WO2012018087A1 - ハードコート層用硬化性樹脂組成物、ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル - Google Patents

ハードコート層用硬化性樹脂組成物、ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル Download PDF

Info

Publication number
WO2012018087A1
WO2012018087A1 PCT/JP2011/067882 JP2011067882W WO2012018087A1 WO 2012018087 A1 WO2012018087 A1 WO 2012018087A1 JP 2011067882 W JP2011067882 W JP 2011067882W WO 2012018087 A1 WO2012018087 A1 WO 2012018087A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
hard coat
curable resin
resin composition
Prior art date
Application number
PCT/JP2011/067882
Other languages
English (en)
French (fr)
Inventor
林 祐輔
智之 堀尾
篠原 誠司
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to US13/809,959 priority Critical patent/US20130115469A1/en
Priority to KR1020137002996A priority patent/KR101441829B1/ko
Priority to JP2012527771A priority patent/JP5846121B2/ja
Priority to CN201180033863.3A priority patent/CN102985498B/zh
Publication of WO2012018087A1 publication Critical patent/WO2012018087A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/056Forming hydrophilic coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/08Cellulose derivatives
    • C08J2301/10Esters of organic acids
    • C08J2301/12Cellulose acetate

Definitions

  • the present invention is installed in front of a display (image display device) such as a liquid crystal display (LCD), a cathode ray tube display (CRT), or a plasma display (PDP), electronic paper, LED, touch panel, tablet PC, etc.
  • a display image display device
  • LCD liquid crystal display
  • CRT cathode ray tube display
  • PDP plasma display
  • the present invention relates to a hard coat film for protecting the display surface of a display, a curable resin composition suitable for forming a hard coat layer of the hard coat film, a method for producing the hard coat film, a polarizing plate provided with the hard coat film, and a display panel.
  • the image display surface of the display as described above is required to be provided with scratch resistance and hardness so as not to be damaged during handling.
  • an HC film provided with a hard coat layer on a triacetylcellulose base material and an optical film provided with optical functions such as antireflection and antiglare properties an image display surface of the display can be obtained. It is common to improve the scratch resistance and hardness.
  • triacetyl cellulose may be referred to as “TAC” and the hard coat may be referred to as “HC”.
  • silica is preferably used in consideration of haze and transmittance, and further, the hardness is further improved by using reactive silica provided with a reactive group around the silica particles.
  • the HC film having a high surface smoothness is continuously wound in a continuous belt-like state and formed into a long roll or superposed, the HC film side of the HC film is brought into contact with each other as in the case of closely contacting the mirror surfaces.
  • a so-called blocking phenomenon may occur in which the surface and the surface of the HC film on the base film side stick to each other. If blocking occurs, there is a problem that the HC film is cut when the HC film is fed out during the production of the product.
  • the HC layer contains particles having an average primary particle size of 300 nm or less (a lubricant), and one or both of the sticking surfaces have minute protrusions that do not impair the smoothness of the surface.
  • a method of forming and imparting blocking resistance (hereinafter sometimes referred to as “slippery”) to the HC film has been proposed (for example, Patent Documents 1 and 2).
  • the HC layer contains a lubricant having a large average primary particle size, a fine small protrusion shape is obtained on the surface of the HC layer, and it is easy to exhibit blocking resistance. This results in a decrease in optical characteristics such as a decrease in light transmittance.
  • the average primary particle size of the lubricant contained in the HC layer is reduced in order to prevent an increase in haze, a sufficient uneven shape is not formed, and the blocking resistance becomes insufficient.
  • an HC film having high hardness and sufficient blocking resistance, low haze, and high total light transmittance.
  • the present inventors speculated that the above-mentioned lubricant and reactive silica should be mixed.
  • the intended physical properties smoothness while satisfying both physical properties and optical properties
  • fine particles are uniformly dispersed during film formation, so that small protrusions on the surface are not sufficiently formed.
  • a moderately adjusted dispersant containing a lubricant a lubricant smaller than the reactive silica was buried in the reactive silica and could not form a sufficient surface small protrusion.
  • the present invention has been made to solve the above-mentioned problems. It is a first object of the present invention to provide an HC film having high hardness, sufficient blocking resistance, low haze, and high total light transmittance. The purpose.
  • the second object of the present invention is to provide a curable resin composition for an HC layer suitable for forming an HC layer included in the HC film.
  • the third object of the present invention is to provide a method for producing the HC film.
  • the fourth object of the present invention is to provide a polarizing plate comprising the HC film.
  • a fifth object of the present invention is to provide a display panel comprising the HC film.
  • the curable resin composition for a hard coat layer according to the present invention is (A) Reactive silica fine particles having a photocurable group on the particle surface and an average primary particle size of 10 to 100 nm, (B) a lubricant having an average primary particle size of 100 to 300 nm, (C) a secondary particle containing at least the lubricant (B) and having an average secondary particle size of 500 nm to 2000 nm, (D) a polyfunctional monomer having two or more reactive functional groups having a crosslinking reactivity with the photocurable group of the reactive silica fine particles (A) in one molecule and a molecular weight of 1000 or less; ) Solvent, Does not contain secondary particles with an average secondary particle size greater than 2000 nm, and The lubricant (B) is contained in an amount of 0.2 to 8% by mass with respect to the total mass of the reactive silica fine particles (A) and the polyfunctional monomer (D).
  • the lubricant (B) is contained in the above specific ratio, and the secondary particles (C) contain at least the lubricant (B).
  • the secondary particles (C) have an average secondary particle size of 500 nm to 2000 nm.
  • the HC film further includes the secondary particles (C) including at least (A) reactive silica, (B) a lubricant, and (D) three types of aggregated secondary particles formed by aggregating polyfunctional monomers.
  • the increase in haze and the decrease in the total light transmittance are suppressed, and a hard coat film with high hardness is obtained, which is preferable.
  • the solvent (E) is at least one selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. It is preferable that a fine small protrusion shape is easily formed on the surface of the HC layer at the time of curing. Since these solvents easily penetrate into the substrate, the solid content concentration of the ink on the substrate is increased, and a fine small protrusion shape is easily formed. As a result, the amount of fine particles to be added can be reduced, so that an HC layer without an increase in haze or decrease in transmittance can be obtained.
  • the method for producing a hard coat film according to the present invention comprises: (I) Applying the curable resin composition for a hard coat layer on a triacetyl cellulose base material to form a coating film; and (ii) irradiating the coating film with light to cure the hard coat layer. Forming a step.
  • the curable resin composition for hard coat layer is preferably prepared by the following steps from the viewpoint of forming secondary particles having an appropriate secondary particle size.
  • A a step of preparing ink 1 by mixing a composition containing at least reactive silica (A), polyfunctional monomer (D), and solvent (E);
  • B mixing the composition containing at least the lubricant (B) and the solvent (E) to prepare ink 2, and (c) mixing the ink 2 little by little while stirring the ink 1.
  • the curable resin composition for a hard coat layer it is preferable to apply the curable resin composition for a hard coat layer to the substrate within 24 hours after completion of preparation, from the viewpoint of maintaining a preferable secondary average particle size range. Therefore, it is preferable.
  • the hard coat film according to the present invention is obtained by the above production method.
  • the polarizing plate according to the present invention is characterized in that a polarizer is provided on the triacetyl cellulose substrate side of the hard coat film.
  • the display panel according to the present invention is characterized in that a display is disposed on the triacetyl cellulose substrate side of the hard coat film.
  • the hard coat film according to the present invention has high hardness, sufficient blocking resistance, low haze, and high total light transmittance.
  • the curable resin composition for a hard coat layer according to the present invention can be suitably used for forming a hard coat layer having the above characteristics. According to the method for producing a hard coat film according to the present invention, the hard coat film can be easily produced.
  • FIG. 1 is a schematic view showing an example of a method for producing a hard coat film according to the present invention.
  • FIG. 2 is a schematic view showing an example of the layer configuration of the hard coat film according to the present invention.
  • FIG. 3 is a schematic view showing another example of the layer configuration of the hard coat film according to the present invention.
  • FIG. 4 is a schematic view showing an example of the layer structure of the polarizing plate according to the present invention.
  • FIG. 5 is a graph showing the relationship between the particle size of the curable resin composition for hard coat layer of Example 1 and the scattering intensity distribution.
  • 6 is a graph showing the relationship between the particle size value of the curable resin composition for hard coat layer of Comparative Example 2 and the scattering intensity distribution.
  • FIG. 5 is a graph showing the relationship between the particle size of the curable resin composition for hard coat layer of Example 1 and the scattering intensity distribution.
  • FIG. 7 is a graph showing the relationship between the particle size of the curable resin composition for hard coat layer of Comparative Example 7 and the scattering intensity distribution.
  • FIG. 8 is a STEM (Scanning Transmission Electron Microscope) photograph of 50,000 times the cross section of the hard coat layer according to the present invention.
  • the embedding layer in a photograph is an embedding resin layer when embedding resin in order to hold
  • the curable resin composition for a hard coat layer, the hard coat film, the method for producing the hard coat film, the polarizing plate and the display panel according to the present invention will be described.
  • (meth) acrylate represents acrylate and / or methacrylate.
  • the light of the present invention includes not only electromagnetic waves having wavelengths in the visible and non-visible regions, but also particle beams such as electron beams and radiation or ionizing radiation that collectively refers to electromagnetic waves and particle beams.
  • the “hard coat layer” means a layer having a hardness of “H” or higher in a pencil hardness test (4.9 N load) defined in JIS K5600-5-4 (1999). High hardness means “3H” or higher.
  • solid content means the component except a solvent.
  • a sheet is a thin and generally flat product whose thickness is small for the length and width, and the film is extremely thick compared to the length and width.
  • the resin is a concept including a polymer in addition to a monomer and an oligomer, and means a component that becomes a matrix of the HC layer and other functional layers after curing.
  • the molecular weight means a weight average molecular weight which is a polystyrene equivalent value measured by gel permeation chromatography (GPC) in a THF solvent when having a molecular weight distribution, and when having no molecular weight distribution, It means the molecular weight of the compound itself.
  • the average particle diameter of the fine particles means, in the case of fine particles in the composition, a mode diameter (scattering intensity distribution is measured by a dynamic light scattering method using a trade name FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.).
  • a mode diameter scattering intensity distribution is measured by a dynamic light scattering method using a trade name FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
  • the primary average particle diameter of the reactive silica (A) and the lubricant (B) of the present invention is the mode diameter (nm) measured with the above apparatus without diluting the ink 1 and the ink 2, and the secondary particles (C ) Is a mode diameter (nm, ⁇ m) measured with the above-mentioned apparatus without diluting the curable resin composition for hard coat layer (solvent + resin + reactive silica + easy lubricant).
  • the primary particles are particles having a primary average particle diameter obtained by measuring the unit particles by the above measuring method.
  • the secondary particles mean not only particles whose primary particles are in close contact with each other and agglomerated to increase the density, but also particles in which a resin exists between the particles and aggregates in that state. . In the present invention, the latter is presumed to be more effective in scratch resistance (scratch resistance).
  • Aggregated particles having a secondary average particle diameter obtained by measuring the curable resin composition for hard coat layer without diluting with the above measurement method are defined as secondary particles.
  • the curable resin composition for a hard coat layer (hereinafter sometimes simply referred to as “HC layer composition”) (A) Reactive silica fine particles having a photocurable group on the particle surface and an average primary particle size of 10 to 100 nm, (B) a lubricant having an average primary particle size of 100 to 300 nm, (C) a secondary particle containing at least the lubricant (B) and having an average secondary particle size of 500 nm to 2000 nm, (D) a polyfunctional monomer having two or more reactive functional groups having a crosslinking reactivity with the photocurable group of the reactive silica fine particles (A) in one molecule and a molecular weight of 1000 or less; ) Solvent, Does not contain secondary particles with an average secondary particle size greater than 2000 nm, and The lubricant (B) is contained in an amount of 0.2 to 8% by mass with respect to the total mass of the reactive silica fine particles (A) Reactive silica fine particles having a photocurable
  • the hard coat is obtained by containing the lubricant (B) in the above specific ratio and containing the secondary particles (C), and the secondary particles (C) have an average secondary particle size of 500 nm to 2000 nm.
  • the curable resin composition for a layer is cured, a fine small protrusion shape that exhibits blocking resistance is formed on the surface.
  • the curable resin composition for HC layer does not contain secondary particles having an average secondary particle size larger than 2000 nm, the haze of the HC layer obtained by curing the curable resin composition for HC layer is low, The total light transmittance is also high.
  • the reactive silica fine particles (A) are components that impart hardness to the HC layer.
  • the curable resin composition for the HC layer is cured by light such as ultraviolet rays, the photocurable group on the particle surface will be described later. It can be polymerized or crosslinked with the reactive functional group of the polyfunctional monomer (D).
  • the photocurable group of the reactive silica fine particles (A) may be any group that can react with the reactive functional group of the polyfunctional monomer by light.
  • the photocurable group is preferably a polymerizable unsaturated group, and more preferably an ionizing radiation curable unsaturated group. Specific examples thereof include an ethylenically unsaturated bond such as a (meth) acryloyl group, a (meth) acryloyloxy group, a vinyl group, and an allyl group, and an epoxy group.
  • the photocurable group is preferably a methacryloyl group or a methacryloyloxy group.
  • reactive silica fine particles (A) those conventionally known may be used.
  • reactive silica fine particles described in JP-A-2008-165040 can be used.
  • MIBK-SD primary average particle size 12 nm
  • MIBK-SDMS primary average particle size 20 nm
  • MIBK-SDUP primary average particle size 9-
  • Beam Set LB1 primary (Average particle size 20 nm), beam set 904 (primary average particle size 20 nm) Beamset 907 (average primary particle diameter of 20 nm), a trade name MIBK-SDL, manufactured by Nissan Chemical Industries, Ltd., and the average primary particle size 44nm, and the like.
  • MIBK-SD primary average particle size 12 nm
  • MIBK-SDL average primary particle size 44 nm
  • JGC Catalysts Chemical ELCOM DP1129SIV (primary average particle size 7 nm), ELCOM DP1050SIV (primary average particle size 12 nm, fluorine coat), ELCOM DP1026 SIV (primary average particle size 12 nm, alumina coat), ELCOM DP1116SIV (primary average particle)
  • ELCOM DP1116SIV primary average particle
  • a diameter of 10 nm) and an ELCOM DP-1119 SIV average primary particle diameter of 100 nm are preferably used.
  • Examples of the shape of the silica fine particles include a true sphere, a substantially spherical shape, an elliptical shape, and an indefinite shape.
  • the average primary particle diameter of the reactive silica fine particles (A) is 10 to 100 nm. If it is less than 10 nm, there is a possibility that sufficient hardness cannot be imparted to the HC layer, and if it exceeds 100 nm, the haze of the HC layer increases and the transparency decreases.
  • the reactive silica fine particles (A) those having a single average primary particle diameter may be used alone, or those having different average primary particle diameters may be used as long as the average primary particle diameter is 10 to 100 nm. Two or more kinds may be used in combination. Moreover, the photocurable group and shape of the reactive silica fine particles (A) may be the same or different.
  • the content of the reactive silica fine particles (A) is preferably 30 to 70% by mass and more preferably 40 to 60% by mass with respect to the total mass with the polyfunctional monomer (D) described later.
  • the content of reactive silica fine particles (A) is small, a hard coat film with high hardness cannot be obtained, and when the content is large, the hard coat film becomes brittle.
  • the reactive silica (A) is contained in the secondary particles (C), has a particle size larger than that of the lubricant (B), and exhibits high blocking resistance. Contributes to particle formation.
  • the easy lubricant (B) is a particle having an average primary particle size of 100 to 300 nm that contributes to the formation of fine irregular shapes on the surface of the HC layer for expressing blocking resistance. Further, as described later, the lubricant (B) is contained in the secondary particles (C), has a particle size larger than that of the lubricant (B), and exhibits high blocking resistance. Contributes to particle formation.
  • the average primary particle size of the lubricant (B) is less than 100 nm, the lubricant (B) is buried in the particles of the reactive silica (A) and hardly aggregates, so that sufficient blocking resistance is exhibited. However, if it exceeds 300 nm, the transparency of the HC layer decreases and haze increases.
  • lubricant (B) for example, organic silicone fine particles having an average primary particle size of 300 nm or less described in Patent Document 1, and hydrophilic fine particles having an average primary particle size of 100 to 300 nm described in Patent Document 2 ( Silica fine particles) can be used.
  • the organic silicone fine particle represents a polymer compound (polymer fine particle) having a siloxane bond as a skeleton and an organic group.
  • the organic group include a polyether group, a polyester group, an acrylic group, a urethane group, and an epoxy group, in addition to a hydrocarbon group that includes or does not include a different atom.
  • the shape of the organic silicone fine particles may be substantially spherical, for example, a perfect sphere, a spheroid, or the like, and more preferably a true sphere.
  • the shape of the hydrophilic fine particles (silica fine particles) is not particularly limited, but if it is a substantially spherical shape such as an ellipse or a new sphere, there is no angular part that causes reflected light to diffuse, and it is difficult for haze to occur. preferable.
  • a lubricant (B) that is hydrophilic or a surface treatment agent that has been imparted with hydrophilicity.
  • the hydrophilic lubricant (B) When the hydrophilic lubricant (B) is present in the hydrophobic hard coat resin, it tends to float on the air interface where moisture exists, that is, the surface of the hard coat layer, and the secondary particles can be made efficiently. Can do.
  • the hydrophilic lubricant (B) is unevenly distributed, the secondary agglomerated secondary particles described later together with the hydrophobic hard coat resin and the hydrophobic treated reactive silica are not formed, and the lubricant (B) alone 2 Only secondary particles are formed, and preferable blocking resistance cannot be obtained.
  • a dispersant is added to disperse the hydrophilic lubricant (B) in the hydrophobic hard coat resin and to form three types of aggregated secondary particles.
  • a preferable dispersant is not particularly limited as long as it is used for a solvent-based ionizing radiation curable binder.
  • anionic dispersant N-acyl-N-alkyl taurine salt, fatty acid salt, alkyl sulfate ester salt, alkyl benzene sulfonate, anionic sulfonate, alkyl naphthalene sulfonate , Dialkyl sulfosuccinate, alkyl phosphate ester salt, naphthalene sulfonic acid formalin condensate, polyoxyethylene alkyl sulfate ester salt and the like.
  • anionic dispersants can be used singly or in combination of two or more.
  • Cationic dispersants include quaternary ammonium salts, alkoxylated polyamines, aliphatic amine polyglycol ethers, aliphatic amines, diamines and polyamines derived from aliphatic amines and fatty alcohols, fatty acids And imidazolines derived from these and salts of these cationic substances. These cationic dispersants can be used singly or in combination of two or more.
  • the amphoteric dispersant is a dispersant having both an anion group part in the molecule of the anionic dispersant and a cation group part in the molecule of the cationic dispersant in the molecule.
  • Nonionic dispersants include polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene alkylamine, Examples thereof include glycerin fatty acid esters. Among these, polyoxyethylene alkylaryl ether is preferable. These nonionic dispersants can be used singly or in combination of two or more.
  • Dispersant does not work as a binder, so adding too much may interfere with curing. Further, if the polymer is too high, it is difficult to obtain compatibility with the binder. Therefore, as a preferable dispersing agent, a compound having a number average molecular weight of 2,000 to 20,000, which is effective when added in a small amount, is preferably used. Specific examples thereof include DISPERBYK-163, DISPERBYK-170, DISPERBYK-183 manufactured by Big Chemie Japan Co., Ltd., which are anionic dispersants, and the like.
  • the brand name PIONIN series etc. by Takemoto Yushi Co., Ltd. etc. are mentioned, for example.
  • Examples of the commercially available hydrophilic fine particles include trade name SIRMEK-E03 manufactured by CIK Nanotech Co., Ltd. and trade name IPA-ST-ZL manufactured by Nissan Chemical Industries, Ltd.
