WO2019234976A1 - 積層体 - Google Patents
積層体 Download PDFInfo
- Publication number
- WO2019234976A1 WO2019234976A1 PCT/JP2019/005105 JP2019005105W WO2019234976A1 WO 2019234976 A1 WO2019234976 A1 WO 2019234976A1 JP 2019005105 W JP2019005105 W JP 2019005105W WO 2019234976 A1 WO2019234976 A1 WO 2019234976A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- base material
- alicyclic monomer
- cured resin
- film
- resin layer
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/32—Layered products comprising a layer of synthetic resin comprising polyolefins
- B32B27/325—Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/08—Metals
Definitions
- the present invention relates to a laminate in which a cured resin layer (hard coat layer) is laminated on a substrate.
- touch panel type examples include a resistance film type and a capacitance type.
- the resistive touch panel is used in input devices such as home appliances, and can be input using a dedicated pen.
- Capacitive touch panels are widely used in mobile devices and the like because multi-touch input is possible.
- the touch panel has a transparent conductive layer serving as an electrode on the substrate.
- a transparent plastic film is frequently used instead of a glass substrate as the base material from the viewpoint of processability, lightness, economy, and the like.
- the curable composition contains a (meth) acrylate having a phosphate group, and the curable composition is applied onto a cycloolefin-based resin film as a base material and cured. In this way, the adhesion between the substrate and the cured resin layer is improved.
- JP 11-34207 A see claim 1, paragraphs [0005], [0006], etc.
- Japanese Unexamined Patent Publication No. 2014-189566 (refer to Claims 1 and 4, paragraphs [0008] to [0011], [0034], [0040], etc.)
- the thickness of the cycloolefin-based resin film used as the substrate is set to 50 to 200 ⁇ m from the viewpoint of suppressing curling.
- the stiffness of the substrate is further weakened, so that slippage is likely to occur during conveyance. Therefore, in a state where the substrate is further thinned, it is difficult to suppress delamination even by the technique of Patent Document 2.
- the present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the occurrence of slippage during conveyance even when a cured resin layer is formed on a thinned substrate and conveyed. It is possible to provide a laminate capable of suppressing delamination between the base material and the cured resin layer while ensuring bending resistance.
- a laminate according to one aspect of the present invention includes a base material having a thickness of 5 to 24 ⁇ m, and a cured resin layer laminated on the base material.
- the base material includes a cycloolefin resin, a periodicity, and the like. It contains a Group 6 metal and an alicyclic monomer, and the cured resin layer contains an acrylic resin and an alicyclic monomer.
- the numerical value range includes the values of the lower limit A and the upper limit B.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a laminate 1 of the present embodiment.
- the laminate 1 includes a substrate 2 and a cured resin layer 3 laminated on the substrate 2.
- the thickness of the substrate 2 is 5 to 24 ⁇ m.
- the base material 2 includes a cycloolefin-based resin, a metal 2M of Group 6 of the periodic table, and an alicyclic monomer 2P.
- the cured resin layer 3 includes an acrylic resin and an alicyclic monomer 3P.
- the alicyclic monomer 2P contained in the substrate 2 diffuses into the cured resin layer 3 (cured resin layer forming composition) during the formation of the cured resin layer 3, and the alicyclic monomer in the substrate 2.
- the adhesion between the substrate 2 and the curable resin layer 3 is improved by the interaction between the monomer 2P and the alicyclic monomer 3P in the cured resin layer 3.
- the hardness of the base material 2 increases. Furthermore, by selecting a specific metal (group 6 metal of the periodic table), the surrounding resin can be aggregated by the metal 2M, thereby improving the resin density of the substrate 2. Due to the synergistic effect of the increase in the hardness of the base material 2 and the improvement of the resin density, the base material 2 itself can have stiffness (rigidity) even if the thickness of the base material 2 is as thin as 5 to 24 ⁇ m. It is possible to suppress slippage during conveyance that is estimated to cause delamination between the resin and the cured resin layer 3. Moreover, the laminated body 1 becomes flexible by making the base material 2 thin, and the bending resistance of the laminated body 1 can be secured.
- the thickness of the substrate 2 is d ( ⁇ m)
- the substrate lower layer 2a is from the surface opposite to the contact side with the cured resin layer 3 in the substrate 2 to a depth of d / 5 ( ⁇ m)
- a portion of the base material 2 from the surface on the contact side with the cured resin layer 3 to a depth of d / 5 ( ⁇ m) is the base material upper layer 2b
- the base material intermediate layer 2c is a portion between the material lower layer 2a and the base material upper layer 2b
- the effect of improving the adhesion between the substrate 2 and the cured resin layer 3 can be enhanced, and thereby the effect of suppressing delamination can be enhanced. More details are as follows.
- the concentration of the alicyclic monomer 2P is larger in the base material upper layer 2b than in the base material lower layer 2a, the amount of the alicyclic monomer 2P that interacts with the alicyclic monomer 3P of the cured resin layer 3 increases. . Thereby, the adhesiveness of the base material 2 and the cured resin layer 3 can be improved more by the said interaction, and the effect which suppresses delamination can be heightened.
- the concentration of the alicyclic monomer 2P is smaller in the base material upper layer 2b than in the base material lower layer 2a, the alicyclic monomer 2P of the base material upper layer 2b is easily diffused into the cured resin layer 3 and cured. It becomes easy to interact with the alicyclic monomer 3P of the resin layer 3. Therefore, the adhesion between the substrate 2 and the curable resin layer 3 can be further improved by the above interaction, and the effect of suppressing delamination can be enhanced.
- the resin lower layer 3 a is formed from the surface on the contact side with the base material 2 to the center in the thickness direction, and the surface from the surface opposite to the contact side with the base material 2 to the center in the thickness direction is resin.
- the alicyclic monomer 3P may be present only in the resin lower layer 3a. Since the alicyclic monomer 3P is present only in the resin lower layer 3a, the content of the alicyclic monomer 3P in the cured resin layer 3 can be suppressed to be low, and the adhesion to the substrate 2 can be enhanced.
- the alicyclic monomer 2P included in the base material 2 may be dicyclopentadiene (DCP) or tetracyclododecene (TCD).
- DCP dicyclopentadiene
- TCD tetracyclododecene
- the alicyclic monomer 3P included in the cured resin layer 3 may be the same as the alicyclic monomer 2P included in the substrate 2.
- the above-described interaction can improve the adhesion between the substrate 2 and the curable resin layer 3 and enhance the effect of suppressing delamination.
- the metal 2P included in the substrate 2 may be tungsten (W), molybdenum (Mo), or chromium (Cr).
- W tungsten
- Mo molybdenum
- Cr chromium
- the base material 2 of the laminated body 1 contains a cycloolefin resin.
- the cycloolefin resin include the following (co) polymers.
- each of R 1 to R 4 independently represents a hydrogen atom, hydrocarbon group, halogen atom, hydroxy group, ester group, alkoxy group, cyano group, amide group, imide group, silyl group or polar group (ie, A hydrocarbon group substituted by a halogen atom, a hydroxy group, an ester group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group).
- R 1 to R 4 may be bonded to each other to form an unsaturated bond, monocycle or polycycle, and this monocycle or polycycle has a double bond.
- an aromatic ring may be formed.
- R 1 and R 2 , or R 3 and R 4 may form an alkylidene group.
- m is an integer of 0 to 3
- the hydrocarbon group represented by R 1 and R 3 is preferably a hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and particularly preferably 1 to 2 carbon atoms.
- R 2 and R 4 may be a hydrogen atom or a monovalent organic group, and at least one of R 2 and R 4 may be a polar group having a polarity other than a hydrogen atom and a hydrocarbon group.
