing cord member on the outer peripheral portion of the tire frame body, the movement of the reinforcing cord member is suppressed.
  • the occurrence of peeling (including the tire skeleton) is suppressed, and the durability of the tire is improved.
  • the tire according to the second aspect of the present invention can be configured such that the reinforcing cord layer includes a resin material.
  • the reinforcing cord layer contains a resin material
  • the difference in hardness between the tire and the reinforcing cord layer can be reduced as compared with the case where the reinforcing cord member is fixed with cushion rubber.
  • the member can be adhered and fixed to the tire frame. Thereby, the above-mentioned air entering can be prevented effectively, and it can control effectively that a reinforcement cord member moves at the time of driving.
  • the reinforcing cord is a steel cord
  • the vulcanized rubber is separated from the reinforcing cord only by heating.
  • the resin material can be separated from the reinforcing cord only by heating. This is advantageous in terms of tire recyclability.
  • the resin material usually has a lower loss coefficient (Tan ⁇ ) than vulcanized rubber. For this reason, the rolling property of a tire can be improved.
  • a resin material having a relatively high elastic modulus as compared with vulcanized rubber has an advantage that the in-plane shear rigidity is large and the stability and wear resistance during running of the tire are excellent.
  • the “resin material” is a concept including a thermoplastic resin (including a thermoplastic elastomer) and a thermosetting resin, and does not include vulcanized rubber.
  • the surface of the reinforcing cord member has a surface of 20% or more from the viewpoint of improving the pullability (hardness of being pulled out) of the reinforcing cord. It is preferably covered with a resin material, and more preferably 50% or more.
  • the content of the resin material in the reinforcing cord layer is preferably 20% by mass or more from the viewpoint of improving the pullability of the reinforcing cord with respect to the total amount of the material constituting the reinforcing cord layer excluding the reinforcing cord, 50 More preferably, it is more than mass%.
  • the reinforcing cord layer in order to configure the reinforcing cord layer to include a resin material, for example, the reinforcing cord layer is formed of a thermoplastic resin material in a cross-sectional view along the axial direction of the tire skeleton. It can be configured and formed such that at least a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame.
  • the thermoplastic resin material including the polyester-based thermoplastic elastomer and other elastomers on the outer periphery of the tire skeleton embedded in the reinforcement cord member corresponds to the resin material constituting the reinforcement cord layer
  • the tire skeleton is
  • the reinforcing cord layer is composed of the thermoplastic resin material to be formed and the reinforcing cord member.
  • a coated cord member in which the reinforcing cord is covered with a resin material that is the same as or different from the resin material that forms the tire frame body is formed on the tire frame body. You may wind in the circumferential direction.
  • the same kind of resin material refers to forms such as ester series and styrene series.
  • the thermoplastic resin has a mass ratio (a: b) between the polyester-based thermoplastic elastomer (a) and the other elastomer (b). 95: 5 to 50:50.
  • the tire of the present invention according to the second aspect is configured such that the other elastomer is any one selected from a polyurethane-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, and a polystyrene-based thermoplastic elastomer. can do.
  • the polyester-based thermoplastic elastomer can sufficiently exhibit the performance possessed by the tire, and can further expand the selection range in adjusting the elastic modulus of the thermoplastic resin material, so that the tire can be further improved in impact resistance.
  • the tire of the present invention is a tire skeleton piece that forms a tire skeleton piece constituting a part of an annular tire skeleton by a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer and another elastomer.
  • a reinforcing cord member winding step of forming a reinforcing cord layer by winding the reinforcing cord member in the circumferential direction on the outer peripheral portion.
  • a tire frame piece of an annular tire frame body is formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer.
  • the tire skeleton pieces using the thermoplastic resin material in the tire according to the second aspect of the present invention have sufficient adhesion strength between the tire skeleton pieces when fused to form a tire skeleton, Since the performance of the skeleton itself is not deteriorated by the temperature at the time of wearing, durability during running such as puncture resistance and wear resistance of the manufactured tire can be improved.
  • the tire according to the third aspect of the present invention is an annular tire formed of at least a thermoplastic resin material.
  • the reinforcing cord layer may be wound around the outer periphery of the tire frame body in the circumferential direction, or may be wound around the outer periphery.
  • the tire according to the third aspect of the present invention has an annular tire skeleton formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and rubber.
  • the thermoplastic resin material forming the tire frame according to the present invention has flexibility and excellent impact resistance.
  • the thermoplastic resin material includes a polyester-based thermoplastic elastomer, deformation and hardness change due to temperature fluctuations in the use environment are small, and tensile properties such as tensile elastic modulus and tensile strength are also excellent. For this reason, when formed as a tire skeleton, the durability and manufacturability of the tire are excellent. Furthermore, since the structure can be simplified, there is an advantage that the weight can be reduced. On the other hand, when a polyester-based thermoplastic elastomer is used alone, it is necessary to control the ratio between the hard segment and the soft segment when adjusting the elastic modulus.
  • the elastic modulus of the thermoplastic resin material can be adjusted by adjusting the content ratio of both, compared to the case where the polyester-based thermoplastic elastomer is used alone. It can be adjusted easily.
  • the rolling resistance of the tire is caused by vibrations around 10 Hz to 100 Hz around 50 ° C.
  • the rolling resistance can be expressed by tan ⁇ of 30 ° C. to 50 ° C. .
  • tan ⁇ at 30 ° C. to 50 ° C. is small, the rolling resistance of the tire tends to be small.
  • the polyester-based thermoplastic elastomer alone, when dynamic viscoelasticity measurement is performed, a peak of tan ⁇ derived from the polyester-based thermoplastic elastomer is seen, and the higher the elastic modulus of the polyester-based thermoplastic elastomer, the higher the temperature side. The peak value tends to shift.
  • a reinforcing cord member is wound around the outer periphery of a tire skeleton formed of a thermoplastic resin material including a polyester-based thermoplastic elastomer and rubber to reinforce the tire.
  • a code layer is formed.
  • the reinforcing cord layer is formed on the outer peripheral portion of the tire frame body, the puncture resistance and cut resistance of the tire and the circumferential rigidity of the tire (tire frame body) are improved.
  • the improvement of the circumferential rigidity suppresses the creep of the tire frame formed of a thermoplastic material (a phenomenon in which the plastic deformation of the tire frame increases with time under a certain stress).
  • the polyester-based thermoplastic elastomer contained in the thermoplastic resin material forming the tire skeleton has adhesion to the reinforcing cord member, and further has fixing performance such as welding strength. Is excellent. For this reason, when a thermoplastic resin material containing a polyester-based thermoplastic elastomer and rubber is used, for example, a phenomenon in which air remains around the reinforcing cord member in the step of winding the reinforcing cord member (air entering) can be suppressed. it can.
  • the thermoplastic resin material forming the tire skeleton may further contain a thermoplastic elastomer having good affinity with the rubber.
  • the thermoplastic resin material contains an acid-modified product as a thermoplastic elastomer having good affinity with rubber
  • the rubber can be finely dispersed in the thermoplastic resin material.
  • the tensile strength is improved by the interaction between the polyester-based thermoplastic elastomer and the acid-modified site, and even if it breaks, it is considered that ductile fracture occurs and brittle fracture or layered fracture hardly occurs.
  • “Good compatibility with rubber” means that when a thermoplastic elastomer is mixed with rubber, the molecular skeleton of the rubber is similar to the molecular skeleton of the thermoplastic elastomer. A state in which rubber is taken in or a state in which a thermoplastic elastomer is taken into dispersed particles of rubber. However, it is not necessary that the thermoplastic elastomer and rubber in the thermoplastic resin material are all in the above state, and the thermoplastic elastomer and rubber in the thermoplastic resin material may be partially in the above state.
  • the tire according to the third aspect of the present invention can be configured such that the reinforcing cord layer includes a resin material.
  • the reinforcing cord layer contains a resin material
  • the difference in hardness between the tire and the reinforcing cord layer can be reduced as compared with the case where the reinforcing cord member is fixed with cushion rubber.
  • the member can be adhered and fixed to the tire frame. Thereby, the above-mentioned air entering can be prevented effectively, and it can control effectively that a reinforcement cord member moves at the time of driving.
  • the “resin material” is a material containing at least a resin, and may contain not only a resin but also rubber or an inorganic compound.
  • the “resin” is a concept including a thermoplastic resin (including a thermoplastic elastomer) and a thermosetting resin, and does not include a rubber such as vulcanized rubber or an inorganic compound.
  • a resin material is included in the reinforcing cord layer, it is preferable that the surface of the reinforcing cord is covered with a resin material by 20% or more from the viewpoint of improving the pullability (hardness of being pulled out) of the reinforcing cord. More preferably, it is covered by at least%.
  • the content of the resin material in the reinforcing cord layer is preferably 20% by mass or more from the viewpoint of improving the pullability of the reinforcing cord with respect to the total amount of the material constituting the reinforcing cord layer excluding the reinforcing cord, 50 mass% or more is still more preferable.
  • the reinforcing cord member is formed on the outer periphery of the tire frame body formed of a thermoplastic resin material. It can be configured and formed so as to be at least partially embedded.
  • the thermoplastic resin material including the polyester-based thermoplastic elastomer and rubber at the outer periphery of the tire skeleton body in which the reinforcement cord member is embedded corresponds to the resin material constituting the reinforcement cord layer, and forms the tire skeleton body.
  • the reinforcing cord layer is constituted by the thermoplastic resin material and the reinforcing cord member.
  • the reinforcing cord layer in order to configure the reinforcing cord layer to include a resin material, a coated cord member in which the reinforcing cord is covered with a resin material that is the same as or different from the resin material that forms the tire frame body is formed on the tire frame body. You may wind in the circumferential direction.
  • the same kind of resin material refers to forms such as ester series and styrene series.
  • the mass ratio (x: y) of the polyester-based thermoplastic elastomer (x) to the rubber (y) is 95: 5 to It can be configured to be 50:50.
  • the mass ratio (x: y) of the polyester-based thermoplastic elastomer (x) to the rubber (y) is 95: 5 to 50:50.
  • the total amount (y ′) of the rubber and the thermoplastic elastomer other than the polyester-based thermoplastic elastomer, and the polyester-based thermoplastic elastomer can be 95: 5 to 50:50.
  • the tire of the present invention is a thermoplastic elastomer (z) having a good affinity between the polyester-based thermoplastic elastomer (x), the rubber (y), and the rubber in the thermoplastic resin material.
  • the mass ratio (x: y + z) of 95: 5 to 50:50 is 95.
  • the ratio is set to 5:50:50, the performance that can be expressed by the combination of the polyester-based thermoplastic elastomer and the rubber can be further improved.
  • the tire of the present invention according to the third aspect can be configured such that the total content of the polyester-based thermoplastic elastomer and rubber in the thermoplastic resin material is 50 to 100% by mass. .
  • gum can be improved more.
  • the thermoplastic resin material includes a thermoplastic elastomer other than the polyester-based thermoplastic elastomer
  • the total amount of the polyester-based thermoplastic elastomer, the rubber, and the thermoplastic elastomer other than the polyester-based thermoplastic elastomer is 50 masses. % To 100% by mass.
  • the tire of the present invention according to a third aspect is the polyester-based thermoplastic elastomer in the thermoplastic resin material, the rubber, and a thermoplastic elastomer having good affinity for the rubber.
  • the total content may be 50% by mass to 100% by mass.
  • the tire of the present invention according to the fourth aspect has an annular tire skeleton formed of a thermoplastic resin material.
  • a polyester thermoplastic elastomer (A) in which the thermoplastic resin material has a hard segment and a soft segment containing a polyester resin hereinafter referred to as “polyester thermoplastic elastomer (A)” as appropriate.
  • a polyester resin (B) other than the thermoplastic elastomer hereinafter appropriately referred to as “polyester resin (B)”.
  • the polyester resin (B) in the present invention according to the fourth aspect is preferably the same type of resin as the polyester resin contained in the hard segment of the polyester-based thermoplastic elastomer (A).
  • the same type of resin as the polyester resin contained in the hard segment refers to a polyester resin having a skeleton that is the same as the skeleton constituting the main chain of the hard segment of the polyester thermoplastic elastomer.
  • the polyester resin (B) is a polyester resin having a skeleton that is the same as the skeleton constituting the main chain of the hard segment of the polyester thermoplastic elastomer (A), the hard segment in the polyester thermoplastic elastomer (A) It is considered that the affinity between the polyester resin (B) and the polyester resin (B) increases.
  • the thermoplastic resin material includes the polyester-based thermoplastic elastomer (A) and the polyester resin (B)
  • the polyester resin (B) is compatible with the hard segment of the polyester-based thermoplastic elastomer (A). And it is unevenly distributed in the hard segment of a polyester-type thermoplastic elastomer (A), and the area
  • thermoplastic resin material containing the polyester-based thermoplastic elastomer (A) and the polyester resin (B) simply includes the polyester-based thermoplastic elastomer (A) and the polyester resin (B), and the polyester resin (B) Rather than being uniformly dispersed in the polyester-based thermoplastic elastomer (A) and having the respective properties, the region of the hard segment of the polyester-based thermoplastic elastomer (A) is increased, and the thermoplastic resin material Increases elastic modulus.
  • the rolling resistance of the tire is caused by vibrations around 10 Hz to 100 Hz around 50 ° C.
  • the rolling resistance can be expressed by tan ⁇ of 30 ° C. to 50 ° C.
  • a tire formed using a resin material composed only of the polyester thermoplastic elastomer (A) has a loss tangent (tan ⁇ ) when the elastic modulus is increased by increasing the number of hard segment regions of the thermoplastic elastomer. Tend to be larger.
  • the elastic modulus of the thermoplastic resin material is increased by forming a tire by using a thermoplastic resin material containing the polyester-based thermoplastic elastomer (A) and the polyester resin (B) and forming a tire.
  • tan ⁇ is difficult to increase.
  • the increase in tan ⁇ is remarkably suppressed when the polyester resin (B) is the same type of resin as the polyester resin contained in the hard segment of the polyester thermoplastic elastomer (A). The reason for such an effect is not clear, but is presumed to be as follows.
  • the tan ⁇ peak of the polyester-based thermoplastic elastomer (A) shifts to the high temperature side, and 30 Increase tan ⁇ at ⁇ 50 ° C.
  • the polyester resin (B) is compatible with the hard segment region of the polyester-based thermoplastic elastomer (A)
  • the hard segment region becomes large, and the shift of the tan ⁇ peak to the high temperature side is suppressed.
  • the tan ⁇ peak of the polyester resin (B) appears, but tan ⁇ as a whole of the thermoplastic resin material is suppressed. From the above, in the present invention, even if the elastic modulus of the thermoplastic resin material is increased, tan ⁇ is hardly increased.
  • the polyester-based thermoplastic elastomer has an advantage that it has heat resistance, impact resistance, and oil resistance and is excellent in tensile modulus, tensile strength, and breaking strain. Further, the polyester-based thermoplastic elastomer also has an advantage that the change in the elastic modulus due to the temperature change is small as compared with other thermoplastic elastomers. For this reason, the polyester thermoplastic elastomer (A) is used in combination with the polyester resin (B), and while exhibiting excellent properties derived from the polyester thermoplastic elastomer, it also exhibits an effect of suppressing rolling resistance. It is possible to obtain a tire with good durability and low fuel consumption.
  • the tire of the present invention according to the fourth aspect can be configured such that the elastic modulus of the polyester resin (B) is 700 MPa or more.
  • the elastic modulus of the polyester resin (B) that is easily compatible with the hard segment of the polyester-based thermoplastic elastomer (A) is in the above range, so that the hard segment of the polyester-based thermoplastic elastomer (A) Since the elastic modulus can be further increased, a thermoplastic resin material having a higher elastic modulus can be obtained. As a result, a tire having a higher elastic modulus can be obtained.
  • the mass ratio (A: B) of the polyester-based thermoplastic elastomer (A) to the polyester resin (B) is 95: 5 to 50 : 50.
  • the performance of the thermoplastic resin material can be sufficiently exerted, and the tensile properties such as tensile elasticity and breaking strength as tire performance. Can be improved.
  • the tire of the present invention according to the fourth aspect is configured such that the content of the polyester-based thermoplastic elastomer (A) in the thermoplastic resin material is 50% by mass to 95% by mass. can do.
  • the content of the polyester-based thermoplastic elastomer (A) in the thermoplastic resin material is in the above range, the performance of the thermoplastic resin material can be sufficiently exerted, and the tensile properties such as tensile elasticity and breaking strength as tire performance. Can be further improved.
  • the tire of the present invention according to the fourth aspect is provided in addition to the tire skeleton formed of the thermoplastic resin material, and further on the outer peripheral portion of the tire skeleton formed of the thermoplastic resin material.
  • the reinforcing cord member may be wound to form a reinforcing cord layer by being wound.
  • a reinforcing cord member is wound around the outer periphery of a tire skeleton formed of a thermoplastic resin material to form a reinforced cord layer
  • the tire has a puncture resistance, a cut resistance, and a tire (tire skeleton).
  • the circumferential rigidity of the is improved.
  • the improvement of the circumferential rigidity suppresses the creep of the tire frame formed of a thermoplastic material (a phenomenon in which the plastic deformation of the tire frame increases with time under a certain stress).
  • the tire according to the fifth aspect of the present invention is an annular tire skeleton formed of a thermoplastic resin material.
  • the thermoplastic resin material is a polyester-based thermoplastic elastomer and an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than the polyester-based thermoplastic elastomer, or other than the polyester-based thermoplastic elastomer And a mixture of an acid-modified elastomer obtained by acid-modifying the elastomer. That is, the tire according to the fifth aspect of the present invention has an annular tire skeleton formed of a specific thermoplastic resin material, and the specific thermoplastic resin material is 1) polyester-based thermoplastic.
  • thermoplastic elastomer A combination of an elastomer and an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than a polyester-based thermoplastic elastomer, or 2) a polyester-based thermoplastic elastomer, a thermoplastic elastomer other than a polyester-based thermoplastic elastomer, and a polyester And a combination with an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than the thermoplastic elastomer.
  • the polyester-based thermoplastic elastomer contained in the thermoplastic resin material has heat resistance, impact resistance and oil resistance, and is excellent in tensile modulus, tensile strength and breaking strain.
  • the thermoplastic resin material contains an acid-modified elastomer, it has the above properties derived from the polyester-based thermoplastic elastomer, but does not become too elastic and has flexibility. Even when it breaks, the resin material tears, breaks, is not easily broken, and is easily stretched.
  • the polyester-based thermoplastic elastomer has an advantage that the change in the elastic modulus due to the temperature change is small as compared with other thermoplastic elastomers, the temperature condition selection range at the time of use of the tire can be widened. Furthermore, even when an acid-modified elastomer is used in combination, the fluidity of the thermoplastic resin material is ensured at the time of forming the tire frame, and the influence on the manufacturability is small. For this reason, the tire according to the fifth aspect of the present invention has excellent manufacturability, but has little deformation and change in hardness due to temperature fluctuations in the use environment and high impact resistance. In addition to having little influence on the ride comfort, it is difficult to puncture even when the tire is damaged, and the tire can be prevented from bursting.
  • the tire of the present invention according to the fifth aspect is configured such that the acid value of the thermoplastic resin material is 0.1 mg-CH 3 ONa / g or more and 10 mg-CH 3 ONa / g or less. can do.
  • the acid value of a thermoplastic resin material is 0.1 mg-CH 3 ONa / g or more and 10 mg-CH 3 ONa / g or less.
  • the thermoplastic resin material is composed of a matrix phase composed of a polyester-based thermoplastic elastomer (hereinafter also referred to as “sea phase”) and an acid-modified elastomer, or an acid-modified elastomer and other thermoplastic elastomers (unmodified). And a dispersed island phase (hereinafter also referred to as “island phase”).
  • a dispersed island phase hereinafter also referred to as “island phase”.
  • the island phase is finely dispersed in the thermoplastic resin, and impact resistance and tensile properties are improved.
  • the tire of the present invention includes a mass (A) of the polyester thermoplastic elastomer in the thermoplastic resin material, a thermoplastic elastomer other than the polyester thermoplastic elastomer, and the The ratio (A: B) to the total mass (B) of the acid-modified elastomer can be 90:10 to 50:50.
  • the tire of the present invention according to the fifth aspect can be configured such that the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is 50% by mass to 95% by mass.
  • the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is within the above range, the characteristics derived from the polyester-based thermoplastic elastomer can be sufficiently exhibited, and the performance of the thermoplastic resin material can be sufficiently exhibited. Further, the tensile characteristics as tire performance can be further improved.
  • a reinforcing cord layer may be formed by winding a reinforcing cord member around an outer peripheral portion of a tire skeleton formed of a thermoplastic resin material.
  • the reinforcing cord layer is formed on the outer peripheral portion of the tire frame body, the puncture resistance and cut resistance of the tire and the circumferential rigidity of the tire (tire frame body) are improved.
  • the improvement of the circumferential rigidity suppresses the creep of the tire frame formed of a thermoplastic material (a phenomenon in which the plastic deformation of the tire frame increases with time under a certain stress).
  • the method for producing a tire according to the fifth aspect of the present invention includes a polyester-based thermoplastic elastomer and an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than the polyester-based thermoplastic elastomer or the polyester.
  • a tire frame piece of an annular tire frame body is formed of a thermoplastic resin material. Since the thermoplastic resin material used in the production method of the present invention is excellent in tensile properties, it is excellent in the riding comfort of an automobile using the produced tire, and can improve the tear resistance and puncture resistance of the tire. .
  • the acid value of the thermoplastic resin material is 0.1 mg-CH 3 ONa / g or more and 10 mg-CH 3 ONa / g or less. It can be constituted as follows. As described above, by setting the acid value of the acid-modified elastomer within the above range, in particular, an increase in the melt viscosity of the thermoplastic resin material is suppressed and the fluidity is excellent, so that the injection moldability is excellent. Therefore, the tire production efficiency is improved, which is preferable from the viewpoint of environment such as energy saving.
  • the tire manufacturing method according to the fifth aspect of the present invention may be configured to include a step of injection molding using the thermoplastic resin material in the tire frame piece forming step. Since the thermoplastic resin material used in the production method of the present invention according to the fifth aspect is excellent in injection moldability, the productivity of the tire can be increased.
  • the tire of the present invention according to the sixth aspect is an annular tire formed of at least a thermoplastic resin material.
  • olefin- (meth) acrylic acid copolymer is also referred to as a specific copolymer
  • acid-modified copolymer obtained by acid-modifying an olefin- (meth) acrylate copolymer is referred to as a specific acid. Also referred to as a modified copolymer.
  • thermoplastic resin material according to the sixth aspect of the present invention contains at least one of a specific copolymer and a specific acid-modified copolymer and a polyester-based thermoplastic elastomer
  • the thermoplastic resin material has excellent impact resistance.
  • the thermoplastic resin material includes the polyester-based thermoplastic elastomer, the thermoplastic resin material can suppress deformation and change in hardness due to temperature fluctuations in the use environment.
  • polyester-based thermoplastic elastomer When the polyester-based thermoplastic elastomer is used alone, it is necessary to control the ratio between the hard segment and the soft segment when adjusting the elastic modulus. On the other hand, by adjusting the content ratio of each component as a two-component to three-component system of a polyester-based thermoplastic elastomer and at least one of a specific copolymer and a specific acid-modified copolymer, The elastic modulus of the thermoplastic resin material can be easily adjusted as compared with the case where a plastic elastomer is used alone.
  • the “two components” and “three components” are “polyester-based thermoplastic elastomer”, “specific copolymer”, and “specific acid-modified copolymer” as “one component”, respectively. However, the use of two or more of “polyester-based thermoplastic elastomer”, “specific copolymer”, and “specific acid-modified copolymer” is not limited.
  • the tire of the present invention includes the polyester-based thermoplastic elastomer (x), the olefin- (meth) acrylic acid copolymer (specific copolymer; y), and the acid.
  • the mass ratio (x: y + z) to the modified copolymer (specific acid-modified copolymer; z) may be 95: 5 to 50:50.
  • the mass ratio (x: y + z) means the mass ratio (x: y), and the thermoplastic resin
  • the mass ratio (x: y + z) means the mass ratio (x: z).
  • the tire according to the sixth aspect of the present invention includes the olefin- (meth) acrylic acid copolymer (specific copolymer; y) and the acid-modified copolymer (specific acid-modified copolymer; z). ) And a mass ratio (y: z) of 95: 5 to 10:90. If the quantity ratio of the specific copolymer and the specific acid-modified copolymer in the thermoplastic resin material is within the above range, the performance of the thermoplastic resin material can be fully exerted, and the tensile elasticity and breaking strength as tire performance The tensile properties such as can be improved.
  • the tire of the present invention according to a sixth aspect includes the polyester-based thermoplastic elastomer in the thermoplastic resin material, the olefin- (meth) acrylic acid copolymer (specific copolymer),
  • the total content with the acid-modified copolymer (specific acid-modified copolymer) may be 50% by mass to 100% by mass.
  • the total content (x + y + z) means (x + z).
  • the total content of the polyester-based thermoplastic elastomer in the thermoplastic resin material and at least one of the specific copolymer and the specific acid-modified copolymer is within the above range, the performance of the thermoplastic resin material is sufficiently exhibited.
  • the tensile properties such as tensile elasticity and breaking strength as tire performance can be further improved.
  • a reinforcing cord member is wound around the outer periphery of the tire frame formed of the thermoplastic resin material in addition to the tire frame formed of the thermoplastic resin material.
  • a reinforcing cord member is wound around the outer periphery of a tire skeleton formed of a thermoplastic resin material to form a reinforced cord member layer, tire puncture resistance, cut resistance, and tire (tire skeleton) ) Circumferential rigidity is improved.
  • the improvement of the circumferential rigidity suppresses the creep of the tire frame formed of a thermoplastic material (a phenomenon in which the plastic deformation of the tire frame increases with time under a certain stress).
  • the method for producing a tire of the present invention according to the sixth aspect includes at least a polyester-based thermoplastic elastomer, an olefin- (meth) acrylic acid copolymer, and an olefin- (meth) acrylate copolymer.
  • a tire frame piece of an annular tire frame body is formed of a thermoplastic resin material. Since the thermoplastic resin material according to the present invention contains a polyester-based thermoplastic elastomer and at least one of a specific copolymer and a specific acid-modified copolymer and has excellent fluidity, the thermoplastic resin material is used. All injection molding can be performed easily. Therefore, the productivity of the tire can be improved. This is considered to be due to the following reason.
  • the mixing property of the polyester-based thermoplastic elastomer and the specific copolymer is increased, and when the polyester-based thermoplastic elastomer is the sea phase and the specific copolymer is the island phase, It becomes easy to form a sea-island structure. In such a sea-island structure, it is considered that the specific acid-modified copolymer is present at the interface between the sea phase and the island phase, and increases the affinity between the sea phase and the island phase.
  • polyester thermoplastic elastomers have a higher affinity between the sea phase and the island phase, while thermoplastic resin materials are suppressed in viscosity increase and have excellent fluidity. It is considered that molding can be easily performed.
  • the tire of the present invention according to the seventh aspect comprises at least a resin material and an annular tire skeleton.
  • a plastic elastomer having a loss factor (Tan ⁇ ) smaller than that of the first thermoplastic elastomer.
  • the tire of the present invention includes a first thermoplastic elastomer having a tensile elastic modulus in a range of 150 MPa to 700 MP, and a second loss factor (Tan ⁇ ) smaller than that of the first thermoplastic elastomer. And an annular tire skeleton formed of a resin material containing a thermoplastic elastomer.
  • the tire frame is formed of the resin material, the vulcanization process that is an essential process in the conventional rubber tire is not essential.
  • the tire frame is molded by injection molding or the like. can do. For this reason, simplification of a manufacturing process, time reduction, cost reduction, etc. can be achieved.
  • the structure of the tire can be simplified as compared with the conventional rubber tire, and as a result, the weight of the tire can be reduced. For this reason, when formed as a tire skeleton, the wear resistance and durability of the tire can be improved.
  • thermoplastic elastomer is a copolymer having a crystalline polymer having a high melting point or a hard segment having a high cohesion and a non-crystalline polymer having a low glass transition temperature.
  • a thermoplastic elastomer having a high elastic modulus often has a high loss coefficient (Tan ⁇ ), and it is difficult to form a tire frame body having a high elastic modulus and a low Tan ⁇ .
  • the tire according to the present invention includes a first thermoplastic elastomer having a high elastic modulus with a tensile elastic modulus of 150 MPa to 700 MP, and a second thermoplastic elastomer having a loss factor (Tan ⁇ ) smaller than that of the first thermoplastic elastomer. Since the tire frame body is formed using a resin material containing both of the above, for example, compared with the case where the first thermoplastic elastomer or the second thermoplastic elastomer is used alone, the tire frame body Tan ⁇ It is possible to achieve a high elastic modulus while maintaining a low value. As a result, a tire having a low rolling resistance and a high elastic modulus can be provided. Moreover, since the elastic modulus can be increased while maintaining Tan ⁇ of the tire frame body low, the heat resistance of the tire frame body can also be improved.
  • the second loss factor of the thermoplastic elastomer (Tan? 2) and the loss factor of the first thermoplastic elastomer (Tan? 1) and the difference (Tan ⁇ 2 -Tan ⁇ 1) Is preferably 0.02 or more, more preferably 0.05 or more.
  • the first thermoplastic elastomer having a tensile elastic modulus in the range of 200 MPa to 500 MPa can be used.
  • the elastic modulus of the tire frame body can be set to a more preferable range.
  • the tensile elastic modulus of the first thermoplastic elastomer is particularly preferably 300 MPa to 500 MPa.
  • the loss coefficient (Tan ⁇ ) of the second thermoplastic elastomer can be set to 0.01 to 0.08.
  • the loss factor (Tan ⁇ ) of the second thermoplastic elastomer is more preferably 0.01 to 0.06.
  • the mass ratio (x / y) between the first thermoplastic elastomer (x) and the second thermoplastic elastomer (y) is: It can be configured to be 10/90 to 90/10. Thereby, the effect of achieving both high elastic modulus and low Tan ⁇ of the tire frame can be sufficiently exhibited.
  • the mass ratio (x / y) between the first thermoplastic elastomer (x) and the second thermoplastic elastomer (y) is 20/80 to 80/20 is more preferable, and 30/70 to 70/30 is particularly preferable.
  • thermoplastic elastomer and the second thermoplastic elastomer examples include a combination of a polyester elastomer and a polyester elastomer, and a combination of a polyamide elastomer and a polyamide elastomer.
  • a tire formed using a thermoplastic polymer material and excellent in durability and manufacturability can be provided.
  • a tire formed using a thermoplastic resin material and excellent in impact resistance can be provided.
  • the third aspect of the present invention it is possible to provide a tire that is suppressed in air remaining in the periphery of the reinforcing cord member and excellent in impact resistance.
  • thermoplastic resin material that suppresses an increase in rolling resistance even when the elastic modulus increases, and that has excellent durability.
  • a tire formed using a thermoplastic polymer material and excellent in durability and manufacturability, and a method for manufacturing the tire can be provided.
  • the present invention relating to the sixth aspect, it is possible to provide a tire formed using a thermoplastic resin material and excellent in impact resistance, and a method for manufacturing a tire excellent in productivity.
  • the seventh aspect of the present invention it is possible to provide a tire that is highly elastic, has a low loss coefficient, and is excellent in heat resistance.
  • FIG. 1A is a perspective view showing a partial cross section of a tire according to an embodiment of the tire of the present invention according to the first to seventh aspects.
  • FIG. 1B is a cross-sectional view of a bead portion attached to a rim.
  • FIG. 7 is a cross-sectional view along the tire rotation axis showing a state where a reinforcing cord is embedded in a crown portion of a tire case of the tire according to the first embodiment in the tire of the present invention according to the first to seventh aspects. It is explanatory drawing for demonstrating the operation
  • FIG. 4A is a cross-sectional view along the tire width direction of a tire according to an embodiment of the tire of the present invention according to the first to seventh aspects.
  • FIG. 4B is an enlarged view of a cross section along the tire width direction of the bead portion in a state where the rim is fitted to the tire.
  • FIG. 7 is a cross-sectional view along the tire width direction showing the periphery of a reinforcing layer of a tire according to a second embodiment in the tire of the present invention according to the first to seventh aspects. It is the graph which plotted the relationship between the tensile elasticity modulus and tan-delta of each sample piece of the Example produced by the thermoplastic resin material and the comparative example in the tire of this invention which concerns on a 4th viewpoint. It is sectional drawing of the tire which concerns on other embodiment of the tire of this invention which concerns on the 6th and 7th viewpoint.
  • thermoplastic elastomer is a polymer compound having elasticity, and is composed of a crystalline polymer and a hard segment having a high melting point, and an amorphous soft segment having a low glass transition temperature. It means a thermoplastic resin material made of a copolymer having a constituent polymer.
  • Polymer-based thermoplastic elastomer is a polymer compound having elasticity, and forms a soft segment that is amorphous and has a low glass transition temperature with a polymer containing a polyester that forms a hard segment that is crystalline and has a high melting point. It means a thermoplastic resin material made of a copolymer having a polymer and having a partial structure made of polyester in its structure.
  • Rubber is a polymer compound having elasticity, but is distinguished from the thermoplastic elastomer described above in this specification.
  • thermoplastic elastomers hard crystalline segments with a high melting point behave as pseudo-crosslinking points and develop elasticity.
  • rubber has a double bond in the molecular chain, and is crosslinked (vulcanized) by adding sulfur or the like to produce a three-dimensional network structure and develop elasticity. Therefore, when the thermoplastic elastomer is heated, the hard segment is melted, and when the thermoplastic elastomer is cooled, the pseudo-crosslinking point is regenerated again and can be reused.
  • rubber when rubber is crosslinked (vulcanized), it forms a three-dimensional network structure, loses fluidity, and is difficult to reuse even when heated. However, uncrosslinked rubber behaves like a thermoplastic elastomer.
  • thermoplastic elastomer other than polyester-based thermoplastic elastomer refers to a thermoplastic elastomer that does not include a hard segment partial structure made of polyester.
  • this thermoplastic elastomer is also referred to as “other elastomer” as appropriate.
  • Acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than a polyester-based thermoplastic elastomer means that a compound having an acidic group is bonded to a thermoplastic elastomer (other thermoplastic elastomer) other than a polyester-based thermoplastic elastomer. Means what Hereinafter, this thermoplastic elastomer is also referred to as “acid-modified elastomer” as appropriate. Note that other thermoplastic elastomers do not include acid-modified elastomers.
  • resin means a resin having thermoplasticity or thermosetting property, and does not include vulcanized rubber such as conventional natural rubber and synthetic rubber. Thermoplastic elastomers also do not include vulcanized rubber such as conventional natural rubber or synthetic rubber.
  • polyyester resin refers to a resin having an ester bond in the main chain.
  • thermoplastic resin in the present invention means a resin having thermoplasticity, and does not include vulcanized rubber such as conventional natural rubber and synthetic rubber.
  • thermoplastic resin material means a material containing at least a thermoplastic resin, and a material containing rubber in addition to the thermoplastic resin is also included in the “thermoplastic resin material”.
  • thermosetting resin examples include phenol resin, urea resin, melamine resin, epoxy resin, polyamide resin, polyester resin, and the like.
  • thermoplastic resin examples include urethane resin, olefin resin, vinyl chloride resin, polyamide resin, and polyester resin.
  • the “olefin- (meth) acrylic acid copolymer” refers to a copolymer containing a partial structure derived from (meth) acrylic acid in the repeating unit of olefin.
  • (Meth) acrylic acid means at least one of acrylic acid and methacrylic acid.
  • Acid-modified copolymer obtained by acid-modifying an olefin- (meth) acrylate copolymer means that an acidic group is added to a copolymer containing a partial structure derived from (meth) acrylate in a repeating unit of olefin.
  • a copolymer in which a compound having the same is bonded.
  • (Meth) acrylate means at least one of acrylate and methacrylate.
  • tensile elastic modulus means the tensile elastic modulus defined in JIS K7113: 1995. (Note that, unless otherwise specified, “elastic modulus” in the present specification means the tensile elastic modulus.)
  • loss factor (Tan ⁇ ) means a loss factor at 30 ° C., 20 Hz, and shear strain of 1% (in this specification, it may be simply referred to as “Tan ⁇ ”).
  • the amount of each component in the composition when there are a plurality of substances corresponding to each component in the composition, the present in the composition unless otherwise specified. It means the total amount of multiple substances.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the term “process” is not limited to an independent process, and is included in this term if the intended action of this process is achieved even when it cannot be clearly distinguished from other processes. .
  • the resin material constituting the tire frame and the resin material constituting the reinforcing cord layer will be described, and then the concrete of the tire will be described. Embodiments will be described with reference to the drawings.
  • the tires according to the first to seventh aspects of the present invention may be referred to as tires (1) to (7), respectively.
  • the tires (1) to (7) of the present invention have a tire skeleton formed of a resin material.
  • the resin material forming the tire frame will be described in detail.
  • the tire (1) of the present invention has an annular tire skeleton formed of a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer.
  • polyester-based thermoplastic elastomer is a high-molecular compound having elasticity, and is a non-crystalline, low glass transition temperature soft polymer with a polyester-containing polymer that forms a hard segment having a high melting point. It is a thermoplastic resin material comprising a copolymer having a polymer that forms a segment, and includes a polyester resin as a polymer that constitutes a hard segment.
  • polyester-based thermoplastic elastomer applied to the tire (1) include ester-based thermoplastic elastomer (TPC) defined in JIS K6418.
  • the polyester-based thermoplastic elastomer is not particularly limited. However, a crystalline polyester constitutes a hard segment having a high melting point, and an amorphous polymer constitutes a soft segment having a low glass transition temperature. A polymer is mentioned.
  • An aromatic polyester can be used as the crystalline polyester that forms the hard segment.
  • the aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • Examples of the aromatic polyester that forms the hard segment include polyethylene terephthalate, polybutylene terephthalate, polystyrene terephthalate, polyethylene naphthalate, and polybutylene naphthalate. Polybutylene terephthalate is preferable.
  • One suitable aromatic polyester that forms the hard segment includes terephthalic acid and / or polybutylene terephthalate derived from dimethyl terephthalate and 1,4-butanediol, and also includes isophthalic acid, phthalic acid, naphthalene.
  • Dicarboxylic acids such as -2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, diphenyl-4,4'-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sulfoisophthalic acid, or ester-forming derivatives thereof
  • Components and diols having a molecular weight of 300 or less for example, aliphatic diols such as ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, 1,4-cyclohexanedimethyl
  • alicyclic diols such as tricyclodecane dimethylol, xylylene glycol, bis (p-hydroxy) diphenyl, bis (p-hydroxyphenyl) propane, 2,2-bis [4- (2-hydroxyethoxy) phenyl ] Propane, bis [4- (2-
  • Examples of the polymer forming the soft segment include polymers selected from aliphatic polyesters and aliphatic polyethers.
  • Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, copolymers of ethylene oxide and propylene oxide, poly (propylene oxide) Examples thereof include ethylene oxide addition polymers of glycol and copolymers of ethylene oxide and tetrahydrofuran.
  • Examples of the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
  • poly (tetramethylene oxide) glycol poly (propylene oxide) glycol ethylene oxide adducts, poly ( ⁇ -caprolactone) from the viewpoint of the elastic properties of the resulting copolymer
  • polybutylene adipate polyethylene adipate and the like are preferable.
  • the number average molecular weight of the polymer (polyester) forming the hard segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the number average molecular weight of the polymer forming the soft segment is preferably 300 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the volume ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 99: 1 to 20:80, more preferably 98: 2 to 30:70, from the viewpoint of moldability. .
  • the polyester-based thermoplastic elastomer can be synthesized by copolymerizing the polymer forming the hard segment and the polymer forming the soft segment by a known method.
  • polyester-based thermoplastic elastomer commercially available products can also be used.
  • “Hytrel” series for example, 3046, 5557, 6347, 4047, 4767
  • “Perprene” series for example, P30B, P40B, P40H, P55B, P70B, P150B, P250B, E450B, P150M, S1001, S2001, S5001, S6001, and S9001
  • 1 type may be used for the polyester-type thermoplastic elastomer applied to the tire (1) of this invention, and 2 or more types may be mixed and used for it.
  • the melting point of the thermoplastic resin including the polyester-based thermoplastic elastomer applied to the tire skeleton in the tire (1) of the present invention is usually about 100 ° C. to 260 ° C.
  • the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is not particularly limited, but is 50 to 100 mass relative to the total amount of the thermoplastic resin material. % Is preferred.
  • the content of the polyester-based thermoplastic elastomer is 50% by mass or more based on the total amount of the thermoplastic resin material, the characteristics of the polyester-based thermoplastic elastomer can be sufficiently exerted, and the heat resistance and shape retention of the tire are maintained. , Durability and productivity can be improved.
  • the thermoplastic resin material include rubber, other thermoplastic elastomers, other thermoplastic resins, various fillers (for example, silica, calcium carbonate, clay, etc.), anti-aging agents, oils, plasticizers.
  • Various additives such as a colorant, a weathering agent, and a reinforcing material may be contained.
  • thermoplastic resin material in the tire (1) of the present invention is a mixture of the above-described polyester-based thermoplastic elastomer (or other thermoplastic elastomer when the thermoplastic resin material contains another thermoplastic elastomer). Depending on the case, various additives may be added and melt mixed. Further, the thermoplastic resin material can be used in the form of pellets if necessary.
  • the tensile elastic modulus defined by JIS K7113: 1995 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer is preferably 100 MPa to 1000 MPa, more preferably 100 MPa to 800 MPa, and more preferably 100 MPa to 700 MPa is particularly preferred.
  • the tensile elastic modulus of the thermoplastic resin material is 100 MPa to 1000 MPa, the rim can be assembled efficiently while maintaining the shape of the tire frame body.
  • the tensile yield strength specified in JIS K7113: 1995 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer is preferably 5 MPa or more, preferably 5 MPa to 70 MPa, and preferably 5 MPa to 50 MPa. Further preferred.
  • the thermoplastic resin material can withstand deformation due to a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer is preferably 10% or more, preferably 10 to 70%, preferably 15 to 60 % Is more preferable.
  • the tensile yield elongation of the thermoplastic resin material is 10% or more, the elastic region is large and the rim assembly property can be improved.
  • the tensile fracture elongation defined in JIS K7113: 1995 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer is preferably 50% or more, preferably 100% or more, and 150% or more. Is more preferable, and 200% or more is particularly preferable.
  • the tensile fracture elongation of the thermoplastic resin material is 50% or more, the rim assembly property is better and it is possible to make it difficult to break against a collision.
  • the load deflection temperature (at the time of 0.45 MPa load) defined in ISO75-2 or ASTM D648 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer is preferably 50 ° C. or higher. 50 to 150 ° C is preferable, and 50 to 130 ° C is more preferable. If the deflection temperature under load of the thermoplastic resin material is 50 ° C. or higher, deformation of the tire frame body can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the Vicat softening temperature (Method A) defined in JIS K7206 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer is preferably 130 ° C. or higher, preferably 130 to 250 ° C., 130 to 220 ° C is more preferable.
  • the softening temperature (Method A) of the thermoplastic resin material is 130 ° C. or higher, the softening and deformation of the tire in the use environment can be suppressed.
  • deformation of the tire frame body can be suppressed.
  • the tire (2) of the present invention has an annular tire skeleton formed of a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer and an elastomer other than the polyester-based thermoplastic elastomer.
  • thermoplastic elastomer- “Polyester-based thermoplastic elastomer” is a high-molecular compound having elasticity as described above, and is a non-crystalline, low glass transition temperature soft polymer with a polymer containing polyester that forms crystalline hard segments with a high melting point. It means a thermoplastic resin material made of a copolymer having a polymer forming a segment, and having a partial structure made of polyester in its structure.
  • TPC ester-type thermoplastic elastomer
  • the details of the polyester thermoplastic elastomer applied to the tire frame body are the same as those of the polyester thermoplastic elastomer applied to the tire frame body in the tire (1).
  • the matters relating to the polyester-based thermoplastic elastomer described in the tire (1) of the present invention are the polyester-based heat in the tire (2) except for matters specifically mentioned below that apply only to the tire (2). The same applies to plastic elastomers.
  • the elastomer other than the polyester-based thermoplastic elastomer is, as described above, a thermoplastic elastomer that does not include a hard segment partial structure made of polyester.
  • other elastomers include those having a partial structure such as polyurethane, polystyrene, or polyolefin as a main chain structure of at least a hard segment.
  • elastomers examples include polyurethane-based thermoplastic elastomers (TPU), polystyrene-based thermoplastic elastomers (TPS), and polyolefin-based thermoplastic elastomers (TPO) defined in JIS K6418: 2007.
  • TPU polyurethane-based thermoplastic elastomers
  • TPS polystyrene-based thermoplastic elastomers
  • TPO polyolefin-based thermoplastic elastomers
  • Other elastomers may be used alone or in combination of two or more.
  • thermoplastic elastomer obtained by acid-modifying a thermoplastic elastomer other than the polyester-based thermoplastic elastomer may be used as the other elastomer that can be applied to the tire frame body.
  • “Thermoplastic elastomer obtained by acid-modifying a thermoplastic elastomer other than polyester-based thermoplastic elastomer” is obtained by acid-modifying other elastomers described above with an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group.
  • transduces an acidic group into another elastomer using the compound which has an acidic group is mentioned.
  • the compound having an acidic group used for acid modification of other elastomers from the viewpoint of suppressing deterioration of the thermoplastic elastomer, an unsaturated compound having a carboxylic acid group which is a weak acid group is preferable.
  • acrylic acid, methacrylic acid, Itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like can be mentioned.
  • acid-modifying other elastomers include an embodiment in which an unsaturated bond site of the unsaturated carboxylic acid is bonded to an olefin-based thermoplastic elastomer or styrene-based thermoplastic elastomer by graft polymerization or the like.
  • thermoplastic elastomer in the tire (2) of the present invention, at least a polyurethane constitutes a hard segment in which pseudo-crosslinking is formed by physical aggregation, and the other polymer includes
  • the material include a soft segment that is amorphous and has a low glass transition temperature.
  • a soft segment including a unit structure represented by the following formula A and a hard including a unit structure represented by the following formula B It can represent as a copolymer containing a segment.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P ′ represents a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon.
  • examples of the long-chain aliphatic polyether or long-chain aliphatic polyester represented by P include a long-chain aliphatic polyether or a long-chain aliphatic polyester having a molecular weight of 500 to 5,000.
  • the P is derived from a diol compound containing a long-chain aliphatic polyether or a long-chain aliphatic polyester represented by the P.
  • diol compounds include polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol, poly (butylene abido) diol, poly- ⁇ -caprolactone diol, poly (hexamethylene carbonate) having a molecular weight within the above range.
  • Diol, the ABA triblock polyether, and the like These diol compounds may be used alone or in combination of two or more.
  • R is derived from a diisocyanate compound containing an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon represented by R.
  • the aliphatic diisocyanate compound containing an aliphatic hydrocarbon represented by R include 1,2-ethylene diisocyanate, 1,3-propylene diisocyanate, 1,4-butane diisocyanate, and 1,6-hexamethylene diisocyanate. Is mentioned.
  • Examples of the diisocyanate compound containing an alicyclic hydrocarbon represented by R include 1,4-cyclohexane diisocyanate and 4,4-cyclohexane diisocyanate.
  • examples of the aromatic diisocyanate compound containing an aromatic hydrocarbon represented by R include 4,4′-diphenylmethane diisocyanate and tolylene diisocyanate. These diisocyanate compounds may be used alone or in combination of two or more.
  • P ′ is derived from a diol compound containing P ′.
  • Examples of the aliphatic diol compound containing a short-chain aliphatic hydrocarbon represented by P ′ include glycol and polyalkylene glycol, such as ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1 , 3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol and 1,10-decanediol .
  • glycol and polyalkylene glycol such as ethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, 1 , 3-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, 1,8-octanediol, 1,
  • Examples of the alicyclic diol compound containing an alicyclic hydrocarbon represented by P ′ include cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,3-diol, Examples include cyclohexane-1,4-diol and cyclohexane-1,4-dimethanol.
  • examples of the aromatic diol compound containing an aromatic hydrocarbon represented by P ′ include hydroquinone, resorcin, chlorohydroquinone, bromohydroquinone, methylhydroquinone, phenylhydroquinone, methoxyhydroquinone, phenoxyhydroquinone, 4,4′- Dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl sulfide, 4,4′-dihydroxydiphenylsulfone, 4,4′-dihydroxybenzophenone, 4,4′-dihydroxydiphenylmethane, bisphenol A, 1, Examples include 1-di (4-hydroxyphenyl) cyclohexane, 1,2-bis (4-hydroxyphenoxy) ethane, 1,4-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene. These diol compounds may be used alone or in combination of two or more.
  • the number average molecular weight of the polymer (polyurethane) constituting the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer constituting the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 500 to 3000, from the viewpoint of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. It is.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 15:85 to 90:10, more preferably 30:70 to 90:10, from the viewpoint of moldability. .
  • the polyurethane-based thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • thermoplastic polyurethane described in JP-A-5-331256 can be used.
  • the combined use of a polyester-based thermoplastic elastomer and a polyurethane-based thermoplastic elastomer is preferable because the elastic modulus is controlled and the adhesiveness and adhesion to the reinforcing cord are high.
  • polystyrene-based thermoplastic elastomer that can be applied as another elastomer
  • at least polystyrene constitutes a hard segment
  • other polymers for example, polybutadiene, polyisoprene, hydrogenated polybutadiene, water
  • polyisoprene, etc. are amorphous and have a soft segment having a low glass transition temperature.
  • the polystyrene forming the hard segment for example, those obtained by a known radical polymerization method or ionic polymerization method can be suitably used, and examples thereof include polystyrene having anion living polymerization.
  • examples of the polymer forming the soft segment include polybutadiene, polyisoprene, poly (2,3-dimethyl-butadiene) and the like.
  • the combination of the hard segment and the soft segment described above can include the combination of the hard segment and the soft segment mentioned above.
  • a combination of polystyrene / polybutadiene and a combination of polystyrene / polyisoprene are preferable.
  • the soft segment is preferably hydrogenated.
  • the number average molecular weight of the polymer (polystyrene) constituting the hard segment is preferably 5,000 to 500,000, and preferably 10,000 to 200,000. Further, the number average molecular weight of the polymer constituting the soft segment is preferably from 5,000 to 1,000,000, more preferably from 10,000 to 800,000, particularly preferably from 30,000 to 500,000. Further, the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 5:95 to 80:20, more preferably 10:90 to 70:30, from the viewpoint of moldability. preferable.
  • Polystyrene thermoplastic elastomer can be synthesized by copolymerizing a polymer forming a hard segment and a polymer forming a soft segment by a known method.
  • Polystyrene thermoplastic elastomers include styrene-butadiene copolymers [SBS (polystyrene-poly (butylene) block-polystyrene), SEBS (polystyrene-poly (ethylene / butylene) block-polystyrene)], styrene-isoprene copolymer.
  • SBS polystyrene-poly (butylene) block-polystyrene
  • SEBS polystyrene-poly (ethylene / butylene) block-polystyrene
  • Copolymer [polystyrene-polyisoprene block-polystyrene), styrene-propylene copolymer [SEP (polystyrene- (ethylene / propylene) block), SEPS (polystyrene-poly (ethylene / propylene) block-polystyrene), SEEPS (polystyrene-) Poly (ethylene-ethylene / propylene) block-polystyrene), SEB (polystyrene (ethylene / butylene) block) and the like.
  • SEP polystyrene- (ethylene / propylene) block
  • SEPS polystyrene-poly (ethylene / propylene) block-polystyrene
  • SEEPS polystyrene-) Poly (ethylene-ethylene / propylene) block-polystyrene
  • SEB polystyrene (ethylene / butylene)
  • One of the preferred embodiments of the polystyrene-based thermoplastic elastomer is an acid-modified polystyrene-based thermoplastic elastomer.
  • the combined use of the polyester-based thermoplastic elastomer and the polystyrene-based thermoplastic elastomer has a high adhesiveness when the elastic modulus is controlled and the acid-modified polystyrene-based thermoplastic elastomer is used. This is preferable because the destruction state is improved by the interaction with the acid-modified site.
  • the polyolefin-based thermoplastic elastomer that can be applied as another elastomer at least the polyolefin constitutes a hard segment having a crystalline and high melting point, and other polymers (for example, the polyolefin, other The polyolefin and the polyvinyl compound) are amorphous and have a soft segment having a low glass transition temperature.
  • the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene, and the like.
  • polyolefin-based thermoplastic elastomer examples include olefin- ⁇ -olefin random copolymer, olefin block copolymer, and the like.
  • propylene block copolymer ethylene-propylene copolymer, propylene-1-hexene copolymer Polymer, propylene-4-methyl-1-pentene copolymer, propylene-1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene -Butyl methacrylate copolymer, ethylene-methyl acrylate copolymer,
  • polyolefin-based thermoplastic elastomers examples include propylene block copolymers, ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, propylene-1-butene copolymers.
  • polyolefin resin like ethylene and propylene.
  • the polyolefin content in the polyolefin-based thermoplastic elastomer is preferably 50% by mass or more and 100% by mass or less.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is preferably 5,000 to 1,000,0000.
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer is 5,000 to 10,000,000, the mechanical properties of the thermoplastic resin material are sufficient, and the processability is also excellent.
  • the number average molecular weight is more preferably 7,000 to 1,000,000, and particularly preferably 10,000 to 1,000,000. Thereby, the mechanical properties and processability of the thermoplastic resin material can be further improved.
  • the number average molecular weight of the polymer constituting the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is preferably 50:50 to 95: 5, and more preferably 50:50 to 90:10, from the viewpoint of moldability. .
  • One of the preferred embodiments of the polyolefin-based thermoplastic elastomer is an acid-modified polyolefin-based thermoplastic elastomer.
  • the combination of the polyester-based thermoplastic elastomer and the polyolefin-based thermoplastic elastomer has high adhesiveness when the elastic modulus is controlled and the acid-modified olefin-based thermoplastic elastomer is used, and the polyester-based thermoplastic elastomer and This is preferable because the destruction state is improved by the interaction with the acid-modified site.
  • the polyolefin-based thermoplastic elastomer can be synthesized by copolymerization by a known method.
  • the polyurethane-based thermoplastic resin composition examples include, for example, “Elastollan” series (for example, ET680, ET880, ET690, ET890) manufactured by BASF, and “Clamiron U” series (for example, 2000 series, manufactured by Kuraray Co., Ltd.). 3000 series, 8000 series, 9000 series), “Milactolan” series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI, P26MRNAT, E480, E580, P485, P985) manufactured by Nippon Milactolan Co., Ltd. Can do.
  • “Elastollan” series for example, ET680, ET880, ET690, ET890
  • Clamiron U” series for example, 2000 series, manufactured by Kuraray Co., Ltd.
  • “Milactolan” series for example, XN-2001, XN-2004, P390RSUP
  • polystyrene-based thermoplastic elastomer for example, “Tough Tech” series (for example, H1031, H1041, H1043, H1051, H1052, H1053, H1082, H1141, H1221, H1272) manufactured by Asahi Kasei Corporation, manufactured by Kuraray Co., Ltd. SEBS (8007, 8076 etc.), SEPS (2002, 2063 etc.) etc.
  • “Tough Tech” series for example, H1031, H1041, H1043, H1051, H1052, H1053, H1082, H1141, H1221, H1272
  • SEBS 8007, 8076 etc.
  • SEPS 2002, 2063 etc.
  • acid-modified styrene thermoplastic elastomer include “Tuftec” series (for example, M1943, M1911, M1913) manufactured by Asahi Kasei Corporation, FG19181G manufactured by Kraton, and the like.
  • polyolefin-based thermoplastic elastomer examples include “Tuffmer” series (for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, XM-) manufactured by Mitsui Chemicals, Inc. 7070, XM-7080, BL4000, BL2481, BL3110, BL3450, P-0275, P-0375, P-0775, P-0180, P-0280, P-0480, P-0680), Mitsui DuPont Polychemical Co., Ltd.
  • “Tuffmer” series for example, A0550S, A1050S, A4050S, A1070S, A4070S, A35070S, A1085S, A4085S, A7090, A70090, MH7007, MH7010, XM-
  • “Nucrel” series eg, AN4214C, AN4225C, AN42115C, N0903HC, N0908C, AN42012C, N410, N1035, N1050H, N1108) , N1110H, N1207C, N1214, AN4221C, N1525, N1560, N0200H, AN4228C, AN4213C, N035C, "Elvalloy AC” series (for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, 2715AC, 3117 3427AC, 3717AC), Sumitomo Chemical Co., Ltd.
  • Elvalloy AC for example, 1125AC, 1209AC, 1218AC, 1609AC, 1820AC, 1913AC, 2112AC, 2116AC, 2615AC, 2715AC, 3117 3427AC, 3717AC
  • thermoplastic elastomer examples include “Tuffmer” series (for example, MA8510, MH7007, MH7010, MH7020, MP0610, MP0620, etc.) manufactured by Mitsui Chemicals, Inc.
  • the mass ratio (a: b) of the polyester-based thermoplastic elastomer (a) to the other elastomer (b) in the thermoplastic resin is 50:50 to 95: 5. It is preferable.
  • the mass ratio of these elastomers is in the range of 50:50 to 95: 5
  • the polyamide elastomer and the other elastomer form a sea-island structure with the polyester thermoplastic elastomer as “sea”.
  • the elastic modulus of the tire can be easily controlled while maintaining the weldability of the reinforcing cord member made of the plastic elastomer and the tire skeleton, and both durability and impact resistance of the tire can be achieved.
  • the mass ratio (a: b) between the polyester-based thermoplastic elastomer (a) and the other elastomer (b) is more preferably 50:50 to 90:10.
  • the total amount of the other elastomers and the total amount of the polyester-based thermoplastic elastomer is preferably included in the above range.
  • the melting point of the thermoplastic resin containing a polyester-based thermoplastic elastomer and another elastomer is usually about 100 ° C. to 350 ° C., but from the viewpoint of tire productivity 100 to 250 About 120 ° C. is preferable, and 120 to 200 ° C. is more preferable.
  • a thermoplastic resin material containing a polyester-based thermoplastic elastomer having a melting point of 120 to 200 ° C. and another elastomer for example, a tire skeleton is fused to its divided parts (frame pieces).
  • the heating temperature of the joint can be set to be equal to or higher than the melting point of the thermoplastic resin material forming the tire skeleton.
  • the total content of the polyester-based thermoplastic elastomer and other elastomers in the thermoplastic resin material is not particularly limited, but is based on the total amount of the thermoplastic resin material. 50 mass% or more is preferable.
  • the total content of the polyester-based thermoplastic elastomer and other elastomers is 50% by mass or more with respect to the total amount of the thermoplastic resin material, the characteristics of each elastomer can be sufficiently exhibited, and the durability of the tire can be improved. Productivity can be improved.
  • the thermoplastic resin material applied to the tire skeleton includes rubber, other thermoplastic elastomers, thermoplastic resins, various fillers (for example, silica, calcium carbonate) as desired. , Clay), anti-aging agents, oils, plasticizers, colorants, weathering agents, reinforcing materials, and other various additives.
  • the thermoplastic resin material applied to the tire skeleton is, for example, a mixture of the polyester-based thermoplastic elastomer described above and other elastomers, and various additives are added as necessary. And can be obtained by melt mixing.
  • the mixing ratio of the polyester-based thermoplastic elastomer and the other elastomer is in accordance with the ratio described above.
  • the resin material obtained by melt mixing can be used in the form of pellets if necessary.
  • a tensile elastic modulus (hereinafter referred to as “elasticity” unless otherwise specified) of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer, as defined in JIS K7113: 1995.
  • “Rate” means the tensile elastic modulus.) Is preferably 100 to 1000 MPa, more preferably 100 to 800 MPa, and particularly preferably 100 to 700 MPa.
  • the tensile elastic modulus of the thermoplastic resin material is 100 to 1000 MPa, the rim can be assembled efficiently while maintaining the shape of the tire frame.
  • the tensile yield strength specified in JIS K7113: 1995 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer is preferably 5 MPa or more, and preferably 5 to 20 MPa. 5 to 17 MPa is more preferable.
  • the thermoplastic resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer is preferably 10% or more, preferably 10 to 70%. Preferably, 15 to 60% is more preferable.
  • the tensile yield elongation of the thermoplastic resin material is 10% or more, the elastic region is large and the rim assembly property can be improved.
  • the tensile elongation at break defined by JIS K7113: 1995 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer is preferably 50% or more, and more than 100%. Is preferable, 150% or more is more preferable, and 200% or more is particularly preferable.
  • the tensile elongation at break of the thermoplastic resin material is 50% or more, the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the load deflection temperature (at the time of 0.45 MPa load) defined in ISO75-2 or ASTM D648 of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer is 50. ° C or higher is preferable, 50 to 150 ° C is preferable, and 50 to 130 ° C is more preferable.
  • the deflection temperature under load of the thermoplastic resin material is 50 ° C. or higher, deformation of the tire frame body can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the tire (3) of the present invention has an annular tire skeleton formed of a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer and rubber.
  • thermoplastic elastomer is a high molecular compound having elasticity, and is a co-polymer having a polymer that forms a crystalline hard segment with a high melting point and a polymer that forms an amorphous soft segment with a low glass transition temperature.
  • a thermoplastic resin material made of a coalesced material, which contains a polyester resin as a polymer constituting the hard segment.
  • Examples of the polyester-based thermoplastic elastomer applied to the tire (3) include ester-based thermoplastic elastomers defined in JIS K6418: 2007.
  • the polyester-based thermoplastic elastomer applied to the tire frame body are the same as those of the polyester-based thermoplastic elastomer applied to the tire frame body in the tire (1).
  • the matters relating to the polyester-based thermoplastic elastomer explained in the tire (1) of the present invention are the polyester-based heat in the tire (3) except for matters specifically mentioned below that apply only to the tire (3). The same applies to plastic elastomers.
  • -Rubber- “Rubber” is a polymer compound having elasticity. As described above, in the present specification, a thermoplastic polymer composed of a copolymer having a crystalline hard segment having a high melting point and an amorphous soft polymer having a low glass transition temperature. It is distinguished from a thermoplastic elastomer which is a resin material.
  • the rubber applied to the tire skeleton is not particularly limited.
  • natural rubber NR
  • isoprene rubber IR
  • butadiene rubber BR
  • styrene -Butadiene copolymer rubber SBR
  • acrylonitrile-butadiene copolymer rubber NBR
  • chloroprene rubber CR