  • the average primary particle size is 100 to 300 nm
  • a single average primary particle size may be used alone, or two types of lubricants having different average primary particle sizes may be used.
  • a combination of the above may also be used.
  • the material, shape, etc. may be the same and may differ.
  • the content of the lubricant (B) is 0.2 to 8% by mass with respect to the total mass of the reactive silica fine particles (A) and the polyfunctional monomer (D), but 1 to 5% by mass. It is more preferable.
  • the secondary particles (C) are components that contribute to the formation of fine small protrusions on the surface of the HC layer, that is, to impart blocking resistance to the HC layer when the curable resin composition for the HC layer is cured.
  • the secondary particles (C) contain at least the lubricant (B) and have an average secondary particle size of 500 nm to 2000 nm. If the average secondary particle size of the secondary particles (C) is less than 500 nm, sufficient blocking resistance may not be imparted to the HC layer. If it exceeds 2000 nm, aggregation becomes unstable, and the HC layer is transparent. Sexuality is impaired.
  • the secondary particles (C) may be secondary particles in which the lubricants (B) are aggregated, or the lubricant (B), the reactive silica (A), and the polyfunctional monomer (D). Aggregated three-type aggregated secondary particles may be used. Therefore, the particle diameter of the secondary particles may be a single particle diameter or may be a plurality of different particle diameters.
  • the secondary particles must be formed is that, for example, the reactive silica (A) alone has good dispersibility, so that the reactive silica (A) is uniformly dispersed during film formation, and easy slipping is expressed. This is because the small protrusions are not formed, but by making the secondary particles by adding the slippery agent (B), it becomes possible to create small protrusions that can express slipperiness on the surface of the HC layer.
  • Reactive silica (A), easy-to-lubricant (B), and polyfunctional monomer (D) are agglomerated three types of secondary particles (particles as shown in the photograph in FIG. 8) in an appropriate amount on the surface of the HC layer. It is important to.
  • the average secondary particle size of the secondary particles is important. If the reactive silica (A) and the lubricant (B) are not within the range of the respective average primary particle sizes, the resulting three-aggregated secondary particles will not only have an optimal particle size, but will not have an optimal shape. For example, when the average primary particle size of the reactive silica (A) and / or the lubricant (B) is excessively large, the shape of the agglomerate is not limited even if the three types of agglomerated secondary particles have a seemingly preferable size. It tends to be in a state where there are many angle components, which causes an increase in haze and a decrease in transmittance. In addition, an angle component means the acute angle part etc. which become convex among the unevenness
  • the same effect as in the present invention cannot be obtained, and blocking resistance is obtained.
  • the optical properties deteriorate. Therefore, even if the shape of the small protrusions on the surface of the HC layer is the same height, the shape of the small protrusions is steep, so that the light diffusibility increases and whitening occurs.
  • the average secondary particle size is controlled by the particle size and amount of the lubricant (B). As the amount of the lubricant (B) is increased, the particle size of the secondary particles is increased.
  • the easy-to-lubricant (B) which is a hydrophilic-treated particle, easily aggregates in a hydrophobic binder matrix and floats in the surface direction of the HC layer where moisture in the air exists.
  • the easy-to-treat lubricant (B) subjected to hydrophilic treatment can be appropriately dispersed in a hydrophobic resin (HC matrix component) by the dispersant.
  • Reactive silica (A) has a reactive group that is hydrophobic, so it is easy to mix with and bind to the HC matrix component. Moreover, since silica itself is hydrophilic, it is easy to gather around the easily treated lubricant.
  • the reactive silica is already in a state of being combined with the matrix resin and aggregates with the lubricant.
  • the dispersing agent present around the lubricant is hydrophobic, it is compatible with the reactive silica (A) and the hydrophobic binder component present in a large amount in the layer.
  • the matrix resin aggregates it is dispersed in the vicinity of the hard coat surface without gelation in the layer. As a result of the synthesis of these reactions, it is considered that the three-type agglomerated secondary particles that can effectively exhibit the blocking resistance in the present invention are formed.
  • Formation of the secondary particles (C) in the HC layer curable resin composition is carried out by, for example, using a product name FPAR-1000 manufactured by Otsuka Electronics Co., Ltd. by a dynamic light scattering method. This can be confirmed by measuring the particle size distribution of particles in the composition (including ink 1 and ink 2 described later). That is, the fine particles contained in the curable resin composition for the HC layer are reactive silica fine particles (A) having an average primary particle size of 10 to 100 nm and easy-lubricants (B) having an average primary particle size of 100 to 300 nm. Therefore, formation of secondary particles (C) can be confirmed by observing fine particles having an average particle size larger than 300 nm in the graph of the particle size value and scattering intensity distribution obtained by the dynamic light scattering method.
  • the secondary particles (C) are preferably aggregates containing reactive silica (A), a lubricant (B), and a polyfunctional monomer (D), that is, there is a binder resin between the particles.
  • the aggregate itself is flexible because of the aggregated particles.
  • the shape of the small protrusions formed by this aggregate is smoother than that of the primary particles of the lubricant (B) having the same particle size as the secondary particles (C). It is hard to be scratched, has a good hardness, and has a smooth shape, so that it does not easily cause haze, suppresses an increase in the haze of the HC layer, and increases the total light transmittance.
  • the polyfunctional monomer has two or more reactive functional groups, and when the curable resin composition for HC layer is cured, the reactive functional group polymerizes or crosslinks with the photocurable group of the reactive silica fine particles (A). It is a component that reacts to form a network structure and becomes a matrix of the HC layer.
  • the reactive functional group of the polyfunctional monomer (D) is only required to be capable of reacting with the photocurable group of the reactive silica fine particles (A), and is preferably a polymerizable unsaturated group, for example.
  • An ionizing radiation curable unsaturated group is preferable. Specific examples thereof include an ethylenically unsaturated bond such as a (meth) acryloyl group, a (meth) acryloyloxy group, a vinyl group, and an allyl group, and an epoxy group.
  • the reactive functional group is preferably an acryloyl group or an acryloyloxy group.
  • the number of reactive functional groups in the polyfunctional monomer (D) is 2 or more, but 3 to 12 is preferable from the viewpoint of increasing the crosslinking density and increasing the hardness of the HC layer.
  • the molecular weight of the polyfunctional monomer (D) is 1000 or less, preferably 100 to 800.
  • the molecular weight is 1000 or less, it is easy to form a fine uneven shape when the curable resin composition for the HC layer is cured.
  • a base material is a triacetyl cellulose
  • a polyfunctional monomer also osmose
  • a polyfunctional monomer used for forming a conventionally known HC layer may be used.
  • examples thereof include acrylate, neopentyl glycol di (meth) acrylate trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
  • PETA pentaerythritol triacrylate
  • DPHA dipentaerythritol tetraacrylate
  • the content ratio of the polyfunctional monomer (D) is preferably 30 to 70% by mass with respect to the total mass of the reactive silica fine particles (A) and the polyfunctional monomer (D).
  • the polyfunctional monomer (D) those described above may be used singly or in combination of two or more. In order to achieve higher hardness, the reason is that the radically polymerizable compound rather than the cationically polymerizable compound is unclear, but it is preferable because the crosslinking density tends to increase.
  • the solvent is a component that adjusts the viscosity of the curable resin composition for the HC layer and imparts coatability to the curable resin composition for the HC layer.
  • a solvent used in a conventionally known curable resin composition for HC layer may be used.
  • alcohols such as methanol described in Patent Document 1, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, etc.
  • Ketones such as methyl acetate, ethyl acetate, butyl acetate, nitrogen-containing compounds such as N, N-dimethylformamide, ethers such as tetrahydrofuran, halogenated hydrocarbons such as trichloroethane, and other solvents such as dimethyl sulfoxide And mixtures thereof.
  • the solvent is preferably a permeable solvent having permeability to the TAC substrate, and is at least one selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone. More preferred.
  • a permeable solvent when forming an HC layer on the TAC substrate using the curable resin composition for HC layers according to the present invention, a fine uneven shape is formed on the surface to exhibit blocking resistance. Because it is easy to do.
  • the term “penetration” refers to the property of dissolving, swelling or wetting the TAC substrate.
  • the solvent those described above may be used alone or in combination of two or more.
  • the solvent may be appropriately used depending on the desired coatability, but is preferably used so that the solid content of the HC layer curable resin composition is 20 to 60% by mass, and 30 to 50% by mass. More preferably, it is used.
  • the HC layer curable resin composition according to the present invention includes other components such as other binder components, a polymerization initiator, a leveling agent, or an antistatic agent, as appropriate, in addition to the above essential components. May be.
  • the other binder component is a component that is cured and becomes a matrix of the HC layer in the same manner as the polyfunctional monomer (D).
  • binder components conventionally known binder components of the HC layer may be used.
  • monofunctional monomers such as styrene and N-vinylpyrrolidone described in Patent Document 1, bisphenol-type epoxy compounds, aromatic vinyl ethers, etc.
  • compounds having cationically polymerizable functional groups such as oligomers or polymers.
  • the content of other binder components is 10 to 60% by mass with respect to the total mass of the other binder components and the polyfunctional monomer (D). It is preferable from the viewpoint of obtaining a crosslinking density.
  • a polymerization initiator is a component which accelerates
  • the polymerization initiator those used in conventionally known curable resin compositions for HC layers may be used.
  • acetophenones, benzophenones, benzoins, thioxanthones, propio Examples include phenones, benzyls, acylphosphine oxides, Michler benzoylbenzoate, ⁇ -amyloxime ester, tetramethylchuram monosulfide, benzoin methyl ether, 1-hydroxy-cyclohexyl-phenyl-ketone and the like.
  • 1-Hydroxy-cyclohexyl-phenyl-ketone is available, for example, under the trade name Irgacure 184 (manufactured by Ciba Specialty Chemicals). Further, ⁇ -aminoalkylphenones are available, for example, under the trade names Irgacure 907,369.
  • an aromatic diazonium salt, an aromatic sulfonium salt, an aromatic iodonium salt, a metatheron compound, a benzoin sulfonic acid ester, or the like may be used as a photopolymerization initiator.
  • the polymerization initiator those described above may be used alone or in combination of two or more.
  • the content thereof may be 0.1 to 10 parts by mass with respect to 100 parts by mass of the total solid content of the curable resin composition for the HC layer.
  • the leveling agent is a component that imparts coating stability, slipperiness, antifouling property, or scratch resistance to the coating film surface when the curable resin composition for the HC layer is applied or dried.
  • a leveling agent used in a conventionally known HC layer may be used, and a fluorine-based or silicone-based leveling agent is preferably used.
  • Specific examples of the leveling agent include, for example, the Megafac series manufactured by DIC Corporation described in JP 2010-122325 A, the TSF series manufactured by Momentive Performance Materials Japan, and Neos Corporation. Examples include the footage series.
  • a leveling agent it may be 0.01 to 5 parts by mass with respect to 100 parts by mass of the total solid content of the HC layer curable resin composition.
  • the antistatic agent is a component that imparts antistatic properties to the HC layer.
  • the antistatic agent those used in conventionally known antistatic layers and HC layers may be used.
  • cationic compounds such as quaternary ammonium salts described in Patent Document 1, sulfonate groups, sulfate esters
  • Anionic compounds such as bases, amphoteric compounds such as amino acids and amino sulfates, nonionic compounds such as amino alcohols and polyethylene glycols, organometallic compounds such as tin and titanium alkoxides, and acetylacetonate salts thereof
  • conductive fine particles such as metal chelate compounds and metal oxides.
  • the content thereof may be 1 to 30 parts by mass with respect to 100 parts by mass of the binder component including the polyfunctional monomer (D).
  • the curable resin composition for a hard coat layer according to the present invention is prepared by mixing and dispersing the above essential components according to a preparation method including the following steps (a) to (c).
  • the process of forming a secondary particle (C) and preparing the said curable resin composition for hard-coat layers are examples of a secondary particle (C) and preparing the said curable resin composition for hard-coat layers.
  • the paint shaker is dispersed for 30 minutes to 1 hour in order to disperse well and reliably form the secondary particles. Or by a general dispersion method such as a bead mill.
  • the curable resin composition for hard coat layer is preferably applied to the substrate within 24 hours after completion of preparation.
  • Inks 1 and 2 can be stored for a long period of time once prepared, and can be used by mixing as much as necessary when needed, whereas hard ink obtained by mixing inks 1 and 2
  • the secondary particles (C) essential for the present invention are formed, and the preferred secondary average particle size range can be maintained within 24 hours. When the average particle size exceeds the range, the secondary average particle size becomes too large, and the secondary particles settle in the curable resin composition for the hard coat layer or the composition of the curable resin composition for the hard coat layer changes. There is a risk that.
  • the curable resin composition for a hard coat layer of the present invention is used in facilities that are used up within 24 hours after completion of preparation or are always supplied in a fresh state.
  • a paint shaker or a bead mill can be used for mixing and dispersion.
  • the manufacturing method of the hard coat film which concerns on this invention is the process of apply
  • Secondary particles (C) having an average secondary particle size of 500 nm to 2000 nm containing the lubricant (B) in the above-mentioned specific proportion and containing the lubricant (B) in the curable resin composition for the HC layer.
  • the application method of the HC layer curable resin composition in the step (i) is not particularly limited as long as it can uniformly apply the HC layer curable resin composition to the surface of the TAC substrate.
  • the curable resin composition coating method can be used. For example, a slide coating method, a bar coating method, or a roll coater method described in Patent Document 1 can be used.
  • the coating amount of the composition for the HC layer on the TAC substrate varies depending on the performance required for the obtained hard coat film, but the coating amount after drying is 1 to 30 g / m 2 , particularly It is preferably 5 to 25 g / m 2 .
  • the drying method include reduced-pressure drying or heat drying, and a method combining these drying methods.
  • the drying step is usually performed at a temperature of room temperature to 80 ° C., preferably 40 to 60 ° C., for a time of about 20 seconds to 3 minutes, preferably about 30 seconds to 1 minute. .
  • the coating film is heated in addition to light irradiation or light irradiation depending on the photocurable group and the reactive functional group contained in the HC layer curable resin composition.
  • the coating film is cured, and the photocurable group of the reactive silica fine particles (A) and the reactive functional group of the polyfunctional monomer (D) contained in the HC layer curable resin composition are cross-linked.
  • the functional monomer (D) becomes a matrix, and a hard coat layer made of a cured product of the curable resin composition for the HC layer is formed.
  • ultraviolet rays For light irradiation, ultraviolet rays, visible light, electron beams, ionizing radiation, or the like is mainly used.
  • ultraviolet curing ultraviolet rays or the like emitted from light such as an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a carbon arc, a xenon arc, or a metal halide lamp are used.
  • the irradiation amount of the energy ray source is 50 to 5000 mJ / cm 2 as an integrated exposure amount at an ultraviolet wavelength of 365 nm.
  • the treatment When heating in addition to light irradiation, the treatment is usually performed at a temperature of 40 ° C to 120 ° C. Moreover, you may react by leaving it to stand for 24 hours or more at room temperature (25 degreeC).
  • the solvent (E) contained in the curable resin composition for the HC layer is a permeable solvent, and it is easy to form fine small protrusions on the surface of the HC layer. Since blocking property can be improved, it is preferable.
  • the permeable solvent is at least one selected from the group consisting of methyl acetate, ethyl acetate, butyl acetate, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • FIG. 1 is a schematic view showing an example of a flow of a method for producing a hard coat film according to the present invention.
  • the HC layer curable resin composition is applied onto the triacetyl cellulose substrate 10 to form a coating film, and then irradiated with light to be cured to form the hard coat layer 20. At this time, a fine small protrusion shape is formed on the surface of the hard coat layer 20.
  • the silica fine particles and the lubricant in the HC layer are not shown.
  • the method for producing an HC film according to the present invention may include a step of providing other layers such as a low refractive index layer and an antifouling layer described later on the surface of the HC layer opposite to the TAC substrate. .
  • These other layers may be formed by preparing a composition, applying it, and curing it by light irradiation or heat, as in the method for forming the HC layer.
  • the HC film according to the present invention is obtained by the above production method.
  • the HC film obtained by the production method using the curable resin composition for the HC layer has a fine small protrusion shape on the surface of the HC layer, has excellent blocking resistance, has a small haze, and has a total light transmittance. high.
  • the haze of the HC film according to the present invention is preferably 1.2 or less, more preferably 1.0 or less, and further preferably 0.5% or less.
  • the total light transmittance of the HC film according to the present invention is preferably 90% or more, and more preferably 92.0% or more.
  • the fine small protrusion shape on the surface of the HC layer has protrusions having a height of more than 3 nm and not more than 50 nm on the surface of the HC layer as in Patent Document 2, and the interval between the protrusions is 100 to 6000 nm. However, it is preferable from the viewpoint of obtaining excellent blocking resistance. More preferably, it is 100 to 5000 nm. It is important that such minute convex portions are present appropriately at intervals of 6000 nm or less.
  • FIG. 2 is a schematic view showing an example of the layer configuration of the hard coat film according to the present invention.
  • a hard coat layer 20 is provided on one side of the triacetyl cellulose substrate 10.
  • FIG. 3 is a schematic view showing another example of the layer configuration of the hard coat film according to the present invention.
  • a hard coat layer 20 and a low refractive index layer 30 are provided on one side of the triacetyl cellulose substrate 10 from the triacetyl cellulose substrate side. 2 and 3 and FIG. 4 to be described later are schematically shown by omitting fine irregularities on the surface of the HC layer for simplification of description.
  • a TAC substrate an HC layer, which is an essential component of the HC film according to the present invention, a low refractive index layer, a high refractive index layer, a middle refractive index layer, an antifouling layer, and the like that can be appropriately provided as necessary.
  • the other layers will be described.
  • the triacetyl cellulose substrate used in the present invention is a triacetyl cellulose film having a high light transmittance, and is not particularly limited as long as it satisfies the physical properties that can be used as the light transmissive substrate of the hard coat film.
  • a conventionally known hard coat film or optical film TAC substrate can be appropriately selected and used.
  • the average light transmittance of the TAC substrate in the visible light region of 380 to 780 nm is preferably 80% or more, more preferably 90% or more.
  • the light transmittance is measured using a value measured in the atmosphere at room temperature using an ultraviolet-visible spectrophotometer (for example, UV-3100PC manufactured by Shimadzu Corporation).
  • a surface treatment such as saponification treatment or provision of a primer layer may be applied to the TAC substrate.
  • additives, such as an antistatic agent may be contained.
  • the thickness of the TAC substrate is not particularly limited, and is usually 20 to 200 ⁇ m, preferably 40 to 70 ⁇ m.
  • the polyfunctional monomer (D) is removed from the interface with the HC layer of the TAC substrate. It penetrates and hardens near the interface in the internal direction. Thereby, the effect which the adhesiveness of a TAC base material and HC layer improves is also acquired.
  • the vicinity of the interface means a region from the interface on the HC layer side to the internal direction of 10 ⁇ m of the TAC substrate in the thickness direction of the TAC substrate.
  • the HC layer of the present invention comprises a cured product of the above composition for the HC layer, and has a fine small protrusion shape on the surface opposite to the TAC substrate.
  • the film thickness of the HC layer may be adjusted as appropriate according to the required performance, and may be, for example, 1 to 20 ⁇ m.
  • the thickness of the HC layer is preferably 5 to 15 ⁇ m.
  • a low refractive index layer, a high refractive index layer, a medium refractive index layer and an antifouling layer are provided on the surface of the HC layer opposite to the TAC substrate without departing from the spirit of the present invention.
  • One or more other layers such as a layer may be provided. Examples of the layer structure of the HC film having these other layers include the following (1) to (5).