- Examples of the polar group of the specific monomer include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an allyloxycarbonyl group, an amino group, an amide group, and a cyano group. These polar groups have a linking group such as a methylene group. It may be bonded via.
- a hydrocarbon group in which a divalent organic group having polarity such as a carbonyl group, an ether group, a silyl ether group, a thioether group, or an imino group is bonded as a linking group can also be mentioned as a polar group.
- a carboxy group, a hydroxy group, an alkoxycarbonyl group or an allyloxycarbonyl group is preferable, and an alkoxycarbonyl group or an allyloxycarbonyl group is particularly preferable.
- a monomer in which at least one of R 2 and R 4 is a polar group represented by the formula — (CH 2 ) nCOOR is obtained by using a cycloolefin-based resin having a high glass transition temperature, a low hygroscopic property, and various materials. It is preferable in that it has excellent adhesion.
- the glass transition temperature here is a value obtained by a method based on JIS K 7121-2012 using DSC (Differential Scanning Colorimetry).
- R is a hydrocarbon group having 1 to 12 carbon atoms, more preferably 1 to 4 carbon atoms, particularly preferably 1 to 2 carbon atoms, and preferably an alkyl group.
- copolymerizable monomer examples include cycloolefin resins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
- the number of carbon atoms of the cycloolefin is preferably 4-20, and more preferably 5-12.
- the cycloolefin resin may have crystallinity.
- a cycloolefin resin having crystallinity is preferable in that it has excellent heat resistance, mechanical properties, and solvent resistance.
- the cycloolefin resin can be used alone or in combination of two or more.
- the preferred molecular weight of the cycloolefin resin is 0.2 to 5 dl / g, more preferably 0.3 to 3 dl / g, particularly preferably 0.4 to 1.5 dl / g in terms of intrinsic viscosity [ ⁇ ] inh.
- the number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography (GPC) is 8000 to 100,000, more preferably 10,000 to 80,000, particularly preferably 12,000 to 50,000, and the weight average molecular weight (Mw) is 20,000.
- a range of from ⁇ 300000, more preferably from 30,000 to 250,000, particularly preferably from 40,000 to 200000 is preferred.
- Inherent viscosity [ ⁇ ] inh, number average molecular weight and weight average molecular weight are in the above ranges, so that the heat resistance, water resistance, chemical resistance, mechanical properties of the cycloolefin resin and the optical film of the present embodiment are as follows. Good moldability.
- the glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C.
- Tg is 110 ° C. or higher because deformation is unlikely to occur due to use under high temperature conditions or secondary processing such as coating or printing.
- Tg is 350 ° C. or lower, it is possible to avoid the case where the molding process becomes difficult, and to suppress the possibility that the resin is deteriorated by the heat during the molding process.
- the cycloolefin-based resin may be a specific hydrocarbon-based resin described in, for example, Japanese Patent Application Laid-Open No. 9-221577, Japanese Patent Application Laid-Open No. 10-287732, or a known one, as long as the effects of the present embodiment are not impaired.
- Thermoplastic resins, thermoplastic elastomers, rubbery polymers, organic fine particles, inorganic fine particles, etc. may be blended, and specific wavelength dispersing agents, sugar ester compounds, antioxidants, peeling accelerators, rubber particles, plasticizers, You may add additives, such as a ultraviolet absorber.
- cycloolefin resin commercially available products can be preferably used.
- examples of commercially available products include trade names of Arton (registered trademark) G, Arton F, Arton R, and Arton RX from JSR Corporation.
- ZEONOR (registered trademark) ZF14, ZF16, ZEONEX (registered trademark) 250, or ZEONEX 280 is commercially available from ZEON CORPORATION. Can do.
- the cured resin layer 3 of the laminate 1 includes an acrylic resin.
- a cured product of an acrylate-based actinic radiation curable compound for example, an ultraviolet curable resin
- an acrylate-based actinic radiation curable compound for example, an ultraviolet curable resin
- a polyfunctional (meth) acrylate-based, urethane (meth) acrylate-based, epoxy (meth) acrylate-based, or polyester (meth) acrylate-based actinic curable compound cured product can be used.
- a cured product of polymer type acrylate may be used.
- the cured resin layer 3 is formed, for example, by using a composition for forming a cured resin layer containing the above-described ultraviolet curable resin and a photopolymerization initiator, and curing the ultraviolet curable resin by ultraviolet irradiation after forming a coating film.
- the photopolymerization initiator is not particularly limited and known ones can be used.
- the photopolymerization initiator acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime ester, thioxanthones
- Examples include propiophenones, benzyls, benzoins, and acylphosphine oxides.
- it is preferable to use a mixture of photosensitizers and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
- the photopolymerization initiator it is preferable to use acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. alone or in combination when the ultraviolet curable resin is a resin system having a radical polymerizable unsaturated group. .
- the ultraviolet curable resin is a resin system having a cationic polymerizable functional group
- photopolymerization initiator in the case of an ultraviolet curable resin having a radical polymerizable unsaturated group, 1-hydroxy-cyclohexyl-phenyl-ketone (trade name: IRGACURE 184, manufactured by BASF Japan Ltd.) It is preferable for reasons of compatibility and little yellowing.
- the composition for forming a cured resin layer may contain a solvent.
- a solvent it can select and use suitably according to the kind and solubility of the ultraviolet curable resin component to be used.
- solvents ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, diacetone alcohol, etc.), ethers (eg, dioxane, tetrahydrofuran, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, etc.), aliphatic Hydrocarbons (eg, hexane, etc.), alicyclic hydrocarbons (eg, cyclohexane, etc.), aromatic hydrocarbons (eg, toluene, xylene, etc.), halogenated carbons (eg, dichloromethane, dichloroethane, etc.), Esters (eg, methyl acetate, e
- ketone solvent it is preferable to include at least one of methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, or a mixture thereof as a ketone solvent because of excellent compatibility with an ultraviolet curable resin and coating properties.
- the cured resin layer forming composition increases the hardness of the cured resin layer, suppresses curing shrinkage, prevents blocking, controls the refractive index, imparts anti-glare properties, and the surface of particles and the cured resin layer.
- conventionally known organic fine particles, inorganic fine particles, dispersants, surfactants, antistatic agents, silane coupling agents, thickeners, anti-coloring agents, colorants (pigments, Dyes), antifoaming agents, leveling agents, flame retardants, adhesion promoters, polymerization inhibitors, antioxidants, surface modifiers, and the like may be added.
- the cured resin layer forming composition may contain a photosensitizer, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
- the method for preparing the cured resin layer forming composition is not particularly limited as long as each component can be uniformly mixed.
- each component is used using a known apparatus such as a paint shaker, a bead mill, a kneader, or a mixer.
- a paint shaker such as a paint shaker, a bead mill, a kneader, or a mixer.
- a spin coat method for example, a spin coat method, a dip method, a spray method, a die coat method, a bar coat method, a roll coater method
- the wet coating method include a meniscus coater method, a flexographic printing method, a screen printing method, and a speed coater method.
- R 1 to R 4 are each independently a hydrogen atom, hydrocarbon group, halogen atom, hydroxy group, ester group, alkoxy group, cyano group, amide group, imide group, silyl group A hydrocarbon group substituted with a group or a polar group (that is, a halogen atom, a hydroxy group, an ester group, an alkoxy group, a cyano group, an amide group, an imide group, or a silyl group).
- R 1 to R 4 may be bonded to each other to form an unsaturated bond, monocycle or polycycle, and this monocycle or polycycle has a double bond.
- an aromatic ring may be formed.
- R 1 and R 2 , or R 3 and R 4 may form an alkylidene group.
- m is an integer of 0 to 3
- FIG. 2 is an explanatory diagram showing a schematic configuration of the optical film manufacturing apparatus 10 constituting the substrate 2 of the present embodiment.