  • butyl rubber IIR
  • halogenated butyl rubber Br-IIR, Cl-IIR, etc.
  • EPDM ethylene-propylene-diene rubber
  • NIR in which all of butadiene is replaced with isoprene
  • NBIR in which a part of butadiene is replaced with isoprene
  • BR, SBR, NBR, NIR, IR, EPDM, and NBIR are preferable, and BR, SBR, NBR, IR, and EPDM are more preferable from the viewpoint of easily controlling the flexibility of the thermoplastic resin material.
  • the rubber may be a vulcanized rubber obtained by vulcanizing the rubber.
  • the rubber may be vulcanized by a known method, for example, by the methods described in JP-A-11-048264, JP-A-11-029658, JP-A-2003-238744, and the like. .
  • a polyester-based thermoplastic elastomer it is preferable to pulverize and add to make it finer.
  • a reinforcing material such as carbon black, a filler, a vulcanizing agent, a vulcanization accelerator, a fatty acid or a salt thereof, a metal oxide, a process oil, an antiaging agent, and the like are appropriately blended with the rubber. Then, after kneading using a Banbury mixer, it may be heated at 120 ° C. to 200 ° C.
  • vulcanizing agent known vulcanizing agents such as sulfur, organic peroxides, resin vulcanizing agents and the like are used.
  • vulcanization accelerator known vulcanization accelerators such as aldehydes, ammonia, amines, guanidines, thioureas, thiazoles, sulfenamides, thiurams, dithiocarbamates and xanthates are used. It is done.
  • fatty acids include stearic acid, palmitic acid, myristic acid, lauric acid, and the like, and these may be added in the form of a salt such as zinc stearate. Of these, stearic acid is preferred.
  • the metal oxide include zinc white (ZnO), iron oxide, magnesium oxide, and the like. Among these, zinc white is preferable.
  • the process oil may be aromatic, naphthenic, or paraffinic.
  • the antioxidant include amine-ketone, imidazole, amine, phenol, sulfur, and phosphorus.
  • the mass ratio (x: y) of the polyester-based thermoplastic elastomer (x) and the rubber (y) in the thermoplastic resin is a heat other than the polyester-based thermoplastic elastomer.
  • the mass ratio (x: y ′)] of the polyester-based thermoplastic elastomer (x), the rubber, and the total amount (y ′) of the thermoplastic elastomer other than the polyester-based thermoplastic elastomer is 95. : 5 to 50:50 is preferable.
  • the polyester-based thermoplastic elastomer and the rubber can impart the properties of rubber while maintaining the properties of the polyester-based thermoplastic elastomer,
  • the elastic modulus of the tire can be easily controlled while maintaining the weldability of the reinforcing cord member made of the polyester-based thermoplastic elastomer and the tire frame, and the tire can be further improved in durability.
  • Both (x: y) and (x: y ′) are more preferably 90:10 to 50:50.
  • the thermoplastic resin material may contain a thermoplastic elastomer having a good affinity for rubber.
  • a thermoplastic elastomer having a good affinity for rubber is also referred to as a “rubber compatible thermoplastic elastomer”.
  • the rubber can be finely dispersed in the thermoplastic resin material.
  • the rubber-affinity thermoplastic elastomer is an acid-modified thermoplastic elastomer, which will be described later
  • the tensile strength is improved by the interaction between the polyester-based thermoplastic elastomer and the acid-modified site. It is considered that brittle fracture and layered fracture are unlikely to occur. The distinction between ductile fracture, brittle fracture, and lamellar fracture can be confirmed by viewing the fracture surface of the thermoplastic resin material.
  • thermoplastic elastomer when thermoplastic elastomer is mixed with rubber, the molecular skeleton of rubber is similar to the molecular skeleton of thermoplastic elastomer, and dispersed particles of thermoplastic elastomer. A state where rubber is taken in, or a state where a thermoplastic elastomer is taken into dispersed particles of rubber. However, it is not necessary that the thermoplastic elastomer and rubber in the thermoplastic resin material are all in the above state, and the thermoplastic elastomer and rubber in the thermoplastic resin material may be partially in the above state.
  • thermoplastic elastomer and the rubber have an affinity. It is considered good.
  • SBR styrene-butadiene copolymer rubber
  • BR butadiene rubber
  • EPDM ethylene-propylene-diene rubber
  • polyolefin-based thermoplastic elastomers can be cited as rubber-affinity thermoplastic elastomers.
  • the rubber-affinity thermoplastic elastomer is preferably an acid-modified thermoplastic elastomer in which an acid group (for example, a carboxy group) is introduced into a part of the thermoplastic elastomer molecule.
  • an acid group for example, a carboxy group
  • the fine dispersion of rubber can be further improved by the interaction between the polyester-based thermoplastic elastomer and the acid-modified site in the thermoplastic resin material.
  • the rubber-affinity thermoplastic elastomer is not particularly limited as long as it is a thermoplastic elastomer other than a polyester thermoplastic elastomer and has a good affinity with rubber.
  • thermoplastic elastomer a polyolefin-based thermoplastic elastomer, a polystyrene-based thermoplastic elastomer, a polyamide-based thermoplastic elastomer, and a polyurethane-based thermoplastic elastomer that can be applied as a rubber-affinity thermoplastic elastomer will be described.
  • a polyolefin-based thermoplastic elastomer is a polymer compound having elasticity, and is a co-polymer having a polymer that forms a hard segment that is crystalline and has a high melting point, and a polymer that forms a soft segment that is amorphous and has a low glass transition temperature.
  • a thermoplastic resin material made of a polymer, wherein the polymer constituting the hard segment is a polyolefin such as polypropylene or polyethylene.
  • the polyolefin-based thermoplastic elastomer applicable to the tire (3) of the present invention at least the polyolefin is crystalline and constitutes a hard segment having a high melting point, and the polyolefin and the olefin other than the polyolefin are amorphous and have a glass transition point.
  • the material which comprises the low soft segment is mentioned.
  • polystyrene resin examples include polypropylene, isotactic polypropylene, polyethylene, and 1-butene.
  • polyolefin-based thermoplastic elastomers include ethylene-propylene copolymers, propylene-1-hexene copolymers, propylene-4-methyl-1-pentene copolymers, propylene-1-butene copolymers, ethylene- 1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, 1-butene-1-hexene copolymer, 1-butene-4-methyl-pentene, ethylene- Methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate cop
  • Examples of the polyolefin-based thermoplastic elastomer applicable to the tire (3) of the present invention include ethylene-propylene copolymer, propylene-1-hexene copolymer, propylene-4-methyl-1-pentene copolymer, propylene- 1-butene copolymer, ethylene-1-hexene copolymer, ethylene-4-methyl-pentene copolymer, ethylene-1-butene copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer Polymer, ethylene-ethyl methacrylate copolymer, ethylene-butyl methacrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butyl acrylate copolymer, propylene-methacrylic acid copolymer Polymer, propylene-methyl methacrylate copolymer, propylene
  • the number average molecular weight of the polyolefin-based thermoplastic elastomer that can be applied to the tire (3) of the present invention is preferably 5,000 to 10,000,000. If it is less than 5,000, the mechanical properties of the resin composite material may be reduced. When it exceeds 10,000,000, there is a possibility that a problem may occur in the workability of the resin composite material. For the same reason as described above, the number average molecular weight of the polyolefin-based thermoplastic elastomer is 7,000 to 1,000,000. Particularly preferably, the polyolefin-based thermoplastic elastomer has a number average molecular weight of 10,000 to 1,000,000. Thereby, the mechanical properties and workability of the resin composite material can be further improved.
  • the polyolefin-based thermoplastic elastomer can be synthesized by copolymerizing the polymer constituting the hard segment and the polymer constituting the soft segment by a known method.
  • thermoplastic elastomer applicable to the tire (3) of the present invention
  • commercially available Prime TPO registered trademark
  • Prime Polymer manufactured by Prime Polymer
  • Tuffmer manufactured by Mitsui Chemicals, and the like are used. Can do.
  • a polystyrene-based thermoplastic elastomer is a high-molecular compound having elasticity, and is a thermoplastic comprising a copolymer having a polymer constituting a hard segment and a polymer constituting an amorphous soft segment having a low glass transition temperature.
  • a resin material, in which the polymer constituting the hard segment contains polystyrene.
  • the polystyrene-based thermoplastic elastomer applicable to the tire (3) of the present invention is not particularly limited, but polystyrene constitutes a hard segment, and an amorphous polymer has a soft segment (low glass transition temperature).
  • examples thereof include copolymers constituting polyethylene, polybutadiene, polyisoprene, hydrogenated polybutadiene, hydrogenated polyisoprene, poly (2,3-dimethyl-butadiene) and the like.
  • Examples of the polymer constituting the soft segment include polyethylene, polybutadiene, polyisoprene, hydrogenated polybutadiene, hydrogenated polyisoprene, poly (2,3-dimethyl-butadiene), and the like.
  • the number average molecular weight of the polymer (polystyrene) constituting the hard segment is preferably 5,000 to 500,000, and 10,000 to 200. 1,000 is more preferred.
  • the number average molecular weight of the polymer constituting the soft segment is preferably 5,000 to 1,000,000, more preferably 10,000 to 800,000, still more preferably 30,000 to 500,000.
  • the mass ratio (Hs: Ss) of the hard segment (Hs) and the soft segment (Ss) is preferably 5:95 to 80:20, and more preferably 10:90 to 70:30, from the viewpoint of moldability and physical properties. preferable.
  • Polystyrene thermoplastic elastomer can be synthesized by copolymerizing the polymer constituting the hard segment and the polymer constituting the soft segment by a known method.
  • polystyrene-based thermoplastic elastomer examples include, for example, commercially available products such as TUFPRENE (registered trademark) and TUFTEC (registered trademark) manufactured by Asahi Kasei Corporation, and Septon (registered trademark) manufactured by Kuraray. Can be used.
  • the polystyrene-based thermoplastic elastomer (including the acid-modified product) that can be applied to the tire (3) is preferably hydrogenated in order to prevent the thermoplastic resin material from causing an unintended crosslinking reaction.
  • thermoplastic elastomers and acid-modified elastomers of hydrogenated type include Tuftec (registered trademark) manufactured by Asahi Kasei Co., Ltd. and Septon (registered trademark) manufactured by Kuraray.
  • a polyamide-based thermoplastic elastomer is a high-molecular compound having elasticity, and is a co-polymer having a polymer that forms a crystalline hard segment with a high melting point and a polymer that forms an amorphous soft segment with a low glass transition temperature. It means a thermoplastic resin material made of a coalescence having an amide bond (—CONH—) in the main chain of the polymer constituting the hard segment.
  • Examples of polyamide-based thermoplastic elastomers include amide-based thermoplastic elastomers (TPA) defined in JIS K6418: 2007, polyamide-based thermoplastic elastomers described in JP-A-2004-346273, and the like. .
  • the polyamide-based thermoplastic elastomer applicable to the tire (3) of the present invention comprises a hard segment having a high melting point and at least a polyamide that is crystalline, and other polymers (for example, polyester or polyether) are amorphous. Examples thereof include a material constituting a soft segment having a low glass transition temperature.
  • the polyamide thermoplastic elastomer may use a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • Examples of the polyamide that forms the hard segment include polyamides produced from monomers represented by the following general formula (1) or general formula (2).
  • R 1 represents a hydrocarbon molecular chain having 2 to 20 carbon atoms or an alkylene group having 2 to 20 carbon atoms.
  • R 2 represents a hydrocarbon molecular chain having 3 to 20 carbon atoms or an alkylene group having 3 to 20 carbon atoms.
  • R 1 is preferably a hydrocarbon molecular chain having 3 to 18 carbon atoms or an alkylene group having 3 to 18 carbon atoms, and a hydrocarbon molecular chain having 4 to 15 carbon atoms or 4 carbon atoms.
  • An alkylene group having 15 to 15 carbon atoms is more preferable, and a molecular chain of a hydrocarbon having 10 to 15 carbon atoms or an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • R 2 is preferably a hydrocarbon molecular chain of 3 to 18 carbon atoms or an alkylene group of 3 to 18 carbon atoms, and a hydrocarbon molecular chain of 4 to 15 carbon atoms or carbon An alkylene group having 4 to 15 carbon atoms is more preferable, and a hydrocarbon molecular chain having 10 to 15 carbon atoms or an alkylene group having 10 to 15 carbon atoms is particularly preferable.
  • the monomer represented by the general formula (1) or the general formula (2) include ⁇ -aminocarboxylic acid and lactam.
  • the polyamide forming the hard segment include polycondensates of these ⁇ -aminocarboxylic acids and lactams, and co-condensation polymers of diamines and dicarboxylic acids.
  • Examples of ⁇ -aminocarboxylic acids include 6-aminocaproic acid, 7-aminoheptanoic acid, 8-aminooctanoic acid, 10-aminocapric acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and the like having 5 to 20 carbon atoms.
  • Examples thereof include aliphatic ⁇ -aminocarboxylic acids.
  • the lactam include aliphatic lactams having 5 to 20 carbon atoms such as lauryl lactam, ⁇ -caprolactam, udecan lactam, ⁇ -enantolactam, and 2-pyrrolidone.
  • diamine examples include ethylene diamine, trimethylene diamine, tetramethylene diamine, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, dodecamethylene diamine, 2, 2, 4
  • diamine compounds such as aliphatic diamines having 2 to 20 carbon atoms such as trimethylhexamethylenediamine, 2,4,4-trimethylhexamethylenediamine, 3-methylpentamethylenediamine, and metaxylenediamine.
  • the dicarboxylic acid can be represented by HOOC- (R 3 ) m-COOH (R 3 : a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1).
  • R 3 a hydrocarbon molecular chain having 3 to 20 carbon atoms, m: 0 or 1.
  • oxalic acid, succinic acid And aliphatic dicarboxylic acids having 2 to 20 carbon atoms such as glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid and dodecanedioic acid.
  • a polyamide obtained by ring-opening polycondensation of lauryl lactam, ⁇ -caprolactam, or udecan lactam can be preferably used.
  • examples of the polymer that forms the soft segment include polyester and polyether.
  • polyether diamine etc. which are obtained by making animonia etc. react with the terminal of polyether can be used.
  • the “ABA type triblock polyether” means a polyether represented by the following general formula (3).
  • x and z represent an integer of 1 to 20.
  • y represents an integer of 4 to 50.
  • each of x and z is preferably an integer of 1 to 18, more preferably an integer of 1 to 16, particularly preferably an integer of 1 to 14, and most preferably an integer of 1 to 12.
  • each of y is preferably an integer of 5 to 45, more preferably an integer of 6 to 40, particularly preferably an integer of 7 to 35, and most preferably an integer of 8 to 30. .
  • examples of the combination of the hard segment and the soft segment include the combinations of the hard segment and the soft segment mentioned above.
  • lauryl lactam ring-opening polycondensate / polyethylene glycol combination lauryl lactam ring-opening polycondensate / polypropylene glycol combination, lauryl lactam ring-opening polycondensate / polytetramethylene ether glycol combination, lauryl lactam
  • the ring-opening polycondensate / ABA triblock polyether combination is preferred, and the lauryl lactam ring-opening polycondensate / ABA triblock polyether combination is particularly preferred.
  • the number average molecular weight of the polymer (polyamide) constituting the hard segment is preferably 300 to 15000 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer constituting the soft segment is preferably 200 to 6000 from the viewpoint of toughness and low temperature flexibility.
  • the mass ratio (Ha: Sa) to the hard segment (Ha) and the soft segment (Ha) is preferably 50:50 to 90:10, more preferably 50:50 to 80:20, from the viewpoint of moldability. preferable.
  • the polyamide-based thermoplastic elastomer can be synthesized by copolymerizing the polymer that forms the hard segment and the polymer that forms the soft segment by a known method.
  • Examples of the polyamide-based thermoplastic elastomer that can be applied to the tire (3) of the present invention include, for example, “UBESTA, XPA” series (for example, XPA9063X1, XPA9055X1, XPA9048X2, XPA9048X1, XPA9040X1, XPA9040X2) manufactured by Ube Industries, Ltd. Etc.), Daicel Eponic Corporation “Vestamide” series (for example, E40-S3, E47-S1, E47-S3, E55-S1, E55-S3, EX9200, E50-R2) and the like can be used.
  • polyurethane thermoplastic elastomer As polyurethane-based thermoplastic elastomers, at least polyurethane constitutes a hard segment in which pseudo-crosslinks are formed by physical agglomeration, and other polymers are non-crystalline and constitute soft segments with a low glass transition temperature. For example, it can be represented as a copolymer containing a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P ′ represents a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon.
  • Polyurethane-based thermoplastics applied to the tire (7) including matters relating to a copolymer including a soft segment including a unit structure represented by the above formula A and a hard segment including a unit structure represented by the above formula B
  • Details of the elastomer are the same as those of the polyamide-based thermoplastic elastomer applied to the tire (2).
  • the matters relating to the polyurethane-based thermoplastic elastomer described in the tire (3) are the following except for matters specifically mentioned as being applied only to the tire (7) below. The same applies.
  • the number average molecular weight of the polymer (polyurethane) constituting the hard segment is preferably 300 to 1500 from the viewpoint of melt moldability.
  • the number average molecular weight of the polymer constituting the soft segment is preferably 500 to 20000, more preferably 500 to 5000, and particularly preferably 800 to 5000, from the viewpoint of flexibility and thermal stability of the polyurethane-based thermoplastic elastomer. 2500.
  • the mass ratio (Hu: Su) to the hard segment (Hu) and the soft segment (Su) is preferably 50:50 to 90:10, more preferably 50:50 to 80:20, from the viewpoint of moldability. preferable.
  • the mass ratio (z: y) of the rubber-compatible thermoplastic elastomer (z) and the rubber (y) in the thermoplastic resin material is 95: 5 to 0: 100.
  • it is 90:10 to 0: 100.
  • the polyester-based thermoplastic elastomer and rubber in the thermoplastic resin material (when the thermoplastic resin material contains a rubber-affinity thermoplastic elastomer, the polyester-based thermoplastic elastomer, rubber, and rubber)
  • the total content of the affinity thermoplastic elastomer is not particularly limited, but is preferably 50% by mass to 100% by mass with respect to the total amount of the thermoplastic resin material.
  • the characteristic of a thermoplastic resin material can fully be exhibited as the said total content is 50 mass% or more with respect to the total amount of a thermoplastic resin material.
  • the thermoplastic resin material may include other thermoplastic elastomers, thermoplastic resins, and various fillers (for example, silica, calcium carbonate, clay) other than the polyester-based thermoplastic elastomer as desired. ), Anti-aging agents, oils, plasticizers, colorants, weathering agents, reinforcing materials, and other various additives.
  • thermoplastic resin material in order to obtain a thermoplastic resin material, the above-described polyester-based thermoplastic elastomer, rubber, and optionally a rubber-compatible thermoplastic elastomer, an additive, etc. What is necessary is just to mix and knead
  • a LABOPLASTOMILL 50MR twin screw extruder manufactured by Toyo Seiki Seisakusho Co., Ltd. can be used.
  • the biaxial extruder may be charged with finely pulverized vulcanized rubber, or after kneading the rubber with a vulcanizing agent or the like in a banbury or the like, the biaxial extruder is kneaded while being kneaded. Sulfur may be used. It is preferable to vulcanize while kneading in a twin screw extruder.
  • the tensile elastic modulus defined in JIS K7113: 1995 of the thermoplastic resin material (hereinafter, unless otherwise specified, “elastic modulus” means the tensile elastic modulus unless otherwise specified). Is preferably 100 to 1000 MPa, more preferably 100 to 800 MPa, and particularly preferably 100 to 700 MPa. When the tensile elastic modulus of the thermoplastic resin material is 100 to 1000 MPa, the rim can be assembled efficiently while maintaining the shape of the tire frame.
  • the tensile yield strength specified in JIS K7113: 1995 of the thermoplastic resin material is preferably 5 MPa or more, preferably 5 to 20 MPa, and more preferably 5 to 17 MPa.
  • the thermoplastic resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the thermoplastic resin material is preferably 10% or more, preferably 10 to 70%, and more preferably 15 to 60%.
  • the tensile yield elongation of the thermoplastic resin material is 10% or more, the elastic region is large and the rim assembly property can be improved.
  • the tensile fracture elongation defined by JIS K7113: 1995 of the thermoplastic resin material is preferably 50% or more, preferably 100% or more, more preferably 150% or more, and 200% or more. Is particularly preferred.
  • the tensile elongation at break of the thermoplastic resin material is 50% or more, the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (at 0.45 MPa load) specified in ISO 75-2 or ASTM D648 of the thermoplastic resin material is preferably 50 ° C. or more, preferably 50 to 150 ° C., 50 to 130 ° C is more preferable. If the deflection temperature under load of the thermoplastic resin material is 50 ° C. or higher, deformation of the tire frame body can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the tire (4) of the present invention is a tire having an annular tire skeleton formed of a thermoplastic resin material, wherein the thermoplastic resin material has a hard segment and a soft segment containing a polyester resin.
  • the tire includes a plastic elastomer (A) and a polyester resin (B) other than the thermoplastic elastomer.
  • thermoplastic resin material constituting the annular tire skeleton forming the tire a polyester-based thermoplastic elastomer (A) and a polyester resin (B) other than the thermoplastic elastomer are combined as the thermoplastic resin material constituting the annular tire skeleton forming the tire.
  • the polyester-based thermoplastic elastomer (A) in the present invention is a polymer compound having elasticity, and is composed of a crystalline polymer having a high melting point and a non-crystalline soft segment having a low glass transition temperature. It is a thermoplastic resin material made of a copolymer having a polymer, and includes a polyester resin as a polymer constituting the hard segment. Examples of the polyester-based thermoplastic elastomer include ester-based thermoplastic elastomer (TPC) defined in JIS K6418: 2007.
  • the details of the polyester-based thermoplastic elastomer (A) applied to the tire frame in the tire (4) of the present invention are as follows. It is the same.
  • the matters related to the polyester-based thermoplastic elastomer described in the tire (1) are the polyester-based thermoplastic elastomer (in the tire (4)) except for matters specifically mentioned below that apply only to the tire (4). The same applies to A).
  • the polyester-based thermoplastic elastomer (A) contained in the thermoplastic resin material may be two or more, but the tire performance of the tire formed using the thermoplastic resin material From the viewpoint of controlling the viscosity, the polyester-based thermoplastic elastomer (A) is preferably one type.
  • thermoplastic resin material in the tire (4) of the present invention contains a polyester resin (B) other than the thermoplastic elastomer.
  • the polyester resin is a resin having an ester bond in the main chain.
  • polyester resin (B) Although it does not specifically limit as a polyester resin (B), it is the same kind of resin as the polyester resin which the hard segment in a polyester-type thermoplastic elastomer (A) contains, and it is crystalline polyester. More preferred.
  • an aromatic polyester can be used as the crystalline polyester.
  • the aromatic polyester can be formed, for example, from an aromatic dicarboxylic acid or an ester-forming derivative thereof and an aliphatic diol.
  • Examples of the aromatic polyester include polyethylene terephthalate, polybutylene terephthalate, polystyrene terephthalate, polyethylene naphthalate, polybutylene naphthalate, and the like, and polybutylene terephthalate is preferable.
  • One of the aromatic polyesters includes terephthalic acid and / or polybutylene terephthalate derived from dimethyl terephthalate and 1,4-butanediol, and further, isophthalic acid, phthalic acid, naphthalene-2,6-dicarboxylic acid Dicarboxylic acid components such as naphthalene-2,7-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, 5-sulfoisophthalic acid, or ester-forming derivatives thereof, and a molecular weight of 300 or less Diol [for example, aliphatic diol such as ethylene glycol, trimethylene glycol, pentamethylene glycol, hexamethylene glycol, neopentyl glycol, decamethylene glycol, 1,4-cyclohexanedimethanol, tricyclodecane dimethyl Alicyclic diols such as alcohol,
  • polyester resin Commercially available products may be used as the polyester resin as described above.
  • “Duranex” series for example, 2000, 2002, etc.) manufactured by Polyplastics Co., Ltd., Novaduran manufactured by Mitsubishi Engineering Plastics Co., Ltd. Series (for example, 5010R5, 5010R3-2, etc.)
  • “Toraycon” series for example, 1401X06, 1401X31, etc. manufactured by Toray Industries, Inc. can be mentioned.
  • the polyester resin (B) preferably has an elastic modulus of 700 MPa or more, more preferably 800 MPa to 3000 MPa, from the viewpoint of increasing the elastic modulus of the thermoplastic resin material.
  • the elastic modulus of the polyester resin (B) means the tensile elastic modulus specified in JIS K7113: 1995, and the elastic modulus of the specific resin is, for example, a precision universal testing machine autograph manufactured by Shimadzu Corporation. Can be measured.
  • the thermoplastic resin material in the tire (4) of the present invention may contain two or more kinds of polyester resins (B). However, it is preferable that at least one of them needs to be the same type of polyester resin as the hard segment of the polyester-based thermoplastic elastomer (A). Further, as described above, since the polyester-based thermoplastic elastomer (A) in the thermoplastic resin material is preferably one type, the polyester resin (B) is also preferably one type.
  • the mass ratio (A: B) of the polyester-based thermoplastic elastomer (A) and the polyester resin (B) is based on mass from the viewpoint of impact resistance.
  • the ratio is preferably 95: 5 to 50:50, more preferably 90:10 to 50:50.
  • the content of the polyester-based thermoplastic elastomer (A) in the thermoplastic resin material is 95% by mass to 50% by mass with respect to the total mass of the thermoplastic resin material from the viewpoint of impact resistance. It is preferably 90% by mass to 10% by mass.
  • thermoplastic resin material in the tire (4) of the present invention does not impair the effects of the present invention
  • other thermoplastic elastomers various fillers (for example, silica, calcium carbonate, clay)
  • additives such as anti-aging agent, oil, a plasticizer, a coloring agent, a weathering agent, and a reinforcing material.
  • thermoplastic resin material in the tire (4) of the present invention is obtained by mixing the polyester-based thermoplastic elastomer (A) and the polyester resin (B), adding various additives as necessary, and melt-mixing them. be able to.
  • the mixing ratio of the polyester-based thermoplastic elastomer (A) and the polyester resin (B) is in accordance with the ratio described above.
  • the thermoplastic resin material obtained by melt mixing can be used in the form of pellets if necessary.
  • the tensile elastic modulus specified by JIS K7113: 1995 of the thermoplastic resin material is preferably 100 MPa to 1000 MPa, more preferably 100 MPa to 800 MPa, and particularly preferably 100 MPa to 700 MPa.
  • the rim can be assembled efficiently while maintaining the shape of the tire skeleton.
  • the tensile yield strength specified in JIS K7113: 1995 of the thermoplastic resin material is preferably 5 MPa or more, preferably 5 MPa to 20 MPa, more preferably 5 MPa to 17 MPa.
  • the thermoplastic resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the thermoplastic resin material is preferably 10% or more, preferably 10 to 70%, and more preferably 15 to 60%.
  • the tensile yield elongation of the polyester-based thermoplastic elastomer is 10% or more, the elastic region is large and the rim assembly property can be improved.
  • the tensile fracture elongation defined by JIS K7113: 1995 of the thermoplastic resin material is preferably 50% or more, preferably 100% or more, more preferably 150% or more, and 200% or more. Is particularly preferred.
  • the tensile fracture elongation of the thermoplastic resin material is 50% or more, the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (at the time of 0.45 MPa load) defined in ISO 75-2 or ASTM D648 of the thermoplastic resin material is preferably 50 ° C. or more, preferably 50 to 150 ° C., 50 to 130 ° C is more preferable.
  • the deflection temperature under load of the thermoplastic resin material is 50 ° C. or higher, deformation of the tire frame body can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the tire (5) of the present invention comprises a polyester-based thermoplastic elastomer, an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than the polyester-based thermoplastic elastomer, or a thermoplastic elastomer other than the polyester-based thermoplastic elastomer, and And an annular tire skeleton formed of a thermoplastic resin material containing an acid-modified elastomer mixture obtained by acid-modifying the elastomer.
  • the thermoplastic resin material is a combination of 1) a polyester-based thermoplastic elastomer and an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than the polyester-based thermoplastic elastomer, or 2) a polyester-based material.
  • a combination of at least a thermoplastic elastomer, a thermoplastic elastomer other than the polyester-based thermoplastic elastomer, and an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than the polyester-based thermoplastic elastomer is included.
  • the tire skeleton formed of the resin material has excellent tensile properties even when any combination of the above 1) and 2) is applied as the thermoplastic resin material. As well as excellent manufacturability such as injection moldability. Furthermore, when the combination of the above 2) is applied, the total amount of the thermoplastic elastomer other than the polyester-based thermoplastic elastomer and the acid-modified elastomer obtained by acid-modifying the thermoplastic elastomer other than the polyester-based thermoplastic elastomer is made constant. Since the acid value can be controlled, both injection moldability and elastic modulus can be achieved.
  • polyester-based thermoplastic elastomers applied in the tire (5) of the present invention thermoplastic elastomers other than polyester-based thermoplastic elastomers (other thermoplastic elastomers), and thermoplastic elastomers other than polyester-based thermoplastic elastomers are acidified.
  • the modified acid-modified elastomer will be described.
  • thermoplastic elastomer is a polymer compound having elasticity, and is composed of a crystalline polymer and a hard segment having a high melting point, and an amorphous polymer having a low glass transition temperature.
  • the thermoplastic resin material which consists of a copolymer which has a polymer is said.
  • polyester-based thermoplastic elastomer is a high-molecular compound having elasticity, and is a non-crystalline, low glass transition temperature soft polymer with a polyester-containing polymer that forms a hard segment having a high melting point. It is a thermoplastic resin material made of a copolymer having a polymer forming a segment, and has a partial structure made of polyester in its structure.
  • polyester-based thermoplastic elastomer applied to the tire (5) include ester-based thermoplastic elastomer (TPC) defined in JIS K6418.
  • polyester-based thermoplastic elastomer applied to the tire frame in the tire (5) are the same as those of the polyester-based thermoplastic elastomer applied to the tire frame in the tire (1).
  • the matters relating to the polyester-based thermoplastic elastomer described in the tire (1) are the following except for matters specifically mentioned that only apply to the tire (5) below. The same applies.
  • thermoplastic elastomer other than a polyester-based thermoplastic elastomer is a thermoplastic elastomer that does not include a partial structure made of polyester, as described above.
  • the other thermoplastic elastomer does not include an acid-modified elastomer obtained by acid-modifying the other thermoplastic elastomer.
  • thermoplastic elastomers examples include olefin-based thermoplastic elastomers (unmodified olefin-based thermoplastic elastomers), styrene-based thermoplastic elastomers (unmodified styrene-based thermoplastic elastomers), and the like. Can be mentioned.
  • an olefin type thermoplastic elastomer and a styrene type thermoplastic elastomer say that the polymer which comprises a hard segment is an olefin and a polystyrene, respectively.
  • thermoplastic elastomer unmodified olefin-based thermoplastic elastomer
  • examples thereof include “Toughmer” series (for example, A1050S, A4050S, P275) manufactured by Mitsui Chemicals, Inc. It is done.
  • polystyrene-based thermoplastic elastomer unmodified styrene-based thermoplastic elastomer
  • a commercially available product can also be used. H1053, H1082, H1141, H1221, H1272), G1641H, G1643M manufactured by Kraton, and the like.
  • thermoplastic elastomer other than a polyester-based thermoplastic elastomer means that an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group is bonded to another thermoplastic elastomer.
  • an unsaturated carboxylic acid generally maleic anhydride
  • the unsaturated bond site of the unsaturated carboxylic acid is bonded to the olefinic thermoplastic elastomer.
  • a mode for example, graft polymerization
  • an elastomer obtained by acid-modifying another thermoplastic elastomer for example, an unmodified olefin thermoplastic elastomer or an unmodified styrene thermoplastic elastomer has an acid group. The thing which combined the compound is mentioned.
  • the compound having an acidic group is preferably a compound having a carboxylic acid group which is a weak acid group from the viewpoint of suppressing deterioration of the polyester-based thermoplastic elastomer and other thermoplastic elastomers, for example, acrylic acid, methacrylic acid, itaconic acid, Examples include crotonic acid, isocrotonic acid, and maleic acid.
  • the acid-modified olefin-based thermoplastic elastomer examples thereof include “Tuffmer” series (for example, MA8510, MH7007, MH7010, MH7020, MP0610, MP0620) manufactured by Mitsui Chemicals, Inc. .
  • Commercially available products may be used as the acid-modified styrene-based thermoplastic elastomer, and examples thereof include “Tough Tech” series manufactured by Asahi Kasei Corporation (for example, M1943, M1911, M1913, FG19181G manufactured by Kraton, etc.).
  • thermoplastic elastomers and acid-modified elastomers are preferably hydrogenated in order to suppress unintended cross-linking reactions of the thermoplastic resin material.
  • hydrogenated (SEBS) acid-modified elastomer include Tuftec manufactured by Asahi Kasei Corporation.
  • the acid value of the thermoplastic resin material only needs to exceed 0 mg-CH 3 ONa / g.
  • the “acid value of the thermoplastic resin material” means the sodium methoxide (CH 3 ONa) necessary for neutralizing the acid-modified site of the acid-modified elastomer with respect to the total mass of the thermoplastic resin material.
  • the acid-modified elastomer contained in the thermoplastic resin material is calculated from the following formula (1). Is calculated from the following equation (2).
  • the acid value of the acid-modified elastomer is the sodium methoxide used when neutralization titration is performed on the acid-modified elastomer 1 [g] using sodium methoxide (CH 3 ONa). It is measured as the mass [mg] of (CH 3 ONa).
  • the acid value of the thermoplastic resin material in the tire (5) of the present invention is 0.1 mg-CH 3 ONa / g or more and 10 mg-CH 3 ONa / g or less. It is preferably 0.1 mg-CH 3 ONa / g or more and 7 mg-CH 3 ONa / g or less, more preferably 0.1 mg-CH 3 ONa / g or more and 5 mg-CH 3 ONa / g or less. Is more preferable.
  • the acid value of the thermoplastic resin material may be controlled by controlling the acid value of the acid-modified elastomer, or the mixing ratio of the other thermoplastic elastomer contained in the thermoplastic resin material and the acid-modified elastomer is controlled. You may control by.
  • the thermoplastic resin material in the tire (5) of the present invention is a sea island having a sea phase composed of a polyester-based thermoplastic elastomer and an island phase composed of an acid-modified elastomer and another thermoplastic elastomer (unmodified). It has a structure. When the interaction at the phase interface between the sea phase and the island phase is weak, the fluidity of the thermoplastic resin material increases and the injection moldability is excellent. Since the acid-modified elastomer has an acid-modified site in the molecule, the interaction with the polyester-based thermoplastic elastomer is stronger than that of the non-acid-modified elastomer.
  • the island phase is finely dispersed in the thermoplastic resin, and the impact property of the thermoplastic resin material is particularly improved.
  • the increase in the melt viscosity of the thermoplastic resin material can be suppressed, the injection moldability of the thermoplastic resin material is excellent. Therefore, when a tire case is produced using a thermoplastic resin material, it is not necessary to heat the thermoplastic resin to a high temperature, and therefore, overheating damage to the thermoplastic resin material can be suppressed.
  • the island phase of the acid-modified elastomer is finely dispersed in the thermoplastic resin can be confirmed by photographic observation using an SEM (scanning electron microscope).
  • the acid value of the acid-modified elastomer contained as the thermoplastic resin material is preferably more than 0 mg-CH 3 ONa / g and not more than 20 mg-CH 3 ONa / g, and 0 mg-CH More preferably, it is more than 3 ONa / g and not more than 17 mg-CH 3 ONa / g, and more preferably more than 0 mg-CH 3 ONa / g and not more than 15 mg-CH 3 ONa / g.
  • the acid value of the acid-modified elastomer is such that when the acid-modified elastomer contained in the thermoplastic resin material is one type, the acid value of the acid-modified elastomer is in the above range.
  • the acid value of the acid-modified elastomer is preferably in the above range.
  • the ratio (A: B) of the mass (A) of the polyester-based thermoplastic elastomer in the thermoplastic resin material and the total mass (B) of the other thermoplastic elastomer and acid-modified elastomer is preferably 95: 5 to 50:50 from the viewpoint of using the polyester-based thermoplastic elastomer as a sea phase. More preferably, it is 90:10 to 55:45.
  • the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is not particularly limited, but is 50% by mass to the total amount of the thermoplastic resin material. It is preferably 95% by mass, and more preferably 50% by mass to 90% by mass.
  • thermoplastic resin material in the tire (5) of the present invention includes various fillers (for example, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, colorants, weathering agents, and reinforcements as desired. Various additives such as materials may be included.
  • the thermoplastic resin material in the tire (5) of the present invention includes the above-described polyester-based thermoplastic elastomer and acid-modified elastomer (when the thermoplastic resin material includes other thermoplastic elastomers, further thermoplastic elastomers). ), Various additives are added as necessary, and melt-mixed.
  • the mixing ratio of the polyester-based thermoplastic elastomer, the acid-modified elastomer, and the other thermoplastic elastomer is in accordance with the aforementioned ratio.
  • the resin obtained by melt mixing can be used in the form of pellets if necessary.
  • the tensile elastic modulus specified in JIS K7113: 1995 of the thermoplastic resin material is preferably 100 MPa to 1000 MPa, more preferably 100 MPa to 800 MPa, and particularly preferably 100 MPa to 700 MPa.
  • the rim can be assembled efficiently while maintaining the shape of the tire skeleton.
  • the tensile yield strength specified in JIS K7113: 1995 of the thermoplastic resin material is preferably 5 MPa or more, preferably 5 MPa to 20 MPa, more preferably 5 MPa to 17 MPa.
  • the thermoplastic resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the thermoplastic resin material is preferably 10% or more, preferably 10 to 70%, and more preferably 15 to 60%.
  • the tensile yield elongation of the polyester-based thermoplastic elastomer is 10% or more, the elastic region is large and the rim assembly property can be improved.
  • the tensile fracture elongation specified in JIS K7113: 1995 of the thermoplastic resin material is preferably 50% or more, preferably 100% or more, more preferably 150% or more, and 200% or more. Particularly preferred.
  • the tensile elongation at break of the thermoplastic resin material is 50% or more, the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (at the time of 0.45 MPa load) prescribed in ISO 75-2 or ASTM D648 of the thermoplastic resin material is preferably 50 ° C. or more, preferably 50 to 150 ° C., 50 to 130 ° C is more preferable.
  • the deflection temperature under load of the thermoplastic resin material is 50 ° C. or higher, deformation of the tire frame body can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the tire (6) of the present invention is a tire having at least an annular tire skeleton formed of a thermoplastic resin material, and the thermoplastic resin material comprises a polyester-based thermoplastic elastomer, an olefin- (meth).
  • the thermoplastic resin material comprises a polyester-based thermoplastic elastomer, an olefin- (meth).
  • a tire containing at least one of an acrylic acid copolymer (specific copolymer) and an acid-modified copolymer (specific acid-modified copolymer) obtained by acid-modifying an olefin- (meth) acrylate copolymer. is there.
  • thermoplastic resin material according to the present invention contains the polyester-based thermoplastic elastomer, the specific copolymer, and the specific acid-modified copolymer so that the thermoplastic resin material according to the present invention is a tire.
  • a tire excellent in impact resistance can be obtained.
  • the polyester-based thermoplastic elastomer, the specific copolymer, and the specific acid-modified copolymer will be described.
  • the polyester-based thermoplastic elastomer in the present invention is a polymer compound having elasticity, and includes a polymer that forms a crystalline hard segment with a high melting point and a polymer that forms an amorphous soft segment with a low glass transition temperature.
  • a thermoplastic resin material comprising a copolymer having a polyester resin as a polymer constituting the hard segment.
  • Examples of the polyester-based thermoplastic elastomer applied to the tire (6) include ester-based thermoplastic elastomers defined in JIS K6418: 2007.
  • polyester-based thermoplastic elastomer applied to the tire frame in the tire (6) are the same as those of the polyester-based thermoplastic elastomer applied to the tire frame in the tire (1).
  • the matters relating to the polyester-based thermoplastic elastomer described in the tire (1) are the following except for matters specifically mentioned that only apply to the tire (6) below. The same applies.
  • the “olefin- (meth) acrylic acid copolymer” (specific copolymer) that can be contained in the thermoplastic resin material is derived from (meth) acrylic acid in the repeating unit of olefin.
  • a copolymer containing the partial structure of “(Meth) acrylic acid” means at least one of acrylic acid and methacrylic acid.
  • the mode of the polymer may be a radical polymer, a block copolymer, or a graft copolymer.
  • the number average molecular weight (Mn) of the specific copolymer is preferably 5,000 to 10,000,000, and preferably 7,000 to 1,000,000 from the viewpoint of melt moldability of the thermoplastic resin material. It is more preferable that
  • the olefin constituting the olefin repeating unit is preferably ethylene, propylene or 1-butene, more preferably ethylene. That is, the olefin- (meth) acrylic acid copolymer is preferably an ethylene- (meth) acrylic acid copolymer. More preferred is an ethylene-methacrylic acid copolymer. Only 1 type may be used for a specific copolymer, and 2 or more types may be mixed and used for it.
  • the specific copolymer a commercially available product may be used, and for example, Mitsui DuPont, Nucle (N035C, AN42115C, etc.) manufactured by Polychemical Co., etc. may be used.
  • the “acid-modified copolymer obtained by acid-modifying an olefin- (meth) acrylate copolymer” (specific acid-modified copolymer) that can be contained in the thermoplastic resin material is an olefin.
  • a compound having an acidic group also referred to as an acid group
  • a copolymer containing a partial structure derived from (meth) acrylate that is, an olefin- (meth) acrylate copolymer.
  • the mode of the polymer may be a radical polymer, a block copolymer, or a graft copolymer.
  • “(Meth) acrylate” means at least one of acrylate and methacrylate.
  • “bonding a compound having an acidic group to an olefin- (meth) acrylate copolymer” means that the olefin- (meth) acrylate copolymer is bound to a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group. It means that an unsaturated compound having an acidic group such as is bonded.
  • an unsaturated carboxylic acid generally maleic anhydride
  • Bonding for example, graft polymerization
  • the compound having an acidic group is preferably a compound having a carboxylic acid group (carboxy group), which is a weak acid group, from the viewpoint of suppressing deterioration of the olefin- (meth) acrylate copolymer.
  • carboxylic acid group carboxylic acid group
  • methacrylic acid itacon Examples include acids, crotonic acid, isocrotonic acid, maleic acid and the like.
  • the olefin constituting the olefin repeating unit is preferably ethylene, propylene, or 1-butene, more preferably ethylene. That is, the olefin- (meth) acrylate copolymer in the specific acid-modified copolymer is preferably an ethylene- (meth) acrylate copolymer.
  • the specific acid-modified copolymer is preferably an acid-modified copolymer of an ethylene- (meth) acrylate copolymer, and more preferably a carboxylic acid-modified copolymer of an ethylene- (meth) acrylate copolymer.
  • the specific acid-modified copolymer only one kind may be used, or two or more kinds may be mixed and used.
  • the number average molecular weight (Mn) of the specific acid-modified copolymer is preferably 5,000 to 10,000,000, and preferably 7,000 to 1,000, from the viewpoint of melt moldability of the thermoplastic resin material. Is more preferable.
  • the specific acid-modified copolymer a commercially available product may be used, and examples thereof include Mitsui DuPont HPR (AR2011, etc.) manufactured by Polychemical Co., Ltd.
  • thermoplastic resin material in the tire (6) of the present invention only needs to contain at least one of a specific copolymer and a specific acid-modified copolymer. However, the elastic modulus of the thermoplastic resin material is lowered and impact resistance is reduced. In order to obtain an excellent tire, the thermoplastic resin material preferably contains both the specific copolymer and the specific acid-modified copolymer.
  • the mass ratio of the polyester-based thermoplastic elastomer (x) to the specific copolymer (y) and the specific acid-modified copolymer (z) (x: y + z) is preferably from 95: 5 to 50:50, more preferably from 90:10 to 50:50, from the viewpoint of impact resistance.
  • the mass ratio (y: z) of the specific copolymer (y) and the specific acid-modified copolymer (z) in the thermoplastic resin material is 95: 5. It is preferably ⁇ 0: 100, more preferably 90:10 to 10:90.
  • the specific copolymer and the specific acid-modified copolymer are preferably used in combination of an ethylene-methacrylic acid copolymer and an acid-modified product of an ethylene-acrylate copolymer.
  • the total content of the polyester-based thermoplastic elastomer, the specific copolymer, and the specific acid-modified copolymer in the thermoplastic resin material is: From the viewpoint of sufficiently exerting the performance of the thermoplastic resin material, it is preferably 50% by mass to 100% by mass and more preferably 55% by mass to 100% by mass with respect to the total mass of the thermoplastic resin material. .
  • thermoplastic resin material in the tire (6) of the present invention includes various fillers (for example, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, colorants, weathering agents, and reinforcements as desired.
  • various additives such as materials may be included.
  • the thermoplastic resin material in the tire (6) of the present invention is a mixture of a polyester-based thermoplastic elastomer and at least one of a specific copolymer and a specific acid-modified copolymer, and various additives are added as necessary. And can be obtained by melt mixing.
  • the mixing ratio of the polyester-based thermoplastic elastomer, the specific copolymer, and the specific acid-modified copolymer is in accordance with the aforementioned ratio.
  • the thermoplastic resin material obtained by melt mixing can be used in the form of pellets if necessary.
  • the tensile elastic modulus defined by JIS K7113: 1995 of the thermoplastic resin material is preferably 100 to 1000 MPa, more preferably 100 to 800 MPa, and particularly preferably 100 to 700 MPa.
  • the rim can be assembled efficiently while maintaining the shape of the tire frame.
  • the tensile yield strength specified in JIS K7113: 1995 of the thermoplastic resin material is preferably 5 MPa or more, preferably 5 to 20 MPa, and more preferably 5 to 17 MPa.
  • the thermoplastic resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the thermoplastic resin material is preferably 10% or more, preferably 10 to 70%, and more preferably 15 to 60%.
  • the tensile yield elongation of the thermoplastic resin material is 10% or more, the elastic region is large and the rim assembly property can be improved.
  • the tensile fracture elongation (JIS K7113: 1995) defined in JIS K7113: 1995 of the thermoplastic resin material is preferably 50% or more, preferably 100% or more, and 150% or more. More preferably, 200% or more is particularly preferable.
  • the tensile elongation at break of the thermoplastic resin material is 50% or more, the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (at the time of 0.45 MPa load) defined in ISO 75-2 or ASTM D648 of the thermoplastic resin material is preferably 50 ° C. or more, preferably 50 to 150 ° C., 50 to 130 ° C is more preferable.
  • the deflection temperature under load of the thermoplastic resin material is 50 ° C. or higher, deformation in the adding process such as tread can be suppressed.
  • the tire (7) of the present invention has at least a resin tire and an annular tire skeleton, and the resin material is a first heat material having a tensile elastic modulus in the range of 150 MPa to 700 MP.
  • Tan ⁇ loss factor
  • the elastic modulus can be increased while maintaining Tan ⁇ low. For this reason, for example, the elastic modulus (heat resistance) can be increased while reducing the rolling resistance of the tire.
  • thermoplastic elastomer As the first or second thermoplastic elastomer applied to the tire (7) of the present invention, those satisfying the above-mentioned requirements are appropriately selected from known thermoplastic elastomers within a range not impairing the effects of the present invention. Can be used. That is, the first thermoplastic elastomer can be selected based on the elastic modulus, and the second thermoplastic elastomer can be selected based on Tan ⁇ of the first thermoplastic elastomer.
  • thermoplastic elastomer examples include, for example, polyamide-based thermoplastic elastomer (TPA) and polyester defined in JIS K6418: 2007.
  • TPC polyamide-based thermoplastic elastomer
  • TPO polyolefin-based thermoplastic elastomer
  • TPS polystyrene-based thermoplastic elastomer
  • TPU polyurethane-based thermoplastic elastomer
  • TPV crosslinked thermoplastic rubber
  • TPZ thermoplastic elastomer
  • the polyamide-based thermoplastic elastomer is a thermoplastic resin material made of a copolymer having a crystalline polymer that forms a hard segment with a high melting point and an amorphous polymer that forms a soft segment with a low glass transition temperature. Means that the main chain of the polymer constituting the hard segment has an amide bond (—CONH—).
  • Examples of the polyamide-based thermoplastic elastomer include an amide-based thermoplastic elastomer (TPA) defined in JIS K6418: 2007, a polyamide-based elastomer described in JP-A-2004-346273, and the like.
  • the polyamide-based thermoplastic elastomer applied to the tire (7) of the present invention at least the polyamide is crystalline and constitutes a hard segment having a high melting point, and other polymers (for example, polyester or polyether) are amorphous.
  • the material which comprises the soft segment with a low glass transition temperature is mentioned.
  • the polyamide thermoplastic elastomer may use a chain extender such as dicarboxylic acid in addition to the hard segment and the soft segment.
  • Examples of the polyamide that forms the hard segment include polyamides produced from monomers represented by the following general formula (1) or general formula (2).
  • R 1 represents a molecular chain of a hydrocarbon having 2 to 20 carbon atoms or an alkylene group having 2 to 20 carbon atoms.
  • R 2 represents a molecular chain of a hydrocarbon having 3 to 20 carbon atoms or an alkylene group having 3 to 20 carbon atoms.
  • the details of the polyamide-based thermoplastic elastomer applied to the tire (7) of the present invention including matters relating to the monomer represented by the general formula (1) or (2), are described in the tire (3) of the present invention. This is the same as the polyamide-based thermoplastic elastomer applied to the above.
  • the matters relating to the polyamide-based thermoplastic elastomer described in the tire (3) are the following except for matters specifically mentioned as being applied only to the tire (7) below. The same applies.
  • polystyrene thermoplastic elastomer In the polystyrene thermoplastic elastomer, at least polystyrene constitutes a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are amorphous.
  • polystyrene thermoplastic elastomer at least polystyrene constitutes a hard segment, and other polymers (for example, polybutadiene, polyisoprene, polyethylene, hydrogenated polybutadiene, hydrogenated polyisoprene, etc.) are amorphous.
  • the material which comprises the soft segment with a low glass transition temperature is mentioned.
  • the details of the polystyrene-based thermoplastic elastomer applied to the tire skeleton are the same as the polystyrene-based thermoplastic elastomer applied to the tire skeleton in the tire (2) of the present invention.
  • the matters relating to the polystyrene-based thermoplastic elastomer described in the tire (2) are the following except for matters specifically mentioned that only apply to the tire (7) in the following. The same applies.
  • thermoplastic elastomer- Polyurethane-based thermoplastic elastomers consist of hard segments in which at least polyurethane forms pseudo-crosslinks due to physical aggregation, and other polymers are amorphous and have soft segments with low glass transition temperatures.
  • it can be represented as a copolymer containing a soft segment containing a unit structure represented by the following formula A and a hard segment containing a unit structure represented by the following formula B.
  • P represents a long-chain aliphatic polyether or a long-chain aliphatic polyester.
  • R represents an aliphatic hydrocarbon, an alicyclic hydrocarbon, or an aromatic hydrocarbon.
  • P ′ represents a short-chain aliphatic hydrocarbon, alicyclic hydrocarbon, or aromatic hydrocarbon.
  • Polyurethane applied to the tire (7) of the present invention including matters relating to a copolymer comprising a soft segment containing a unit structure represented by the above formula A and a hard segment containing a unit structure represented by the above formula B
  • thermoplastic thermoplastic elastomer are the same as those of the polyamide thermoplastic elastomer applied to the tire (2) of the present invention.
  • the matters relating to the polyurethane-based thermoplastic elastomer described in the tire (2) also apply to the polyurethane-based thermoplastic elastomer in the tire (7), except for matters specifically mentioned below that apply to the tire (7). The same applies.
  • polyurethane-based thermoplastic elastomer applied to the tire (7) of the present invention include tolylene diisocyanate (TDI) / polyester-based polyol copolymer, TDI / polyether-based polyol copolymer, and TDI / caprolactone-based.
  • TDI tolylene diisocyanate
  • Polyol copolymer, TDI / polycarbonate-based polyol copolymer, 4,4'-diphenylmethane diisocyanate (MDI) / polyester-based polyol copolymer, MDI / polyether-based polyol copolymer, MDI / caprolactone-based polyol copolymer MDI / polycarbonate polyol copolymers are preferred, TDI and polyester polyols, TDI and polyether polyols, MDI and polyester polyols, and MDI and polyether polyols are more preferred.
  • the "Elastollan” series (For example, ET680, ET880, ET690, ET890 etc.) by BASF Corporation of a commercial item, for example, ) “Kuramylon U” series (for example, 2000 series, 3000 series, 8000 series, 9000 series) manufactured by Kuraray Co., Ltd., “Milactolan” series (for example, XN-2001, XN-2004, P390RSUP, P480RSUI) manufactured by Nihon Miractolan P26MRNAT, E490, E590, P890) and the like can be used.
  • “Kuramylon U” series for example, 2000 series, 3000 series, 8000 series, 9000 series
  • “Milactolan” series for example, XN-2001, XN-2004, P390RSUP, P480RSUI
  • thermoplastic elastomer As the polyolefin-based thermoplastic elastomer, at least the polyolefin is crystalline and constitutes a hard segment having a high melting point, and other polymers (for example, the above-mentioned polyolefin, other polyolefins, and polyvinyl compounds) are amorphous and have a low glass transition temperature.
  • the material which comprises the segment is mentioned.
  • the polyolefin forming the hard segment include polyethylene, polypropylene, isotactic polypropylene, polybutene, and the like.
  • the details of the polyolefin-based thermoplastic elastomer applied to the tire (7) of the present invention are the same as those of the polyolefin-based thermoplastic elastomer applied to the tire (2) of the present invention.
  • the matters relating to the polyolefin-based thermoplastic elastomer described in the tire (2) also apply to the polyolefin-based thermoplastic elastomer in the tire (7), except for matters specifically mentioned below that apply to the tire (7). The same applies.
  • the mass ratio (x: y) to the hard segment (x) and the soft segment (y) is 50 from the viewpoint of moldability. : 50 to 95:15 is preferable, and 50:50 to 90:10 is more preferable.
  • thermoplastic elastomer examples include those exemplified as commercially available polyolefin-based thermoplastic elastomers applied to the tire (2) of the present invention, and further, the polyolefin Examples of the thermoplastic elastomer include “Prime TPO” series (for example, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F- 3910, J-5910, E-2710, F-3710, J-5910, E-2740, F-3740, R110MP, R110E, T310E, M142E, etc.) can also be used.
  • Primary TPO for example, E-2900H, F-3900H, E-2900, F-3900, J-5900, E-2910, F- 3910, J-5910, E-2710, F-3710, J-5910, E-2740, F-3740, R110MP, R110E, T310E, M142E, etc.
  • thermoplastic elastomer As a polyester-based thermoplastic elastomer, at least polyester constitutes a hard segment with a crystalline and high melting point, and other polymers (eg, polyester or polyether) constitute an amorphous and soft segment with a low glass transition temperature. Materials.
  • the polyester-based thermoplastic elastomer applied to the tire frame body are the same as those of the polyester-based thermoplastic elastomer applied to the tire frame body in the tire (1) of the present invention. .
  • the matters relating to the polyester-based thermoplastic elastomer described in the tire (1) are the following except for matters specifically mentioned that only apply to the tire (7) below. The same applies.
  • thermoplastic elastomer applied to the tire (7) respective combinations of the hard segment and the soft segment mentioned above can be exemplified.
  • a combination of polybutylene terephthalate and soft segment aliphatic polyether is preferable for the hard segment, polybutylene terephthalate for the hard segment, and poly (ethylene oxide) glycol for the soft segment is more preferable.
  • thermoplastic elastomer applied to the tire (7) of the present invention one obtained by acid-modifying a thermoplastic elastomer may be used.
  • the above “obtained by acid-modifying a thermoplastic elastomer” means that an unsaturated compound having an acidic group such as a carboxylic acid group, a sulfuric acid group, or a phosphoric acid group is bonded to the thermoplastic elastomer.
  • an unsaturated carboxylic acid generally maleic anhydride
  • an unsaturated bond site of the unsaturated carboxylic acid is bonded to the olefin-based thermoplastic elastomer (for example, Graft polymerization).
  • the compound having an acidic group is preferably a compound having a carboxylic acid group, which is a weak acid group, from the viewpoint of suppressing deterioration of the thermoplastic elastomer other than the polyamide-based thermoplastic elastomer and the polyamide-based thermoplastic elastomer.
  • Examples include acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid and the like.
  • thermoplastic elastomer can be synthesized by copolymerizing the polymer forming the hard segment and the polymer forming the soft segment by a known method.
  • the tensile elastic modulus (tensile elastic modulus defined in JIS K7113: 1995) of the first thermoplastic elastomer applied to the tire (7) of the present invention is 150 MPa to 700 MPa. If the tensile modulus of the first thermoplastic elastomer is less than 150 MPa, the molded article (tire frame) has a low modulus of elasticity, resulting in a molded article having poor heat resistance. Moreover, when the tensile modulus of elasticity of the first thermoplastic elastomer exceeds 700 MPa, the flexibility of the tire frame body is impaired and the molding processability is deteriorated.
  • the tensile elastic modulus of the first thermoplastic elastomer is preferably a thermoplastic elastomer of 200 MPa to 500 MPa, and more preferably 300 MPa to 500 MPa.
  • the elastic modulus was measured using, for example, Shimadzu Autograph AGS-J (5 kN) manufactured by Shimadzu Corporation with a dumbbell-shaped test piece (No. 5 type test piece) defined in JIS K6251: 1993 as a pulling speed of 200 mm / min. Value.
  • the tensile elastic modulus of the second thermoplastic elastomer applied to the tire (7) of the present invention is not particularly limited as long as the effects of the present invention are not impaired, but the tensile elastic modulus of the tire skeleton is more limited. From the viewpoint of setting a preferable range, 20 MPa to 300 MPa is preferable, and 40 MPa to 200 MPa is more preferable.
  • the loss factor (Tan ⁇ ) of the second thermoplastic elastomer applied to the tire (7) of the present invention is smaller than the loss factor of the first thermoplastic elastomer.
  • the loss coefficient (Tan ⁇ ) of the second thermoplastic elastomer is larger than that of the first thermoplastic elastomer having a high elastic modulus, the effect of achieving both high elastic modulus and low Tan ⁇ of the tire cannot be achieved.
  • the “loss factor (Tan ⁇ )” is calculated from the ratio (G ′′ / G ′) between the storage shear modulus (G ′) and the loss shear modulus (G ′′) at 30 ° C., 20 Hz, and 1% shear strain.
  • Tan ⁇ absorbs energy as the value increases, so that the rolling resistance of the tire increases, and as a result, the fuel consumption performance of the tire decreases.
  • the Tan ⁇ of the thermoplastic elastomer can be measured with a dynamic viscoelasticity measuring device (Dynamic-Mechanical Analysis: DMA).
  • the second loss factor of the thermoplastic elastomer (Tan? 2) and the loss factor of the first thermoplastic elastomer (Tan? 1) and the difference (Tan ⁇ 2 -Tan ⁇ 1), as a first thermoplastic elastomer as a reference is usually preferably 0.02 or more, and more preferably 0.05 or more.
  • the Tan ⁇ of the first thermoplastic elastomer itself is preferably 0.01 to 0.2, more preferably 0.01 to 0.15, from the viewpoint of achieving both high elastic modulus and low Tan ⁇ of the tire. .
  • the Tan ⁇ of the second thermoplastic elastomer is set based on the Tan ⁇ of the first thermoplastic elastomer. From the viewpoint of achieving both high elastic modulus and low Tan ⁇ of the tire, 0.01 to 0.08 is preferable, and 0.01 to 0.06 is more preferable.
  • the glass transition temperature (Tg) of the hard segment of the first thermoplastic elastomer is ⁇ 20 ° C. to 100 ° C. from the viewpoint of manufacturability such as handleability during injection molding and the balance between the tensile elastic modulus and the tan ⁇ value. ° C is preferable, and 0 ° C to 80 ° C is more preferable. Further, the glass transition temperature (Tg) of the hard segment of the second thermoplastic elastomer is from ⁇ 50 ° C. to 100 ° C. from the viewpoints of manufacturability such as handling during injection molding, and the balance between the tensile elastic modulus and the tan ⁇ value.
  • the glass transition temperature of the hard segment can be measured by differential scanning calorimetry (DSC).
  • the glass transition temperature of the “hard segment” means the glass transition temperature of a single polymer that forms the hard segment.
  • thermoplastic elastomers examples include polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, and polystyrene-based thermoplastic elastomers.
  • Thermoplastic elastomers, polyamide-based thermoplastic elastomers, and polystyrene-based thermoplastic elastomers are preferable, and polyester-based thermoplastic elastomers and polyamide-based thermoplastic elastomers are more preferable.
  • Examples of the low Tan ⁇ second thermoplastic elastomer include polyester-based thermoplastic elastomers, polyamide-based thermoplastic elastomers, polyurethane-based thermoplastic elastomers, polyolefin-based thermoplastic elastomers, polystyrene-based thermoplastic elastomers, and polyester-based thermoplastic elastomers.
  • Thermoplastic elastomers, polyamide-based thermoplastic elastomers, and polystyrene-based thermoplastic elastomers are preferable, and polyester-based thermoplastic elastomers and polyamide-based thermoplastic elastomers are more preferable.
  • the combination of the first and second thermoplastic elastomers is the same (for example, between amide-based thermoplastic elastomers from the viewpoint of improving mechanical properties such as elastic modulus and strength by compatibilization, and improving viscoelastic properties.
  • a combination, a combination of polyester thermoplastic elastomers, and the like are preferable.
  • the combination of the first and second thermoplastic elastomers is preferably a combination of a polyester elastomer and a polyester elastomer, or a combination of a polyamide elastomer and a polyamide elastomer, and the polyester elastomer and the polyester.
  • a combination with a base elastomer is more preferred.
  • the mass ratio (x / y) between the first thermoplastic elastomer (x) and the second thermoplastic elastomer (y) is: From the viewpoint of sufficiently achieving the effects of achieving both high modulus of elasticity and low Tan ⁇ of the tire frame body, it is preferably 10/90 to 90/10, more preferably 20/80 to 80/20, 70 to 70/30 is particularly preferred.
  • the melting point of the resin material containing the first and second thermoplastic elastomers is usually 100 ° C. to 350 ° C., preferably about 100 ° C. to 250 ° C., but from the viewpoint of tire productivity, 120 ° C. to 250 ° C. The degree is preferable, and 150 to 200 ° C is more preferable.
  • a thermoplastic resin material containing a thermoplastic elastomer having a melting point of 120 to 250 ° C. is used, for example, when a skeleton body of a tire is formed by fusing the divided bodies (frame pieces), bonding is performed.
  • the heating temperature of the part can be set to be equal to or higher than the melting point of the thermoplastic resin material forming the tire skeleton.
  • the tire of the present invention uses a thermoplastic resin material containing a thermoplastic elastomer, even a skeleton fused at a temperature range of 120 ° C. to 250 ° C. has sufficient adhesion strength between tire skeleton pieces. For this reason, the tire of this invention is excellent in durability at the time of driving
  • the heating temperature is preferably 10 to 150 ° C. higher than the melting point of the thermoplastic resin material including the thermoplastic elastomer forming the tire frame piece, more preferably 10 to 100 ° C. higher.
  • the total content of the first and second thermoplastic elastomers in the resin material is not particularly limited, but is 50% by mass or more based on the total amount of the resin material. Is preferable, and 90 mass% or more is still more preferable.
  • the resin material include rubber, other thermoplastic elastomers, thermoplastic resins, various fillers (for example, silica, calcium carbonate, clay), anti-aging agents, oils, plasticizers, colorants, and weather resistance.
  • Various additives such as an agent and a reinforcing material may be contained.
  • the resin material in the tire (7) of the present invention is a mixture of the first and second thermoplastic elastomers, and various additives are added as necessary, and mixed as appropriate by a known method (for example, melt mixing). Can be obtained.
  • the thermoplastic resin material obtained by melt mixing can be used in the form of pellets if necessary.
  • the tensile elastic modulus defined by JIS K7113: 1995 of the resin material itself is preferably 100 to 1000 MPa, more preferably 100 to 800 MPa, and particularly preferably 100 to 700 MPa.
  • the rim can be assembled efficiently while maintaining the shape of the tire frame.
  • the tensile yield strength defined in JIS K7113: 1995 of the resin material itself is preferably 5 MPa or more, preferably 5 to 20 MPa, and more preferably 5 to 17 MPa.
  • the resin material can withstand deformation against a load applied to the tire during traveling.
  • the tensile yield elongation defined by JIS K7113: 1995 of the resin material itself is preferably 10% or more, preferably 10 to 70%, and more preferably 15 to 60%.
  • the tensile yield elongation of the resin material is 10% or more, the elastic region is large, and the rim assembly property can be improved.
  • the tensile fracture elongation (JIS K7113) defined in JIS K7113: 1995 of the resin material itself is preferably 50% or more, preferably 100% or more, and more preferably 150% or more. 200% or more is particularly preferable.
  • the tensile breaking elongation of the resin material is 50% or more, the rim assembly property is good and it is possible to make it difficult to break against a collision.
  • the deflection temperature under load (when loaded with 0.45 MPa) as defined in ISO 75-2 or ASTM D648 of the resin material itself is preferably 50 ° C. or higher, preferably 50 to 150 ° C., 50 More preferably, ⁇ 130 ° C.
  • the deflection temperature under load of the resin material is 50 ° C. or higher, deformation of the tire skeleton can be suppressed even when vulcanization is performed in the manufacture of the tire.
  • the tires (1) to (7) of the present invention have a reinforcing cord member that forms a reinforcing cord layer on the outer periphery of the tire frame. Further, the tires (4) to (7) of the present invention may have a reinforcing cord member that forms a reinforcing cord layer on the outer periphery of the tire frame.
  • the tires (1) to (7) of the present invention can be configured such that the reinforcing cord layer includes a resin material. In this way, when the resin material is included in the reinforcing cord layer, the difference in hardness between the tire and the reinforcing cord layer can be reduced as compared with the case where the reinforcing cord member is fixed with cushion rubber.
  • the cord member can be adhered and fixed to the tire frame.
  • the “resin material” is a concept including a thermoplastic resin (including a thermoplastic elastomer) and a thermosetting resin, and does not include vulcanized rubber.
  • the reinforcing cord member is a steel cord
  • the material is included, it can be easily separated from the reinforcing cord member only by heating. This is advantageous in terms of tire recyclability.
  • the resin material usually has a lower loss coefficient (Tan ⁇ ) than vulcanized rubber.