  • the low refractive index layer is a layer having a function of adjusting the reflectance of the HC film and improving the visibility of the surface.
  • the low refractive index layer is composed of a cured product of a composition containing a low refractive index component such as silica or magnesium fluoride and a binder component or a composition containing a fluorine-containing resin such as a vinylidene fluoride copolymer. It can be a low refractive index layer.
  • the composition for forming the low refractive index layer may contain hollow particles in order to reduce the refractive index of the low refractive index layer.
  • a hollow particle refers to a particle having an outer shell layer and the inside surrounded by the outer shell layer being a porous structure or a cavity.
  • the porous structure or cavity contains air (refractive index: 1), and the refractive index of the low refractive index layer is obtained by incorporating hollow particles having a refractive index of 1.20 to 1.45 in the low refractive index layer. Can be reduced.
  • the average particle diameter of the hollow particles is preferably 1 to 100 nm.
  • the hollow particles those conventionally used for a low refractive index layer can be used, and examples thereof include fine particles having voids described in JP-A-2008-165040.
  • the high refractive index layer and the medium refractive index layer are layers provided for adjusting the reflectance of the HC film.
  • a high refractive index layer although not shown, it is usually provided adjacent to the TAC substrate side of the low refractive index layer.
  • a middle refractive index layer although not shown, it is usually provided in the order of a middle refractive index layer, a high refractive index layer, and a low refractive index layer from the TAC substrate side.
  • the high refractive index layer and the medium refractive index layer are made of a cured product of a composition mainly containing a binder component and refractive index adjusting particles.
  • resins such as the polyfunctional monomer (D) exemplified in the composition for the HC layer can be used.
  • the particles for adjusting the refractive index include fine particles having a particle diameter of 100 nm or less.
  • fine particles include zinc oxide (refractive index: 1.90), titania (refractive index: 2.3 to 2.7), ceria (refractive index: 1.95), and tin-doped indium oxide (refractive index: 1). .95), at least one selected from the group consisting of antimony-doped tin oxide (refractive index: 1.80), yttria (refractive index: 1.87), and zirconia (refractive index: 2.0). it can.
  • the high refractive index layer preferably has a refractive index of 1.50 to 2.80.
  • the medium refractive index layer has a low refractive index for the high refractive index layer, and preferably has a refractive index of 1.50 to 2.00.
  • an antifouling layer can be provided on the outermost surface of the HC film opposite to the TAC substrate for the purpose of preventing the outermost surface of the HC film from being stained.
  • the antifouling layer can impart excellent antifouling properties and scratch resistance to the HC film.
  • the antifouling layer comprises a cured product of the antifouling layer composition containing an antifouling agent and a binder component.
  • a conventionally well-known thing may be used for the binder component of the composition for antifouling layers, for example, the polyfunctional monomer (D) quoted by the said composition for HC layers can be used.
  • the antifouling agent contained in the antifouling layer composition can be appropriately selected from antifouling agents such as known leveling agents, and one or more can be used.
  • a soiling agent can be used.
  • the content of the antifouling agent may be 0.01 to 0.5 parts by mass with respect to 100 parts by mass of the total solid content of the antifouling layer composition.
  • the preparation of the composition for forming the other layers can be performed in the same manner as the preparation of the HC layer composition.
  • FIG. 4 is a schematic diagram showing an example of the layer configuration of the polarizing plate according to the present invention.
  • the polarizing plate 70 shown in FIG. 4 has the HC film 1 and the polarizer 60 in which the protective film 40 and the polarizing layer 50 are laminated.
  • the polarizer 60 is disposed on the triacetyl cellulose substrate 10 side of the HC film 1. Is provided.
  • the polarizer is disposed on the triacetylcellulose substrate side of the HC film not only when the HC film and the polarizer are separately formed, but also the members constituting the HC film constitute the polarizer. It also includes the case of serving also as a member.
  • the display is usually arranged on the polarizer side.
  • the polarizer 60 used in the present invention is not particularly limited as long as it has predetermined polarization characteristics, and a polarizer generally used in a liquid crystal display device can be used.
  • the polarizer 60 is not particularly limited as long as it can maintain a predetermined polarization characteristic for a long period of time.
  • the polarizer 60 may be composed of only the polarizing layer 50, and the protective film 40 and the polarizing layer 50 are attached to each other. It may be combined. When the protective film 40 and the polarizing layer 50 are bonded together, the protective film 40 may be formed only on one side of the polarizing layer 50, or the protective film 40 may be formed on both sides of the polarizing layer 50.
  • polarizing layer usually, a film made of polyvinyl alcohol is impregnated with iodine, and this is uniaxially stretched to form a complex of polyvinyl alcohol and iodine.
  • the said polarizing layer can be protected and it has desired light transmittance, it will not specifically limit.
  • the light transmittance of the protective film the transmittance in the visible light region is preferably 80% or more, and more preferably 90% or more.
  • the transmittance of the protective film can be measured according to JIS K7361-1 (Plastic—Testing method of total light transmittance of transparent material).
  • the resin constituting the protective film examples include cellulose derivatives, cycloolefin resins, polymethyl methacrylate, polyvinyl alcohol, polyimide, polyarylate, and polyethylene terephthalate. Among them, it is preferable to use a cellulose derivative or a cycloolefin resin.
  • the protective film may be a single layer or may be a laminate of a plurality of layers.
  • the protective film is a laminate of a plurality of layers, a plurality of layers having the same composition may be laminated, or a plurality of layers having different compositions may be laminated.
  • the thickness of the protective film can make the flexibility of the polarizing plate of the present invention within a desired range, and by bonding to the polarizing layer, the dimensional change of the polarizer can be within a predetermined range.
  • it is not particularly limited as long as it is within the range, it is preferably 5 to 200 ⁇ m, particularly preferably 15 to 150 ⁇ m, further preferably 30 to 100 ⁇ m, and further preferably 65 ⁇ m or less. If the thickness is less than 5 ⁇ m, the dimensional change of the polarizing plate of the present invention may increase.
  • the said thickness is thicker than 200 micrometers, when cutting the polarizing plate of this invention, there exists a possibility that a process waste may increase or abrasion of a cutting blade may become quick.
  • the protective film may have a phase difference.
  • the protective film has a phase difference is not particularly limited as long as a desired retardation can be exhibited.
  • the protective film has a configuration consisting of a single layer, and includes an optical property developing agent that expresses retardation, and has retardation, and the above-described resin.
  • an embodiment having retardation can be mentioned. In the present invention, any of these embodiments can be suitably used.
  • the display panel according to the present invention is characterized in that a display is disposed on the triacetylcellulose substrate side of the HC film.
  • Examples of the display include LCD, PDP, ELD (organic EL, inorganic EL), CRT touch panel, electronic paper, and tablet PC.
  • An LCD which is a typical example of the display, includes a transmissive display and a light source device that irradiates the display from the back.
  • the HC film of the present invention and the polarizing plate including the HC film are arranged on the surface of the transmissive display body.
  • a PDP which is another example of the display, includes a front glass substrate and a rear glass substrate disposed so as to be opposed to the front glass substrate with a discharge gas sealed therebetween.
  • the surface of the surface glass substrate or the front plate is provided with the HC film.
  • a light emitter such as zinc sulfide or a diamine substance that emits light when a voltage is applied is vapor-deposited on a glass substrate, and an ELD device that performs display by controlling the voltage applied to the substrate or an electric signal is converted into light. It may be a display such as a CRT that generates a visible image. In this case, the HC film is provided on the outermost surface of the ELD device or CRT or the surface of the front plate.
  • Example 1 Preparation of curable resin composition for hard coat layer First, ink 1 is prepared by mixing each component in the following step (a), and ink 2 is prepared by mixing each component in step (b). did. Next, as step (c), while stirring ink 1 with a stir bar, ink 2 was added little by little, and after all the addition was completed, the mixture was further dispersed and dispersed with a paint shaker for 30 minutes to form secondary particles (C). Finally, a curable resin composition for a hard coat layer adjusted to a solid content of 45% by mass was prepared. In addition, the secondary particle diameter of this invention is measured using the ink which passed through this (c) process as it is.
  • A Process / Reactive silica fine particles (A) (trade name MIBK-SDL, manufactured by Nissan Chemical Industries, Ltd., average primary particle size 44 nm, solid content 30% liquid (MIBK dispersion), photocurable group Methacryloyl group): 42.3 parts by mass (in terms of solid content)
  • Leveling agent Trade name MCF350 (manufactured by DIC Corporation): 0.3 parts by mass -Hydroxy-cyclohexyl-phenyl-ketone (trade name Irgacure 184 manufactured by Ciba Specialty Chemicals Co., Ltd.): 3.8 parts by mass.
  • Example 2 In Example 1, the HC layer was the same as in Example 1 except that the content of the lubricant (B) with respect to the total mass of the reactive silica fine particles (A) and the polyfunctional monomer (D) was changed to 0.2% by mass. A composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 3 In Example 1, the HC layer was the same as in Example 1 except that the content of the lubricant (B) with respect to the total mass of the reactive silica fine particles (A) and the polyfunctional monomer (D) was changed to 8.0% by mass. A composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 4 The HC layer was the same as in Example 1, except that the lubricant (B) was replaced with one having an average primary particle size of 100 nm (trade name IPA-ST-ZL manufactured by Nissan Chemical Industries, Ltd.). A composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 5 In Example 1, except that the lubricant (B) was changed to trade name MG-164 (average primary particle size 300 nm, material styrene / acrylic) manufactured by Nippon Paint Co., Ltd., for the HC layer. A composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • MG-164 average primary particle size 300 nm, material styrene / acrylic
  • Example 6 The composition for the HC layer was the same as in Example 1, except that the lubricant (B) was changed to the trade name TDNP-026 (average primary particle size 240 nm, material silicone) manufactured by Takemoto Yushi Co., Ltd. Was prepared and applied within 1 hour after preparation to prepare an HC film.
  • the lubricant (B) was changed to the trade name TDNP-026 (average primary particle size 240 nm, material silicone) manufactured by Takemoto Yushi Co., Ltd. was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 7 In Example 1, except that the reactive silica fine particles (A) were replaced with those having an average primary particle size of 10 nm (trade name ELCOM DP-1116SIV manufactured by JGC Catalysts & Chemicals Co., Ltd.), the same as in Example 1, except that A layer composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • a layer composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 8 As in Example 1, except that the reactive silica fine particles (A) were replaced with those having an average primary particle size of 100 nm (trade name ELCOM DP-1119SIV manufactured by JGC Catalysts & Chemicals Co., Ltd.), as in Example 1. A layer composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 9 In Example 1, the reactive silica fine particles (A) were replaced with those having an average primary particle size of 100 nm (trade name ELCOM DP-1119SIV manufactured by JGC Catalysts & Chemicals Co., Ltd.), and the reactive silica fine particles (A)
  • the composition for the HC layer was prepared in the same manner as in Example 1 except that the content of the lubricant (B) with respect to the total mass of the polyfunctional monomer (D) was changed to 3.0% by mass, and within 1 hour after the preparation The HC film was produced by applying the HC film.
  • Example 1 Comparative Example 1
  • the HC layer was the same as in Example 1 except that the content of the lubricant (B) with respect to the total mass of the reactive silica fine particles (A) and the polyfunctional monomer (D) was changed to 0.1% by mass.
  • a composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 2 In Example 1, the HC layer was the same as in Example 1 except that the content of the lubricant (B) with respect to the total mass of the reactive silica fine particles (A) and the polyfunctional monomer (D) was changed to 10.0% by mass. A composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 3 The composition for the HC layer was the same as in Example 1 except that the lubricant (B) was replaced with one having an average primary particle size of 15 nm (trade name IPA-ST manufactured by Nissan Chemical Industries, Ltd.). The product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • the lubricant (B) was replaced with one having an average primary particle size of 15 nm (trade name IPA-ST manufactured by Nissan Chemical Industries, Ltd.).
  • the product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 4 The composition for the HC layer was the same as in Example 1, except that the lubricant (B) was replaced with one having an average primary particle size of 50 nm (trade name IPA-ST manufactured by Nissan Chemical Industries, Ltd.). The product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • the lubricant (B) was replaced with one having an average primary particle size of 50 nm (trade name IPA-ST manufactured by Nissan Chemical Industries, Ltd.).
  • the product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 5 The composition for the HC layer was the same as in Example 1 except that the lubricant (B) was replaced by trade name TDNP-027 (average primary particle size 360 nm; material: silicone) manufactured by Takemoto Oil & Fat Co., Ltd. The product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • the lubricant (B) was replaced by trade name TDNP-027 (average primary particle size 360 nm; material: silicone) manufactured by Takemoto Oil & Fat Co., Ltd.
  • the product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 6 The composition for the HC layer was the same as in Example 1 except that the lubricant (B) was changed to trade name MX-150 (average primary particle size 1500 nm; material: acrylic) manufactured by Soken Chemical Co., Ltd. The product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • the lubricant (B) was changed to trade name MX-150 (average primary particle size 1500 nm; material: acrylic) manufactured by Soken Chemical Co., Ltd.
  • the product was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 7 an HC layer composition was prepared in the same manner as in Example 1 except that the average secondary particle size of the secondary particles (C) was changed to 285 nm, and was applied within 1 hour after the preparation. Was made.
  • Example 8 As in Example 1, except that the reactive silica fine particles (A) were replaced with those having an average primary particle size of 120 nm (trade name ELCOM DP-1120SIV manufactured by JGC Catalysts & Chemicals Co., Ltd.), as in Example 1. A layer composition was prepared and applied within 1 hour after preparation to prepare an HC film.
  • Example 9 (Comparative Example 9) In Example 1, instead of the polyfunctional monomer (D), a monomer having one functional group (acryloyloxy group) (trade name Biscote # 158 manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used. An HC layer composition was prepared in the same manner as in No. 1 and applied within 1 hour after preparation to prepare an HC film.
  • a monomer having one functional group (acryloyloxy group) (trade name Biscote # 158 manufactured by Osaka Organic Chemical Industry Co., Ltd.) was used.
  • An HC layer composition was prepared in the same manner as in No. 1 and applied within 1 hour after preparation to prepare an HC film.
  • Example 10 (Comparative Example 10) In Example 1, instead of the polyfunctional monomer (D), one having 6 functional groups (acryloyloxy groups) and a molecular weight of 1500 (trade name UX-5000 manufactured by Nippon Kayaku Co., Ltd.) was used. Prepared an HC layer composition in the same manner as in Example 1, and applied within 1 hour after preparation to prepare an HC film.
  • the polyfunctional monomer (D) instead of the polyfunctional monomer (D), one having 6 functional groups (acryloyloxy groups) and a molecular weight of 1500 (trade name UX-5000 manufactured by Nippon Kayaku Co., Ltd.) was used.
  • a molecular weight of 1500 trade name UX-5000 manufactured by Nippon Kayaku Co., Ltd.
  • Example 11 an HC film was produced in the same manner as in Example 1 except that the TAC substrate was replaced with a PET substrate (thickness 125 ⁇ m, trade name A4300 manufactured by Toyobo Co., Ltd.).
  • Example 12 In Example 1, an HC film was produced in the same manner as in Example 1 except that the reactive silica (A) and the lubricant (B) were not added.
  • Example 13 An HC film was produced in the same manner as in Example 1 except that the content of the reactive silica (A) was changed to 20% by mass.
  • Example 14 In Example 1, an HC film was produced in the same manner as in Example 1 except that the content of the reactive silica (A) was changed to 80% by mass.
  • Example 15 An HC film was produced in the same manner as in Example 1 except that the content of the lubricant (B) was changed to 0.1% by mass.
  • Example 16 In Example 1, an HC film was produced in the same manner as in Example 1 except that the content of the lubricant (B) was changed to 9.0% by mass.
  • Table 1 shows a summary of the compositions of the compositions for HC layers of Examples 1 to 9 and Comparative Examples 1 to 16, the average secondary particle size of the secondary particles (C), and the base material.
  • the compositions for HC layer of Example 1, Comparative Example 2 and Comparative Example 7 were measured by a dynamic light scattering method using a trade name FPAR-1000 manufactured by Otsuka Electronics Co., Ltd.
  • the graph which showed the relationship between the obtained particle size value and scattering intensity distribution is shown. From the fact that the average primary particle diameters of the reactive silica fine particles (A) and the lubricant (B) contained in the HC layer composition of Example 1 are 44 nm and 147 nm, respectively, and FIG. It can be seen that the average secondary particle size of the secondary particles (C) contained in 1 HC layer composition is 1000 nm.
  • the particle size seen as the secondary particles (C) of the present application is the larger particle size.
  • the secondary particle diameter of Comparative Example 3 and Comparative Example 4 is less than 100 nm, and if this is the case, blocking resistance could not be obtained. This is because the small particle size in FIG. 5 is about 100 nm, and it is known that the effect cannot be obtained when the secondary particle size is at this level.
  • the average secondary particle size of the secondary particles (C) contained in the compositions for the HC layer of Comparative Examples 2 and 7 is 534 nm and 285 nm, respectively, from FIGS.
  • the composition for the HC layer is about 100 nm thick from the interface on the HC layer side of the TAC substrate. It was observed that there was a region where PETA, which is a polyfunctional monomer (D) contained in the product, penetrated and was cured.
  • Pencil Hardness Pencil hardness is measured using a test pencil specified in JIS-S-6006 after conditioning the prepared hard coat film for 2 hours at a temperature of 25 ° C. and a relative humidity of 60%. A pencil hardness test (4.9 N load) specified in -5-4 (1999) was performed, and the highest hardness without scratches was measured.
  • Total light transmittance The total light transmittance (%) of the produced hard coat film was measured according to JIS K-7361 using a haze meter (manufactured by Murakami Color Research Laboratory, product number HM-150).
  • Comparative Example 5 In Comparative Example 5 in which the average primary particle size of the lubricant (B) was large, the blocking resistance was sufficient, but the haze was high and the pencil hardness was low. In Comparative Example 6 in which the average primary particle size of the lubricant (B) was large, the blocking resistance was sufficient, but the evaluation of haze, total light transmittance, and pencil hardness was poor. In Comparative Example 7 in which the average secondary particle size of the secondary particles (C) was small, haze and total light transmittance were good, but blocking resistance was insufficient.
  • Comparative Example 8 In Comparative Example 8 in which the average primary particle size of the reactive silica fine particles (A) was large, the haze was high and the total light transmittance was low. In Comparative Example 9 using a monofunctional monomer instead of the polyfunctional monomer (D), the pencil hardness was low. In Comparative Example 10 using a binder having a large molecular weight instead of the polyfunctional monomer (D), the blocking resistance was insufficient and the pencil hardness was low. In Comparative Example 11 in which the base material was a PET base material, the blocking resistance was insufficient, the haze was high, and the pencil hardness was low. In Comparative Example 12 in which the reactive silica (A) and the lubricant (B) were not added, the pencil hardness was low.
  • Comparative Examples 13 and 14 in which the content of the reactive silica (A) was outside the range of the present invention, the pencil hardness was low.
  • Comparative Example 15 in which the content of the lubricant (B) was less than the range of the present invention, the blocking resistance was insufficient and the pencil hardness was low.
  • Comparative Example 16 in which the content of the lubricant (B) was larger than the range of the present invention, the haze was high and the pencil hardness was low.
  • a hard coat film was prepared in the same manner as in Example 1 with the ink (secondary particle diameter exceeded 4000 nm) that was allowed to stand for 36 hours after preparation of the curable resin composition for hard coat layer prepared in Example 1.
  • the haze was 20, and a good hard coat film with a pencil hardness of H was not obtained.
  • the hard coating layer curable resin composition is mixed in the same mass with all the same materials without taking steps (a), (b) and (c) as described in Example 1.
  • the secondary particle size was only less than 200 nm, and the three-type aggregated secondary particles were not formed. When a hard coat film was produced with this ink, no blocking resistance was obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