- FIG. 3 is a flowchart which shows the flow of the manufacturing process of an optical film.
- the manufacturing method of the optical film of this embodiment is a stirring preparation process (S1), a casting process (S2), a peeling process (S3), a stretching process (S4), a drying process (S5), A cutting process (S6), an embossing process (S7), and a winding process (S8) are included.
- S1 stirring preparation process
- S2 casting process
- S3 a peeling process
- S4 a stretching process
- S5 a drying process
- S6 A cutting process
- S7 embossing process
- S8 a winding process
- stirring preparation step At least the resin and the solvent are stirred in the stirring tank 11a of the stirring device 11, and the dope cast on the support 13 (endless belt) is prepared.
- the resin the above-mentioned cycloolefin-based resin can be used.
- the solvent a mixed solvent of a good solvent and a poor solvent can be used.
- the good solvent means an organic solvent having the property of dissolving the resin (solubility), and 1,3-dioxolane, THF (tetrahydrofuran), methyl ethyl ketone, acetone, methyl acetate, methylene chloride (dichloromethane, methylene chloride), Toluene and the like correspond to this.
- a poor solvent refers to a solvent that does not have a property of dissolving a resin by itself, and methanol, ethanol, and the like correspond to this.
- the dope prepared in the stirring preparation step is fed to the casting die 12 by a conduit through a pressurized metering gear pump or the like, and is supported on an endless belt 13 made of a rotationally driven stainless steel endless belt for infinite transfer.
- the dope is cast from the casting die 12 at the casting position.
- the support 13 conveys the cast dope (casting dope) while supporting it. Thereby, the web 15 as a casting film is formed on the support 13.
- the support 13 is held by a pair of rolls 13a and 13b and a plurality of rolls (not shown) positioned therebetween.
- One or both of the rolls 13a and 13b are provided with a driving device (not shown) for applying tension to the support body 13, whereby the support body 13 is used in a tensioned state.
- the web 15 is heated on the support 13, and the solvent is evaporated until the web 15 can be peeled from the support 13 by the peeling roll 14.
- the solvent In order to evaporate the solvent, there are a method of blowing air from the web side, a method of transferring heat from the back surface of the support 13 by a liquid, a method of transferring heat from the front and back by radiant heat, and the like. That's fine.
- the residual solvent amount of the web 15 on the support 13 at the time of peeling is preferably in the range of 25 to 120% by mass depending on the strength of the drying conditions, the length of the support 13 and the like.
- the amount of solvent is determined.
- the residual solvent amount is defined by the following formula.
- Residual solvent amount (% by mass) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100
- the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
- the stretching step the web 15 (film substrate) peeled from the support 13 is stretched in the transport direction and / or the width direction by the tenter 16.
- a tenter method in which both side edge portions of the web 15 are fixed with a clip or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film.
- the web 15 stretched by the tenter 16 is dried by a drying device 17.
- the drying device 17 the web 15 is transported by a plurality of transport rolls arranged in a staggered manner as viewed from the side, and the web 15 is dried in the meantime.
- the drying method in the drying device 17 is not particularly limited, and the web 15 is generally dried using hot air, infrared rays, a heating roll, a microwave, or the like. From the viewpoint of simplicity, a method of drying the web 15 with hot air is preferable.
- the web 15 is dried by the drying device 17 and then conveyed toward the winding device 20 as an optical film.
- a cutting part 18 and an embossing part 19 are arranged in this order between the drying device 17 and the winding device 20.
- disconnects the both ends of the width direction with a slitter is performed, conveying the optical film formed into a film.
- the portion remaining after the cutting of both ends constitutes a product portion to be a film product.
- the portion cut from the optical film is collected by a shooter and reused as a part of the raw material for film formation.
- embossing is performed by the embossing part 19 at both ends in the width direction of the optical film.
- Embossing is performed by pressing a heated embossing roller against both ends of the optical film. Fine irregularities are formed on the surface of the embossing roller, and the embossing roller is pressed against both ends of the optical film, thereby forming irregularities at the both ends.
- the optical film that has been embossed is wound up by the winding device 20 to obtain the original roll (film roll) of the optical film. That is, in a winding process, a film roll is manufactured by winding an optical film around a winding core.
- the winding method of the optical film may be a commonly used winder, and there are methods such as constant torque method, constant tension method, taper tension method, program tension control method with constant internal stress, etc. Should be used properly.
- the winding length of the optical film is preferably 1000 to 7200 m. Further, the width at that time is preferably 500 to 3200 mm, and the film thickness is preferably 30 to 150 ⁇ m.
- the substrate 2 (optical film) of the present embodiment can also be produced by a melt casting film forming method.
- a resin composition containing an additive such as a resin and a plasticizer is heated and melted to a temperature showing fluidity, and then a melt having fluidity is cast to form a film. It is a method to do.
- Methods formed by melt casting can be classified into melt extrusion (molding) methods, press molding methods, inflation methods, injection molding methods, blow molding methods, stretch molding methods, and the like. Among these, the melt extrusion method that can obtain a film having excellent mechanical strength and surface accuracy is preferable.
- the plurality of raw materials used in the melt extrusion method are usually kneaded and pelletized in advance.
- the pelletization may be performed by a known method. For example, supplying dry resin, plasticizer, and other additives to the extruder with a feeder, kneading using a single or twin screw extruder, extruding into a strand from a die, water cooling or air cooling, cutting Can be pelletized.
- the additive may be mixed with the resin before being supplied to the extruder, or the additive and the resin may be supplied to the extruder with individual feeders. Moreover, in order to mix a small amount of additives, such as particle
- the extruder is preferably processed at as low a temperature as possible so that it can be pelletized so as to suppress the shearing force and prevent the resin from deteriorating (molecular weight reduction, coloring, gel formation, etc.).
- a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
- Film formation is performed using the pellets obtained as described above.
- the melting temperature when extruding is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, and then the film from the T-die And the film is nipped between a cooling roll and an elastic touch roll and solidified on the cooling roll.
- the extrusion flow rate is preferably carried out stably by introducing a gear pump.
- a stainless fiber sintered filter is preferably used as a filter used for removing foreign substances.
- the stainless steel fiber sintered filter is a united stainless steel fiber body that is intricately intertwined and compressed, and the contact points are sintered and integrated. The density of the fiber is changed depending on the thickness of the fiber and the amount of compression, and the filtration accuracy is improved. Can be adjusted.
- Additives such as plasticizers and particles may be mixed with the resin in advance, or may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer.
- the film temperature on the touch roll side when the film is nipped between the cooling roll and the elastic touch roll is preferably Tg (glass transition temperature) or higher and Tg + 110 ° C. or lower.
- Tg glass transition temperature
- a known roll can be used as the roll having an elastic surface used for such a purpose.
- the elastic touch roll is also called a pinching rotator.
- As the elastic touch roll a commercially available one can be used.
- the optical film formed by each of the film forming methods described above may be a single layer or a laminated film having two or more layers.
- the laminated film can be obtained by a known method such as a coextrusion molding method, a co-casting molding method, a film lamination method, or a coating method.
- the coextrusion molding method and the co-casting molding method are preferable.
- the coextrusion molding method coextrusion T-die method
- Example 1> (Base material) ⁇ Manufacture of cycloolefin resin 1>
- a pressure-resistant reaction vessel made of glass that has been nitrogen-substituted after drying 40 parts of a 75% cyclohexane solution of dicyclopentadiene (endo content 99% or more) (30 parts as the amount of dicyclopentadiene) and 3.50 parts of allyltrimethoxysilane Further, 75 parts of cyclohexane was added, and then 0.50 part of a 19% n-hexane solution of diethylaluminum ethoxide was added and stirred.