  • a resin material having a relatively high elastic modulus as compared with vulcanized rubber has an advantage that the in-plane shear rigidity is large and the stability and wear resistance during running of the tire are excellent.
  • thermosetting resin that can be used for the reinforcing cord layer
  • thermoplastic resin examples include urethane resin, olefin resin, vinyl chloride resin, polyamide resin, and polyester resin.
  • thermoplastic elastomer examples include an amide-based thermoplastic elastomer (TPA), an ester-based thermoplastic elastomer (TPC), an olefin-based thermoplastic elastomer (TPO), and a styrene-based thermoplastic elastomer (TPS) defined in JIS K6418: 2007. ), Urethane-based thermoplastic elastomer (TPU), crosslinked thermoplastic rubber (TPV), or other thermoplastic elastomer (TPZ). Note that it is preferable to use a thermoplastic elastomer in consideration of elasticity required at the time of traveling, moldability at the time of manufacture, and the like. Moreover, the same kind of resin material refers to forms such as ester series and styrene series.
  • the elastic modulus (JIS K7113: 1995) of the resin material used for the reinforcing cord layer is preferably set within a range of 0.1 to 10 times the elastic modulus of the thermoplastic resin forming the tire frame.
  • the elastic modulus of the resin material is 10 times or less than the elastic modulus of the thermoplastic resin material forming the tire frame body, the crown portion does not become too hard and rim assembly is facilitated.
  • the elastic modulus of the resin material is 0.1 times or more of the elastic modulus of the thermoplastic resin material forming the tire frame body, the resin constituting the reinforcing cord layer is not too soft, and the belt surface shear rigidity is increased. Excellent cornering power is improved.
  • the reinforcing cord member is formed on the surface thereof from the viewpoint of improving the pullability (hardness of being pulled out) of the reinforcing cord.
  • the content of the resin material in the reinforcing cord layer is preferably 20% by mass or more from the viewpoint of improving the pullability of the reinforcing cord with respect to the total amount of the material constituting the reinforcing cord layer excluding the reinforcing cord, 50 mass% or more is still more preferable.
  • FIG. 1A is a perspective view showing a partial cross section of a tire according to an embodiment of the present invention.
  • FIG. 1B is a cross-sectional view of the bead portion attached to the rim.
  • the tire 10 of the first embodiment has a cross-sectional shape that is substantially the same as a conventional general rubber pneumatic tire.
  • the tire 10 includes a pair of bead portions 12 that contact the bead seat 21 and the rim flange 22 of the rim 20 shown in FIG.
  • a tire case 17 comprising: a side portion 14 extending in the direction of a tire; and a crown portion 16 (outer peripheral portion) for connecting a tire radial direction outer end of one side portion 14 and a tire radial direction outer end of the other side portion 14. ing.
  • the tire case 17 is a tire case included in the tire (1) of the present invention
  • the tire case 17 is formed of a polyester-based thermoplastic elastomer (“Hytrel 5557” manufactured by Toray DuPont Co., Ltd.).
  • the tire case 17 When the tire case 17 is a tire case included in the tire (2) of the present invention, the tire case 17 includes a polyester-based thermoplastic elastomer (“Hytrel 6347” manufactured by Toray DuPont Co., Ltd.) and a polyurethane-based thermoplastic. It is formed of a thermoplastic resin material containing an elastomer (“ET680” manufactured by BASF) at a mass ratio of 80:20.
  • a polyester-based thermoplastic elastomer (“Hytrel 6347” manufactured by Toray DuPont Co., Ltd.) and a polyurethane-based thermoplastic. It is formed of a thermoplastic resin material containing an elastomer (“ET680” manufactured by BASF) at a mass ratio of 80:20.
  • the tire case 17 When the tire case 17 is a tire case included in the tire (3) of the present invention, the tire case 17 includes a polyester-based thermoplastic elastomer (manufactured by Toray DuPont, Hytrel 6347) and butadiene rubber (BR). And a thermoplastic resin material having a mass ratio of 70:30.
  • a polyester-based thermoplastic elastomer manufactured by Toray DuPont, Hytrel 6347
  • BR butadiene rubber
  • the tire case 17 When the tire case 17 is a tire case included in the tire (4) of the present invention, the tire case 17 includes a polyester-based thermoplastic elastomer (“Hytrel 3046” manufactured by Toray DuPont Co., Ltd.) and a polyester resin (polyethylene It is made of a mixed material with “Juranex 2000” manufactured by Plastics Corporation.
  • Hytrel 3046 manufactured by Toray DuPont Co., Ltd.
  • polyester resin polyethylene It is made of a mixed material with “Juranex 2000” manufactured by Plastics Corporation.
  • the tire case 17 When the tire case 17 is a tire case included in the tire (6) of the present invention, the tire case 17 includes a polyester-based thermoplastic elastomer (a polyester-based thermoplastic elastomer “Hytrel, 6347” manufactured by Toray DuPont).
  • a specific copolymer ethylene-methacrylic acid copolymer “Nucleel, N035C” manufactured by Mitsui-DuPont Polychemical Co.
  • a specific acid-modified copolymer ethylene-acrylate ethyl ester manufactured by Mitsui-DuPont Polychemical Co., Ltd.
  • It is formed of a thermoplastic resin material composed of a mixed material with a polymer acid-modified product “HPR, AR2011”).
  • the tire case 17 is a tire case included in the tire (7) of the present invention
  • the tire case 17 is a polyester elastomer (first thermoplastic elastomer) ("Hytrel 7247" manufactured by Toray DuPont); 422 MPa, Tan ⁇ 0.102) and a polyester elastomer (second thermoplastic elastomer) (“Hytrel 4047” manufactured by Toray DuPont; elastic modulus 45 MPa, Tan ⁇ 0.029).
  • the mass ratio (x / y) of the first thermoplastic elastomer (x) and the second thermoplastic elastomer (y) is 55:45.
  • the tire case 17 is formed only of the thermoplastic resin material (a thermoplastic resin material including a polyester-based thermoplastic elastomer) in the present invention, but the present invention is not limited to this configuration. Similar to a conventional rubber pneumatic tire, a thermoplastic resin material having different characteristics for each portion of the tire case 17 (side portion 14, crown portion 16, bead portion 12, etc.) may be used. Further, a reinforcing material (polymer material, metal fiber, cord, nonwoven fabric, woven fabric, etc.) is embedded in the tire case 17 (for example, the bead portion 12, the side portion 14, the crown portion 16 and the like), and the reinforcing material is provided. The tire case 17 may be reinforced.
  • the tire case 17 of the first embodiment is obtained by joining a pair of tire case halves (tire frame pieces) 17A formed of a thermoplastic resin material.
  • the tire case half 17A is formed by injection molding or the like so that one bead portion 12, one side portion 14, and a half-width crown portion 16 are integrated with each other so as to face each other. It is formed by joining at the tire equator part.
  • a pair of tire case halves 17A is formed of a thermoplastic resin material including a polyester-based thermoplastic elastomer.
  • a pair of tire case halves 17A is formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer.
  • a pair of tire case halves 17A is formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and rubber.
  • a pair of tire case halves 17A is formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer (A) and a polyester resin (B).
  • a pair of tire case halves 17A is formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and an acid-modified elastomer.
  • thermoplastic resin material when the acid value of the thermoplastic resin material is 0.1 mg-CH 3 ONa / g to 5 mg-CH 3 ONa / g, the thermoplastic resin material has excellent fluidity, and an increase in melt viscosity can be suppressed. Excellent in injection moldability.
  • a pair of tire case halves 17A is formed by a thermoplastic resin material containing a polyester-based thermoplastic elastomer and at least one of a specific copolymer and a specific acid-modified copolymer. ing. Therefore, the thermoplastic resin material is excellent in fluidity, and the injection molding of the tire case half body 17A can be easily performed.
  • a pair of tire case halves (tire frame pieces) 17A is formed of a resin material containing the first and second thermoplastic elastomers.
  • the tire case 17 is not limited to the one formed by joining two members, and may be formed by joining three or more members.
  • the tire case half body 17A formed of a resin material containing a polyester-based thermoplastic elastomer can be molded by, for example, vacuum molding, pressure molding, injection molding, melt casting, or the like. For this reason, it is not necessary to perform vulcanization compared to the case where a tire case is molded with rubber as in the prior art, the manufacturing process can be greatly simplified, and the molding time can be omitted.
  • the tire case half body 17A has a bilaterally symmetric shape, that is, one tire case half body 17A and the other tire case half body 17A have the same shape. There is also an advantage that only one type of mold is required.
  • an annular bead core 18 made of a steel cord is embedded in the bead portion 12, similar to a conventional general pneumatic tire.
  • the present invention is not limited to this configuration, and the bead core 18 can be omitted if the rigidity of the bead portion 12 is ensured and there is no problem in fitting with the rim 20.
  • an organic fiber cord, a resin-coated organic fiber cord, or a hard resin may be used.
  • An annular sealing layer 24 made of rubber is formed.
  • the seal layer 24 may also be formed at a portion where the tire case 17 (bead portion 12) and the bead sheet 21 are in contact with each other.
  • a material having better sealing properties than the polyester thermoplastic elastomer constituting the tire case 17 a softer material can be used than the polyester thermoplastic elastomer constituting the tire case 17.
  • the rubber that can be used for the seal layer 24 it is preferable to use the same type of rubber as that used on the outer surface of the bead portion of a conventional general rubber pneumatic tire. Moreover, if the sealing property between the rim 20 can be ensured only by the resin material forming the tire case 17, the rubber seal layer 24 may be omitted, and includes a thermoplastic resin (thermoplastic elastomer that is excellent in sealing property). ) May be used.
  • the thermoplastic resin applied to the first embodiment of the tires (1) to (7) of the present invention include resins such as polyamide resin, polyurethane resin, polyolefin resin, polystyrene resin, and polyester resin. And blends of these resins with rubbers or elastomers.
  • thermoplastic elastomer examples include a polyamide-based thermoplastic elastomer, a polyurethane-based thermoplastic elastomer, a polystyrene-based thermoplastic elastomer, a polyolefin-based thermoplastic elastomer, a polyester-based thermoplastic elastomer, a combination of these elastomers, and rubber. And the like.
  • a reinforcing cord 26 having higher rigidity than the resin material constituting the tire case 17 is wound around the crown portion 16 in the circumferential direction of the tire case 17.
  • the reinforcing cord 26 is wound spirally in a state in which at least a part thereof is embedded in the crown portion 16 in a cross-sectional view along the axial direction of the tire case 17, thereby forming a reinforcing cord layer 28.
  • FIG. 2 is a cross-sectional view along the tire rotation axis showing a state where the reinforcing cord 26 is embedded in the crown portion of the tire case of the tire according to the first embodiment.
  • the reinforcing cord 26 is spirally wound in a state in which at least a part is embedded in the crown portion 16 in a sectional view along the axial direction of the tire case 17.
  • a reinforcing cord layer 28 indicated by a broken line portion in FIG. 2 is formed together with a part of the outer peripheral portion 17.
  • the portion embedded in the crown portion 16 of the reinforcing cord 26 is in close contact with the resin material constituting the crown portion 16 (tire case 17).
  • a monofilament such as a metal fiber or an organic fiber, or a multifilament (twisted wire) obtained by twisting these fibers such as a steel cord twisted with a steel fiber
  • a steel cord is used as the reinforcing cord 26.
  • the burying amount L indicates the burying amount of the reinforcing cord 26 in the tire rotation axis direction with respect to the tire case 17 (crown portion 16).
  • the embedding amount L of the reinforcing cord 26 in the crown portion 16 is preferably 1/5 or more of the diameter D of the reinforcing cord 26, and more preferably more than 1/2. Most preferably, the entire reinforcing cord 26 is embedded in the crown portion 16. When the embedment amount L of the reinforcing cord 26 exceeds 1/2 of the diameter D of the reinforcing cord 26, it is difficult to jump out of the embedded portion due to the size of the reinforcing cord 26.
  • the reinforcing cord layer 28 corresponds to a belt disposed on the outer peripheral surface of the carcass of a conventional rubber pneumatic tire.
  • the tread 30 is disposed on the outer circumferential side of the reinforcing cord layer 28 in the tire radial direction.
  • the rubber used for the tread 30 is preferably the same type of rubber as that used in conventional rubber pneumatic tires.
  • a tread formed of another type of thermoplastic resin material that is more excellent in wear resistance than the polyester thermoplastic elastomer constituting the tire case 17 may be used.
  • the tread 30 is formed with a tread pattern including a plurality of grooves on the ground contact surface with the road surface in the same manner as a conventional rubber pneumatic tire.
  • the joining portion of the tire case half is heated and pressurized by the joining mold, the joining portion is melted and the tire case halves are fused together, and the tire case 17 is formed by integrating these members. Since the resin material constituting the tire case contains a polyester-based thermoplastic elastomer, the resin material is small in deformation and change in hardness due to temperature fluctuations in the use environment. Therefore, it is considered that the influence on the riding comfort due to temperature change is small.
  • the joining portion of the tire case half is heated using a joining mold, but the manufacturing method of the present invention is not limited to this, and for example, the joining portion is provided by a separately provided high-frequency heater or the like. Or softened or melted beforehand by hot air, infrared irradiation, etc., and pressurized by a joining mold.
  • the tire case halves may be joined.
  • FIG. 3 is an explanatory diagram for explaining an operation of embedding a reinforcing cord in a crown portion of a tire case using a cord heating device and rollers.
  • the cord supply device 56 is disposed on the reel 58 around which the reinforcing cord 26 is wound, the cord heating device 59 disposed on the downstream side of the reel 58 in the code transport direction, and the downstream side of the reinforcing cord 26 in the transport direction.
  • the second roller 64 can be used as a metal cooling roller.
  • the surface of the first roller 60 or the second roller 64 is made of a fluororesin (in this embodiment, Teflon (registered trademark)) in order to suppress adhesion of a molten or softened thermoplastic resin material. ).
  • the cord supply device 56 has two rollers, the first roller 60 or the second roller 64, but the present invention is not limited to this configuration, and any one of the rollers. It is also possible to have only one (that is, one roller).
  • the cord heating device 59 includes a heater 70 and a fan 72 that generate hot air.
  • the cord heating device 59 includes a heating box 74 through which the reinforcing cord 26 passes through an internal space in which hot air is supplied, and a discharge port 76 that discharges the heated cord 26.
  • the temperature of the heater 70 of the cord heating device 59 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72.
  • the reinforcing cord 26 unwound from the reel 58 is fed into a heating box 74 in which the internal space is heated with hot air (for example, the temperature of the reinforcing cord 26 is heated to about 100 to 200 ° C.).
  • the heated reinforcing cord 26 passes through the discharge port 76 and is wound spirally around the outer peripheral surface of the crown portion 16 of the tire case 17 rotating in the direction of arrow R in FIG.
  • the thermoplastic resin material in the contact portion is melted or softened, and at least a part of the heated reinforcing cord 26 is outer peripheral surface of the crown portion 16. Buried in At this time, since the heated reinforcing cord 26 is embedded in the molten or softened thermoplastic resin material, the thermoplastic resin material and the reinforcing cord 26 are in a state where there is no gap, that is, in a close contact state. Thereby, the air entering to the portion where the reinforcing cord 26 is embedded is suppressed.
  • the burying amount L of the reinforcing cord 26 can be adjusted by the heating temperature of the reinforcing cord 26, the tension applied to the reinforcing cord 26, the pressing force by the first roller 60, and the like.
  • the embedding amount L of the reinforcing cord 26 is set to be 1/5 or more of the diameter D of the reinforcing cord 26.
  • the embedment amount L of the reinforcing cord 26 is more preferably more than 1/2 of the diameter D, and most preferably the entire reinforcing cord 26 is embedded.
  • the reinforcing cord layer 28 is formed on the outer peripheral side of the crown portion 16 of the tire case 17 by winding the heated reinforcing cord 26 while being embedded in the outer peripheral surface of the crown portion 16.
  • the vulcanized belt-like tread 30 is wound around the outer peripheral surface of the tire case 17 by one turn, and the tread 30 is bonded to the outer peripheral surface of the tire case 17 using an adhesive or the like.
  • the precure tread used for the retread tire conventionally known can be used for the tread 30, for example. This step is the same step as the step of bonding the precure tread to the outer peripheral surface of the base tire of the retreaded tire.
  • the seal layer 24 made of vulcanized rubber is bonded to the bead portion 12 of the tire case 17 using an adhesive or the like, the tire 10 is completed.
  • the tire 10 is the tire (1) of the present invention
  • the tire case 17 is formed of a polyester-based thermoplastic elastomer
  • the tire 10 is excellent in heat resistance, tensile elastic modulus, tensile strength, and breaking strain.
  • the structure of the tire 10 of the present embodiment can be simplified by using a thermoplastic resin material, the weight is lighter than that of a conventional rubber tire. For this reason, the tire 10 of this embodiment has high friction resistance and durability, and an automobile equipped with this tire has good fuel efficiency.
  • the tire case 17 is formed of a thermoplastic resin material including a polyester-based thermoplastic elastomer and another polyurethane-based thermoplastic elastomer. Therefore, it is excellent in heat resistance, tensile elastic modulus, tensile strength and breaking strain. Further, the tire 10 of the present embodiment uses a thermoplastic resin material, and thus has a simple structure as compared with a conventional rubber tire, so that the weight is light. For this reason, the tire 10 of this embodiment is excellent in impact resistance and has high friction resistance and durability, and an automobile equipped with this has good fuel efficiency.
  • the tire case 17 is made of a polyester-based thermoplastic elastomer (manufactured by Toray DuPont, Hytrel 6347) and butadiene rubber (BR). Since it is formed of a thermoplastic resin material having a ratio of 70:30, it is excellent in impact resistance, tensile elastic modulus, and tensile strength. In addition, deformation and change in hardness due to temperature fluctuations in the usage environment are small, and it is strong in impact resistance. For this reason, the tire 10 of this embodiment is excellent in durability. Furthermore, because the tire structure can be simplified, it is lighter than conventional rubber. Further, tan ⁇ can be reduced. Accordingly, the tire 10 of the present embodiment can be reduced in weight and rolling resistance can be suppressed, so that the fuel efficiency of an automobile using such a tire can be improved.
  • BR butadiene rubber
  • the tire case 17 is made of a thermoplastic resin material that is a mixed material of the polyester-based thermoplastic elastomer (A) and the polyester resin (B). Therefore, even if the elastic modulus of the thermoplastic resin material is increased, the tan ⁇ of the thermoplastic resin material is hardly increased and the rolling resistance of the tire can be suppressed. Furthermore, since the structure of the tire 10 of the present embodiment can be simplified by using a thermoplastic resin material, the weight is lighter than rubber used in conventional tires. For this reason, if the tire 10 of this embodiment is applied to a motor vehicle, it can reduce in weight and can suppress a fuel consumption.
  • the tire case 17 is formed of the thermoplastic resin material, and thus has excellent tensile modulus and breakability. Furthermore, since the structure of the tire 10 of the present embodiment can be simplified by using a thermoplastic resin material, the weight is lighter than rubber used in conventional tires. For this reason, if the tire 10 of this embodiment is applied to a motor vehicle, it can reduce in weight and can suppress a fuel consumption. Particularly, when the acid value of the thermoplastic resin material used for forming the tire case 17 is 0.1 mg-CH 3 ONa / g or more and 10 mg-CH 3 ONa / g or less, the polyester-based thermoplastic elastomer is used as the sea phase.
  • the island phase is finely dispersed in the thermoplastic resin material having a sea-island structure in which the acid-modified elastomer or the acid-modified elastomer and other thermoplastic elastomer (unmodified) are used as the island phase. , Tensile properties are improved.
  • the tire case 17 contains at least one of a specific copolymer and a specific acid-modified copolymer, and a polyester-based thermoplastic elastomer. Since it is formed of a thermoplastic resin material, it has excellent impact resistance. In addition, deformation and hardness change due to temperature fluctuations in the usage environment are small. Furthermore, since the tire structure can be simplified, the weight is light compared to conventional rubber. For this reason, when the tire 10 of the present embodiment is applied to an automobile, the durability is excellent. Moreover, since the weight of the tire can be reduced, the fuel consumption of an automobile using such a tire can be improved.
  • the tire case 17 includes a polyester-based elastomer (first thermoplastic elastomer) (elastic modulus 422 MPa, Tan ⁇ 0.102) and a polyester-based elastomer bag (
  • the second thermoplastic elastomer) (elastic modulus 45 MPa, Tan ⁇ 0.029) is formed of a resin material, and therefore, compared with the case where the first or second thermoplastic elastomer is used alone, the tire The elastic modulus is improved while the loss factor (Tan ⁇ ) of the skeleton is kept low. For this reason, the tire 10 is excellent in heat resistance and has reduced rolling resistance.
  • the tire 10 is light in weight because it has a simple structure as compared with a conventional rubber tire. For this reason, the tire 10 of this embodiment has high friction resistance and durability.
  • the resin material applied to the first embodiment has adhesion to the reinforcing cord 26. For this reason, the phenomenon (air entering) in which air remains around the reinforcing cord 26 in the reinforcing cord winding step can be suppressed. If there is adhesion to the reinforcement cord 26 and the entry of air into the periphery of the reinforcement cord member is suppressed, it is possible to effectively suppress the movement of the reinforcement cord 26 due to input during traveling or the like. Thereby, for example, even when the tire constituent member is provided so as to cover the entire reinforcing cord member on the outer peripheral portion of the tire frame body, the movement of the reinforcing cord member is suppressed. The peeling of the tire frame (including the tire frame) is suppressed, and the durability of the tire 10 is improved.
  • the thermoplastic resin material contains an acid-modified elastomer, so that it has excellent fluidity, and the modification rate of the acid-modified elastomer is in the above-described range. Excellent. As a result, the tire production efficiency is improved, energy saving is achieved, and the environment is preferable.
  • the reinforcing cord 26 having a rigidity higher than that of the resin material including the polyester-based thermoplastic elastomer is provided on the outer peripheral surface of the crown portion 16 of the tire case 17 formed of the thermoplastic resin material. Since it is spirally wound in the direction, puncture resistance, cut resistance, and circumferential rigidity of the tire 10 are improved. In addition, the creep of the tire case 17 formed of the thermoplastic resin material is prevented by improving the circumferential rigidity of the tire 10.
  • the reinforcing cord 26 is embedded in the outer peripheral surface of the crown portion 16 of the tire case 17 made of a resin material in a cross-sectional view along the axial direction of the tire case 17 (cross section shown in FIG. 1).
  • the reinforcing cord 26 since it is in close contact with the resin material, entry of air at the time of manufacture is suppressed, and movement of the reinforcing cord 26 due to input during travel is suppressed. Thereby, it is suppressed that peeling etc. arise in the reinforcement cord 26, the tire case 17, and the tread 30, and durability of the tire 10 improves.
  • the embedding amount L of the reinforcement cord 26 is 1/5 or more of the diameter D as shown in FIG. 2, the air entry at the time of manufacture is suppressed effectively, the input at the time of driving, etc. This further suppresses the movement of the reinforcing cord 26.
  • the reinforcing cord layer 28 is made of a thermoplastic resin material containing a polyester-based thermoplastic elastomer, the tire case 17 and the reinforcing cord layer 28 are compared with the case where the reinforcing cord 26 is fixed with cushion rubber. Therefore, the reinforcing cord 26 can be further adhered and fixed to the tire case 17.
  • the above-mentioned air entering can be prevented effectively, and it can control effectively that a reinforcement cord member moves at the time of driving.
  • the reinforcing cord 26 is a steel cord in particular, the reinforcing cord 26 can be easily separated and collected from the thermoplastic resin material by heating at the time of disposal of the tire, which is advantageous in terms of recyclability of the tire 10.
  • the polyester-based thermoplastic elastomer has a lower loss factor (Tan ⁇ ) than vulcanized rubber, if the reinforcing cord layer 28 contains a large amount of the polyester-based thermoplastic elastomer, the rolling property of the tire can be improved. it can.
  • the polyester-based thermoplastic elastomer contained as a resin material has an advantage that the in-plane shear rigidity is larger than that of the vulcanized rubber, and the stability and wear resistance during running of the tire are excellent.
  • the tread 30 that is in contact with the road surface is made of a rubber material that is more wear resistant than the thermoplastic resin material, the wear resistance of the tire 10 is improved. Further, since an annular bead core 18 made of a metal material is embedded in the bead portion 12, the tire case 17, that is, the tire 10 is strong against the rim 20 like the conventional rubber pneumatic tire. Retained.
  • a seal layer 24 made of a rubber material having a sealing property rather than a thermoplastic resin material is provided at a portion of the bead portion 12 that comes into contact with the rim 20, there is provided a space between the tire 10 and the rim 20. Sealability is improved. For this reason, the air leak in a tire is further suppressed compared with the case where it seals with the rim
  • the reinforcing cord 26 is heated, and the resin material in the portion where the heated reinforcing cord 26 contacts is melted or softened.
  • the present invention is not limited to this configuration, and the reinforcing cord 26 is
  • the heating cord generator may be used without heating, and the reinforcing cord 26 may be embedded in the crown portion 16 after the outer peripheral surface of the crown portion 16 in which the reinforcing cord 26 is embedded is heated.
  • the heat source of the cord heating device 59 is a heater and a fan.
  • the present invention is not limited to this configuration, and the reinforcement cord 26 is directly heated by radiant heat (for example, infrared rays). Also good.
  • the portion in which the thermoplastic resin material in which the reinforcing cord 26 is embedded is melted or softened is forcibly cooled by the metal second roller 64, but the present invention is configured in this manner.
  • the present invention may be configured to forcibly cool and solidify the melted or softened portion of the thermoplastic resin material by directly blowing cold air to the melted or softened portion of the thermoplastic resin material.
  • the reinforcement cord 26 is heated.
  • the outer periphery of the reinforcement cord 26 may be covered with the same thermoplastic resin material as the tire case 17.
  • the thermoplastic resin material covered with the reinforcing cord 26 is also heated, thereby effectively suppressing air entry when embedded in the crown portion 16. it can.
  • the tire 10 of the first embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 10 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present invention has this configuration. It is not limited and a perfect tube shape may be sufficient.
  • FIG. 7 is a cross-sectional view of a tire according to another embodiment.
  • the tire 86 includes a tread rubber layer 87, a hollow tube (tire frame body) 88 made of a resin material similar to that of the first embodiment, and a belt (reinforcing cord). 89 and a rim 90 are provided.
  • Three tubes 88 are arranged side by side in the tire width direction of the tire 86.
  • a tread rubber layer 87 in which a belt 89 is embedded is bonded to the outer periphery of the tube 88.
  • the tube 88 is attached to a rim 90 having a recess that engages with the tube 88.
  • the tire 86 is not provided with a bead core.
  • FIG. 4A is a cross-sectional view along the tire width direction of the tire of the second embodiment, and FIG.
  • FIG. 4B is a bead portion in a state where a rim is fitted to the tire of the second embodiment. It is an enlarged view of a section along the tire width direction.
  • FIG. 5 is a cross-sectional view along the tire width direction showing the periphery of the reinforcing layer of the tire according to the second embodiment.
  • the tire case 17 in the second embodiment is a tire case included in the tire (1) of the present invention
  • the tire case 17 is made of a polyester-based thermoplastic elastomer (Toray DuPont) as in the first embodiment. "Hytrel 5557” manufactured by Co., Ltd.).
  • the tire case 17 in the second embodiment is a tire case included in the tire (2) of the present invention
  • the tire case 17 is made of a polyester-based thermoplastic elastomer (Toray DuPont) as in the first embodiment. It is formed of a thermoplastic resin material containing “Hytrel 6347” manufactured by Co., Ltd.) and a polyurethane-based thermoplastic elastomer (“ET680” manufactured by BASF) at a mass ratio of 80:20.
  • the tire case 17 in the second embodiment is a tire case included in the tire (3) of the present invention
  • the tire case 17 is made of a polyester-based thermoplastic elastomer (Toray DuPont) as in the first embodiment. It is made of a thermoplastic resin material containing Hytrel 6347) and butadiene rubber (BR) in a mass ratio of 70:30.
  • the tire case 17 in the second embodiment is a tire case included in the tire (4) of the present invention
  • the tire case 17 is made of a thermoplastic resin material [polyester-based thermoplastic as in the first embodiment. It is formed of an elastomer (a mixed material of “Hytrel 3046” manufactured by Toray DuPont Co., Ltd.) and a polyester resin (“Juranex 2000” manufactured by Polyplastics Co., Ltd.).
  • the tire case 17 in the second embodiment is a tire case included in the tire (5) of the present invention
  • the tire case 17 in the second embodiment is a tire case included in the tire (6) of the present invention
  • the tire case 17 is made of a polyester-based thermoplastic elastomer (Toray DuPont) as in the first embodiment.
  • It is made of a thermoplastic resin material composed of a mixed material (acid-modified “HPR, AR2011” of an ethylene-acrylate ethyl ester copolymer manufactured by Mitsui-DuPont Polychemical Co., Ltd.).
  • the tire case 17 in the second embodiment is a tire case included in the tire (7) of the present invention
  • the tire case 17 is made of a polyester-based elastomer (first thermoplasticity) as in the first embodiment.
  • Elastomer (“Hytrel 7247” manufactured by Toray DuPont; elastic modulus 422 MPa, Tan ⁇ 0.102) and Reester elastomer (second thermoplastic elastomer) (“Hytrel 4047” manufactured by Toray DuPont; elastic modulus 45 MPa, Tan ⁇ 0.029).
  • the mass ratio (x / y) of the first thermoplastic elastomer (x) and the second thermoplastic elastomer (y) is 55:45.
  • the tire 200 includes a reinforcing cord layer 28 formed by winding a covering cord member 26 ⁇ / b> B around the crown portion 16 in the circumferential direction (indicated by a broken line in FIG. 5). Are shown) are stacked.
  • the reinforcing cord layer 28 constitutes the outer peripheral portion of the tire case 17 and reinforces the circumferential rigidity of the crown portion 16.
  • the outer peripheral surface of the reinforcing cord layer 28 is included in the outer peripheral surface 17S of the tire case 17.
  • the covering cord member 26B is formed by covering a cord member 26A having higher rigidity than the thermoplastic resin material forming the tire case 17 with a covering resin material 27 different from the thermoplastic resin material forming the tire case 17. Has been. Further, the covering cord member 26B is joined (for example, welded or adhered with an adhesive) at the contact portion with the crown portion 16 where the covering cord member 26B and the crown portion 16 are joined.
  • the elastic modulus of the coating resin material 27 is preferably set within a range of 0.1 to 10 times the elastic modulus of the resin material forming the tire case 17.
  • the elastic modulus of the covering resin material 27 is 10 times or less than the elastic modulus of the thermoplastic resin material forming the tire case 17, the crown portion does not become too hard and rim assembly is facilitated.
  • the elastic modulus of the coating resin material 27 is 0.1 times or more of the elastic modulus of the thermoplastic resin material forming the tire case 17, the resin constituting the reinforcing cord layer 28 is not too soft and the belt surface Excellent internal shear rigidity and improved cornering force.
  • the same material as the thermoplastic resin material constituting the tire case 17 [“Hytrel 5557” manufactured by Toray DuPont Co., Ltd.] is used as the coating resin material 27. ing.
  • the same material as the thermoplastic resin material constituting the tire case 17 [polyester-based thermoplastic elastomer ("Hytrel 6347” manufactured by Toray DuPont Co., Ltd.) ) And a polyurethane-based thermoplastic elastomer (“ET680” manufactured by BASF) (mass ratio 80:20)].
  • the coating resin material 27 a material similar to the thermoplastic resin material constituting the tire case 17 (polyester-based thermoplastic elastomer (manufactured by Toray DuPont, Hytrel 6347), Thermoplastic resin material containing butadiene rubber (BR) at a mass ratio of 70:30] is used.
  • the coating resin material 27 the same type of material as the thermoplastic resin material constituting the tire case 17 (“Hytrel 3046” manufactured by Toray DuPont Co., Ltd.) and polyester resin (poly Mixed material with “Juranex 2000” manufactured by Plastics Co., Ltd.).
  • the coating resin material 27 is acid-modified with the same type of material as the thermoplastic resin material constituting the tire case 17 (“Hytrel 6347” manufactured by Toray DuPont).
  • thermoplastic resin material 27 the same material as the thermoplastic resin material constituting the tire case 17 [polyester thermoplastic elastomer (polyester thermoplastic elastomer manufactured by Toray DuPont) “Hytrel, 6347”, a specific copolymer (Mitsui / DuPont Polychemical Co., Ltd. made ethylene-methacrylic acid copolymer “Nucrel, N035C”), and a specific acid-modified copolymer (Mitsui / DuPont Polychemical Co., Ltd. A thermoplastic resin material composed of a mixed material with an acid-modified product of an ethylene-acrylate ethyl ester copolymer “HPR, AR2011”) is used.
  • the same material as the resin material constituting the tire case 17 is used as the coating resin material 27.
  • the covering cord member 26B has a substantially trapezoidal cross section.
  • the upper surface (the surface on the outer side in the tire radial direction) of the covering cord member 26B is denoted by reference numeral 26U
  • the lower surface (the surface on the inner side in the tire radial direction) is denoted by reference numeral 26D.
  • the cross-sectional shape of the covering cord member 26B is substantially trapezoidal, but the present invention is not limited to this configuration, and the cross-sectional shape is from the lower surface 26D side (in the tire radial direction inner side). Any shape may be used as long as the shape excluding the shape that becomes wider toward the upper surface 26U side (the tire radial direction outer side).
  • a fine roughened unevenness 96 is uniformly formed on the outer peripheral surface 17S (including the unevenness) of the tire case 17, and a cushion rubber 29 is bonded thereon via a bonding agent. In the cushion rubber 29, the radially inner rubber portion flows into the roughened unevenness 96.
  • the rubber used for the tread 30 is preferably the same type of rubber as that used for conventional rubber pneumatic tires.
  • a tread formed of another type of resin material that is more excellent in wear resistance than the resin material forming the tire case 17 may be used.
  • the tread 30 is formed with a tread pattern (not shown) including a plurality of grooves on the ground contact surface with the road surface, similarly to the conventional rubber pneumatic tire.
  • the tire manufacturing apparatus in the second embodiment is the same as that in the first embodiment described above.
  • a material obtained by winding a covering cord member 26B having a substantially trapezoidal cross-sectional shape in which 26A is covered with a coating resin material 27 (a thermoplastic resin material in the present embodiment) is used.
  • the guide rail 54 is movably mounted with a blasting device (not shown) for roughening the outer peripheral surface 17S of the tire case 17.
  • the temperature of the heater 70 is raised, and the ambient air heated by the heater 70 is sent to the heating box 74 by the wind generated by the rotation of the fan 72.
  • the coated cord member 26B unwound from the reel 58 is fed into the heating box 74 in which the internal space is heated with hot air (for example, the temperature of the outer peripheral surface of the coated cord member 26B is equal to or higher than the melting point of the coating resin material 27).
  • the covering cord member 26B is heated, the covering resin material 27 is melted or softened.
  • the covering cord member 26B is spirally wound around the outer peripheral surface of the crown portion 16 of the tire case 17 that rotates in the front direction of the paper through the discharge port 76 with a certain tension.
  • the lower surface 26 ⁇ / b> D of the covering cord member 26 ⁇ / b> B contacts the outer peripheral surface of the crown portion 16.
  • the molten or softened covering resin material 27 in the contacted portion spreads on the outer peripheral surface of the crown portion 16, and the covering cord member 26 ⁇ / b> B is welded to the outer peripheral surface of the crown portion 16.
  • the joint strength between the crown portion 16 and the covering cord member 26B is improved.
  • the bonding agent is not particularly limited, such as triazine thiol adhesive, chlorinated rubber adhesive, phenolic resin adhesive, isocyanate adhesive, halogenated rubber adhesive, etc., but cushion rubber 29 is vulcanized.
  • the reaction is preferably performed at a temperature (90 ° C. to 140 ° C.) that can be performed.
  • the unvulcanized cushion rubber 29 is wound around the outer peripheral surface 17S to which the bonding agent has been applied for one round, and a bonding agent such as a rubber cement composition is applied on the cushion rubber 29, for example. Then, a vulcanized or semi-vulcanized tread rubber 30A is wound for one turn to obtain a raw tire case state.
  • the temperature rise at the time of vulcanization may cause the tire case 17 to bend and thus affect the tire formation maintenance.
  • the polyester-based thermoplastic elastomer has a higher deflection temperature under load than other thermoplastic elastomers, so that the tire shape maintainability can be further improved and the tire productivity can also be improved.
  • thermoplastic resin material according to the present invention includes a polyester-based thermoplastic elastomer, deformation and hardness change due to temperature fluctuations in the usage environment are small, and it is resistant to impact. Therefore, in the vulcanization process, even if the tire case is heated for a long time, it is not easily deformed.
  • the tire 200 is the tire (1) of the present invention
  • the tire case 17 is formed of a polyester-based thermoplastic elastomer
  • the tire 200 is excellent in heat resistance, tensile elastic modulus, tensile strength, and breaking strain.
  • the structure of the tire 200 of the present embodiment can be simplified by using a thermoplastic resin material, the weight is lighter than that of a conventional rubber tire. For this reason, the tire 200 of this embodiment has high friction resistance and durability.
  • the tire case 17 is formed of a thermoplastic resin material including a polyester-based thermoplastic elastomer and another polyurethane-based thermoplastic elastomer. Therefore, it is excellent in heat resistance, tensile elastic modulus, tensile strength and breaking strain.
  • the tire 200 according to the present embodiment uses a thermoplastic resin material, and thus has a simple structure as compared with a conventional rubber tire, so that the weight is light. For this reason, the tire 200 of this embodiment is excellent in impact resistance, and has high friction resistance and durability.
  • the tire case 17 is formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer and rubber at a mass ratio of 70:30. Therefore, it is excellent in impact resistance, tensile elastic modulus, and tensile strength. In addition, deformation and change in hardness due to temperature fluctuations in the usage environment are small, and it is strong in impact resistance. For this reason, the tire 200 of this embodiment is excellent in durability. Furthermore, because the tire structure can be simplified, it is lighter than conventional rubber. Further, tan ⁇ can be reduced. Accordingly, the tire 200 of the present embodiment can be reduced in weight and rolling resistance can be suppressed, so that the fuel efficiency of an automobile using such a tire can be improved.
  • the tire case 17 is made of a thermoplastic resin material that is a mixed material of the polyester-based thermoplastic elastomer (A) and the polyester resin (B). Therefore, even if the elastic modulus of the thermoplastic resin material is increased, the tan ⁇ of the thermoplastic resin material is hardly increased, and the rolling resistance of the tire can be suppressed. Further, the tire 200 of the present embodiment can be simplified in structure by using a thermoplastic resin material, so that the weight is lighter than rubber used in conventional tires. For this reason, the tire 200 of this embodiment can be reduced in weight, and the vehicle provided with this has good fuel consumption.
  • the tire 200 is the tire (5) of the present invention
  • the tire case 17 is formed of the thermoplastic resin material
  • heat resistance, tensile elastic modulus, tensile strength, and breaking strain Excellent since the structure of the tire 10 of the present embodiment can be simplified by using a thermoplastic resin material, the weight is lighter than rubber used in conventional tires. For this reason, the tire 200 of this embodiment has high friction resistance and durability.
  • the tire case 17 contains at least one of a specific copolymer and a specific acid-modified copolymer, and a polyester-based thermoplastic elastomer. Since it is formed of a thermoplastic resin material, it has excellent impact resistance. In addition, deformation and hardness change due to temperature fluctuations in the usage environment are small. Furthermore, since the tire structure can be simplified, the weight is light compared to conventional rubber. For this reason, when the tire 200 of the present embodiment is applied to an automobile, the durability is excellent. Moreover, since the weight of the tire can be reduced, the fuel consumption of an automobile using such a tire can be improved.
  • the tire case 17 includes a polyester-based elastomer (first thermoplastic elastomer) (elastic modulus 422 MPa, Tan ⁇ 0.102) and a polyester-based elastomer bag ( 2nd thermoplastic elastomer) (elastic modulus 45 MPa, Tan ⁇ 0.029), the loss coefficient of the tire frame (as compared to the case where the polyester elastomer is used alone)
  • the elastic modulus is improved while Tan ⁇ ) is kept low.
  • the tire 200 is excellent in heat resistance and has reduced rolling resistance.
  • the tire 10 is light in weight because it has a simple structure as compared with a conventional rubber tire. For this reason, the tire 200 of this embodiment has high friction resistance and durability.
  • a resin material such as a polyester-based thermoplastic elastomer has adhesiveness to the covering cord member 26 ⁇ / b> B constituting the reinforcing cord layer 28.
  • the reinforcing cord layer 28 is configured to include the covering cord member 26B as described above, the hardness of the tire case 17 and the reinforcing cord layer 28 compared to the case where the cord member 26A is simply fixed by the cushion rubber 29. Therefore, the coated cord member 26 ⁇ / b> B can be further adhered and fixed to the tire case 17. Thereby, air entry can be effectively prevented and the movement of the reinforcing cord member during traveling can be effectively suppressed.
  • the cord member 26A is a steel cord in particular, the cord member 26A can be easily separated and collected from the coated cord member 26B by heating at the time of disposal of the tire, which is advantageous in terms of recyclability of the tire 200. is there.
  • the polyester-based thermoplastic elastomer has a lower loss coefficient (Tan ⁇ ) than vulcanized rubber, the rolling property of the tire can be improved.
  • a resin material having a relatively high elastic modulus as compared with vulcanized rubber has an advantage that the in-plane shear rigidity is large and the stability and wear resistance during running of the tire are excellent.
  • the bondability Adhesion
  • the resin material forming the tire case 17 is dug up by the collision of the projection material
  • the wettability of the bonding agent is improved.
  • the bonding agent is held in a uniform applied state on the outer peripheral surface 17S of the tire case 17, and the bonding strength between the tire case 17 and the cushion rubber 29 can be ensured.
  • the cushion rubber 29 is laminated in the roughened region of the outer peripheral surface 17S of the tire case 17, the bonding strength between the tire case 17 and the cushion rubber 29 can be effectively ensured.
  • the cushion rubber 29 In the vulcanization process, when the cushion rubber 29 is vulcanized, the cushion rubber 29 flows into the roughened irregularities 96 formed on the outer peripheral surface 17S of the tire case 17 by the roughening treatment. When the vulcanization is completed, the anchor rubber is exerted by the cushion rubber 29 flowing into the roughened unevenness 96, and the bonding strength between the tire case 17 and the cushion rubber 29 is improved.
  • the tire 200 manufactured by such a tire manufacturing method ensures the bonding strength between the tire case 17 and the cushion rubber 29, that is, the bonding between the tire case 17 and the tread 30 via the cushion rubber 29. Strength is secured. Thereby, the peeling between the outer peripheral surface 17S of the tire case 17 of the tire 200 and the cushion rubber 29 is suppressed during traveling or the like.
  • the puncture resistance and the cut resistance are improved as compared with the outer peripheral portion configured by other than the reinforcing cord layer 28. To do.
  • the reinforcing cord layer 28 is formed by winding the covering cord member 26B, the circumferential rigidity of the tire 200 is improved.
  • creep of the tire case 17 (a phenomenon in which plastic deformation of the tire case 17 increases with time under a constant stress) is suppressed, and pressure resistance against air pressure from the inner side in the tire radial direction is suppressed. improves.
  • the tire case 17 may be formed with a reinforcing cord layer so as to cover the coated cord member wound and joined to the crown portion of the tire case with a thermoplastic material for coating.
  • the coating thermoplastic material in a molten or softened state can be discharged onto the reinforcing cord layer 28 to form the coating layer.
  • the welding sheet may be heated to be in a molten or softened state and attached to the surface (outer peripheral surface) of the reinforcing cord layer 28 to form a coating layer.
  • the tire 200 of the second embodiment is a so-called tubeless tire in which an air chamber is formed between the tire 200 and the rim 20 by attaching the bead portion 12 to the rim 20, but the present invention has this configuration.
  • the tire 200 may be, for example, a complete tube shape (for example, the shape shown in FIG. 7).
  • the cushion rubber 29 is disposed between the tire case 17 and the tread 30.
  • the present invention is not limited to this, and the cushion rubber 29 may not be disposed.
  • the covering cord member 26B is spirally wound around the crown portion 16.
  • the present invention is not limited thereto, and the covering cord member 26B is discontinuous in the width direction. It is good also as a structure wound around.
  • the coating resin material 27 forming the coating cord member 26B is made of a thermoplastic material, and the coating resin material 27 is heated to be melted or softened so that the outer peripheral surface of the crown portion 16 is coated.
  • the cord member 26B is welded, but the present invention is not limited to this configuration, and the covering cord member 26B is bonded to the outer peripheral surface of the crown portion 16 using an adhesive or the like without heating the coating resin material 27. It is good also as composition to do.
  • the covering resin material 27 for forming the covering cord member 26B may be a thermosetting resin, and the covering cord member 26B may be bonded to the outer peripheral surface of the crown portion 16 using an adhesive or the like without being heated.
  • the covering resin material 27 for forming the covering cord member 26B may be a thermosetting resin, and the tire case 17 may be formed of a thermoplastic material.
  • the covering cord member 26B may be bonded to the outer peripheral surface of the crown portion 16 using an adhesive or the like, and the portion of the tire case 17 where the covering cord member 26B is disposed is heated to be melted or softened.
  • the coated cord member 26B may be welded to the outer peripheral surface of the crown portion 16 in a state.
  • the covering resin material 27 for forming the covering cord member 26B may be a thermoplastic material, and the tire case 17 may be formed of a thermoplastic material.
  • the covering cord member 26B may be bonded to the outer peripheral surface of the crown portion 16 using an adhesive or the like, and the portion of the tire case 17 where the covering cord member 26B is disposed is heated to be melted or softened. While being in the state, the covering resin material 27 may be heated to be melted or softened, and the covering cord member 26 ⁇ / b> B may be welded to the outer peripheral surface of the crown portion 16. In addition, when both the tire case 17 and the covering cord member 26B are heated and melted or softened, the two are mixed well, so that the bonding strength is improved. When both the resin material forming the tire case 17 and the covering resin material 27 forming the covering cord member 26B are thermoplastic materials, the same kind of thermoplastic material, particularly the same thermoplastic material, should be used. Is preferred.
  • outer peripheral surface 17S of the tire case 17 subjected to the roughening treatment may be subjected to corona treatment, plasma treatment or the like to activate the surface of the outer peripheral surface 17S to increase hydrophilicity, and then apply an adhesive. Good.
  • the order for manufacturing the second embodiment tire 200 is not limited to the order of the second embodiment, and may be changed as appropriate.
  • the embodiments of the tires (1) to (7) of the present invention have been described with reference to the embodiments, these embodiments are merely examples, and various modifications can be made without departing from the scope of the invention. Further, it goes without saying that the scope of rights of the present invention is not limited to these embodiments.
  • the tire (1) of the present invention can be configured as follows as shown in the first embodiment.
  • (1-1-1) The tire (1) of the present invention is an outer peripheral portion of a tire skeleton formed of a thermoplastic resin material containing a polyester-based thermoplastic elastomer in a sectional view along the axial direction of the tire skeleton.
  • the reinforcement cord member can be configured to be embedded at least partially. As described above, when a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, it is possible to further suppress a phenomenon (air entering) that air remains around the cord when the reinforcing cord member is wound.
  • the movement of the reinforcement cord member due to input during traveling is suppressed.
  • the tire constituent member is provided on the outer peripheral portion of the tire frame so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed, and therefore, between these members (including the tire frame body) ) Is prevented from peeling and the durability is improved.
  • the tire (1) of the present invention may be provided with a tread formed of a material that is more wear resistant than the thermoplastic resin material on the radially outer side of the reinforcing cord layer.
  • the abrasion resistance of the tire can be further improved by configuring the tread that is in contact with the road surface with a material that is more abrasion resistant than the thermoplastic resin material.
  • the tire (1) of the present invention has a diameter of 1/5 or more of the reinforcing cord member around the outer periphery of the tire frame body in a cross-sectional view along the axial direction of the tire frame body. It can be buried along the direction. In this way, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.
  • the tire frame has a bead portion in contact with a rim bead sheet and a rim flange on the radially inner side, and the bead portion is made of a metal material.
  • An annular bead core can be configured to be embedded.
  • a seal portion made of a material having a higher sealing property (adhesion with the rim) than the thermoplastic resin material in a portion where the bead portion is in contact with the rim can be provided.
  • a seal portion made of a material having a higher sealing property than the thermoplastic resin material at the contact portion between the tire frame body and the rim the adhesion between the tire (tire frame body) and the rim can be improved.
  • the air leak in a tire can be suppressed further.
  • the rim fit property of a tire can also be improved by providing the said seal part.
  • a tire skeleton piece is formed by forming a tire skeleton piece constituting a part of an annular tire skeleton with a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer.
  • a reinforcing cord member winding step of forming a reinforcing cord layer by winding the reinforcing cord member in the circumferential direction around the portion.
  • the bonding surface of the tire frame piece is heated to a temperature equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece.
  • the tire skeleton pieces can be sufficiently fused to each other. The productivity of the tire can be increased while improving.
  • the method for manufacturing the tire (1) includes the step of reinforcing the outer periphery of the tire frame formed in the tire frame piece joining step while melting or softening in the reinforcing cord member winding step. It is possible to embed at least a part of the cord member and wind the reinforcing cord member around the outer periphery of the tire frame body. In this way, at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body. At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material.
  • the method for manufacturing the tire (1) may be configured such that the heated reinforcing cord member is embedded in the tire frame body in the reinforcing cord member winding step.
  • the contact portion melts or softens when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Therefore, the reinforcing cord member can be easily embedded in the outer peripheral portion of the tire frame body.
  • the method for manufacturing the tire (1) is configured such that, in the cord member winding step, a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded is heated. Can do. Thus, by heating the portion where the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.
  • the outer periphery of the tire frame body is pressed while pressing the reinforcing cord member against the outer periphery of the tire frame body.
  • the reinforcing cord member may be wound in a spiral direction. As described above, when the reinforcing cord member is wound spirally while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.
  • the outer periphery of the tire frame body is It can be configured to cool the melted or softened part.
  • the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body. Faster and faster cooling and solidification.
  • the tire (1) of the present invention can be configured as follows as described in the second embodiment. (1-2-1)
  • the tire (1) according to the present invention may further include roughening the outer peripheral surface of the tire skeleton by causing the particulate projection material to collide with the outer peripheral surface of the tire skeleton.
  • the particulate projection material collides with the outer peripheral surface of the annular tire skeleton formed using the thermoplastic resin material containing the polyester-based thermoplastic elastomer, and the outer periphery Fine roughening irregularities are formed on the surface.
  • corrugation is called roughening process.
  • a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent.
  • the outer peripheral surface of the tire frame body is roughened, so that the bondability (adhesiveness) is improved by the anchor effect. Further, since the resin material forming the tire frame is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Accordingly, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.
  • the tire (1) of the present invention is manufactured by making at least a part of the outer peripheral surface of the tire frame body an uneven portion, and the uneven portion is subjected to a roughening treatment in the roughening treatment step. can do.
  • the projection material is collided with the uneven portion to roughen the periphery of the recess (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.
  • the outer peripheral portion of the tire skeleton is composed of a reinforcing layer that forms the uneven portion on the outer peripheral surface, and the reinforcing layer is the tire skeleton.
  • the covering cord member formed by covering the reinforcing cord with the same or different resin material from the resin material forming the tire can be wound around the tire frame body in the circumferential direction.
  • the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.
  • thermoplastic resin material can be used as the resin material constituting the coated cord member.
  • a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, the tire can be easily manufactured and recycled compared to the case where a thermosetting material is used as the resin material. It becomes easy.
  • the tire (1) of the present invention can be configured so that, in the roughening treatment step, a roughening process is performed on a region wider than the laminated region of the tire constituent rubber members.
  • a roughening process is performed on a region wider than the laminated region of the tire constituent rubber members.
  • the tire (1) of the present invention is configured such that, in the roughening treatment step, the outer peripheral surface is roughened so that the arithmetic average roughness Ra is 0.05 mm or more. Can do.
  • the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step
  • the outer peripheral surface subjected to the roughening treatment for example, via a bonding agent
  • the rubber of the tire component rubber member can be poured to the bottom of the roughened irregularities formed by the roughening treatment.
  • the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exhibited between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.
  • unvulcanized or semi-vulcanized rubber can be used as the tire constituent rubber member.
  • unvulcanized or semi-cured rubber when used as the tire constituent rubber member, when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body is performed. Rubber flows into the uneven surface.
  • the anchor effect is exerted by the rubber (vulcanized) flowing into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.
  • vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.
  • the tire (1) of the present invention is formed using a thermoplastic resin material containing a polyester-based thermoplastic elastomer, and the outer peripheral surface is roughened by colliding a particulate projection material with the outer peripheral surface.
  • An annular tire skeleton body that has been subjected to a chemical treatment, and a tire-constituting rubber member that is laminated on the outer peripheral surface that has been subjected to the roughening treatment via a bonding agent can be provided.
  • the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect.
  • the outer peripheral surface is roughened, the wettability of the bonding agent is good.
  • the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.
  • the tire (2) of the present invention can be configured as follows as shown in the first embodiment. (2-1-1)
  • the tire (2) of the present invention has at least one reinforcing cord member on the outer periphery of the tire skeleton formed of a thermoplastic resin material in a cross-sectional view along the axial direction of the tire skeleton.
  • the part can be configured to be embedded.
  • a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, it is possible to further suppress a phenomenon (air entering) that air remains around the cord when the reinforcing cord member is wound.
  • the entry of air into the periphery of the reinforcement cord member is suppressed, the movement of the reinforcement cord member due to input during traveling is suppressed.
  • the tire constituent member is provided on the outer peripheral portion of the tire frame so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed, and therefore, between these members (including the tire frame body) ) Is prevented from peeling and the durability is improved.
  • the tire (2) of the present invention may be provided with a tread formed of a material that is more wear resistant than the thermoplastic resin material on the radially outer side of the reinforcing cord layer.
  • the abrasion resistance of the tire can be further improved by configuring the tread that is in contact with the road surface with a material that is more abrasion resistant than the thermoplastic resin material.
  • the tire (2) of the present invention has a diameter of 1/5 or more of the reinforcing cord member around the outer periphery of the tire frame body in a cross-sectional view along the axial direction of the tire frame body. It can be buried along the direction. In this way, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.
  • the tire frame body has a bead portion in contact with a rim bead sheet and a rim flange on a radially inner side, and the bead portion is made of a metal material.
  • An annular bead core can be configured to be embedded.
  • a seal portion made of a material having a higher sealing property (adhesion with the rim) than the thermoplastic resin material at a portion where the bead portion contacts the rim can be provided.
  • a seal portion made of a material having a higher sealing property than the thermoplastic resin material at the contact portion between the tire frame body and the rim the adhesion between the tire (tire frame body) and the rim can be improved.
  • the air leak in a tire can be suppressed further.
  • the rim fit property of a tire can also be improved by providing the said seal part.
  • a tire skeleton piece constituting a part of an annular tire skeleton is formed by a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer and another elastomer.
  • the bonding surface of the tire frame piece is heated to a temperature equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece.
  • the joining surface of the divided body is heated to a temperature equal to or higher than the melting point of the thermoplastic resin material composed of the tire skeleton pieces, the tire skeleton pieces can be sufficiently fused together, thereby improving the durability of the tire.
  • the productivity of the tire can be increased.
  • the method for manufacturing the tire (2) is to reinforce the outer periphery of the tire frame formed in the tire frame piece joining step while melting or softening in the reinforcing cord member winding step. It is possible to embed at least a part of the cord member and wind the reinforcing cord member around the outer periphery of the tire frame body. In this way, at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body. At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material.
  • the method for manufacturing the tire (2) may be configured so that the heated reinforcing cord member is embedded in the tire frame body in the reinforcing cord member winding step.
  • the contact portion melts or softens when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Therefore, the reinforcing cord member can be easily embedded in the outer peripheral portion of the tire frame body.
  • the method for manufacturing the tire (2) is configured such that, in the cord member winding step, a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded is heated. Can do. Thus, by heating the portion where the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.
  • the circumference of the outer peripheral portion of the tire frame body is The reinforcing cord member may be wound in a spiral direction. As described above, when the reinforcing cord member is wound spirally while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.
  • an outer peripheral portion of the tire frame body It can be configured to cool the melted or softened portion of the material.
  • the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body. Faster and faster cooling and solidification.
  • the tire (2) of the present invention can be configured as follows as described in the second embodiment. (2-2-1)
  • the outer peripheral surface of the tire frame body is further roughened by colliding a particulate projection material with the outer peripheral surface of the tire frame body.
  • the particulate projection material collides with the outer peripheral surface of the annular tire skeleton formed using the thermoplastic resin material containing the polyester-based thermoplastic elastomer and the other elastomer. And fine roughening unevenness
  • corrugation is formed in the said outer peripheral surface.
  • corrugation is called roughening process.
  • a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent.
  • the outer peripheral surface of the tire frame body is roughened, so that the bondability (adhesiveness) is improved by the anchor effect.
  • the resin material forming the tire frame is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Accordingly, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.
  • the tire (2) of the present invention is manufactured by making at least a part of the outer peripheral surface of the tire frame body an uneven portion, and the uneven portion is subjected to a roughening treatment in the roughening treatment step. can do.
  • the projection material is collided with the uneven portion to roughen the periphery of the recess (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.
  • the outer peripheral portion of the tire skeleton is composed of a reinforcing layer that forms the uneven portion on the outer peripheral surface, and the reinforcing layer is the tire skeleton.
  • the covering cord member formed by covering the reinforcing cord with the same or different resin material as the resin material forming the tire can be wound around the tire frame body in the circumferential direction.
  • the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.
  • thermoplastic resin material can be used as the resin material constituting the coated cord member.
  • a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, the tire can be easily manufactured and recycled compared to the case where a thermosetting material is used as the resin material. It becomes easy.
  • the tire (2) of the present invention can be configured such that in the roughening treatment step, a region wider than the laminated region of the tire constituent rubber members is roughened. As described above, in the roughening treatment step, when the roughening treatment is performed on a region wider than the lamination region of the tire constituent rubber members, the bonding strength between the tire frame body and the tire constituent rubber members can be reliably ensured.
  • the tire (2) of the present invention is configured such that, in the roughening treatment step, the outer peripheral surface is roughened so that the arithmetic average roughness Ra is 0.05 mm or more. Can do.
  • the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step
  • the outer peripheral surface subjected to the roughening treatment for example, via a bonding agent
  • the rubber of the tire component rubber member can be poured to the bottom of the roughened irregularities formed by the roughening treatment.
  • the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exhibited between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.
  • unvulcanized or semi-vulcanized rubber can be used as the tire constituting rubber member.
  • the tire constituent rubber member when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body is performed. Rubber flows into the uneven surface.
  • the anchor effect is exerted by the rubber (vulcanized) flowing into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.
  • vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.
  • the tire (2) of the present invention is formed using a thermoplastic resin material containing a polyester-based thermoplastic elastomer and another elastomer, and a particulate projection material is made to collide with the outer peripheral surface.
  • An annular tire frame body having a roughened outer peripheral surface, and a tire constituting rubber member laminated on the roughened outer peripheral surface with a bonding agent may be provided.
  • the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect.
  • the outer peripheral surface is roughened, the wettability of the bonding agent is good.
  • the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.
  • the tire (3) of the present invention can be configured as follows as shown in the first embodiment. (3-1-1)
  • the tire (3) of the present invention has a reinforcing cord on the outer periphery of the tire skeleton formed of the thermoplastic resin material according to the present invention in a cross-sectional view along the axial direction of the tire skeleton. It can comprise so that at least one part of a member may be embed
  • a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, it is possible to further suppress a phenomenon (air entering) that air remains around the cord when the reinforcing cord member is wound.
  • the movement of the reinforcement cord member due to input during traveling is suppressed.
  • the tire constituent member is provided on the outer peripheral portion of the tire frame so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed, and therefore, between these members (including the tire frame body) ) Is prevented from peeling and the durability is improved.
  • the tire (3) of the present invention may be provided with a tread formed of a material that is more wear resistant than the thermoplastic resin material on the radially outer side of the reinforcing cord layer.
  • the abrasion resistance of the tire can be further improved by configuring the tread that is in contact with the road surface with a material that is more abrasion resistant than the thermoplastic resin material.
  • the tire (3) of the present invention has a diameter of 1/5 or more of the reinforcing cord member around the outer periphery of the tire frame body in a cross-sectional view along the axial direction of the tire frame body. It can be buried along the direction. In this way, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.