 硬度が高く、十分な耐ブロッキング性を有し、ヘイズが低く、全光線透過率も高いHCフィルムを提供すること。(A)粒子表面に光硬化性基を有し、平均1次粒径が10~100nmの反応性シリカ微粒子、(B)平均1次粒径が100~300nmの易滑剤、(C)当該易滑剤(B)を含有し、平均2次粒径が500nm~2000nmの2次粒子、(D)1分子中に前記反応性シリカ微粒子(A)の光硬化性基との架橋反応性を有する反応性官能基を2個以上有し、分子量が1000以下である多官能モノマー及び(E)溶剤、を含み、平均2次粒径が2000nmよりも大きい2次粒子を含まず、かつ、当該反応性シリカ微粒子(A)及び多官能モノマー(D)の合計質量に対して当該易滑剤(B)を0.2~8質量%含むことを特徴とする、ハードコート層用硬化性樹脂組成物。

Description

ハードコート層用硬化性樹脂組成物、ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル
 本発明は、液晶ディスプレイ(LCD)、陰極管表示装置(CRT)、又はプラズマディスプレイ(PDP)、電子ペーパー、LED、タッチパネル、タブレットPC等のディスプレイ(画像表示装置)の前面に設置され、これらのディスプレイの表示面を保護するハードコートフィルム、当該ハードコートフィルムのハードコート層の形成に好適な硬化性樹脂組成物、当該ハードコートフィルムの製造方法、当該ハードコートフィルムを備える偏光板及びディスプレイパネルに関する。
 上記のようなディスプレイにおける画像表示面は、取り扱い時に傷がつかないように、耐擦傷性及び硬度を付与することが要求される。これに対して、トリアセチルセルロース基材にハードコート層を設けたHCフィルムや、さらに反射防止性や防眩性等の光学機能を付与した光学フィルムを利用することにより、ディスプレイの画像表示面の耐擦傷性及び硬度を向上させることが一般になされている。尚、以下、トリアセチルセルロースを「TAC」、ハードコートを「HC」ということがある。
 従来から、ハードコート性フィルムの硬度を向上させるためには、樹脂そのものの硬度を上げる材料を使用するとカール(フィルムが反る)が悪化する傾向があるため、樹脂以外の微粒子を入れることが知られている。この時用いる微粒子としては、ヘイズや透過率を考慮し、シリカを使用するとよく、さらに、シリカ粒子の周りに反応性基を付与した反応性シリカを用いることでさらに硬度が向上する。
 最表面が平坦なクリアHCフィルムにおいて、HC層の表面になんらかの凹凸状の欠点が存在すると、HC層に何か硬いものが接触したときにその凸部に引っ掛かり、過大な力が加わり、微細な損傷を起こす場合がある。したがって、HC層表面の耐擦傷性を向上させるためには、当該HC層表面を平滑にすることが有効である。
 しかしながら、表面の平滑性が高いHCフィルムを連続帯状の状態で連続して巻き取り、長尺ロールとしたり、重ね合わせたりすると、鏡面同士を密着する場合のように、HCフィルムのHC層側の表面と、HCフィルムの基材フィルム側の表面とが貼り付く、いわゆるブロッキングという現象が起きてしまうことがある。ブロッキングしてしまうと、製品の製造時にHCフィルムを繰り出す際にHCフィルムが切れる等の問題がある。
 このような問題に対して、HC層に平均1次粒径が300nm以下の粒子(易滑剤)を含有させ、貼りつく面の一方又は両方に、表面の平滑性を損なわない程度の微小突起を形成し、HCフィルムに耐ブロッキング性(以下、「易滑性」ともいうことがある)を付与する方法が提案されている(例えば、特許文献1及び2)。
 この場合、HC層に平均1次粒径の大きな易滑剤を含有させると、HC層表面において微細な小突起形状が得られ、耐ブロッキング性を発現し易いが、HCフィルムのヘイズの上昇や全光線透過率の低下というような光学特性の低下を招いてしまう。
 しかし、ヘイズの上昇等を防ぐために、HC層に含有させる易滑剤の平均1次粒径を小さくすると、十分な凹凸形状が形成されず、耐ブロッキング性が不十分となる。
 このように、高硬度で、十分な耐ブロッキング性、低いヘイズ及び高い全光線透過率をすべて満足するHCフィルムが要求されていた。
特開2009-035614号公報 特開2009-132880号公報
 本発明者らは、そのためには、上述したような易滑剤及び反応性シリカを混合すると良いと推測した。しかしながら、単純に易滑剤と反応性シリカなどの微粒子をマトリックス樹脂中に添加しただけでは、目的とする物性(物理特性及び光学特性を両立しながら易滑性)を発現させることができなかった。
 例えば、反応性シリカ入りのインキと相溶性のよい易滑剤を混ぜても、製膜時に、微粒子が均一分散するため、十分な表面の小突起が形成されなかった。適度に調整された易滑剤入り分散剤であっても、反応性シリカより小さい易滑剤は、反応性シリカに埋没し十分な表面の小突起を形成できなかった。また、易滑剤が反応性シリカより大きすぎると、ヘイズが大きくなり、透過率が低くなった。
 そこで本発明者らは、易滑剤の適度な量及び大きさが存在することと、その適度な大きさの易滑剤となる粒子を製造する方法を見出した。
 本発明は上記問題点を解決するためになされたものであり、高硬度で、十分な耐ブロッキング性を有しながら、ヘイズが低く、全光線透過率も高いHCフィルムを提供することを第一の目的とする。
 本発明の第二の目的は、上記HCフィルムが備えるHC層を形成するのに好適なHC層用硬化性樹脂組成物を提供することである。
 本発明の第三の目的は、上記HCフィルムの製造方法を提供することである。
 本発明の第四の目的は、上記HCフィルムを備える偏光板を提供することである。
 本発明の第五の目的は、上記HCフィルムを備えるディスプレイパネルを提供することである。
 本発明者らが鋭意検討した結果、特定の平均1次粒径を有する易滑剤のみによって表面の小突起形状を形成するのではなく、少なくとも当該易滑剤を含有する特定粒径の2次粒子を含む硬化性樹脂組成物を用いてHC層を形成することによって、形成されるHC層は十分な耐ブロッキング性を有しながら、HCフィルムのヘイズの上昇や全光線透過率の低下が抑えられ、かつ、高硬度のハードコートフィルムが得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明に係るハードコート層用硬化性樹脂組成物は、
 (A)粒子表面に光硬化性基を有し、平均1次粒径が10~100nmの反応性シリカ微粒子、
 (B)平均1次粒径が100~300nmの易滑剤、
 (C)少なくとも当該易滑剤(B)を含有し、平均2次粒径が500nm~2000nmの2次粒子、
 (D)1分子中に前記反応性シリカ微粒子(A)の光硬化性基との架橋反応性を有する反応性官能基を2個以上有し、分子量が1000以下である多官能モノマー及び
 (E)溶剤、を含み、
 平均2次粒径が2000nmよりも大きい2次粒子を含まず、かつ、
 当該反応性シリカ微粒子(A)及び多官能モノマー(D)の合計質量に対して当該易滑剤(B)を0.2~8質量%含むことを特徴とする。
 易滑剤(B)を上記特定の割合で含み、かつ、2次粒子(C)が少なくとも易滑剤(B)を含有し、当該2次粒子(C)の平均2次粒径が500nm~2000nmであることによって、前記ハードコート層用硬化性樹脂組成物が硬化する際に、表面に耐ブロッキング性を発現する微細な小突起形状を形成する。尚、1次粒子もブロッキング性にわずかであるが寄与する(耐ブロッキング性を向上させる)と推測される。また、基本的には表面平滑なクリアなHCフィルムであり、平滑面に目には見えないnmオーダーの小突起形状が6000nm以下の間隔で存在するものである。
 前記2次粒子(C)は、少なくとも(A)反応性シリカ、(B)易滑剤、及び(D)多官能モノマーを凝集させて形成した3種凝集2次粒子を含むことが、更にHCフィルムのヘイズの上昇や全光線透過率の低下が抑えられ、かつ、高硬度のハードコートフィルムが得られることから好ましい。
 本発明に係るハードコート層用硬化性樹脂組成物においては、前記溶剤(E)が、酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノンからなる群より選択される少なくとも1種であることが、硬化時にHC層表面において微細な小突起形状が形成されやすいため好ましい。これらの溶剤は、基材に浸透しやすいため、基材上のインキの固形分濃度が上昇し、微細な小突起形状が形成されやすい。これにより、添加する微粒子量は少なくてすむので、ヘイズの上昇や透過率の減少もないHC層が得られる。
 本発明に係るハードコートフィルムの製造方法は、
 (i)トリアセチルセルロース基材上に、上記ハードコート層用硬化性樹脂組成物を塗布し、塗膜とする工程、及び
 (ii)当該塗膜に光照射を行い硬化させてハードコート層を形成する工程、を含むことを特徴とする。
 前記ハードコート層用硬化性樹脂組成物は、以下の工程により調製することが、適切な2次粒径を有する2次粒子形成の観点から好ましい。
 (イ)反応性シリカ(A)、多官能モノマー(D)、溶剤(E)を少なくとも含む組成物を混合し、インキ1を調製する工程、
 (ロ)易滑剤(B)、溶剤(E)を少なくとも含む組成物を混合し、インキ2を調製する工程、及び
 (ハ)前記インキ1を撹拌しながら、前記インキ2を少しずつ混合して2次粒子(C)を形成し、前記ハードコート層用硬化性樹脂組成物を調製する工程。
 本発明に係るハードコートフィルムの製造方法において、前記ハードコート層用硬化性樹脂組成物を調製完了後24時間以内に前記基材に塗布することが、好ましい2次平均粒径範囲を保持できる観点から、好ましい。
 本発明に係るハードコートフィルムは、上記製造方法により得られることを特徴とする。
 本発明に係る偏光板は、上記ハードコートフィルムのトリアセチルセルロース基材側に偏光子が設けられていることを特徴とする。
 本発明に係るディスプレイパネルは、上記ハードコートフィルムのトリアセチルセルロース基材側にディスプレイが配置されていることを特徴とする。
 本発明に係るハードコートフィルムは、硬度が高く、十分な耐ブロッキング性を有し、かつ、ヘイズが低く、全光線透過率が高い。
 本発明に係るハードコート層用硬化性樹脂組成物は、上記特性を有するハードコート層を形成するのに好適に用いることができる。
 本発明に係るハードコートフィルムの製造方法によれば、上記ハードコートフィルムを容易に製造することができる。
図1は、本発明に係るハードコートフィルムの製造方法の一例を示した模式図である。 図2は、本発明に係るハードコートフィルムの層構成の一例を示した模式図である。 図3は、本発明に係るハードコートフィルムの層構成の他の一例を示した模式図である。 図4は、本発明に係る偏光板の層構成の一例を示した模式図である。 図5は、実施例1のハードコート層用硬化性樹脂組成物の粒径値と散乱強度分布の関係を示したグラフである。 図6は、比較例2のハードコート層用硬化性樹脂組成物の粒径値と散乱強度分布の関係を示したグラフである。 図7は、比較例7のハードコート層用硬化性樹脂組成物の粒径値と散乱強度分布の関係を示したグラフである。 図8は、本発明に係るハードコート層の断面の5万倍のSTEM(Scanning Transmission Electron Microscope)写真である。写真中の包埋層とは、ミクロトームでハードコートフィルム断面を切削するとき、フィルムを安定に保持するために樹脂包埋した時の包埋樹脂層である。
 以下、本発明に係るハードコート層用硬化性樹脂組成物、ハードコートフィルム、ハードコートフィルムの製造方法、偏光板及びディスプレイパネルについて説明する。
 本発明において、(メタ)アクリレートは、アクリレート及び/又はメタクリレートを表す。
 また、本発明の光には、可視及び非可視領域の波長の電磁波だけでなく、電子線のような粒子線及び電磁波と粒子線を総称する放射線又は電離放射線が含まれる。
 本発明において、「ハードコート層」とは、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(4.9N荷重)で、「H」以上の硬度を示すものをいう。
 高硬度とは「3H」以上のものをいう。
 また、固形分とは、溶剤を除く成分をいう。
 なお、フィルムとシートのJIS-K6900での定義では、シートとは薄く一般にその厚さが長さと幅のわりには小さい平らな製品をいい、フィルムとは長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通例、ロールの形で供給されるものをいう。従って、シートの中でも厚さの特に薄いものがフィルムであるといえるが、シートとフィルムの境界は定かではなく、明確に区別しにくいので、本発明では、厚みの厚いもの、および薄いものの両方の意味を含めて、「フィルム」と定義する。
 本発明において樹脂とは、モノマーやオリゴマーの他、ポリマーを含む概念であり、硬化後にHC層やその他の機能層のマトリクスとなる成分を意味する。
 本発明において、分子量とは、分子量分布を有する場合には、THF溶剤におけるゲル浸透クロマトグラフィー(GPC)により測定したポリスチレン換算値である重量平均分子量を意味し、分子量分布を有しない場合には、化合物そのものの分子量を意味する。
 本発明において、微粒子の平均粒径とは、組成物における微粒子の場合は、大塚電子(株)製の商品名FPAR-1000を用いて動的光散乱法により測定したモード径(散乱強度分布が極大となる粒径値)を意味し、硬化膜中の微粒子の場合は、硬化膜の断面の走査透過電子顕微鏡(STEM)写真により観察される対象とするシリカ微粒子又は易滑剤の10個の平均値を意味する。
 本発明の反応性シリカ(A)及び易滑剤(B)の1次平均粒子径は、インキ1およびインキ2を希釈することなく上記装置で測定したモード径(nm)で、2次粒子(C)の2次平均粒子径は、ハードコート層用硬化性樹脂組成物(溶剤+樹脂+反応性シリカ+易滑剤)を希釈することなく上記装置で測定したモード径(nm、μm)である。
 1次粒子とは、単位粒子を上記測定方法で測定した1次平均粒子径を有する粒子である。
 2次粒子とは、単純に1次粒子同士が密着及び凝集し密度が高くなっている粒子だけでなく、粒子と粒子の間に樹脂が存在し、その状態で凝集している粒子も意味する。本発明では後者が、より耐スクラッチ性(耐擦傷性)に効果を有すると推測される。上記測定方法にてハードコート層用硬化性樹脂組成物を希釈することなく測定して得られた2次平均粒径を有する、凝集した粒子を2次粒子とする。
 (ハードコート層用硬化性樹脂組成物)
 本発明に係るハードコート層用硬化性樹脂組成物(以下、単に「HC層用組成物」ということがある)は、
 (A)粒子表面に光硬化性基を有し、平均1次粒径が10~100nmの反応性シリカ微粒子、
 (B)平均1次粒径が100~300nmの易滑剤、
 (C)少なくとも当該易滑剤(B)を含有し、平均2次粒径が500nm~2000nmの2次粒子、
 (D)1分子中に前記反応性シリカ微粒子(A)の光硬化性基との架橋反応性を有する反応性官能基を2個以上有し、分子量が1000以下である多官能モノマー及び
 (E)溶剤、を含み、
 平均2次粒径が2000nmよりも大きい2次粒子を含まず、かつ、
 当該反応性シリカ微粒子(A)及び多官能モノマー(D)の合計質量に対して当該易滑剤(B)を0.2~8質量%含むことを特徴とする。
 ハードコート性フィルムの硬度を向上させるには、樹脂そのものの硬度を上げる材料を使用するとカール(フィルムが反る)が悪化する傾向があるため、樹脂以外の微粒子を入れることが知られている。この微粒子として反応性シリカ(A)を用いる。シリカは、ヘイズや透過率を良好に保持でき、また、反応性基を有しているため、ハードコート層のマトリックス樹脂と反応架橋することで、更に硬度を向上できる。
 易滑剤(B)を上記特定の割合で含み、かつ、2次粒子(C)を含有し、当該2次粒子(C)の平均2次粒径が500nm~2000nmであることによって、前記ハードコート層用硬化性樹脂組成物が硬化する際に、表面に耐ブロッキング性を発現する微細な小突起形状を形成する。
 そして、HC層用硬化性樹脂組成物は、平均2次粒径が2000nmよりも大きい2次粒子を含まないため、当該HC層用硬化性樹脂組成物を硬化させたHC層のヘイズが低く、全光線透過率も高い。
 以下、本発明に係るハードコート層用硬化性樹脂組成物の必須成分である、(A)反応性シリカ微粒子、(B)易滑剤、(C)2次粒子、(D)多官能モノマー及び(E)溶剤並びに必要に応じて適宜含まれていても良いその他の成分を順に説明する。
 (A:反応性シリカ微粒子)
 反応性シリカ微粒子(A)は、HC層に硬度を付与する成分であり、HC層用硬化性樹脂組成物が紫外線等の光によって硬化する際に、その粒子表面の光硬化性基が後述する多官能モノマー(D)の反応性官能基と重合乃至架橋反応し得る。
 反応性シリカ微粒子(A)の有する光硬化性基は、光によって多官能モノマーの反応性官能基と反応し得る基であれば良い。光硬化性基は、重合性不飽和基であることが好ましく、より好ましくは電離放射線硬化性不飽和基である。その具体例としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基等のエチレン性不飽和結合及びエポキシ基等が挙げられる。光硬化性基は、メタクリロイル基又はメタクリロイルオキシ基が好ましい。