- the operating conditions of the twin screw extruder are as follows. ⁇ Barrel set temperature: 270-280 °C ⁇ Die setting temperature: 250 °C ⁇ Screw speed: 145rpm ⁇ Feeder rotation speed: 50 rpm
- the obtained pellets were formed into a film having a thickness of 50 ⁇ m and a width of 120 mm using a hot melt extrusion film forming machine equipped with a T die (manufactured by Optical Control Systems: Measuring Extruder Type Me-20 / 2800V3). It was wound into a roll at a speed of minutes.
- the operating conditions of the film forming machine are as follows. ⁇ Barrel temperature setting: 280-290 °C -Die temperature: 270 ° C -Screw rotation speed: 30rpm
- the film is cut into a size of 100 mm ⁇ 100 mm, and using a small biaxial stretching machine (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the edges of the four sides of the film are held with clips, and the stretching temperature is 110 ° C. Fixed end uniaxial stretching was continuously performed at a magnification of 3.3 to obtain a base film 1 having a film thickness of 15 ⁇ m.
- a coating solution 1 having the following composition was prepared. ⁇ Acrylic 1 (urethane acrylate oligomer “UV-7640B (Nippon Synthetic Chemical Industry)” 50.0 parts ⁇ Acetone 45.0 parts ⁇ Propyl acetate 20.0 parts ⁇ Acrylic particles “Techpolymer SSX-101 (Sekisui Chemical Co., Ltd.) 0.1 part ⁇ Leveling agent “GRANDIC PC11-6204L (DIC)” 0.2 part
- the coating solution 1 is applied to one surface of the base film 1 and dried at 80 ° C. for 1 minute, and then immediately irradiated with ultraviolet rays using an ozone type high-pressure mercury lamp (16 W / cm, 15 cm condensing type, integrated light quantity 200 mJ / cm 2 ). Then, a cured resin layer (hard coat layer) having a thickness of 1.0 ⁇ m was formed to obtain a laminate 1.
- Example 2 A laminate 2 was produced in the same manner as in Example 1 except that 0.01 part of dicyclopentadiene was additionally added to the coating solution 1.
- Example 3 A laminate 3 was produced in the same manner as in Example 1 except that the amount of tungsten nanoparticles in the base film 1 was changed to 0.1 part.
- Example 4 A laminate 4 was produced in the same manner as in Example 1 except that the alicyclic monomer in the base film 1 was changed to tetracyclododecene.
- Example 5 A laminate 5 was produced in the same manner as in Example 1 except that the tungsten nanoparticles in the base film 1 were changed to molybdenum nanoparticles (particle diameter 20 nm).
- Example 6 A laminate 6 was produced in the same manner as in Example 1 except that the tungsten nanoparticles in the base film 1 were changed to chromium nanoparticles (particle size 20 nm).
- Example 7 A laminate 7 was produced in the same manner as in Example 1 except that the stretch ratio during production of the base film 1 was changed to 2.1 and the thickness of the base film 1 was changed to 24 ⁇ m.
- Example 8> A laminate 8 was produced in the same manner as in Example 1 except that the draw ratio during production of the base film 1 was changed to 10 and the thickness of the base film 1 was changed to 5 ⁇ m.
- Example 9 A coating solution 2 having the following composition was prepared. ⁇ Preparation of coating solution 2> ⁇ Acrylic 2 (polymer type acrylate “Unidic V6840 (DIC)”) 20.0 parts ⁇ 1-methoxy-2-propanol 80.0 parts ⁇ Acrylic particles “Techpolymer SSX-101 (Sekisui Chemical Co., Ltd.)” 0.1 ⁇ Leveling agent “GRANDIC PC11-6204L (DIC)” 0.2 parts
- Example 10 A laminate 10 was produced in the same manner as in Example 1 except that the amount of tungsten nanoparticles was changed to 0.0001 part.
- Example 11 A laminate 11 was produced in the same manner as in Example 1 except that the base film 1 was changed to the base film 11 obtained by the following method (solution casting film forming method).
- a main dope 1 having the following composition was prepared. That is, first, methylene chloride and ethanol were added to the pressure dissolution tank. Next, ARTON-G7810 as a cycloolefin resin was added to the pressurized dissolution tank with stirring. Subsequently, the cycloaliphatic monomer dicyclopentadiene and the tungsten nanoparticle dispersion were added, and this was heated to 60 ° C. and completely dissolved while stirring. The heating temperature was raised from room temperature at 5 ° C./min, dissolved in 30 minutes, and then lowered at 3 ° C./min. The viscosity of the obtained solution was 7000 cp, and the water content was 0.50%.
- the main dope 1 was uniformly cast on a stainless steel belt support at a temperature of 31 ° C. and a width of 1800 mm.
- the temperature of the stainless steel belt was controlled at 28 ° C.
- the conveyance speed of the stainless steel belt was 20 m / min.
- the solvent was evaporated on the stainless steel belt support until the amount of residual solvent in the cast film was 30% by mass.
- the cast film was peeled from the stainless steel belt support with a peel tension of 128 N / m.
- the peeled cast film was dried at a drying temperature of 160 ° C. while evaporating the solvent at 35 ° C. and stretching it 1.25 times in the width direction (TD direction) by tenter stretching.
- the residual solvent amount when starting stretching by zone stretching was 10.0% by mass, and the residual solvent amount when starting stretching by tenter was 5.0% by mass.
- the obtained film was slit to a width of 1.5 m, a knurling process having a width of 10 mm and a height of 5 ⁇ m was applied to both ends of the film, and then wound on a core to obtain a base film 11.
- the film thickness of the base film 11 was 40 ⁇ m, the winding length was 4000 m, and the width was 1500 mm.
- the film is cut into a size of 100 mm ⁇ 100 mm, and using a small biaxial stretching machine (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the edges of the four sides of the film are held with clips, and the stretching temperature is 210 ° C. Fixed-end uniaxial stretching was continuously performed at a magnification of 2.7 times to obtain a base film 11 having a thickness of 15 ⁇ m.
- Example 3 A laminate 23 was produced in the same manner as in Example 1 except that the draw ratio during production of the base film 1 was changed to 1.7 times and the thickness of the base film 1 was changed to 29 ⁇ m.
- a laminate 24 was produced in the same manner as in Example 1 except that the resin of the base film 1 was changed to a polyethylene terephthalate resin “TRN-8580FH (Teijin)”.
- the thickness of the base film is defined as d ( ⁇ m), and the base layer is set to a depth of d / 5 ( ⁇ m) from the surface opposite to the contact side with the cured resin layer in the base film, and the base film is cured.
- the concentration ratio of the alicyclic monomer in the base material lower layer and the base material upper layer is determined by the following method. I went there.
- TOF-SIMS Time of Flight-Secondary Ion Mass Spectrometry
- the measurement of TOF-SIMS can be observed, for example, by using TRIFTII type TOF-SIMS manufactured by Phi Evans and detecting fragments caused by alicyclic monomers present in the film cross section.
- the TOF-SIMS method is described in detail in “Surface Analysis Technology Selection, Secondary Ion Mass Spectrometry” Maruzen Co., Ltd. (1999), edited by the Surface Science Society of Japan.
- the surface from the surface on the contact side with the base film to the center in the thickness direction is the resin lower layer, and the surface on the side opposite to the contact side with the base material to the center in the thickness direction is the resin upper layer.
- the alicyclic monomer concentration ratio between the resin lower layer and the resin upper layer was also determined by the same method as described above.
- a base film 500 mg was subjected to nitric acid decomposition with a sealed microwave decomposition apparatus, and then metal was quantified with ICP-MS (inductively coupled plasma mass spectrometer).