  • the tire frame body has a bead portion in contact with a rim bead sheet and a rim flange on a radially inner side, and the bead portion is made of a metal material.
  • An annular bead core can be configured to be embedded.
  • a seal portion made of a material having a higher sealing property (adhesion with the rim) than the thermoplastic resin material at a portion where the bead portion contacts the rim can be provided.
  • a seal portion made of a material having a higher sealing property than the thermoplastic resin material at the contact portion between the tire frame body and the rim the adhesion between the tire (tire frame body) and the rim can be improved.
  • the air leak in a tire can be suppressed further.
  • the rim fit property of a tire can also be improved by providing the said seal part.
  • the method for producing the tire (3) of the present invention is a tire in which a part of an annular tire skeleton is constituted by a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer and rubber.
  • a reinforcing cord member winding step of forming a reinforcing cord layer by winding the reinforcing cord member in the circumferential direction on the outer peripheral portion of the tire frame body.
  • the bonding surface of the tire frame piece is heated to a temperature equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece.
  • the method for manufacturing the tire (3) is to reinforce the outer periphery of the tire frame formed in the tire frame piece joining step while melting or softening in the reinforcing cord member winding step. It is possible to embed at least a part of the cord member and wind the reinforcing cord member around the outer periphery of the tire frame body. In this way, at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body. At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material.
  • 1/5 or more of the diameter of the reinforcing cord member in a sectional view along the axial direction of the tire frame body can be configured to be embedded in the outer periphery of the tire frame.
  • the reinforcing cord member when the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body by 1/5 or more of the diameter in a cross-sectional view along the axial direction of the tire frame body, it is effective to enter the air around the reinforcing cord member at the time of manufacture.
  • the embedded reinforcing cord member can be made difficult to come off from the tire frame body.
  • the method for manufacturing the tire (3) can be configured such that the heated reinforcing cord member is embedded in the tire frame body in the reinforcing cord member winding step.
  • the contact portion melts or is heated when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Since it softens, it becomes easy to embed a reinforcement cord member in the outer peripheral part of a tire frame.
  • the method for manufacturing the tire (3) is configured such that, in the cord member winding step, a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded is heated. be able to. Thus, by heating the portion where the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.
  • the outer periphery of the tire frame body is pressed while pressing the reinforcing cord member against the outer periphery of the tire frame body.
  • the reinforcing cord member may be wound in a spiral direction. As described above, when the reinforcing cord member is wound spirally while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.
  • the outer periphery of the tire frame body is It can be configured to cool the melted or softened part.
  • the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body.
  • Faster and faster cooling and solidification By cooling the tire outer peripheral portion earlier than natural cooling, it is possible to suppress deformation of the outer peripheral portion of the tire frame body and to suppress movement of the reinforcing cord member.
  • the tire (3) of the present invention can be configured as follows as described in the second embodiment. (3-2-1)
  • the outer peripheral surface of the tire skeleton is further roughened by colliding a particulate projection material with the outer peripheral surface of the tire skeleton.
  • a laminating step of laminating a tire constituent rubber member on the roughened outer peripheral surface via a bonding agent As described above, when the roughening treatment step is provided, the particulate projection material collides with the outer peripheral surface of the annular tire skeleton formed using the thermoplastic resin material, and the fine roughening irregularities are formed on the outer peripheral surface. Is formed.
  • corrugation is called roughening process.
  • a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent.
  • the outer peripheral surface of the tire frame body is roughened, so that the bondability (adhesiveness) is improved by the anchor effect.
  • the resin material forming the tire frame is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Accordingly, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.
  • the tire (3) of the present invention is manufactured by making at least a part of the outer peripheral surface of the tire frame body an uneven portion, and the uneven portion is subjected to a roughening treatment in the roughening treatment step. can do.
  • the projection material is collided with the uneven portion to roughen the periphery of the recess (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.
  • the outer periphery of the tire skeleton is composed of a reinforcing layer that forms the irregularities on the outer peripheral surface, and the reinforcing layer is the tire skeleton.
  • the covering cord member formed by covering the reinforcing cord member with the same kind or different resin material as the resin material forming the tire can be wound around the tire frame body in the circumferential direction.
  • the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.
  • thermoplastic resin material can be used as the resin material constituting the coated cord member.
  • a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, the tire can be easily manufactured and recycled compared to the case where a thermosetting material is used as the resin material. It becomes easy.
  • the tire (3) of the present invention can be configured to roughen a region wider than the laminated region of the tire constituting rubber members in the roughening treatment step.
  • the roughening treatment step when the roughening treatment is performed on a region wider than the lamination region of the tire constituent rubber members, the bonding strength between the tire frame body and the tire constituent rubber members can be reliably ensured.
  • the tire (3) of the present invention is configured such that, in the roughening treatment step, the outer peripheral surface is roughened so that the arithmetic average roughness Ra is 0.05 mm or more. Can do.
  • the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step
  • the outer peripheral surface subjected to the roughening treatment for example, via a bonding agent
  • the rubber of the tire component rubber member can be poured to the bottom of the roughened irregularities formed by the roughening treatment.
  • the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exhibited between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.
  • unvulcanized or semi-vulcanized rubber can be used as the tire constituting rubber member.
  • the tire constituent rubber member when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body is performed. Rubber flows into the uneven surface.
  • the anchor effect is exerted by the rubber (vulcanized) flowing into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.
  • vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.
  • the tire (3) of the present invention is formed using the thermoplastic resin material according to the present invention, and the outer peripheral surface is roughened by colliding a particulate projection material with the outer peripheral surface.
  • An annular tire skeleton and a tire constituting rubber member laminated on the roughened outer peripheral surface via a bonding agent can be provided.
  • the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect.
  • the outer peripheral surface is roughened, the wettability of the bonding agent is good.
  • the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.
  • the tire (4) of the present invention can be configured as follows. (4-1-1)
  • the tire (4) of the present invention has at least one of the reinforcing cord members on the outer peripheral portion of the tire frame formed of a thermoplastic resin material in a cross-sectional view along the axial direction of the tire frame.
  • the part can be configured to be embedded.
  • a phenomenon air entering
  • the movement of the reinforcement cord member due to input during traveling is suppressed.
  • the tire constituent member is provided on the outer peripheral portion of the tire frame so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed, and therefore, between these members (including the tire frame body) ) Is prevented from peeling and the durability is improved.
  • the tire (4) of the present invention may be provided with a tread formed of a material that is more resistant to abrasion than a thermoplastic resin material on the radially outer side of the reinforcing cord layer.
  • the abrasion resistance of the tire can be further improved by configuring the tread that is in contact with the road surface with a material that is more abrasion resistant than the thermoplastic resin material.
  • the tire (4) of the present invention has a diameter of 1/5 or more of the reinforcing cord member around the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body. It can be buried along the direction. In this way, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.
  • the tire frame has a bead portion in contact with a rim bead sheet and a rim flange on the radially inner side, and the bead portion is made of a metal material.
  • An annular bead core can be configured to be embedded.
  • a seal portion made of a material having a higher sealing property (adhesion with the rim) than a thermoplastic resin material is provided at a portion where the bead portion contacts the rim.
  • the tire (4) of the present invention is a tire that constitutes a part of an annular tire skeleton by a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer (A) and a polyester resin (B).
  • the bonding surface of the tire frame piece is heated to a temperature equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece.
  • the bonding surface of the tire frame piece is heated to a temperature equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece.
  • the method for manufacturing the tire (4) is to reinforce the outer periphery of the tire frame formed in the tire frame piece joining step while melting or softening in the reinforcing cord member winding step. It is possible to embed at least a part of the cord member and wind the reinforcing cord member around the outer periphery of the tire frame body. In this way, at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body. At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material.
  • the reinforcing cord member winding step 1/5 or more of the diameter of the reinforcing cord in a cross-sectional view along the axial direction of the tire frame body is obtained. It can comprise so that it may embed
  • the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body by 1/5 or more of the diameter in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcement cord at the time of manufacture.
  • the embedded reinforcing cord member can be made difficult to come off from the tire frame body.
  • the method for manufacturing the tire (4) can be configured such that the heated reinforcing cord member is embedded in the tire frame body in the reinforcing cord member winding step.
  • the contact portion melts or softens when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Therefore, the reinforcing cord member can be easily embedded in the outer peripheral portion of the tire frame body.
  • the method for manufacturing the tire (4) is configured such that, in the cord member winding step, a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded is heated. Can do. Thus, by heating the portion where the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.
  • the tire cord body is pressed around the outer peripheral portion of the tire frame body while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body.
  • the reinforcing cord member may be wound in a spiral direction. As described above, when the reinforcing cord member is wound spirally while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.
  • the outer periphery of the tire frame body is It can be configured to cool the melted or softened part.
  • the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body. Faster and faster cooling and solidification.
  • the tire (4) of the present invention can be configured as follows as described in the second embodiment. (4-2-1)
  • the tire (4) according to the present invention may further include a rough projection of the outer peripheral surface of the tire skeleton by causing the particulate projection material to collide with the outer peripheral surface of the tire skeleton.
  • the outer peripheral surface of the annular tire skeleton formed by using the thermoplastic resin material including the polyester-based thermoplastic elastomer (A) and the polyester resin (B) is particulate.
  • the projection material collides, and fine roughening irregularities are formed on the outer peripheral surface.
  • corrugation is called roughening process.
  • a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent.
  • the outer peripheral surface of the tire frame body is roughened, so that the bondability (adhesiveness) is improved by the anchor effect. Further, since the resin material forming the tire frame is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Accordingly, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.
  • the tire (4) of the present invention is manufactured by making at least a part of the outer peripheral surface of the tire frame body an uneven portion, and the uneven portion is subjected to a roughening treatment in the roughening treatment step. can do.
  • the projection material is collided with the uneven portion to roughen the periphery of the recess (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.
  • the outer peripheral portion of the tire skeleton is formed of a reinforcing layer that forms the uneven portion on the outer peripheral surface, and the reinforcing layer is the tire skeleton.
  • the covering cord member formed by covering the reinforcing cord with the resin material that is the same or different from the resin material forming the tire can be wound around the tire frame body in the circumferential direction.
  • the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.
  • thermoplastic resin material can be used as the resin material constituting the coated cord member.
  • a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, the tire can be easily manufactured and recycled compared to the case where a thermosetting material is used as the resin material. It becomes easy.
  • the tire (4) of the present invention can be configured to roughen a region wider than the laminated region of the tire constituting rubber members in the roughening treatment step.
  • the roughening treatment step when the roughening treatment is performed on a region wider than the lamination region of the tire constituent rubber members, the bonding strength between the tire frame body and the tire constituent rubber members can be reliably ensured.
  • the tire (4) of the present invention is configured such that, in the roughening treatment step, the outer peripheral surface is roughened so that the arithmetic average roughness Ra is 0.05 mm or more. Can do.
  • the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step
  • the outer peripheral surface subjected to the roughening treatment for example, via a bonding agent
  • the rubber of the tire component rubber member can be poured to the bottom of the roughened irregularities formed by the roughening treatment.
  • the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exhibited between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.
  • unvulcanized or semi-vulcanized rubber can be used as the tire constituting rubber member.
  • unvulcanized or semi-cured rubber when used as the tire constituent rubber member, when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body is performed. Rubber flows into the uneven surface.
  • the anchor effect is exerted by the rubber (vulcanized) flowing into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.
  • vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.
  • the tire (4) of the present invention is an annular tire skeleton formed by using a thermoplastic resin material and having the outer peripheral surface roughened by colliding a particulate projection material with the outer peripheral surface. And a tire constituting rubber member laminated on the roughened outer peripheral surface via a bonding agent.
  • a bonding agent As described above, when the roughened tire skeleton body is used, the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect.
  • the outer peripheral surface is roughened, the wettability of the bonding agent is good.
  • the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.
  • the tire (5) of the present invention can be configured as follows.
  • the tire (5) of the present invention has a reinforcing cord on the outer periphery of the tire frame formed of the thermoplastic resin material according to the present invention in a cross-sectional view along the axial direction of the tire frame. It can comprise so that at least one part of a member may be embed
  • a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, it is possible to further suppress a phenomenon (air entering) that air remains around the cord when the reinforcing cord member is wound.
  • the movement of the reinforcement cord member due to input during traveling is suppressed.
  • the tire constituent member is provided on the outer peripheral portion of the tire frame so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed, and therefore, between these members (including the tire frame body) ) Is prevented from peeling and the durability is improved.
  • a tread formed of a material having more wear resistance than a thermoplastic resin material may be provided on the radially outer side of the reinforcing cord layer.
  • the abrasion resistance of the tire can be further improved by configuring the tread that is in contact with the road surface with a material that is more abrasion resistant than the thermoplastic resin material.
  • the tire (5) of the present invention has a diameter of 1/5 or more of the reinforcing cord member around the outer periphery of the tire frame in a cross-sectional view along the axial direction of the tire frame. It can be buried along the direction. In this way, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.
  • the tire frame body has a bead portion in contact with a rim bead sheet and a rim flange on a radially inner side, and the bead portion is made of a metal material.
  • An annular bead core can be configured to be embedded.
  • a seal portion made of a material having a higher sealing property (adhesiveness to the rim) than a thermoplastic resin material is provided at a portion where the bead portion contacts the rim.
  • the method for producing a tire (5) of the present invention is a tire in which a tire skeleton piece constituting a part of an annular tire skeleton is formed of a thermoplastic resin material containing at least a polyester-based thermoplastic elastomer.
  • the reinforcing cord member is wound around the outer peripheral portion of the body in the circumferential direction to form a reinforcing cord layer, and the reinforcing cord member winding step can be used.
  • the bonding surface of the tire frame piece is equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece. It can be configured to heat. As described above, when the joining surfaces of the divided bodies are heated to the melting point or more of the thermoplastic resin material constituting the tire skeleton pieces, the tire skeleton pieces can be sufficiently fused to each other. The productivity of the tire can be increased while improving.
  • an outer peripheral portion of the tire frame body formed in the tire frame piece joining step is melted or softened.
  • at least a part of the reinforcing cord member can be embedded and the reinforcing cord member can be wound around the outer periphery of the tire frame.
  • at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body.
  • At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material.
  • the diameter of the reinforcing cord is 1/5 in a sectional view along the axial direction of the tire frame body.
  • the above can be configured to be embedded in the outer peripheral portion of the tire frame body.
  • the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body by 1/5 or more of the diameter in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcement cord at the time of manufacture.
  • the embedded reinforcing cord member can be made difficult to come off from the tire frame body.
  • the method of manufacturing the tire (5) of the present invention can be configured such that the heated reinforcing cord member is embedded in the tire frame body in the reinforcing cord member winding step.
  • the contact portion melts or softens when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Therefore, the reinforcing cord member can be easily embedded in the outer peripheral portion of the tire frame body.
  • the method for manufacturing a tire (5) of the present invention is configured such that, in the cord member winding step, a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded is heated. can do.
  • the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.
  • the outer peripheral portion of the tire skeleton body is pressed while pressing the reinforcing cord member against the outer peripheral portion of the tire skeleton body.
  • the reinforcing cord member can be wound spirally in the circumferential direction. As described above, when the reinforcing cord member is wound spirally while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.
  • the method of manufacturing the tire (5) of the present invention in the cord member winding step, after the reinforcing cord member is wound around the tire frame body, an outer periphery of the tire frame body is obtained.
  • the melted or softened part of the part can be cooled.
  • the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body. Faster and faster cooling and solidification.
  • the method for producing a tire (5) of the present invention further includes a roughening process in which the outer peripheral surface of the tire frame is roughened by colliding a particulate projection material with the outer peripheral surface of the tire frame. And a laminating step of laminating a tire constituent rubber member on the roughened outer peripheral surface via a bonding agent.
  • the particulate projection material collides with the outer peripheral surface of the annular tire skeleton formed using the thermoplastic resin material, and the fine roughening irregularities are formed on the outer peripheral surface. Is formed.
  • corrugation is called roughening process.
  • a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent.
  • the outer peripheral surface of the tire frame body is roughened, so that the bondability (adhesiveness) is improved by the anchor effect.
  • the resin material forming the tire frame is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Accordingly, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.
  • the uneven portion is roughened in the roughening step.
  • the projection material is collided with the uneven portion to roughen the periphery of the recess (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.
  • the outer peripheral portion of the tire skeleton is composed of a reinforcing layer that forms the uneven portion on the outer peripheral surface, and the reinforcing layer is the tire skeleton.
  • the covering cord member formed by covering the reinforcing cord with the resin material that is the same or different from the resin material forming the tire can be wound around the tire frame body in the circumferential direction.
  • the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.
  • thermoplastic resin material can be used as the resin material constituting the coated cord member.
  • a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, it becomes easier to manufacture and recycle compared to the case where a thermosetting material is used as the resin material. It becomes easy to do.
  • the tire (5) of the present invention can be configured such that in the roughening treatment step, an area wider than the lamination region of the tire constituent rubber members is roughened. As described above, in the roughening treatment step, when the roughening treatment is performed on a region wider than the lamination region of the tire constituent rubber members, the bonding strength between the tire frame body and the tire constituent rubber members can be reliably ensured.
  • the tire (5) of the present invention is configured such that, in the roughening treatment step, the outer peripheral surface is roughened so that the arithmetic average roughness Ra is 0.05 mm or more. Can do.
  • the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step
  • the outer peripheral surface subjected to the roughening treatment for example, via a bonding agent
  • the rubber of the tire component rubber member can be poured to the bottom of the roughened irregularities formed by the roughening treatment.
  • the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exhibited between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.
  • unvulcanized or semi-vulcanized rubber can be used as the tire constituting rubber member.
  • the tire constituent rubber member when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body is performed. Rubber flows into the uneven surface.
  • the anchor effect is exerted by the rubber (vulcanized) flowing into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.
  • vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.
  • the tire (5) of the present invention is formed using the thermoplastic resin material according to the present invention, and the outer peripheral surface is roughened by colliding a particulate projection material with the outer peripheral surface.
  • An annular tire skeleton body and a tire constituting rubber member laminated on the roughened outer peripheral surface via a bonding agent can be provided.
  • the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect.
  • the outer peripheral surface is roughened, the wettability of the bonding agent is good.
  • the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.
  • the tire (6) of the present invention can be configured as follows. (6-1-1)
  • the tire (6) of the present invention has a reinforcing cord on the outer periphery of the tire frame formed of the thermoplastic resin material according to the present invention in a cross-sectional view along the axial direction of the tire frame. It can comprise so that at least one part of a member may be embed
  • a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, it is possible to further suppress a phenomenon (air entering) that air remains around the cord when the reinforcing cord member is wound.
  • the movement of the reinforcement cord member due to input during traveling is suppressed.
  • the tire constituent member is provided on the outer peripheral portion of the tire frame so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed, and therefore, between these members (including the tire frame body) ) Is prevented from peeling and the durability is improved.
  • the tire (6) of the present invention may be provided with a tread formed of a material that is more wear resistant than the thermoplastic resin material on the radially outer side of the reinforcing cord layer.
  • the abrasion resistance of the tire can be further improved by configuring the tread that is in contact with the road surface with a material that is more abrasion resistant than the thermoplastic resin material.
  • the tire (6) of the present invention has a diameter of 1/5 or more of the reinforcing cord member around the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body. It can be buried along the direction. In this way, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.
  • the tire frame body has a bead portion in contact with a rim bead sheet and a rim flange on a radially inner side, and the bead portion is made of a metal material.
  • An annular bead core can be configured to be embedded.
  • a seal portion made of a material having a higher sealing property (adhesion with the rim) than the thermoplastic resin material at a portion where the bead portion contacts the rim can be provided.
  • a seal portion made of a material having a higher sealing property than the thermoplastic resin material at the contact portion between the tire frame body and the rim the adhesion between the tire (tire frame body) and the rim can be improved.
  • the air leak in a tire can be suppressed further.
  • the rim fit property of a tire can also be improved by providing the said seal part.
  • the method for producing the tire (6) of the present invention comprises a thermoplastic resin material comprising at least a polyester-based thermoplastic elastomer and at least one of a specific copolymer and a specific acid-modified copolymer.
  • a tire frame piece joining step for forming the tire frame body.
  • the tire manufacturing method of the present invention may further include a reinforcing cord member winding step of forming a reinforcing cord layer by winding a reinforcing cord member in the circumferential direction on the outer peripheral portion of the tire frame body.
  • a polyester-based thermoplastic elastomer for example, a polyester-based thermoplastic elastomer “Hytrel, 6347” manufactured by Toray DuPont can be used.
  • the specific copolymer for example, ethylene manufactured by Mitsui DuPont Polychemical Co., Ltd. can be used.
  • -A methacrylic acid copolymer “Nucleel, N035C” can be used.
  • an acid-modified “HPR” of an ethylene-acrylate ethyl ester copolymer manufactured by Mitsui DuPont Polychemical Co., Ltd. , AR2011 ” can be used.
  • a thermoplastic resin material containing a polyester-based thermoplastic elastomer and at least one of a specific copolymer and a specific acid-modified copolymer is not deformed or changes in hardness due to temperature fluctuations in the use environment. In addition to being small and excellent in impact resistance, it is excellent in fluidity and can be easily injection molded.
  • the tire skeleton piece that constitutes a part of the annular tire skeleton using the thermoplastic resin material according to the present invention, if the tire skeleton piece is formed by injection molding, the tire skeleton piece can be efficiently obtained. It can be formed and is excellent in tire productivity.
  • the bonding surface of the tire frame piece is heated to a temperature equal to or higher than a melting point of the thermoplastic resin material constituting the tire frame piece. It can be constituted as follows. As described above, when the joining surfaces of the divided bodies are heated to the melting point or more of the thermoplastic resin material constituting the tire skeleton pieces, the tire skeleton pieces can be sufficiently fused to each other. The productivity of the tire can be increased while improving.
  • the method for manufacturing the tire (6) is to reinforce the outer periphery of the tire frame formed in the tire frame piece joining step while melting or softening in the reinforcing cord member winding step. It is possible to embed at least a part of the cord member and wind the reinforcing cord member around the outer periphery of the tire frame body. In this way, at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body. At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material.
  • the reinforcing cord member winding step 1/5 or more of the diameter of the reinforcing cord in a sectional view along the axial direction of the tire frame body is obtained. It can comprise so that it may embed
  • the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body by 1/5 or more of the diameter in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcement cord at the time of manufacture.
  • the embedded reinforcing cord member can be made difficult to come off from the tire frame body.
  • the method for manufacturing the tire (6) may be configured so that the heated reinforcing cord member is embedded in the tire frame body in the reinforcing cord member winding step.
  • the contact portion melts or softens when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Therefore, the reinforcing cord member can be easily embedded in the outer peripheral portion of the tire frame body.
  • the method for manufacturing the tire (6) is configured such that, in the cord member winding step, a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded is heated. Can do. Thus, by heating the portion where the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.
  • the outer periphery of the tire frame body is pressed while pressing the reinforcing cord member against the outer periphery of the tire frame body.
  • the reinforcing cord member may be wound in a spiral direction. As described above, when the reinforcing cord member is wound spirally while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.
  • the outer periphery of the tire frame body is It can be configured to cool the melted or softened part.
  • the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body. Faster and faster cooling and solidification.
  • the tire (6) of the present invention can be configured as follows. (6-2-1)
  • the outer peripheral surface of the tire frame body is further roughened by colliding the particulate projection material with the outer peripheral surface of the tire frame body.
  • the particulate projection material collides with the outer peripheral surface of the annular tire skeleton formed using the thermoplastic resin material, and the fine roughening irregularities are formed on the outer peripheral surface. Is formed.
  • corrugation is called roughening process.
  • a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent.
  • the outer peripheral surface of the tire frame body is roughened, so that the bondability (adhesiveness) is improved by the anchor effect.
  • the resin material forming the tire frame is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Accordingly, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.
  • the tire (6) of the present invention is manufactured by making at least a part of the outer peripheral surface of the tire frame body an uneven portion, and the uneven portion is subjected to a roughening treatment in the roughening treatment step. can do.
  • the projection material is collided with the uneven portion to roughen the periphery of the recess (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.
  • the outer peripheral portion of the tire skeleton is composed of a reinforcing layer that forms the uneven portion on the outer peripheral surface, and the reinforcing layer is the tire skeleton.
  • the covering cord member formed by covering the reinforcing cord with the same or different resin material as the resin material forming the tire can be wound around the tire frame body in the circumferential direction.
  • the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.
  • thermoplastic resin material can be used as the resin material constituting the coated cord member.
  • a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, the tire can be easily manufactured and recycled compared to the case where a thermosetting material is used as the resin material. It becomes easy.
  • the tire (6) of the present invention can be configured so that in the roughening treatment step, a roughening process is performed on a region wider than the lamination region of the tire constituent rubber members.
  • a roughening process is performed on a region wider than the lamination region of the tire constituent rubber members.
  • the tire (6) of the present invention is configured such that in the roughening treatment step, the outer peripheral surface is roughened so that the arithmetic average roughness Ra is 0.06-5 mm or more. Can do.
  • the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step
  • the outer peripheral surface subjected to the roughening treatment for example, via a bonding agent
  • the rubber of the tire component rubber member can be poured to the bottom of the roughened irregularities formed by the roughening treatment.
  • the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exhibited between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.
  • unvulcanized or semi-vulcanized rubber can be used as the tire constituting rubber member.
  • the tire constituent rubber member when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body is performed. Rubber flows into the uneven surface.
  • the anchor effect is exerted by the rubber (vulcanized) flowing into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.
  • vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.
  • the tire (6) of the present invention is formed using the thermoplastic resin material according to the present invention, and the outer peripheral surface is roughened by colliding a particulate projection material with the outer peripheral surface.
  • An annular tire skeleton body and a tire constituting rubber member laminated on the roughened outer peripheral surface via a bonding agent can be provided.
  • the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect.
  • the outer peripheral surface is roughened, the wettability of the bonding agent is good.
  • the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.
  • the tire (7) of the present invention can be configured as follows as shown in the first embodiment. (7-1-1)
  • at least a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame formed of a thermoplastic resin material in a cross-sectional view along the axial direction of the tire frame.
  • a part of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, it is possible to further suppress a phenomenon (air entering) that air remains around the cord when the reinforcing cord member is wound.
  • the entry of air into the periphery of the reinforcement cord member is suppressed, the movement of the reinforcement cord member due to input during traveling is suppressed.
  • the tire constituent member is provided on the outer peripheral portion of the tire frame so as to cover the entire reinforcement cord member, the movement of the reinforcement cord member is suppressed, and therefore, between these members (including the tire frame body) ) Is prevented from peeling and the durability is improved.
  • a tread formed of a material having more wear resistance than the thermoplastic resin material may be provided outside the reinforcing cord layer in the radial direction.
  • the abrasion resistance of the tire can be further improved by configuring the tread that is in contact with the road surface with a material that is more abrasion resistant than the thermoplastic resin material.
  • the tire (7) of the present invention has a diameter of 1/5 or more of the reinforcing cord member around the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body. It can be buried along the direction. In this way, when 1/5 or more of the diameter of the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcing cord member It is possible to suppress the movement of the reinforcing cord member due to an input during traveling.
  • the tire frame body has a bead portion in contact with a rim bead sheet and a rim flange on a radially inner side, and the bead portion is made of a metal material.
  • An annular bead core can be configured to be embedded.
  • a seal portion made of a material having a higher sealing property (adhesion with the rim) than the thermoplastic resin material at a portion where the bead portion contacts the rim can be provided.
  • a seal portion made of a material having a higher sealing property than the thermoplastic resin material at the contact portion between the tire frame body and the rim the adhesion between the tire (tire frame body) and the rim can be improved.
  • the air leak in a tire can be suppressed further.
  • the rim fit property of a tire can also be improved by providing the said seal part.
  • the tire (7) of the present invention includes a tire skeleton piece forming step of forming a tire skeleton piece constituting a part of an annular tire skeleton by at least the thermoplastic resin material, and the tire skeleton.
  • a tire skeleton piece joining step in which the tire skeleton body is formed by fusing two or more paired tire skeleton pieces by applying heat to the joining surfaces of the pieces; and a reinforcing cord member on the outer periphery of the tire skeleton body And a reinforcing cord member winding step of forming a reinforcing cord layer by winding in the circumferential direction.
  • the bonding surface of the tire frame piece is equal to or higher than the melting point of the thermoplastic resin material constituting the tire frame piece (for example, , Melting point + 10 ° C. to + 150 ° C.).
  • the melting point of the thermoplastic resin material constituting the tire frame piece for example, Melting point + 10 ° C. to + 150 ° C.
  • the outer periphery of the tire frame body formed in the tire frame piece joining step is melted or softened. It is possible to embed at least a part of the cord member and wind the reinforcing cord member around the outer periphery of the tire frame body. In this way, at least a part of the reinforcing cord member was embedded while melting or softening the outer peripheral portion of the tire skeleton body, and the reinforcing cord member was wound around the outer peripheral portion of the tire skeleton body. At least a part of the reinforcing cord member can be welded to the molten or softened thermoplastic resin material.
  • the reinforcing cord member winding step 1/5 or more of the diameter of the reinforcing cord in a sectional view along the axial direction of the tire frame body is obtained. It can comprise so that it may embed
  • the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body by 1/5 or more of the diameter in a cross-sectional view along the axial direction of the tire frame body, it is possible to effectively enter the air around the reinforcement cord at the time of manufacture.
  • the embedded reinforcing cord member can be made difficult to come off from the tire frame body.
  • the method for manufacturing the tire (7) may be configured such that the heated reinforcing cord member is embedded in the tire frame body in the reinforcing cord member winding step.
  • the contact portion melts or softens when the heated reinforcing cord member contacts the outer periphery of the tire frame body. Therefore, the reinforcing cord member can be easily embedded in the outer peripheral portion of the tire frame body.
  • the method for manufacturing the tire (7) is configured such that, in the cord member winding step, a portion of the outer periphery of the tire frame body where the reinforcing cord member is embedded is heated. Can do. Thus, by heating the portion where the reinforcing cord member is embedded in the outer peripheral portion of the tire frame body, the heated portion of the tire frame body is melted or softened, so that the reinforcing cord member is easily embedded.
  • the outer periphery of the tire frame body is pressed while pressing the reinforcing cord member against the outer periphery of the tire frame body.
  • the reinforcing cord member may be wound in a spiral direction. As described above, when the reinforcing cord member is wound spirally while pressing the reinforcing cord member against the outer peripheral portion of the tire frame body, the amount of the reinforcing cord member embedded in the outer peripheral portion of the tire frame body can be adjusted. it can.
  • the outer periphery of the tire frame body is It can be configured to cool the melted or softened part.
  • the melted or softened portion of the outer periphery of the tire frame body is forcibly cooled to naturally cool the melted or softened portion of the outer periphery of the tire frame body. Faster and faster cooling and solidification.
  • the tire of the present invention can be configured as follows. (7-2-1)
  • the outer peripheral surface of the tire frame body is further roughened by colliding a particulate projection material with the outer peripheral surface of the tire frame body.
  • the particulate projection material collides with the outer peripheral surface of the annular tire skeleton formed using the thermoplastic resin material, and the outer peripheral surface is finely roughened. Unevenness is formed.
  • corrugation is called roughening process.
  • a tire constituting rubber member is laminated on the outer peripheral surface subjected to the roughening treatment via a bonding agent.
  • the outer peripheral surface of the tire frame body is roughened, so that the bondability (adhesiveness) is improved by the anchor effect.
  • the thermoplastic resin material forming the tire skeleton is dug up by the collision of the projection material, the wettability of the outer peripheral surface is improved. Accordingly, the bonding agent is held in a uniform applied state on the outer peripheral surface of the tire frame body, and the bonding strength between the tire frame body and the tire constituting rubber member can be ensured.
  • the tire (7) of the present invention is manufactured by making at least a part of the outer peripheral surface of the tire frame body an uneven portion, and the uneven portion is subjected to a roughening treatment in the roughening treatment step. can do.
  • the projection material is collided with the uneven portion to roughen the periphery of the recess (concave wall, concave bottom), and the tire Bonding strength between the skeleton body and the tire constituting rubber member can be ensured.
  • the outer periphery of the tire skeleton is composed of a reinforcing layer that forms the uneven portion on the outer peripheral surface, and the reinforcing layer is the tire skeleton.
  • the covering cord member formed by covering the reinforcing cord with the same kind or different resin material as the resin material forming the tire can be wound around the tire frame body in the circumferential direction.
  • the circumferential direction rigidity of a tire frame body can be improved by constituting the perimeter part of a tire frame body with the reinforcement layer constituted by winding a covering cord member in the circumferential direction of a tire frame body.
  • thermoplastic resin material can be used as the resin material constituting the coated cord member.
  • a thermoplastic material having thermoplasticity as the resin material constituting the coated cord member, the tire can be easily manufactured and recycled compared to the case where a thermosetting material is used as the resin material. It becomes easy.
  • the tire (7) of the present invention can be configured such that in the roughening treatment step, a region wider than the laminated region of the tire constituent rubber members is roughened. As described above, in the roughening treatment step, when the roughening treatment is performed on a region wider than the lamination region of the tire constituent rubber members, the bonding strength between the tire frame body and the tire constituent rubber members can be reliably ensured.
  • the tire (7) of the present invention is configured to roughen the outer peripheral surface so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step. Can do.
  • the outer peripheral surface of the tire frame body is roughened so that the arithmetic average roughness Ra is 0.05 mm or more in the roughening treatment step
  • the outer peripheral surface subjected to the roughening treatment for example, via a bonding agent
  • the rubber of the tire component rubber member can be poured into the bottom of the roughened irregularities formed by the roughening treatment.
  • the rubber of the tire constituent rubber member is poured into the bottom of the roughened unevenness, a sufficient anchor effect is exhibited between the outer peripheral surface and the tire constituent rubber member, and the bonding strength between the tire skeleton and the tire constituent rubber member Can be improved.
  • unvulcanized or semi-vulcanized rubber can be used as the tire constituting rubber member.
  • an unvulcanized or semi-vulcanized rubber when used as the tire constituent rubber member, when the tire constituent rubber member is vulcanized, the roughening formed on the outer peripheral surface of the tire frame body by the roughening treatment. Rubber flows into the uneven surface.
  • the anchor effect is exerted by the rubber (vulcanized) flowing into the roughened unevenness, and the bonding strength between the tire frame body and the tire constituting rubber member can be improved.
  • vulcanized means the state that has reached the degree of vulcanization required for the final product, and the semi-vulcanized state has a higher degree of vulcanization than the unvulcanized state, but is required for the final product. This means that the degree of vulcanization is not reached.
  • the tire (7) of the present invention is an annular tire skeleton formed by using the resin material, and having the outer peripheral surface roughened by colliding a particulate projection material with the outer peripheral surface. And a tire constituting rubber member laminated on the roughened outer peripheral surface via a bonding agent.
  • the bonding strength between the tire skeleton body and the tire constituting rubber member can be improved by the anchor effect.
  • the outer peripheral surface is roughened, the wettability of the bonding agent is good.
  • the bonding agent is held in a uniform application state on the outer peripheral surface of the tire frame body, the bonding strength between the tire frame body and the tire component rubber member is ensured, and the tire frame body and the tire component rubber member are separated. Can be suppressed.
  • Examples 1-1 to 1-3, Comparative Example 1-1 Hereinafter, the 1st viewpoint of this invention is demonstrated more concretely using an Example. However, the present invention is not limited to this.
  • tires of respective examples and comparative examples were molded according to the above-described first embodiment. At this time, materials described in Table 1-1 below were used as materials for forming the tire case. Moreover, about each Example and the comparative example, the tensile characteristic, the deflection temperature under load, joining property, and tire performance were evaluated. In Comparative Example 1-1, the tire case could not be manufactured because the tire case halves were not sufficiently joined.
  • ⁇ Evaluation> 1-1 Evaluation of tensile properties (tensile elastic modulus, tensile strength and elongation at break) Using the produced pellets as a molding material, a 127 mm x 12.7 mm, 1.6 mm thick mold was used for injection molding under the following molding conditions. A sample piece was obtained. ⁇ Injection molding machine: SE30D, Sumitomo Heavy Industries, Ltd. Molding temperature (temperature of the thermoplastic resin material): 200 ° C. to 240 ° C. in the examples, 320 ° C.
  • the obtained multipurpose sample piece was cut into an evaluation sample piece of 127 mm ⁇ 10 mm and a thickness of 4 mm.
  • the deflection temperature under load (ASTM D648) in each load of 0.45MPa and 1.8MPa was measured using the HDT / VSPT test apparatus (Corporation
  • the measurement method and conditions are as follows. Two points are supported at a distance of 100 mm between the fulcrums of the sample piece for evaluation, a load of 0.46 MPa or 1.8 MPa is applied to the center part between the fulcrum points, the periphery of the sample piece is filled with silicone oil, The temperature was raised in hr.
  • the temperature when the deformation amount of the sample piece for evaluation reached 0.2% was measured as the deflection temperature under load.
  • the results are shown in Table 1-1.
  • the deflection temperature under load was measured from 0.45 MPa. For Examples 1-1 to 1-3 in which the deflection temperature under load could be measured, measurement at 1.8 MPa was not performed.
  • a deflection temperature under load of 50 ° C. or higher is a practically acceptable range for performance required for tires.
  • the results are shown in Table 1-1.
  • Table 1-1 shows the injection molding temperature when the tire case was injection molded.
  • TPEE Polyester-based thermoplastic elastomer
  • PPS Polyphenylene sulfide resin
  • Hytrel Toray DuPont Co., Ltd.
  • FORTRON Polyplastic Co., Ltd.
  • thermoplastic resin material containing the polyester elastomer used in Examples 1-1 to 1-3 sufficiently satisfies the performance required for the tire. Furthermore, it can be seen that the thermoplastic resin material containing the polyester elastomer used in Examples 1-1 to 1-3 has good bondability required for tire molding.
  • thermoplastic resin materials used in the tire molding of Examples 1-1 to 1-3 are excellent in injection moldability, and the running performance and shape retention of the obtained tire are sufficient. It was.
  • the tire of each Example and the comparative example was shape
  • the materials shown in Table 2-1 below were used as materials for forming the tire case.
  • the tensile characteristic and the tire performance were evaluated according to the following.
  • Polyester-based thermoplastic elastomer “Hytrel 6347” manufactured by Toray DuPont 2. 2. Polyurethane-based thermoplastic elastomer 1) “Elastollan ET680” manufactured by BASF, ester-based 2) “Elastollan ET880” manufactured by BASF, ether-based Polystyrene-based thermoplastic elastomer 1) “Tuftec M1943” manufactured by Asahi Kasei Corporation 2) “Tuftec H1052” manufactured by Asahi Kasei Corporation 4). ⁇ -Polyolefin Thermoplastic Elastomer 1) “Tuffmer MH7007” manufactured by Mitsui Chemicals, Inc.
  • Polyester-based thermoplastic elastomer 1 “Elvalloy AC 3427AC” manufactured by Mitsui DuPont Co., Ltd., ethylene-butyl acrylate copolymer
  • thermoplastic elastomer was mixed (mass basis) with the composition shown in Table 2-1, and kneaded by a twin screw extruder “LABOPLASTOMILL 50MR” manufactured by Toyo Seiki Co., Ltd. to obtain pellets.
  • pellets were prepared using only a polyester-based thermoplastic elastomer without using a mixed system.
  • a mold having a size of 12.7 mm ⁇ 127 mm and a thickness of 1.6 mm was used for injection molding under the following conditions to obtain a sample piece.
  • tensile properties (tensile strength, elongation at break, and tensile modulus)
  • tensile properties were obtained by using Shimadzu Corp., Shimadzu Autograph AGS-J (5KN), JIS No. 5 dumbbell, and pulling at a tensile rate of 200 mm / min. , Elongation at break, and tensile modulus).
  • the results are shown in Table 2-1 below.
  • Examples 3-1 to 3-8, Comparative example 3-1 Hereinafter, the third aspect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to this.
  • the tire of each Example and the comparative example was shape
  • materials described in Tables 3-1 and 3-2 below were used as materials for forming the tire case.
  • the tire performance was considered from the physical property evaluation of material.
  • Rubber 1 Butadiene rubber (BR) 2) Styrene-butadiene copolymer rubber (SBR) 3) Acrylonitrile-butadiene copolymer rubber (NBR) BR, SBR, and NBR were all extruded using a single screw extruder and pelletized.
  • Rubber-affinity thermoplastic elastomer 1 Acid-modified ⁇ -olefin thermoplastic elastomer, manufactured by Mitsui Chemicals, Tuffmer, MH7010 2) Acid-modified hydrogenated polystyrene-based thermoplastic elastomer (SEBS) Asahi Kasei Corporation, Tuftec, M1913
  • Vulcanized rubber (DV1-DV3)
  • BR BR
  • SBR SBR
  • NBR NBR
  • Table 3-1 the components of the types and amounts shown in Table 3-1 below are mixed, kneaded with a Banbury mixer, formed into a sheet using two rolls, Extruded by a screw extruder and pelletized. The obtained rubber was crosslinked during kneading with the polyester thermoplastic elastomer in a twin screw extruder.
  • thermoplastic resin material Preparation of pellets of thermoplastic resin material
  • the components shown in Table 3-2 were mixed (mass basis) in the composition shown in Table 3-2 and kneaded by a LABOPLASTOMILL 50MR twin screw extruder manufactured by Toyo Seiki Seisakusho Co., Ltd. to obtain pellets.
  • a polyester thermoplastic elastomer pellet was prepared without using a mixed system.
  • Table 3-2 shows the tensile strength, breaking elongation, tensile elastic modulus, and tan ⁇ of the sample pieces of Examples and Comparative Examples.
  • the sample pieces produced in each example have a small tensile elastic modulus and high flexibility in comparison with the sample pieces produced in the comparative examples.
  • a tire manufactured using a tire case formed using the same thermoplastic resin material as the sample piece shown in the example has excellent impact resistance, for example, even if the tire contacts a curb or the like. It shows durability that is difficult to break.
  • the sample pieces of the examples all have smaller tan ⁇ than the sample pieces of the comparative example. Therefore, the rolling resistance of a tire manufactured using the same thermoplastic resin material as the sample piece shown in the example is suppressed, and it is understood that when such a tire is applied to an automobile, low fuel consumption can be expressed. .
  • a drum running test was performed on each tire formed using each thermoplastic resin material of Examples 3-1 to 3-8 and Comparative Example 3-1. There was no problem.
  • Polyester resin polybutylene terephthalate resin
  • Polyplastics Co., Ltd., DURANEX 2000, elastic modulus 1100 MPa
  • Polyplastic Co., Ltd., Juranex 2002, elastic modulus 1250 MPa
  • polyester-based thermoplastic elastomer and polyester resin are mixed (mass basis) with the composition shown in Table 4-1, and kneaded by a LABOPLASTOMILL 50MR twin screw extruder manufactured by Toyo Seiki Seisakusho to obtain pellets. It was.
  • pellets made of a polyester thermoplastic elastomer shown in Table 4-1 were prepared without using a mixed system.
  • injection molding was performed under the following conditions to obtain a sample piece having a thickness of 1.6 mm.
  • SE30D manufactured by Sumitomo Heavy Industries, Ltd. is used, mold temperature is 200 ° C to 235 ° C, mold temperature is 50 ° C to 70 ° C, 127mm x 12.7mm, 1.6mm thick mold was used.
  • ⁇ Evaluation method> 1 Evaluation of Tensile Strength, Breaking Elongation, and Tensile Elastic Modulus
  • a sample piece obtained by the injection molding was punched out to prepare a dumbbell-shaped test piece (No. 5 type test piece) defined in JIS K6251: 1993.
  • Tensile strength, elongation at break, and tensile modulus were obtained by using Shimadzu Corporation, Shimadzu Autograph, AGS-J (5KN), and pulling the obtained dumbbell-shaped test piece at a tensile speed of 200 mm / min. It was measured by.
  • Table 4-1 shows the tensile strength, breaking elongation, tensile elastic modulus, and tan ⁇ of each sample piece of Examples and Comparative Examples.
  • the evaluation result of the sample piece produced in the example shows the rolling resistance of the tire regardless of the change in the tensile modulus in comparison with the evaluation result of the sample piece of the comparative example. Since the fluctuation range of tan ⁇ as an index is small, it can be seen that an increase in rolling resistance is suppressed. This can also be grasped from FIG. FIG. 6 plots tan ⁇ against tensile modulus.
  • the regression line (not shown) grasped from the plots of Comparative Examples 4-1 to 4-6 has a large slope and tan ⁇ increases as the tensile elastic modulus increases, but Examples 4-1 to It can be seen that the regression line (not shown) grasped from the plot of 4-4 has a small slope and it is difficult to increase tan ⁇ even if the tensile elastic modulus increases. Moreover, it turns out that each sample piece produced in the Example sufficiently satisfies the level required for the tire in all of the tensile strength, breaking elongation, and tensile elastic modulus.
  • thermoplastic elastomer was mixed (mass basis) with the composition shown in Table 5-1, and kneaded with a LABOPLASTOMILL 50MR twin screw extruder manufactured by Toyo Seiki Seisakusho to obtain pellets.
  • thermoplastic resin material ⁇ Measurement of acid value of thermoplastic resin material>
  • the results are shown in Table 5-1.
  • ⁇ Evaluation> Evaluation of tensile properties (tensile strength, elongation at break, tensile modulus, and rupture state) Using the obtained test piece, tensile strength, elongation at break, tensile modulus, and rupture state were as follows. evaluated. The results are shown in Table 5-1 below. Tensile strength, elongation at break, and tensile modulus were obtained by using a Shimadzu autograph “AGS-J (5KN)” manufactured by Shimadzu Corporation and a JIS No. 5 dumbbell to pull a sample piece at a tensile speed of 200 mm / min. Was measured. The fracture state was evaluated based on the following evaluation criteria by visually observing the fracture surface of each test piece. -Evaluation criteria- A: The sample piece was broken by ductile fracture. B: The sample piece was broken by layered fracture. C: The sample piece was broken by brittle fracture.
  • each of the sample pieces produced in each example has good tensile properties and fractured state in comparison with the sample piece produced in the comparative example. It can be seen that the injection moldability at the time is also excellent. This means that a tire manufactured using a tire case formed using the same thermoplastic resin material as the sample pieces shown in Examples 5-1 to 5-12 has durability and is also manufacturable. Shows superiority.
  • Examples 6-1 to 6-4, Comparative Examples 6-1 to 6-4 Hereinafter, the sixth aspect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to this.
  • tires of examples and comparative examples were molded according to the second embodiment described above. At this time, materials described in Table 6-1 below were used as materials for forming the tire case. Moreover, about each Example and the comparative example, the tire performance was considered from the physical property evaluation of material.
  • Polyester thermoplastic elastomer made by Toray DuPont, Hytrel, 6347
  • Ethylene-methacrylic acid copolymer (specific copolymer) Mitsui DuPont Polychemical Co., Ltd., Nukurel, N035C
  • pellets The elastomer and the copolymer were mixed (mass basis) with the composition shown in Table 6-1 and kneaded by a LABOPLASTOMILL 50MR twin screw extruder manufactured by Toyo Seiki Seisakusho to obtain pellets.
  • pellets of polyamide-based thermoplastic elastomer and polyester-based thermoplastic elastomer were prepared without using a mixed system.
  • pellets of Comparative Example 6-2 could not be injection-molded under the above-mentioned injection molding conditions, so the pellets were heated at 200 ° C. and 12 MPa for 5 minutes using an electric heating press manufactured by Kodaira Seisakusho. Thus, hot pressing was performed to obtain a sample piece having a size of 120 mm ⁇ 120 mm and a thickness of 2 mm.
  • Table 6-1 shows a system that does not contain at least one of a specific copolymer and a specific acid-modified copolymer in the column of “tensile physical properties 4) difference in elastic modulus from unadded” (Comparative Example 6-1 and Comparative Examples 6-5) and a system containing at least one of a specific copolymer and a specific acid-modified copolymer (Comparative Examples 6-2 to 6-4 and Examples 6-2 to 6-) The difference between the elastic modulus and 4) was shown.
  • Comparative Examples 6-1 to 6-5 the difference between the elastic modulus of the sample piece of Comparative Example 1 and the elastic modulus of the other sample pieces is shown, and Comparative Example 6-5 and Examples 6-1 to 6- 4 shows the difference between the elastic modulus of the sample piece of Comparative Example 6-1 and the elastic modulus of the other sample pieces.
  • the rupture property was evaluated based on the following evaluation criteria by visually observing the rupture state of the cross section of the sample piece.
  • evaluation criteria A: The sample piece was broken by ductile fracture.
  • Fluidity evaluation [MFR (g / 10 min, 230 ° C.)]> About each pellet of an Example and a comparative example, the load of 21.18N, 49.03N, or 98.07N was applied based on ASTM A1238 (B method) using the semi-melt indexer 2A type made by Toyo Seiki Seisakusho Co., Ltd. The fluidity (MFR) was measured. The measurement was started with a small load (21.18N), and when the MFR could not be measured under these conditions, the measurement was performed with a larger load. Table 6-1 shows “ ⁇ ” for those in which the measurement is not started even after 3 minutes have elapsed.
  • Comparative Example 6-5 to which at least one of the specific copolymer and the specific acid-modified copolymer was not added was used. Compared to the above, the tensile elastic modulus is reduced by 117 MPa or more and greatly softened. Therefore, when a tire is formed using the same thermoplastic resin material as the sample pieces of Examples 6-1 to 6-4, It is understood that the tire can be excellent in impact properties. At the same time, it was found that the sample pieces prepared in each example can perform MFR measurement with a load of 21.18 N, and are excellent in injection moldability.
  • Examples 7-1 to 7-6, Comparative Examples 7-1 to 7-6 Hereinafter, the seventh aspect of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to this.
  • tires of implementation and comparative examples were molded. At this time, the materials described in Table 7-1 were used as materials for forming the tire case. Moreover, about each Example and the comparative example, the physical property evaluation of the material and evaluation of the tire performance were performed according to the following.
  • each material was mixed with the composition (mass basis) shown in Table 7-1.
  • the resin material was kneaded with a Toyo Seiki Seisakusho "LABOPLASTOMILL 50MR" twin screw extruder to obtain pellets.
  • a polyamide-based thermoplastic elastomer or a polyester-based thermoplastic elastomer pellet was prepared.
  • the first and second thermoplastic elastomers were kneaded at a mixing temperature of 230 ° C. and a kneading time of 3 minutes.
  • PE1 Polyester elastomer (first thermoplastic elastomer) (Polybutylene terephthalate / polyether block copolymer, “Hytrel 7247” manufactured by Toray DuPont, hard segment content: 60 mass%)
  • PA1 Polyamide-based elastomer (first thermoplastic elastomer) (Polyamide 12 / polyether block copolymer, “UBESTA XPA9055X1” manufactured by Ube Industries, hard segment content: 50% by mass)
  • PE2 Polyester elastomer (second thermoplastic elastomer) (Polybutylene terephthalate / polyether block copolymer, “Hytrel 4047” manufactured by Toray DuPont, hard segment content: 40% by mass)
  • PA2 polyamide-based elastomer (second thermoplastic elastomer) (Polyamide 12 / polyether block copolymer, “UBESTA XPA9048X1” manufactured by U
  • the tire case materials of Examples 7-1 to 7-6 kept the loss factor (Tan ⁇ ) low compared to Comparative Examples 7-1 to 7-6. It can be seen that the tensile modulus is improved.
  • the tire case materials of Examples 7-1 to 7-6 have a small difference between the tensile elastic modulus at 30 ° C. and the tensile elastic modulus at 80 ° C., which is heat resistant compared to Comparative Examples 7-1 to 7-6. It can be seen that the performance is improved.
  • the tires of the examples had low rolling resistance and excellent heat resistance.
  • thermoplastic resin material contains at least a polyester-based thermoplastic elastomer.
  • the reinforcing cord layer includes a resin material.
  • the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is 50 to 100% by mass.
  • the polyester-based thermoplastic elastomer is a copolymer having a hard segment containing an aromatic polyester and a soft segment containing at least one selected from an aliphatic polyether and an aliphatic polyester ⁇
  • ⁇ 2-1> At least a tire having an annular tire skeleton formed of a thermoplastic resin material, the reinforcing cord wound around the outer periphery of the tire skeleton in the circumferential direction to form a reinforcing cord layer
  • the thermoplastic resin material includes at least a polyester-based thermoplastic elastomer and an elastomer other than the polyester-based thermoplastic elastomer.
  • the reinforcing cord layer includes a resin material.
  • thermoplastic resin a mass ratio (a: b) between the polyester-based thermoplastic elastomer (a) and the other elastomer (b) is 95: 5 to 50:50 ⁇ 2 -1> or ⁇ 2-2>.
  • thermoplastic resin material includes at least a polyester-based thermoplastic elastomer and rubber.
  • thermoplastic resin material further includes a thermoplastic elastomer having good affinity with the rubber.
  • reinforcing cord layer includes a resin material.
  • thermoplastic resin a mass ratio (x: y) of the polyester-based thermoplastic elastomer (x) to the rubber (y) is 95: 5 to 50:50 ⁇ 3-1
  • ⁇ 3-5> In the thermoplastic resin material, the mass ratio of the polyester-based thermoplastic elastomer (x) to the thermoplastic elastomer (z) having good affinity with the rubber (y) and the rubber (x : Y + z) is a tire according to ⁇ 3-2> or ⁇ 3-3>, wherein 95: 5 to 50:50.
  • ⁇ 3-6> Any of ⁇ 3-1> to ⁇ 3-4>, wherein the total content of the polyester-based thermoplastic elastomer and the rubber in the thermoplastic resin material is 50% by mass to 100% by mass The tire according to claim 1.
  • ⁇ 3-7> The total content of the polyester thermoplastic elastomer in the thermoplastic resin material, the rubber, and the thermoplastic elastomer having good affinity for the rubber is 50% by mass to 100% by mass.
  • thermoplastic resin material includes a hard segment containing a polyester resin and a soft thermoplastic segment (A And a polyester resin (B) other than the thermoplastic elastomer.
  • thermoplastic resin material includes a hard segment containing a polyester resin and a soft thermoplastic segment (A And a polyester resin (B) other than the thermoplastic elastomer.
  • polyester resin (B) has an elastic modulus of 700 MPa or more.
  • the mass ratio (A: B) of the polyester-based thermoplastic elastomer (A) to the polyester resin (B) other than the thermoplastic elastomer is 95: 5 to 50:50 ⁇ 4- 1> or a tire according to ⁇ 4-2>.
  • ⁇ 4-4> Any one of ⁇ 4-1> to ⁇ 4-3>, wherein the content of the polyester-based thermoplastic elastomer (A) in the thermoplastic resin material is 50% by mass to 95% by mass.
  • the tire according to item. ⁇ 4-5> any one of ⁇ 4-1> to ⁇ 4-4> further including a reinforcing cord member that is wound in a circumferential direction on the outer peripheral portion of the tire frame body to form a reinforcing cord layer. The described tire.
  • thermoplastic resin material is a polyester-based thermoplastic elastomer and a thermoplastic elastomer other than the polyester-based thermoplastic elastomer
  • a tire comprising an acid-modified elastomer obtained by acid-modifying or a mixture of a thermoplastic elastomer other than the polyester-based thermoplastic elastomer and an acid-modified elastomer obtained by acid-modifying the elastomer.
  • ⁇ 5-4> The content according to any one of ⁇ 5-1> to ⁇ 5-3>, wherein the content of the polyester-based thermoplastic elastomer in the thermoplastic resin material is 50% by mass to 95% by mass.
  • Tires. ⁇ 5-5> Further, any one of ⁇ 5-1> to ⁇ 5-4>, further including a reinforcing cord member that is wound around an outer peripheral portion of the tire frame body in a circumferential direction to form a reinforcing cord layer. The described tire.
  • At least a polyester-based thermoplastic elastomer and an acid-modified elastomer obtained by acid-modifying a thermoplastic elastomer other than the polyester-based thermoplastic elastomer, or a thermoplastic elastomer other than the polyester-based thermoplastic elastomer and the elastomer A tire frame piece forming step of forming a tire frame piece constituting a part of the annular tire frame body with a thermoplastic resin material comprising an acid-modified elastomer mixture obtained by acid-modifying the tire frame piece, and joining of the tire frame pieces
  • a tire manufacturing method including a tire skeleton piece joining step in which heat is applied to a portion to fuse two or more of the tire skeleton pieces to be paired to form the tire skeleton body.
  • thermoplastic resin material includes a polyester-based thermoplastic elastomer and an olefin- (meth) acrylic acid copolymer.
  • a copolymer containing at least one of an acid-modified copolymer obtained by acid-modifying a olefin- (meth) acrylate copolymer is included in the sixth aspect of the present invention.
  • a mass ratio (x: y + z) of the polyester-based thermoplastic elastomer (x) to the olefin- (meth) acrylic acid copolymer (y) and the acid-modified copolymer (z) is The tire according to ⁇ 6-1>, which is 95: 5 to 50:50.
  • ⁇ 6-3> The total content of the polyester-based thermoplastic elastomer, the olefin- (meth) acrylic acid copolymer, and the acid-modified copolymer in the thermoplastic resin material is 50% by mass to The tire according to ⁇ 6-1> or ⁇ 6-2>, which is 100% by mass.
  • a tire manufacturing method including a tire frame piece joining step of fusing two or more tire frame pieces to form the tire frame body.
  • the following invention is included in the seventh aspect of the present invention.
  • ⁇ 7-1> A tire formed of at least a resin material and having an annular tire skeleton, wherein the resin material includes a first thermoplastic elastomer having a tensile elastic modulus in a range of 150 MPa to 700 MP, and a loss factor. And a second thermoplastic elastomer having (Tan ⁇ ) smaller than the first thermoplastic elastomer.
  • ⁇ 7-2> The tire according to ⁇ 7-1>, wherein the first thermoplastic elastomer has a tensile modulus in a range of 200 MPa to 500 MPa.
  • ⁇ 7-3> The tire according to ⁇ 7-1> or ⁇ 7-2>, wherein the second thermoplastic elastomer has a loss factor (Tan ⁇ ) of 0.01 to 0.08.
  • Tan ⁇ loss factor
  • ⁇ 7-4> The mass ratio (x / y) between the first thermoplastic elastomer (x) and the second thermoplastic elastomer (y) is 10/90 to 90/10.
  • ⁇ 7- The tire according to any one of 1> to ⁇ 7-3>.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)