 反応性シリカ微粒子(A)としては、従来公知のものを用いて良く、例えば、特開2008-165040号公報記載の反応性シリカ微粒子を用いることができる。具体的には、例えば、日産化学工業(株)製のMIBK-SD(1次平均粒径12nm)、MIBK-SDMS(1次平均粒径20nm)、MIBK-SDUP(1次平均粒径9-15nm、鎖状)、日揮触媒化成(株)製のELCOM DP1116SIV(1次平均粒径12nm)、ELCOM DP1129SIV(1次平均粒径7nm)、ELCOM DP1061SIV(1次平均粒径12nm)、ELCOM DP1050SIV(1次平均粒径12nm、フッ素コート)、ELCOM DP1037SIV(1次平均粒径12nm)、ELCOM DP1026SIV(1次平均粒径12nm、アルミナコート)、荒川化学工業(株)製のビームセットLB1(1次平均粒径20nm)、ビームセット904(1次平均粒径20nm)、ビームセット907(1次平均粒径20nm)、商品名MIBK-SDL、日産化学工業(株)製、平均1次粒径44nm等が挙げられる。これらの中でも、好ましい光硬化性基を有している日産化学工業(株)製のMIBK-SD(1次平均粒径12nm)やMIBK-SDL(平均1次粒径44nm)、日揮触媒化成(株)製のELCOM DP1129SIV(1次平均粒径7nm)、ELCOM DP1050SIV(1次平均粒径12nm、フッ素コート)、ELCOM DP1026SIV(1次平均粒径12nm、アルミナコート)、ELCOM DP1116SIV(1次平均粒径10nm)、ELCOM DP-1119SIV平均1次粒径が100nmが好適に用いられる。
 シリカ微粒子の形状は、例えば、真球、略球状、楕円形状又は不定形等が挙げられる。
 反応性シリカ微粒子(A)の平均1次粒径は、10~100nmである。10nm未満ではHC層に十分な硬度を付与できないおそれがあり、100nmを超えるとHC層のヘイズが上昇し、透明性が低下する。
 反応性シリカ微粒子(A)は、平均1次粒径が10~100nmであれば、単一の平均1次粒径のものを単独で用いても良いし、異なる平均1次粒径のものを2種以上を組み合わせて用いても良い。また、反応性シリカ微粒子(A)の光硬化性基、形状等は同じであっても良いし、異なっていても良い。
 反応性シリカ微粒子(A)の含有割合は、後述する多官能モノマー(D)との合計質量に対して、30~70質量%であることが好ましく、40~60質量%がさらに好ましい。反応性シリカ微粒子(A)の含有割合が少ない場合は高い硬度のハードコートフィルムが得られず、多い場合はハードコートフィルムがもろくなる。
 また、反応性シリカ(A)は後述するように、2次粒子(C)に含まれて、易滑剤(B)よりも粒径が大きくなり、高い耐ブロッキング性を発現する3種凝集2次粒子の形成に寄与する。
 (B:易滑剤)
 易滑剤(B)は、耐ブロッキング性を発現するためのHC層表面の微細な凹凸形状の形成に寄与する平均1次粒径100~300nmの粒子である。
 また、易滑剤(B)は後述するように、2次粒子(C)に含まれて、当該易滑剤(B)よりも粒径が大きくなり、高い耐ブロッキング性を発現する3種凝集2次粒子の形成に寄与する。
 易滑剤(B)の平均1次粒径が、100nm未満では、易滑剤(B)が反応性シリカ(A)の粒子群内に埋没し、凝集しにくいため、十分な耐ブロッキング性が発現せず、300nmより大きくなるとHC層の透明性が低下し、ヘイズが上昇する。
 易滑剤(B)としては、例えば、特許文献1に記載の平均1次粒径が300nm以下の有機シリコーン微粒子や、特許文献2に記載の平均1次粒径が100~300nmの親水性微粒子(シリカ微粒子)を用いることができる。有機シリコーン微粒子とは、シロキサン結合を骨格とし有機基を有する高分子化合物(ポリマー微粒子)などを表す。有機基としては、異種原子を含む又は含まない炭化水素基のほかポリエーテル基、ポリエステル基、アクリル基、ウレタン基、及びエポキシ基等を例示できる。有機シリコーン微粒子の形状は、略球状、例えば真球状、回転楕円体状等であってもよく、真球状であることがより好ましい。親水性微粒子(シリカ微粒子)の形状は、特に限定はないが、楕円形などの略球状や新球状であると、反射光などが拡散するきっかけとなる角ばった部分がないのでヘイズになりにくく、好ましい。
 易滑剤(B)は親水性であるものか、表面処理剤で親水性が付与されているものを用いることが好ましい。親水性の易滑剤(B)が、疎水性であるハードコート樹脂中に存在すると、水分が存在する空気界面、つまりハードコート層表面に浮きやすくなり、また、2次粒子を効率的に作ることができる。しかし、親水性の易滑剤(B)が偏在すると、疎水性のハードコート樹脂や疎水処理された反応性シリカと共に後述する3種凝集2次粒子は形成されず、易滑剤(B)単独の2次粒子ばかりが形成され、好ましい耐ブロッキング性は得られない。そこで、親水性の易滑剤(B)を、疎水性のハードコート樹脂中に分散させ、かつ、3種凝集2次粒子をつくるために、分散剤を添加する。
 好ましい分散剤としては、溶剤系、電離放射線硬化型バインダーに用いられるものであれば特に限定されない。
 例えば、アニオン性分散剤(アニオン性界面活性剤)としては、N-アシル-N-アルキルタウリン塩、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アニオン性スルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等を挙げることができる。これらアニオン性分散剤は、1種単独であるいは2種以上を組み合わせて用いることができる。
 カチオン性分散剤(カチオン性界面活性剤)には、四級アンモニウム塩、アルコキシル化ポリアミン、脂肪族アミンポリグリコールエーテル、脂肪族アミン、脂肪族アミンと脂肪族アルコールから誘導されるジアミンおよびポリアミン、脂肪酸から誘導されるイミダゾリンおよびこれらのカチオン性物質の塩が含まれる。これらカチオン性分散剤は、1種単独であるいは2種以上を組み合わせて用いることができる。 
 両イオン性分散剤は、前記アニオン性分散剤が分子内に有するアニオン基部分とカチオン性分散剤が分子内に有するカチオン基部分を共に分子内に有する分散剤である。
 ノニオン性分散剤(ノニオン性界面活性剤)としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エステルなどを挙げることができる。これらの中でも、ポリオキシエチレンアルキルアリールエーテルが好ましい。これらノニオン性分散剤は、1種単独であるいは2種以上を組み合わせて用いることができる。 
 分散剤は、バインダーとしては働かないので添加しすぎると硬化を妨害してしまうことがある。また、あまり高分子であるとバインダーとの相溶性が得にくい。よって好ましい分散剤としては、数平均分子量が2,000から20,000の化合物であり、少量の添加で効果のあるものが好適に用いられる。その具体例としては、アニオン性分散剤のビックケミー・ジャパン株式会社製DISPERBYK-163、DISPERBYK-170、DISPERBYK-183などが挙げられる。
 上記親水性処理された有機シリコーン微粒子の市販品としては、例えば、竹本油脂(株)製の商品名パイオニンシリーズ等が挙げられる。
 上記親水性微粒子の市販品としては、例えば、CIKナノテック(株)製の商品名SIRMEK-E03、日産化学工業(株)製の商品名IPA-ST-ZL等が挙げられる。
 易滑剤(B)は、平均1次粒径が100~300nmであれば、単一の平均1次粒径のものを単独で用いても良いし、異なる平均1次粒径のものを2種以上を組み合わせて用いても良い。また、易滑剤(B)を2種以上組み合わせて用いる場合、その材質、形状等は同じであっても良いし、異なっていても良い。
 易滑剤(B)の含有割合は、上記反応性シリカ微粒子(A)及び多官能モノマー(D)の合計質量に対して、0.2~8質量%であるが、1~5質量%であることがより好ましい。
 (C:2次粒子)
 2次粒子(C)は、HC層用硬化性樹脂組成物が硬化する際に、HC層表面における微細な小突起形状の形成、すなわちHC層への耐ブロッキング性の付与に寄与する成分である。
 2次粒子(C)は、少なくとも上記易滑剤(B)を含有し、平均2次粒径が500nm~2000nmである。2次粒子(C)の平均2次粒径が、500nm未満ではHC層に十分な耐ブロッキング性を付与することができないおそれがあり、2000nmを超えると凝集が不安定になり、HC層の透明性が損なわれる。
 2次粒子(C)は、当該易滑剤(B)同士が凝集した2次粒子であっても良いし、当該易滑剤(B)と上記反応性シリカ(A)と多官能モノマー(D)が凝集した3種凝集2次粒子であっても良い。そのため、2次粒子の粒子径は単一の粒径である場合もあれば、異なる複数の粒径である場合もある。
 2次粒子を形成しなければならない理由は、例えば、反応性シリカ(A)のみでは、分散性が良いため製膜時に反応性シリカ(A)が均一に分散し、易滑性が発現されるほどの小突起が形成されないが、易滑剤(B)を入れて2次粒子を作ることで、易滑性が発現可能な小突起をHC層の表面に作り出せるようになるからである。
 反応性シリカ(A)と易滑剤(B)が存在する場合、反応性シリカ(A)と易滑剤(B)からなる2次粒子は当然出来上がることが推測され、実際にそれらを混合するとそのような2次粒子が確認される。しかし、そのような2次粒子だけでは低へイズ、高透明でかつ耐ブロッキング性のあるHCフィルムは得られない。反応性シリカ(A)と易滑剤(B)と多官能モノマー(D)が凝集した3種凝集2次粒子(図8の写真のような粒子)が、適当な量でHC層の表面に存在することが重要である。
 また、2次粒子の平均2次粒径が重要である。反応性シリカ(A)と易滑剤(B)がそれぞれの平均1次粒径の範囲内でないと、できあがる3種凝集2次粒子が最適な粒径とならないだけではなく、最適な形状とならない。例えば、反応性シリカ(A)及び/又は易滑剤(B)の平均1次粒径が過剰に大きい場合は、3種凝集2次粒子が一見好ましい大きさであっても、凝集体の形状が角度成分が多い状態になりやすく、ヘイズの上昇、及び透過率低下の原因になる。尚、ここで角度成分とは、2個の大粒子が隣り合わせで密着して凝集体を形成した場合に、凝集体の表面に出来上がる凸凹のうち、凸となる鋭角部分などを意味する。
 小さな粒子が凝集体をつくると、空間を埋めるように凝集体の全体に小粒子が埋まり、その結果、凝集体自身が丸い形状になるので角度成分は少ないが、大きな粒子が前記小さな粒子による凝集体と同じ粒径の凝集体になると、空間を埋めるように凝集体の全体に大粒子は埋まらず、うまく丸い形状にまとまることができず、どこかしら粒子がはみ出したような形状(凝集体の表面が凸凹状態)になる。凝集体の輪郭がほぼ丸いと、光が拡散するきっかけは少ないが、凹凸形状であると、鋭角部が多いため、反射光や入射光が拡散する角度が大きくなり、ヘイズ上昇、透過率低下の原因となる。
 また、例えば、上記2次粒子や3種凝集2次粒子と同じ大きさかつ、バインダーと同じ屈折率の大粒子を入れても、本発明と同じ効果は得られず、耐ブロッキング性は得られるが、光学特性は悪化する。したがって、HC層の表面の小突起の形状が同じ高さであっても、小突起の形が急峻であるため、光拡散性が大きくなって白化してしまう。
 2次粒子の形成の際には、易滑剤(B)の粒径や添加量で平均2次粒径を制御する。易滑剤(B)の量を多くするほど2次粒子の粒径が大きくなる。
 粒子が凝集するメカニズムは、以下のとおりに推測される。一般的に、親水処理をした粒子である易滑剤(B)は、疎水性のバインダーマトリックス中では凝集しやすく、かつ、空気中の水分が存在するHC層の表面方向に浮きやすい。親水処理をした易滑剤(B)は、分散剤によって疎水性樹脂(HCマトリックス成分)にも適切に分散できるようになる。反応性シリカ(A)は、反応性基が疎水性であるため、HCマトリックス成分と混合しやすく、結合しやすい。また、シリカ自身は親水性であるため、親水処理された易滑剤の周りにも集合しやすい。この時、反応性シリカは既にマトリックス樹脂と一緒になった状態で、易滑剤と凝集することになる。更に、易滑剤の周りに存在する分散剤が疎水性であることにより、層内に多量に存在している反応性シリカ(A)や疎水性バインダー成分ともうまくなじむので、反応性シリカ、易滑剤、マトリックス樹脂とが凝集すると同時に、層内でゲル化することなく、ハードコート表面付近で分散することになる。これらの反応が総合した結果、本発明において耐ブロッキング性を効果的に発揮することができる3種凝集2次粒子が形成されると考えられる。
 HC層用硬化性樹脂組成物における2次粒子(C)の形成は、例えば、大塚電子(株)製の商品名FPAR-1000を用いて、動的光散乱法により、HC層用硬化性樹脂組成物(後述するインキ1及びインキ2を含む)中の粒子の粒径分布を測定することにより確認することができる。すなわち、HC層用硬化性樹脂組成物に含まれる微粒子は、平均1次粒径が10~100nmの反応性シリカ微粒子(A)と平均1次粒径が100~300nmの易滑剤(B)であることから、上記動的光散乱法により得られる粒径値と散乱強度分布のグラフにおいて平均粒径が300nmより大きい微粒子が観測されることにより、2次粒子(C)の形成が確認できる。
 2次粒子(C)は、好ましくは反応性シリカ(A)、易滑剤(B)、多官能モノマー(D)を含有する凝集体である、すなわち、粒子と粒子の間にバインダー樹脂が存在しているような凝集粒子であるため、凝集体自身に柔軟性がある。この凝集体によって形成される小突起の形状は、当該2次粒子(C)と同じ粒径の易滑剤(B)の1次粒子に比べて、HC層表面が滑らかになり、突出部起因の傷がつきにくく、硬度が良好に保たれ、かつ、形状が滑らかであるのでヘイズの原因にもなりにくく、HC層のヘイズの上昇を抑え、全光線透過率を高めることができる。また、粒径が100nmを超える無機物質のみからなる粒子を含むとヘイズの原因になりやすいが、2次粒子が樹脂を含んだ凝集体であるためヘイズになりにくいという利点もある。
 (D:多官能モノマー)
 多官能モノマーは、反応性官能基を2個以上有し、HC層用硬化性樹脂組成物の硬化時にその反応性官能基により上記反応性シリカ微粒子(A)の光硬化性基と重合乃至架橋反応し、網目構造を形成してHC層のマトリクスとなる成分である。
 多官能モノマー(D)の反応性官能基は、上記反応性シリカ微粒子(A)の光硬化性基と反応可能なものであれば良く、例えば、重合性不飽和基であることが好ましく、より好ましくは電離放射線硬化性不飽和基である。その具体例としては、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、ビニル基、アリル基等のエチレン性不飽和結合及びエポキシ基等が挙げられる。反応性官能基は、アクリロイル基又はアクリロイルオキシ基であることが好ましい。
 多官能モノマー(D)の反応性官能基の数は、2個以上であるが、架橋密度を高めてHC層の硬度を高める観点から、3~12個が好ましい。
 多官能モノマー(D)の分子量は1000以下であり、好ましくは、100~800である。分子量が1000以下であることで、HC層用硬化性樹脂組成物の硬化時に微細な凹凸形状を形成しやすい。又、基材がトリアセチルセルロースの場合、浸透性溶剤とともに、多官能モノマーも基材内部へ浸透し干渉縞防止効果が得られる。
 多官能モノマー(D)としては、上記反応性官能基や分子量の条件を満たすものであれば、従来公知のHC層の形成に用いられている多官能モノマーを用いても良く、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレートトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
 多官能モノマー(D)としては、ペンタエリスリトールトリアクリレート(PETA)及びジペンタエリスリトールテトラアクリレート(DPHA)が好ましい。
 多官能モノマー(D)の含有割合は、上記反応性シリカ微粒子(A)及び多官能モノマー(D)の合計質量に対して、30~70質量%であることが好ましい。
 多官能モノマー(D)は、上述したものを1種単独で用いても良いし、2種以上を組み合わせて用いても良い。
 また、より高硬度にするためには、カチオン重合性よりもラジカル重合性の化合物が理由は不明だが、架橋密度が高くなりやすく好ましい。
 (E:溶剤)
 溶剤は、HC層用硬化性樹脂組成物の粘度を調整し、HC層用硬化性樹脂組成物に塗工性を付与する成分である。
 溶剤としては、従来公知のHC層用硬化性樹脂組成物に用いられている溶剤を用いて良く、例えば、特許文献1に記載のメタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、N,N-ジメチルホルムアミド等の含窒素化合物、テトラヒドロフラン等のエーテル類、トリクロロエタン等のハロゲン化炭化水素及びジメチルスルホキシド等のその他の溶剤並びにこれらの混合物等が挙げられる。
 溶剤は、TAC基材に対する浸透性を有する浸透性溶剤であることが好ましく、酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノンからなる群より選択される少なくとも1種であることがより好ましい。
 浸透性溶剤を用いることで、TAC基材に本発明に係るHC層用硬化性樹脂組成物を用いてHC層を形成する場合に表面に耐ブロッキング性を発現するための微細な凹凸形状を形成しやすいからである。
 なお、本発明において、浸透とは、TAC基材を溶解、膨潤又は湿潤させる性質をいう。
 溶剤は、上述したものを1種単独で用いても良いし、2種以上を組み合わせて用いても良い。
 溶剤は、所望の塗工性等に応じて適宜用いれば良いが、HC層用硬化性樹脂組成物の固形分が20~60質量%になるように用いるのが好ましく、30~50質量%となるように用いることがより好ましい。
 (その他の成分)
 本発明に係るHC層用硬化性樹脂組成物には、上記必須成分の他、必要に応じて適宜、その他のバインダー成分、重合開始剤、レベリング剤又は帯電防止剤等のその他の成分が含まれていても良い。
 その他のバインダー成分は、上記多官能モノマー(D)と同様に、硬化してHC層のマトリクスとなる成分である。
 その他のバインダー成分としては、従来公知のHC層のバインダー成分を用いても良く、例えば、特許文献1に記載のスチレン、N-ビニルピロリドン等の単官能モノマー、ビスフェノール型エポキシ化合物、芳香族ビニルエーテル等のオリゴマー又はポリマー等のカチオン重合性官能基を有する化合物等が挙げられる。
 その他のバインダー成分を用いる場合、その他のバインダー成分と上記多官能モノマー(D)の合計質量に対して、その他のバインダー成分の含有割合が、10~60質量%とすることがHC層の十分な架橋密度を得る観点から好ましい。