- ICP-MS inductively coupled plasma mass spectrometer
- the laminates 1 to 11 and 21 to 24 are conditioned in an atmosphere of 23 ° C. and 55% RH for 12 hours, and then vertically and horizontally at intervals of 1 mm on the surface of the cured resin layer of each laminate by a method according to JIS K 5400. 11 cuts were made, 1 mm square, 100 grids were prepared, and cellophane tape was applied and peeled off quickly at an angle of 90 degrees. After changing the cellophane tape every time it is peeled off, the tape is peeled off 6 times, and then the adhesiveness (difficulty of delamination) is determined according to the following criteria from the area of the grids remaining without peeling. Evaluated.
- JIS is an abbreviation for Japanese Industrial Standards indicating Japanese Industrial Standards.
- "Evaluation criteria" 5 The grid pattern (cured resin layer) was not peeled off at all. 4: The area ratio of the peeled grid was less than 2%. 3: The area ratio of the peeled grid was 2% or more and less than 5%. 2: The area ratio of the peeled grid was 5% or more and less than 10% (poor adhesion). 1: The area ratio of the peeled grid was 10% or more (adhesion failure).
- ITO Indium Tin Oxide
- the ITO laminates 1 to 11 and 21 to 24 are set on an MIT folding fatigue tester (manufactured by Toyo Seiki) at 25 ° C.
- the bending resistance of the laminate was evaluated based on the following criteria based on the number of bendings when the rate of increase in the resistance value of ITO when bent at a tip radius of 0.35 mm and a load of 4.9 N was 10% or more. did. "Evaluation criteria" 3: The number of bendings was 300 times or more (the bending resistance was very good). 2: The number of bendings was 200 to 299 (bending resistance was good). 1: The number of bendings was less than 200 (bending resistance was poor).
- Table 1 shows the evaluation results for the laminates 1 to 11 and 21 to 24.
- COP refers to a cycloolefin resin
- PET refers to polyethylene terephthalate
- DCP refers to dicyclopentadiene
- TCP refers to tetracyclododecene
- W Refers to tungsten
- Mo molybdenum
- Cr refers to chromium.
- Comparative Examples 1 to 4 adhesion or bending resistance is poor.
- the alicyclic monomer is not contained in both the base film and the cured resin layer, and the alicyclic monomer in each layer does not interact. It is considered that the adhesion is lowered.
- Comparative Example 2 an alicyclic monomer is contained in both the base film and the cured resin layer, but since the base film does not contain a specific metal (tungsten), the alicyclic ring in the base film. It is considered that the effect of promoting the diffusion of the formula monomer to the cured resin layer side is not obtained, and as a result, the effect of improving the adhesion is not sufficiently obtained.
- the thickness of the base film is as large as 29 ⁇ m, and when the force in the bending direction is applied to the base film, the base film is easily broken and damaged.
- the base film contains a polyethylene terephthalate resin.
- this resin when this resin is used, the effect of diffusing the alicyclic monomer of the base film into the cured resin layer cannot be obtained. It is considered that the effect of improving the adhesion due to the interaction between the alicyclic monomer and the alicyclic monomer of the cured resin layer is not obtained.
- the base film has a thickness of 5 to 24 ⁇ m
- the base film contains a cycloolefin resin, a metal of Group 6 of the periodic table, and an alicyclic monomer, and is cured. Since the resin layer contains an acrylic resin and an alicyclic monomer, adhesion is improved by the interaction between the alicyclic monomer of the base film and the alicyclic monomer of the cured resin layer. Thus, it is considered that delamination between the base film and the cured resin layer is suppressed.
- the metal in the base film it is possible to promote diffusion of the alicyclic monomer of the base film to the cured resin layer side, thereby further improving the adhesion. It is thought that there is. Moreover, it is thought that the laminated body becomes flexible and the bending resistance is improved by thinning the base film.
- the concentration of the alicyclic monomer in the upper layer of the substrate in the substrate film may be different from the concentration of the alicyclic monomer in the lower layer of the substrate. It can be said that it is desirable from the viewpoint of improving adhesiveness (in terms of suppressing delamination).
- the concentration of the alicyclic monomer is higher in the base material upper layer than in the base material lower layer as in Examples 1-2, 5-11, the base film interacting with the alicyclic monomer in the cured resin layer Since the amount of the alicyclic monomer increases, it is considered that the effect of improving the adhesion due to the above interaction is enhanced as compared with Example 4.
- Example 3 when the concentration of the alicyclic monomer is lower in the base material upper layer than in the base material lower layer, the alicyclic monomer in the base material upper layer easily diffuses into the cured resin layer, and the cured resin Since it becomes easy to interact with the alicyclic monomer of the layer, it is considered that the effect of improving the adhesion due to the above interaction is enhanced as compared with Example 4.
- Example 1 the effect of improving the bending resistance is higher than that in Example 2.
- the alicyclic monomer does not exist in the coating liquid 1 which forms a cured resin layer, after apply
- the alicyclic monomer in a base film As a result of diffusion into the coating liquid 1, it is considered that the alicyclic monomer was present only in the resin lower layer of the cured resin layer.
- the presence of the alicyclic monomer only in the resin lower layer can improve the adhesion while reducing the content of the alicyclic monomer in the cured resin layer, and the alicyclic monomer in the cured resin layer can be improved. By reducing the content, brittle deterioration of the cured resin layer is suppressed, and it is presumed that the bending resistance is thereby improved.
- the base material includes a cycloolefin resin, a metal of Group 6 of the periodic table, and an alicyclic monomer.
- the cured resin layer includes an acrylic resin and an alicyclic monomer.
- the thickness of the base material is d ( ⁇ m), From the surface opposite to the contact side with the cured resin layer in the substrate to a depth of d / 5 ( ⁇ m) as the substrate lower layer, When the base material upper layer is from the surface on the contact side with the cured resin layer in the base material to a depth of d / 5 ( ⁇ m), 2.
- the surface from the surface in contact with the substrate to the center in the thickness direction is the resin lower layer, and the surface on the side opposite to the contact side with the substrate to the center in the thickness direction is the resin upper layer.