Abstract

【課題】少なくとも熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が少なくともポリエステル系熱可塑性エラストマーを含むタイヤ。

Description

タイヤ及びその製造方法
 本発明は、リムに装着されるタイヤにかかり、特に、少なくとも一部が熱可塑性材料で形成されたタイヤ及びその製造方法に関する。
 従来、乗用車等の車両には、ゴム、有機繊維材料、スチール部材などから構成された空気入りタイヤが用いられている。
 近年では、軽量化や、成形の容易さ、リサイクルのしやすさから、樹脂材料、特に熱可塑性樹脂や熱可塑性エラストマーなどをタイヤ材料として用いることが検討されている。
 例えば、特開2003-104008号公報及び特開平03-143701号公報には、熱可塑性の高分子材料を用いて成形された空気入りタイヤが開示されている。
 また、特開平03-143701号公報では、タイヤ本体(タイヤ骨格体)のトレッド底部のタイヤ半径方向外面に、補強コードをタイヤ周方向に連続して螺旋状に巻回した補強層を設け、タイヤ本体の耐カット性や耐パンク性を改善している。
 熱可塑性の高分子材料を用いたタイヤは、ゴム製の従来タイヤと比べて、製造が容易で且つ低コストである。しかし、タイヤ骨格体がカーカスプライなどの補強部材を内装しない均一な熱可塑性高分子材料で形成されている場合には、ゴム製の従来タイヤと比べて耐応力、耐内圧等の観点で改良の余地がある(例えば、特開2003-104008号公報参照)。
 特開平03-143701号公報では、タイヤ本体(タイヤ骨格体)のトレッド底部のタイヤ半径方向外面に、補強コードをタイヤ周方向に連続して螺旋状に巻回した補強層を設け、タイヤ本体の耐カット性や耐パンク性を改善している。しかしながら、熱可塑性高分子材料で形成されたタイヤ骨格体に補強コードを直接螺旋状に巻回して補強層を形成し、補強層の径方向外側にトレッドを形成した場合、補強コードに接着剤を用いていても接着性が十分とはいえず、補強コードの周囲に空気が残る場合がある。このように、補強コードの周囲に空気が残ると、走行時に補強コードが移動して部材間に剥離を生じることもあり、タイヤの耐久性の観点から改善の余地がある。また、補強コード周辺がクッションゴムで覆われているため、タイヤ本体と補強コード周辺部とで材料の硬さの違いから、補強コード等の剥離が生じる場合がある。
 また、熱可塑性の高分子材料を用いてタイヤを製造する場合、製造効率を高め低コストを実現しつつ従来のゴム製タイヤと比して遜色のない性能を実現することが求められる。例えば、タイヤ骨格体の素材として熱可塑性樹脂材料を用いる場合には、製造効率などの観点から、特開平03-143701号公報に記載されているように射出成形によって金型に高分子材料を射出してタイヤ骨格体を形成することが考えられる。このため、前記熱可塑性の高分子材料としては、タイヤとした際の耐久性と成形時の取り扱い性(製造性)等とに優れた材料を選択することが望まれている。
 さらに、熱可塑性の高分子材料を用いてタイヤを製造する場合においては、例えば、タイヤには衝撃に対して強い耐性を有すること、熱可塑性の高分子材料を用いて成形されたタイヤにおいても従来のゴムを用いたタイヤと同等以上の耐衝撃性を有することも求められている。
 さらに、タイヤの製造に用いる熱可塑性樹脂材料には、耐熱性を有すること、温度変化による物性変化が小さいこと等も望まれる。
 また、熱可塑性の高分子材料を用いてタイヤを製造する場合、該タイヤに対する要求特性としては、例えば、一定範囲内の弾性率を有していること、及び力学的損失係数(転がり係数:Tanδ)が低いことについても、耐熱性に優れることと共に重要な特性の一つとなる。しかし、高分子材料において低Tanδ化と高弾性率化とは通常二者背反の関係にある。このため、これら特性を高いレベルで両立できるタイヤの開発が望まれている。
 また、熱可塑性の高分子材料を用いたタイヤにおけるタイヤ骨格体が、カーカスプライなどの補強部材を内装しない均一な熱可塑性高分子材料で形成されている場合には、ゴム製の従来タイヤと比べて耐応力、耐内圧等の観点で改良の余地がある。
 本発明は、上記した種々の事情を踏まえて成されたものである。
 本発明の第1の観点は、熱可塑性高分子材料を用いて形成され、耐久性及び製造性に優れたタイヤを提供することを課題とする。
 本発明の第2の観点は、熱可塑性樹脂材料で形成され、且つ、耐衝撃性に優れたタイヤを提供することを課題とする。
 本発明の第3の観点は、熱可塑性樹脂材料を用いて形成され、補強コード部材周辺部への空気の残存が抑制され、耐衝撃性に優れたタイヤを提供することを課題とする。
 本発明の第4の観点は、熱可塑性樹脂材料を用いて形成され、弾性率が大きくなっても転がり抵抗の増大が抑制され、且つ耐久性に優れたタイヤを提供することを課題とする。
 本発明の第5の観点は、前記第1の観点とは異なる観点から、熱可塑性高分子材料を用いて形成され、耐久性及び製造性に優れたタイヤを提供すること、及びこのタイヤの製造方法を提供することを課題とする。
 本発明の第6の観点は、前記第2の観点とは異なる観点から、熱可塑性樹脂材料を用いて形成され、且つ、耐衝撃性に優れたタイヤを提供すること、及び、生産性に優れたタイヤの製造方法を提供することを課題とする。
 本発明の第7の観点は、熱可塑性高分子材料を用いて形成され、高弾性で且つ損失係数が低く、更に、耐熱性に優れたタイヤを提供することを課題とする。
 前記第1の観点の課題を解決するための手段は、以下の通りである
(1-1)本発明の第1の観点に係るタイヤは、少なくとも熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が少なくともポリエステル系熱可塑性エラストマーを含む。
 前記補強コード層は、前記タイヤ骨格体の外周部に周方向に巻回されていてもよいし、外周部に交差して巻回されていてもよい。
 本発明の第1の観点に係るタイヤは、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
 タイヤ骨格体を形成する熱可塑性樹脂材料がポリエステル系熱可塑性エラストマーを含むことは、以下に示すような種々の利点を有する。
 ポリエステル系熱可塑性エラストマーは、耐熱性、耐衝撃性、耐油性を有すると共に、引張弾性率、引張強度及び破断ひずみに優れるという利点がある。そのため、タイヤ骨格体として形成した場合にタイヤの耐摩耗性、耐久性、耐衝撃性、耐油性、耐熱性を向上させることができる。
 ポリエステル系熱可塑性エラストマーは、他の熱可塑性エラストマーに比して、その弾性率の温度変化による変動が小さいという利点がある。そのため、ポリエステル系熱可塑性エラストマーを含んで構成されたタイヤは、使用環境の温度変動による変形や硬さの変化が小さく、衝撃性に強いものとなり、該タイヤを備えた車の乗り心地への影響が少ないものとなる。
 ポリエステル系熱可塑性エラストマーは、荷重たわみ温度が高いことから、タイヤの製造において加硫を実施する場合には高温にて加硫することができ、タイヤ骨格体とクッションゴム等とを強固に接着させることができる。
 ポリエステル系熱可塑性エラストマーには、耐屈曲疲労性が高いという利点がある。そのため、ポリエステル系熱可塑性エラストマーを含んで構成されたタイヤは、繰り返し加えられる屈曲に対し、疲労亀裂の発生や成長が抑制されて、高耐久性を示す。特に、タイヤ骨格体の外周部に補強コード部材により補強コード層が形成された構造を有する本発明のタイヤにおいては、補強コード部材を起点に屈曲が生じるため、タイヤ骨格体がポリエステル系熱可塑性エラストマーを含む上記の利点が顕著に発現する。
 ポリエステル系熱可塑性エラストマーは、他の樹脂(例えば、ポリエステル樹脂、ポリカーボネート樹脂、ABS樹脂、ポリブチレンテレフタレート樹脂)との熱融着性に優れる。そのため、補強コード層が、後述するように樹脂材料を含む場合には、樹脂材料の選択の幅が広くなり、補強コード層との接着性に優れたタイヤ骨格体を備えたタイヤを実現することができる。
 更に、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料をタイヤ骨格体に用いると、従来のゴム製タイヤに比してタイヤの構造を簡素化でき、結果タイヤの軽量化を実現することが可能となる。
 本発明の第1の観点に係るタイヤの一つの態様は、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード層が形成されている。タイヤ骨格体の外周部に補強コード層が形成されていると、タイヤの耐パンク性、耐カット性、及びタイヤ(タイヤ骨格体)の周方向剛性が向上する。なお、周方向剛性が向上することで、熱可塑性材料で形成されたタイヤ骨格体のクリープ(一定の応力下でタイヤ骨格体の塑性変形が時間とともに増加する現象)が抑制される。
 熱可塑性樹脂材料に含まれるポリエステル系熱可塑性エラストマーは、補強コード部材に対する密着性がある。このた め、例えば、補強コード部材の巻回工程において補強コード部材の周囲に空気が残る現象(エア入り)を抑制することができる。補強コードへの密着性があり、さらに補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード部材が動くのを効果的に抑制することができる。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)の剥離などが生じるのが抑制されタイヤの耐久性が向上する。
(1-2) 本発明の第1の観点に係るタイヤは、前記補強コード層が樹脂材料を含むように構成することができる。このように、補強コード層に樹脂材料が含まれていると、補強コード部材をクッションゴムで固定する場合と比してタイヤと補強コード層との硬さの差を小さくできるため、更に補強コード部材をタイヤ骨格体に密着・固定することができる。これにより、タイヤを製造時の補強コード部材の巻回工程において、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
 更に、補強コード部材が特にスチールコードの場合、タイヤ処分時に補強コード部材をクッションゴムから分離しようとすると、加硫ゴムは加熱だけでは補強コード部材と分離させるのが難しいのに対し、樹脂材料は加熱のみで補強コード部材と分離することが可能である。このため、タイヤのリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 本発明の第1の観点に係るタイヤにおいて、「樹脂材料」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。
 本発明の第1の観点に係るタイヤにおいて、補強コード層に樹脂材料を含めた場合、補強コードの引抜き性(引き抜かれにくさ)を高める観点から、上記補強コード部材はその表面が20%以上樹脂材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。
 また、前記補強コード層中の樹脂材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
 本発明の第1の観点に係るタイヤにおいて、補強コード層に樹脂材料を含むように構成するには、例えば、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成して形成することができる。この場合、補強コード部材が埋設しているタイヤ骨格体外周部のポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料が補強コード層を構成する樹脂材料に該当し、タイヤ骨格体を形成するポリエステル系熱可塑性エラストマー(熱可塑性樹脂材料)と補強コード部材とで前記補強コード層が構成される。また、補強コード層に樹脂材料が含まれるように構成するには、前記タイヤ骨格体を形成する樹脂材料と同種又は別の樹脂材料で補強コードを被覆した被覆コード部材を、前記タイヤ骨格体の周方向に巻回してもよい。樹脂材料の同種とは、エステル系同士、スチレン系同士などの形態を指す。
(1-3)第1の観点に係る本発明のタイヤは、前記ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料の融点が100℃~260℃であるように構成することができる。このように、前記ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料の融点を100℃~260℃とすることで、タイヤ性能としての耐久性と、製造コスト削減の観点からの製造性とを両立させることができる。
(1-4)第1の観点に係る本発明のタイヤは、前記熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの含有率が50~100質量%であるように構成することができる。熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの含有率が50~100質量%であると、ポリエステル系熱可塑性エラストマーが有する性能を十分に発揮でき、タイヤ性能としての耐久性と、取り扱い性や製造コスト削減の観点からの製造性とを両立させることができる。
 第1の観点に係る本発明のタイヤは、少なくともポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。
 第1の観点に係る本発明のタイヤのにおいては、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料によって環状のタイヤ骨格体のタイヤ骨格片を形成する。ポリエステル系熱可塑性エラストマーを用いたタイヤ骨格片は、融着してタイヤ骨格体を形成した際、タイヤ骨格片同士の接着強度が十分であり、また、融着時の温度によって骨格体自体の性能が劣化することがないため、製造されたタイヤの耐パンク性や耐摩耗性など走行時における耐久性を向上させることができる。
 前記第2の観点の課題を解決するための手段は、以下の通りである
(2-1)本発明のタイヤは、少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が、少なくともポリエステル系熱可塑性エラストマーと該ポリエステル系熱可塑性エラストマー以外の他のエラストマーとを含む。
 前記補強コード層は、前記タイヤ骨格体の外周部に周方向に巻回されていてもよいし、外周部に交差して巻回されていてもよい。
 第2の観点に係る本発明のタイヤは、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
 第2の観点に係る本発明のタイヤにおいて、熱可塑性樹脂材料に含まれるポリエステル系熱可塑性エラストマーは、耐熱性、耐衝撃性、耐油性を有すると共に、引張弾性率、引張強度及び破断ひずみに優れるという利点がある。
 また、ポリエステル系熱可塑性エラストマーは、他の熱可塑性エラストマーに比して、その弾性率の温度変化による変動が小さいという利点がある。そのため、ポリエステル系熱可塑性エラストマーを含んで構成されたタイヤは、使用環境の温度変動による変形や硬さの変化が小さく、衝撃性に強いものとなり、該タイヤを備えた車の乗り心地への影響が少ないものとなる。
 また、ポリエステル系熱可塑性エラストマーは、荷重たわみ温度が高いことから、タイヤの製造において加硫を実施する場合には高温にて加硫することができ、タイヤ骨格体とクッションゴム等とを強固に接着させることができる。
 さらに、ポリエステル系熱可塑性エラストマーには、耐屈曲疲労性が高いという利点がある。そのため、ポリエステル系熱可塑性エラストマーを含んで構成された、第2の観点に係る本発明のタイヤは、繰り返し加えられる屈曲に対し、疲労亀裂の発生や成長が抑制されて、高耐久性を示す。特に、タイヤ骨格体の外周部に補強コード部材により補強コード層が形成された構造を有する本発明のタイヤにおいては、補強コード部材を起点に屈曲が生じるため、タイヤ骨格体がポリエステル系熱可塑性エラストマーを含む上記の利点が顕著に発現する。
 その一方で、タイヤの耐衝撃性の更なる向上の観点から、ポリエステル系熱可塑性エラストマーを単独で用いて、その弾性率を調整しようとした場合には、ハードセグメントとソフトセグメントとの比率を制御する必要があり、当該比率の調整は煩雑な工程を経ることが必要となる。これに対し、第2の観点に係る本発明のタイヤにおいては、ポリエステル系熱可塑性エラストマーと他のエラストマーとを併用すると、両者の含有比を調整することで、ポリエステル系熱可塑性エラストマーを単独で用いた場合に比して、熱可塑性樹脂組成物の弾性率を容易に調整することができる。このため、ポリエステル系熱可塑性エラストマーに由来する上記特性は有しつつも、熱可塑性樹脂材料の弾性率を容易に所望の範囲に設定することができるためタイヤの耐衝撃性を容易に向上させることができ、更に製造コストに優れる。
 更に、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料をタイヤ骨格体に用いると、従来のゴム製タイヤに比してタイヤの構造を簡素化でき、結果タイヤの軽量化を実現することができ、該タイヤを備えた自動車の燃費をよくすることができる。
 第2の観点に係る本発明のタイヤの一つの態様は、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード層が形成されている。タイヤ骨格体の外周部に補強コード層が形成されていると、タイヤの耐パンク性、耐カット性、及びタイヤ(タイヤ骨格体)の周方向剛性が向上する。なお、周方向剛性が向上することで、熱可塑性材料で形成されたタイヤ骨格体のクリープ(一定の応力下でタイヤ骨格体の塑性変形が時間とともに増加する現象)が抑制される。
 また、第2の観点に係る本発明における熱可塑性樹脂材料は、補強コード部材に対する密着性が高く、さらに溶着強度等の固定性能に優れている。このため、該熱可塑性樹脂材料を用いると、例えば、補強コード部材の巻回工程において補強コード部材の周囲に空気が残る現象(エア入り)を抑制することができる。補強コードへの密着性及び溶着性が高く、さらに補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード部材が動くのを効果的に抑制することができる。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)の剥離などが生じるのが抑制されタイヤの耐久性が向上する。
(2-2)第2の観点に係る本発明のタイヤは、前記補強コード層が樹脂材料を含むように構成することができる。このように、補強コード層に樹脂材料が含まれていると、補強コード部材をクッションゴムで固定する場合と比してタイヤと補強コード層との硬さの差を小さくできるため、更に補強コード部材をタイヤ骨格体に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
 更に、第2の観点に係る本発明のタイヤにおいて、補強コードが特にスチールコードである場合、タイヤ処分時に補強コードをクッションゴムから分離しようとすると、加硫ゴムは加熱だけでは補強コードと分離させるのが難しいのに対し、樹脂材料は加熱のみで補強コードと分離することが可能である。このため、タイヤのリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 第2の観点に係る本発明のタイヤにおいて、「樹脂材料」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。
 第2の観点に係る本発明のタイヤにおいて、補強コード層に樹脂材料を含めた場合、補強コードの引き抜き性(引き抜かれにくさ)を高める観点から、前記補強コード部材はその表面が20%以上樹脂材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。また、補強コード層中の樹脂材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引き抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
 第2の観点に係る本発明のタイヤにおいて、補強コード層を樹脂材料を含むように構成するには、例えば、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成して形成することができる。この場合、補強コード部材が埋設しているタイヤ骨格体外周部のポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料が補強コード層を構成する樹脂材料に該当し、タイヤ骨格体を形成する熱可塑性樹脂材料と補強コード部材とで前記補強コード層が構成される。また、補強コード層に樹脂材料が含まれるように構成するには、前記タイヤ骨格体を形成する樹脂材料と同種又は別の樹脂材料で補強コードを被覆した被覆コード部材を、前記タイヤ骨格体の周方向に巻回してもよい。樹脂材料の同種とは、エステル系同士、スチレン系同士などの形態を指す。
(2-3)第2の観点に係る本発明のタイヤは、前記熱可塑性樹脂において、前記ポリエステル系熱可塑性エラストマー(a)と前記他のエラストマー(b)との質量比(a:b)が、95:5~50:50あるように構成することができる。このように、前記ポリエステル系熱可塑性エラストマー(a)と他のエラストマー(b)との質量比(a:b)を95:5~50:50とすることで、補強コード部材とタイヤ骨格体との溶着性とタイヤの耐衝撃性との両立を容易に図ることができる。
(2-4)第2の観点に係る本発明のタイヤは、前記他のエラストマーが、ポリウレタン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー及びポリスチレン系熱可塑性エラストマーから選ばれるいずれかであるように構成することができる。熱可塑性樹脂材料中の前記他のエラストマーが、前記他のエラストマーが、ポリウレタン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、及びポリスチレン系熱可塑性エラストマーから選ばれるいずれかであると、ポリエステル系熱可塑性エラストマーが有する性能を十分に発揮できると共に、熱可塑性樹脂材料の弾性率の調整における選択範囲をより拡大できることから、耐衝撃性に更に優れたタイヤとすることができる。
 第2の観点に係る本発明のタイヤは、少なくともポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。
 前記製造方法においては、ポリエステル系熱可塑性エラストマー及び他のエラストマーを含む熱可塑性樹脂材料によって環状のタイヤ骨格体のタイヤ骨格片を形成する。第2の観点に係る本発明のタイヤにおける熱可塑性樹脂材料を用いたタイヤ骨格片は、融着してタイヤ骨格体を形成した際、タイヤ骨格片同士の接着強度が十分であり、また、融着時の温度によって骨格体自体の性能が劣化することがないため、製造されたタイヤの耐パンク性や耐摩耗性など走行時における耐久性を向上させることができる。
 前記第3の観点の課題を解決するための手段は、以下の通りである
(3-1)第3の観点に係る本発明のタイヤは、少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料は、少なくともポリエステル系熱可塑性エラストマーとゴムとを含むタイヤである。
 前記補強コード層は、前記タイヤ骨格体の外周部に周方向に巻回されていてもよいし、外周部に交差して巻回されていてもよい。
 第3の観点に係る本発明のタイヤは、ポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
 第3の観点に本発明に係るタイヤ骨格体を形成する熱可塑性樹脂材料は、柔軟性を有し、耐衝撃性に優れる。また、該熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマーを含むため、使用環境の温度変動による変形や硬さの変化が小さく、引張弾性率、及び引張強度等の引張特性にも優れる。このため、タイヤ骨格体として形成した場合にタイヤの耐久性、製造性に優れる。さらに、構造を簡素化できる為、軽量化を図ることができる利点がある。
 一方、ポリエステル系熱可塑性エラストマーを単独で用いた場合には、その弾性率を調整しようとした場合に、ハードセグメントとソフトセグメントとの比率を制御する必要がある。これに対し、ポリエステル系熱可塑性エラストマーとゴムとを併用すると、両者の含有比を調整することで、ポリエステル系熱可塑性エラストマーを単独で用いた場合に比して、熱可塑性樹脂材料の弾性率を容易に調整することができる。
 ところで、タイヤの転がり抵抗は、50℃付近の10Hz~100Hz前後の振動で生じる為、タイヤについて粘弾性の測定を行うとすると、30℃~50℃のtanδで転がり抵抗の大小を表すことができる。30℃~50℃のtanδが小さい場合、タイヤの転がり抵抗も小さくなる傾向にある。
 ここで、ポリエステル系熱可塑性エラストマー単独では、動的粘弾性測定をしたときに、ポリエステル系熱可塑性エラストマーに由来するtanδのピークが見られ、ポリエステル系熱可塑性エラストマーの弾性率が高くなるほど、高温側にピーク値がシフトする傾向がある。例えば、東レ・デュポン社製、ハイトレル 6347について動的粘弾性測定をすると、15℃付近にピークが存在する。
 一方、ゴムについて動的粘弾性測定をすると、一般的に-10℃以下にピークが見られる。その為、ポリエステル系熱可塑性エラストマーとゴムを混合することで、その配合比率に応じ、ポリエステル系熱可塑性エラストマーに由来するピーク高さが減少し、ゴムに由来するピーク高さが上昇する。しかし、ゴムのピーク位置は-10℃以下の為、30℃~50℃のtanδへの影響少なくなり、その為に総じてtanδが低くなる。
 第3の観点に係る本発明のタイヤの一つの態様は、ポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード層が形成されている。タイヤ骨格体の外周部に補強コード層が形成されていると、タイヤの耐パンク性、耐カット性、及びタイヤ(タイヤ骨格体)の周方向剛性が向上する。なお、周方向剛性が向上することで、熱可塑性材料で形成されたタイヤ骨格体のクリープ(一定の応力下でタイヤ骨格体の塑性変形が時間とともに増加する現象)が抑制される。
 また、第3の観点に係る本発明のタイヤにおいて、タイヤ骨格体を形成する熱可塑性樹脂材料に含まれるポリエステル系熱可塑性エラストマーは、補強コード部材に対する密着性があり、さらに溶着強度等の固定性能に優れている。このため、ポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料を用いると、例えば、補強コード部材の巻回工程において補強コード部材の周囲に空気が残る現象(エア入り)を抑制することができる。補強コード部材への密着性及び溶着性が高く、さらに補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード部材が動くのを効果的に抑制することができる。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)の剥離などが生じるのが抑制されタイヤの耐久性が向上する。
(3-2)第3の観点に係る本発明のタイヤにおいて、タイヤ骨格体を形成する熱可塑性樹脂材料は、さらに、前記ゴムとの親和性がよい熱可塑性エラストマーを含んでいてもよい。熱可塑性樹脂材料が、ゴムとの親和性が良い熱可塑性エラストマーとして、例えば、酸変性体を含有した場合、熱可塑性樹脂材料中にゴムを微分散することができる。更にポリエステル系熱可塑性エラストマーと酸変性部位との相互作用により、引張強さを向上し、仮に破壊した場合でも延性破壊を生じ、脆性破壊や層状破壊が起こり難いと考えられる。
 なお、「ゴムとの親和性が良い」とは、熱可塑性エラストマーをゴムと共に混ぜ合わせた時に、ゴムの分子骨格と熱可塑性エラストマーの分子骨格とが類似しており、熱可塑性エラストマーの分散粒子内にゴムを取り込んだ状態、または、ゴムの分散粒子内に熱可塑性エラストマーを取り込んだ状態を言う。
 但し、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとのすべてが上記状態である必要はなく、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとが部分的に上記状態であってもよい。
(3-3)第3の観点に係る本発明のタイヤは、前記補強コード層が樹脂材料を含むように構成することができる。このように、補強コード層に樹脂材料が含まれていると、補強コード部材をクッションゴムで固定する場合と比してタイヤと補強コード層との硬さの差を小さくできるため、更に補強コード部材をタイヤ骨格体に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。ここで、「樹脂材料」とは、少なくとも樹脂を含む材料であり、樹脂のみならず、ゴムや無機化合物を含んでいてもよい。なお、「樹脂」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂を含む概念であり、加硫ゴム等のゴムや無機化合物を含まない。
 前記補強コード層に樹脂材料を含めた場合、補強コードの引き抜き性(引き抜かれにくさ)を高める観点から、前記補強コードはその表面が20%以上樹脂材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。また、前記補強コード層中の樹脂材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引き抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
 前記補強コード層が樹脂材料を含むように構成するには、例えば、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成して形成することができる。この場合、補強コード部材が埋設しているタイヤ骨格体外周部のポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料が補強コード層を構成する樹脂材料に該当し、タイヤ骨格体を形成する熱可塑性樹脂材料と補強コード部材とで前記補強コード層が構成される。また、補強コード層に樹脂材料が含まれるように構成するには、前記タイヤ骨格体を形成する樹脂材料と同種又は別の樹脂材料で補強コードを被覆した被覆コード部材を、前記タイヤ骨格体の周方向に巻回してもよい。樹脂材料の同種とは、エステル系同士、スチレン系同士などの形態を指す。
(3-4)第3の観点に係る本発明のタイヤは、熱可塑性樹脂において、ポリエステル系熱可塑性エラストマー(x)とゴム(y)との質量比(x:y)が、95:5~50:50であるように構成することができる。このように、前記ポリエステル系熱可塑性エラストマー(x)とゴム(y)との質量比(x:y)を95:5~50:50とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
 ただし、熱可塑性樹脂材料がポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを含む場合は、ゴムとポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーとの合計量(y’)と、ポリエステル系熱可塑性エラストマー(x)との質量比(x:y’)が、95:5~50:50であるように構成することができる。
(3-5)第3の観点に係る本発明のタイヤは、熱可塑性樹脂材料において、ポリエステル系熱可塑性エラストマー(x)と、ゴム(y)及びゴムとの親和性がよい熱可塑性エラストマー(z)と、の質量比(x:y+z)が、95:5~50:50であるように構成することができる。このように、ポリエステル系熱可塑性エラストマー(x)と、ゴム(y)及びポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー(z)の合計量(y+z)と、の質量比(x:y+z)を95:5~50:50とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
(3-6)第3の観点に係る本発明のタイヤは、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマー及びゴムの合計含有量が、50~100質量%であるように構成することができる。上記構成とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
 ただし、熱可塑性樹脂材料がポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを含む場合は、ポリエステル系熱可塑性エラストマーと、ゴムと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーとの合計量が、50質量%~100質量%であるように構成することができる。
(3-7)第3の観点に係る本発明のタイヤは、前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと、前記ゴムと、前記ゴムとの親和性がよい熱可塑性エラストマーと、の合計含有量が、50質量%~100質量%であるように構成することができる。上記構成とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
 上記構成とすることで、ポリエステル系熱可塑性エラストマー及びゴムの組み合わせにより発現し得る性能をより向上することができる。
 前記第4の観点の課題を解決するための手段は、以下の通りである
(1)第4の観点に係る本発明のタイヤは、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル樹脂を含むハードセグメント及びソフトセグメントを有するポリエステル系熱可塑性エラストマー(A)(以下、適宜、「ポリエステル系熱可塑性エラストマー(A)」と称する。)と、熱可塑性エラストマー以外のポリエステル樹脂(B)(以下、適宜、「ポリエステル樹脂(B)」と称する。)と、を含むタイヤである。
 第4の観点に係る本発明におけるポリエステル樹脂(B)は、ポリエステル系熱可塑性エラストマー(A)におけるハードセグメントが含むポリエステル樹脂と同種の樹脂であることが好ましい。ここで、「ハードセグメントが含むポリエステル樹脂と同種の樹脂」とは、ポリエステル系熱可塑性エラストマーが有するハードセグメントの主鎖を構成する骨格と共通する骨格を有するポリエステル樹脂を言う。
 ポリエステル樹脂(B)が、ポリエステル系熱可塑性エラストマー(A)が有するハードセグメントの主鎖を構成する骨格と共通する骨格を有するポリエステル樹脂であることで、ポリエステル系熱可塑性エラストマー(A)におけるハードセグメントとポリエステル樹脂(B)との親和性が高まると考えられる。この場合、熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)とを含むことで、ポリエステル樹脂(B)は、ポリエステル系熱可塑性エラストマー(A)のハードセグメントに相溶し、ポリエステル系熱可塑性エラストマー(A)のハードセグメントに偏在し、該ハードセグメントの領域が大きくなる。
 従って、ポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)とを含む熱可塑性樹脂材料は、単にポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)が含まれ、ポリエステル樹脂(B)がポリエステル系熱可塑性エラストマー(A)中に均一に分散し、それぞれの性質を有するようになるのではなく、ポリエステル系熱可塑性エラストマー(A)のハードセグメントの領域が大きくなって、熱可塑性樹脂材料の弾性率が高まる。
 ところで、タイヤの転がり抵抗は、50℃付近の10Hz~100Hz前後の振動で生じる為、タイヤについて粘弾性の測定を行うとすると、30℃~50℃のtanδで転がり抵抗の大小を表すことができる。
 ポリエステル熱可塑性エラストマー(A)のみで構成される樹脂材料を用いて形成されるタイヤは、熱可塑性エラストマーのハードセグメント領域の数を多くして、弾性率を大きくした場合に、損失正接(tanδ)が大きくなる傾向がある。具体的には、ポリエステル系熱可塑性エラストマー(A)のハードセグメントとソフトセグメントの比率を変えて、弾性率を大きくした場合、粘弾性測定におけるポリエステル系熱可塑性エラストマー(A)のtanδのピークは高温側にシフトし、30℃~50℃におけるtanδが大きくなる傾向にある。
 樹脂材料の損失正接(tanδ)が大きくなると、タイヤが転動する際の変形で発生するエネルギー損失(発熱)が大きくなり、転がり抵抗が大きくなる傾向にある。その為に、かかる樹脂材料を原料とするタイヤを用いた自動車は、燃費が大きくなり易い。
 つまり、熱可塑性エラストマーのみで構成される樹脂材料を用いて形成されるタイヤは、タイヤの耐変形性等を向上する目的で当該樹脂材料の弾性率を上げると、同時に樹脂材料のtanδも上がってしまうため、低燃費を実現しにくかった。
 これに対して、ポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)を含む熱可塑性樹脂材料を用いてタイヤ骨格体とし、タイヤを形成することで、熱可塑性樹脂材料の弾性率が高まっても、tanδは上がり難いものとなる。tanδの上昇は、ポリエステル樹脂(B)が、ポリエステル系熱可塑性エラストマー(A)におけるハードセグメントが含むポリエステル樹脂と同種の樹脂である場合に顕著に抑制される。このような効果が奏される理由は定かではないが、次の理由によると推測される。
 ポリエステル系熱可塑性エラストマー(A)のハードセグメントとソフトセグメントとの比率を変えて、弾性率を大きくした場合には、ポリエステル系熱可塑性エラストマー(A)のtanδのピークが高温側にシフトし、30~50℃のtanδを大きくする。
 一方、ポリエステル系熱可塑性エラストマー(A)のハードセグメント領域に、ポリエステル樹脂(B)が相溶することで、ハードセグメントの領域が大きくなり、tanδのピークの高温側へのシフトが抑えられる。この場合、ポリエステル樹脂(B)のtanδのピークは現れるが、熱可塑性樹脂材料全体としてのtanδは抑制される。
 以上より、本発明においては、熱可塑性樹脂材料の弾性率が高まっても、tanδが上がり難いと考えられる。
 さらに、ポリエステル系熱可塑性エラストマーは、耐熱性、耐衝撃性、耐油性を有すると共に、引張弾性率、引張強度及び破断ひずみに優れると言う利点がある。また、ポリエステル系熱可塑性エラストマーは、他の熱可塑性エラストマーに比して、その弾性率の温度変化による変動が小さいと言う利点もある。
 このため、ポリエステル系熱可塑性エラストマー(A)に、ポリエステル樹脂(B)を併用することで、ポリエステル系熱可塑性エラストマーに由来する優れた特性を発揮しつつも、さらに転がり抵抗を抑制する効果を発現することができ、耐久性が良い上に、低燃費のタイヤを得ることができる。
(4-2)第4の観点に係る本発明のタイヤは、前記ポリエステル樹脂(B)の弾性率が700MPa以上であるように構成することができる。
 このように、ポリエステル系熱可塑性エラストマー(A)が有するハードセグメントと相溶し易いポリエステル樹脂(B)の弾性率を、上記範囲とすることで、ポリエステル系熱可塑性エラストマー(A)のハードセグメントの弾性率をより高めることができるため、より一層、弾性率の高い熱可塑性樹脂材料を得ることができる。その結果、より弾性率の高いタイヤを得ることができる。
(4-3)第4の観点に係る本発明のタイヤは、前記ポリエステル系熱可塑性エラストマー(A)と、前記ポリエステル樹脂(B)との質量比(A:B)が、95:5~50:50であるように構成することができる。
 ポリエステル系熱可塑性エラストマー(A)及びポリエステル樹脂(B)の質量比が上記範囲であると、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張弾性、破断強度等の引張り特性を向上することができる。
(4-4)第4の観点に係る本発明のタイヤは、前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマー(A)の含有量が、50質量%~95質量%であるように構成することができる。
 熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマー(A)の含有量が上記範囲であると、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張弾性、破断強度等の引張り特性をより向上することができる。
(4-5)さらに、第4の観点に係る本発明のタイヤは、熱可塑性樹脂材料で形成されたタイヤ骨格体に加え、更に、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード層を形成する補強コード部材を有していてもよい。
 熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード層が形成されていると、タイヤの耐パンク性、耐カット性、及びタイヤ(タイヤ骨格体)の周方向剛性が向上する。なお、周方向剛性が向上することで、熱可塑性材料で形成されたタイヤ骨格体のクリープ(一定の応力下でタイヤ骨格体の塑性変形が時間とともに増加する現象)が抑制される。
 前記第5の観点の課題を解決するための手段は、以下の通りである
(5-1)第5の観点に係る本発明のタイヤは、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマーと、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー、又は前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び該エラストマーを酸変性してなる酸変性エラストマーの混合物と、を含むタイヤである。
 すなわち、第5の観点に係る本発明のタイヤは、特定の熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有しており、当該特定の熱可塑性樹脂材料は、1)ポリエステル系熱可塑性エラストマーと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマーとの組合せ、又は、2)ポリエステル系熱可塑性エラストマーと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマーとの組合せ、が少なくとも含まれている。
 第5の観点に係る本発明おいて、熱可塑性樹脂材料に含まれるポリエステル系熱可塑性エラストマーは、耐熱性、耐衝撃性、耐油性を有すると共に、引張弾性率、引張強度及び破断ひずみに優れるという利点がある。さらに、熱可塑性樹脂材料が酸変性エラストマーを含有することで、ポリエステル系熱可塑性エラストマーに由来する上記特性は有しつつも、弾性が強くなりすぎず、柔軟性を有するものとなり、仮に樹脂材料が破断した場合にも、樹脂材料が引き裂け、決裂して破断しにくく、延伸した状態となり易い。
 また、ポリエステル系熱可塑性エラストマーは、他の熱可塑性エラストマーに比して、その弾性率の温度変化による変動が小さいという利点があるため、タイヤの使用時における温度条件の選択範囲を広くできる。さらに、酸変性エラストマーが併用されても、タイヤ骨格体の形成時には熱可塑性樹脂材料の流動性が確保されて、製造性に対する影響が少ない。
 このため、第5の観点に係る本発明のタイヤは優れた製造性を有しながらも、使用環境の温度変動による変形や硬さの変化が小さく衝撃性に強く、該タイヤを備えた車の乗り心地への影響が少ないものとなるとともに、タイヤに傷が付いた場合にもパンクしにくく、タイヤの破裂を回避することができる。
(5-2)第5の観点に係る本発明のタイヤは、前記熱可塑性樹脂材料の酸価が、0.1mg-CHONa/g以上10mg-CHONa/g以下であるように構成することができる。
 このように、熱可塑性樹脂材料の酸価を上記範囲とすることで、特に、熱可塑性樹脂材料の溶融粘度の増大が抑えられ、流動性に優れるため、射出成形性に優れる。そのため、タイヤの生産効率がより向上する。従って、タイヤ性能としての引張り特性と、射出成形性の観点からの製造性とを両立させることができる。
 熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマーで構成されるマトリックス相(以下「海相」とも称する。)と、酸変性エラストマー、又は、酸変性エラストマー及び他の熱可塑性エラストマー(未変性)で構成される分散相(以下「島相」とも称する。)と、を有する海島構造を有する。当該海島構造において、酸価が高いほど島相が小さく、酸価が低いほど島相が大きくなる傾向にある。酸変性エラストマーの酸価が上記範囲であることで、島相が熱可塑性樹脂中に微分散することとなり、耐衝撃性、引張り特性が向上する。
(5-3)第5の観点に係る本発明のタイヤは、前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーの質量(A)と、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び前記酸変性エラストマーの合計質量(B)との割合(A:B)が、90:10~50:50であるように構成することができる。
 熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーに対する前記酸変性エラストマーの割合を上記範囲とすることで、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張り特性をより向上させることができる。
(5-4)第5の観点に係る本発明のタイヤは、前記熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの含有量が50質量%~95質量%であるように構成することができる。
 熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの含有量が上記範囲であると、ポリエステル系熱可塑性エラストマーに由来する特性が十分に発揮されると共に、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張り特性をより向上することができる。
(5-5)第5の観点に係る本発明のタイヤは熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード層が形成されていてもよい。タイヤ骨格体の外周部に補強コード層が形成されていると、タイヤの耐パンク性、耐カット性、及びタイヤ(タイヤ骨格体)の周方向剛性が向上する。なお、周方向剛性が向上することで、熱可塑性材料で形成されたタイヤ骨格体のクリープ(一定の応力下でタイヤ骨格体の塑性変形が時間とともに増加する現象)が抑制される。
(5-6)第5の観点に係る本発明のタイヤの製造方法は、ポリエステル系熱可塑性エラストマーと、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー又は前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び該エラストマーを酸変性してなる酸変性エラストマーの混合物と、を含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程を含む。
 第5の観点に係る本発明のタイヤの製造方法は、熱可塑性樹脂材料によって環状のタイヤ骨格体のタイヤ骨格片を形成する。本発明の製造方法に用いる熱可塑性樹脂材料は、引張り特性に優れるため、製造されたタイヤを用いた自動車の乗り心地に優れ、またタイヤの耐炸裂性や、耐パンク性を向上させることができる。
(5-7)第5の観点に係る本発明のタイヤの製造方法は、前記熱可塑性樹脂材料の酸価が、0.1mg-CHONa/g以上10mg-CHONa/g以下であるように構成することができる。
 このように、酸変性エラストマーの酸価を上記範囲とすることで、特に、熱可塑性樹脂材料の溶融粘度の増大を抑え、流動性に優れるため、射出成形性に優れる。そのため、タイヤの生産効率が向上し、省エネ等の環境の観点においても好ましい。
(5-8)第5の観点に係る本発明のタイヤの製造方法は、前記タイヤ骨格片形成工程において、前記熱可塑性樹脂材料を用いて射出成形する工程を含むように構成することができる。
 第5の観点に係る本発明の製造方法に用いる熱可塑性樹脂材料は、射出成形性に優れるため、タイヤの生産性を高めることができる。
 前記第6の観点の課題を解決するための手段は、以下の通りである
(6-1)第6の観点に係る本発明のタイヤは、少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体およびオレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体の少なくとも一方の共重合体と、を含有するタイヤである。
 なお、以下では、「オレフィン-(メタ)アクリル酸共重合体」を特定共重合体とも称し、「オレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体」を特定酸変性共重合体とも称する。
 第6の観点に係る本発明における熱可塑性樹脂材料が、特定共重合体および特定酸変性共重合体の少なくとも一方と、ポリエステル系熱可塑性エラストマーとを含有することで、耐衝撃性に優れる。また、熱可塑性樹脂材料がポリエステル系熱可塑性エラストマーを含むことで、熱可塑性樹脂材料は、使用環境の温度変動による変形や硬さの変化を抑制し得る。
 ポリエステル系熱可塑性エラストマーを単独で用いた場合には、その弾性率を調整しようとした場合に、ハードセグメントとソフトセグメントとの比率を制御する必要がある。これに対し、ポリエステル系熱可塑性エラストマーと、特定共重合体および特定酸変性共重合体の少なくとも一方との、2成分ないし3成分系として、各成分の含有比を調整することで、ポリエステル系熱可塑性エラストマーを単独で用いた場合に比して、熱可塑性樹脂材料の弾性率を容易に調整することができる。
 なお、前記「2成分」、及び、「3成分」とは、「ポリエステル系熱可塑性エラストマー」、「特定共重合体」、及び、「特定酸変性共重合体」を、それぞれ「1成分」として捉えたものであり、「ポリエステル系熱可塑性エラストマー」、「特定共重合体」、及び、「特定酸変性共重合体」それぞれについて、2種以上用いることを制限するものではない。
(6-2)第6の観点に係る本発明のタイヤは、前記ポリエステル系熱可塑性エラストマー(x)と、前記オレフィン-(メタ)アクリル酸共重合体(特定共重合体;y)及び前記酸変性共重合体(特定酸変性共重合体;z)との質量比(x:y+z)が、95:5~50:50であるように構成することができる。
 なお、熱可塑性樹脂材料が、特定酸変性共重合体(z)を含まない場合(z=0)は、質量比(x:y+z)は、質量比(x:y)を意味し、熱可塑性樹脂材料が、特定共重合体(y)を含まない場合(y=0)は、質量比(x:y+z)は、質量比(x:z)を意味する。
 熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体及び酸変性共重合体と、の量比が上記範囲であると、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張弾性、破断強度等の引張り特性を向上することができる。
 なお、第6の観点に係る本発明のタイヤは、前記オレフィン-(メタ)アクリル酸共重合体(特定共重合体;y)と、前記酸変性共重合体(特定酸変性共重合体;z)と、の質量比(y:z)が、95:5~10:90であるように構成することができる。
 熱可塑性樹脂材料中の特定共重合体と特定酸変性共重合体との量比が上記範囲であると、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張弾性、破断強度等の引張り特性を向上することができる。
(6-3)第6の観点に係る本発明のタイヤは、前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと、前記オレフィン-(メタ)アクリル酸共重合体(特定共重合体)と、前記酸変性共重合体(特定酸変性共重合体)との合計含有量が、50質量%~100質量%であるように構成することができる。
 なお、第6の観点に係る本発明において、ポリエステル系熱可塑性エラストマーの含有量を「x」としたとき、熱可塑性樹脂材料が、特定酸変性共重合体(z)を含まない場合(z=0)は、合計含有量(x+y+z)は、(x+y)を意味する。熱可塑性樹脂材料が、特定共重合体(y)を含まない場合(y=0)は、合計含有量(x+y+z)は、(x+z)を意味する。
 熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーと、特定共重合体および特定酸変性共重合体の少なくとも一方との合計含有量が上記範囲であると、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張弾性、破断強度等の引張り特性をより向上することができる。
 さらに、第6の観点に係る本発明のタイヤは、熱可塑性樹脂材料で形成されたタイヤ骨格体に加え、更に、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード部材層を形成する補強コード部材を有していてもよい。
 熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材が巻回されて補強コード部材層が形成されていると、タイヤの耐パンク性、耐カット性、及びタイヤ(タイヤ骨格体)の周方向剛性が向上する。なお、周方向剛性が向上することで、熱可塑性材料で形成されたタイヤ骨格体のクリープ(一定の応力下でタイヤ骨格体の塑性変形が時間とともに増加する現象)が抑制される。
(6-4)第6の観点に係る本発明のタイヤの製造方法は、少なくとも、ポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体およびオレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体の少なくとも一方の共重合体と、を含有する熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程を含む。
 第6の観点に係る本発明のタイヤの製造方法は、熱可塑性樹脂材料によって環状のタイヤ骨格体のタイヤ骨格片を形成する。本発明に係る熱可塑性樹脂材料はポリエステル系熱可塑性エラストマーと、特定共重合体および特定酸変性共重合体の少なくとも一方と、を含有することで、流動性に優れるため、熱可塑性樹脂材料を用いての射出成形を容易に行なうことができる。そのため、タイヤの生産性を向上することができる。
 これは、次の理由によると考えられる。
 特定酸変性共重合体が有する酸基により、ポリエステル系熱可塑性エラストマーと特定共重合体との混合性が高まり、ポリエステル系熱可塑性エラストマーを海相、特定共重合体を島相としたときに、海島構造を形成し易くなる。かかる海島構造において、特定酸変性共重合体は、海相と島相との界面に介在し、海相と島相との親和性を高めていると考えられる。特に、ポリアミド系熱可塑性エラストマーに比べ、ポリエステル系熱可塑性エラストマーは海相と島相との親和性が高まりつつ、熱可塑性樹脂材料は粘度上昇が抑制され、流動性に優れることとなるため、射出成形を容易に行なうことができると考えられる。
 前記第7の観点の課題を解決するための手段は、以下の通りである
(7-1) 第7の観点に係る本発明のタイヤは、少なくとも樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記樹脂材料が、引張弾性率が150MPa~700MPaの範囲にある第1の熱可塑性エラストマーと、損失係数(Tanδ)が前記第1の熱可塑性エラストマーよりも小さい第2の熱可塑性エラストマーと、を含む。
 第7の観点に係る本発明のタイヤは、引張弾性率が150MPa~700MPの範囲にある第1の熱可塑性エラストマーと、損失係数(Tanδ)が前記第1の熱可塑性エラストマーよりも小さい第2の熱可塑性エラストマーと、を含む樹脂材料で形成された環状のタイヤ骨格体を有する。本発明のタイヤは、タイヤ骨格体が前記樹脂材料で形成されているため、従来のゴム製タイヤで必須工程であった加硫工程を必須とせず、例えば、射出成形等でタイヤ骨格体を成形することができる。このため、製造工程の簡素化、時間短縮およびコストダウンなどを図ることができる。更に、樹脂材料をタイヤ骨格体に用いると、従来のゴム製タイヤに比してタイヤの構造を簡素化でき、結果タイヤの軽量化を実現することが可能となる。このため、タイヤ骨格体として形成した場合にタイヤの耐摩耗性、耐久性を向上させることができる。
 前記「熱可塑性エラストマー」とは、結晶性で融点の高いハードセグメント若しくは高い凝集力のハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料を意味する。
 通常、弾性率の高い熱可塑性エラストマーは損失係数(Tanδ)も高いことが多く、高弾性率且つ低Tanδのタイヤ骨格体を形成することは難しい。
 本発明のタイヤは、引張弾性率が150MPa~700MPの高い弾性率を有する第1の熱可塑性エラストマーと、損失係数(Tanδ)が前記第1の熱可塑性エラストマーよりも小さい第2の熱可塑性エラストマーとの両者を含む樹脂材料を用いてタイヤ骨格体が形成されているため、例えば、第1の熱可塑性エラストマーまたは第2の熱可塑性エラストマーを単独で用いた場合に比して、タイヤ骨格体のTanδを低く維持したまま高弾性率化を達成することができる。これにより、転がり抵抗が低く、弾性率の高いタイヤを提供することができる。また、タイヤ骨格体のTanδを低く維持したまま弾性率を高くできるため、タイヤ骨格体の耐熱性も向上させることができる。
 第7の観点に係る本発明のタイヤにおいて、前記第2の熱可塑性エラストマーの損失係数(Tanδ)と前記第1の熱可塑性エラストマーの損失係数(Tanδ)と差(Tanδ-Tanδ)は、0.02以上が好ましく、0.05以上が更に好ましい。
(7-2)第7の観点に係る本発明のタイヤは、引張弾性率が200MPa~500MPaの範囲の第1の熱可塑性エラストマーを用いることができる。前記第1の熱可塑性エラストマーの引張弾性率を、200MPa~500MPaとすることで、タイヤ骨格体の弾性率をより好ましい範囲に設定することができる。
 第7の観点に係る本発明のタイヤにおいて、前記第1の熱可塑性エラストマーの引張弾性率としては、300MPa~500MPaが特に好ましい。
(7-3)第7の観点に係る本発明のタイヤは、前記第2の熱可塑性エラストマーの損失係数(Tanδ)を0.01~0.08とすることができる。本発明のタイヤは、前記第2のエラストマーのTanδを0.01~0.08とすることで、タイヤ骨格体の低Tanδ化を効率よく達成することができる。
 第7の観点に係る本発明のタイヤにおいて、前記第2の熱可塑性エラストマーの損失係数(Tanδ)としては、0.01~0.06が更に好ましい。
(7-4)第7の観点に係る本発明のタイヤは、前記第1の熱可塑性エラストマー(x)と、前記第2の熱可塑性エラストマー(y)との質量比(x/y)が、10/90~90/10であるように構成することができる。これにより、タイヤ骨格体の高弾性率化および低Tanδの両立の効果を十分に発揮することができる。
 第7の観点に係る本発明のタイヤにおいて、前記第1の熱可塑性エラストマー(x)と、前記第2の熱可塑性エラストマー(y)との質量比(x/y)としては、20/80~80/20が更に好ましく、30/70~70/30が特に好ましい。
 前記第1の熱可塑性エラストマーと第2の熱可塑性エラストマーとの組み合わせてとしては、ポリエステル系エラストマーとポリエステル系エラストマーとの組合せ、ポリアミド系エラストマーとポリアミド系エラストマーとの組合せが挙げられる。
 第1の観点に係る本発明によれば、熱可塑性高分子材料を用いて形成され、耐久性及び製造性に優れたタイヤを提供することができる。
 第2の観点に係る本発明によれば、熱可塑性樹脂材料を用いて形成され、且つ、耐衝撃性に優れたタイヤを提供することができる。
 第3の観点に係る本発明によれば、補強コード部材周辺部への空気の残存が抑制され、耐衝撃性に優れたタイヤを提供することができる。
 第4の観点に係る本発明によれば、熱可塑性樹脂材料を用いて形成され、弾性率が大きくなっても転がり抵抗の増大が抑制され、且つ耐久性に優れたタイヤを提供することができる。
 第5の観点に係る本発明によれば、熱可塑性高分子材料を用いて形成され、耐久性及び製造性に優れたタイヤ、及びこのタイヤの製造方法を提供することができる。
 第6の観点に係る本発明によれば、熱可塑性樹脂材料を用いて形成され、且つ、耐衝撃性に優れたタイヤ、及び、生産性に優れたタイヤの製造方法を提供することができる。
 第7の観点に係る本発明によれば、高弾性で且つ損失係数が低く、更に、耐熱性に優れたタイヤを提供することができる。
図1Aは、第1~第7の観点に係る本発明のタイヤの一実施形態に係るタイヤの一部の断面を示す斜視図である。 図1Bは、リムに装着したビード部の断面図である。 第1~第7の観点に係る本発明のタイヤにおいて、第1の実施形態のタイヤのタイヤケースのクラウン部に補強コードが埋設された状態を示すタイヤ回転軸に沿った断面図である。 コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。 図4Aは、第1~第7の観点に係る本発明のタイヤの一実施形態に係るタイヤのタイヤ幅方向に沿った断面図である。 図4Bは、タイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。 第1~第7の観点に係る本発明のタイヤにおいて、第2の実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。 第4の観点に係る本発明のタイヤにおいて、熱可塑性樹脂材料で作製された実施例及び比較例の各試料片の引張弾性率とtanδとの関係をプロットしたグラフである。 第6及び第7の観点に係る本発明のタイヤの他の実施形態に係るタイヤの断面図である。
 以下、本発明のタイヤについて詳細に説明する。
 ここで、本発明において、「熱可塑性エラストマー」とは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料を意味する。
 また「ポリエステル系熱可塑性エラストマー」とは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを形成するポリエステルを含むポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、その構造中にポリエステルからなる部分構造を有するものを意味する。
 「ゴム」とは、弾性を有する高分子化合物であるが、本明細書では、既述の熱可塑性エラストマーとは区別される。
 熱可塑性エラストマーは結晶性で融点の高いハードセグメントが、擬似的な架橋点として振る舞い弾性を発現する。一方、ゴムは分子鎖中に2重結合などを有しており、硫黄等を加えて架橋(加硫)することで、3次元の網目構造を生成し、弾性を発現する。その為、熱可塑性エラストマーは加熱することで、ハードセグメントが溶融し、冷却することで再び擬似的な架橋点を再生し、再利用が可能である。一方、ゴムは架橋(加硫)すると3次元網目構造を生成し、流動性を失い、加熱しても再利用が困難である。但し、架橋していないゴムは、熱可塑性エラストマー同様の挙動を示す。
 「ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー」とは、熱可塑性エラストマーのうち、ポリエステルからなるハードセグメント部分構造を含まないものを言う。以下では、この熱可塑性エラストマーを、適宜「他のエラストマー」とも称する。
 「ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー」とは、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー(他の熱可塑性エラストマー)に、酸性基を有する化合物を結合させたものを意味する。以下では、この熱可塑性エラストマーを、適宜「酸変性エラストマー」とも称する。 なお、他の熱可塑性エラストマーには、酸変性エラストマーは含まれない。
 また、「樹脂」とは、熱可塑性又は熱硬化性を有する樹脂を意味し、従来の天然ゴムや合成ゴム等の加硫ゴムは含まない。熱可塑性エラストマーもまた、従来の天然ゴムや合成ゴム等の加硫ゴムを包含しない。また、「ポリエステル樹脂」とは主鎖にエステル結合を有する樹脂を言う。
 また、本発明における熱可塑性樹脂は、熱可塑性を有する樹脂を意味し、従来の天然ゴムや合成ゴム等の加硫ゴムは含まれない。ただし、「熱可塑性樹脂材料」は、少なくとも熱可塑性樹脂を含む材料を意味し、熱可塑性樹脂のほかにゴムを含む材料も「熱可塑性樹脂材料」に含まれる。
 前記熱硬化性樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリエステル系樹脂等が挙げられる。
 前記熱可塑性樹脂としては、例えば、ウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル系樹脂等が挙げられる。
 また、「オレフィン-(メタ)アクリル酸共重合体」とは、オレフィンの繰り返し単位中に、(メタ)アクリル酸由来の部分構造を含む共重合体を言う。「(メタ)アクリル酸」とは、アクリル酸およびメタクリル酸の少なくとも一方を意味する。
 「オレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体」とは、オレフィンの繰り返し単位中に、(メタ)アクリレート由来の部分構造を含む共重合体に、酸性基を有する化合物を結合させた共重合体を言う。「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの少なくとも一方を意味する。
 本明細書において、「引張弾性率」とは、JIS K7113:1995に規定される引弾性率を意味する。(なお、特に特定しない限り、本明細書で「弾性率」とは前記引張弾性率を意味する。)。
 本明細書において、「損失係数(Tanδ)」とは、30℃,20Hz,せん断歪み1%における損失係数を意味する(本明細書では、単に「Tanδ」と称する場合がある。)
 なお、本明細書において、組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。
 本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても本工程の所期の作用が達成されれば、本用語に含まれる。
 以下では、まず、第1~第7の観点に係る本発明の各タイヤについて、タイヤ骨格体を構成する樹脂材料、及び補強コード層を構成する樹脂材料について説明し、続いて該タイヤの具体的な実施形態について図を用いて説明する。
 なお、以下の説明においては、第1~第7の観点に係る本発明の各タイヤを、各々、タイヤ(1)~(7)と称する場合がある。
[タイヤ骨格体を構成する樹脂材料]
 本発明のタイヤ(1)~(7)は、樹脂材料で形成されたタイヤ骨格体を有する。以下、本発明のタイヤ(1)~(7)において、タイヤ骨格体を形成する樹脂材料について詳細に説明する。
<タイヤ(1)におけるタイヤ骨格体に適用される熱可塑性樹脂材料>
 本発明のタイヤ(1)は、少なくともポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
-ポリエステル系熱可塑性エラストマー-
 「ポリエステル系熱可塑性エラストマー」とは、既述の如く、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを形成するポリエステルを含むポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーとしてポリエステル樹脂を含むものである。タイヤ(1)に適用されるポリエステル系熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるエステル系熱可塑性エラストマー(TPC)等が挙げられる。
 ポリエステル系熱可塑性エラストマーとしては、特に限定されるものではないが、結晶性のポリエステルが融点の高いハードセグメントを構成し、非晶性のポリマーがガラス転移温度の低いソフトセグメントを構成している共重合体が挙げられる。
 ハードセグメントを形成する結晶性のポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。
 ハードセグメントを形成する芳香族ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
 ハードセグメントを形成する好適な芳香族ポリエステルの一つとしては、テレフタル酸及び/又はジメチルテレフタレートと1,4-ブタンジオールから誘導されるポリブチレンテレフタレートが挙げられ、更に、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール〔例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール、キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニルなどの芳香族ジオール〕などから誘導されるポリエステル、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分及び多官能ヒドロキシ成分などを5モル%以下の範囲で共重合することも可能である。
 ソフトセグメントを形成するポリマーとしては、例えば、脂肪族ポリエステル及び脂肪族ポリエーテルから選択されたポリマーが挙げられる。
 脂肪族ポリエーテルとしては、ポリ(エチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリ(ヘキサメチレンオキシド)グリコール、エチレンオキシドとプロピレンオキシドの共重合体、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加重合体、エチレンオキシドとテトラヒドロフランの共重合体等が挙げられる。
 脂肪族ポリエステルとしては、ポリ(ε-カプロラクトン)、ポリエナントラクトン、ポリカプリロラクトン、ポリブチレンアジペート、ポリエチレンアジペートなどが挙げられる。
 これらの脂肪族ポリエーテル及び脂肪族ポリエステルの中でも、得られる共重合体の弾性特性の観点から、ポリ(テトラメチレンオキシド)グリコール、ポリ(プロピレンオキシド)グリコールのエチレンオキシド付加物、ポリ(ε-カプロラクトン)、ポリブチレンアジペート、ポリエチレンアジペートなどが好ましい。
 ハードセグメントを形成するポリマー(ポリエステル)の数平均分子量としては、強靱性及び低温柔軟性の観点から、300~6000が好ましい。また、ソフトセグメントを形成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、300~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との体積比(x:y)は、成形性の観点から、99:1~20:80が好ましく、98:2~30:70が更に好ましい。
 ポリエステル系熱可塑性エラストマーは、上記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリエステル系熱可塑性エラストマーとしては、市販品を用いることもでき、例えば、東レ・デュポン(株)製の「ハイトレル」シリーズ(例えば、3046、5557、6347、4047、4767)、東洋紡(株)製の「ペルプレン」シリーズ(例えば、P30B、P40B、P40H、P55B、P70B、P150B、P250B、E450B、P150M、S1001、S2001、S5001、S6001、S9001)等を用いることができる。
 なお、本発明のタイヤ(1)に適用されるポリエステル系熱可塑性エラストマーは、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
 本発明のタイヤ(1)におけるタイヤ骨格体に適用するポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂の融点としては、通常、100℃~260℃程度である。
 また、本発明のタイヤ(1)において、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの含有率は、特に限定されるものではないが、熱可塑性樹脂材料の総量に対して、50~100質量%が好ましい。ポリエステル系熱可塑性エラストマーの含有率が、熱可塑性樹脂材料の総量に対して、50質量%以上であるとポリエステル系熱可塑性エラストマーの特性を十分に発揮させることができ、タイヤの耐熱性、形状保持性、及び耐久性や生産性を向上させることができる。
 前記熱可塑性樹脂材料には、所望に応じて、ゴム、他の熱可塑性エラストマー、他の熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ等)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
 本発明のタイヤ(1)における熱可塑性樹脂材料は、既述のポリエステル系熱可塑性エラストマー(熱可塑性樹脂材料が他の熱可塑性エラストマーを含むときは、更に他の熱可塑性エラストマー)を混合し、必要に応じて各種添加剤を添加して、溶融混合してもよい。また、熱可塑性樹脂材料は、必要に応じてペレット状にして用いることができる。
-熱可塑性樹脂材料の特性-
 本発明のタイヤ(1)において、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率としては、100MPa~1000MPaが好ましく、100MPa~800MPaがさらに好ましく、100MPa~700MPaが特に好ましい。熱可塑性樹脂材料の引張弾性率が、100MPa~1000MPaであると、タイヤ骨格体の形状の保持性しつつリム組みを効率的に行うことができる。
 本発明のタイヤ(1)において、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~70MPaが好ましく、5MPa~50MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、50MPa以上であると、走行時などにタイヤにかかる荷重による変形に耐えることができる。
 本発明のタイヤ(1)において、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10~70%が好ましく、15~60%がさらに好ましい。熱可塑性樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良くすることができる。
 本発明のタイヤ(1)において、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がより良く、衝突に対して破壊しにくくすることができる。
 本発明のタイヤ(1)において、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50~150℃が好ましく、50~130℃がさらに好ましい。熱可塑性樹脂材料の荷重たわみ温度が50℃以上であると、タイヤの製造において加硫行う場合であってもタイヤ骨格体の変形を抑制することができる。
 本発明のタイヤ(1)において、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料のJIS K7206に規定されるビカット軟化温度(A法)としては、130℃以上が好ましく、130~250℃が好ましく、130~220℃がさらに好ましい。熱可塑性樹脂材料の軟化温度(A法)が、130℃以上であると、使用環境におけるタイヤの軟化や変形が抑制することができる。また、タイヤの製造において接合において加硫行う場合であってもタイヤ骨格体の変形を抑制することができる。
<タイヤ(2)におけるタイヤ骨格体に適用される熱可塑性樹脂材料>
 本発明のタイヤ(2)は、少なくともポリエステル系熱可塑性エラストマーとポリエステル系熱可塑性エラストマー以外の他のエラストマーとを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
-ポリエステル系熱可塑性エラストマー-
 「ポリエステル系熱可塑性エラストマー」とは、既述のごとく、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを形成するポリエステルを含むポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、その構造中にポリエステルからなる部分構造を有するものを意味する。タイヤ(2)に適用されるポリエステル系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるエステル系熱可塑性エラストマー(TPC)等が挙げられる。
 本発明のタイヤ(2)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーの詳細は、タイヤ(1)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーと同様である。本発明のタイヤ(1)において説明されたポリエステル系熱可塑性エラストマーに関する事項は、以下においてタイヤ(2)にのみ適用されることが特に言及されている事項を除き、タイヤ(2)におけるポリエステル系熱可塑性エラストマーにおいても同様に適用される。
-ポリエステル系熱可塑性エラストマー以外の他のエラストマー-
 本発明のタイヤ(2)において、ポリエステル系熱可塑性エラストマー以外の他のエラストマー(他のエラストマー)とは、既述のごとく、熱可塑性エラストマーのうち、ポリエステルからなるハードセグメント部分構造を含まないものを言う。
 他のエラストマーとしては、例えば、ポリウレタン、ポリスチレン、又はポリオレフィン等の部分構造を、少なくともハードセグメントの主鎖構造として有するものが挙げられる。他のエラストマーとしては、例えば、JIS K6418:2007に規定される、ポリウレタン系熱可塑性エラストマー(TPU)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリオレフィン系熱可塑性エラストマー(TPO)等が挙げられる。
 他のエラストマーは、1種のみを用いてもよいし、2種以上を併用してもよい。
 本発明のタイヤ(2)において、タイヤ骨格体に適用しうる他のエラストマーとしては、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる熱可塑性エラストマーを用いてもよい。
 「ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる熱可塑性エラストマー」とは、カルボン酸基、硫酸基、燐酸基等の酸性基により、上述した他のエラストマーを酸変性したものをいう。
 他のエラストマーを酸変性させる態様としては、酸性基を有する化合物を用いて他のエラストマーに酸性基を導入する態様が挙げられる。
 他のエラストマーの酸変性に用いる酸性基を有する化合物としては、熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する不飽和化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
 他のエラストマーを酸変性させる例としては、オレフィン系熱可塑性エラストマー、又はスチレン系熱可塑性エラストマーに、上記の不飽和カルボン酸の不飽和結合部位をグラフト重合等により結合させる態様が挙げられる。
 以下、本発明のタイヤ(2)おいて、タイヤ骨格体に好適な他のエラストマーについて、更に詳細に説明する。
-ポリウレタン系熱可塑性エラストマー-
 本発明のタイヤ(2)おいて、他のエラストマーとして適用しうるポリウレタン系熱可塑性エラストマーとしては、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを構成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられ、例えば、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
Figure JPOXMLDOC01-appb-C000001

 
 式A中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。式A又は式B中、Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。式B中、P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。
 式A中、Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルとしては、例えば、分子量500~5000の長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルが挙げられる。前記Pは、前記Pで表される長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを含むジオール化合物に由来する。このようなジオール化合物としては、例えば、分子量が前記範囲内にある、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ポリ(ブチレンアジベート)ジオール、ポリ-ε-カプロラクトンジオール、ポリ(ヘキサメチレンカーボネート)ジオール、前記ABA型トリブロックポリエーテル等が挙げられる。
 これらのジオール化合物は、単独で使用されてもよく、また2種以上が併用されてもよい。
 式A又は式B中、Rは、Rで表される脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を含むジイソシアネート化合物に由来する。
 Rで表される脂肪族炭化水素を含む脂肪族ジイソシアネート化合物としては、例えば、1,2-エチレンジイソシアネート、1,3-プロピレンジイソシアネート、1,4-ブタンジイソシアネート、及び1,6-ヘキサメチレンジイソシアネート等が挙げられる。
 また、Rで表される脂環族炭化水素を含むジイソシアネート化合物としては、例えば、1,4-シクロヘキサンジイソシアネート及び4,4-シクロヘキサンジイソシアネート等が挙げられる。
 更に、Rで表される芳香族炭化水素を含む芳香族ジイソシアネート化合物としては例えば、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネートが挙げられる。
 これらのジイソシアネート化合物は、単独で使用されてもよく、また2種以上が併用されてもよい。
 式B中、P’で表される短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素としては、例えば、分子量500未満の短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素が挙げられる。
 また、P’は、P’を含むジオール化合物に由来する。
 P’で表される短鎖脂肪族炭化水素を含む脂肪族ジオール化合物としては、グリコール及びポリアルキレングリコールが挙げられ、例えば、エチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、1,8-オクタンジオール、1,9-ノナンジオール及び1,10-デカンジオールが挙げられる。
 また、P’で表される脂環族炭化水素を含む脂環族ジオール化合物としては、例えば、シクロペンタン-1,2-ジオール、シクロヘキサン-1,2-ジオール、シクロヘキサン-1,3-ジオール、シクロヘキサン-1,4-ジオール、及びシクロヘキサン-1,4-ジメタノール等が挙げられる。
 更に、P’で表される芳香族炭化水素を含む芳香族ジオール化合物としては、例えば、ヒドロキノン、レゾルシン、クロロヒドロキノン、ブロモヒドロキノン、メチルヒドロキノン、フェニルヒドロキノン、メトキシヒドロキノン、フェノキシヒドロキノン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルサルファイド、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシジフェニルメタン、ビスフェノールA、1,1-ジ(4-ヒドロキシフェニル)シクロヘキサン、1,2-ビス(4-ヒドロキシフェノキシ)エタン、1,4-ジヒドロキシナフタリン、及び2,6-ジヒドロキシナフタリン等が挙げられる。
 これらのジオール化合物は、単独で使用されてもよく、また2種以上が併用されてもよい。
 ハードセグメントを構成するポリマー(ポリウレタン)の数平均分子量としては、溶融成形性の観点から、300~1500が好ましい。また、ソフトセグメントを構成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、特に好ましくは500~3000である。また、ハードセグメント(x)ソフトセグメント(y)及びとの質量比(x:y)は、成形性の観点から、15:85~90:10が好ましく、30:70~90:10が更に好ましい。
 ポリウレタン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。ポリウレタン系熱可塑性エラストマーとしては、例えば、特開平5-331256に記載の熱可塑性ポリウレタンを用いることができる。
 ポリエステル系熱可塑性エラストマーと、ポリウレタン系熱可塑性エラストマーとの併用は、弾性率を制御しつつ、且つ、補強コードとの接着性、密着性が高いことから好ましい。
-ポリスチレン系熱可塑性エラストマー-
 本発明のタイヤ(2)おいて、他のエラストマーとして適用しうるポリスチレン系熱可塑性エラストマーとしては、少なくともポリスチレンがハードセグメントを構成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。ハードセグメントを形成するポリスチレンとしては、例えば、公知のラジカル重合法、イオン性重合法で得られるものが好適に使用でき、例えば、アニオンリビング重合を持つポリスチレンが挙げられる。
 また、ソフトセグメントを形成するポリマーとしては、例えば、ポリブタジエン、ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
 上述のハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でもポリスチレン/ポリブタジエンの組合せ、ポリスチレン/ポリイソプレンの組合せが好ましい。また、熱可塑性エラストマーの意図しない架橋反応を抑制するため、ソフトセグメントは水素添加されていることが好ましい。
 ハードセグメントを構成するポリマー(ポリスチレン)の数平均分子量としては、5000~500000が好ましく、10000~200000が好ましい。
また、ソフトセグメントを構成するポリマーの数平均分子量としては、5000~1000000が好ましく、10000~800000が更に好ましく、30000~500000が特に好ましい。更に、前記ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、5:95~80:20が好ましく、10:90~70:30が更に好ましい。
 ポリスチレン系熱可塑性エラストマーは、ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 ポリスチレン系熱可塑性エラストマーとしては、スチレン-ブタジエン系共重合体[SBS(ポリスチレン-ポリ(ブチレン)ブロック-ポリスチレン)、SEBS(ポリスチレン-ポリ(エチレン/ブチレン)ブロック-ポリスチレン)]、スチレン-イソプレン共重合体[ポリスチレン-ポリイソプレンブロック-ポリスチレン)、スチレン-プロピレン系共重合体[SEP(ポリスチレン-(エチレン/プロピレン)ブロック)、SEPS(ポリスチレン-ポリ(エチレン/プロピレン)ブロック-ポリスチレン)、SEEPS(ポリスチレン-ポリ(エチレン-エチレン/プロピレン)ブロック-ポリスチレン)、SEB(ポリスチレン(エチレン/ブチレン)ブロック)等が挙げられる。
 ポリスチレン系熱可塑性エラストマーの好ましい態様の一つは、酸変性ポリスチレン系熱可塑性エラストマーである。
 ポリエステル系熱可塑性エラストマーと、ポリスチレン系熱可塑性エラストマーとの併用は、弾性率を制御しつつ、且つ、酸変性ポリスチレン系熱可塑性エラストマーを用いた場合に、接着性が高く、ポリエステル系熱可塑性エラストマーと酸変性部位との相互作用にて破壊状態がよくなることから好ましい。
-ポリオレフィン系熱可塑性エラストマー-
 本発明のタイヤ(2)おいて、他のエラストマーとして適用しうるポリオレフィン系熱可塑性エラストマーとしては、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、前記ポリオレフィン、他のポリオレフィン、ポリビニル化合物)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。前記ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
 ポリオレフィン系熱可塑性エラストマーとしては、オレフィン-α-オレフィンランダム共重合体、オレフィンブロック共重合体等が挙げられ、例えば、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。
 ポリオレフィン系熱可塑性エラストマーとしては、プロピレンブロック共重合体、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体が更に好ましい。
 また、エチレンとプロピレンといったように2種以上のポリオレフィン樹脂を組み合わせて使用してもよい。また、ポリオレフィン系熱可塑性エラストマー中のポリオレフィン含率は、50質量%以上100質量%以下が好ましい。
 ポリオレフィン系熱可塑性エラストマーの数平均分子量としては、5,000~1,000,0000であることが好ましい。ポリオレフィン系熱可塑性エラストマーの数平均分子量が5,000~10,000,000にあると、熱可塑性樹脂材料の機械的物性が十分であり、加工性にも優れる。同様の観点から、数平均分子量は、7,000~1,000,000であることが更に好ましく、10,000~1,000,000が特に好ましい。これにより、熱可塑性樹脂材料の機械的物性及び加工性を更に向上させることができる。また、ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、ハードセグメント(x)及びソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:5が好ましく、50:50~90:10が更に好ましい。
 ポリオレフィン系熱可塑性エラストマーの好ましい態様の一つは、酸変性ポリオレフィン系熱可塑性エラストマーである。
 ポリエステル系熱可塑性エラストマーと、ポリオレフィン系熱可塑性エラストマーとの併用は、弾性率を制御しつつ、且つ、酸変性オレフィン系熱可塑性エラストマーを用いた場合に、接着性が高く、ポリエステル系熱可塑性エラストマーと酸変性部位との相互作用にて破壊状態がよくなることから好ましい。
 ポリオレフィン系熱可塑性エラストマーは、公知の方法によって共重合することで合成することができる。
 本発明のタイヤ(2)おける他のエラストマーとしては、例えば、市販品を用いることができる。
 ポリウレタン系熱可塑性樹脂組成物としては、例えば、BASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E480、E580、P485、P985)等を用いることができる。
 ポリスチレン系熱可塑性エラストマーとしては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052,H1053,H1082、H1141、H1221、H1272)、(株)クラレ製のSEBS(8007,8076等)、SEPS(2002、2063等)等を用いることができる。
 酸変性スチレン系熱可塑性エラストマーとしては、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、M1943、M1911、M1913)、Kraton社製のFG19181G、等が挙げられる。
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A0550S、A1050S、A4050S、A1070S、A4070S,A35070S、A1085S、A4085S、A7090、A70090、MH7007、MH7010、XM-7070,XM-7080、BL4000、BL2481、BL3110、BL3450、P-0275、P-0375、P-0775、P-0180、P-0280、P-0480、P-0680)、三井・デュポンポリケミカル(株)「ニュクレル」シリーズ(例えば、AN4214C、AN4225C、AN42115C、N0903HC、N0908C、AN42012C、N410、N1035、N1050H、N1108C 、N1110H、N1207C、N1214、AN4221C、N1525、N1560、N0200H、AN4228C、AN4213C、N035C、「エルバロイAC」シリーズ(例えば、1125AC、1209AC、1218AC、1609AC、1820AC、1913AC、2112AC、2116AC、2615AC、2715AC、3117AC、3427AC、3717AC)、住友化学(株)「アクリフト」シリーズ、「エバテート」シリーズ、東ソー(株)「ウルトラセン」シリーズ等を用いることができる。
 酸変性オレフィン系熱可塑性エラストマーとしては、例えば、三井化学(株)製、「タフマー」シリーズ(例えば、MA8510、MH7007、MH7010、MH7020、MP0610、MP0620等)が挙げられる。
 本発明のタイヤ(2)において、熱可塑性樹脂中における、ポリエステル系熱可塑性エラストマー(a)と他のエラストマー(b)との質量比(a:b)は、50:50~95:5であることが好ましい。これらエラストマーの質量比が、50:50~95:5にあると、ポリアミド系エラストマーと他のエラストマーとがポリエステル系熱可塑性エラストマーを“海”とする海-島構造を形成するため、ポリエステル系熱可塑性エラストマーによる補強コード部材とタイヤ骨格体との溶着性を維持したまま、容易にタイヤの弾性率を制御することができ、タイヤの耐久性と耐衝撃性との両立を図ることができる。ポリエステル系熱可塑性エラストマー(a)と他のエラストマー(b)との質量比(a:b)としては、50:50~90:10が更に好ましい。他のエラストマーを2種以上併用する場合には、他のエラストマーの総量とポリエステル系熱可塑性エラストマーとの総量が前記範囲に含まれることが好ましい。
 本発明のタイヤ(2)において、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂の融点としては、通常100℃~350℃程度であるが、タイヤの生産性の観点から100~250℃程度が好ましく、120℃~200℃が更に好ましい。このように、融点が120~200℃のポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、接合部の加熱温度をタイヤ骨格体を形成する熱可塑性樹脂材料の融点以上に設定することができる。
 また、本発明のタイヤ(2)において、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマー及び他のエラストマーの総含有率は、特に限定されるものではないが、熱可塑性樹脂材料の総量に対して、50質量%以上が好ましい。ポリエステル系熱可塑性エラストマー及び他のエラストマーの総含有率が、熱可塑性樹脂材料の総量に対して、50質量%以上であると各エラストマーの特性を十分に発揮させることができ、タイヤの耐久性や生産性を向上させることができる。
 本発明のタイヤ(2)において、タイヤ骨格体に適用される熱可塑性樹脂材料には、所望に応じて、ゴム、他の熱可塑性エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
 本発明のタイヤ(2)において、タイヤ骨格体に適用される熱可塑性樹脂材料は、例えば、既述のポリエステル系熱可塑性エラストマー及び他のエラストマーを混合し、必要に応じて各種添加剤を添加して、溶融混合することにより得ることができる。ポリエステル系熱可塑性エラストマーと他のエラストマーとの混合比は、既述の割合に準ずる。溶融混合して得られた樹脂材料は、必要に応じてペレット状にして用いることができる。
-熱可塑性樹脂材料の特性-
 本発明のタイヤ(2)において、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率(以下、特に特定しない限り本明細書で「弾性率」とは引張弾性率を意味する。)としては、100~1000MPaが好ましく、100~800MPaがさらに好ましく、100~700MPaが特に好ましい。熱可塑性樹脂材料の引張弾性率が、100~1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的に行うことができる。
 本発明のタイヤ(2)において、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5~20MPaが好ましく、5~17MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 本発明のタイヤ(2)において、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10~70%が好ましく、15~60%がさらに好ましい。熱可塑性樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
 本発明のタイヤ(2)おいて、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 本発明のタイヤ(2)において、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50~150℃が好ましく、50~130℃がさらに好ましい。前記熱可塑性樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制するこができる。
<タイヤ(3)においてタイヤ骨格体に適用される熱可塑性樹脂材料>
 本発明のタイヤ(3)は、少なくともポリエステル系熱可塑性エラストマーとゴムとを含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
-ポリエステル系熱可塑性エラストマー-
 ポリエステル系熱可塑性エラストマーは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーとしてポリエステル樹脂を含むものである。タイヤ(3)に適用されるポリエステル系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるエステル系熱可塑性エラストマー等が挙げられる。
 本発明のタイヤ(3)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーの詳細は、タイヤ(1)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーと同様である。本発明のタイヤ(1)において説明されたポリエステル系熱可塑性エラストマーに関する事項は、以下においてタイヤ(3)にのみ適用されることが特に言及されている事項を除き、タイヤ(3)におけるポリエステル系熱可塑性エラストマーにおいても同様に適用される。
-ゴム-
 「ゴム」とは、弾性を有する高分子化合物である。
 既述のように、本明細書では、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料である熱可塑性エラストマーとは区別される。
 本発明のタイヤ(3)において、タイヤ骨格体に適用されるゴムとしては、特に限定されるものではないが、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合ゴム(SBR)、アクリロニトリル-ブタジエン共重合ゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(Br-IIR、Cl-IIR等)、エチレン-プロピレン-ジエンゴム(EPDM)等が挙げられる。アクリロニトリル-ブタジエン共重合ゴムの、ブタジエンの全部をイソプレンに置き換えたNIRや、ブタジエンの一部をイソプレンに置き換えたNBIRを用いてもよい。
 中でも、熱可塑性樹脂材料の柔軟性を制御し易いとの観点から、BR、SBR、NBR、NIR、IR、EPDM及びNBIRが好ましく、BR、SBR、NBR、IR、及びEPDMがより好ましい。
 ゴムの弾性率を大きくし、分散したゴムの粒径を固定化し、クリープをよくする観点から、ゴムは、ゴムを加硫した加硫ゴムを用いてもよい。ゴムの加硫は、公知の方法で行なえばよく、例えば、特開平11-048264号公報、特開平11-029658号公報、特開2003-238744号公報等に記載される方法で行なうことができる。ポリエステル系熱可塑性エラストマーとのブレンドに際し、微細化する為に粉砕し、投入することが好ましい。
 特にポリエステル系熱可塑性エラストマーとゴムを混練しながら、ゴムの分散と架橋(加硫)を行う動的架橋を用いることが好ましい。
 ゴムの加硫は、上記ゴムに、例えば、カーボンブラック等の補強材、充填剤、加硫剤、加硫促進剤、脂肪酸又はその塩、金属酸化物、プロセスオイル、老化防止剤等を適宜配合し、バンバリーミキサーを用いて混練した後、120℃~200℃で加熱すればよい。
 加硫剤としては、公知の加硫剤、例えば硫黄、有機過酸化物、樹脂加硫剤などが用いられる。
 加硫促進剤としては、公知の加硫促進剤、例えばアルデヒド類、アンモニア類、アミン類、グアニジン類、チオウレア類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカーバメイト類、キサンテート類などが用いられる。
 脂肪酸としては、ステアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸などが挙げられ、また、これらはステアリン酸亜鉛のように塩の状態で配合されてもよい。これらの中でも、ステアリン酸が好ましい。
 また、金属酸化物としては、亜鉛華(ZnO)、酸化鉄、酸化マグネシウムなどが挙げられ、中でも亜鉛華が好ましい。
 プロセスオイルは、アロマティック系、ナフテン系、パラフィン系のいずれを用いてもよい
 老化防止剤としては、アミン-ケトン系、イミダゾール系、アミン系、フェノール系、硫黄系及び燐系などが挙げられる。
 本発明のタイヤ(3)において、熱可塑性樹脂中における、ポリエステル系熱可塑性エラストマー(x)とゴム(y)との質量比(x:y)〔熱可塑性樹脂がポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを含む場合は、ポリエステル系熱可塑性エラストマー(x)とゴムとポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーとの合計量(y’)との質量比(x:y’)〕は、95:5~50:50であることが好ましい。これらエラストマーの質量比が、95:5~50:50にあると、ポリエステル系熱可塑性エラストマーとゴムとが、ポリエステル系熱可塑性エラストマーの特性を維持しつつ、ゴムの特性を付与することができ、ポリエステル系熱可塑性エラストマーによる補強コード部材とタイヤ骨格体との溶着性を維持したまま、容易にタイヤの弾性率を制御することができ、タイヤの耐久性をより向上したタイヤとすることができる。前記(x:y)及び前記(x:y’)は、共に90:10~50:50がより好ましい。
-ゴムとの親和性が良い熱可塑性エラストマー-
 本発明のタイヤ(3)において、熱可塑性樹脂材料には、ゴムとの親和性が良い熱可塑性エラストマーを含んでいてもよい。以下、ゴムとの親和性が良い熱可塑性エラストマーを「ゴム親和熱可塑性エラストマー」とも称する。
 熱可塑性樹脂材料が、ゴム親和熱可塑性エラストマーをさらに含むことで、熱可塑性樹脂材料中にゴムを微分散することができる。更に、ゴム親和熱可塑性エラストマーが後述する酸変性熱可塑性エラストマーである場合には、ポリエステル系熱可塑性エラストマーと酸変性部位との相互作用により、引張強さを向上し、仮に破壊した場合でも延性破壊を生じ、脆性破壊や層状破壊が起こり難いと考えられる。延性破壊、脆性破壊、層状破壊の別は、熱可塑性樹脂材料の破断面を目視することにより確認することができる。
 ここで、「ゴムとの親和性が良い」とは、熱可塑性エラストマーをゴムと共に混ぜ合わせた時に、ゴムの分子骨格と熱可塑性エラストマーの分子骨格とが類似しており、熱可塑性エラストマーの分散粒子内にゴムを取り込んだ状態、または、ゴムの分散粒子内に熱可塑性エラストマーを取り込んだ状態を言う。
 但し、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとのすべてが上記状態である必要はなく、熱可塑性樹脂材料中の熱可塑性エラストマーとゴムとが部分的に上記状態であってもよい。
 例えば、熱可塑性エラストマーのハードセグメントないしソフトセグメントを構成するポリマーの主鎖を構成する骨格が、ゴムの主鎖を構成する骨格と類似する場合には、当該熱可塑性エラストマーとゴムとは親和性が良いと考えられる。具体的には、スチレン-ブタジエン共重合ゴム(SBR)については、ポリスチレン系熱可塑性エラストマーが、ゴム親和熱可塑性エラストマーとして挙げられる。また、ブタジエンゴム(BR)、エチレン-プロピレン-ジエンゴム(EPDM)は、ポリオレフィン系熱可塑性エラストマーがゴム親和熱可塑性エラストマーとして挙げられる。
 また、ゴム親和熱可塑性エラストマーは、熱可塑性エラストマーの分子の一部に酸基(例えば、カルボキシ基)が導入された酸変性熱可塑性エラストマーであることが好ましい。ゴム親和熱可塑性エラストマーが酸変性されていることで、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーと酸変性部位との相互作用により、ゴムの微分散をより向上することができる。
 ゴム親和熱可塑性エラストマーは、ポリエステル熱可塑性エラストマー以外の熱可塑性エラストマーであって、ゴムとの親和性が良い熱可塑性エラストマーであれば特に制限はなく、例えば、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー等が挙げられる。ポリオレフィン系熱可塑性エラストマー、スチレン系熱可塑性熱可塑性エラストマーが好ましい。
 次に、ゴム親和熱可塑性エラストマーとして適用し得るポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、及びポリウレタン系熱可塑性エラストマーについて説明する。
(ポリオレフィン系熱可塑性エラストマー)
 ポリオレフィン系熱可塑性エラストマーとは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーが、ポリプロピレンやポリエチレンなどのポリオレフィンであるものを言う。
 本発明のタイヤ(3)に適用しうるポリオレフィン系熱可塑性エラストマーとしては、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを構成し、前記ポリオレフィンと前記ポリオレフィン以外のオレフィンが非晶性でガラス転移点の低いソフトセグメントを構成している材料が挙げられる。
 前記ハードセグメントを形成するポリオレフィンとしては、例えば、ポリプロピレン、アイソタクチックポリプロピレン、ポリエチレン、1-ブテン等が挙げられる。
 ポリオレフィン系熱可塑性エラストマーとしては、例えば、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1-ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、1-ブテン-1-ヘキセン共重合体、1-ブテン-4-メチル-ペンテン、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体等が挙げられる。
 本発明のタイヤ(3)に適用しうるポリオレフィン系熱可塑性エラストマーとしては、エチレン-プロピレン共重合体、プロピレン-1-ヘキセン共重合体、プロピレン-4-メチル-1-ペンテン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-4-メチル-ペンテン共重合体、エチレン-1-ブテン共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、エチレン-メタクリル酸エチル共重合体、エチレン-メタクリル酸ブチル共重合体、エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体、エチレン-ブチルアクリレート共重合体、プロピレン-メタクリル酸共重合体、プロピレン-メタクリル酸メチル共重合体、プロピレン-メタクリル酸エチル共重合体、プロピレン-メタクリル酸ブチル共重合体、プロピレン-メチルアクリレート共重合体、プロピレン-エチルアクリレート共重合体、プロピレン-ブチルアクリレート共重合体、エチレン-酢酸ビニル共重合体、プロピレン-酢酸ビニル共重合体が好ましく、エチレン-プロピレン共重合体、プロピレン-1-ブテン共重合体、エチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、プロピレン-1-ヘキセン共重合体が更に好ましい。
 本発明のタイヤ(3)に適用しうるポリオレフィン系熱可塑性エラストマーの数平均分子量は,5,000~10,000,000であることが好ましい。5,000未満の場合には,樹脂複合材の機械的物性が低下するおそれがある。10,000,000を超える場合には,樹脂複合材の加工性に問題が生じるおそれがある。上記と同様の理由により,ポリオレフィン系熱可塑性エラストマーの数平均分子量は,7,000~1,000,000である。特に好ましくは,ポリオレフィン系熱可塑性エラストマーの数平均分子量は,10,000~1,000,000である。これにより,樹脂複合材の機械的物性及び加工性を更に向上させることができる。
 ポリオレフィン系熱可塑性エラストマーは、上記ハードセグメントを構成するポリマー及びソフトセグメントを構成するポリマーを公知の方法によって共重合することで合成することができる。
 本発明のタイヤ(3)に適用しうるポリオレフィン系熱可塑性エラストマーとしては、例えば、市販品のプライムポリマー社製のプライムTPO(登録商標)、三井化学社製のタフマー(登録商標)等を用いることができる。
(ポリスチレン系熱可塑性エラストマー)
 ポリスチレン系熱可塑性エラストマーとは、弾性を有する高分子化合物であり、ハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーが、ポリスチレンを含むものを言う。
 本発明のタイヤ(3)に適用しうるポリスチレン系熱可塑性エラストマーとしては、特に限定されるものではないが、ポリスチレンがハードセグメントを構成し、非晶性のポリマーがガラス転移温度の低いソフトセグメント(例えば、ポリエチレン、ポリブタジエン、ポリイソプレン、水添ポリブタジエン、水添ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等)を構成している共重合体が挙げられる。
 ソフトセグメントを構成するポリマーとしては、例えば、ポリエチレン、ポリブタジエン、ポリイソプレン、水添ポリブタジエン、水添ポリイソプレン、ポリ(2,3-ジメチル-ブタジエン)等が挙げられる。
 本発明のタイヤ(3)に適用しうるポリスチレン系熱可塑性エラストマーとしては、前記ハードセグメントを構成するポリマー(ポリスチレン)の数平均分子量としては5,000~500,000が好ましく、10,000~200,000がより好ましい。
 前記ソフトセグメントを構成するポリマーの数平均分子量としては、5,000~1,000,000が好ましく、より好ましくは10,000~800,000、更に好ましくは30,000~500,000である。
 更に前記ハードセグメント(Hs)とソフトセグメント(Ss)との質量比(Hs:Ss)は成形性、物性の観点から、5:95~80:20が好ましく、10:90~70:30が更に好ましい。
 ポリスチレン系熱可塑性エラストマーは、上記ハードセグメントを構成するポリマー及びソフトセグメントを構成するポリマーを公知の方法によって共重合することで合成することができる。
 本発明のタイヤ(3)に適用しうるポリスチレン系熱可塑性エラストマーとしては、例えば、市販品の旭化成社製のタフプレン(登録商標)及びタフテック(登録商標)、クラレ社製のセプトン(登録商標)等を用いることができる。
 タイヤ(3)に適用しうるポリスチレン系熱可塑性エラストマー(酸変性体を含む)は、熱可塑性樹脂材料が意図しない架橋反応を起こすことを抑制するため、水素添加されていることが好ましい。水素添加型(SEBS、SEPS)の他の熱可塑性エラストマー及び酸変性エラストマーとしては、前記旭化成社製のタフテック(登録商標)、クラレ社製のセプトン(登録商標)等が挙げられる。
(ポリアミド系熱可塑性エラストマー)
 ポリアミド系熱可塑性エラストマーとは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。ポリアミド系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系熱可塑性エラストマー等を挙げることができる。
 本発明のタイヤ(3)に適用しうるポリアミド系熱可塑性エラストマーは、少なくともポリアミドが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステル又はポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーはハードセグメント及びソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いてもよい。前記ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)または一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
Figure JPOXMLDOC01-appb-C000002