 重合開始剤は、上述した多官能モノマー(D)やその他のバインダー成分の硬化反応を促進する成分である。
 重合開始剤としては、従来公知のHC層用硬化性樹脂組成物に用いられているものを用いて良く、例えば、特許文献1に記載のアセトフェノン類、ベンゾフェノン類、ベンゾイン類、チオキサントン類、プロピオフェノン類、ベンジル類、アシルホスフィンオキシド類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、テトラメチルチュウラムモノサルファイド、ベンゾインメチルエーテル、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン等が挙げられる。
 1-ヒドロキシ-シクロヘキシル-フェニル-ケトンは、例えば商品名イルガキュア184(チバ・スペシャルティー・ケミカルズ(株)製)として入手可能である。また、α-アミノアルキルフェノン類としては、例えば商品名イルガキュア907、369として入手可能である。
 カチオン重合性官能基を有する多官能モノマーやバインダーの場合は、光重合開始剤として、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタセロン化合物、ベンゾインスルホン酸エステル等を用いれば良い。
 重合開始剤は、上述したものを1種単独で用いても良いし、2種以上を組み合わせて用いても良い。
 重合開始剤を用いる場合、その含有量は、HC層用硬化性樹脂組成物の全固形分100質量部に対して、0.1~10質量部とすれば良い。
 レベリング剤は、HC層用硬化性樹脂組成物の塗工又は乾燥時に塗膜表面に対して塗工安定性、滑り性、防汚性又は耐擦傷性を付与する成分である。
 レベリング剤としては、従来公知のHC層に用いられているレベリング剤を用いれば良く、フッ素系又はシリコーン系のレベリング剤を用いることが好ましい。レベリング剤の具体例としては、例えば、特開2010-122325号公報に記載のDIC(株)製のメガファックシリーズ、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製のTSFシリーズ及び(株)ネオス製のフタージェントシリーズ等が挙げられる。
 レベリング剤を用いる場合、HC層用硬化性樹脂組成物の全固形分100質量部に対して、0.01~5質量部とすれば良い。
 帯電防止剤は、HC層に帯電防止性を付与する成分である。
 帯電防止剤は、従来公知の帯電防止層やHC層に用いられているものを用いて良く、例えば、特許文献1に記載の第4級アンモニウム塩等のカチオン性化合物、スルホン酸塩基、硫酸エステル塩基等のアニオン性化合物、アミノ酸系、アミノ硫酸エステル系等の両性化合物、アミノアルコール系、ポリエチレングリコール系等のノニオン性化合物、スズ及びチタンのアルコキシドのような有機金属化合物及びそれらのアセチルアセトナート塩のような金属キレート化合物並びに金属酸化物等の導電性微粒子が挙げられる。
 帯電防止剤を用いる場合、その含有量は、上記多官能モノマー(D)を含めたバインダー成分100質量部に対して、1~30質量部とすれば良い。
 (ハードコート層用硬化性樹脂組成物の調製)
 本発明に係るハードコート層用硬化性樹脂組成物は、以下の工程(イ)~(ハ)を含む調製法に従って、上記必須成分を混合し分散処理することにより調製される。
 (イ)反応性シリカ(A)、多官能モノマー(D)、溶剤(E)を少なくとも含む組成物を混合し、インキ1を調製する工程、
 (ロ)易滑剤(B)、溶剤(E)を少なくとも含む組成物を混合し、インキ2を調製する工程、及び
 (ハ)前記インキ1を撹拌しながら、前記インキ2を少しずつ混合して2次粒子(C)を形成し、前記ハードコート層用硬化性樹脂組成物を調製する工程。
 ここで、2次粒子(C)を形成するために、前記インキ1に前記インキ2を全て添加し終わったら、よく分散し、かつ確実に2次粒子を形成するために30分から1時間ペイントシェーカーやビーズミルなどの一般的な分散方法によって混合した。
 前記ハードコート層用硬化性樹脂組成物は、調製完了後24時間以内に前記基材に塗布することが好ましい。インキ1及び2は、一度調製すると、長期間の保存が可能であり、必要なときに必要な分だけ混ぜて使用することができるのに対して、インキ1と2を混合して得たハードコート層用硬化性樹脂組成物は、一度調製すると、本発明に必須の2次粒子(C)が形成され、24時間以内であれば好ましい2次平均粒径範囲を保持できるが、24時間を超えると凝集が進行し、2次平均粒径が大きくなりすぎ、ハードコート層用硬化性樹脂組成物中に2次粒子が沈降したり、ハードコート層用硬化性樹脂組成物の組成が変化してしまう恐れがある。このような24時間を超えて保存したハードコート層用硬化性樹脂組成物を用いてHC層を形成した場合は、ヘイズが上昇し、透過率が低下するだけではなく、ハードコート層の硬度も低下し、更に製造時に巨大粒子が析出してしまう。したがって、本発明のハードコート層用硬化性樹脂組成物は、調製完了後24時間以内に使い切るか、常にフレッシュな状態で供給されるような設備で用いられることが好ましい。
 混合分散には、ペイントシェーカー又はビーズミル等を用いることができる。
 (ハードコートフィルムの製造方法)
 本発明に係るハードコートフィルムの製造方法は、(i)トリアセチルセルロース基材上に、上記ハードコート層用硬化性樹脂組成物を塗布し、塗膜とする工程、(ii)当該塗膜に光照射を行い硬化させてハードコート層を形成する工程、を含むことを特徴とする。
 上記HC層用硬化性樹脂組成物に、易滑剤(B)を上記特定の割合で含み、かつ、易滑剤(B)を含有する平均2次粒径が500nm~2000nmの2次粒子(C)が含まれていることにより、HC層の表面に耐ブロッキング性を発現する微細な小突起形状が形成されやすい。
 (i)工程におけるHC層用硬化性樹脂組成物の塗布方法は、TAC基材表面にHC層用硬化性樹脂組成物を均一に塗布できる方法であれば特に限定されず、従来公知のHC層用硬化性樹脂組成物の塗布方法を用いることができる。例えば、特許文献1に記載のスライドコート法、バーコート法又はロールコーター法等を用いることができる。
 TAC基材上へのHC層用組成物の塗工量としては、得られるハードコートフィルムが要求される性能により異なるものであるが、乾燥後の塗工量が1~30g/m、特に5~25g/mであることが好ましい。
 本発明に係るHCフィルムの製造方法では、HC層用硬化性樹脂組成物を塗布して塗膜とした後、光照射等により硬化させる前に乾燥を行うことが好ましい。
 乾燥方法としては、例えば、減圧乾燥又は加熱乾燥、さらにはこれらの乾燥を組み合わせる方法等が挙げられる。例えば、溶剤としてケトン系溶剤を用いる場合は、通常室温~80℃、好ましくは40~60℃の温度で、20秒~3分、好ましくは30秒~1分程度の時間で乾燥工程が行われる。
 次に、(ii)工程では、塗膜に対し、HC層用硬化性樹脂組成物に含まれる光硬化性基及び反応性官能基に応じて、光照射、又は光照射に加えて加熱して塗膜を硬化させ、HC層用硬化性樹脂組成物に含まれる、前記反応性シリカ微粒子(A)の光硬化性基と前記多官能モノマー(D)の反応性官能基が架橋結合し、多官能モノマー(D)がマトリクスとなり、当該HC層用硬化性樹脂組成物の硬化物からなるハードコート層が形成される。
 光照射には、主に、紫外線、可視光、電子線又は電離放射線等が使用される。紫外線硬化の場合には、超高圧水銀灯、高圧水銀灯、低圧水銀灯、カーボンアーク、キセノンアーク又はメタルハライドランプ等の光線から発する紫外線等を使用する。エネルギー線源の照射量は、紫外線波長365nmでの積算露光量として、50~5000mJ/cmである。
 光照射に加えて加熱する場合は、通常40℃~120℃の温度にて処理する。また、室温(25℃)で24時間以上放置することにより反応を行っても良い。
 本発明に係るHCフィルムの製造方法では、HC層用硬化性樹脂組成物に含まれる溶剤(E)が浸透性溶剤であることが、HC層表面に微細な小突起形状を形成しやすく、耐ブロッキング性を高められるため好ましい。
 浸透性溶剤は、酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノンからなる群より選択される少なくとも1種であることがより好ましい。
 図1は、本発明に係るハードコートフィルムの製造方法のフローの一例を示した模式図である。
 トリアセチルセルロース基材10上に上記HC層用硬化性樹脂組成物を塗布し、塗膜とした後、光照射を行い、硬化させてハードコート層20を形成する。このとき、ハードコート層20表面に微細な小突起形状が形成される。
 なお、図1以下の模式図では、簡略化のため、HC層中のシリカ微粒子や易滑剤は示していない。
 本発明に係るHCフィルムの製造方法では、HC層のTAC基材とは反対側の面に、後述する低屈折率層や防汚層等のその他の層を設ける工程が含まれていても良い。これらのその他の層は、上記HC層の形成方法と同じく、組成物を準備し、塗布し、光照射や熱により硬化させて形成すれば良い。
 (ハードコートフィルム)
 本発明に係るHCフィルムは、上記製造方法により得られるものである。
 上記HC層用硬化性樹脂組成物を用いた製造方法により得られるHCフィルムは、HC層表面に微細な小突起形状を有し、耐ブロッキング性に優れながら、ヘイズが小さく、全光線透過率も高い。
 本発明に係るHCフィルムのヘイズは、1.2以下であることが好ましく、1.0以下であることがより好ましく、0.5%以下であることが更に好ましい。
 本発明に係るHCフィルムの全光線透過率は、90%以上であることが好ましく、92.0%以上であることがより好ましい。
 HC層表面の微細な小突起形状は、特許文献2と同様にHC層表面に3nmより大きく50nm以下の高さの凸部を有し、かつ、凸部同士の間隔が100~6000nmであることが、優れた耐ブロッキング性が得られる観点から好ましい。更に好ましくは100~5000nmである。6000nm以内の間隔にこのような微小な凸部が適度に存在することが重要である。
 図2は、本発明に係るハードコートフィルムの層構成の一例を示した模式図である。
 トリアセチルセルロース基材10の一面側にハードコート層20が設けられている。
 図3は、本発明に係るハードコートフィルムの層構成の他の一例を示した模式図である。
 トリアセチルセルロース基材10の一面側に、トリアセチルセルロース基材側からハードコート層20及び低屈折率層30が設けられている。
 なお、図2、図3及び後述する図4のHC層は、説明の簡略化のため、HC層表面の微細凹凸を省略して模式的に示している。
 以下、本発明に係るHCフィルムの必須構成要素であるTAC基材、HC層及び必要に応じて適宜設けることができる低屈折率層、高屈折率層、中屈折率層及び防汚層等のその他の層を説明する。
 (トリアセチルセルロース基材)
 本発明に用いられるトリアセチルセルロース基材は、光透過性の高いトリアセチルセルロースフィルムであり、ハードコートフィルムの光透過性基材として用い得る物性を満たすものであれば特に限定されることはなく、従来公知のハードコートフィルムや光学フィルムのTAC基材を適宜選択して用いることができる。
 可視光域380~780nmにおけるTAC基材の平均光透過率は80%以上が好ましく、より好ましくは90%以上である。なお、光透過率の測定は、紫外可視分光光度計(例えば、(株)島津製作所製 UV-3100PC)を用い、室温、大気中で測定した値を用いる。
 TAC基材にけん化処理やプライマー層を設ける等の表面処理が施されていても良い。また、帯電防止剤等の添加剤が含まれていても良い。
 TAC基材の厚さは特に限定されず、通常20~200μmであり、好ましくは40~70μmである。
 本発明に係るHCフィルムにおいては、製造方法において上述したように、溶剤(E)として浸透性溶剤を用いると、多官能モノマー(D)がTAC基材のHC層との界面からTAC基材の内部方向の界面近傍に浸透して硬化している。これにより、TAC基材とHC層との密着性が向上する効果も得られる。
 なお、界面近傍とは、TAC基材の厚み方向においてHC層側の界面からTAC基材の内部方向10μmまでの領域を意味する。
 (ハードコート層)
 本発明のHC層は、上記HC層用組成物の硬化物からなり、そのTAC基材とは反対側の表面に微細な小突起形状を有する。
 HC層の膜厚は、要求される性能に応じて適宜調整すれば良く、例えば、1~20μmとすることができる。HC層の膜厚は好ましくは、5~15μmである。
 (その他の層)
 本発明に係るハードコートフィルムにおいては、本発明の趣旨を逸脱しない範囲で、HC層のTAC基材とは反対側の面に低屈折率層、高屈折率層、中屈折率層及び防汚層等のその他の層が1層以上設けられていても良い。
 これらのその他の層を有する場合のHCフィルムの層構成としては、例えば、以下の(1)~(5)が挙げられる。
 (1)低屈折率層/HC層/TAC基材
 (2)防汚層/低屈折率層/HC層/TAC基材
 (3)低屈折率層/高屈折率層/HC層/TAC基材
 (4)低屈折率層/高屈折率層/中屈折率層/HC層/TAC基材
 (5)防汚層/低屈折率層/高屈折率層/中屈折率層/HC層/TAC基材
 以下、その他の層について説明する。
 (低屈折率層)
 低屈折率層は、HCフィルムの反射率を調整し、表面の視認性を高める働きを有する層である。
 低屈折率層は、シリカやフッ化マグネシウム等の屈折率の低い成分とバインダー成分を含む組成物又はフッ化ビニリデン共重合体等のフッ素含有樹脂を含む組成物の硬化物からなり、従来公知の低屈折率層とすることができる。
 低屈折率層を形成するための組成物には、低屈折率層の屈折率を低減させるために中空
粒子を含有させても良い。
 中空粒子は、外殻層を有し外殻層に囲まれた内部が多孔質組織又は空洞である粒子をいう。当該多孔質組織や空洞には空気(屈折率:1)が含まれており、屈折率1.20~1.45の中空粒子を低屈折率層に含有させることで低屈折率層の屈折率を低減することができる。
 中空粒子の平均粒径は1~100nmであることが好ましい。
 中空粒子は従来公知の低屈折率層に用いられているものを用いることができ、例えば、特開2008-165040号公報に記載の空隙を有する微粒子が挙げられる。
 (高屈折率層及び中屈折率層)
 高屈折率層及び中屈折率層は、HCフィルムの反射率を調整するために設けられる層である。
 高屈折率層を設ける場合は、図示しないが、通常、低屈折率層のTAC基材側に隣接して設ける。また、中屈折率層を設ける場合は、図示しないが、通常、TAC基材側から中屈折率層、高屈折率層及び低屈折率層の順に設ける。
 高屈折率層及び中屈折率層は、バインダー成分と屈折率調整用の粒子とを主に含有する組成物の硬化物からなる。バインダー成分としては、HC層用組成物で挙げた多官能モノマー(D)等の樹脂を用いることができる。
 屈折率調整用の粒子としては、例えば、粒子径が100nm以下の微粒子を挙げることができる。このような微粒子としては、酸化亜鉛(屈折率:1.90)、チタニア(屈折率:2.3~2.7)、セリア(屈折率:1.95)、スズドープ酸化インジウム(屈折率:1.95)、アンチモンドープ酸化スズ(屈折率:1.80)、イットリア(屈折率:1.87)、ジルコニア(屈折率:2.0)からなる群から選ばれた1種以上を挙げることができる。
 高屈折率層は具体的には、1.50~2.80の屈折率であることが好ましい。
 中屈折率層は高屈折率層用理も屈折率が低く、1.50~2.00の屈折率であることが好ましい。
 (防汚層)
 本発明の好ましい態様によれば、HCフィルム最表面の汚れ防止を目的として、HCフィルムのTAC基材とは反対側の最表面に防汚層を設けることができる。防汚層により、HCフィルムに対して優れた防汚性と耐擦傷性を付与することが可能となる。防汚層は、防汚剤とバインダー成分を含む防汚層用組成物の硬化物からなる。
 防汚層用組成物のバインダー成分は、従来公知のものを用いて良く、例えば、上記HC層用組成物で挙げた多官能モノマー(D)を用いることができる。
 防汚層用組成物に含まれる防汚剤は、公知のレベリング剤等の防汚剤から適宜選択して1種又は2種以上を用いることができ、上記HC層用組成物で挙げた防汚剤を用いることができる。
 防汚剤の含有量は、防汚層用組成物の全固形分100質量部に対して、0.01~0.5質量部とすれば良い。
 なお、上記その他の層を形成するための組成物の調製は、上記HC層用組成物の調製と同様に行うことができる。
 (偏光板)
 本発明に係る偏光板は、上記HCフィルムのトリアセチルセルロース基材側に偏光子が設けられていることを特徴とする。
 図4は、本発明に係る偏光板の層構成の一例を示す模式図である。図4に示す偏光板70は、HCフィルム1並びに保護フィルム40及び偏光層50が積層された偏光子60とを有しており、HCフィルム1のトリアセチルセルロース基材10側に偏光子60が設けられている。
 なお、HCフィルムのトリアセチルセルロース基材側に偏光子が配置されているとは、HCフィルムと偏光子とが別に形成されている場合だけでなく、HCフィルムを構成する部材が偏光子を構成する部材を兼ねている場合をも含むものである。
 また、本発明に係る偏光板をディスプレイパネルに用いる場合、通常、偏光子側にディスプレイが配置される。
 なお、HCフィルムについては、上述したHCフィルムを用いればよいので、ここでの説明は省略する。以下、本発明に係る偏光板における他の構成について説明する。
 (偏光子)
 本発明に用いられる偏光子60としては、所定の偏光特性を備えるものであれば特に限定されるものではなく、一般的に液晶表示装置に用いられる偏光子を用いることができる。
 偏光子60は、所定の偏光特性を長期間保持できる形態であれば特に限定されるものではなく、例えば、偏光層50のみから構成されていてもよく、保護フィルム40と偏光層50とが貼り合わされたものであってもよい。保護フィルム40と偏光層50とが貼り合わされている場合、偏光層50の片面のみに保護フィルム40が形成されていてもよく、偏光層50の両面に保護フィルム40が形成されていてもよい。