- the laminate of the present invention can be used, for example, as a base film on which electrodes of a touch panel are formed.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Polarising Elements (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
図1は、本実施形態の積層体1の概略の構成を示す断面図である。積層体1は、基材2と、基材2上に積層される硬化樹脂層3とを備えている。基材2の厚みは、5~24μmである。基材2は、シクロオレフィン系樹脂と、周期表第6族の金属2Mと、脂環式モノマー2Pとを含んでいる。硬化樹脂層3は、アクリル系樹脂と、脂環式モノマー3Pとを含んでいる。
積層体1の基材2は、シクロオレフィン系樹脂を含む。シクロオレフィン系樹脂としては、次のような(共)重合体が挙げられる。
積層体1の硬化樹脂層3は、アクリル系樹脂を含む。アクリル系樹脂としては、アクリレート系の活性線硬化性化合物の硬化物(例えば紫外線硬化樹脂)を用いることができる。例えば、多官能(メタ)アクリレート系、ウレタン(メタ)アクリレート系、エポキシ(メタ)アクリレート系、ポリエステル(メタ)アクリレート系の活性線硬化性化合物の硬化物を用いることができる。また、ポリマータイプのアクリレートの硬化物を用いてもよい。
基材2および硬化樹脂層3に含まれる脂環式モノマーとしては、上記した一般式(1)で表されるモノマーを用いることができる。ここで、一般式(1)中、R1~R4は、それぞれ独立に、水素原子、炭化水素基、ハロゲン原子、ヒドロキシ基、エステル基、アルコキシ基、シアノ基、アミド基、イミド基、シリル基または極性基(すなわち、ハロゲン原子、ヒドロキシ基、エステル基、アルコキシ基、シアノ基、アミド基、イミド基、またはシリル基)で置換された炭化水素基である。
(溶液流延製膜法)
図2は、本実施形態の基材2を構成する光学フィルムの製造装置10の概略の構成を示す説明図である。また、図3は、光学フィルムの製造工程の流れを示すフローチャートである。本実施形態の光学フィルムの製造方法は、図3に示すように、攪拌調製工程(S1)、流延工程(S2)、剥離工程(S3)、延伸工程(S4)、乾燥工程(S5)、切断工程(S6)、エンボス加工工程(S7)、巻取工程(S8)を含む。以下、図2および図3を参照しながら、各工程について説明する。
攪拌調製工程では、攪拌装置11の攪拌槽11aにて、少なくとも樹脂および溶媒を攪拌し、支持体13(エンドレスベルト)上に流延するドープを調製する。上記樹脂としては、上記したシクロオレフィン系樹脂を用いることができる。上記溶媒としては、良溶媒および貧溶媒の混合溶媒を用いることができる。なお、良溶媒とは、樹脂を溶解させる性質(溶解性)を有する有機溶媒を言い、1,3-ジオキソラン、THF(テトラヒドロフラン)、メチルエチルケトン、アセトン、酢酸メチル、塩化メチレン(ジクロロメタン、メチレンクロライド)、トルエンなどがこれに相当する。一方、貧溶媒とは、単独では樹脂を溶解させる性質を有していない溶媒を言い、メタノールやエタノールなどがこれに相当する。
流延工程では、攪拌調製工程で調製されたドープを、加圧型定量ギヤポンプ等を通して、導管によって流延ダイ12に送液し、無限に移送する回転駆動ステンレス鋼製エンドレスベルトよりなる支持体13上の流延位置に、流延ダイ12からドープを流延する。そして、支持体13は、流延されたドープ(流延ドープ)を支持しながら搬送する。これにより、支持体13上に流延膜としてのウェブ15が形成される。
上記の流延工程にて、支持体13上でウェブ15が剥離可能な膜強度となるまで乾燥固化あるいは冷却凝固させた後、剥離工程では、ウェブ15を、自己支持性を持たせたまま剥離ロール14によって剥離する。剥離されたウェブ15は、フィルム基材を構成する。
ここで、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
延伸工程では、支持体13から剥離されたウェブ15(フィルム基材)を、テンター16によって、搬送方向および/または幅手方向に延伸する。延伸工程では、ウェブ15の両側縁部をクリップ等で固定して延伸するテンター方式が、フィルムの平面性や寸法安定性を向上させるために好ましい。なお、テンター16内では、延伸に加えて乾燥を行ってもよい。
テンター16にて延伸されたウェブ15は、乾燥装置17にて乾燥される。乾燥装置17内では、側面から見て千鳥状に配置された複数の搬送ロールによってウェブ15が搬送され、その間にウェブ15が乾燥される。乾燥装置17での乾燥方法は、特に制限はなく、一般的に熱風、赤外線、加熱ロール、マイクロ波等を用いてウェブ15を乾燥させる。簡便さの点から、熱風でウェブ15を乾燥させる方法が好ましい。
乾燥装置17と巻取装置20との間には、切断部18およびエンボス加工部19がこの順で配置されている。切断部18では、製膜された光学フィルムを搬送しながら、その幅手方向の両端部を、スリッターによって切断する切断工程が行われる。光学フィルムにおいて、両端部の切断後に残った部分は、フィルム製品となる製品部を構成する。一方、光学フィルムから切断された部分は、シュータにて回収され、再び原材料の一部としてフィルムの製膜に再利用される。
最後に、エンボス加工が終了した光学フィルムを、巻取装置20によって巻き取り、光学フィルムの元巻(フィルムロール)を得る。すなわち、巻取工程では、光学フィルムを搬送しながら巻芯に巻き取ることにより、フィルムロールが製造される。光学フィルムの巻き取り方法は、一般に使用されているワインダーを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等の張力をコントロールする方法があり、それらを使い分ければよい。光学フィルムの巻長は、1000~7200mであることが好ましい。また、その際の幅は500~3200mm幅であることが望ましく、膜厚は30~150μmであることが望ましい。
本実施形態の基材2(光学フィルム)は、溶融流延製膜法によって製造することもできる。溶融流延製膜法は、樹脂および可塑剤などの添加剤を含む樹脂組成物を、流動性を示す温度まで加熱溶融し、その後、流動性を有する溶融物を流延してフィルムを製膜する方法である。溶融流延によって形成される方法は、溶融押出(成形)法、プレス成形法、インフレーション法、射出成形法、ブロー成形法、延伸成形法などに分類できる。これらの中で、機械的強度および表面精度などに優れるフィルムが得られる溶融押出法が好ましい。また、溶融押出法で用いる複数の原材料は、通常、予め混錬してペレット化しておくことが好ましい。
以下、本発明の具体的な実施例について、比較例と併せて説明する。なお、本発明は、以下の実施例に限定されるわけではない。なお、以下での説明において、「部」は「質量部」または「重量部」を指す。
(基材)
〈シクロオレフィン系樹脂1の製造〉
乾燥後窒素置換したガラス製耐圧反応容器に、ジシクロペンタジエン(エンド体含有率99%以上)の75%シクロヘキサン溶液40部(ジシクロペンタジエンの量として30部)とアリルトリメトキシシラン3.50部とを仕込み、さらに、シクロヘキサン75部を加え、続いて、ジエチルアルミニウムエトキシドの19%n-ヘキサン溶液0.50部を加えて攪拌した。
・シクロオレフィン系樹脂1 100部
・酸化防止剤「irganox1010(BASFジャパン社)」 1.0部
・脂環式モノマー(ジシクロペンタジエン) 0.05部
・タングステンナノ粒子(粒径20nm) 0.01部
上記を混合した後、混合物を内径3mmのダイ穴を4つ備えた二軸押し出し機(東芝機械社製:TEM-37B)に投入し、熱溶融押し出し形成により、ストランド状の成形体を得た後、これをストランドカッターにて細断し、ペレットを得た。二軸押出し機の運転条件は、以下の通りである。
・バレル設定温度:270~280℃
・ダイ設定温度:250℃
・スクリュー回転数:145rpm
・フィーダー回転数:50rpm
・バレル温度設定:280~290℃
・ダイ温度:270℃
・スクリュー回転数:30rpm
〈塗布液1の調製〉
下記組成の塗布液1を調製した。
・アクリル1(ウレタンアクリレートオリゴマー「UV-7640B(日本合成化学工業社)」 50.0部
・アセトン 45.0部
・酢酸プロピル 20.0部
・アクリル粒子「テクポリマーSSX-101(積水化成社)」 0.1部
・レベリング剤「GRANDIC PC11-6204L(DIC社)」 0.2部
基材フィルム1の一方の面に塗布液1を塗布し、80℃で1分間乾燥したのち、直ちにオゾンタイプ高圧水銀灯(16W/cm、15cm集光型、積算光量200mJ/cm2)で紫外線照射を行い、厚み1.0μmの硬化樹脂層(ハードコート層)を形成し、積層体1とした。
塗布液1に追加でジシクロペンタジエンを0.01部添加した以外は、実施例1と同様にして、積層体2を作製した。
基材フィルム1中のタングステンナノ粒子の量を0.1部に変更した以外は、実施例1と同様にして、積層体3を作製した。
基材フィルム1中の脂環式モノマーをテトラシクロドデセンに変更した以外は、実施例1と同様にして、積層体4を作製した。
基材フィルム1中のタングステンナノ粒子をモリブデンナノ粒子(粒径20nm)に変更した以外は、実施例1と同様にして、積層体5を作製した。
基材フィルム1中のタングステンナノ粒子をクロムナノ粒子(粒径20nm)に変更した以外は、実施例1と同様にして、積層体6を作製した。