 
 一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖、又は、炭素数2~20のアルキレン基を表す。
Figure JPOXMLDOC01-appb-C000003

 
 一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖、又は、炭素数3~20のアルキレン基を表す。
 一般式(1)中、Rとしては、炭素数3~18の炭化水素の分子鎖又は炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖又は炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖又は炭素数10~15のアルキレン基が特に好ましい。また、一般式(2)中、Rとしては、炭素数3~18の炭化水素の分子鎖又は炭素数3~18のアルキレン基が好ましく、炭素数4~15の炭化水素の分子鎖又は炭素数4~15のアルキレン基が更に好ましく、炭素数10~15の炭化水素の分子鎖又は炭素数10~15のアルキレン基が特に好ましい。
 前記一般式(1)または一般式(2)で表されるモノマーとしては、ω-アミノカルボン酸やラクタムが挙げられる。また、前記ハードセグメントを形成するポリアミドとしては、これらω-アミノカルボン酸やラクタムの重縮合体や、ジアミンとジカルボン酸との共縮重合体等が挙げられる。
 ω-アミノカルボン酸としては、6-アミノカプロン酸、7-アミノヘプタン酸、8-アミノオクタン酸、10-アミノカプリン酸、11-アミノウンデカン酸、12-アミノドデカン酸などの炭素数5~20の脂肪族ω-アミノカルボン酸等を挙げることができる。また、ラクタムとしては、ラウリルラクタム、ε-カプロラクタム、ウデカンラクタム、ω-エナントラクタム、2-ピロリドンなどの炭素数5~20の脂肪族ラクタムなどを挙げることができる。
 ジアミンとしては、例えば、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4-トリメチルヘキサメチレンジアミン、2,4,4-トリメチルヘキサメチレンジアミン、3-メチルペンタメチレンジアミン、メタキシレンジアミンなどの炭素数2~20の脂肪族ジアミンなどのジアミン化合物を挙げることができる。また、ジカルボン酸は、HOOC-(R)m-COOH(R:炭素数3~20の炭化水素の分子鎖、m:0又は1)で表すことができ、例えば、シュウ酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの炭素数2~20 の脂肪族ジカルボン酸を挙げることができる。
 前記ハードセグメントを形成するポリアミドとしては、ラウリルラクタム、ε-カプロラクタム又はウデカンラクタムを開環重縮合したポリアミドを好ましく用いることができる。
 また、本発明のタイヤ(3)に適用しうるポリアミド系熱可塑性エラストマーにおいて、前記ソフトセグメントを形成するポリマーとしては、例えば、ポリエステル、ポリエーテルが挙げられ、例えば、ポリエチレングリコール、プリプロピレングリコール、ポリテトラメチレンエーテルグリコール、ABA型トリブロックポリエーテル等が挙げられ、これらを単独で又は2種以上を用いることができる。また、ポリエーテルの末端にアニモニア等を反応させることによって得られるポリエーテルジアミン等を用いることができる。
 ここで、「ABA型トリブロックポリエーテル」とは、下記一般式(3)に示されるポリエーテルを意味する。
Figure JPOXMLDOC01-appb-C000004

 
 
 一般式(3)中、x及びzは、1~20の整数を表す。yは、4~50の整数を表す。
 前記一般式(3)において、x及びzとしては、それぞれ、1~18の整数が好ましく、1~16の整数が更に好ましく、1~14の整数が特に好ましく、1~12の整数が最も好ましい。また、前記一般式(3)において、yとしては、それぞれ、5~45の整数が好ましく、6~40の整数が更に好ましく、7~35の整数が特に好ましく、8~30の整数が最も好ましい。
 本発明のタイヤ(3)に適用しうるポリアミド系熱可塑性エラストマーにおいて、ハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でも、ラウリルラクタムの開環重縮合体/ポリエチレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリプロピレングリコールの組合せ、ラウリルラクタムの開環重縮合体/ポリテトラメチレンエーテルグリコールの組合せ、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せ、が好ましく、ラウリルラクタムの開環重縮合体/ABA型トリブロックポリエーテルの組合せが特に好ましい。
 本発明のタイヤ(3)に適用しうるポリアミド系熱可塑性エラストマーにおいて、ハードセグメントを構成するポリマー(ポリアミド)の数平均分子量としては、溶融成形性の観点から、300~15000が好ましい。また、ソフトセグメントを構成するポリマーの数平均分子量としては、強靱性及び低温柔軟性の観点から、200~6000が好ましい。更に、前記ハードセグメント(Ha)及びソフトセグメント(Ha)との質量比(Ha:Sa)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20が更に好ましい。
 前記ポリアミド系熱可塑性エラストマーは、前記ハードセグメントを形成するポリマー及びソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
 本発明のタイヤ(3)に適用しうるポリアミド系熱可塑性エラストマーとしては、例えば、市販品の宇部興産(株)の「UBESTA、XPA」シリーズ(例えば、XPA9063X1、XPA9055X1、XPA9048X2、XPA9048X1、XPA9040X1、XPA9040X2等)、ダイセル・エポニック(株)の「ベスタミド」シリーズ(例えば、E40-S3、E47-S1、E47-S3、E55-S1、E55-S3、EX9200、E50-R2)等を用いることができる。
(ポリウレタン系熱可塑性エラストマー)
 ポリウレタン系熱可塑性エラストマーとしては、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを構成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられ、例えば、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
Figure JPOXMLDOC01-appb-C000005

 
 式A中、Pは、長鎖脂肪族ポリエーテル又は長鎖脂肪族ポリエステルを表す。式A又は式B中、Rは、脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。式B中、P’は、短鎖脂肪族炭化水素、脂環族炭化水素、又は芳香族炭化水素を表す。
 上記式Aで表される単位構造を含むソフトセグメントと上記式Bで表される単位構造を含むハードセグメントとを含む共重合体に関する事項を含め、タイヤ(7)に適用されるポリウレタン系熱可塑性エラストマーについての詳細は、タイヤ(2)に適用されるポリアミド系熱可塑性エラストマーと同様である。
 タイヤ(3)において説明されたポリウレタン系熱可塑性エラストマーに関する事項は、以下においてタイヤ(7)にのみ適用されることが特に言及されている事項を除き、タイヤ(7)におけるポリウレタン系熱可塑性エラストマーにおいても同様に適用される。
 なお、タイヤ(3)に適用しうるポリウレタン系熱可塑性エラストマーにおいては、前記ハードセグメントを構成するポリマー(ポリウレタン)の数平均分子量としては、溶融成形性の観点から、300~1500が好ましい。また、前記ソフトセグメントを構成するポリマーの数平均分子量としては、ポリウレタン系熱可塑性エラストマーの柔軟性及び熱安定性の観点から、500~20000が好ましく、500~5000が更に好ましく、特に好ましくは800~2500である。また、前記ハードセグメント(Hu)及びソフトセグメント(Su)との質量比(Hu:Su)は、成形性の観点から、50:50~90:10が好ましく、50:50~80:20が更に好ましい。
 本発明のタイヤ(3)において、熱可塑性樹脂材料中のゴム親和熱可塑性エラストマー(z)とゴム(y)との質量割合(z:y)は、95:5~0:100であることが好ましく、90:10~0:100であることがより好ましい。
 また、本発明のタイヤ(3)において、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマー及びゴム(熱可塑性樹脂材料がゴム親和熱可塑性エラストマーを含む場合は、ポリエステル系熱可塑性エラストマー、ゴム、及びゴム親和熱可塑性エラストマー)の合計含有量は、特に限定されるものではないが、熱可塑性樹脂材料の総量に対して、50質量%~100質量%が好ましい。前記合計含有量が、熱可塑性樹脂材料の総量に対して、50質量%以上であると熱可塑性樹脂材料の特性を十分に発揮させることができる。
 本発明のタイヤ(3)において、熱可塑性樹脂材料には、所望に応じて、ポリエステル系熱可塑性エラストマー以外の他の熱可塑性エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
 本発明のタイヤ(3)において、熱可塑性樹脂材料を得るには、既述のポリエステル系熱可塑性エラストマー、ゴム、必要に応じてゴム親和熱可塑性エラストマー、添加剤などを、既述の量比となるように混合し、混練すればよい。
 各成分の混合及び混練は、例えば、東洋精機製作所社製、LABOPLASTOMILL 50MR 2軸押出し機を用いることができる。
 前記2軸押出し機には、加硫したゴムを微粉砕したものを投入してもよいし、ゴムに加硫剤等をバンバリー等で混練した後、2軸押出機中で混練しながら、加硫してもよい。2軸押出し機中で混練しながら、加硫することの方が好ましい。
-熱可塑性樹脂材料の特性-
 本発明のタイヤ(3)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率(以下、特に特定しない限り本明細書で「弾性率」とは引張弾性率を意味する。)としては、100~1000MPaが好ましく、100~800MPaがさらに好ましく、100~700MPaが特に好ましい。熱可塑性樹脂材料の引張弾性率が、100~1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的に行うことができる。
 本発明のタイヤ(3)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5~20MPaが好ましく、5~17MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 本発明のタイヤ(3)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10~70%が好ましく、15~60%がさらに好ましい。熱可塑性樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
 本発明のタイヤ(3)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 本発明のタイヤ(3)において、熱可塑性樹脂材料のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50~150℃が好ましく、50~130℃がさらに好ましい。熱可塑性樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制するこができる。
<タイヤ(4)においてタイヤ骨格体に適用される熱可塑性樹脂材料>
 本発明のタイヤ(4)は、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル樹脂を含むハードセグメント及びソフトセグメントを有するポリエステル系熱可塑性エラストマー(A)と、熱可塑性エラストマー以外のポリエステル樹脂(B)と、を含むタイヤである
 
 本発明のタイヤ(4)においてタイヤを形成する環状のタイヤ骨格体を構成する熱可塑性樹脂材料として、ポリエステル系熱可塑性エラストマー(A)と、熱可塑性エラストマー以外のポリエステル樹脂(B)とを組合せて適用することで、タイヤの転がり抵抗を上がり難くし、且つ耐久性に優れたタイヤとすることができる。
 以下、ポリエステル系熱可塑性エラストマー(A)、及び、熱可塑性エラストマー以外のポリエステル樹脂(B)ついて説明する。
〔ポリエステル系熱可塑性エラストマー(A)〕
 本発明におけるポリエステル系熱可塑性エラストマー(A)は、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーとしてポリエステル樹脂を含むものである。ポリエステル系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるエステル系熱可塑性エラストマー(TPC)等が挙げられる。
 本発明のタイヤ(4)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマー(A)の詳細は、本発明のタイヤ(1)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーと同様である。タイヤ(1)において説明されたポリエステル系熱可塑性エラストマーに関する事項は、以下においてタイヤ(4)にのみ適用されることが特に言及されている事項を除き、タイヤ(4)におけるポリエステル系熱可塑性エラストマー(A)においても同様に適用される。
 本発明のタイヤ(4)においては、熱可塑性樹脂材料に含まれるポリエステル系熱可塑性エラストマー(A)は、2種以上であってもよいが、熱可塑性樹脂材料を用いて形成するタイヤのタイヤ性能を制御する観点から、ポリエステル系熱可塑性エラストマー(A)は1種であることが好ましい。
〔ポリエステル樹脂(B)〕
 本発明のタイヤ(4)における熱可塑性樹脂材料は、熱可塑性エラストマー以外のポリエステル樹脂(B)を含む。ポリエステル系樹脂は、主鎖にエステル結合を有する樹脂である。
 ポリエステル樹脂(B)としては、特に限定されるものではないが、ポリエステル系熱可塑性エラストマー(A)におけるハードセグメントが含むポリエステル樹脂と同種の樹脂であることが好ましく、結晶性のポリエステルであることがより好ましい。
 結晶性のポリエステルとしては、芳香族ポリエステルを用いることができる。芳香族ポリエステルは、例えば、芳香族ジカルボン酸又はそのエステル形成性誘導体と脂肪族ジオールとから形成することができる。
 芳香族ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート等が挙げられ、ポリブチレンテレフタレートが好ましい。
 芳香族ポリエステルの一つとしては、テレフタル酸及び/又はジメチルテレフタレートと1,4-ブタンジオールから誘導されるポリブチレンテレフタレートが挙げられ、更に、イソフタル酸、フタル酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸、5-スルホイソフタル酸、あるいはこれらのエステル形成性誘導体などのジカルボン酸成分と、分子量300以下のジオール〔例えば、エチレングリコール、トリメチレングリコール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、デカメチレングリコールなどの脂肪族ジオール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメチロールなどの脂環式ジオール、キシリレングリコール、ビス(p-ヒドロキシ)ジフェニル、ビス(p-ヒドロキシフェニル)プロパン、2,2-ビス[4-(2-ヒドロキシエトキシ)フェニル]プロパン、ビス[4-(2-ヒドロキシ)フェニル]スルホン、1,1-ビス[4-(2-ヒドロキシエトキシ)フェニル]シクロヘキサン、4,4’-ジヒドロキシ-p-ターフェニル、4,4’-ジヒドロキシ-p-クオーターフェニルなどの芳香族ジオール〕などから誘導されるポリエステル、あるいはこれらのジカルボン酸成分およびジオール成分を2種以上併用した共重合ポリエステルであってもよい。また、3官能以上の多官能カルボン酸成分、多官能オキシ酸成分及び多官能ヒドロキシ成分などを5モル%以下の範囲で共重合することも可能である。
 上記のようなポリエステル樹脂としては、市販品を用いることもでき、例えば、ポリプラスチック(株)製の「ジュラネックス」シリーズ(例えば、2000、2002等)、三菱エンジニアリングプラスチック(株)製のノバデュランシリーズ(例えば、5010R5、5010R3-2等)、東レ(株)製の「トレコン」シリーズ(例えば、1401X06、1401X31等)が挙げられる。
 また、ポリエステル樹脂(B)は、熱可塑性樹脂材料の弾性率を大きくする観点から、弾性率が700MPa以上であることが好ましく、800MPa~3000MPaであることがより好ましい。なお、ポリエステル樹脂(B)の弾性率は、JIS K7113:1995に規定される引張弾性率を意味し、特定樹脂の弾性率は、例えば、(株)島津製作所製の精密万能試験機オートグラフを用いて測定することができる。
 本発明のタイヤ(4)における熱可塑性樹脂材料は、2種以上のポリエステル樹脂(B)を含んでいてもよい。ただし、その内の少なくとも1種は、ポリエステル系熱可塑性エラストマー(A)が有するハードセグメントと同種のポリエステル樹脂である必要があることが好ましい。また、既述のように、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマー(A)は1種であることが好ましいことから、ポリエステル樹脂(B)も1種であることが好ましい。
 本発明のタイヤ(4)における熱可塑性樹脂材料中、ポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)との質量比(A:B)は、耐衝撃性の観点から、質量基準で、95:5~50:50であることが好ましく、90:10~50:50であることがより好ましい。
 また、熱可塑性樹脂材料中、ポリエステル系熱可塑性エラストマー(A)の含有量は、耐衝撃性の観点から、熱可塑性樹脂材料の全質量に対して、95質量%~50質量%であることが好ましく、90質量%~10質量%であることがより好ましい。
 本発明のタイヤ(4)における熱可塑性樹脂材料には、本発明の効果を損ねない限りにおいて、所望に応じて、他の熱可塑性エラストマー、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
 本発明のタイヤ(4)における熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマー(A)及びポリエステル樹脂(B)を混合し、必要に応じて各種添加剤を添加して、溶融混合することにより得ることができる。ポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)との混合比は、既述の割合に準ずる。溶融混合して得られた熱可塑性樹脂材料は、必要に応じてペレット状にして用いることができる。
-熱可塑性樹脂材料の特性-
 本発明のタイヤ(4)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率としては、100MPa~1000MPaが好ましく、100MPa~800MPaがさらに好ましく、100MPa~700MPaが特に好ましい。ポ熱可塑性樹脂材料の引張弾性率が、100MPa~1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的に行うことができる。
 本発明のタイヤ(4)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~20MPaが好ましく、5MPa~17MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 本発明のタイヤ(4)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10~70%が好ましく、15~60%がさらに好ましい。ポリエステル系熱可塑性エラストマーの引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良くすることができる。
 本発明のタイヤ(4)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸びとしては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊し難くすることができる。
 本発明のタイヤ(4)において、熱可塑性樹脂材料のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50~150℃が好ましく、50~130℃がさらに好ましい。熱可塑性樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫行う場合であってもタイヤ骨格体の変形を抑制することができる。
 
<タイヤ(5)においてタイヤ骨格体に適用される熱可塑性樹脂材料>
 本発明のタイヤ(5)は、ポリエステル系熱可塑性エラストマーと、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー、又は前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び該エラストマーを酸変性してなる酸変性エラストマーの混合物と、を含む熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有する。
 既述のように、熱可塑性樹脂材料は、1)ポリエステル系熱可塑性エラストマーと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマーとの組合せ、又は、2)ポリエステル系熱可塑性エラストマーと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーと、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマーとの組合せ、が少なくとも含まれている。
 本発明のタイヤ(5)においては、熱可塑性樹脂材料として、上記1)及び2)いずれの組み合わせを適用した場合であっても、該樹脂材料により形成されたタイヤ骨格体は、優れた引張り特性を発揮すると共に、射出成形性等の製造性にも優れる。さらに、上記2)の組み合わせを適用した場合には、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマーの合計量を一定にして、酸価を制御できることから、射出成形性と弾性率の両立が図れる。
 以下、本発明のタイヤ(5)において適用されるポリエステル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー(他の熱可塑性エラストマー)、及びポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマーについて、説明する。
 「熱可塑性エラストマー」とは、既述の如く、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料を言う。
 「ポリエステル系熱可塑性エラストマー」とは、既述の如く、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを形成するポリエステルを含むポリマーと非晶性でガラス転移温度の低いソフトセグメントを形成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、その構造中にポリエステルからなる部分構造を有するものである。タイヤ(5)に適用されるポリエステル系熱可塑性エラストマーとしては、例えば、JIS K6418に規定されるエステル系熱可塑性エラストマー(TPC)等が挙げられる。
 タイヤ(5)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーの詳細は、タイヤ(1)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーと同様である。タイヤ(1)において説明されたポリエステル系熱可塑性エラストマーに関する事項は、以下においてタイヤ(5)にのみ適用されることが特に言及されている事項を除き、タイヤ(5)におけるポリエステル系熱可塑性エラストマーにおいても同様に適用される。
 「ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー(他の熱可塑性エラストマー)」とは、既述の如く、熱可塑性エラストマーのうち、ポリエステルからなる部分構造を含まないものである。なお、他の熱可塑性エラストマーには、該他の熱可塑性エラストマーを酸変性してなる酸変性エラストマーは含まない。
 本発明のタイヤ(5)において、他の熱可塑性エラストマーとしては、例えば、オレフィン系熱可塑性エラストマー(未変性オレフィン系熱可塑性エラストマー)、スチレン系熱可塑性エラストマー(未変性スチレン系熱可塑性エラストマー)等が挙げられる。
 なお、オレフィン系熱可塑性エラストマー、及びスチレン系熱可塑性エラストマーは、ハードセグメントを構成するポリマーが、それぞれ、オレフィン、及びポリスチレンであるものを言う。
 ポリオレフィン系熱可塑性エラストマー(未変性オレフィン系熱可塑性エラストマー)としては、市販品を用いることもでき、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、A1050S、A4050S、P275)等が挙げられる。
 ポリスチレン系熱可塑性エラストマー(未変性スチレン系熱可塑性エラストマー)としては、市販品を用いることもでき、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、H1031、H1041、H1043、H1051、H1052、H1053、H1082、H1141、H1221、H1272)、Kraton社製のG1641H、G1643M、等が挙げられる。
 「ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる」とは、他の熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることを言う。例えば、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)を用いる場合であれば、オレフィン系熱可塑性エラストマーに、不飽和カルボン酸の不飽和結合部位を結合(例えば、グラフト重合)させる態様が挙げられる。
 他の熱可塑性エラストマーを酸変性させたエラストマー(以下、「酸変性エラストマー」とも称する。)としては、例えば、未変性オレフィン系熱可塑性エラストマー、又は未変性スチレン系熱可塑性エラストマーに、酸性基を有する化合物を結合させたものが挙げられる。
 酸性基を有する化合物は、ポリエステル系熱可塑性エラストマー及び他の熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
 酸変性オレフィン系熱可塑性エラストマーとしては、市販品を用いることもでき、例えば、三井化学(株)製の「タフマー」シリーズ(例えば、MA8510、MH7007、MH7010、MH7020、MP0610、MP0620)等が挙げられる。
 酸変性スチレン系熱可塑性エラストマーとしては、市販品を用いることもでき、例えば、旭化成(株)製の「タフテック」シリーズ(例えば、M1943、M1911、M1913、Kraton社製のFG19181G、等が挙げられる。
 他の熱可塑性エラストマー及び酸変性エラストマーは、熱可塑性樹脂材料が意図しない架橋反応を起こすことを抑制するため、水素添加されていることが好ましい。水素添加型(SEBS)の酸変性エラストマーとしては、前記旭化成(株)製のタフテック等が挙げられる。
 本発明のタイヤ(5)において、熱可塑性樹脂材料の酸価は、0mg-CHONa/gを超えるものであればよい。
 ここで、本明細書において、「熱可塑性樹脂材料の酸価」とは、熱可塑性樹脂材料の全質量に対する酸変性エラストマーの酸変性部位の中和に必要なナトリウムメトキシド(CHONa)の総質量であり、熱可塑性樹脂材料に含まれる酸変性エラストマーが1種である場合には、下記式(1)から算出され、熱可塑性樹脂材料に含まれる酸変性エラストマーが2種以上である場合には、下記式(2)から算出される。
式(1)
〔(酸変性エラストマーAの酸価)×(酸変性エラストマーAの全質量)〕/〔熱可塑性樹脂材料の全質量〕
式(2)
〔(酸変性エラストマーAの酸価)×(酸変性エラストマーAの全質量)+(酸変性エラストマーBの酸価)×(酸変性エラストマーBの全質量)+・・・〕/〔熱可塑性樹脂材料の全質量〕
 なお、本明細書において、酸変性エラストマーの酸価は、酸変性エラストマー1〔g〕に対して、ナトリウムメトキシド(CHONa)を用いて中和滴定を行なった際に用いられるナトリウムメトキシド(CHONa)の質量〔mg〕として測定される。
 熱可塑性樹脂材料の射出成形性の観点からは、本発明のタイヤ(5)における熱可塑性樹脂材料の酸価は、0.1mg-CHONa/g以上10mg-CHONa/g以下であることが好ましく、0.1mg-CHONa/g以上7mg-CHONa/g以下であることがより好ましく、0.1mg-CHONa/g以上5mg-CHONa/g以下であることが更に好ましい。
 熱可塑性樹脂材料の酸価は、酸変性エラストマーの酸価を制御することによって制御してもよいし、熱可塑性樹脂材料に含有する他の熱可塑性エラストマーと酸変性エラストマーとの混合比を制御することによって制御してもよい。
 本発明のタイヤ(5)における熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマーで構成される海相と、酸変性エラストマー及び他の熱可塑性エラストマー(未変性)で構成される島相とを有する海島構造を有する。海相と島相との相界面の相互作用が弱いと、熱可塑性樹脂材料の流動性が増し、射出成形性に優れる。酸変性エラストマーは、分子内に酸変性部位を有するため、酸変性されていないエラストマーに比べ、ポリエステル系熱可塑性エラストマーとの相互作用が強い。
 一方、海島構造において、エラストマーの酸価が高いほど島相が小さく、酸価が低いほど島相が大きくなる傾向にある。エラストマーの酸価が前記範囲であることで、島相が熱可塑性樹脂中に微分散することとなり、熱可塑性樹脂材料の衝撃性が特に向上する。また、熱可塑性樹脂材料の溶融粘度の増大が抑えられるため、熱可塑性樹脂材料の射出成形性に優れる。従って、熱可塑性樹脂材料を用いてタイヤケースを作製するときに、熱可塑性樹脂を高温に加熱しなくて済むため、熱可塑性樹脂材料の過加熱損傷を抑制することができる。
 なお、酸変性エラストマーの島相が熱可塑性樹脂中に微分散していることは、SEM(走査型電子顕微鏡、scanning electron microscope)を用いた写真観察から確認することができる。
 本発明のタイヤ(5)において、熱可塑性樹脂材料として含まれる酸変性エラストマーの酸価は、0mg-CHONa/gを超え20mg-CHONa/g以下であることが好ましく、0mg-CHONa/gを超え17mg-CHONa/g以下であることがより好ましく、0mg-CHONa/gを超え15mg-CHONa/g以下であることがさらに好ましい。
 酸変性エラストマーの酸価は、熱可塑性樹脂材料に含まれる酸変性エラストマーが1種の場合には、当該酸変性エラストマーの酸価が上記の範囲であり、2種以上の場合には、各々の酸変性エラストマーの酸価が上記の範囲であることが好ましい。
 本発明のタイヤ(5)において、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの質量(A)と、他の熱可塑性エラストマー及び酸変性エラストマーの合計質量(B)との割合(A:B)は、ポリエステル系熱可塑性エラストマーを海相とする観点から、95:5~50:50であることが好ましい。より好ましくは、90:10~55:45である。
 また、本発明のタイヤ(5)において、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの含有率は、特に限定されるものではないが、熱可塑性樹脂材料の総量に対して、50質量%~95質量%であることが好ましく、50質量%~90質量%であることがさらに好ましい。
 ポリエステル系熱可塑性エラストマーの含有量を、熱可塑性樹脂材料の総量に対して、50質量%~95質量%とすることで、熱可塑性樹脂材料の特性を十分に発揮させることができ、タイヤの引張り特性を向上させることができる。
 本発明のタイヤ(5)における熱可塑性樹脂材料には、所望に応じて、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
 本発明のタイヤ(5)における熱可塑性樹脂材料は、既述のポリエステル系熱可塑性エラストマー、及び酸変性エラストマー、(熱可塑性樹脂材料が他の熱可塑性エラストマーを含むときは、更に他の熱可塑性エラストマー)を混合し、必要に応じて各種添加剤を添加して、溶融混合することにより得ることができる。ポリエステル系熱可塑性エラストマーと、酸変性エラストマーと、他の熱可塑性エラストマーとの混合比は、既述の割合に準ずる。溶融混合して得られた樹脂は、必要に応じてペレット状にして用いることができる。
-熱可塑性樹脂材料の特性-
 本発明のタイヤ(5)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率としては、100MPa~1000MPaが好ましく、100MPa~800MPaがさらに好ましく、100MPa~700MPaが特に好ましい。ポ熱可塑性樹脂材料の引張弾性率が、100MPa~1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的に行うことができる。
 本発明のタイヤ(5)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5MPa~20MPaが好ましく、5MPa~17MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 本発明のタイヤ(5)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10~70%が好ましく、15~60%がさらに好ましい。ポリエステル系熱可塑性エラストマーの引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良くすることができる。
 本発明のタイヤ(5)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸びは、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 本発明のタイヤ(5)において、熱可塑性樹脂材料のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50~150℃が好ましく、50~130℃がさらに好ましい。熱可塑性樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫行う場合であってもタイヤ骨格体の変形を抑制することができる。
<タイヤ(6)においてタイヤ骨格体に適用される熱可塑性樹脂材料>
 本発明のタイヤ(6)は、少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体(特定共重合体)及びオレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体(特定酸変性共重合体)の少なくとも一方と、を含有するタイヤである。
 本発明のタイヤ(6)係る熱可塑性樹脂材料がポリエステル系熱可塑性エラストマーと、特定共重合体と、特定酸変性共重合体と、を含有することで、本発明に係る熱可塑性樹脂材料をタイヤに適用したときに、耐衝撃性に優れたタイヤを得ることができる。
 以下、ポリエステル系熱可塑性エラストマー、特定共重合体、及び特定酸変性共重合体について説明する。
〔ポリエステル系熱可塑性エラストマー〕
 本発明におけるポリエステル系熱可塑性エラストマーは、弾性を有する高分子化合物であり、結晶性で融点の高いハードセグメントを構成するポリマーと、非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーとしてポリエステル樹脂を含むものである。タイヤ(6)に適用されるポリエステル系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるエステル系熱可塑性エラストマー等が挙げられる。
 タイヤ(6)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーの詳細は、タイヤ(1)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーと同様である。タイヤ(1)において説明されたポリエステル系熱可塑性エラストマーに関する事項は、以下においてタイヤ(6)にのみ適用されることが特に言及されている事項を除き、タイヤ(6)におけるポリエステル系熱可塑性エラストマーにおいても同様に適用される。
-特定共重合体-
 本発明のタイヤ(6)において、熱可塑性樹脂材料が含み得る「オレフィン-(メタ)アクリル酸共重合体」(特定共重合体)とは、オレフィンの繰り返し単位中に、(メタ)アクリル酸由来の部分構造を含む共重合体を言う。「(メタ)アクリル酸」とは、アクリル酸およびメタクリル酸の少なくとも一方を意味する。重合体の態様は、ラジカル重合体であっても、ブロック共重合体であっても、グラフト共重合体であってもよい。
 特定共重合体の数平均分子量(Mn)としては、熱可塑性樹脂材料の溶融成形性の観点から、5,000~10,000,000であることが好ましく、7,000~1,000,000であることがより好ましい。
 オレフィン-(メタ)アクリル酸共重合体において、オレフィンの繰り返し単位を構成するオレフィンは、エチレン、プロピレン、1-ブテンが好ましく、エチレンがより好ましい。
 すなわち、オレフィン-(メタ)アクリル酸共重合体は、エチレン-(メタ)アクリル酸共重合体であることが好ましい。より好ましくは、エチレン-メタクリル酸共重合体である。
 特定共重合体は、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
 特定共重合体は、市販品を用いてもよく、例えば、三井・デュポン ポリケミカル社製のニュクレル(N035C、AN42115C等)等を用いることができる。
-特定酸変性共重合体-
 本発明のタイヤ(6)において、熱可塑性樹脂材料が含み得る「オレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体」(特定酸変性共重合体)とは、オレフィンの繰り返し単位中に、(メタ)アクリレート由来の部分構造を含む共重合体〔すなわち、オレフィン-(メタ)アクリレート共重合体〕に、酸性基(酸基ともいう)を有する化合物を結合させた共重合体を言う。重合体の態様は、ラジカル重合体であっても、ブロック共重合体であっても、グラフト共重合体であってもよい。
 「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの少なくとも一方を意味する。
 「オレフィン-(メタ)アクリレート共重合体に、酸性基を有する化合物を結合する」とは、より具体的には、オレフィン-(メタ)アクリレート共重合体に、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。例えば、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)を用いるとき、オレフィン-(メタ)アクリレート共重合体に、不飽和カルボン酸の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する化合物は、オレフィン-(メタ)アクリレート共重合体の劣化抑制の観点からは、弱酸基であるカルボン酸基(カルボキシ基)を有する化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
 また、特定酸変性共重合体におけるオレフィン-(メタ)アクリレート共重合体において、オレフィンの繰り返し単位を構成するオレフィンは、エチレン、プロピレン、1-ブテンが好ましく、エチレンがより好ましい。すなわち、特定酸変性共重合体におけるオレフィン-(メタ)アクリレート共重合体は、エチレン-(メタ)アクリレート共重合体であることが好ましい。
 従って、特定酸変性共重合体としては、エチレン-(メタ)アクリレート共重合体の酸変性共重合体であることが好ましく、より好ましくは、エチレン-(メタ)アクリレート共重合体のカルボン酸変性共重合体であり、さらに好ましくは、エチレン-アクリレートエチルエステル共重合体のカルボン酸変性共重合体である。
 特定酸変性共重合体は、1種のみを用いてもよいし、2種以上を混合して用いてもよい。
 特定酸変性共重合体の数平均分子量(Mn)としては、熱可塑性樹脂材料の溶融成形性の観点から、5,000~10,000,000であることが好ましく、7,000~1,000,000であることがより好ましい。
 特定酸変性共重合体は、市販品を用いてもよく、例えば、三井・デュポン ポリケミカル社製のHPR(AR2011等)等が挙げられる。
 本発明のタイヤ(6)における熱可塑性樹脂材料は、特定共重合体と特定酸変性共重合体との少なくとも一方を含んでいればよいが、熱可塑性樹脂材料の弾性率を下げ、耐衝撃性に優れたタイヤを得るには、熱可塑性樹脂材料は、特定共重合体と特定酸変性共重合体との両者を含むことが好ましい。
 本発明のタイヤ(6)において、熱可塑性樹脂材料中、ポリエステル系熱可塑性エラストマー(x)と、特定共重合体(y)及び特定酸変性共重合体(z)と、の質量比(x:y+z)は、耐衝撃性の観点から、95:5~50:50であることが好ましく、90:10~50:50であることがより好ましい。
 また、本発明のタイヤ(6)において、熱可塑性樹脂材料中、特定共重合体(y)と、特定酸変性共重合体(z)と、の質量比(y:z)は、95:5~0:100であることが好ましく、90:10~10:90であることがより好ましい。かかる範囲とすることにより、熱可塑性樹脂材料が有する性能を十分に発揮でき、タイヤ性能としての引張弾性、破断強度等の引張り特性を向上することができる。なお、特定共重合体および特定酸変性共重合体は、エチレン-メタクリル酸共重合体と、エチレン-アクリレート共重合体の酸変性体と、を組み合わせて用いることが好ましい。
 さらに、本発明のタイヤ(6)において、熱可塑性樹脂材料中、熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーと、特定共重合体と、特定酸変性共重合体と、の合計含有量は、熱可塑性樹脂材料の性能を十分発揮させる観点から、熱可塑性樹脂材料の全質量に対して、50質量%~100質量%であることが好ましく、55質量%~100質量%であることがより好ましい。
 本発明のタイヤ(6)における熱可塑性樹脂材料には、所望に応じて、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
 本発明のタイヤ(6)における熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマーと、特定共重合体および特定酸変性共重合体の少なくとも一方とを混合し、必要に応じて各種添加剤を添加して、溶融混合することにより得ることができる。ポリエステル系熱可塑性エラストマーと、特定共重合体と、特定酸変性共重合体と、の混合比は、既述の割合に準ずる。溶融混合して得られた熱可塑性樹脂材料は、必要に応じてペレット状にして用いることができる。
-熱可塑性樹脂材料の特性-
 本発明のタイヤ(6)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張弾性率としては、100~1000MPaが好ましく、100~800MPaがさらに好ましく、100~700MPaが特に好ましい。熱可塑性樹脂材料の引張弾性率が、100~1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的に行うことができる。
 本発明のタイヤ(6)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5~20MPaが好ましく、5~17MPaがさらに好ましい。熱可塑性樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 本発明のタイヤ(6)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10~70%が好ましく、15~60%がさらに好ましい。熱可塑性樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性を良くすることができる。
 本発明のタイヤ(6)において、熱可塑性樹脂材料のJIS K7113:1995に規定される引張破壊伸び(JIS K7113:1995)としては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。熱可塑性樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 本発明のタイヤ(6)において、熱可塑性樹脂材料のISO75-2又はASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50~150℃が好ましく、50~130℃がさらに好ましい。熱可塑性樹脂材料の荷重たわみ温度が、50℃以上であると、トレッド等の加流工程における変形を抑制することすることができる。
<タイヤ(7)におけるタイヤ骨格体に適用される樹脂材料>
 本発明のタイヤ(7)は、少なくとも樹脂材料で形成され且つ環状のタイヤ骨格体を有し、前記樹脂材料が、前記樹脂材料が、引張弾性率が150MPa~700MPの範囲にある第1の熱可塑性エラストマーと、損失係数(Tanδ)が前記第1の熱可塑性エラストマーよりも小さい第2の熱可塑性エラストマーと、を含む。
 このように、弾性率の高い第1の熱可塑性エラストマーと低い損失係数(Tanδ)を有する第2の熱可塑性エラストマーとを含む樹脂材料を用いてタイヤ骨格体を形成したタイヤは、タイヤ骨格体のTanδを低く維持したまま弾性率を高めることができる。このため、例えば、タイヤの転がり抵抗を低減させつつ弾性率(耐熱性)を高めることができる。
(熱可塑性エラストマー)
 本発明のタイヤ(7)に適用される前記第1または第2の熱可塑性エラストマーは、それぞれ上述の要件を満たすものを公知の熱可塑性エラストマーの中から本発明の効果を害さない範囲で適宜選定して用いることができる。即ち、第1の熱可塑性エラストマーについては弾性率を基準にして選定し、第2の熱可塑性エラストマーについては第1の熱可塑性エラストマーのTanδを基準に選定することができる。
 本発明のタイヤ(7)において、前記第1または第2の熱可塑性エラストマーとして使用できる公知の熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるポリアミド系熱可塑性エラストマー(TPA)、ポリエステル系熱可塑性エラストマー(TPC)、ポリオレフィン系熱可塑性エラストマー(TPO)、ポリスチレン系熱可塑性エラストマー(TPS)、ポリウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。
 また、以下樹脂材料において同種といった場合には、エステル系同士、スチレン系同士などの形態を指す。
-ポリアミド系熱可塑性エラストマー-
 ポリアミド系熱可塑性エラストマーとは、結晶性で融点の高いハードセグメントを構成するポリマーと非晶性でガラス転移温度の低いソフトセグメントを構成するポリマーとを有する共重合体からなる熱可塑性樹脂材料であって、ハードセグメントを構成するポリマーの主鎖にアミド結合(-CONH-)を有するものを意味する。ポリアミド系熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)等や、特開2004-346273号公報に記載のポリアミド系エラストマー等を挙げることができる。
 本発明のタイヤ(7)に適用されるポリアミド系熱可塑性エラストマーとしては、少なくともポリアミドが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステルまたはポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。また、ポリアミド系熱可塑性エラストマーはハードセグメントおよびソフトセグメントの他に、ジカルボン酸等の鎖長延長剤を用いてもよい。
 前記ハードセグメントを形成するポリアミドとしては、例えば、下記一般式(1)又は一般式(2)で表されるモノマーによって生成されるポリアミドを挙げることができる。
一般式(1)
Figure JPOXMLDOC01-appb-C000006

 
[一般式(1)中、Rは、炭素数2~20の炭化水素の分子鎖、または、炭素数2~20のアルキレン基を表す。]
一般式(2)
Figure JPOXMLDOC01-appb-C000007

 
[一般式(2)中、Rは、炭素数3~20の炭化水素の分子鎖、または、炭素数3~20のアルキレン基を表す。]
 上記一般式(1)又は一般式(2)で表されるモノマーに関する事項を含め、本発明のタイヤ(7)に適用されるポリアミド系熱可塑性エラストマーについての詳細は、本発明のタイヤ(3)に適用されるポリアミド系熱可塑性エラストマーと同様である。タイヤ(3)において説明されたポリアミド系熱可塑性エラストマーに関する事項は、以下においてタイヤ(7)にのみ適用されることが特に言及されている事項を除き、タイヤ(7)におけるポリアミド系熱可塑性エラストマーにおいても同様に適用される。
-ポリスチレン系熱可塑性エラストマー
 前記ポリスチレン系熱可塑性エラストマーは、少なくともポリスチレンがハードセグメントを構成し、他のポリマー(例えば、ポリブタジエン、ポリイソプレン、ポリエチレン、水添ポリブタジエン、水添ポリイソプレン等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。
 本発明のタイヤ(7)において、タイヤ骨格体に適用されるポリスチレン系熱可塑性エラストマーの詳細は、本発明のタイヤ(2)において、タイヤ骨格体に適用されるポリスチレン系熱可塑性エラストマーと同様である。タイヤ(2)において説明されたポリスチレン系熱可塑性エラストマーに関する事項は、以下においてタイヤ(7)にのみ適用されることが特に言及されている事項を除き、タイヤ(7)におけるポリスチレン系熱可塑性エラストマーにおいても同様に適用される。
-ポリウレタン系熱可塑性エラストマー-
 ポリウレタン系熱可塑性エラストマーは、少なくともポリウレタンが物理的な凝集によって疑似架橋を形成しているハードセグメントを構成し、他のポリマーが非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられ、例えば、下記式Aで表される単位構造を含むソフトセグメントと、下記式Bで表される単位構造を含むハードセグメントとを含む共重合体として表すことができる。
Figure JPOXMLDOC01-appb-C000008