 偏光層としては、通常、ポリビニルアルコールからなるフィルムにヨウ素を含浸させ、これを一軸延伸することによってポリビニルアルコールとヨウ素との錯体を形成させたものが用いられる。
 また、保護フィルムとしては、上記偏光層を保護することができ、かつ、所望の光透過性を有するものであれば特に限定されるものではない。
 保護フィルムの光透過性としては、可視光領域における透過率が80%以上であることが好ましく、90%以上であることがより好ましい。
 なお、上記保護フィルムの透過率は、JIS K7361-1(プラスチック-透明材料の全光透過率の試験方法)により測定することができる。
 保護フィルムを構成する樹脂としては、例えば、セルロース誘導体、シクロオレフィン系樹脂、ポリメチルメタクリレート、ポリビニルアルコール、ポリイミド、ポリアリレート及びポリエチレンテレフタレート等を挙げることができる。中でも、セルロース誘導体又はシクロオレフィン系樹脂を用いることが好ましい。
 保護フィルムは、単一の層からなるものであっても良く、複数の層が積層されたものであっても良い。また、保護フィルムが複数の層が積層されたものである場合は、同一組成の複数の層が積層されても良く、また、異なる組成を有する複数の層が積層されても良い。
 また、保護フィルムの厚さは、本発明の偏光板の可撓性を所望の範囲内にすることができ、かつ、偏光層と貼り合わせることにより、偏光子の寸法変化を所定の範囲内にできる範囲であれば特に限定されるものではないが、5~200μmであることが好ましく、特に15~150μmであることが好ましく、さらに30~100μm、さらに65μm以下であることが好ましい。上記厚さが5μmよりも薄いと、本発明の偏光板の寸法変化が大きくなってしまうおそれがある。また、上記厚みが200μmよりも厚いと、例えば、本発明の偏光板を裁断加工する際に、加工屑が増加したり、裁断刃の磨耗が早くなってしまうおそれがある。
 保護フィルムは、位相差性を有するものであってもよい。位相差性を有する保護フィルムを用いることにより、本発明の偏光板をディスプレイパネルの視野角補償機能を有するものにできるという利点がある。
 保護フィルムが位相差性を有する態様としては、所望の位相差性を発現できる態様であれば特に限定されるものではない。このような態様としては、例えば、保護フィルムが単一の層からなる構成を有し、位相差性を発現する光学特性発現剤を含有することにより位相差性を有する態様と、上述した樹脂からなる保護フィルム上に、屈折率異方性を有する化合物を含有する位相差層が積層された構成を有することにより、位相差性を有する態様とを挙げることができる。本発明においては、これらのいずれの態様であっても好適に用いることができる。
 (ディスプレイパネル)
 本発明に係るディスプレイパネルは、上記HCフィルムのトリアセチルセルロース基材側にディスプレイが配置されていることを特徴とする。
 ディスプレイとしては、LCD、PDP、ELD(有機EL、無機EL)、CRTタッチパネル、電子ペーパー、タブレットPC等が挙げられる。
 上記ディスプレイの代表的な例であるLCDは、透過性表示体と、それを背面から照射する光源装置とを備えてなるものである。上記ディスプレイがLCDの場合、この透過性表示体の表面に、本発明のHCフィルムや当該HCフィルムを備える上記偏光板が配置されてなるものである。
 上記ディスプレイの他の一例であるPDPは、表面ガラス基板と当該表面ガラス基板に対向して間に放電ガスが封入されて配置された背面ガラス基板とを備えてなるものである。上記ディスプレイがPDPの場合、表面ガラス基板の表面又はその前面板(ガラス基板又はフィルム基板)に上記HCフィルムを備えるものでもある。
 上記ディスプレイは、電圧をかけると発光する硫化亜鉛、ジアミン類物質等の発光体をガラス基板に蒸着し、基板にかける電圧を制御して表示を行うELD装置又は電気信号を光に変換し、人間の目に見える像を発生させるCRTなどのディスプレイであっても良い。この場合、ELD装置又はCRTの最表面又はその前面板の表面に上記HCフィルムを備えるものである。
 以下、実施例を挙げて、本発明をさらに具体的に説明する。これらの記載により本発明を制限するものではない。
 (実施例1)
(1)ハードコート層用硬化性樹脂組成物の調製
 まず、以下の(イ)工程で各成分を混合してインキ1を調製し、(ロ)工程で各成分を混合してインキ2を調製した。
 次いで(ハ)工程として、インキ1を攪拌棒で攪拌しながら、インキ2を少しずつ添加し全て添加し終わったら、ペイントシェーカーで更に30分混合分散して2次粒子(C)を形成し、最終的に固形分45質量%に調整したハードコート層用硬化性樹脂組成物を調製した。尚、本発明の2次粒子径は、この(ハ)工程を経たインキをそのまま用いて測定している。
(イ)工程
・反応性シリカ微粒子(A)(商品名MIBK-SDL、日産化学工業(株)製、平均1次粒径44nm、固形分30%液(MIBK分散液)、光硬化性基はメタクリロイル基):42.3質量部(固形分量換算値)
・多官能モノマー(D):PETA(反応性官能基はアクリロイルオキシ基、3官能):51.7質量部
・レベリング剤:商品名MCF350(DIC(株)製):0.3質量部
・1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(チバ・スペシャルティー・ケミカルズ(株)製の商品名イルガキュア184):3.8質量部
・溶剤(E):メチルエチルケトン
(ロ)工程
・易滑剤(B)(商品名SIRMEK-E03、CIKナノテック(株)製、平均1次粒径:147nm、材質SiO):1.9質量部
・溶剤(E):メチルエチルケトン
(2)ハードコートフィルムの作製
 TAC基材として厚さ40μmのセルローストリアセテートフィルム(コニカミノルタオプト(株)製の商品名KC4UYW)を用い、当該TAC基材上に、(1)で調製されたハードコート層用硬化性樹脂組成物を調製後1時間以内にコート法(ミヤバー#14)により塗布した。70℃にて1分間乾燥し、窒素パージ後、紫外線240mJ/cmを照射して、乾燥膜厚10μmの実施例1のハードコートフィルムを作製した。
 (実施例2)
 実施例1において、反応性シリカ微粒子(A)と多官能モノマー(D)の合計質量に対する易滑剤(B)の含有割合を0.2質量%に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (実施例3)
 実施例1において、反応性シリカ微粒子(A)と多官能モノマー(D)の合計質量に対する易滑剤(B)の含有割合を8.0質量%に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (実施例4)
 実施例1において、易滑剤(B)を平均1次粒径が100nmのもの(日産化学工業(株)製の商品名IPA-ST-ZL)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (実施例5)
 実施例1において、易滑剤(B)を日本ペイント(株)製の商品名MG-164(平均1次粒径300nm、材質スチレン・アクリル)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (実施例6)
 実施例1において、易滑剤(B)を竹本油脂(株)製の商品名TDNP-026(平均1次粒径240nm、材質シリコーン)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (実施例7)
 実施例1において、反応性シリカ微粒子(A)を平均1次粒径が10nmのもの(日揮触媒化成(株)製の商品名ELCOM DP-1116SIV)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (実施例8)
 実施例1において、反応性シリカ微粒子(A)を平均1次粒径が100nmのもの(日揮触媒化成(株)製の商品名ELCOM DP-1119SIV)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (実施例9)
 実施例1において、反応性シリカ微粒子(A)を平均1次粒径が100nmのもの(日揮触媒化成(株)製の商品名ELCOM DP-1119SIV)に代え、また、反応性シリカ微粒子(A)と多官能モノマー(D)の合計質量に対する易滑剤(B)の含有割合を3.0質量%に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例1)
 実施例1において、反応性シリカ微粒子(A)と多官能モノマー(D)の合計質量に対する易滑剤(B)の含有割合を0.1質量%に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例2)
 実施例1において、反応性シリカ微粒子(A)と多官能モノマー(D)の合計質量に対する易滑剤(B)の含有割合を10.0質量%に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例3)
 実施例1において、易滑剤(B)を平均1次粒径が15nmのもの(日産化学工業(株)製の商品名IPA-ST)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例4)
 実施例1において、易滑剤(B)を平均1次粒径が50nmのもの(日産化学工業(株)製の商品名IPA-ST)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例5)
 実施例1において、易滑剤(B)を竹本油脂(株)製の商品名TDNP-027(平均1次粒径360nm;材質:シリコーン)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例6)
 実施例1において、易滑剤(B)を綜研化学(株)製の商品名MX-150(平均1次粒径1500nm;材質:アクリル)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例7)
 実施例1において、2次粒子(C)の平均2次粒径を285nmに代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例8)
 実施例1において、反応性シリカ微粒子(A)を平均1次粒径が120nmのもの(日揮触媒化成(株)製の商品名ELCOM DP-1120SIV)に代えた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例9)
 実施例1において、多官能モノマー(D)に代えて官能基(アクリロイルオキシ基)数が1個のモノマー(大阪有機化学工業(株)製の商品名ビスコート#158)を用いた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例10)
 実施例1において、多官能モノマー(D)に代えて官能基(アクリロイルオキシ基)数が6個、分子量が1500のもの(日本化薬(株)製の商品名UX-5000)を用いた以外は実施例1と同様にHC層用組成物を調製し、調製後1時間以内に塗布し、HCフィルムを作製した。
 (比較例11)
 実施例1において、TAC基材をPET基材(厚さ125μm、東洋紡績(株)製の商品名A4300)に代えた以外は実施例1と同様にして、HCフィルムを作製した。
 (比較例12)
 実施例1において、反応性シリカ(A)及び易滑剤(B)を加えなかった以外は実施例1と同様にして、HCフィルムを作製した。
 (比較例13)
 実施例1において、反応性シリカ(A)の含有割合を20質量%に代えた以外は実施例1と同様にして、HCフィルムを作製した。
 (比較例14)
 実施例1において、反応性シリカ(A)の含有割合を80質量%に代えた以外は実施例1と同様にして、HCフィルムを作製した。
 (比較例15)
 実施例1において、易滑剤(B)の含有割合を0.1質量%に代えた以外は実施例1と同様にして、HCフィルムを作製した。
 (比較例16)
 実施例1において、易滑剤(B)の含有割合を9.0質量%に代えた以外は実施例1と同様にして、HCフィルムを作製した。
 上記各実施例1~9及び比較例1~16のHC層用組成物の組成、2次粒子(C)の平均2次粒径及び基材をまとめたものを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図5~7に、実施例1、比較例2及び比較例7のHC層用組成物を大塚電子(株)製の商品名FPAR-1000を用いて動的光散乱法により測定し、それにより得られた粒径値と散乱強度分布の関係を示したグラフを示す。
 実施例1のHC層用組成物に含まれている反応性シリカ微粒子(A)と易滑剤(B)の平均1次粒径が、それぞれ、44nm、147nmであること及び図5より、実施例1のHC層用組成物に含まれる2次粒子(C)の平均2次粒径は1000nmであることが分かる。本発明においては、2種類の微粒子が組成物中に含まれるため、図5のように2つの粒度分布のピークが得られる場合がある。この場合、本願の2次粒子(C)としてみている粒径は、大きい方の粒径である。例えば、比較例3や比較例4の2次粒子径は100nm未満であり、これであると耐ブロッキング性は得られなかった。図5の小さい粒径は100nm程度であり、このレベルの2次粒子径であると効果は得られないことがわかっているからである。
 同様に、比較例2及び7のHC層用組成物に含まれる2次粒子(C)の平均2次粒径は、それぞれ、図6、7より、534nm、285nmである。
 また、図示しないが、実施例1のHCフィルムの断面のHC層とTAC基材の境界付近のTEM写真より、TAC基材のHC層側の界面から厚さ100nm程度の領域にHC層用組成物に含まれる多官能モノマー(D)であるPETAが浸透して硬化している領域が存在することが観察された。
 (評価)
 上記各実施例1~9及び比較例1~16で得られたハードコートフィルムに対して、以下のように鉛筆硬度、ヘイズ、貼り付き防止性(耐ブロッキング性)を評価した。その結果を表2に記載する。
 (1)鉛筆硬度
 鉛筆硬度は、作製したハードコートフィルムを温度25℃、相対湿度60%の条件で2時間調湿した後、JIS-S-6006が規定する試験用鉛筆を用いて、JIS K5600-5-4(1999)に規定する鉛筆硬度試験(4.9N荷重)を行い、傷がつかなかった最も高い硬度を測定した。
 (2)ヘイズ
 ヘイズメーター(村上色彩技術研究所製、製品番号HM-150)を用い、JIS-K-7136に従って透過法で測定した。
 (3)全光線透過率
 作製したハードコートフィルムの全光線透過率(%)を、ヘイズメーター(村上色彩技術研究所製、製品番号HM-150)を用いてJIS K-7361に従って測定した。
 (4)耐ブロッキング性
 HCフィルムのハードコート層形成面とフィルム面を重ね、3922.66kPaの圧力をかけ、20分間放置した後、評価を行った。
 (評価基準)
評価○:貼り付かない
評価×:一部貼りつく又は完全に貼り付く
Figure JPOXMLDOC01-appb-T000002
 (結果のまとめ)
 表1及び2より、実施例1~9では、十分な耐ブロッキング性と良好なヘイズ、全光線透過率を有するHCフィルムが得られた。
 しかし、易滑剤(B)の含有割合が少ない比較例1では、ヘイズと全光線透過率は良好だったが、耐ブロッキング性が不足した。
 易滑剤(B)の含有割合が多い比較例2では、耐ブロッキング性は十分だったが、ヘイズが高くなり、鉛筆硬度も低かった。
 易滑剤(B)の平均1次粒径が小さい比較例3及び4では、ヘイズと全光線透過率は良好だったが、耐ブロッキング性が不足した。
 易滑剤(B)の平均1次粒径が大きい比較例5では、耐ブロッキング性は十分だったが、ヘイズが高くなり、鉛筆硬度も低かった。
 易滑剤(B)の平均1次粒径が大きい比較例6では、耐ブロッキング性は十分だったが、ヘイズ、全光線透過率及び鉛筆硬度の評価が悪かった。
 2次粒子(C)の平均2次粒径が小さい比較例7では、ヘイズと全光線透過率は良好だったが、耐ブロッキング性が不十分となった。
 反応性シリカ微粒子(A)の平均1次粒径が大きい比較例8では、ヘイズが高くなり、全光線透過率も低かった。
 多官能モノマー(D)に代えて、単官能モノマーを用いた比較例9では、鉛筆硬度が低かった。
 多官能モノマー(D)に代えて、分子量が大きいバインダーを用いた比較例10では、耐ブロッキング性が不十分となり、鉛筆硬度が低かった。
 基材をPET基材とした比較例11では、耐ブロッキング性が不十分となり、ヘイズも高く、鉛筆硬度が低かった。
 反応性シリカ(A)及び易滑剤(B)を加えなかった比較例12では、鉛筆硬度が低かった。
 反応性シリカ(A)の含有割合が本発明の範囲外であった比較例13及び14では、鉛筆硬度が低かった。
 易滑剤(B)の含有割合が本発明の範囲より少なかった比較例15では、耐ブロッキング性が不十分で、鉛筆硬度が低かった。
 易滑剤(B)の含有割合が本発明の範囲より多かった比較例16では、ヘイズが高くなり、鉛筆硬度が低かった。
 尚、実施例1で調製したハードコート層用硬化性樹脂組成物を、調製後36時間放置したインキ(2次粒子径は4000nmを超えていた)で実施例1と同様にハードコートフィルムを作製したところ、ヘイズは20になり、鉛筆硬度がHと良好なハードコートフィルムが得られなかった。
 また、ハードコート層用硬化性樹脂組成物を、実施例1で記載したように(イ)、(ロ)、(ハ)の工程をとらず、全ての同じ材料を同じ質量だけ同時に混合した場合には、2次粒子径は200nm未満にしかならず、3種凝集2次粒子ができていなかった。このインキでハードコートフィルムを作製したところ、耐ブロッキング性は全く得られなかった。
1 ハードコートフィルム
10 トリアセチルセルロース基材
20 ハードコート層
30 低屈折率層
40 保護フィルム
50 偏光層
60 偏光子
70 偏光板