基材フィルム1の作製時の延伸倍率を2.1倍に変更して、基材フィルム1の厚みを24μmにした以外は、実施例1と同様にして、積層体7を作製した。
基材フィルム1の作製時の延伸倍率を10倍に変更して、基材フィルム1の厚みを5μmにした以外は、実施例1と同様にして、積層体8を作製した。
下記組成の塗布液2を調製した。
〈塗布液2の調製〉
・アクリル2(ポリマー型アクリレート「ユニディックV6840(DIC社)」) 20.0部
・1-メトキシー2-プロパノール 80.0部
・アクリル粒子「テクポリマーSSX-101(積水化成社)」 0.1部
・レベリング剤「GRANDIC PC11-6204L(DIC社)」 0.2部
そして、塗布液1の代わりに塗布液2を用いて硬化樹脂層を形成した以外は、実施例1と同様にして、積層体9を作製した。
タングステンナノ粒子の量を0.0001部に変更した以外は、実施例1と同様にして、積層体10を作製した。
基材フィルム1を下記方法(溶液流延製膜法)で得られた基材フィルム11に変更した以外は、実施例1と同様にして、積層体11を作製した。
〈タングステン粒子分散液の調製〉
・タングステン粒子(粒径20nm) 4.0部
・メチレンクロライド 48.0部
・エタノール 48.0部
上記の各構成材料をディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。これを日本精線(株)製のファインメットNFで濾過し、タングステン粒子含有量が4.0質量%のタングステン粒子分散液を調製した。
下記組成の主ドープ1を調製した。すなわち、まず、加圧溶解タンクにメチレンクロライド、エタノールを添加した。次いで、加圧溶解タンクに、シクロオレフィン系樹脂としてARTON-G7810を撹拌しながら投入した。次いで、脂環式モノマーのジシクロペンタジエン、タングステンナノ粒子分散液を投入して、これを60℃に加熱し、撹拌しながら、完全に溶解した。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。得られた溶液の粘度は、7000cpであり、含水率は0.50%であった。これを、(株)ロキテクノ製のSHP150を使用して、濾過流量300L/m2・h、濾圧1.0×106Paにて濾過し、主ドープ1を得た。
・シクロオレフィン系樹脂2(ARTON-G7810(JSR社))
100部
・メチレンクロライド 270部
・エタノール 20部
・脂環式モノマー(ジシクロペンタジエン) 0.05部
・タングステンナノ粒子分散液 0.25部
基材フィルム1に脂環式モノマー(ジシクロペンタジエン)を添加しなかった。それ以外は実施例1と同様にして、積層体21を作製した。
基材フィルム1にタングステンナノ粒子を添加しなかった。それ以外は実施例1と同様にして、積層体22を作製した。
基材フィルム1の作製時の延伸倍率を1.7倍に変更して、基材フィルム1の厚みを29μmにした以外は、実施例1と同様にして、積層体23を作製した。
基材フィルム1の樹脂をポリエチレンテレフタレート樹脂「TRN-8580FH(帝人社)」に変更した以外は、実施例1と同様にして、積層体24を作製した。
(脂環式モノマー濃度比の定量)
基材フィルムの厚みをd(μm)とし、基材フィルムにおける硬化樹脂層との接触側とは反対側の面からd/5(μm)の深さまでを基材下層とし、基材フィルムにおける硬化樹脂層との接触側の面からd/5(μm)の深さまでを基材上層としたとき、基材下層と基材上層とでの脂環式モノマーの濃度比の定量を、以下の手法で行った。すなわち、積層体1~11、21~24のフィルム断面に対するTOF-SIMS(Time of Flight - Secondary Ion Mass Spectrometry)測定により、上記定量を行った。TOF-SIMSの測定は、例えばPhi Evans社製TRIFTII型TOF-SIMSを用い、フィルム断面に存在する脂環式モノマーに起因するフラグメントを検出することで観察することができる。TOF-SIMS法については、日本表面科学会編「表面分析技術選書 二次イオン質量分析法」丸善株式会社(1999年発行)に詳しく記載されている。
基材フィルム500mgを密閉式マイクロ波分解装置にて硝酸分解した後、ICP-MS(誘導結合プラズマ質量分析計)にて金属の定量を行った。
(密着性)
積層体1~11、21~24を23℃55%RHの雰囲気下で12時間調湿後、JIS K 5400に準拠する方法で、各積層体の硬化樹脂層の表面に1mmの間隔で縦横に11本の切れ目を入れ、1mm角、100個の碁盤目を作製し、セロハンテープを貼り付けて90度の角度ですばやく剥がした。セロハンテープを1回剥がすごとに交換しながら、該テープの剥離作業を6回実施した後、剥れずに残っている碁盤目の面積から、以下の基準で密着性(層間剥離のしにくさ)を評価した。なお、JISは、日本工業規格を示すJapanese Industrial Standardsの略である。
《評価基準》
5:碁盤目(硬化樹脂層)が全く剥離されなかった。
4:剥離された碁盤目の面積割合が2%未満であった。
3:剥離された碁盤目の面積割合が2%以上5%未満であった。
2:剥離された碁盤目の面積割合が5%以上10%未満であった(密着性不良)。
1:剥離された碁盤目の面積割合が10%以上であった(密着性不良)。
積層体1~11、21~24の硬化樹脂層上にITO(Indium Tin Oxide)電極を成膜し、ITO積層体1~11、21~24を作製した。ITO積層体1~11、21~24を、25℃60%RH下、MIT耐折疲労試験機(東洋精機製)にセットし、折り曲げ速度170rpm、折り曲げ角度135°、チャック先端半径(折り曲げクランプの先端半径)0.35mm、および荷重4.9Nの条件で折り曲げたときのITOの抵抗値の上昇率が10%以上になる際の折り曲げ回数から、積層体の耐折り曲げ性を以下の基準で評価した。
《評価基準》
3:折り曲げ回数が300回以上であった(耐折り曲げ性が非常に良好である)。
2:折り曲げ回数が200~299回であった(耐折り曲げ性が良好である)。
1:折り曲げ回数が200回未満であった(耐折り曲げ性が不良である)。
以上で説明した本実施形態の積層体は、以下のように表現することができる。
前記基材の上に積層される硬化樹脂層とを備え、
前記基材は、シクロオレフィン系樹脂と、周期表第6族の金属と、脂環式モノマーとを含み、
前記硬化樹脂層は、アクリル系樹脂と、脂環式モノマーとを含むことを特徴とする積層体。
前記基材における前記硬化樹脂層との接触側とは反対側の面からd/5(μm)の深さまでを基材下層とし、
前記基材における前記硬化樹脂層との接触側の面からd/5(μm)の深さまでを基材上層としたとき、
前記基材上層と前記基材下層とで、前記脂環式モノマーの濃度に差があることを特徴とする前記1に記載の積層体。
2 基材
2a 基材下層
2b 基材上層
2M 金属
2P 脂環式モノマー
3 硬化樹脂層
3a 樹脂下層
3b 樹脂上層
3P 脂環式モノマー
Claims (8)
- 厚みが5~24μmである基材と、
前記基材の上に積層される硬化樹脂層とを備え、
前記基材は、シクロオレフィン系樹脂と、周期表第6族の金属と、脂環式モノマーとを含み、
前記硬化樹脂層は、アクリル系樹脂と、脂環式モノマーとを含む、積層体。 - 前記基材の厚みをd(μm)として、
前記基材における前記硬化樹脂層との接触側とは反対側の面からd/5(μm)の深さまでを基材下層とし、
前記基材における前記硬化樹脂層との接触側の面からd/5(μm)の深さまでを基材上層としたとき、
前記基材上層と前記基材下層とで、前記脂環式モノマーの濃度に差がある、請求項1に記載の積層体。 - 前記基材下層よりも前記基材上層のほうが、前記脂環式モノマーの濃度が大きい、請求項2に記載の積層体。
- 前記基材下層よりも前記基材上層のほうが、前記脂環式モノマーの濃度が小さい、請求項2に記載の積層体。
- 前記硬化樹脂層において、前記基材との接触側の面から厚み方向の中心までを樹脂下層とし、前記基材との接触側とは反対側の面から厚み方向の中心までを樹脂上層としたとき、前記樹脂下層にのみ前記脂環式モノマーが存在する、請求項1から4のいずれかに記載の積層体。
- 前記基材が含む前記脂環式モノマーは、ジシクロペンタジエンまたはテトラシクロドデセンである、請求項1から5のいずれかに記載の積層体。
- 前記硬化樹脂層が含む前記脂環式モノマーは、前記基材が含む前記脂環式モノマーと同じである、請求項1から6のいずれかに記載の積層体。
- 前記基材が含む前記金属は、タングステン、モリブデンまたはクロムである、請求項1から7のいずれかに記載の積層体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020523506A JP7095737B2 (ja) | 2018-06-08 | 2019-02-13 | 積層体 |
CN201980036996.2A CN112218759B (zh) | 2018-06-08 | 2019-02-13 | 层叠体 |
KR1020207034848A KR102468236B1 (ko) | 2018-06-08 | 2019-02-13 | 적층체 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018110365 | 2018-06-08 | ||
JP2018-110365 | 2018-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019234976A1 true WO2019234976A1 (ja) | 2019-12-12 |
Family