 
 式A中、Pは、長鎖脂肪族ポリエーテルまたは長鎖脂肪族ポリエステルを表す。式A又は式B中、Rは、脂肪族炭化水素、脂環族炭化水素、芳香族炭化水素を表す。式B中、P’は、短鎖脂肪族炭化水素、脂環族炭化水素、または、芳香族炭化水素を表す。]
 上記式Aで表される単位構造を含むソフトセグメントと上記式Bで表される単位構造を含むハードセグメントとを含む共重合体に関する事項を含め、本発明のタイヤ(7)に適用されるポリウレタン系熱可塑性エラストマーについての詳細は、本発明のタイヤ(2)に適用されるポリアミド系熱可塑性エラストマーと同様である。
 タイヤ(2)において説明されたポリウレタン系熱可塑性エラストマーに関する事項は、以下においてタイヤ(7)に適用されることが特に言及されている事項を除き、タイヤ(7)におけるポリウレタン系熱可塑性エラストマーにおいても同様に適用される。
 本発明のタイヤ(7)に適用されるポリウレタン系熱可塑性エラストマーとして具体的には、トリレンジイソシアネート(TDI)/ポリエステル系ポリオール共重合体、TDI/ポリエーテル系ポリオール共重合体、TDI/カプロラクトン系ポリオール共重合体、TDI/ポリカーボネート系ポリオール共重合体、4,4’-ジフェニルメタンジイソシアネート(MDI)/ポリエステル系ポリオール共重合体、MDI/ポリエーテル系ポリオール共重合体、MDI/カプロラクトン系ポリオール共重合体、MDI/ポリカーボネート系ポリオール共重合体が好ましく、TDIとポリエステル系ポリオール、TDIとポリエーテル系ポリオール、MDIとポリエステルポリオール、MDIとポリエーテル系ポリオールが更に好ましい。
 また、本発明のタイヤ(7)におけるポリウレタン系熱可塑性エラストマーの市販品としては、例えば、市販品のBASF社製の「エラストラン」シリーズ(例えば、ET680、ET880、ET690、ET890等)、(株)クラレ社製「クラミロンU」シリーズ(例えば、2000番台、3000番台、8000番台、9000番台)、日本ミラクトラン(株)製の「ミラクトラン」シリーズ(例えば、XN-2001、XN-2004、P390RSUP、P480RSUI、P26MRNAT、E490、E590、P890)等を用いることができる。
-ポリオレフィン系熱可塑性エラストマー-
 ポリオレフィン系熱可塑性エラストマーとしては、少なくともポリオレフィンが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、前記ポリオレフィン、他のポリオレフィン、ポリビニル化合物)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。前記ハードセグメントを形成するポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、アイソタクチックポリプロピレン、ポリブテン等が挙げられる。
 本発明のタイヤ(7)に適用されるポリオレフィン系熱可塑性エラストマーについての詳細は、本発明のタイヤ(2)に適用されるポリオレフィン系熱可塑性エラストマーと同様である。
 タイヤ(2)において説明されたポリオレフィン系熱可塑性エラストマーに関する事項は、以下においてタイヤ(7)に適用されることが特に言及されている事項を除き、タイヤ(7)におけるポリオレフィン系熱可塑性エラストマーにおいても同様に適用される。
 なお、本発明のタイヤ(7)に適用されるポリオレフィン系熱可塑性エラストマーにおいては、ハードセグメント(x)およびソフトセグメント(y)との質量比(x:y)は、成形性の観点から、50:50~95:15が好ましく、50:50~90:10が更に好ましい。
 本発明のタイヤ(7)に適用されるポリオレフィン系熱可塑性エラストマーとしては、例えば、本発明のタイヤ(2)に適用されるポリオレフィン系熱可塑性エラストマーの市販品として例示したものの他、更に、前記ポリオレフィン系熱可塑性エラストマーとしては、例えば、市販品のプライムポリマー製の「プライムTPO」シリーズ(例えば、E-2900H、F-3900H、E-2900、F-3900、J-5900、E-2910、F-3910、J-5910、E-2710、F-3710、J-5910、E-2740、F-3740、R110MP、R110E、T310E、M142E等)等も用いることができる。
-ポリエステル系熱可塑性エラストマー-
 ポリエステル系熱可塑性エラストマーとしては、少なくともポリエステルが結晶性で融点の高いハードセグメントを構成し、他のポリマー(例えば、ポリエステルまたはポリエーテル等)が非晶性でガラス転移温度の低いソフトセグメントを構成している材料が挙げられる。
 本発明のタイヤ(7)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーの詳細は、本発明のタイヤ(1)において、タイヤ骨格体に適用されるポリエステル系熱可塑性エラストマーと同様である。タイヤ(1)において説明されたポリエステル系熱可塑性エラストマーに関する事項は、以下においてタイヤ(7)にのみ適用されることが特に言及されている事項を除き、タイヤ(7)におけるポリエステル系熱可塑性エラストマーにおいても同様に適用される。
 なお、タイヤ(7)に適用される熱可塑性エラストマーにおけるハードセグメントとソフトセグメントとの組合せとしては、上述で挙げたハードセグメントとソフトセグメントとのそれぞれの組合せを挙げることができる。この中でもハードセグメントがポリブチレンテレフタレート、ソフトセグメント脂肪族ポリエーテルの組み合わせが好ましく、ハードセグメントがポリブチレンテレフタレート、ソフトセグメントがポリ(エチレンオキシド)グリコールが更に好ましい。
 また、本発明のタイヤ(7)に適用される熱可塑性エラストマーとしては、熱可塑性エラストマーを酸変性してなるものを用いてもよい。
 前記「熱可塑性エラストマーを酸変性してなるもの」とは、熱可塑性エラストマーに、カルボン酸基、硫酸基、燐酸基等の酸性基を有する不飽和化合物を結合させることをいう。例えば、酸性基を有する不飽和化合物として、不飽和カルボン酸(一般的には、無水マレイン酸)を用いるとき、オレフィン系熱可塑性エラストマーに、不飽和カルボン酸の不飽和結合部位を結合(例えば、グラフト重合)させることが挙げられる。
 酸性基を有する化合物は、ポリアミド系熱可塑性エラストマーおよびポリアミド系熱可塑性エラストマー以外の熱可塑性エラストマーの劣化抑制の観点からは、弱酸基であるカルボン酸基を有する化合物が好ましく、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、マレイン酸等が挙げられる。
 上述の熱可塑性エラストマーは、前記ハードセグメントを形成するポリマーおよびソフトセグメントを形成するポリマーを公知の方法によって共重合することで合成することができる。
-熱可塑性エラストマーの物性-
 上述の通り、本発明のタイヤ(7)に適用される第1の熱可塑性エラストマーの引張弾性率(JIS K7113:1995に規定される引張弾性率)は150MPa~700MPaである。前記第1の熱可塑性エラストマーの引張弾性率が150MPa未満であると、成形品(タイヤ骨格体)の弾性率が低く、耐熱性に劣る成形体となってしまう。また、第1の熱可塑性エラストマーの引張弾性率が700MPaを超えると、タイヤ骨格体の柔軟性が損なわれ、成形加工性に劣るものとなってしまう。
 前記タイヤ骨格体の引張弾性率をより好ましい範囲に設定するという観点からは、第1の熱可塑性エラストマーの引張弾性率は200MPa~500MPaの熱可塑性エラストマーが好ましく、300MPa~500MPaが更に好ましい。
 前記弾性率は、例えば、島津製作所製 島津オートグラフAGS-J(5kN)を用いて、JISK6251:1993に規定されるダンベル状試験片(5号形試験片)を引っ張り速度200mm/minとして測定した値である。
 本発明のタイヤ(7)に適用される第2の熱可塑性エラストマーの引張弾性率は、本発明の効果を損なわない限り特に限定されるものではないが、前記タイヤ骨格体の引張弾性率をより好ましい範囲に設定するという観点から、20MPa~300MPaが好ましく、40MPa~200MPaが更に好ましい。
 上述の通り、本発明のタイヤ(7)に適用される第2の熱可塑性エラストマーの損失係数(Tanδ)は、第1の熱可塑性エラストマーの損失係数よりも小さい。高弾性率の第1の熱可塑性エラストマーよりも第2の熱可塑性エラストマーの損失係数(Tanδ)が大きな場合には、タイヤの高弾性率化と低Tanδ化の両立という効果を達成できない。
 ここで、「損失係数(Tanδ)」は30℃,20Hz,せん断歪み1%における貯蔵剪断弾性率(G’)と損失剪断弾性率(G”)との比(G”/G‘)から算出される値であり、材料が変形する際にその材料がどの程度のエネルギーを吸収するか(熱に変わるか)を示す値である。Tanδは、値が大きい程エネルギーを吸収するため、タイヤとしての転がり抵抗が増大し、結果としてタイヤの燃費性能低下の要因となる。尚、熱可塑性エラストマーのTanδは、動的粘弾性測定装置(Dynamic-Mechanical Analysis:DMA)で測定することができる。
 前記第2の熱可塑性エラストマーの損失係数(Tanδ)と前記第1の熱可塑性エラストマーの損失係数(Tanδ)と差(Tanδ-Tanδ)は、基準となる第1の熱可塑性エラストマーとして何を用いられるかによって異なるが、通常、0.02以上が好ましく、0.05以上が更に好ましい。
 前記第1の熱可塑性エラストマー自体のTanδとしては、タイヤの高弾性率化と低Tanδ化の両立という観点からは、0.01~0.2が好ましく、0.01~0.15が更に好ましい。
 また、第2の熱可塑性エラストマーのTanδは、前記第1の熱可塑性エラストマーのTanδを基準に設定されるが、タイヤの高弾性率化と低Tanδ化の両立という観点からは、0.01~0.08が好ましく、0.01~0.06が更に好ましい。
 また、前記第1の熱可塑性エラストマーのハードセグメントのガラス転移温度(Tg)としては、射出成型時の取り扱い性など製造性、引張弾性率とtanδ値とのバランスの観点から、-20℃~100℃が好ましく、0℃~80℃が更に好ましい。
 さらに、前記第2の熱可塑性エラストマーのハードセグメントのガラス転移温度(Tg)としては、射出成型時の取り扱い性など製造性、引張弾性率とtanδ値とのバランスの観点から、-50℃~100℃が好ましく、-30℃~70℃が更に好ましい。
 前記ハードセグメントのガラス転移温度は、示差走査熱量測定(Differential scanning calorimetry:DSC)で測定することができる。尚、本発明において、「ハードセグメント」のガラス転移温度とは、ハードセグメントを形成するポリマー単体のガラス転移温度を意味する。
 前記高弾性の第1の熱可塑性エラストマーとしては、例えば、ポエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマーが挙げられ、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマーが好ましく、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーが更に好ましい。
 前記低Tanδの第2の熱可塑性エラストマーとしては、例えば、ポエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマーが挙げられ、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマーが好ましく、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーが更に好ましい。
 また、第1および第2の熱可塑性エラストマーの組合せとしては、相溶化による弾性率や強度などの機械特性の向上、粘弾性特性の向上の観点から、同種(例えば、アミド系熱可塑性エラストマー同士の組合せ、ポリエステル系熱可塑性エラストマー同士の組合せ等が好ましい。
 以上の観点からすると、上記第1および第2の熱可塑性エラストマーの組合せとしては、ポリエステル系エラストマーとポリエステル系エラストマーとの組合せ、ポリアミド系エラストマーとポリアミド系エラストマーとの組合せが好ましく、ポリエステル系エラストマーとポリエステル系エラストマーとの組合せが更に好ましい。
(樹脂材料)
 前記第1および第2の熱可塑性エラストマーを含む樹脂材料中において、前記第1の熱可塑性エラストマー(x)と、前記第2の熱可塑性エラストマー(y)との質量比(x/y)は、タイヤ骨格体の高弾性率化および低Tanδの両立の効果を十分に発揮するという観点から、10/90~90/10であることが好ましく、20/80~80/20が更に好ましく、30/70~70/30が特に好ましい。
 前記第1および第2の熱可塑性エラストマーを含む樹脂材料の融点としては、通常100℃~350℃、好ましくは100℃~250℃程度であるが、タイヤの生産性の観点から120℃~250℃程度が好ましく、150℃~200℃が更に好ましい。このように、融点が120~250℃の熱可塑性エラストマーを含む熱可塑性樹脂材料を用いることで、例えばタイヤの骨格体を、その分割体(骨格片)を融着して形成する場合に、接合部の加熱温度をタイヤ骨格体を形成する熱可塑性樹脂材料の融点以上に設定することができる。本発明のタイヤは、熱可塑性エラストマーを含む熱可塑性樹脂材料を用いるため、120℃~250℃の温度範囲で融着された骨格体であってもタイヤ骨格片同士の接着強度が十分である。このため、本発明のタイヤは耐パンク性や耐摩耗性など走行時における耐久性に優れる。尚、前記加熱温度は、タイヤ骨格片を形成する熱可塑性エラストマーを含む熱可塑性樹脂材料の融点よりも10~150℃高い温度が好ましく、10~100℃高い温度が更に好ましい。
 また、本発明のタイヤ(7)において樹脂材料中の第1および第2の熱可塑性エラストマーの総含有量は、特に限定されるものではないが、樹脂材料の総量に対して、50質量%以上が好ましく、90質量%以上が更に好ましい。第1および第2の熱可塑性エラストマーの総含有量が、樹脂材料の総量に対して、50質量%以上であると第1および第2の熱可塑性エラストマーを併用した効果を十分に発揮させることができる。前記樹脂材料には、所望に応じて、ゴム、他の熱可塑性エラストマー、熱可塑性樹脂、各種充填剤(例えば、シリカ、炭酸カルシウム、クレイ)、老化防止剤、オイル、可塑剤、着色剤、耐候剤、補強材等の各種添加剤を含有させてもよい。
 本発明のタイヤ(7)における樹脂材料は、第1および第2の熱可塑性エラストマーを混合し、必要に応じて各種添加剤を添加して、公知の方法(例えば、溶融混合)で適宜混合することにより得ることができる。溶融混合して得られた熱可塑性樹脂材料は、必要に応じてペレット状にして用いることができる。
 本発明のタイヤ(7)において、樹脂材料自体のJIS K7113:1995に規定される引張弾性率としては、100~1000MPaが好ましく、100~800MPaがさらに好ましく、100~700MPaが特に好ましい。樹脂材料の引張弾性率が、100~1000MPaであると、タイヤ骨格の形状を保持しつつリム組みを効率的に行うことができる。
 本発明のタイヤ(7)において、樹脂材料自体のJIS K7113:1995に規定される引張降伏強さは、5MPa以上が好ましく、5~20MPaが好ましく、5~17MPaがさらに好ましい。樹脂材料の引張降伏強さが、5MPa以上であると、走行時などにタイヤにかかる荷重に対する変形に耐えることができる。
 本発明のタイヤ(7)において、樹脂材料自体のJIS K7113:1995に規定される引張降伏伸びは、10%以上が好ましく、10~70%が好ましく、15~60%がさらに好ましい。樹脂材料の引張降伏伸びが、10%以上であると、弾性領域が大きく、リム組み性をよくすることができる。
 本発明のタイヤ(7)において、樹脂材料自体のJIS K7113:1995に規定される引張破壊伸び(JIS K7113)としては、50%以上が好ましく、100%以上が好ましく、150%以上がさらに好ましく、200%以上が特に好ましい。樹脂材料の引張破壊伸びが、50%以上であると、リム組み性がよく、衝突に対して破壊しにくくすることができる。
 本発明のタイヤ(7)において、樹脂材料自体のISO75-2またはASTM D648に規定される荷重たわみ温度(0.45MPa荷重時)としては、50℃以上が好ましく、50~150℃が好ましく、50~130℃がさらに好ましい。樹脂材料の荷重たわみ温度が、50℃以上であると、タイヤの製造において加硫を行う場合であってもタイヤ骨格体の変形を抑制することができる。
[補強コード層を構成する樹脂材料]
 本発明のタイヤ(1)~(7)は、タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有する。また、本発明のタイヤ(4)~(7)は、タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有していてもよい。
 本発明のタイヤ(1)~(7)においては、補強コード層に樹脂材料を含むように構成することができる。
 このように、補強コード層に樹脂材料が含まれていると、補強コード部材をクッションゴムで固定する場合と比して、タイヤと補強コード層との硬さの差を小さくできるため、更に補強コード部材をタイヤ骨格体に密着・固定することができる。上述のように「樹脂材料」とは、熱可塑性樹脂(熱可塑性エラストマーを含む)及び熱硬化性樹脂を含む概念であり、加硫ゴムは含まない。
 更に、補強コード部材が特にスチールコードである場合において、タイヤ処分時に補強コード部材をクッションゴムから分離しようとすると、加硫ゴムは加熱だけでは補強コード部材と分離させるのが難しいのに対し、樹脂材料を含む場合は加熱のみで補強コード部材と容易に分離することが可能である。このため、タイヤのリサイクル性の点で有利である。また、樹脂材料は通常加硫ゴムに比して損失係数(Tanδ)が低い。このため、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 補強コード層に用いることのできる熱硬化性樹脂としては、例えば、フェノール樹脂、ユリア樹脂、メラミン樹脂、エポキシ樹脂、ポリアミド樹脂、ポリエステル樹脂等が挙げられる。
 熱可塑性樹脂としては、例えば、ウレタン樹脂、オレフィン樹脂、塩化ビニル樹脂、ポリアミド樹脂、ポリエステル樹脂等が挙げられる。
 熱可塑性エラストマーとしては、例えば、JIS K6418:2007に規定されるアミド系熱可塑性エラストマー(TPA)、エステル系熱可塑性エラストマー(TPC)、オレフィン系熱可塑性エラストマー(TPO)、スチレン系熱可塑性エラストマー(TPS)、ウレタン系熱可塑性エラストマー(TPU)、熱可塑性ゴム架橋体(TPV)、若しくはその他の熱可塑性エラストマー(TPZ)等が挙げられる。なお、走行時に必要とされる弾性と製造時の成形性等を考慮すると熱可塑性エラストマーを用いることが好ましい。
 また、樹脂材料の同種とは、エステル系同士、スチレン系同士などの形態を指す。
 補強コード層に用いられる樹脂材料の弾性率(JIS K7113:1995)は、タイヤ骨格体を形成する熱可塑性樹脂の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。樹脂材料の弾性率がタイヤ骨格体を形成する熱可塑性樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、樹脂材料の弾性率がタイヤ骨格体を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。
 なお、本発明のタイヤ(3)及び(6)において、前記補強コード層に樹脂材料を含めた場合、補強コードの引き抜き性(引き抜かれにくさ)を高める観点から、前記補強コード部材はその表面が20%以上樹脂材料に覆われていることが好ましく、50%以上覆われていることが更に好ましい。また、前記補強コード層中の樹脂材料の含有量は、補強コードを除いた補強コード層を構成する材料の総量に対して、補強コードの引き抜き性を高める観点から、20質量%以上が好ましく、50質量%以上が更に好ましい。
[本発明のタイヤ(1)~(7)の第1の実施形態]
 以下に、図面に従って本発明のタイヤ(1)~(7)の第1の実施形態に係るタイヤを説明する。
 以下に説明される第1の実施形態に関する事項は、特に断りの無い限り、本発明のタイヤ(1)~(7)の第1の実施形態として共通する事項である。
 第1の実施形態のタイヤ10について説明する。図1(A)は、本発明の一実施形態に係るタイヤの一部の断面を示す斜視図である。図1(B)は、リムに装着したビード部の断面図である。図1に示すように、第1の実施形態のタイヤ10は、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。
 図1(A)に示すように、タイヤ10は、図1(B)に示すリム20のビードシート21及びリムフランジ22に接触する1対のビード部12と、ビード部12からタイヤ径方向外側に延びるサイド部14と、一方のサイド部14のタイヤ径方向外側端と他方のサイド部14のタイヤ径方向外側端とを連結するクラウン部16(外周部)と、からなるタイヤケース17を備えている。
 タイヤケース17が、本発明のタイヤ(1)が備えるタイヤケースである場合、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン(株)製「ハイトレル5557」で形成されている。
 タイヤケース17が、本発明のタイヤ(2)が備えるタイヤケースである場合、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン(株)製「ハイトレル 6347」)と、ポリウレタン系熱可塑性エラストマー(BASF社製「ET680」)とを、質量比80:20で含む熱可塑性樹脂材料で形成されている。
 タイヤケース17が、本発明のタイヤ(3)が備えるタイヤケースである場合、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料により形成されている。
 タイヤケース17が、本発明のタイヤ(4)が備えるタイヤケースである場合、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン(株)製「ハイトレル 3046」)と、ポリエステル樹脂(ポリプラスチックス(株)製「ジュラネックス 2000」)との混合材料で形成されている。
 タイヤケース17が、本発明のタイヤ(5)が備えるタイヤケースである場合、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン(株)製「ハイトレル 6347」)と、酸変性されたα-オレフィン系熱可塑性エラストマー(三井化学(株)製「タフマー MA7010」)との混合材料〔熱可塑性樹脂材料の酸価=1.11mg-CHONa/g〕で形成されている。
 タイヤケース17が、本発明のタイヤ(6)が備えるタイヤケースである場合、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製のポリエステル系熱可塑性エラストマー「ハイトレル、6347」)と、特定共重合体(三井・デュポン ポリケミカル社製のエチレン-メタクリル酸共重合体「ニュクレル、N035C」)と、特定酸変性共重合体(三井・デュポン ポリケミカル社製のエチレン-アクリレートエチルエステル共重合体の酸変性体「HPR、AR2011」)との混合材料で構成される熱可塑性樹脂材料により形成されている。
 タイヤケース17が、本発明のタイヤ(7)が備えるタイヤケースである場合、該タイヤケース17は、ポリエステル系エラストマー(第1の熱可塑性エラストマー)(東レ・デュポン社製「ハイトレル7247」;弾性率422MPa、Tanδ0.102)と、ポリエステル系エラストマー (第2の熱可塑性エラストマー)((東レ・デュポン社製「ハイトレル4047」;弾性率45MPa、Tanδ0.029)との混合物によって形成されている。
 また、前記第1熱可塑性エラストマー(x)および第2の熱可塑性エラストマー(y)の質量比(x/y)は、55:45である。
 第1の実施形態においてタイヤケース17は、本発明におけるの熱可塑性樹脂材料(ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料)のみで形成されているが、本発明はこの構成に限定されず、従来一般のゴム製の空気入りタイヤと同様に、タイヤケース17の各部位毎(サイド部14、クラウン部16、ビード部12など)に異なる特徴を有する熱可塑性樹脂材料を用いてもよい。また、タイヤケース17(例えば、ビード部12、サイド部14、クラウン部16等)に、補強材(高分子材料や金属製の繊維、コード、不織布、織布等)を埋設配置し、補強材でタイヤケース17を補強してもよい。
 第1の実施形態のタイヤケース17は、熱可塑性樹脂材料で形成された一対のタイヤケース半体(タイヤ骨格片)17A同士を接合させたものである。タイヤケース半体17Aは、一つのビード部12と一つのサイド部14と半幅のクラウン部16とを一体として射出成形等で成形された同一形状の円環状のタイヤケース半体17Aを互いに向かい合わせてタイヤ赤道面部分で接合することで形成されている。
 本発明のタイヤ(1)においては、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料により、一対のタイヤケース半体17Aが形成されている。
 本発明のタイヤ(2)においては、ポリエステル系熱可塑性エラストマーと、他のエラストマーとを含む熱可塑性樹脂材料により、一対のタイヤケース半体17Aが形成されている。
 本発明のタイヤ(3)においては、ポリエステル系熱可塑性エラストマーと、ゴムとを含む熱可塑性樹脂材料により、一対のタイヤケース半体17Aが形成されている。
 本発明のタイヤ(4)においてはポリエステル系熱可塑性エラストマー(A)と、ポリエステル樹脂(B)とを含む熱可塑性樹脂材料により、一対のタイヤケース半体17Aが形成されている。
 本発明のタイヤ(5)においては、ポリエステル系熱可塑性エラストマーと、酸変性エラストマーとを含む熱可塑性樹脂材料により、一対のタイヤケース半体17Aが形成されている。特に、熱可塑性樹脂材料の酸価が0.1mg-CHONa/g~5mg-CHONa/gである場合には、熱可塑性樹脂材料の流動性に優れ、溶融粘度の増大が抑えられ、射出成形性に優れる。
 本発明のタイヤ(6)においては、ポリエステル系熱可塑性エラストマーと、特定共重合体及び特定酸変性共重合体の少なくとも一方とを含む熱可塑性樹脂材料により、一対のタイヤケース半体17Aが形成されている。そのため、熱可塑性樹脂材料が流動性に優れ、タイヤケース半体17Aの射出成形を容易に行なうことができる。
 本発明のタイヤ(7)においては、第1および第2の熱可塑性エラストマーを含む樹脂材料により、一対のタイヤケース半体(タイヤ骨格片)17Aが形成されている。
 なお、タイヤケース17は、2つの部材を接合して形成するものに限らず、3以上の部材を接合して形成してもよい。
 ポリエステル系熱可塑性エラストマーを含む樹脂材料で形成されるタイヤケース半体17Aは、例えば、真空成形、圧空成形、インジェクション成形、メルトキャスティング等で成形することができる。このため、従来のようにゴムでタイヤケースを成形する場合に比較して、加硫を行う必要がなく、製造工程を大幅に簡略化でき、成形時間を省略することができる。
 また、本実施形態では、タイヤケース半体17Aは左右対称形状、即ち、一方のタイヤケース半体17Aと他方のタイヤケース半体17Aとが同一形状とされているので、タイヤケース半体17Aを成形する金型が1種類で済むメリットもある。
 第1の本実施形態において、図1(B)に示すようにビード部12には、従来一般の空気入りタイヤと同様の、スチールコードからなる円環状のビードコア18が埋設されている。しかし、本発明はこの構成に限定されず、ビード部12の剛性が確保され、リム20との嵌合に問題なければ、ビードコア18を省略することもできる。なお、スチールコード以外に、有機繊維コード、樹脂被覆した有機繊維コード、または硬質樹脂などで形成されていてもよい。
 第1の実施形態では、ビード部12のリム20と接触する部分や、少なくともリム20のリムフランジ22と接触する部分に、タイヤケース17を構成する樹脂材料よりもシール性に優れた材料、例えば、ゴムからなる円環状のシール層24が形成されている。このシール層24はタイヤケース17(ビード部12)とビードシート21とが接触する部分にも形成されていてもよい。タイヤケース17を構成するポリエステル系熱可塑性エラストマーよりもシール性に優れた材料としては、タイヤケース17を構成するポリエステル系熱可塑性エラストマーに比して軟質な材料を用いることができる。シール層24に用いることのできるゴムとしては、従来一般のゴム製の空気入りタイヤのビード部外面に用いられているゴムと同種のゴムを用いることが好ましい。また、タイヤケース17を形成する樹脂材料のみでリム20との間のシール性が確保できれば、ゴムのシール層24は省略してもよく、シール性に優れる熱可塑性樹脂(熱可塑性エラストマーを含む。)を用いてもよい。
 本発明のタイヤ(1)~(7)の第1の実施形態に適用されるこのような熱可塑性樹脂としては、ポリアミド樹脂、ポリウレタン系樹脂、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル樹脂等の樹脂やこれら樹脂とゴム若しくはエラストマーとのブレンド物等が挙げられる。また、熱可塑性エラストマーとしては、例えば、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー或いは、これらエラストマー同士の組み合わせや、ゴムとのブレンド物等が挙げられる。
 図1に示すように、クラウン部16には、タイヤケース17を構成する樹脂材料よりも剛性が高い補強コード26がタイヤケース17の周方向に巻回されている。補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、補強コード層28を形成している。補強コード層28のタイヤ径方向外周側には、タイヤケース17を構成するポリエステル系熱可塑性エラストマーよりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が配置されている。
 図2を用いて補強コード26によって形成される補強コード層28について説明する。図2は、第1の実施形態のタイヤのタイヤケースのクラウン部に補強コード26が埋設された状態を示すタイヤ回転軸に沿った断面図である。図2に示されるように、補強コード26は、タイヤケース17の軸方向に沿った断面視で、少なくとも一部がクラウン部16に埋設された状態で螺旋状に巻回されており、タイヤケース17の外周部の一部と共に図2において破線部で示される補強コード層28を形成している。補強コード26のクラウン部16に埋設された部分は、クラウン部16(タイヤケース17)を構成する樹脂材料と密着した状態となっている。補強コード26としては、金属繊維や有機繊維等のモノフィラメント(単線)、又は、スチール繊維を撚ったスチールコードなどこれら繊維を撚ったマルチフィラメント(撚り線)などを用いることができる。なお、第1の実施形態において補強コード26としては、スチールコードが用いられている。
 また、図2において埋設量Lは、タイヤケース17(クラウン部16)に対する補強コード26のタイヤ回転軸方向への埋設量を示す。補強コード26のクラウン部16に対する埋設量Lは、補強コード26の直径Dの1/5以上であれば好ましく、1/2を超えることがさらに好ましい。そして、補強コード26全体がクラウン部16に埋設されることが最も好ましい。補強コード26の埋設量Lが、補強コード26の直径Dの1/2を超えると、補強コード26の寸法上、埋設部から飛び出し難くなる。また、補強コード26全体がクラウン部16に埋設されると、表面(外周面)がフラットになり、補強コード26が埋設されたクラウン部16上に部材が載置されても補強コード周辺部に空気が入るのを抑制することができる。なお、補強コード層28は、従来のゴム製の空気入りタイヤのカーカスの外周面に配置されるベルトに相当するものである。
 上述のように補強コード層28のタイヤ径方向外周側にはトレッド30が配置されている。このトレッド30に用いるゴムは、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。なお、トレッド30の代わりに、タイヤケース17を構成するポリエステル系熱可塑性エラストマーよりも耐摩耗性に優れる他の種類の熱可塑性樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターンが形成されている。
 以下、本発明のタイヤの製造方法について説明する。
(タイヤケース成形工程)
 まず、薄い金属の支持リングに支持されたタイヤケース半体同士を互いに向かい合わせる。次いで、タイヤケース半体の突き当て部分の外周面と接するように図を省略する接合金型を設置する。ここで、前記接合金型はタイヤケース半体Aの接合部(突き当て部分)周辺を所定の圧力で押圧するように構成されている。次いで、タイヤケース半体の接合部周辺を、タイヤケースを構成する熱可塑性樹脂材料の融点以上で押圧する。タイヤケース半体の接合部が接合金型によって加熱・加圧されると、前記接合部が溶融しタイヤケース半体同士が融着しこれら部材が一体となってタイヤケース17が形成される。タイヤケースを構成する樹脂材料には、ポリエステル系熱可塑性エラストマーが含まれているため、該樹脂材料は、使用環境の温度変動による変形や硬さの変化が小さい。従って、温度変化による乗り心地への影響が小さいと考えられる。
 尚、本実施形態においては接合金型を用いてタイヤケース半体の接合部を加熱したが、本発明の製造方法はこれに限定されず、例えば、別に設けた高周波加熱機等によって前記接合部を加熱したり、予め熱風、赤外線の照射等によって軟化又は溶融させ、接合金型によって加圧して。タイヤケース半体を接合させてもよい。
(補強コード部材巻回工程)
 次に、補強コード巻回工程について図3を用いて説明する。図3は、コード加熱装置、及びローラ類を用いてタイヤケースのクラウン部に補強コードを埋設する動作を説明するための説明図である。図3において、コード供給装置56は、補強コード26を巻き付けたリール58と、リール58のコード搬送方向下流側に配置されたコード加熱装置59と、補強コード26の搬送方向下流側に配置された第1のローラ60と、第1のローラ60をタイヤ外周面に対して接離する方向に移動する第1のシリンダ装置62と、第1のローラ60の補強コード26の搬送方向下流側に配置される第2のローラ64と、及び第2のローラ64をタイヤ外周面に対して接離する方向に移動する第2のシリンダ装置66と、を備えている。第2のローラ64は、金属製の冷却用ローラとして利用することができる。また、本実施形態において、第1のローラ60または第2のローラ64の表面は、溶融又は軟化した熱可塑性樹脂材料の付着を抑制するためにフッ素樹脂(本実施形態では、テフロン(登録商標))でコーティングされている。なお、本実施形態では、コード供給装置56は、第1のローラ60または第2のローラ64の2つのローラを有する構成としているが、本発明はこの構成に限定されず、何れか一方のローラのみ(即ち、ローラ1個)を有している構成でもよい。
 また、コード加熱装置59は、熱風を生じさせるヒーター70及びファン72を備えている。また、コード加熱装置59は、内部に熱風が供給される、内部空間を補強コード26が通過する加熱ボックス74と、加熱されたコード26を排出する排出口76とを備えている。
 本工程においては、まず、コード加熱装置59のヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。次に、リール58から巻き出した補強コード26を、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、補強コード26の温度を100~200℃程度に加熱)する。加熱された補強コード26は、排出口76を通り、図3の矢印R方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻きつけられる。ここで、加熱された補強コード26がクラウン部16の外周面に接触すると、接触部分の熱可塑性樹脂材料が溶融又は軟化し、加熱された補強コード26の少なくとも一部がクラウン部16の外周面に埋設される。このとき、溶融又は軟化した熱可塑性樹脂材料に加熱された補強コード26が埋設されるため、熱可塑性樹脂材料と補強コード26とが隙間がない状態、つまり密着した状態となる。これにより、補強コード26を埋設した部分へのエア入りが抑制される。なお、補強コード26をタイヤケース17の熱可塑性樹脂材料の融点よりも高温に加熱することで、補強コード26が接触した部分の熱可塑性樹脂材料の溶融又は軟化が促進される。このようにすることで、クラウン部16の外周面に補強コード26を埋設しやすくなると共に、効果的にエア入りを抑制することができる。
 また、補強コード26の埋設量Lは、補強コード26の加熱温度、補強コード26に作用させるテンション、及び第1のローラ60による押圧力等によって調整することができる。そして、本実施形態では、補強コード26の埋設量Lが、補強コード26の直径Dの1/5以上となるように設定されている。なお、補強コード26の埋設量Lとしては、直径Dの1/2を超えることがさらに好ましく、補強コード26全体が埋設されることが最も好ましい。
 このようにして、加熱した補強コード26をクラウン部16の外周面に埋設しながら巻き付けることで、タイヤケース17のクラウン部16の外周側に補強コード層28が形成される。
 次に、タイヤケース17の外周面に加硫済みの帯状のトレッド30を1周分巻き付けてタイヤケース17の外周面にトレッド30を、接着剤などを用いて接着する。なお、トレッド30は、例えば、従来知られている更生タイヤに用いられるプレキュアトレッドを用いることができる。本工程は、更生タイヤの台タイヤの外周面にプレキュアトレッドを接着する工程と同様の工程である。
 そして、タイヤケース17のビード部12に、加硫済みのゴムからなるシール層24を、接着剤等を用いて接着すれば、タイヤ10の完成となる。
(作用)
 タイヤ10が、本発明のタイヤ(1)である場合、該タイヤ10では、タイヤケース17がポリエステル系熱可塑性エラストマーによって形成されているため、耐熱性、引張弾性率、引張強度及び破断ひずみに優れる。また、本実施形態のタイヤ10は、熱可塑性樹脂材料を用いたことで、その構造を簡素化できるため、従来のゴムのタイヤに比して重量が軽い。このため、本実施形態のタイヤ10は、耐摩擦性、耐久性が高く、このタイヤを備えた自動車は燃費が良い。
 タイヤ10が、本発明のタイヤ(2)である場合、該タイヤ10では、タイヤケース17が、ポリエステル系熱可塑性エラストマーと他のエラストマーであるポリウレタン系熱可塑性エラストマーとを含む熱可塑性樹脂材料によって形成されているため、耐熱性、引張弾性率、引張強度及び破断ひずみに優れる。また、本実施形態のタイヤ10は、熱可塑性樹脂材料を用いたことで、従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ10は、耐衝撃性に優れ、耐摩擦性及び耐久性が高く、これを備えた自動車は燃費が良い。
 タイヤ10が、本発明のタイヤ(3)である場合、該タイヤ10では、タイヤケース17がポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料によって形成されているため、耐衝撃性、引張弾性率、及び引張強度に優れる。また、使用環境の温度変動による変形や硬さの変化が小さく、耐衝撃性に強い。このため、本実施形態のタイヤ10は、耐久性に優れる。さらにタイヤ構造を簡素化できる為に、従来のゴムに比して重量が軽い。また、tanδを小さくすることができる。従って、本実施形態のタイヤ10は、軽量化することができ、転がり抵抗も抑制されるので、かかるタイヤを用いた自動車の燃費を良くすることができる。
 タイヤ10が、本発明のタイヤ(4)である場合、該タイヤ10では、タイヤケース17が、ポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)との混合材料である熱可塑性樹脂材料によって形成されているため、熱可塑性樹脂材料の弾性率を大きくしても、熱可塑性樹脂材料のtanδが上がりにくく、タイヤの転がり抵抗を抑えることができる。さらに、本実施形態のタイヤ10は、熱可塑性樹脂材料を用いたことで、その構造を簡素化できるため、従来のタイヤに用いられてきたゴムに比して重量が軽い。このため、本実施形態のタイヤ10を自動車に適用すると、軽量化することができ、燃費を抑えることができる。
 タイヤ10が、本発明のタイヤ(5)である場合、該タイヤ10では、タイヤケース17が、前記の熱可塑性樹脂材料によって形成されているため、引張弾性率、及び破断性に優れる。さらに、本実施形態のタイヤ10は、熱可塑性樹脂材料を用いたことで、その構造を簡素化できるため、従来のタイヤに用いられてきたゴムに比して重量が軽い。このため、本実施形態のタイヤ10を自動車に適用すると、軽量化することができ、燃費を抑えることができる。
 特に、タイヤケース17の形成に用いる熱可塑性樹脂材料の酸価が、0.1mg-CHONa/g以上10mg-CHONa/g以下であることで、ポリエステル系熱可塑性エラストマーを海相、酸変性エラストマー、又は、酸変性エラストマー及び他の熱可塑性エラストマー(未変性)を島相とする海島構造を有する熱可塑性樹脂材料中に、島相が微分散することとなり、タイヤ10の耐衝撃性、引張り特性が向上する。
 タイヤ10が、本発明のタイヤ(6)である場合、該タイヤ10では、タイヤケース17が、特定共重合体および特定酸変性共重合体の少なくとも一方と、ポリエステル系熱可塑性エラストマーとを含有する熱可塑性樹脂材料によって形成されているため、耐衝撃性に優れる。また、使用環境の温度変動による変形や硬さの変化が小さい。さらにタイヤ構造が簡素化できる為、従来のゴムに比して重量が軽い。このため、本実施形態のタイヤ10を自動車に適用すると、耐久性に優れる。また、タイヤを軽量化することができるので、かかるタイヤを用いた自動車の燃費を良くすることができる。
 タイヤ10が、本発明のタイヤ(7)である場合、該タイヤ10では、タイヤケース17がポリエステル系エラストマー(第1の熱可塑性エラストマー)(弾性率422MPa、Tanδ0.102)と、ポリエステル系エラストマー (第2の熱可塑性エラストマー)(弾性率45MPa、Tanδ0.029)とを含む樹脂材料によって形成されているため、前記第1または第2の熱可塑性エラストマーを単独で用いた場合に比して、タイヤ骨格体の損失係数(Tanδ)が低く維持されたまま弾性率が向上している。このため、タイヤ10は、耐熱性に優れ、且つ、転がり抵抗が低減されている。また、タイヤ10は従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ10は、耐摩擦性および耐久性が高い。
 また、本発明のタイヤ(1)~(7)において、第1の実施形態に適用される樹脂材料は、補強コード26に対する密着性がある。このため、補強コード巻回工程において補強コード26の周囲に空気が残る現象(エア入り)を抑制することができる。補強コード26への密着性があり、補強コード部材周辺へのエア入りが抑制されていると、走行時の入力などによって補強コード26が動くのを効果的に抑制することができる。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合であっても、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)の剥離などが生じるのが抑制されタイヤ10の耐久性が向上する。
 また、本発明のタイヤ(5)においては、熱可塑性樹脂材料は、酸変性エラストマーを含むために流動性に優れ、酸変性エラストマーの変性率を既述の範囲とすることで、特に射出成形性に優れる。これにより、タイヤの生産効率を向上させると共に、省エネルギーともなり環境上も好ましい。
 また、第1の実施形態のタイヤ10では、熱可塑性樹脂材料で形成されたタイヤケース17のクラウン部16の外周面にポリエステル系熱可塑性エラストマーを含む樹脂材料よりも剛性が高い補強コード26が周方向へ螺旋状に巻回されていることから耐パンク性、耐カット性、及びタイヤ10の周方向剛性が向上する。なお、タイヤ10の周方向剛性が向上することで、熱可塑性樹脂材料で形成されたタイヤケース17のクリープが防止される。
 また、タイヤケース17の軸方向に沿った断面視(図1に示される断面)で、樹脂材料で形成されたタイヤケース17のクラウン部16の外周面に補強コード26の少なくとも一部が埋設され且つ樹脂材料に密着していることから、製造時のエア入りが抑制されており、走行時の入力などによって補強コード26が動くのが抑制される。これにより、補強コード26、タイヤケース17、及びトレッド30に剥離などが生じるのが抑制され、タイヤ10の耐久性が向上する。
 そして、図2に示すように、補強コード26の埋設量Lが直径Dの1/5以上となっていることから、製造時のエア入りが効果的に抑制されており、走行時の入力などによって補強コード26が動くのがさらに抑制される。
 このように補強コード層28が、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料により構成されていると、補強コード26をクッションゴムで固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に補強コード26をタイヤケース17に密着・固定することができる。これにより、上述のエア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
 更に、補強コード26が特にスチールコードである場合において、タイヤ処分時に補強コード26を加熱によって熱可塑性樹脂材料から容易に分離・回収が可能であるため、タイヤ10のリサイクル性の点で有利である。
 また、ポリエステル系熱可塑性エラストマーは加硫ゴムに比して損失係数(Tanδ)が低いため、補強コード層28がポリエステル系熱可塑性エラストマーを多く含んでいると、タイヤの転がり性を向上させることができる。
 更には、樹脂材料として含まれるポリエステル系熱可塑性エラストマーは、加硫ゴムに比して、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 また、路面と接触するトレッド30を熱可塑性樹脂材料よりも耐摩耗性のあるゴム材で構成していることから、タイヤ10の耐摩耗性が向上する。
 さらに、ビード部12には、金属材料からなる環状のビードコア18が埋設されていることから、従来のゴム製の空気入りタイヤと同様に、リム20に対してタイヤケース17、すなわちタイヤ10が強固に保持される。
 また、さらに、ビード部12のリム20と接触する部分に、熱可塑性樹脂材料よりもシール性のあるゴム材からなるシール層24が設けられていることから、タイヤ10とリム20との間のシール性が向上する。このため、リム20とポリエステル系熱可塑性エラストマーとでシールする場合と比較して、タイヤ内の空気漏れがより一層抑制される。また、シール層24を設けることでリムフィット性も向上する。
 第1の実施形態では、補強コード26を加熱し、加熱した補強コード26が接触する部分の樹脂材料を溶融又は軟化させる構成としたが、本発明はこの構成に限定されず、補強コード26を加熱せずに熱風生成装置を用い、補強コード26が埋設されるクラウン部16の外周面を加熱した後、補強コード26をクラウン部16に埋設するようにしてもよい。
 また、第1の実施形態では、コード加熱装置59の熱源をヒーター及びファンとしているが、本発明はこの構成に限定されず、補強コード26を輻射熱(例えば、赤外線など)で直接加熱する構成としてもよい。
 さらに、第1の実施形態では、補強コード26を埋設した熱可塑性樹脂材料が溶融又は軟化した部分を金属製の第2のローラ64で強制的に冷却する構成としたが、本発明はこの構成に限定されず、熱可塑性樹脂材料が溶融又は軟化した部分に冷風を直接吹きかけて、熱可塑性樹脂材料の溶融又は軟化した部分を強制的に冷却固化する構成としてもよい。
 また、第1の実施形態では、補強コード26を加熱する構成としたが、例えば、補強コード26の外周をタイヤケース17と同じ熱可塑性樹脂材料で被覆する構成としてもよく、この場合には、被覆補強コードをタイヤケース17のクラウン部16に巻き付ける際に、補強コード26と共に被覆した熱可塑性樹脂材料も加熱することで、クラウン部16への埋設時におけるエア入りを効果的に抑制することができる。
 また、補強コード26は螺旋巻きするのが製造上は容易だが、幅方向で補強コード26を不連続とする方法等も考えられる。
 第1の実施形態のタイヤ10は、ビード部12をリム20に装着することで、タイヤ10とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、完全なチューブ形状であってもよい。
 なお、第1の実施形態のタイヤ10が、本発明のタイヤ(6)及び(7)である場合、前記完全なチューブ形状のタイヤとしては、例えば、図7に示すように、円環状とされたタイヤ骨格体をタイヤ幅方向に3本配置した態様であってもよい。図7は、他の実施形態に係るタイヤの断面図である。図7に示すように、タイヤ86は、トレッドゴム層87と、第1の実施形態と同様の樹脂材料からなる円環状とされた中空のチューブ(タイヤ骨格体)88と、ベルト(補強コード)89と、リム90とを備えている。チューブ88は、タイヤ86のタイヤ幅方向に3本並んで配置されている。チューブ88の外周部には、ベルト89を埋設したトレッドゴム層87が接着されている。また、チューブ88は、チューブ88と係合する凹部を備えたリム90に装着されている。なお、このタイヤ86にはビードコアは設けられていない。
 以上、実施形態を挙げて本発明のタイヤ(1)~(7)の第1の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の範囲がこれらの実施形態に限定されないことは言うまでもない。
[第2の実施形態]
 次に、図面に従って、本発明のタイヤ(1)~(7)の第2の実施形態及びその製造方法について説明する。
 以下に説明される第1の実施形態に関する事項は、特に断りの無い限り、本発明のタイヤ(1)~(7)の第2の実施形態として共通する事項である。
 第2の実施形態のタイヤは、上述の第1の実施形態と同様に、従来一般のゴム製の空気入りタイヤと略同様の断面形状を呈している。このため、以下の図において、上記第1の実施形態と同様の構成については同様の番号が付される。図4(A)は、第2の実施形態のタイヤのタイヤ幅方向に沿った断面図であり、図4(B)は第2の実施形態のタイヤにリムを嵌合させた状態のビード部のタイヤ幅方向に沿った断面の拡大図である。また、図5は第2の実施形態のタイヤの補強層の周囲を示すタイヤ幅方向に沿った断面図である。
 第2の実施形態におけるタイヤケース17が、本発明のタイヤ(1)が備えるタイヤケースである場合、第1の実施形態と同様に、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン(株)製「ハイトレル5557」)で形成されている。
 第2の実施形態におけるタイヤケース17が、本発明のタイヤ(2)が備えるタイヤケースである場合、第1の実施形態と同様に、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン(株)製「ハイトレル 6347」)と、ポリウレタン系熱可塑性エラストマー(BASF社製「ET680」)とを、質量比80:20で含む熱可塑性樹脂材料で形成されている。
  第2の実施形態におけるタイヤケース17が、本発明のタイヤ(3)が備えるタイヤケースである場合、第1の実施形態と同様に、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料で形成されている。
 第2の実施形態におけるタイヤケース17が、本発明のタイヤ(4)が備えるタイヤケースである場合、第1の実施形態と同様に、該タイヤケース17は、熱可塑性樹脂材料〔ポリエステル系熱可塑性エラストマー〔東レ・デュポン(株)製「ハイトレル 3046」)と、ポリエステル樹脂(ポリプラスチックス(株)製「ジュラネックス 2000」)との混合材料〕で形成されている。
 第2の実施形態におけるタイヤケース17が、本発明のタイヤ(5)が備えるタイヤケースである場合、第1の実施形態と同様に、該タイヤケース17は、熱可塑性樹脂材料〔ポリエステル系熱可塑性エラストマー〔東レ・デュポン(株)製「ハイトレル 6347」)と、酸変性されたα-オレフィン系熱可塑性エラストマー(三井化学(株)製「タフマー MA7010」)との混合材料;熱可塑性樹脂材料の酸価=1.11mg-CHONa/g〕で形成されている。
 第2の実施形態におけるタイヤケース17が、本発明のタイヤ(6)が備えるタイヤケースである場合、第1の実施形態と同様に、該タイヤケース17は、ポリエステル系熱可塑性エラストマー(東レ・デュポン社製のポリエステル系熱可塑性エラストマー「ハイトレル、6347」)と、特定共重合体(三井・デュポン ポリケミカル社製のエチレン-メタクリル酸共重合体「ニュクレル、N035C」)と、特定酸変性共重合体(三井・デュポン ポリケミカル社製のエチレン-アクリレートエチルエステル共重合体の酸変性体「HPR、AR2011」)との混合材料で構成される熱可塑性樹脂材料で形成されている。
 第2の実施形態におけるタイヤケース17が、本発明のタイヤ(7)が備えるタイヤケースである場合、第1の実施形態と同様に、該タイヤケース17は、ポリエステル系エラストマー(第1の熱可塑性エラストマー)(東レ・デュポン社製「ハイトレル7247」;弾性率422MPa、Tanδ0.102)と、リエステル系エラストマー (第2の熱可塑性エラストマー)((東レ・デュポン社 製「ハイトレル4047」;弾性率45MPa、Tanδ0.029)との混合物によって形成されている。
 また、前記第1熱可塑性エラストマー(x)および第2の熱可塑性エラストマー(y)の質量比(x/y)は、55:45である。
 第2の実施形態においてタイヤ200は、図4及び図5に示すように、クラウン部16に、被覆コード部材26Bが周方向に巻回されて構成された補強コード層28(図5では破線で示されている)が積層されている。この補強コード層28は、タイヤケース17の外周部を構成し、クラウン部16の周方向剛性を補強している。なお、補強コード層28の外周面は、タイヤケース17の外周面17Sに含まれる。
 この被覆コード部材26Bは、タイヤケース17を形成する熱可塑性樹脂材料よりも剛性が高いコード部材26Aにタイヤケース17を形成する熱可塑性樹脂材料とは別の被覆用樹脂材料27を被覆して形成されている。また、被覆コード部材26Bはクラウン部16との接触部分において、被覆コード部材26Bとクラウン部16とが接合(例えば、溶接、又は接着剤で接着)されている。
 また、被覆用樹脂材料27の弾性率は、タイヤケース17を形成する樹脂材料の弾性率の0.1倍から10倍の範囲内に設定することが好ましい。被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の10倍以下の場合は、クラウン部が硬くなり過ぎずリム組み性が容易になる。また、被覆用樹脂材料27の弾性率がタイヤケース17を形成する熱可塑性樹脂材料の弾性率の0.1倍以上の場合には、補強コード層28を構成する樹脂が柔らかすぎず、ベルト面内せん断剛性に優れコーナリング力が向上する。
 なお、本発明のタイヤ(1)では、被覆用樹脂材料27として、タイヤケース17を構成している熱可塑性樹脂材料と同様の材料〔東レ・デュポン(株)製「ハイトレル5557」〕が用いられている。
 本発明のタイヤ(2)では、被覆用樹脂材料27として、タイヤケース17を構成している熱可塑性樹脂材料と同様の材料〔ポリエステル系熱可塑性エラストマー(東レ・デュポン(株)製「ハイトレル 6347」)と、ポリウレタン系熱可塑性エラストマー(BASF社製「ET680」)との混合物(質量比80:20)〕が用いられている。
 本発明のタイヤ(3)では、被覆用樹脂材料27として、タイヤケース17を構成している熱可塑性樹脂材料と同様の材料〔ポリエステル系熱可塑性エラストマー(東レ・デュポン社製、ハイトレル6347)と、ブタジエンゴム(BR)とを、質量比70:30で含む熱可塑性樹脂材料〕が用いられている。
 本発明のタイヤ(4)では、被覆用樹脂材料27として、タイヤケース17を構成している熱可塑性樹脂材料と同種の材料〔東レ・デュポン(株)製「ハイトレル 3046」と、ポリエステル樹脂(ポリプラスチックス(株)製「ジュラネックス 2000」)との混合材料〕が用いられている。
 本発明のタイヤ(5)では、被覆用樹脂材料27として、タイヤケース17を構成している熱可塑性樹脂材料と同種の材料〔東レ・デュポン(株)製「ハイトレル 6347」)と、酸変性されたα-オレフィン系熱可塑性エラストマー(三井化学(株)製「タフマー MA7010」)との混合材料;熱可塑性樹脂材料の=酸価1.11mg-CHONa/g〕が用いられている。
 本発明のタイヤ(6)では、被覆用樹脂材料27として、タイヤケース17を構成している熱可塑性樹脂材料と同様の材料〔ポリエステル系熱可塑性エラストマー(東レ・デュポン社製のポリエステル系熱可塑性エラストマー「ハイトレル、6347」と、特定共重合体(三井・デュポン ポリケミカル社製のエチレン-メタクリル酸共重合体「ニュクレル、N035C」)と、特定酸変性共重合体(三井・デュポン ポリケミカル社製のエチレン-アクリレートエチルエステル共重合体の酸変性体「HPR、AR2011」)との混合材料で構成される熱可塑性樹脂材料〕が用いられている。
 本発明のタイヤ(6)では、被覆用樹脂材料27として、タイヤケース17を構成している樹脂材料と同様の材料が用いられている
 また、図5に示すように、被覆コード部材26Bは、断面形状が略台形状とされている。なお、以下では、被覆コード部材26Bの上面(タイヤ径方向外側の面)を符号26Uで示し、下面(タイヤ径方向内側の面)を符号26Dで示す。また、第2の実施形態では、被覆コード部材26Bの断面形状を略台形状とする構成としているが、本発明はこの構成に限定されず、断面形状が下面26D側(タイヤ径方向内側)から上面26U側(タイヤ径方向外側)へ向かって幅広となる形状を除いた形状であれば、いずれの形状でもよい。
 図5に示すように、被覆コード部材26Bは、周方向に間隔をあけて配置されていることから、隣接する被覆コード部材26Bの間に隙間28Aが形成されている。このため、補強コード層28の外周面は、凹凸とされ、この補強コード層28が外周部を構成するタイヤケース17の外周面17Sも凹凸となっている。
 タイヤケース17の外周面17S(凹凸含む)には、微細な粗化凹凸96が均一に形成され、その上に接合剤を介して、クッションゴム29が接合されている。このクッションゴム29は、径方向内側のゴム部分が粗化凹凸96に流れ込んでいる。
 また、クッションゴム29の上(外周面)にはタイヤケース17を形成している樹脂材料よりも耐摩耗性に優れた材料、例えばゴムからなるトレッド30が接合されている。
 なお、トレッド30に用いるゴム(トレッドゴム30A)は、従来のゴム製の空気入りタイヤに用いられているゴムと同種のゴムを用いることが好ましい。また、トレッド30の代わりに、タイヤケース17を形成する樹脂材料よりも耐摩耗性に優れる他の種類の樹脂材料で形成したトレッドを用いてもよい。また、トレッド30には、従来のゴム製の空気入りタイヤと同様に、路面との接地面に複数の溝からなるトレッドパターン(図示省略)が形成されている。
 次に、第2の実施形態のタイヤの製造方法について説明する。
(タイヤ骨格形成工程)
(1)まず、上述の第1の実施形態と同様にして、タイヤケース半体17Aを形成し、これを接合金型によって加熱・押圧し、タイヤケース17を形成する。
(補強コード部材巻回工程)
(2)第2の実施形態におけるタイヤの製造装置は、上述の第1の実施形態と同様であり、上述の第1の実施形態の図3に示すコード供給装置56において、リール58にコード部材26Aを被覆用樹脂材料27(本実施形態では熱可塑性樹脂材料)で被覆した断面形状が略台形状の被覆コード部材26Bを巻き付けたものが用いられる。また、ガイドレール54には、図示を省略する、タイヤケース17の外周面17Sを粗化処理するためのブラスト装置が移動可能に搭載されている。
 まず、ヒーター70の温度を上昇させ、ヒーター70で加熱された周囲の空気をファン72の回転によって生じる風で加熱ボックス74へ送る。リール58から巻き出した被覆コード部材26Bを、熱風で内部空間が加熱された加熱ボックス74内へ送り加熱(例えば、被覆コード部材26Bの外周面の温度を、被覆用樹脂材料27の融点以上)とする。ここで、被覆コード部材26Bが加熱されることにより、被覆用樹脂材料27が溶融又は軟化した状態となる。
 そして被覆コード部材26Bは、排出口76を通り、紙面手前方向に回転するタイヤケース17のクラウン部16の外周面に一定のテンションをもって螺旋状に巻回される。このとき、クラウン部16の外周面に被覆コード部材26Bの下面26Dが接触する。そして、接触した部分の溶融又は軟化状態の被覆用樹脂材料27はクラウン部16の外周面上に広がり、クラウン部16の外周面に被覆コード部材26Bが溶着される。これにより、クラウン部16と被覆コード部材26Bとの接合強度が向上する。
(粗化処理工程)
(3)次に、図示を省略するブラスト装置にて、タイヤケース17の外周面17Sに向け、タイヤケース17側を回転させながら、外周面17Sへ投射材を高速度で射出する。射出された投射材は、外周面17Sに衝突し、この外周面17Sに算術平均粗さRaが0.05mm以上となる微細な粗化凹凸96を形成する。
 このようにして、タイヤケース17の外周面17Sに微細な粗化凹凸が形成されることで、外周面17Sが親水性となり、後述する接合剤の濡れ性が向上する。
(積層工程)
(4)次に、粗化処理を行なったタイヤケース17の外周面17Sに接合剤を塗布する。 なお、接合剤としては、トリアジンチオール系接着剤、塩化ゴム系接着剤、フェノール系樹脂接着剤、イソシアネート系接着剤、ハロゲン化ゴム系接着剤など、特に制限はないが、クッションゴム29が加硫できる温度(90℃~140℃)で反応することが好ましい。
(5)次に、接合剤が塗布された外周面17Sに未加硫状態のクッションゴム29を1周分巻き付け、そのクッションゴム29の上に例えば、ゴムセメント組成物などの接合剤を塗布し、その上に加硫済み又は半加硫状態のトレッドゴム30Aを1周分巻き付けて、生タイヤケース状態とする。
(加硫工程)
(6)次に生タイヤケースを加硫缶やモールドに収容して加硫する。このとき、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸96に未加硫のクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸96に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が向上する。
 加硫工程においては、クッションゴム29を加硫できる温度(90℃~140℃)まで温度を上昇させる必要があり、タイヤケースにポリエステル系熱可塑性エラストマー以外の熱可塑性樹脂のみを用いている場合、加硫時における温度上昇により、タイヤケース17にたわみを生じさせ、延いてはタイヤの形成維持性に影響する場合がある。この点において、ポリエステル系熱可塑性エラストマーは、他の熱可塑性エラストマーに比して荷重たわみ温度が高いことから、タイヤの形状維持性をより向上させると共に、タイヤの製造性をも向上させることができる。
 このように、本発明における熱可塑性樹脂材料は、ポリエステル系熱可塑性エラストマーを含むため、使用環境の温度変動による変形や硬さの変化が小さく、衝撃に強い。従って、加硫工程において、タイヤケースが長時間加熱されても、変形しにくい。
(7)そして、タイヤケース17のビード部12に、樹脂材料よりも軟質である軟質材料からなるシール層24を、接着剤等を用いて接着すれば、タイヤ200の完成となる。
(作用)
 タイヤ200が、本発明のタイヤ(1)である場合、該タイヤ200では、タイヤケース17がポリエステル系熱可塑性エラストマーによって形成されているため、耐熱性、引張弾性率、引張強度及び破断ひずみに優れる。また、本実施形態のタイヤ200は、熱可塑性樹脂材料を用いたことで、その構造を簡素化できるため、従来のゴムのタイヤに比して重量が軽い。このため本実施形態のタイヤ200は、耐摩擦性及び耐久性が高い。
 タイヤ200が、本発明のタイヤ(2)である場合、該タイヤ200では、タイヤケース17がポリエステル系熱可塑性エラストマーと他のエラストマーであるポリウレタン系熱可塑性エラストマーとを含む熱可塑性樹脂材料によって形成されているため、耐熱性、引張弾性率、引張強度及び破断ひずみに優れる。また、本実施形態のタイヤ200は、熱可塑性樹脂材料を用いたことで、従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ200は、耐衝撃性に優れ、耐摩擦性及び耐久性が高い。
 タイヤ200が、本発明のタイヤ(3)である場合、該タイヤ200では、タイヤケース17がポリエステル系熱可塑性エラストマーとゴムとを、質量比70:30で含む熱可塑性樹脂材料によって形成されているため、耐衝撃性、引張弾性率、及び引張強度に優れる。また、使用環境の温度変動による変形や硬さの変化が小さく、耐衝撃性に強い。このため、本実施形態のタイヤ200は、耐久性に優れる。さらにタイヤ構造を簡素化できる為に、従来のゴムに比して重量が軽い。また、tanδを小さくすることができる。従って、本実施形態のタイヤ200は、軽量化することができ、転がり抵抗も抑制されるので、かかるタイヤを用いた自動車の燃費を良くすることができる。
 タイヤ200が、本発明のタイヤ(4)である場合、該タイヤ200では、タイヤケース17が、ポリエステル系熱可塑性エラストマー(A)とポリエステル樹脂(B)との混合材料である熱可塑性樹脂材料によって形成されているため、熱可塑性樹脂材料の弾性率を大きくしても、熱可塑性樹脂材料のtanδが上がり難く、タイヤの転がり抵抗を抑制することができる。また、本実施形態のタイヤ200は、熱可塑性樹脂材料を用いたことで、その構造を簡素化できるため、従来のタイヤに用いられてきたゴムに比して重量が軽い。このため、本実施形態のタイヤ200は、軽量化することができ、これを備えた自動車は燃費が良い。
 タイヤ200が、本発明のタイヤ(5)である場合、該タイヤ200では、タイヤケース17が、前記の熱可塑性樹脂材料によって形成されているため、耐熱性、引張弾性率、引張強度及び破断ひずみに優れる。また、本実施形態のタイヤ10は、熱可塑性樹脂材料を用いたことで、その構造を簡素化できるため、従来のタイヤに用いられてきたゴムに比して重量が軽い。このため、本実施形態のタイヤ200は、耐摩擦性及び耐久性が高い。
 タイヤ200が、本発明のタイヤ(6)である場合、該タイヤ200では、タイヤケース17が、特定共重合体および特定酸変性共重合体の少なくとも一方と、ポリエステル系熱可塑性エラストマーとを含有する熱可塑性樹脂材料によって形成されているため、耐衝撃性に優れる。また、使用環境の温度変動による変形や硬さの変化が小さい。さらにタイヤ構造が簡素化できる為、従来のゴムに比して重量が軽い。このため、本実施形態のタイヤ200を自動車に適用すると、耐久性に優れる。また、タイヤを軽量化することができるので、かかるタイヤを用いた自動車の燃費を良くすることができる。
 タイヤ200が、本発明のタイヤ(7)である場合、該タイヤ200では、タイヤケース17がポリエステル系エラストマー(第1の熱可塑性エラストマー)(弾性率422MPa、Tanδ0.102)と、ポリエステル系エラストマー (第2の熱可塑性エラストマー)(弾性率45MPa、Tanδ0.029)とを含む樹脂材料によって形成されているため、前記ポリエステル系エラストマーを単独で用いた場合に比して、タイヤ骨格体の損失係数(Tanδ)が低く維持されたまま弾性率が向上している。このため、タイヤ200は、耐熱性に優れ、且つ、転がり抵抗が低減されている。また、タイヤ10は従来のゴム製のタイヤに比して構造が簡易であるため重量が軽い。このため、本実施形態のタイヤ200は、耐摩擦性および耐久性が高い。
 また、ポリエステル系熱可塑性エラストマーなどの樹脂材料は、補強コード層28を構成する被覆コード部材26Bに対する接着性がある。
 このように補強コード層28が、被覆コード部材26Bを含んで構成されていると、コード部材26Aを単にクッションゴム29で固定する場合と比してタイヤケース17と補強コード層28との硬さの差を小さくできるため、更に被覆コード部材26Bをタイヤケース17に密着・固定することができる。これにより、エア入りを効果的に防止することができ、走行時に補強コード部材が動くのを効果的に抑制することができる。
 更に、コード部材26Aが特にスチールコードである場合には、タイヤ処分時に被覆コード部材26Bからコード部材26Aを加熱によって容易に分離・回収が可能であるため、タイヤ200のリサイクル性の点で有利である。また、ポリエステル系熱可塑性エラストマーは加硫ゴムに比して損失係数(Tanδ)が低いため、タイヤの転がり性を向上させることができる。更には、加硫ゴムに比して相対的に弾性率の高い樹脂材料は、面内せん断剛性が大きく、タイヤ走行時の操安性や耐摩耗性にも優れるといった利点がある。
 第2のタイヤの製造方法では、タイヤケース17とクッションゴム29及びトレッドゴム30Aとを一体化するにあたり、タイヤケース17の外周面17Sが粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤケース17を形成する樹脂材料が投射材の衝突により掘り起こされることから、接合剤の濡れ性が向上する。これにより、タイヤケース17の外周面17Sに接合剤が均一な塗布状態で保持され、タイヤケース17とクッションゴム29との接合強度を確保することができる。
 特に、タイヤケース17の外周面17Sに凹凸96が構成されていても、凹部(隙間28A)に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤケース17とクッションゴム29との接合強度を確保することができる。
 一方、クッションゴム29がタイヤケース17の外周面17Sの粗化処理された領域内に積層されることから、タイヤケース17とクッションゴム29との接合強度を効果的に確保することができる。
 加硫工程において、クッションゴム29を加硫した場合、粗化処理によってタイヤケース17の外周面17Sに形成された粗化凹凸96にクッションゴム29が流れ込む。そして、加硫が完了すると、粗化凹凸96に流れ込んだクッションゴム29により、アンカー効果が発揮されて、タイヤケース17とクッションゴム29との接合強度が向上する。
 このような、タイヤの製造方法にて製造されたタイヤ200は、タイヤケース17とクッションゴム29との接合強度が確保される、すなわち、クッションゴム29を介してタイヤケース17とトレッド30との接合強度が確保される。これにより、走行時などにおいて、タイヤ200のタイヤケース17の外周面17Sとクッションゴム29との間の剥離が抑制される。
 また、タイヤケース17の外周部を補強コード層28が構成していることから、外周部を補強コード層28以外のもので構成しているものと比べて、耐パンク性及び耐カット性が向上する。
 また、被覆コード部材26Bを巻回して補強コード層28が形成されていることから、タイヤ200の周方向剛性が向上する。周方向剛性が向上することで、タイヤケース17のクリープ(一定の応力下でタイヤケース17の塑性変形が時間とともに増加する現象)が抑制され、且つ、タイヤ径方向内側からの空気圧に対する耐圧性が向上する。
 第2の実施形態では、タイヤケース17の外周面17Sに凹凸を構成したが、本発明はこれに限らず、外周面17Sを平らに形成する構成としてもよい。
 また、タイヤケース17は、タイヤケースのクラウン部に巻回され且つ接合された被覆コード部材を被覆用熱可塑性材料で覆うようにして補強コード層を形成してもよい。この場合、溶融又は軟化状態の被覆用熱可塑性材料を補強コード層28の上に吐出して被覆層を形成することができる。また、押出機を用いずに、溶着シートを加熱し溶融又は軟化状態にして、補強コード層28の表面(外周面)に貼り付けて被覆層を形成してもよい。
 第2の実施形態では、ケース分割体(タイヤケース半体17A)を接合してタイヤケース17を形成する構成としたが、本発明はこの構成に限らず、金型などを用いてタイヤケース17を一体的に形成してもよい。
 第2の実施形態のタイヤ200は、ビード部12をリム20に装着することで、タイヤ200とリム20との間で空気室を形成する、所謂チューブレスタイヤであるが、本発明はこの構成に限定されず、タイヤ200は、例えば、完全なチューブ形状(例えば図7に示す形状)であってもよい。
 第2の実施形態では、タイヤケース17とトレッド30との間にクッションゴム29を配置したが、本発明はこれに限らず、クッションゴム29を配置しない構成としてもよい。
 また、第2の実施形態では、被覆コード部材26Bをクラウン部16へ螺旋状に巻回する構成としたが、本発明はこれに限らず、被覆コード部材26Bが幅方向で不連続となるように巻回する構成としてもよい。
 第2の実施形態では、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、この被覆用樹脂材料27を加熱することにより溶融又は軟化状態にしてクラウン部16の外周面に被覆コード部材26Bを溶着する構成としているが、本発明はこの構成に限定されず、被覆用樹脂材料27を加熱せずに接着剤などを用いてクラウン部16の外周面に被覆コード部材26Bを接着する構成としてもよい。
 また、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、被覆コード部材26Bを加熱せずに接着剤などを用いてクラウン部16の外周面に接着する構成としてもよい。
 さらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱硬化性樹脂とし、タイヤケース17を熱可塑性材料で形成する構成としてもよい。この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融又は軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。
 また、さらに、被覆コード部材26Bを形成する被覆用樹脂材料27を熱可塑性材料とし、タイヤケース17を熱可塑性材料で形成する構成としてもよい。
 この場合には、被覆コード部材26Bをクラウン部16の外周面に接着剤などを用いて接着してもよく、タイヤケース17の被覆コード部材26Bが配設される部位を加熱して溶融又は軟化状態としつつ、被覆用樹脂材料27を加熱し溶融又は軟化状態にして被覆コード部材26Bをクラウン部16の外周面に溶着してもよい。なお、タイヤケース17及び被覆コード部材26Bの両者を加熱して溶融又は軟化状態にした場合、両者が良く混ざり合うため接合強度が向上する。また、タイヤケース17を形成する樹脂材料、及び被覆コード部材26Bを形成する被覆用樹脂材料27をともに熱可塑性材料とする場合には、同種の熱可塑性材料、特に同一の熱可塑性材料とすることが好ましい。
 またさらに、粗化処理を行なったタイヤケース17の外周面17Sに、コロナ処理やプラズマ処理等を用い、外周面17Sの表面を活性化し、親水性を高めた後、接着剤を塗布してもよい。
 またさらに、第2の実施形態タイヤ200を製造するための順序は、第2の実施形態の順序に限らず、適宜変更してもよい。
 以上、実施形態を挙げて本発明のタイヤ(1)~(7)の実施の形態を説明したが、これらの実施形態は一例であり、要旨を逸脱しない範囲内で種々変更して実施できる。また、本発明の権利範囲がこれらの実施形態に限定されないことは言うまでもない。
 以上、本発明の具体的な態様について第1の実施形態及び第2の実施形態を用いて説明したが本発明は上述の態様に限定されるものではない。
 本発明のタイヤ(1)は、第1の実施形態に示されるように以下のように構成することができる。
(1-1-1)本発明のタイヤ(1)は、タイヤ骨格体の軸方向に沿った断面視で、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
 このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(1-1-2)本発明のタイヤ(1)は、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
 このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(1-1-3)本発明のタイヤ(1)は、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
 このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(1-1-4)本発明のタイヤ(1)は、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
 このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(1-1-5)本発明のタイヤ(1)は、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることができる。
 このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、上記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(1-1-6) 本発明のタイヤ(1)は、少なくともポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。
(1-1-7)前記のタイヤ(1)の製造方法は、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱するように構成することができる。
 このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(1-1-8)前記タイヤ(1)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
 このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(1-1-9)前記タイヤ(1)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
 このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(1-1-10)前記タイヤ(1)の製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
 このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(1-1-11)前記タイヤ(1)の製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
 このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(1-1-12)前記タイヤ(1)の製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
 このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(1-1-13)前記タイヤ(1)の製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
 このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
 また、本発明のタイヤ(1)は、第2の実施形態において説明したように以下のように構成することができる。
(1-2-1)本発明のタイヤ(1)は、前記タイヤの製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
 このように、粗化処理工程を設けると、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(1-2-2)本発明のタイヤ(1)は、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
 このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(1-2-3)本発明のタイヤ(1)は、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同体又は別の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
 このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(1-2-4) 本発明タイヤ(1)は、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
 このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(1-2-5) 本発明のタイヤ(1)は、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
 このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(1-2-6) 本発明のタイヤ(1)は、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
 このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(1-2-7) 本発明のタイヤ(1)は、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
 このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
 なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(1-2-8) 本発明のタイヤ(1)は、ポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
 このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
 本発明のタイヤ(2)は、第1の実施形態に示されるように以下のように構成することができる。
(2-1-1)本発明のタイヤ(2)は、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
 このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(2-1-2)本発明のタイヤ(2)は、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
 このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(2-1-3)本発明のタイヤ(2)は、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
 このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(2-1-4)本発明のタイヤ(2)は、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
 このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(2-1-5)本発明のタイヤ(2)は、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
 このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、前記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(2-1-6)本発明のタイヤ(2)は、少なくともポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。
(2-1-7) 前記タイヤ(2)の製造方法においては、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱するように構成することができる。
 このように、前記分割体の接合面をタイヤ骨格片で構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(2-1-8)前記タイヤ(2)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
 このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(2-1-9)前記タイヤ(2)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
 このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(2-1-10)前記タイヤ(2)の製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
 このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(2-1-11)前記タイヤ(2)の製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
 このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(2-1-12)前記タイヤ(2)の製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
 このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(2-1-13)前記(タイヤ(2)の製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
 このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
 また、本発明のタイヤ(2)は、第2の実施形態において説明したように以下のように構成することができる。
(2-2-1)本発明のタイヤ(2)は、前記製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
 このように、粗化処理工程を設けると、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(2-2-2)本発明のタイヤ(2)は、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
 このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(2-2-3)本発明のタイヤ(2)は、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同種又は別の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
 このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(2-2-4) 本発明のタイヤ(2)は、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
 このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(2-2-5) 本発明のタイヤ(2)は、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
 このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(2-2-6) 本発明のタイヤ(2)は、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
 このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(2-2-7) 本発明のタイヤ(2)は、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
 このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
 なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(2-2-8) 本発明のタイヤ(2)は、ポリエステル系熱可塑性エラストマーと他のエラストマーとを含む熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
 このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
 本発明のタイヤ(3)は第1実施形態に示されるように以下のように構成することができる。
(3-1-1)本発明のタイヤ(3)は、タイヤ骨格体の軸方向に沿った断面視で、本発明に係る熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
 このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(3-1-2)本発明のタイヤ(3)は、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
 このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(3-1-3)本発明のタイヤ(3)は、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
 このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(3-1-4)本発明のタイヤ(3)は、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
 このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(3-1-5)本発明のタイヤ(3)は、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
 このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、前記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(3-1-6)本発明のタイヤ(3)の製造方法は、少なくとも、ポリエステル系熱可塑性エラストマーと、ゴムと、を含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、によって構成することができる。
(3-1-7)前記タイヤ(3)の製造方法は、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱するように構成することができる。
 このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(3-1-8)前記タイヤ(3)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
 このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(3-1-9)前記タイヤ(3)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コード部材の直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
 このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード部材周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(3-1-10)前記タイヤ(3)の製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
 このように、補強コード部材巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(3--1-11)前記タイヤ(3)の製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
 このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(3-1-12)前記タイヤ(3)の製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
 このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(3-1-13)前記タイヤ(3)の製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
 このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
 また、本発明のタイヤ(3)は第2実施形態において説明したように以下のように構成することができる。
(3-2-1)本発明のタイヤ(3)は、前記製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
 このように、粗化処理工程を設けると、熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(3-2-2)本発明のタイヤ(3)は、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
 このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(3-2-3)本発明のタイヤ(3)は、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同種又は別の樹脂材料で補強コード部材を被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
 このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(3-2-4) 本発明のタイヤ(3)は、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
 このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(3-2-5) 本発明のタイヤ(3)は、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
 このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(3-2-6) 本発明のタイヤ(3)は、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
 このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(3-2-7) 本発明のタイヤ(3)は、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
 このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
 なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(3-2-8) 本発明のタイヤ(3)は、本発明に係る熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
 このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
 本発明のタイヤ(4)は第1の実施形態に示されるように以下のように構成することができる。
(4-1-1)本発明のタイヤ(4)は、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
 このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(4-1-2)本発明のタイヤ(4)は、前記補強コード層の径方向外側に熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
 このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(4-1-3)本発明のタイヤ(4)は、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
 このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(4-1-4)本発明のタイヤ(4)は、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
 このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(4-1-5)本発明のタイヤ(4)は、前記ビード部が前記リムと接触する部分に熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
 このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、上記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(4-1-6)本発明のタイヤ(4)は、少なくともポリエステル系熱可塑性エラストマー(A)及びポリエステル樹脂(B)を含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。
(4-1-7)前記タイヤ(4)の製造方法は、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱するように構成することができる。
 このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(4-1-8)前記タイヤ(4)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
 このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(4-1-9)前記タイヤ(4)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
 このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(4-1-10)前記タイヤ(4)の製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
 このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(4-1-11)前記タイヤ(4)の製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
 このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(4-1-12)前記タイヤ(4)の製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
 このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(4-1-13)前記タイヤ(4)の製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
 このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
 また、本発明のタイヤ(4)は第2の実施形態において説明したように以下のように構成することができる。
(4-2-1) 本発明のタイヤ(4)は、前記タイヤの製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
 このように、粗化処理工程を設けると、ポリエステル系熱可塑性エラストマー(A)及びポリエステル樹脂(B)を含む熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(4-2-2)本発明のタイヤ(4)は、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
 このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(4-2-3)本発明のタイヤ(4)は、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同体又は別体の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
 このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(4-2-4)本発明のタイヤ(4)は、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
 このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(4-2-5)本発明のタイヤ(4)は、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
 このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(4-2-6)本発明のタイヤ(4)は、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
 このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(4-2-7)本発明のタイヤ(4)は、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
 このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
 なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(4-2-8)本発明のタイヤ(4)は、熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
 このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
 