Claims (9)

  1.  (A)粒子表面に光硬化性基を有し、平均1次粒径が10~100nmの反応性シリカ微粒子、
     (B)平均1次粒径が100~300nmの易滑剤、
     (C)少なくとも当該易滑剤(B)を含有し、平均2次粒径が500nm~2000nmの2次粒子、
     (D)1分子中に前記反応性シリカ微粒子(A)の光硬化性基との架橋反応性を有する反応性官能基を2個以上有し、分子量が1000以下である多官能モノマー及び
     (E)溶剤、を含み、
     平均2次粒径が2000nmよりも大きい2次粒子を含まず、かつ、
     当該反応性シリカ微粒子(A)及び多官能モノマー(D)の合計質量に対して当該易滑剤(B)を0.2~8質量%含むことを特徴とする、ハードコート層用硬化性樹脂組成物。
  2.  前記2次粒子(C)が、少なくとも(A)反応性シリカ、(B)易滑剤、及び(D)多官能モノマーを凝集させて形成した3種凝集2次粒子を含むことを特徴とする、請求項1に記載のハードコート層用硬化性樹脂組成物。
  3.  前記溶剤(E)が、酢酸メチル、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノンからなる群より選択される少なくとも1種であることを特徴とする、請求項1又は2に記載のハードコート層用硬化性樹脂組成物。
  4.  (i)トリアセチルセルロース基材上に、前記請求項1乃至3のいずれか1項に記載のハードコート層用硬化性樹脂組成物を塗布し、塗膜とする工程、及び
     (ii)当該塗膜に光照射を行い硬化させてハードコート層を形成する工程、を含むことを特徴とする、ハードコートフィルムの製造方法。
  5.  前記ハードコート層用硬化性樹脂組成物を、以下の工程により調製することを特徴とする、請求項4に記載のハードコートフィルムの製造方法。
     (イ)反応性シリカ(A)、多官能モノマー(D)、溶剤(E)を少なくとも含む組成物を混合し、インキ1を調製する工程、
     (ロ)易滑剤(B)、溶剤(E)を少なくとも含む組成物を混合し、インキ2を調製する工程、及び
     (ハ)前記インキ1を撹拌しながら、前記インキ2を少しずつ混合して2次粒子(C)を形成し、前記ハードコート層用硬化性樹脂組成物を調製する工程。
  6.  前記ハードコート層用硬化性樹脂組成物を調製完了後24時間以内に前記基材に塗布することを特徴とする、請求項4又は5に記載のハードコートフィルムの製造方法。
  7.  前記請求項4乃至6のいずれか1項に記載の製造方法により得られることを特徴とする、ハードコートフィルム。
  8.  前記請求項7に記載のハードコートフィルムのトリアセチルセルロース基材側に偏光子が設けられていることを特徴とする、偏光板。
  9.  前記請求項7に記載のハードコートフィルムのトリアセチルセルロース基材側にディスプレイが配置されていることを特徴とする、ディスプレイパネル。
PCT/JP2011/067882 2010-08-06 2011-08-04 ハードコート層用硬化性樹脂組成物、ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル WO2012018087A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/809,959 US20130115469A1 (en) 2010-08-06 2011-08-04 Curable resin composition for hard coat layer, method for producing hard coat film, hard coat film, polarizing plate and display panel
KR1020137002996A KR101441829B1 (ko) 2010-08-06 2011-08-04 하드 코트층용 경화성 수지 조성물, 하드 코트 필름의 제조 방법, 하드 코트 필름, 편광판 및 디스플레이 패널
JP2012527771A JP5846121B2 (ja) 2010-08-06 2011-08-04 ハードコート層用硬化性樹脂組成物、ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル
CN201180033863.3A CN102985498B (zh) 2010-08-06 2011-08-04 硬涂层用固化性树脂组合物、硬涂薄膜的制造方法、硬涂薄膜、偏振片及显示面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010177149 2010-08-06
JP2010-177149 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012018087A1 true WO2012018087A1 (ja) 2012-02-09

Family

ID=45559583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067882 WO2012018087A1 (ja) 2010-08-06 2011-08-04 ハードコート層用硬化性樹脂組成物、ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル

Country Status (6)

Country Link
US (1) US20130115469A1 (ja)
JP (1) JP5846121B2 (ja)
KR (1) KR101441829B1 (ja)
CN (1) CN102985498B (ja)
TW (1) TWI443157B (ja)
WO (1) WO2012018087A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897470A (zh) * 2012-12-27 2014-07-02 日挥触媒化成株式会社 附有硬质涂膜的基材和硬质涂膜形成用涂布液
JP2014142443A (ja) * 2013-01-23 2014-08-07 Kyocera Corp 撮像光学系
JP2015131942A (ja) * 2013-12-12 2015-07-23 Jsr株式会社 アンチブロッキングハードコート材
JP2015215409A (ja) * 2014-05-08 2015-12-03 王子ホールディングス株式会社 貼りつき防止機能を有した全光線透過率向上フィルム。
JP2017048300A (ja) * 2015-09-01 2017-03-09 共栄社化学株式会社 活性エネルギー線硬化型ハードコート用樹脂組成物、ハードコート付き透明プラスチックシート及び光学部材
WO2017073316A1 (ja) * 2015-10-26 2017-05-04 日東電工株式会社 ハードコートフィルムおよび透明導電性フィルム
JP2018159067A (ja) * 2017-03-23 2018-10-11 荒川化学工業株式会社 活性エネルギー線硬化型ハードコート剤、硬化塗膜、積層フィルム
JP2019026823A (ja) * 2017-07-28 2019-02-21 三菱ケミカルアグリドリーム株式会社 防曇組成物および防曇性フィルム
WO2021131355A1 (ja) 2019-12-25 2021-07-01 富士フイルム株式会社 樹脂組成物、硬化物、紫外線吸収剤、紫外線カットフィルタ、レンズ、保護材、化合物及び化合物の合成方法
WO2022039120A1 (ja) 2020-08-21 2022-02-24 富士フイルム株式会社 重合性組成物、重合体、紫外線遮蔽材料、積層体、化合物、紫外線吸収剤及び化合物の製造方法
US11518888B2 (en) 2018-05-09 2022-12-06 Dai Nippon Printing Co., Ltd. Color material dispersion liquid, composition, film, optical filter and display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102263205B1 (ko) * 2013-07-04 2021-06-09 리껭테크노스 가부시키가이샤 안티 블로킹성 하드 코트 필름의 제조 방법
CN104714321A (zh) * 2013-12-17 2015-06-17 冠捷投资有限公司 触控显示器
WO2018116998A1 (ja) * 2016-12-19 2018-06-28 日本製紙株式会社 ハードコートフィルム
KR102166844B1 (ko) 2017-09-15 2020-10-16 주식회사 엘지화학 하드 코팅 필름
CN111183374B (zh) * 2017-11-29 2022-05-03 日东电工株式会社 硬涂薄膜、光学层叠体及图像显示装置
WO2019234976A1 (ja) * 2018-06-08 2019-12-12 コニカミノルタ株式会社 積層体
KR102363874B1 (ko) * 2018-10-18 2022-02-15 주식회사 엘지화학 편광판, 액정 패널 및 디스플레이 장치
CN114854302B (zh) * 2021-01-20 2023-06-06 宁波安特弗新材料科技有限公司 一种硬化层涂布液、硬化膜及其制备方法
JP7117052B1 (ja) 2022-02-09 2022-08-12 株式会社八洲測器 液位センサ用フロート、液位センサ、及び液位センサ用フロートの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328626A (ja) * 1993-05-25 1994-11-29 Teijin Ltd 離形フイルム
JPH07228705A (ja) * 1994-02-15 1995-08-29 Japan Synthetic Rubber Co Ltd 架橋ポリマー粒子の集合体
JP2010082860A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd ハードコートフィルム及びハードコートフィルムの製造方法
JP2010097173A (ja) * 2008-09-22 2010-04-30 Dainippon Printing Co Ltd ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及び液晶表示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157819B2 (ja) * 2008-10-23 2013-03-06 大日本印刷株式会社 ハードコートフィルム
CN101722691B (zh) * 2008-10-23 2014-04-16 大日本印刷株式会社 硬涂膜及硬涂层用固化性树脂组合物
JP5540495B2 (ja) * 2008-11-17 2014-07-02 大日本印刷株式会社 ハードコート層用硬化性樹脂組成物、及びハードコートフィルム
JP5332558B2 (ja) * 2008-12-02 2013-11-06 大日本印刷株式会社 ハードコートフィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328626A (ja) * 1993-05-25 1994-11-29 Teijin Ltd 離形フイルム
JPH07228705A (ja) * 1994-02-15 1995-08-29 Japan Synthetic Rubber Co Ltd 架橋ポリマー粒子の集合体
JP2010097173A (ja) * 2008-09-22 2010-04-30 Dainippon Printing Co Ltd ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及び液晶表示装置
JP2010082860A (ja) * 2008-09-30 2010-04-15 Dainippon Printing Co Ltd ハードコートフィルム及びハードコートフィルムの製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103897470A (zh) * 2012-12-27 2014-07-02 日挥触媒化成株式会社 附有硬质涂膜的基材和硬质涂膜形成用涂布液
KR20140085312A (ko) * 2012-12-27 2014-07-07 니끼 쇼꾸바이 카세이 가부시키가이샤 하드코트막부 기재 및 하드코트막 형성용 도포액
JP2014141075A (ja) * 2012-12-27 2014-08-07 Jgc Catalysts & Chemicals Ltd ハードコート膜付基材およびハードコート膜形成用塗布液
KR102158662B1 (ko) * 2012-12-27 2020-09-22 니끼 쇼꾸바이 카세이 가부시키가이샤 하드코트막부 기재 및 하드코트막 형성용 도포액
JP2014142443A (ja) * 2013-01-23 2014-08-07 Kyocera Corp 撮像光学系
JP2015131942A (ja) * 2013-12-12 2015-07-23 Jsr株式会社 アンチブロッキングハードコート材
JP2015215409A (ja) * 2014-05-08 2015-12-03 王子ホールディングス株式会社 貼りつき防止機能を有した全光線透過率向上フィルム。
JP2017048300A (ja) * 2015-09-01 2017-03-09 共栄社化学株式会社 活性エネルギー線硬化型ハードコート用樹脂組成物、ハードコート付き透明プラスチックシート及び光学部材
JP2017080951A (ja) * 2015-10-26 2017-05-18 日東電工株式会社 ハードコートフィルムおよび透明導電性フィルム
WO2017073316A1 (ja) * 2015-10-26 2017-05-04 日東電工株式会社 ハードコートフィルムおよび透明導電性フィルム
JP2018159067A (ja) * 2017-03-23 2018-10-11 荒川化学工業株式会社 活性エネルギー線硬化型ハードコート剤、硬化塗膜、積層フィルム
JP7020222B2 (ja) 2017-03-23 2022-02-16 荒川化学工業株式会社 活性エネルギー線硬化型ハードコート剤、硬化塗膜、積層フィルム
JP2019026823A (ja) * 2017-07-28 2019-02-21 三菱ケミカルアグリドリーム株式会社 防曇組成物および防曇性フィルム
US11518888B2 (en) 2018-05-09 2022-12-06 Dai Nippon Printing Co., Ltd. Color material dispersion liquid, composition, film, optical filter and display device
US11697737B2 (en) 2018-05-09 2023-07-11 Dai Nippon Printing Co., Ltd. Color material dispersion liquid, composition, film, optical filter and display device
WO2021131355A1 (ja) 2019-12-25 2021-07-01 富士フイルム株式会社 樹脂組成物、硬化物、紫外線吸収剤、紫外線カットフィルタ、レンズ、保護材、化合物及び化合物の合成方法
WO2022039120A1 (ja) 2020-08-21 2022-02-24 富士フイルム株式会社 重合性組成物、重合体、紫外線遮蔽材料、積層体、化合物、紫外線吸収剤及び化合物の製造方法

Also Published As

Publication number Publication date
CN102985498B (zh) 2015-04-29
US20130115469A1 (en) 2013-05-09
JP5846121B2 (ja) 2016-01-20
JPWO2012018087A1 (ja) 2013-10-03
KR20130045346A (ko) 2013-05-03
TW201211173A (en) 2012-03-16
KR101441829B1 (ko) 2014-09-18
CN102985498A (zh) 2013-03-20
TWI443157B (zh) 2014-07-01

Similar Documents

Publication Publication Date Title
JP5846121B2 (ja) ハードコート層用硬化性樹脂組成物、ハードコートフィルムの製造方法、ハードコートフィルム、偏光板及びディスプレイパネル
JP5540495B2 (ja) ハードコート層用硬化性樹脂組成物、及びハードコートフィルム
US9405040B2 (en) Optical layered body, method of producing the same, polarizer and image display device
JP5262032B2 (ja) 光学積層体の製造方法、光学積層体、偏光板及び画像表示装置
JP5505309B2 (ja) 光学シート
WO2011122483A1 (ja) 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置
KR20180082631A (ko) 광학 적층체, 편광판 및 화상 표시 장치
KR20120091170A (ko) 광학 필름의 제조 방법, 광학 필름, 편광판 및 디스플레이
WO2018062442A1 (ja) 防眩性反射防止ハードコートフィルム、画像表示装置、防眩性反射防止ハードコートフィルムの製造方法
JP5725216B2 (ja) 光学シート
KR102267594B1 (ko) 반사 방지 필름, 편광판 및 디스플레이 장치
JP2006299248A (ja) 無機微粒子含有組成物、光学フィルム、反射防止フィルム、それを用いた偏光板および表示装置
JP2009265341A (ja) 光学シートの製造方法及び光学シート
JP5811090B2 (ja) 帯電防止層用硬化性樹脂組成物、光学フィルム、偏光板及びディスプレイパネル
JP2016061794A (ja) 反射防止フィルム、偏光板、カバーガラス、画像表示装置、及び反射防止フィルムの製造方法
JP2010223985A (ja) 金属酸化物微粒子、塗料および光学積層体並びにその製造方法
JP2010060924A (ja) 光学シート
TWI491931B (zh) Anti-glare film, anti-glare film manufacturing method, polarizing plate and image display device
JP2011098445A (ja) 光学積層体およびその製造方法、並びにそれを用いた偏光板および表示装置
JP5439769B2 (ja) 光学シートの製造方法
JP2010066549A (ja) 光学シート
JP2009075360A (ja) 光学フィルム、偏光板、画像表示装置、および光学フィルムの製造方法
JP2006330397A (ja) 反射防止積層体及びその製造方法
JP2012141625A (ja) 光学積層体
JP5982434B2 (ja) 防眩フィルムの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180033863.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814712

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012527771

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13809959

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137002996

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11814712

Country of ref document: EP

Kind code of ref document: A1