ID=68770170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005105 WO2019234976A1 (ja) | 2018-06-08 | 2019-02-13 | 積層体 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7095737B2 (ja) |
KR (1) | KR102468236B1 (ja) |
CN (1) | CN112218759B (ja) |
TW (1) | TWI703040B (ja) |
WO (1) | WO2019234976A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008012675A (ja) * | 2006-06-30 | 2008-01-24 | Dainippon Printing Co Ltd | 光学積層体、及びその製造方法 |
JP2014189566A (ja) * | 2013-03-26 | 2014-10-06 | Dic Corp | 環状オレフィン樹脂用活性エネルギー線硬化性組成物及びそれを用いた環状オレフィン樹脂フィルム |
JP2018043236A (ja) * | 2016-09-07 | 2018-03-22 | 東山フイルム株式会社 | 透明導電性フィルム用の長尺のハードコートフィルムの製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1134207A (ja) | 1997-07-23 | 1999-02-09 | Oike Ind Co Ltd | 透明導電性フイルム |
CN101687400B (zh) * | 2007-07-11 | 2013-01-02 | 木本股份有限公司 | 使用嵌入成型用薄膜的树脂成型品 |
US20130115469A1 (en) * | 2010-08-06 | 2013-05-09 | Dai Nippon Printing Co., Ltd. | Curable resin composition for hard coat layer, method for producing hard coat film, hard coat film, polarizing plate and display panel |
KR20150119214A (ko) * | 2013-02-12 | 2015-10-23 | 신닛테츠 수미킨 가가쿠 가부시키가이샤 | 수지 적층체 |
JP2014213598A (ja) * | 2013-04-30 | 2014-11-17 | 新日鉄住金化学株式会社 | 樹脂積層体 |
KR102365604B1 (ko) * | 2014-07-18 | 2022-02-18 | 쇼와덴코머티리얼즈가부시끼가이샤 | 적층 필름 |
US10478918B2 (en) * | 2014-11-20 | 2019-11-19 | Zeon Corporation | Method for manufacturing optical film |
JP2016200709A (ja) * | 2015-04-10 | 2016-12-01 | コニカミノルタ株式会社 | 偏光板保護フィルム、それが具備された偏光板及び偏光板保護フィルムの製造方法 |
-
2019
- 2019-02-13 WO PCT/JP2019/005105 patent/WO2019234976A1/ja active Application Filing
- 2019-02-13 KR KR1020207034848A patent/KR102468236B1/ko active IP Right Grant
- 2019-02-13 CN CN201980036996.2A patent/CN112218759B/zh active Active
- 2019-02-13 JP JP2020523506A patent/JP7095737B2/ja active Active
- 2019-06-03 TW TW108119165A patent/TWI703040B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008012675A (ja) * | 2006-06-30 | 2008-01-24 | Dainippon Printing Co Ltd | 光学積層体、及びその製造方法 |
JP2014189566A (ja) * | 2013-03-26 | 2014-10-06 | Dic Corp | 環状オレフィン樹脂用活性エネルギー線硬化性組成物及びそれを用いた環状オレフィン樹脂フィルム |
JP2018043236A (ja) * | 2016-09-07 | 2018-03-22 | 東山フイルム株式会社 | 透明導電性フィルム用の長尺のハードコートフィルムの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112218759A (zh) | 2021-01-12 |
KR20210003275A (ko) | 2021-01-11 |
JPWO2019234976A1 (ja) | 2021-07-15 |
CN112218759B (zh) | 2023-03-31 |
TW202000465A (zh) | 2020-01-01 |
JP7095737B2 (ja) | 2022-07-05 |
TWI703040B (zh) | 2020-09-01 |
KR102468236B1 (ko) | 2022-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7191795B2 (ja) | 環状ポリオレフィンフィルム | |
JP7327629B2 (ja) | 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルムとその用途 | |
JP2022137055A (ja) | ポリエステルフィルムとその用途 | |
JP7371641B2 (ja) | アクリル樹脂フィルムの製造方法、応用品、応用品の製造方法、ガスバリアー性フィルムの製造方法、導電性フィルムの製造方法、有機エレクトロルミネッセンス素子の製造方法及び偽造防止媒体の製造方法 | |
WO2011030684A1 (ja) | 光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置 | |
KR102349239B1 (ko) | 수지 조성물, 필름, 편광판 보호 필름, 편광판 및 액정 표시 장치, 비스형 지환 카르도페놀 화합물 | |
WO2015159645A1 (ja) | 偏光板及び液晶表示装置 | |
JP2010274615A (ja) | 光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置 | |
WO2012073437A1 (ja) | 光学フィルム、画像表示装置及びタッチパネルを含む画像表示装置 | |
TWI599485B (zh) | Optical film, polarizer and image display device | |
US12066864B2 (en) | Folding-type display and portable terminal device | |
KR20160038753A (ko) | 광학 필름의 제조 방법, 광학 필름, 광학 필름을 구비하여 이루어지는 편광판 및 액정 표시 장치 | |
JP2019174636A (ja) | 斜め延伸フィルム、偏光板、異形表示装置および斜め延伸フィルムの製造方法 | |
TWI675742B (zh) | 輥狀丙烯酸系樹脂薄膜之製造方法及偏光板之製造方法 | |
JP7095737B2 (ja) | 積層体 | |
JP2017040727A (ja) | 光学フィルム及び光学フィルムの製造方法 | |
WO2016132607A1 (ja) | 光学フィルム、光学フィルムの製造方法、偏光板及び液晶表示装置 | |
CN110383110B (zh) | 抗静电膜、偏振片、触控面板以及液晶显示装置 | |
WO2016132606A1 (ja) | 偏光板及び偏光板の製造方法 | |
TWI829817B (zh) | 堆疊體及其製造方法、圓偏光板、顯示裝置以及觸控面板 | |
JP2013088438A (ja) | 光学フィルム、その製造方法及び画像表示装置 | |
WO2011093222A1 (ja) | 光制御フィルムとその製造方法 | |
WO2016132893A1 (ja) | 長尺斜め延伸フィルムの製造方法 | |
CN114764161A (zh) | 斜向拉伸膜的制造方法 | |
JP5664182B2 (ja) | 液晶離型用ポリエステルフィルムおよびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19814527 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020523506 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20207034848 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19814527 Country of ref document: EP Kind code of ref document: A1 |