 本発明のタイヤ(5)は第1実施形態に示されるように以下のように構成することができる。
(5-1-1)本発明のタイヤ(5)は、タイヤ骨格体の軸方向に沿った断面視で、本発明に係る熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
 このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(5-1-2)本発明のタイヤ(5)は、前記補強コード層の径方向外側に熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
 このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(5-1-3)本発明のタイヤ(5)は、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
 このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(5-1-4)本発明のタイヤ(5)は、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
 このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(5-1-5)本発明のタイヤ(5)は、前記ビード部が前記リムと接触する部分に熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
 このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、上記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(5-1-6)本発明のタイヤ(5)の製造方法は、少なくともポリエステル系熱可塑性エラストマーを含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、によって構成することができる。
(5-1-7)本発明のタイヤ(5)の製造方法は、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱するように構成することができる。
 このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(5-1-8)本発明のタイヤ(5)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
 このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(5-1-9)本発明のタイヤ(5)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
 このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(5-1-10)本発明のタイヤ(5)の製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
 このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(5-1-11)本発明のタイヤ(5)の製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
 このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(5-1-12)本発明のタイヤ(5)の製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
 このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(5-1-13)本発明のタイヤ(5)の製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
 このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
 また、本発明のタイヤ(5)は、第2の実施形態において説明したように以下のように構成することができる。
(5-2-1)本発明のタイヤ(5)の製造方法は、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
 このように、粗化処理工程を設けると、熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(5-2-2)本発明のタイヤ(5)は、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作成することができる。
 このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(5-2-3)本発明のタイヤ(5)は、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同体又は別体の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
 このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(5-2-4) 本発明のタイヤ(5)は、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
 このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いたとする場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(5-2-5) 本発明のタイヤ(5)は、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
 このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(5-2-6) 本発明のタイヤ(5)は、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
 このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(5-2-7) 本発明のタイヤ(5)は、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
 このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
 なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(5-2-8) 本発明のタイヤ(5)は、本発明に係る熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
 このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
 本発明のタイヤ(6)は第1の実施形態に示されるように以下のように構成することができる。
(6-1-1)本発明のタイヤ(6)は、タイヤ骨格体の軸方向に沿った断面視で、本発明に係る熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
 このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(6-1-2)本発明のタイヤ(6)は、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
 このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(6-1-3)本発明のタイヤ(6)は、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
 このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(6-1-4)本発明のタイヤ(6)は、前記タイヤ骨格体は、径方向内側にリムのビードシート及びリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
 このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(6-1-5)本発明のタイヤ(6)は、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
 このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、前記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(6-1-6)本発明のタイヤ(6)の製造方法は、少なくとも、ポリエステル系熱可塑性エラストマーと、特定共重合体および特定酸変性共重合体の少なくとも一方と、を含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、を含んで構成される。本発明のタイヤの製造方法は、さらに、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程を含んで構成することができる。
 ポリエステル系熱可塑性エラストマーとしては、例えば、東レ・デュポン社製のポリエステル系熱可塑性エラストマー「ハイトレル、6347」を用いることができ、特定共重合体としては、例えば、三井・デュポン ポリケミカル社製のエチレン-メタクリル酸共重合体「ニュクレル、N035C」を用いることができ、特定酸変性共重合体としては、例えば、三井・デュポン ポリケミカル社製のエチレン-アクリレートエチルエステル共重合体の酸変性体「HPR、AR2011」を用いることができる。
 既述のように、ポリエステル系熱可塑性エラストマーと、特定共重合体および特定酸変性共重合体の少なくとも一方と、を含む熱可塑性樹脂材料は、使用環境の温度変動による変形や硬さの変化が小さく、耐衝撃性に優れるほか、流動性に優れ、射出成形を容易に行なうことができる。従って、本発明に係る熱可塑性樹脂材料を用いて環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成する際に、射出成形によりタイヤ骨格片を形成すれば、効率よくタイヤ骨格片を形成することができ、タイヤの生産性に優れる。
(6-1-7)前記タイヤ(6)の製造方法は、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱するように構成することができる。
 このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(6-1-8)前記タイヤ(6)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
 このように、前記タイヤ骨格体の外周部を溶融又は軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融又は軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(6-1-9)前記タイヤ(6)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
 このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(6-1-10)前記タイヤ(6)の製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
 このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融又は軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(6-1-11)前記タイヤ(6)の製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
 このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融又は軟化するため、補強コード部材を埋設し易くなる。
(6-1-12)前記タイヤ(6)の製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
 このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(6-1-13)前記タイヤ(6)の製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融又は軟化した部分を冷却するように構成することができる。
 このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融又は軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融又は軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
 また、本発明のタイヤ(6)は第2の実施形態において説明したように以下のように構成することができる。
(6-2-1)本発明のタイヤ(6)は、前記製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
 このように、粗化処理工程を設けると、熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(6-2-2)本発明のタイヤ(6)は、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
 このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(6-2-3)本発明のタイヤ(6)は、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同種又は別の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
 このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(6-2-4) 本発明のタイヤ(6)は、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
 このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(6-2-5) 本発明のタイヤ(6)は、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
 このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(2-6) 本発明のタイヤ(6)は、前記粗化処理工程において、算術平均粗さRaが0.06-5mm以上となるように前記外周面を粗化処理するように構成することができる。
 このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫又は半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(6-2-7) 本発明のタイヤ(6)は、前記タイヤ構成ゴム部材として、未加硫、又は半加硫状態のゴムを用いることできる。
 このように、前記タイヤ構成ゴム部材として未加硫又は半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
 なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(6-2-8) 本発明のタイヤ(6)は、本発明に係る熱可塑性樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
 このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
 また、本発明のタイヤ(7)は第1実施形態に示されるように以下のように構成することができる。
(7-1-1)本発明のタイヤは、タイヤ骨格体の軸方向に沿った断面視で、熱可塑性樹脂材料で形成されたタイヤ骨格体の外周部に補強コード部材の少なくとも一部が埋設されるように構成することができる。
 このように、補強コード部材の一部がタイヤ骨格体の外周部に埋設していると、補強コード部材巻回時にコード周辺に空気が残る現象(エア入り)を更に抑制することができる。補強コード部材周辺へのエア入りが抑制されると、走行時の入力などによって補強コード部材が動くのが抑制される。これにより、例えば、タイヤ骨格体の外周部に補強コード部材全体を覆うようにタイヤ構成部材が設けられた場合、補強コード部材は動きが抑制されているため、これらの部材間(タイヤ骨格体含む)に剥離などを生じるのが抑制され耐久性が向上する。
(7-1-2)本発明のタイヤ(7)は、前記補強コード層の径方向外側に前記熱可塑性樹脂材料よりも耐摩耗性を有する材料から形成されるトレッドを設けてもよい。
 このように路面と接触するトレッドを熱可塑性樹脂材料よりも耐摩耗性のある材料で構成することでタイヤの耐摩耗性を更に向上させることができる。
(7-1-3)本発明のタイヤ(7)は、前記タイヤ骨格体の軸方向に沿った断面視で、前記補強コード部材の直径1/5以上を前記タイヤ骨格体の外周部に周方向に沿って埋設させることができる。
 このようにタイヤ骨格体の軸方向に沿った断面視で補強コード部材の直径の1/5以上がタイヤ骨格体の外周部に埋設されていると、補強コード部材周辺へのエア入りを効果的に抑制することができ、走行時の入力などによって補強コード部材が動くのをより抑制することができる。
(7-1-4)本発明のタイヤ(7)は、前記タイヤ骨格体は、径方向内側にリムのビードシートおよびリムフランジに接触するビード部を有し、前記ビード部に金属材料からなる環状のビードコアが埋設されるように構成することができる。
 このように、タイヤ骨格体にリムとの嵌合部位であるビード部を設け、さらに、このビード部に金属材料からなる環状のビードコアを埋設することで、従来のゴム製の空気入りタイヤと同様に、リムに対して、タイヤ骨格体(すなわちタイヤ)を強固に保持させることができる。
(7-1-5)本発明のタイヤ(7)は、前記ビード部が前記リムと接触する部分に前記熱可塑性樹脂材料よりもシール性(リムとの密着性)の高い材料からなるシール部を設けることが出来る。
 このように、タイヤ骨格体とリムとの接触部分に、熱可塑性樹脂材料よりもシール性の高い材料からなるシール部を設けることで、タイヤ(タイヤ骨格体)とリムとの間の密着性を向上させることができる。これにより、リムと熱可塑性樹脂材料とのみを用いた場合に比較して、タイヤ内の空気漏れを一層抑制することができる。また、前記シール部を設けることでタイヤのリムフィット性も向上させることができる。
(7-1-6) 本発明のタイヤ(7)は、少なくとも前記熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合面に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程と、前記タイヤ骨格体の外周部に補強コード部材を周方向に巻回して補強コード層を形成する補強コード部材巻回工程と、を含む製造方法によって製造することができる。
(7-1-7) 前記タイヤ(7)の製造方法においては、前記タイヤ骨格片接合工程において、前記タイヤ骨格片の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上(例えば、融点+10℃~+150℃)に加熱するように構成することができる。
 このように、前記分割体の接合面を、タイヤ骨格片を構成する熱可塑性樹脂材料の融点以上に加熱すると、タイヤ骨格片同士の融着を十分に行うことができるため、タイヤの耐久性を向上させつつ、タイヤの生産性を高めることができる。
(7-1-8)前記タイヤ(7)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格片接合工程において形成された前記タイヤ骨格体の外周部を溶融または軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回するように構成することができる。
 このように、前記タイヤ骨格体の外周部を溶融または軟化させながら補強コード部材の少なくとも一部を埋設して前記タイヤ骨格体の外周部に前記補強コード部材を巻回することで、埋設された補強コード部材の少なくとも一部と溶融または軟化した熱可塑性樹脂材料とを溶着させることができる。これにより、タイヤ骨格体の軸方向に沿った断面視でタイヤ骨格体の外周部と補強コード部材との間のエア入りを更に抑制することができる。また、補強コード部材を埋設した部分が冷却固化されると、タイヤ骨格体に埋設された補強コード部材の固定具合が向上する。
(7-1-9)前記タイヤ(7)の製造方法は、前記補強コード部材巻回工程において、前記タイヤ骨格体の軸方向に沿った断面視で前記補強コードの直径の1/5以上を前記タイヤ骨格体の外周部に埋設させるように構成することができる。
 このように、タイヤ骨格体の軸方向に沿った断面視で、タイヤ骨格体の外周部に補強コード部材を直径の1/5以上埋設すると、製造時の補強コード周辺へのエア入りを効果的に抑制することができ、更に、埋設された補強コード部材がタイヤ骨格体から抜け難くすることができる。
(7-1-10)前記タイヤ(7)の製造方法は、前記補強コード部材巻回工程において、加熱した前記補強コード部材を前記タイヤ骨格体に埋設するように構成することができる。
 このように、補強コード巻回工程において、補強コード部材を加熱しながらタイヤ骨格体に埋設させると、加熱された補強コード部材がタイヤ骨格体の外周部に接触した際に接触部分が溶融または軟化するため、補強コード部材をタイヤ骨格体の外周部に埋設し易くなる。
(7-1-11)前記タイヤ(7)の製造方法は、前記コード部材巻回工程において、前記タイヤ骨格体の外周部の前記補強コード部材が埋設される部分を加熱するように構成することができる。
 このように、タイヤ骨格体の外周部の補強コード部材が埋設される部分を加熱することで、タイヤ骨格体の加熱された部分が溶融または軟化するため、補強コード部材を埋設し易くなる。
(7-1-12)前記タイヤ(7)の製造方法は、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記タイヤ骨格体の外周部の周方向に前記補強コード部材を螺旋状に巻回するように構成することができる。
 このように、補強コード部材を前記タイヤ骨格体の外周部に押圧しながら前記補強コード部材を螺旋状に巻回すると、補強コード部材のタイヤ骨格体の外周部への埋設量を調整することができる。
(7-1-13)前記タイヤ(7)の製造方法によれば、前記コード部材巻回工程において、前記補強コード部材を前記タイヤ骨格体に巻回した後、前記タイヤ骨格体の外周部の溶融または軟化した部分を冷却するように構成することができる。
 このように、補強コード部材が埋設された後で、タイヤ骨格体の外周部の溶融または軟化した部分を強制的に冷却することで、タイヤ骨格体の外周部の溶融または軟化した部分を自然冷却よりも早く迅速に冷却固化することができる。タイヤ外周部を自然冷却よりも早く冷却することで、タイヤ骨格体の外周部の変形を抑制できると共に、補強コード部材が動くのを抑制することができる。
 また、本発明のタイヤは第2実施形態において説明したように以下のように構成することができる。
(7-2-1)本発明のタイヤ(7)は、前記製造方法において、更に、タイヤ骨格体の外周面に粒子状の投射材を衝突させて、タイヤ骨格体の外周面を粗化処理する粗化処理工程と、粗化処理された前記外周面に接合剤を介してタイヤ構成ゴム部材を積層する積層工程と、を備えて構成することができる。
 このように、粗化処理工程を設けると、前記熱可塑性樹脂材料を用いて形成された環状のタイヤ骨格体の外周面に粒子状の投射材が衝突して、当該外周面に微細な粗化凹凸が形成される。なお、タイヤ骨格体の外周面に投射材を衝突させて微細な粗化凹凸を形成する処理を粗化処理という。その後、粗化処理された外周面に接合剤を介してタイヤ構成ゴム部材が積層される。ここで、タイヤ骨格体とタイヤ構成ゴム部材とを一体化するにあたり、タイヤ骨格体の外周面が粗化処理されていることから、アンカー効果により接合性(接着性)が向上する。また、タイヤ骨格体を形成する熱可塑性樹脂材料が投射材の衝突により掘り起こされることから、外周面の濡れ性が向上する。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(7-2-2)本発明のタイヤ(7)は、前記タイヤ骨格体の外周面の少なくとも一部が凹凸部であり、前記凹凸部が前記粗化処理工程において粗化処理を施して作製することができる。
 このように、タイヤ骨格体の外周面の少なくとも一部が凹凸部とされていても、凹凸部に投射材を衝突させることで凹部周囲(凹壁、凹底)の粗化処理がなされ、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確保することができる。
(7-2-3)本発明のタイヤ(7)は、前記タイヤ骨格体の外周部が、外周面に前記凹凸部を構成する補強層で構成されており、前記補強層が前記タイヤ骨格体を形成する樹脂材料とは同種または別の樹脂材料で補強コードを被覆して構成された被覆コード部材を前記タイヤ骨格体の周方向に巻回して構成することができる。
 このように、被覆コード部材をタイヤ骨格体の周方向に巻回して構成された補強層でタイヤ骨格体の外周部を構成することで、タイヤ骨格体の周方向剛性を向上させることができる。
(7-2-4) 本発明のタイヤ(7)は、前記被覆コード部材を構成する樹脂材料に熱可塑性樹脂材料を用いることができる。
 このように、被覆コード部材を構成する樹脂材料に熱可塑性を有する熱可塑性材料を用いることで、前記樹脂材料として熱硬化性材料を用いた場合と比べて、タイヤ製造が容易になり、リサイクルしやすくなる。
(7-2-5) 本発明のタイヤ(7)は、前記粗化処理工程において、前記タイヤ構成ゴム部材の積層領域よりも広い領域を粗化処理するように構成することができる。
 このように、粗化処理工程において、タイヤ構成ゴム部材の積層領域よりも広い領域に粗化処理を施すと、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を確実に確保することができる。
(7-2-6) 本発明のタイヤ(7)は、前記粗化処理工程において、算術平均粗さRaが0.05mm以上となるように前記外周面を粗化処理するように構成することができる。
 このように、粗化処理工程において算術平均粗さRaが0.05mm以上となるようにタイヤ骨格体の外周面を粗化処理すると、粗化処理された外周面に接合剤を介して、例えば、未加硫または半加硫状態のタイヤ構成ゴム部材を積層し加硫した場合に、粗化処理により形成された粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませることができる。粗化凹凸の底まで、タイヤ構成ゴム部材のゴムを流れ込ませると、外周面とタイヤ構成ゴム部材との間に十分なアンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
(7-2-7) 本発明のタイヤ(7)は、前記タイヤ構成ゴム部材として、未加硫、または半加硫状態のゴムを用いることできる。
 このように、前記タイヤ構成ゴム部材として未加硫または半加硫状態のゴムを用いると、タイヤ構成ゴム部材を加硫した際に、粗化処理によってタイヤ骨格体の外周面に形成された粗化凹凸にゴムが流れ込む。そして、加硫が完了すると、粗化凹凸に流れ込んだゴム(加硫済み)により、アンカー効果が発揮されて、タイヤ骨格体とタイヤ構成ゴム部材との接合強度を向上させることができる。
 なお、加硫済みとは、最終製品として必要とされる加硫度に至っている状態をいい、半加硫状態とは、未加硫の状態よりは加硫度が高いが、最終製品として必要とされる加硫度に至っていない状態をいう。
(7-2-8) 本発明のタイヤ(7)は、前記樹脂材料を用いて形成され、外周面に粒子状の投射材を衝突させて該外周面を粗化処理した環状のタイヤ骨格体と、粗化処理された前記外周面に接合剤を介して積層されたタイヤ構成ゴム部材と、を備えるように構成することができる。
 このように、粗化処理した環状のタイヤ骨格体を用いると、タイヤ骨格体とタイヤ構成ゴム部材との接合強度をアンカー効果によって向上させることができる。また、外周面が粗化処理されていることから、接合剤の濡れ性がよい。これにより、タイヤ骨格体の外周面に接合剤が均一な塗布状態で保持され、タイヤ骨格体とタイヤ構成ゴム部材との接合強度が確保されて、タイヤ骨格体とタイヤ構成ゴム部材との剥離を抑制することができる。
 以上、本発明の具体的な態様について第1実施形態および第2実施形態を用いて説明したが本発明は上述の態様に限定されるものではない。
[実施例1-1~1-3、比較例1-1]
 以下、本発明の第1の観点について、実施例を用いてより具体的に説明する。但し、本発明はこれに限定されるものではない。
 まず、上述の第1の実施形態に従って、各実施例及び比較例のタイヤを成形した。
 この際、タイヤケースを形成する材料については下記表1-1に記載の材料を用いた。
 また、各実施例及び比較例について、引張り特性、荷重たわみ温度、接合性及びタイヤ性能の評価を行った。
 なお、比較例1-1では、タイヤケース半体が十分に接合されなかったため、タイヤを製造することができなかった。
<ペレットの作製>
 表1-1に記載の熱可塑性エラストマーを用い、適宜予備乾燥を行い、各実施例及び比較例に用いるペレットを得た。
<評価>
1-1.引張り特性(引張弾性率、引張強さ及び破断伸び)の評価
 作製したペレットを成形材料とし、127mm×12.7mm、厚さ1.6mmの金型を用いて、次の成形条件で射出成形を行い、試料片を得た。
 ・射出成形機:SE30D、住友重機械工業(株)
 ・成形温度(熱可塑性樹脂材料の温度):実施例は200℃~240℃、比較例は320℃
 ・金型温度:実施例は50℃~70℃、比較例は130℃
 得られた各試料片を打ち抜き、JIS K6251:1993に規定されるダンベル状試験片(5号形試験片)を作製した。
 次いで、(株)島津製作所製、島津オートグラフAGS-J(5KN)を用いて、引張速度を200mm/minに設定し、各ダンベル状試料片の引張弾性率、引張強さ及び破断伸びを測定した。
 結果を表1-1に示す。
1-2.荷重たわみ温度の評価
 作製したペレットを成形材料とし、多目的試料片(JIS K7139:2009、ISO-3167)形状の金型を用いて、次の成形条件で射出成形を行い、厚さ4mmの多目的試料片を得た。
 ・射出成形機:SE30D、住友重機械工業(株)
 ・成形温度(熱可塑性樹脂材料の温度):実施例は200℃~240℃、比較例は320℃
 ・実施例は金型温度50℃~70℃、比較例は130℃
 得られた多目的試料片を、127mm×10mm、厚さ4mmの評価用試料片に切削加工した。
 得られた評価用試料片について、0.45MPa及び1.8MPaの各々の荷重における荷重たわみ温度(ASTM D648)を、HDT/VSPT試験装置((株)上島製作所製)を用いて測定した。
 測定方法及び条件は次の通りである。
 評価用試料片の支点間距離100mmで2点を支え、支点間の中央部に0.46MPa又は1.8MPaの荷重をかけ、該試料片の周囲をシリコーンオイルで満たし、昇温速度120℃/hrで昇温した。評価用試料片の変形量が0.2%に達した時の温度を、荷重たわみ温度として測定した。
 結果を表1-1に示す。
 なお、荷重たわみ温度は、0.45MPaから測定し、荷重たわみ温度が測定できた実施例1-1~1-3については、1.8MPaでの測定は実施しなかった。
 荷重たわみ温度が、50℃以上であることが、タイヤに求められる性能として、実用上問題のない範囲である。
 結果を表1-1に示す。
1-3.接合性の評価
 各実施例及び比較例にて作製したタイヤケース半体と同じ熱可塑性樹脂材料について、熱傾斜試験機((株)東洋精機製「Type-HG-100」)を使用し、210℃~250℃において3kgf/cmのプレス圧で90秒間加熱し、シールサイズ10mm×25mmの接合サンプルを作製した。
 作製されたそれぞれの接合サンプルについて、(株)島津製作所製、島津オートグラフ、AGS-J(5KN)を用いて、引張速度を50mm/minに設定し、180°剥離試験を行い、各接合サンプルの接合面積率(%)を測定した。得られた接合面積率(%)を接合性の指標として評価した。
 結果を表1-1に示す。
<タイヤ評価>
-製造性-
 製造性については、タイヤケースを射出成形した際の射出成形温度を表1-1に示した。
-タイヤ走行性-
 上述の第1の実施形態に従って得られた各実施例及び比較例のタイヤについて、JIS D4230:1999 (高速性能試験B)に準じて高速性能試験を行った。
 結果を表1-1に示す。
-形状保持性-
 上述の高速性能試験において、走行前後のタイヤ幅を測定・比較し、変形率(%)を算出した。結果を表1-1に示す。
Figure JPOXMLDOC01-appb-T000009
 
 なお、表1-1に記載される樹脂種の略称及び商品名の詳細は、以下の通りである。
 TPEE:ポリエステル系熱可塑性エラストマー
 PPS:ポリフェニレンサルファイド樹脂
 ハイトレル:東レ・デュポン(株)製
 FORTRON:ポリプラスチック(株)製
 表1-1から分かるように、ポリエステル系エラストマーを含む熱可塑性樹脂材料によりタイヤケースを形成した実施例1-1~1-3では、比較例1-1との対比において、引張り弾性率、引張り強さ及び破断伸びのいずれについてもタイヤに求められる性能として良好な値であった。
 また、荷重たわみ温度についても、実施例1-1~1-3に用いたポリエステル系エラストマーを含む熱可塑性樹脂材料は、タイヤに求められる性能を充分に満たしていることが分る。
 更に、実施例1-1~1-3に用いたポリエステル系エラストマーを含む熱可塑性樹脂材料は、タイヤ成形に必要な接合性も良好であることがわかる。これに対し、比較例1-1で用いたPPSでは、実施例と同じ接合温度ではタイヤケース半体の接合ができなかった。
 さらに、実施例1-1~1-3のタイヤ成形に用いた熱可塑性樹脂材料は、射出成形性に優れると共に、得られたタイヤの走行性及び形状保持性の走行性能も十分なものであった。
[実施例2-1~2-11、比較例2-1]
 以下、本発明の第2の観点について、実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
 まず、上述の第2の実施形態に従って、各実施例及び比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表2-1に記載の材料を用いた。
 また、各実施例及び比較例について、引張り特性及びタイヤ性能の評価を下記に従っておこなった。
<試料片の作製>
1.ポリエステル系熱可塑性エラストマー
 東レ・デュポン(株)製「ハイトレル 6347」
2.ポリウレタン系熱可塑性エラストマー
 1)BASF社製「エラストラン ET680」、エステル系
 2)BASF社製「エラストラン ET880」、エーテル系
3.ポリスチレン系熱可塑性エラストマー
 1)旭化成(株)製「タフテック M1943」
 2)旭化成(株)製「タフテック H1052」
4.α-ポリオレフィン系熱可塑性エラストマー
 1)三井化学(株)製「タフマー MH7007」
 2)三井化学(株)製「タフマー MH7010」
 3)三井化学(株)製「タフマー A1050S」
5.ポリエステル系熱可塑性エラストマー
 1)三井・デュポン(株)製「エルバロイAC 3427AC」、エチレン-アクリル酸ブチル共重合体
 上記熱可塑性エラストマーを、表2-1に示す組成で混合(質量基準)して、東洋精機(株)製の2軸押出し機「LABOPLASTOMILL 50MR」により混練し、ペレットを得た。なお、比較例2-1について、混合系とせず、ポリエステル系熱可塑性エラストマーのみでペレットを用意した。
 次いで、得られたペレットを成形材料として、12.7mm×127mm、厚さ1.6mmの金型を用いて、次の条件で射出成形を行い、試料片を得た。
 ・射出成形機:SE30D、住友重機械工業(株)
 ・成形温度(熱可塑性樹脂材料の温度):235℃
 ・金型温度50℃とし、
 得られた試料片を打ち抜き、JISK6251:1993に規定されるダンベル状試験片(5号形試験片)を作製した。
<引張り特性(引張強さ、破断伸び、及び引張弾性率)評価>
 得られた各試験片について、(株)島津製作所製、島津オートグラフAGS-J(5KN)、JIS 5号ダンベルを用いて、引張速度を200mm/minで引張ることにより、引張り特性(引張強さ、破断伸び、及び引張弾性率)を測定した。
 結果を下記表2-1に示す。
 
Figure JPOXMLDOC01-appb-T000010
 
 表2-1に示されるように、実施例の如くおけるポリエステル系熱可塑性エラストマーと他のエラストマーとを併用することは、ポリエステル系熱可塑性エラストマーのみを単独で用いた比較例2-1との対比において、弾性率が低下していることが分かる。このことは、ポリエステル系熱可塑性エラストマーと他のエラストマーとを併用することで、タイヤケースを構成する熱可塑性樹脂材料の弾性率を所望の範囲に容易に制御できることを意味する。従って、各実施例にて作製した試料片と同じ熱可塑性樹脂材料を用いて形成されたタイヤケースを用いて製造されたタイヤにおいては、熱可塑性樹脂材料としてポリエステル系熱可塑性エラストマーを単独で用いた場合に比して、より耐衝撃性を向上させることができる。
 実施例2-1~2-11、比較例2-1で作製した各タイヤについて、ドラム走行試験を行ったところ、走行上の安全性はいずれのタイヤでも問題なかった。
[実施例3-1~3-8、比較例3-1]
 以下、本発明の第3の観点について、実施例を用いてより具体的に説明する。但し、本発明はこれに限定されるものではない。
 まず、上述の第2の実施形態に従って、各実施例及び比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表3-1及び3-2に記載の材料を用いた。また、各実施例及び比較例について、材料の物性評価からタイヤ性能を考察した。
〔試料片の作製〕
1.ポリエステル系熱可塑性エラストマー
 東レ・デュポン社製、ハイトレル、6347
2.ゴム
 1)ブタジエンゴム(BR)
 2)スチレン-ブタジエン共重合ゴム(SBR)
 3)アクリロニトリル-ブタジエン共重合ゴム(NBR)
 BR、SBR、及びNBRは、いずれも単軸押出し機により押出し、ペレット化して用いた。
3.ゴム親和熱可塑性エラストマー
 1)酸変性α-オレフィン系熱可塑性エラストマー
   三井化学社製、タフマー、MH7010
 2)酸変性水素添加ポリスチレン系熱可塑性エラストマー(SEBS)
   旭化成社製、タフテック、M1913
4)加硫ゴム(DV1~DV3)
 上記のBR、SBR、及びNBRの各ゴムを用いて、下記表3-1に示す種類及び量の成分を混合し、バンバリーミキサーにより混練し、2本ロールを用いてシート状にした後、単軸押出し機により押し出し、ペレット化して用いた。
 なお、得られたゴムは、2軸押出し機中で、ポリエステル系熱可塑性エラストマーとの混練中に架橋を行った。
Figure JPOXMLDOC01-appb-T000011

 
 表3-1中の普通硫黄、促進剤CZ及び促進剤TSの詳細は次のとおりである。
普通硫黄・・・・・・鶴見化学工業社製、普通硫黄
加硫促進剤CZ・・・大内新興化学工業社製「ノクセラーCZ」
         (N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド)
促進剤TS・・・・・大内新興化学工業社製「ノクセラーTS」)
         (テトラメチルチウラムモノスルフィド)
〔熱可塑性樹脂材料のペレットの作製〕
 表3-2に示す成分を、表3-2に示す組成で混合(質量基準)して、東洋精機製作所社製、LABOPLASTOMILL 50MR 2軸押出し機により混練し、ペレットを得た。なお、比較例3-1においては、混合系とせず、ポリエステル系熱可塑性エラストマーのペレットを用意した。
1.引張強さ、破断伸び、及び、引張弾性率評価
 作製したペレットを用いて、住友重工社製、SE30Dを用い、射出成形を行い、成形温度200℃~235℃、金型温度50℃~70℃とし、12.7mm×127mm、厚さ1.6mmの金型を用いて、試験片を得た。
 各試験片を打ち抜き、JISK6251:1993に規定されるダンベル状試料片(5号形試料片)を作製した。
 次いで、島津製作所社製、島津オートグラフAGS-J(5KN)を用いて、引張速度を200mm/minに設定し、前記各ダンベル状試料片の引張弾性率、引張強さ及び破断伸びを測定した。
 結果を下記表3-2に示す。
2.tanδ測定
 レオメトリックス(株)製の動的粘弾性測定試験機「ARES III」を使用して、温度30℃、測定周波数20Hz、及び動的歪1%における損失正接(tanδ)を測定した。
 実施例及び比較例の試料片の、引張強さ、破断伸び、引張弾性率、及びtanδを、表3-2に示す。
Figure JPOXMLDOC01-appb-T000012
 
 表3-2に示されるように、各実施例で作製した試料片は、比較例で作製された試料片との対比において、引張弾性率が小さく、柔軟性に富んでいることがわかる。このことは、実施例に示す試料片と同じ熱可塑性樹脂材料を用いて形成されたタイヤケースを用いて製造されたタイヤは、耐衝撃性に優れ、例えば、タイヤが縁石等に接触しても破損しにくい耐久性を有することを示す。また、実施例の試料片は、比較例の試料片に比べ、いずれもtanδが小さい。従って、実施例に示す試料片と同じ熱可塑性樹脂材料を用いて作製されたタイヤの転がり抵抗は抑制され、かかるタイヤを自動車に適用した場合には、低燃費を発現し得ることが把握される。
 なお、実施例3-1~3-8及び比較例3-1の各熱可塑性樹脂材料を用いて形成した各タイヤについて、ドラム走行試験を行ったところ、走行上の安全性はいずれのタイヤも問題なかった。
[実施例4-1~4-4、比較例4-1~4-6]
 以下、本発明の第4の観点について、実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
 まず。上述の第1の実施形態に従って、実施例及び比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表4-1に記載の材料を用いた。また、実施例及び比較例と同条件で形成したタイヤケースと同じ成分組成である、127mm×12.7mm、厚さ1.6mmの試料片を作製し、引張強さ、破断伸び、及び引張弾性率について評価した。
 各試料片の作製方法、各評価方法及び評価条件は以下の通りである。
<試料片の作製>
(A)ポリエステル系熱可塑性エラストマー
 1)東レ・デュポン(株)製、ハイトレル3046
 2)東レ・デュポン(株)製、ハイトレル5557
 3)東レ・デュポン(株)製、ハイトレル6347
 4)東レ・デュポン(株)製、ハイトレル7247
 5)東レ・デュポン(株)製、ハイトレル2751
(B)ポリエステル樹脂(ポリブチレンテレフタレート樹脂)
 1)ポリプラスチック(株)製、ジュラネックス2000
 2)ポリプラスチック(株)製、ジュラネックス2002
(C)比較用樹脂(アクリロニトリル・ブタジエン・スチレン共重合体)
 1)テクノポリマー社製、テクノABS130
-ポリエステル樹脂の弾性率-
 (B)ポリエステル樹脂として示した上記の各種樹脂を成形材料として用い、127mm×12.7mm、厚さ1.6mmの金型にて射出成形し、試料片を作製した。成形条件は以下の通りである。
 ・射出成形機:SE30D、住友重機械工業(株)
 ・成形温度(熱可塑性樹脂材料の温度):200℃~240℃
 ・金型温度:40℃~60℃
 得られた試験片を、(株)島津製作所製、島津オートグラフ、AGS-J(5KN)を用いて、引張速度1mm/minで引っ張ることにより、試験片の引張弾性率を調べたところ、次の結果が得られた。
(B)ポリエステル樹脂(ポリブチレンテレフタレート樹脂)
 1)ポリプラスチック(株)製、ジュラネックス2000、弾性率=1100MPa
 2)ポリプラスチック(株)製、ジュラネックス2002、弾性率=1250MPa
 上記したポリエステル系熱可塑性エラストマーとポリエステル樹脂とを、表4-1に示す組成で混合(質量基準)して、(株)東洋精機製作所製、LABOPLASTOMILL 50MR 2軸押出し機により混練し、ペレットを得た。なお、比較例4-1~4-4においては、混合系とせず、表4-1に示すポリエステル系熱可塑性エラストマーからなるペレットを用意した。
 用意した実施例、及び比較例の各ペレットを用い、次の条件で射出成形して、厚さ1.6mmの試料片を得た。
 射出成形には、住友重機械工業(株)製、SE30Dを用い、成形温度200℃~235℃、金型温度50℃~70℃とし、127mm×12.7mm、厚さ1.6mmの金型を用いた。
<評価方法>
1.引張強さ、破断伸び、及び引張弾性率の評価
 上記射出成形で得た試料片を打ち抜き、JIS K6251:1993に規定されるダンベル状試験片(5号形試験片)を作製した。
 引張強さ、破断伸び、及び引張弾性率は、(株)島津製作所製、島津オートグラフ、AGS-J(5KN)を用いて、得られたダンベル状試験片を引張速度200mm/minで引っ張ることにより測定した。
2.tanδ測定
 レオメトリックス(株)製の動的粘弾性測定試験機「ARES III」を使用して、温度30℃、測定周波数20Hz、及び動的歪1%における損失正接(tanδ)を測定した。
 実施例及び比較例の各試料片の、引張強さ、破断伸び、引張弾性率、及びtanδを、表4-1に示す。
3.弾性率(引張弾性率)とtanδとの関係
 実施例4-1~4-4及び比較例4-1~4-6の試料片の引張弾性率とtanδとの関係を、図6にプロットした。
Figure JPOXMLDOC01-appb-T000013
 
 表4-1に示されるように、実施例にて作製した試料片の評価結果は、比較例の試料片の評価結果の対比において、引張弾性率の変動に拘らず、タイヤの転がり抵抗を示す指標となるtanδの変動幅は小さくことから、転がり抵抗の増大が抑制されていることが分る。
 このことは、図6からも把握される。図6には、引張弾性率に対するtanδがプロットされている。比較例4-1~4-6のプロットから把握される回帰直線(図示せず)は、傾きが大きく、引張弾性率が大きくなるにつれ、tanδも大きくなっているが、実施例4-1~4-4のプロットから把握される回帰直線(図示せず)は、傾きが小さく、引張弾性率が大きくなっても、tanδが上がりにくいことがわかる。
 また、実施例にて作製した各試料片は、引張強さ、破断伸び、及び引張弾性率のいずれについても、タイヤに要求されるレベルを、充分に満足するものであることが分る。このことは、実施例4-1~4-4の各試料片と同じ熱可塑性樹脂材料を用いて形成されたタイヤケースを用いて製造されたタイヤは、転がり抵抗の増大が抑制され、且つ耐久性にも優れていることを示す。更に、かかるタイヤを用いて構成される自動車は燃費が良いと推察される。
 なお、実施例4-1~4-4及び比較例4-1の各熱可塑性樹脂材料を用いて形成した各タイヤについて、ドラム走行試験を行ったところ、走行上の安全性はいずれのタイヤも問題なかった。
[実施例5-1~5-10、比較例5-1~5-6]
 以下、本発明の第5の観点について、実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
 まず。上述の第1の実施形態に従って、実施例及び比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表5-1に記載の材料を用いた。また、実施例及び比較例と同条件で形成したタイヤケースと同じ成分組成である127mm×12.7mm、厚さ1.6mmのシート状の試料片を作製し、射出成形性、引張強さ、破断伸び、引張弾性率、及び破断状態について評価した。結果を表5-1に示す。
 また、各試料片の作製方法、各評価方法及び評価条件は以下の通りである。
<試料片の作製>
1.ポリエステル系熱可塑性エラストマー
 東レ・デュポン(株)製「ハイトレル 6347」
2.ポリアミド系熱可塑性エラストマー
 宇部興産(株)製「UBESTA XPA9055X1」
3.α-オレフィン系熱可塑性エラストマー
 1)三井化学(株)製「タフマー MA8510」
 2)三井化学(株)製「タフマー MH7007」
 3)三井化学(株)製「タフマー MH7010」
 4)三井化学(株)製「タフマー MH7020」
 5)三井化学(株)製「タフマー A1050S」
4.スチレン系熱可塑性エラストマー〔完全水素添加型(SEBS)〕
 1)旭化成(株)製「タフテック H1052」
 2)旭化成(株)製「タフテック M1943」
 上記熱可塑性エラストマーを、表5-1に示す組成で混合(質量基準)して、(株)東洋精機製作所製、LABOPLASTOMILL 50MR 2軸押出し機により混練し、ペレットを得た。
 次いで、得られたペレットを成形材料として、127mm×12.7mm、厚さ1.6mmの金型を用いて、次の条件で射出成形を行い試料片を得た。
 ・射出成形機:SE30D、住友重機械工業(株)製
 ・成形温度(熱可塑性樹脂の温度):200℃~235℃
 ・金型温度:50℃~70℃
 得られた各試料片を打ち抜き、JISK6251-1993:1993に規定されるダンベル状試験片(5号形試験片)を作製した。
 なお、上記条件にて射出成形できなかった比較例5-1及び5-4の各ペレットについては、(株)小平製作所製の電熱プレスを用いて、ペレットを200℃ 12MPaにて、5分間加熱することで、熱プレスを行い、120mm×120mm、厚さ2mmの試料片を得た。
<熱可塑性樹脂材料の酸価の測定>
 熱可塑性樹脂材料の酸価は、実施例及び比較例で用いた各エラストマーについて、ナトリウムメトキシド(CHONa)を用いて中和滴定を行った際に用いられたナトリウムメトキシド(CHONa)の質量〔mg〕から、前記式(1)又は式(2)に基づき算出した。結果を表5-1に示す。
<評価>
1.引張り特性(引張強さ、破断伸び、引張弾性率、及び破断状態)の評価
 得られた試験片を用いて、下記のようにして、引張強さ、破断伸び、引張弾性率、及び破断状態について評価した。結果を下記表5-1に示す。
 引張強さ、破断伸び、及び引張弾性率は、(株)島津製作所製、島津オートグラフ「AGS-J(5KN)」、JIS 5号ダンベルを用いて、試料片を引張速度200mm/minで引っ張ることにより測定した。
 破断状態は、目視にて各試験片の破断面を観察し、下記評価基準に基づき評価した。
-評価基準-
 A:試料片は、延性破壊により破断した。
 B:試料片は、層状破壊により破断した。
 C:試料片は、脆性破壊により破断した。
2.射出成形性の評価
流動性評価〔MFR(g/10分、230℃)〕及び射出成形性評価
 実施例、及び比較例の各ペレットについて、(株)東洋精機製作所製、セミメルトインデクサ 2A型を用い、ASTM A1238(B法)に基づき、21.18N、49.03N、又は98.07Nの荷重をかけて、流動性(MFR)を測定した。
 なお、測定は、荷重の小さいもの(21.18N)から始め、この条件ではMFRが測定できない場合には、より大きい荷重をかけて測定した。測定開始後、3分経過した後も測定が開始されないものについては、表5-1に「-」を示した。
 また、上記の住友重機械工業(株)製、SE30Dを用い、成形温度200℃~235℃、金型温度50℃~70℃の条件での射出成形性評価を行ない、表5-1に示した。当該条件での射出成形が可能であったものをA、当該条件では射出成形ができなかったものについてはBとして表5-1に示した。
 射出成形性の評価がAであるものが、タイヤを作製するに際して実用上問題のない射出成形性を有することを示す。結果を下記表5-1に示す。
 
Figure JPOXMLDOC01-appb-T000014
 
 表5-1に示されるように、各実施例で作製した試料片は、比較例で作製された試料片との対比において、引張り特性及び破断状態のいずれもが良好であり、試料片の作製時における射出成形性にも優れていることが分る。このことは、実施例5-1~5-12に示す試料片と同じ熱可塑性樹脂材料を用いて形成されたタイヤケースを用いて製造されたタイヤは、耐久性を有し且つ製造性にも優れることを示す。
 なお、実施例5-1~5-10及び比較例5-1~5-6で得られた各タイヤについて、ドラム走行試験を行ったところ、走行上の安全性はいずれのタイヤも問題なかった。
[実施例6-1~6-4、比較例6-1~6-4]
 以下、本発明の第6の観点について、実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
 まず、上述の第2の実施形態に従って、実施例及び比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表6-1に記載の材料を用いた。また、各実施例及び比較例について、材料の物性評価からタイヤ性能を考察した。
<試料片の作製>
1.ポリアミド系熱可塑性エラストマー
 宇部興産社製、UBESTA、XPA 9055X1
2.ポリエステル系熱可塑性エラストマー
 東レ・デュポン社製、ハイトレル、6347
3.エチレン-アクリレートエチルエステル共重合体(特定酸変性共重合体)
 三井・デュポン ポリケミカル社製、HPR、AR2011
4.エチレン-メタクリル酸共重合体(特定共重合体)
 三井・デュポン ポリケミカル社製、ニュクレル、N035C
〔ペレットの作製〕
 上記エラストマー及び上記共重合体を、表6-1に示す組成で混合(質量基準)して、(株)東洋精機製作所製、LABOPLASTOMILL 50MR 2軸押出し機により混練し、ペレットを得た。なお、比較例6-1及び比較例6-5においては、混合系とせず、それぞれ、ポリアミド系熱可塑性エラストマー及びポリエステル系熱可塑性エラストマーのペレットを用意した。
<1.引張弾性率、引張強さ、破断伸び、及び、破断性の評価>
 用意したペレットを用いて、住友重工社製、SE30Dを用い、射出成形を行い、成形温度200℃~240℃、金型温度40℃~70℃とし、12.7mm×127mm、厚さ1.6mmの金型を用いて、試料片を得た。
 各試料片を打ち抜き、JISK6251-1993に規定されるダンベル状試料片(5号形試料片)を作製した。
 なお、比較例6-2のペレットについては、上記射出成形条件では射出成形をすることができなかったため、小平製作所社製の電熱プレスを用いて、ペレットを200℃ 12MPaにて、5分間加熱することで、熱プレスを行い、120mm×120mm、厚さ2mmの試料片を得た。
 次いで、島津製作所社製、島津オートグラフAGS-J(5KN)を用いて、引張速度を200mm/minに設定し、前記各ダンベル状試料片の引張弾性率、引張強さ、破断伸び、及び、破断性(破断状態)を調べた。結果を下記表6-1に示す。
 表6-1には、「引張物性 4)未添加との弾性率の差」欄に、特定共重合体および特定酸変性共重合体の少なくとも一方を含んでいない系(比較例6-1と比較例6-5)の弾性率と、特定共重合体および特定酸変性共重合体の少なくとも一方を含んでいる系(比較例6-2~6-4、及び実施例6-2~6-4)の弾性率と、の差を示した。
 比較例6-1~6-5については、比較例1の試料片の弾性率と、他の試料片の弾性率との差を示し、比較例6-5及び実施例6-1~6-4については、比較例6-1の試料片の弾性率と、他の試料片の弾性率との差を示している。数値が大きいほど、柔軟化の度合いが大きいことを示す。
 なお、破断性は、試料片の断面の破断状態を目視観察し、下記評価基準に基づき、評価した。
-評価基準-
 A:試料片は、延性破壊により破断した。
 B:試料片は、層状破壊により破断した。
 C:試料片は、脆性破壊により破断した。
<2.流動性評価〔MFR(g/10分、230℃)〕>
 実施例、及び比較例の各ペレットについて、東洋精機製作所社製、セミメルトインデクサ 2A型を用い、ASTM A1238(B法)に基づき、21.18N、49.03N、又は98.07Nの荷重をかけて、流動性(MFR)を測定した。なお、測定は、荷重の小さいもの(21.18N)から始め、この条件ではMFRが測定できない場合には、より大きい荷重をかけて測定した。測定開始後、3分経過した後も測定が開始されないものについては、表6-1に「-」を示した。
Figure JPOXMLDOC01-appb-T000015
 
 表6-1に示されるように、実施例6-1~6-4で作製した試料片は、特定共重合体及び特定酸変性共重合体の少なくとも一方を添加していない比較例6-5に比べ、引張弾性率が117MPa以上低下し、大きく柔軟化していることから、実施例6-1~6-4の試料片と同じ熱可塑性樹脂材料を用いてタイヤを形成した場合には、耐衝撃性に優れたタイヤとし得ることが把握される。また、同時に、各実施例で作製した試料片は、21.18Nの荷重でMFR測定をすることができ、射出成形性に優れていることがわかった。従って、かかる試料片と同じ熱可塑性樹脂材料を用いれば、射出成形を行ない易く、タイヤの製造を効率よく行なうことができ、タイヤの生産性を向上し得ることが把握される。
 一方、比較例6-2~6-4で作製された試料片は、未添加の比較例6-1の弾性率からの下げ幅が小さく、柔軟化が小さいといえる。さらに、比較例6-1~6-5の試料片は、柔軟性(低弾性率)と流動性とを両立できていなかった。
 なお、実施例6-1~6-4及び比較例6-1~6-4の各試料片と同じ組成の熱可塑性樹脂材料を用いて形成した各タイヤについて、ドラム走行試験を行ったところ、走行上の安全性はいずれのタイヤも問題なかった。
[実施例7-1~7-6、比較例7-1~7-6]
 以下、本発明の第7の観点について実施例を用いてより具体的に説明する。ただし、本発明はこれに限定されるものではない。
 まず、上述の第2実施形態に従って、実施および比較例のタイヤを成形した。この際、タイヤケースを形成する材料については下記表7-1に記載の材料を用いた。また、各実施例および比較例について、材料の物性評価およびタイヤ性能の評価を下記に従っておこなった。
[ペレットの作製]
 各実施例および比較例でタイヤケースに用いられた樹脂材料について、各材料を表7-1に示す組成(質量基準)で混合した。次いで、(株)東洋精機製作所「LABOPLASTOMILL 50MR」2軸押出し機により前記樹脂材料を混練し、ペレットを得た。なお、一部の比較例においては、混合系とせず、ポリアミド系熱可塑性エラストマー、またはポリエステル系熱可塑性エラストマーのペレットを用意した。
 尚、第1および第2の熱可塑性エラストマーは、混合温度230℃、混練時間3分間で混練した。
<損失係数(Tanδ)、引張弾性率の評価>
 作製したペレットを用いて、住友重工社製、SE30Dを用い、射出成形を行い、成形温度180℃~260℃、金型温度50℃~70℃とし、100mm×30mm、厚さ2.0mmのサンプルを得た。
 各サンプルを打ち抜き、JISK6251:1993に規定されるダンベル状試料片(5号形試料片)を作製した。
 次いで、島津製作所社製、島津オートグラフAGS-J(5KN)を用いて、引張速度を200mm/minに設定し、前記各ダンベル状試料片の30℃および80℃における引張弾性率およびTanδを測定した。結果を表7-1に示す。
Figure JPOXMLDOC01-appb-T000016
 
 前記表7-1における略称の説明を下記に示す。
・PE1:ポリエステル系エラストマー(第1の熱可塑性エラストマー)
(ポリブチレンテレフタレート/ポリエーテルブロックコポリマー、東レ・デュポン社製「ハイトレル7247」、ハードセグメント含率:60質量%)
・PA1:ポリアミド系エラストマー(第1の熱可塑性エラストマー)
(ポリアミド12/ポリエーテルブロックコポリマー、宇部興産社製「UBESTA XPA9055X1」、ハードセグメント含率:50質量%)
・PE2:ポリエステル系エラストマー(第2の熱可塑性エラストマー)
(ポリブチレンテレフタレート/ポリエーテルブロックコポリマー、東レ・デュポン社製「ハイトレル4047」、ハードセグメント含率:40質量%)
・PA2:ポリアミド系エラストマー (第2の熱可塑性エラストマー)
(ポリアミド12/ポリエーテルブロックコポリマー、宇部興産社製「UBESTA XPA9048X1」、ハードセグメント含率:40質量%、)
・PE3:ポリエステル系エラストマー(第1の熱可塑性エラストマー)
(ポリブチレンフタレート/ポリエーテル、東レ・デュポン社製「ハイトレル 6347」、ハードセグメント含率:45質量%)
・PE4:ポリエステル系エラストマー(第1又は第2の熱可塑性エラストマー)
(ポリブチレンテレフタレート/ポリエーテル、東レ・デュポン社製「ハイトレル 3047」、ハードセグメント含率:10質量%)
 表7-1から分かるように、実施例7-1~7-6のタイヤケースの材料は、比較例7-1~7-6に比して、損失係数(Tanδ)が低く維持されたまま、引張弾性率が向上していることが分かる。また、実施例7-1~7-6のタイヤケースの材料は、30℃における引張弾性率と80℃における引張弾性率の差が小さく、比較例7-1~7-6に比して耐熱性が向上していることがわかる。
 更に実施例のタイヤは転がり抵抗が少なく、耐熱性に優れていた。
 下記発明は、本発明の第1の観点に含まれる。
<1-1> 少なくとも熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が少なくともポリエステル系熱可塑性エラストマーを含むタイヤ。
<1-2> 前記補強コード層が樹脂材料を含んで構成される<1-1>に記載のタイヤ。
<1-3> 前記熱可塑性樹脂材料中のポリエステル系熱可塑性エラストマーの含有率が、50~100質量%である<1-1>又は<1-2>に記載のタイヤ。
<1-4> 前記ポリエステル系熱可塑性エラストマーが、芳香族ポリエステルを含むハードセグメントと、脂肪族ポリエーテル及び脂肪族ポリエステルから選択された少なくとも1種を含むソフトセグメントとを有する共重合体である<1-1>~<1-3>のいずれか1項に記載のタイヤ。
 下記発明は、本発明の第2の観点に含まれる。
<2-1> 少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が、少なくともポリエステル系熱可塑性エラストマーと該ポリエステル系熱可塑性エラストマー以外の他のエラストマーとを含むタイヤ。
<2-2> 前記補強コード層が樹脂材料を含んで構成される<2-1>に記載のタイヤ。
<2-3> 前記熱可塑性樹脂において、前記ポリエステル系熱可塑性エラストマー(a)と前記他のエラストマー(b)との質量比(a:b)が、95:5~50:50である<2-1>又は<2-2>に記載のタイヤ。
<2-4> 前記他のエラストマーが、ポリウレタン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリスチレン系熱可塑性エラストマーから選ばれるいずれかである<2-1>~<2-3>のいずれか1項に記載のタイヤ。
 下記発明は、本発明の第3の観点に含まれる。
<3-1> 少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有し、前記熱可塑性樹脂材料が、少なくともポリエステル系熱可塑性エラストマーとゴムとを含むタイヤ。
<3-2> 前記熱可塑性樹脂材料が、さらに、前記ゴムとの親和性がよい熱可塑性エラストマーを含む<3-1>に記載のタイヤ。
<3-3> 前記補強コード層が樹脂材料を含んで構成される<3-1>又は<3-2>に記載のタイヤ。
<3-4> 前記熱可塑性樹脂において、前記ポリエステル系熱可塑性エラストマー(x)と前記ゴム(y)との質量比(x:y)が、95:5~50:50である<3-1>~<3-3>のいずれか1項に記載のタイヤ。
<3-5> 前記熱可塑性樹脂材料において、前記ポリエステル系熱可塑性エラストマー(x)と、前記ゴム(y)及び前記ゴムとの親和性がよい熱可塑性エラストマー(z)と、の質量比(x:y+z)が、95:5~50:50である<3-2>又は<3-3>に記載のタイヤ。
<3-6> 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと前記ゴムとの合計含有量が、50質量%~100質量%である<3-1>~<3-4>のいずれか1項に記載のタイヤ。
<3-7> 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと、前記ゴムと、前記ゴムとの親和性がよい熱可塑性エラストマーと、の合計含有量が、50質量%~100質量%である<3-2>、<3-3>または<3-5>に記載のタイヤ。
 下記発明は、本発明の第4の観点に含まれる。
<4-1> 熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル樹脂を含むハードセグメント及びソフトセグメントを有するポリエステル系熱可塑性エラストマー(A)と、熱可塑性エラストマー以外のポリエステル樹脂(B)と、を含むタイヤ。
<4-2> 前記ポリエステル樹脂(B)の弾性率が、700MPa以上である<4-1>に記載のタイヤ。
<4-3> 前記ポリエステル系熱可塑性エラストマー(A)と、前記熱可塑性エラストマー以外のポリエステル樹脂(B)との質量比(A:B)が、95:5~50:50である<4-1>又は<4-2>に記載のタイヤ。
<4-4> 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマー(A)の含有量が、50質量%~95質量%である<4-1>~<4-3>のいずれか1項に記載のタイヤ。
<4-5> さらに、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有する<4-1>~<4-4>のいずれか1項に記載のタイヤ。
 下記発明は、本発明の第5の観点に含まれる。
<5-1> 熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマーと、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー、又は前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び該エラストマーを酸変性してなる酸変性エラストマーの混合物と、を含むタイヤ。
<5-2> 前記熱可塑性樹脂材料の酸価が、0.1mg-CHONa/g以上10mg-CHONa/g以下である<5-1>に記載のタイヤ。
<5-3> 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーの質量(A)と、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び前記酸変性エラストマーの合計質量(B)との割合(A:B)が、90:10~50:50である<5-1>又は<5-2>に記載のタイヤ。
<5-4> 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーの含有率が、50質量%~95質量%である<5-1>~<5-3>のいずれか1項に記載のタイヤ。
<5-5> さらに、前記タイヤ骨格体の外周部に周方向に巻回されて補強コード層を形成する補強コード部材を有する<5-1>~<5-4>のいずれか1項に記載のタイヤ。
<5-6> 少なくとも、ポリエステル系熱可塑性エラストマーと、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー、又は前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び該エラストマーを酸変性してなる酸変性エラストマーの混合物と、を含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合部に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程を含むタイヤの製造方法。
<5-7> 前記熱可塑性樹脂材料の酸価が、0.1mg-CHONa/g以上10mg-CHONa/g以下である<5-6>に記載のタイヤの製造方法。
<5-8> 前記タイヤ骨格片形成工程は、前記熱可塑性樹脂材料を用いて射出成形する工程を含む<5-7>に記載のタイヤの製造方法。
 下記発明は、本発明の第6の観点に含まれる。
<6-1> 少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体およびオレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体の少なくとも一方の共重合体と、を含有するタイヤ。
<6-2> 前記ポリエステル系熱可塑性エラストマー(x)と、前記オレフィン-(メタ)アクリル酸共重合体(y)及び前記酸変性共重合体(z)との質量比(x:y+z)が、95:5~50:50である<6-1>に記載のタイヤ。
<6-3> 前記熱可塑性樹脂材料中の前記ポリエステル系熱可塑性エラストマーと、前記オレフィン-(メタ)アクリル酸共重合体と、前記酸変性共重合体との合計含有量が、50質量%~100質量%である<6-1>または<6-2>に記載のタイヤ。
<6-4> 少なくとも、ポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体およびオレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体の少なくとも一方の共重合体と、を含有する熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、前記タイヤ骨格片の接合部に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程を含むタイヤの製造方法。
 下記発明は、本発明の第7の観点に含まれる。
<7-1> 少なくとも樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、前記樹脂材料が、引張弾性率が150MPa~700MPの範囲にある第1の熱可塑性エラストマーと、損失係数(Tanδ)が前記第1の熱可塑性エラストマーよりも小さい第2の熱可塑性エラストマーと、を含むタイヤ。
<7-2> 前記第1の熱可塑性エラストマーの引張弾性率が200MPa~500MPaの範囲にある<7-1>に記載のタイヤ。
<7-3> 前記第2の熱可塑性エラストマーの損失係数(Tanδ)が、0.01~0.08である<7-1>または<7-2>に記載のタイヤ。
<7-4> 前記第1の熱可塑性エラストマー(x)と、前記第2の熱可塑性エラストマー(y)との質量比(x/y)が、10/90~90/10である<7-1>~<7-3>のいずれか1項に記載のタイヤ。
 日本出願2010-188908、2010-188906、2010-188909、2010-188907、2010-188905、2010-203737、2010-188917、2011-183582、及び2011-183583の開示は参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (9)

  1.  少なくとも熱可塑性樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、
     前記タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有し、
     前記熱可塑性樹脂材料が少なくともポリエステル系熱可塑性エラストマーを含むタイヤ。
  2.  少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、
     前記タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有し、
     前記熱可塑性樹脂材料が、少なくともポリエステル系熱可塑性エラストマーと該ポリエステル系熱可塑性エラストマー以外の他のエラストマーとを含むタイヤ。
  3.  少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、
     前記タイヤ骨格体の外周部に補強コード層を形成する補強コード部材を有し、
     前記熱可塑性樹脂材料が、少なくともポリエステル系熱可塑性エラストマーとゴムとを含むタイヤ。
  4.  熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、前記熱可塑性樹脂材料が、ポリエステル樹脂を含むハードセグメント及びソフトセグメントを有するポリエステル系熱可塑性エラストマー(A)と、熱可塑性エラストマー以外のポリエステル樹脂(B)と、を含むタイヤ。
  5.  熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、
     前記熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマーと、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー、又は前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び該エラストマーを酸変性してなる酸変性エラストマーの混合物と、を含むタイヤ。
  6.  少なくとも、熱可塑性樹脂材料で形成された環状のタイヤ骨格体を有するタイヤであって、
     前記熱可塑性樹脂材料が、ポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体およびオレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体の少なくとも一方の共重合体と、を含有するタイヤ。
  7.  少なくとも樹脂材料で形成され且つ環状のタイヤ骨格体を有するタイヤであって、
     前記樹脂材料が、引張弾性率が150MPa~700MPの範囲にある第1の熱可塑性エラストマーと、損失係数(Tanδ)が前記第1の熱可塑性エラストマーよりも小さい第2の熱可塑性エラストマーと、を含むタイヤ。
  8.  少なくとも、ポリエステル系熱可塑性エラストマーと、前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマーを酸変性してなる酸変性エラストマー、又は前記ポリエステル系熱可塑性エラストマー以外の熱可塑性エラストマー及び該エラストマーを酸変性してなる酸変性エラストマーの混合物と、を含む熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、
     前記タイヤ骨格片の接合部に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程を含むタイヤの製造方法。
  9.  少なくとも、ポリエステル系熱可塑性エラストマーと、オレフィン-(メタ)アクリル酸共重合体およびオレフィン-(メタ)アクリレート共重合体を酸変性してなる酸変性共重合体の少なくとも一方の共重合体と、を含有する熱可塑性樹脂材料によって環状のタイヤ骨格体の一部を構成するタイヤ骨格片を形成するタイヤ骨格片形成工程と、
     前記タイヤ骨格片の接合部に熱を付与し対となる2以上の前記タイヤ骨格片を融着させて前記タイヤ骨格体を形成するタイヤ骨格片接合工程を含むタイヤの製造方法。
PCT/JP2011/069224 2010-08-25 2011-08-25 タイヤ及びその製造方法 WO2012026548A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/818,348 US9387725B2 (en) 2010-08-25 2011-08-25 Tire, and manufacturing method for same
CN201180051344.XA CN103201121B (zh) 2010-08-25 2011-08-25 轮胎及其制造方法
EP11820011.2A EP2610071B1 (en) 2010-08-25 2011-08-25 Tire, and manufacturing method for same
US15/175,414 US20160280008A1 (en) 2010-08-25 2016-06-07 Tire and manufacturing method for same

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2010188908A JP5901106B2 (ja) 2010-08-25 2010-08-25 タイヤ
JP2010188909A JP6066541B2 (ja) 2010-08-25 2010-08-25 タイヤ
JP2010-188908 2010-08-25
JP2010188906A JP5993544B2 (ja) 2010-08-25 2010-08-25 タイヤ
JP2010188917 2010-08-25
JP2010188907 2010-08-25
JP2010188905A JP5836575B2 (ja) 2010-08-25 2010-08-25 タイヤ
JP2010-188917 2010-08-25
JP2010-188907 2010-08-25
JP2010-188905 2010-08-25
JP2010-188906 2010-08-25
JP2010-188909 2010-08-25
JP2010203737A JP5893242B2 (ja) 2010-09-10 2010-09-10 空気入りタイヤ及びその製造方法
JP2010-203737 2010-09-10
JP2011183582A JP5813416B2 (ja) 2010-08-25 2011-08-25 タイヤ
JP2011-183583 2011-08-25
JP2011183583A JP5818578B2 (ja) 2010-08-25 2011-08-25 タイヤ
JP2011-183582 2011-08-25

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/818,348 A-371-Of-International US9387725B2 (en) 2010-08-25 2011-08-25 Tire, and manufacturing method for same
US15/175,414 Division US20160280008A1 (en) 2010-08-25 2016-06-07 Tire and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2012026548A1 true WO2012026548A1 (ja) 2012-03-01

Family

ID=48470661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/069224 WO2012026548A1 (ja) 2010-08-25 2011-08-25 タイヤ及びその製造方法

Country Status (4)

Country Link
US (2) US9387725B2 (ja)
EP (2) EP2868490B1 (ja)
CN (5) CN105620204B (ja)
WO (1) WO2012026548A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013154205A1 (ja) * 2012-04-13 2013-10-17 株式会社ブリヂストン タイヤ
US20150053323A1 (en) * 2012-02-29 2015-02-26 Bridgestone Corporation Tire
CN104995034A (zh) * 2013-02-20 2015-10-21 株式会社普利司通 轮胎、轮胎制造装置及轮胎制造方法
CN105102239A (zh) * 2013-02-28 2015-11-25 株式会社普利司通 轮胎
CN107531094A (zh) * 2015-04-27 2018-01-02 株式会社普利司通 轮胎
CN107531093A (zh) * 2015-04-27 2018-01-02 株式会社普利司通 轮胎
JPWO2020105438A1 (ja) * 2018-11-22 2021-10-21 株式会社ブリヂストン タイヤ

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012158297A (ja) * 2011-02-02 2012-08-23 Bridgestone Corp タイヤ、及びタイヤの製造方法
IN2014DN07934A (ja) * 2012-02-29 2015-05-01 Bridgestone Corp
IN2014DN07828A (ja) 2012-02-29 2015-05-15 Bridgestone Corp
CN106170399B (zh) * 2014-01-31 2019-03-08 米其林集团总公司 改进用于轮胎翻新操作的胎面边缘的接合的方法
US10654978B2 (en) 2014-09-24 2020-05-19 Bridgestone Corporation Tire
JP6654835B2 (ja) 2015-09-04 2020-02-26 株式会社ブリヂストン タイヤ
JP6602140B2 (ja) 2015-10-05 2019-11-06 株式会社ブリヂストン タイヤ
CN108698443B (zh) * 2016-02-22 2020-07-24 株式会社普利司通 轮胎
JP2017206207A (ja) * 2016-05-20 2017-11-24 株式会社ブリヂストン タイヤ
JP2018090092A (ja) * 2016-12-02 2018-06-14 株式会社ブリヂストン タイヤ
US10099103B2 (en) * 2017-01-17 2018-10-16 Acushnet Company Golf club having damping treatments for improved impact acoustics and ball speed
JP6785193B2 (ja) * 2017-06-16 2020-11-18 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びタイヤ
JP6785196B2 (ja) 2017-06-16 2020-11-18 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びタイヤ
JP6770926B2 (ja) * 2017-06-16 2020-10-21 株式会社ブリヂストン タイヤ用金属樹脂複合部材及びタイヤ
FR3068915B1 (fr) * 2017-07-11 2020-07-31 Michelin & Cie Procede de fabrication d'un bandage pneumatique perfectionne
FR3068914B1 (fr) * 2017-07-11 2020-09-04 Michelin & Cie Procede de fabrication d'un bandage pneumatique avec une bande de roulement perfectionnee
CN111315588B (zh) * 2017-10-25 2022-03-29 株式会社普利司通 轮胎
EP3702174B1 (en) * 2017-10-25 2023-05-17 Bridgestone Corporation Metal resin composite member for tires, and tire
JP7088955B2 (ja) 2017-11-10 2022-06-21 株式会社ブリヂストン 非空気入りタイヤ
JPWO2019230822A1 (ja) * 2018-05-30 2021-07-29 株式会社ブリヂストン タイヤ用樹脂金属複合部材、及びその製造方法、並びにタイヤ
JP6952647B2 (ja) * 2018-05-31 2021-10-20 株式会社ブリヂストン 空気入りタイヤ
JP6959895B2 (ja) * 2018-06-19 2021-11-05 株式会社ブリヂストン 空気入りタイヤ及び樹脂被覆ベルトの製造方法
JP7163119B2 (ja) * 2018-09-21 2022-10-31 横浜ゴム株式会社 タイヤ用インナーライナーおよび空気入りタイヤ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104005A (ja) * 2001-09-28 2003-04-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2009084660A1 (ja) * 2007-12-27 2009-07-09 Bridgestone Corporation タイヤおよびタイヤ・リム組立体
JP2009286183A (ja) * 2008-05-27 2009-12-10 Yokohama Rubber Co Ltd:The 非空気式タイヤ

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1075644A (en) * 1964-10-10 1967-07-12 Bayer Ag Process for the manufacture of pneumatic tyres
US3608605A (en) * 1969-05-28 1971-09-28 William G Cole Pneumatic tire construction
US3774662A (en) * 1971-07-08 1973-11-27 Uniroyal Inc Production of high soft stretch tapes of reinforcing cords for molded elastomeric articles
US3888291A (en) * 1973-12-12 1975-06-10 Armstrong Rubber Co Molded or cast tires and methods of manufacture
US3977453A (en) * 1974-07-05 1976-08-31 Monsanto Company Integral pneumatic tire and wheel molded entirely from homogeneous material containing elastic polymer
DE2535439A1 (de) * 1975-08-08 1977-02-24 Continental Gummi Werke Ag Fahrzeugluftreifen
ZA791203B (en) 1978-06-12 1980-08-27 Firestone Tire & Rubber Co Pneumatic tire
FR2567924B1 (fr) * 1984-07-19 1986-09-19 Michelin & Cie Nappe de renfort constituee au moins en partie par un tissu tridimensionnel dont la section a une largeur variable; articles comportant au moins une telle nappe; procedes permettant d'obtenir ces articles
US4869307A (en) 1988-03-17 1989-09-26 The Goodyear Tire & Rubber Company Pneumatic tire and method for making same
JP2900268B2 (ja) 1989-04-07 1999-06-02 横浜ゴム株式会社 空気入りラジアルタイヤおよびスチールコード補強ベルト
JPH02305850A (ja) 1989-05-20 1990-12-19 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JPH03143701A (ja) 1989-10-27 1991-06-19 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP2528189B2 (ja) 1989-10-27 1996-08-28 住友ゴム工業株式会社 空気入りタイヤ
JPH03148302A (ja) 1989-11-01 1991-06-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ
DE69110954T2 (de) * 1990-04-18 1995-11-23 Sumitomo Rubber Ind Gürtelluftreifen für Motorräder und Verfahren zur Herstellung.
JPH05116504A (ja) * 1991-04-15 1993-05-14 Sumitomo Rubber Ind Ltd 空気入りタイヤ
JP3034130B2 (ja) 1992-06-02 2000-04-17 株式会社三光開発科学研究所 熱可塑性ポリウレタンの製造方法
JPH0616008A (ja) 1992-06-30 1994-01-25 Sumitomo Rubber Ind Ltd 空気入りタイヤ及び空気入りタイヤの製造方法
JPH07278322A (ja) * 1994-04-11 1995-10-24 Bando Chem Ind Ltd 被着体と熱可塑性エラストマー基材の接着方法
JPH083427A (ja) 1994-06-22 1996-01-09 Du Pont Toray Co Ltd 樹脂組成物、その製造方法およびホットメルト接着剤
JP3126286B2 (ja) * 1995-03-15 2001-01-22 横浜ゴム株式会社 空気入りタイヤ及びその製造方法
JP3143701B2 (ja) 1995-05-23 2001-03-07 東洋ケミカル株式会社 光ディスク収納体
JPH1129658A (ja) 1997-07-11 1999-02-02 Bridgestone Corp 空気入りタイヤ
JP4008537B2 (ja) 1997-08-01 2007-11-14 株式会社ブリヂストン 加硫ゴムの製造方法、及びトレッドの製造方法
JPH11321233A (ja) 1998-05-18 1999-11-24 Yokohama Rubber Co Ltd:The 空気入りラジアルタイヤ
JP4030204B2 (ja) 1998-10-15 2008-01-09 横浜ゴム株式会社 蓄光性熱可塑性エラストマー組成物
JP2000198312A (ja) 1999-01-06 2000-07-18 Toyo Tire & Rubber Co Ltd タイヤ用補強材および空気入りタイヤ
JP3701514B2 (ja) 1999-06-30 2005-09-28 株式会社アシックス トビナワロープ
ATE227398T1 (de) * 1999-08-20 2002-11-15 Sumitomo Rubber Ind Radauswuchtgewicht
JP2001328189A (ja) * 2000-05-23 2001-11-27 Ube Nitto Kasei Co Ltd 繊維強化合成樹脂製線状物
US6376598B1 (en) * 2000-06-15 2002-04-23 Exxon Mobil Chemical Patents Inc. Thermoplastic blend
US7229518B1 (en) * 2000-11-02 2007-06-12 Nike, Inc. Process for improving interfacial adhesion in a laminate
CN100467289C (zh) * 2001-09-17 2009-03-11 普利司通株式会社 充气轮胎
JP2003104008A (ja) 2001-09-28 2003-04-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
JP2003238744A (ja) 2002-02-14 2003-08-27 Bridgestone Corp ゴム組成物の製造方法
JP4193587B2 (ja) 2003-05-26 2008-12-10 宇部興産株式会社 ポリアミド系エラストマー及びその製造方法
JP4011057B2 (ja) 2004-11-02 2007-11-21 横浜ゴム株式会社 熱可塑性エラストマー
JP4073452B2 (ja) 2005-09-06 2008-04-09 横浜ゴム株式会社 熱可塑性エラストマー組成物
JP4614079B2 (ja) 2005-04-12 2011-01-19 Dic株式会社 加飾用積層シ―ト及び被覆成形品の製造方法
JP2007069745A (ja) 2005-09-07 2007-03-22 Yokohama Rubber Co Ltd:The 空気入りタイヤ
CN101304873B (zh) * 2005-10-27 2012-05-09 埃克森美孚化学专利公司 包含连结层的结构体
EP2141199B1 (en) * 2006-07-06 2011-11-02 Sumitomo Rubber Industries, Ltd. Rubber composition and tire using same
US7799838B2 (en) * 2006-07-26 2010-09-21 Sabic Innovative Plastics Ip B.V. Elastomer blends of polyesters and copolyetheresters derived from polyethylene terephthalate, method of manufacture, and articles therefrom
JP2008260887A (ja) 2007-04-13 2008-10-30 Yokohama Rubber Co Ltd:The 熱可塑性エラストマーおよび熱可塑性エラストマー組成物
US20090018253A1 (en) * 2007-07-09 2009-01-15 Eastman Chemical Company Perfromance additives for thermoplastic elastomers
WO2009093695A1 (ja) 2008-01-23 2009-07-30 Ube Industries, Ltd. ゴム組成物、ベーストレッド用ゴム組成物、チェーファー用ゴム組成物、及びサイドウォール用ゴム組成物、並びにそれらを用いたタイヤ
JP2010053495A (ja) 2008-08-29 2010-03-11 Yokohama Rubber Co Ltd:The タイヤ補強用スチールコード及びこれを使用した空気入りタイヤ
JP2010059248A (ja) 2008-09-01 2010-03-18 Sumitomo Rubber Ind Ltd スタッドレスタイヤ用ゴム組成物及びスタッドレスタイヤ
FR2939142B1 (fr) * 2008-12-03 2010-12-31 Michelin Soc Tech Objet pneumatique pourvu d'une couche etanche aux gaz a base de deux elastomeres thermoplastiques
KR20110113208A (ko) * 2009-02-17 2011-10-14 가부시키가이샤 브리지스톤 타이어 및 타이어의 제조 방법
JP5391719B2 (ja) 2009-02-19 2014-01-15 日産自動車株式会社 ハイブリッド車輌
JP5236522B2 (ja) 2009-02-19 2013-07-17 本田技研工業株式会社 車両用シートベルト装置及び車両用シートベルト巻き取り方法
JP5423037B2 (ja) 2009-02-19 2014-02-19 トヨタ紡織株式会社 連結体の長さ調整機構
JP5262816B2 (ja) 2009-02-19 2013-08-14 日産自動車株式会社 車両用走行制御装置および車両用走行制御装置の制御方法
JP2010188909A (ja) 2009-02-19 2010-09-02 Honda Motor Co Ltd 電動パワーステアリング装置
JP2010188906A (ja) 2009-02-19 2010-09-02 Toyota Boshoku Corp 乗物シートのシートバック用フレーム体
JP5335488B2 (ja) 2009-03-05 2013-11-06 株式会社神戸製鋼所 回転炉床炉の炉床構造
EP3002132A1 (en) 2009-08-20 2016-04-06 Bridgestone Corporation Tire and tire manufacturing method
JP2011183582A (ja) 2010-03-05 2011-09-22 Seiko Epson Corp 印刷方法及び印刷装置
JP5724186B2 (ja) 2010-03-05 2015-05-27 セイコーエプソン株式会社 フィルター、液体噴射ヘッド、液体噴射装置およびフィルターの製造方法
JP5775320B2 (ja) * 2011-02-15 2015-09-09 株式会社ブリヂストン タイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104005A (ja) * 2001-09-28 2003-04-09 Yokohama Rubber Co Ltd:The 空気入りタイヤ
WO2009084660A1 (ja) * 2007-12-27 2009-07-09 Bridgestone Corporation タイヤおよびタイヤ・リム組立体
JP2009286183A (ja) * 2008-05-27 2009-12-10 Yokohama Rubber Co Ltd:The 非空気式タイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2610071A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150053323A1 (en) * 2012-02-29 2015-02-26 Bridgestone Corporation Tire
US10821778B2 (en) * 2012-02-29 2020-11-03 Bridgestone Corporation Tire
WO2013154205A1 (ja) * 2012-04-13 2013-10-17 株式会社ブリヂストン タイヤ
CN104995034A (zh) * 2013-02-20 2015-10-21 株式会社普利司通 轮胎、轮胎制造装置及轮胎制造方法
CN105102239A (zh) * 2013-02-28 2015-11-25 株式会社普利司通 轮胎
CN107531094A (zh) * 2015-04-27 2018-01-02 株式会社普利司通 轮胎
CN107531093A (zh) * 2015-04-27 2018-01-02 株式会社普利司通 轮胎
JPWO2020105438A1 (ja) * 2018-11-22 2021-10-21 株式会社ブリヂストン タイヤ
JP7329536B2 (ja) 2018-11-22 2023-08-18 株式会社ブリヂストン タイヤ

Also Published As

Publication number Publication date
CN105034695A (zh) 2015-11-11
EP2868490B1 (en) 2018-05-23
US20130206311A1 (en) 2013-08-15
CN105566862A (zh) 2016-05-11
CN103201121B (zh) 2016-08-24
CN105566862B (zh) 2018-09-07
CN103201121A (zh) 2013-07-10
CN105415981B (zh) 2017-05-31
EP2610071A4 (en) 2014-03-26
CN105415981A (zh) 2016-03-23
CN105620204A (zh) 2016-06-01
US9387725B2 (en) 2016-07-12
EP2610071B1 (en) 2017-05-17
EP2610071A1 (en) 2013-07-03
EP2868490A1 (en) 2015-05-06
US20160280008A1 (en) 2016-09-29
CN105620204B (zh) 2018-05-04
CN105034695B (zh) 2017-10-17

Similar Documents

Publication Publication Date Title
WO2012026548A1 (ja) タイヤ及びその製造方法
WO2012026547A1 (ja) タイヤ、及びタイヤの製造方法
WO2013129525A1 (ja) タイヤ
JP5818577B2 (ja) タイヤ
JP5604226B2 (ja) タイヤ
JP6178829B2 (ja) タイヤ
JP2012121559A (ja) タイヤ
JP5818578B2 (ja) タイヤ
JP5627954B2 (ja) タイヤ
JP5628003B2 (ja) タイヤ、及びタイヤの製造方法
JP5778402B2 (ja) タイヤ
JP5551020B2 (ja) タイヤ
JP5971889B2 (ja) タイヤ
JP6001719B2 (ja) タイヤ
JP6049273B2 (ja) タイヤ
JP6114498B2 (ja) タイヤ
JP5628002B2 (ja) タイヤ、及びタイヤの製造方法
JP5701542B2 (ja) タイヤ
JP6066541B2 (ja) タイヤ
JP6014714B2 (ja) タイヤ及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11820011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011820011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011820011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13818348

Country of ref document: US