WO2012017912A1 - 冷凍機制御装置 - Google Patents

冷凍機制御装置 Download PDF

Info

Publication number
WO2012017912A1
WO2012017912A1 PCT/JP2011/067266 JP2011067266W WO2012017912A1 WO 2012017912 A1 WO2012017912 A1 WO 2012017912A1 JP 2011067266 W JP2011067266 W JP 2011067266W WO 2012017912 A1 WO2012017912 A1 WO 2012017912A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
load
refrigerators
value
unit
Prior art date
Application number
PCT/JP2011/067266
Other languages
English (en)
French (fr)
Inventor
松尾 実
上田 憲治
智 二階堂
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP11814539.0A priority Critical patent/EP2602565B1/en
Priority to KR1020127030363A priority patent/KR101496532B1/ko
Priority to CN201180031137.8A priority patent/CN102971589B/zh
Priority to US13/806,424 priority patent/US20130098084A1/en
Publication of WO2012017912A1 publication Critical patent/WO2012017912A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/22Disposition of valves, e.g. of on-off valves or flow control valves between evaporator and compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • F25B1/053Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0411Refrigeration circuit bypassing means for the expansion valve or capillary tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2515Flow valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a refrigerator control device that controls a refrigerator in a refrigerator system including a plurality of refrigerators.
  • Patent Document 1 discloses a technique for calculating the optimum operating range (range in which efficient operation can be performed) of the refrigerator, and a technique for determining whether or not it is necessary to change the number of operating refrigerators based on the calculated optimum operating range. Has been.
  • Patent Document 1 does not disclose a method for optimizing the efficiency of the entire refrigerator system. Therefore, if the technique of Patent Document 1 is used, it is possible to evaluate and optimize the operating conditions of individual refrigerators, but it is not possible to immediately perform optimal control over the entire refrigerator system.
  • a refrigeration system with refrigeration units with different characteristics such as refrigeration systems with multiple types of refrigeration units
  • the efficiency of the entire refrigeration system differs depending on the chiller to be operated. It needs to be done appropriately according to the situation.
  • a variable-speed refrigerator a refrigerator that can control the compressor at a variable speed
  • the present invention has been made in view of such circumstances, and the object thereof is to appropriately select a refrigerator to be increased or decreased in accordance with the situation in order to efficiently operate the entire refrigerator system. It is to provide a refrigerator control device that can be selected.
  • the present invention has been made to solve the above-described problem, and a refrigerator control device according to an aspect of the present invention controls a plurality of refrigerators to supply cold or hot heat.
  • the required load for the refrigerator selected by the refrigerator selecting unit that selects the refrigerator to be operated among the plurality of refrigerators, and the refrigerator selected by the refrigerator selecting unit
  • an operation command unit that outputs an operation signal corresponding to the unit
  • the refrigerator selection unit determines whether to change the number of the currently selected refrigerators based on the required load
  • the operation state is determined based on the relationship between the load of each refrigerator and the efficiency index value acquired in advance and the required load.
  • Decide which refrigerator to change A freezing machine determination unit comprises a.
  • an allowable efficiency range for all the refrigerators currently in operation when the refrigerator determining unit determines that the number change determination unit increases the number of the refrigerators, an allowable efficiency range for all the refrigerators currently in operation.
  • An operation refrigerator selection unit that selects a refrigerator that operates the refrigerator that exhibits the highest efficiency index value may be included.
  • the refrigerator control device when the refrigerator determining unit determines that the number change determination unit increases the number of the refrigerators, it selects all currently stopped refrigerators and selects all the currently operating refrigerators.
  • the operation refrigerator selection unit obtains the operation time of the corresponding refrigerator when there are a plurality of selectable refrigerators, and selects the refrigerator having the shortest operation time. You may choose.
  • the refrigerator determining unit is operated by stopping one of the currently operating refrigerators when the number change determining unit determines to reduce the number of the refrigerators.
  • the overall efficiency index value is obtained for all the chiller operation patterns obtained by the step-down operation pattern extraction unit for obtaining all the chiller operation patterns that can be combined as the chiller for maintaining
  • a stop chiller selection unit that selects a chiller operation pattern with the highest efficiency index value and a chiller that stops the corresponding chiller may be provided.
  • a surplus load value calculating unit that obtains a surplus load value obtained by subtracting the optimum load range low value total obtained by summing up the optimum load range low value set for each refrigerator as a load threshold on the low load side that is the range of the surplus load range, and the surplus Based on the surplus load value obtained by the load value calculation unit and the relationship between the load and the efficiency index value, an efficiency index value is obtained when each of the currently operating refrigerators is operated at the surplus load value.
  • a stop refrigerator selection unit that selects a refrigerator that stops the refrigerator that exhibits the lowest efficiency index value.
  • the stop refrigerator selection unit acquires an operation time of the corresponding refrigerator when there are a plurality of selectable refrigerators, and selects a refrigerator having the longest operation time. You may choose.
  • the refrigerator control device can appropriately select the refrigerator to be increased or decreased in order to efficiently operate the entire refrigerator system depending on the situation.
  • FIG. 1 It is a lineblock diagram showing a schematic structure of refrigerator system 1 in one embodiment of the present invention. It is a block diagram which shows schematic structure of the refrigerator 21-1 in the embodiment. It is a block diagram which shows schematic structure of the refrigerator control apparatus 100 in the embodiment. In the embodiment, it is a flowchart which shows the process sequence which the refrigerator control apparatus 100 selects the refrigerator which should change an operation state. In the embodiment, it is a block diagram which shows schematic structure of the refrigerator control apparatus 100 which comprises the surplus load value calculating part 132. FIG. In the same embodiment, it is a flowchart which shows the process sequence of the refrigerator control apparatus 100 in the case of determining whether a required flow volume is satisfied in addition to whether a required load is satisfied.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a refrigerator system 1 according to an embodiment of the present invention.
  • the refrigerator system 1 includes n (n is a positive integer) number of refrigerators 21-1 to 21-n, cold water pumps 31-1 to 31-n, a bypass valve 41, and a refrigerator control device. 100.
  • the refrigerator system 1 is connected to an external load 51.
  • the refrigerators 21-1 to 21-n cool the cold water and supply it to the external load 51. Thereby, the external load 51 is cooled by the cold water from the refrigerator 21.
  • the cold water pumps 31-1 to 31-n send cold water to each refrigerator.
  • the bypass valve 41 bypasses the cold water from the refrigerators 21-1 to 21-n.
  • the refrigerator control device 100 controls each part. In particular, the refrigerator control device 100 determines the operation number switching timing of the refrigerators 21-1 to 21-n and the refrigerator that performs the operation switching, and controls the number of the refrigerators 21-1 to 21-n.
  • FIG. 2 is a configuration diagram showing a schematic configuration of the refrigerator 21-1.
  • the refrigerator 21-1 includes a turbo compressor 211, a condenser 212, a subcooler 213, a high pressure expansion valve 214, a low pressure expansion valve 215, an evaporator 216, an intermediate cooler 217, An inverter 221, a hot gas bypass valve 225, a cooling heat transfer pipe 231, a cold water heat transfer pipe 232, a hot gas bypass pipe 233, and a control unit 234 are provided.
  • the turbo compressor 211 includes an electric motor 222 and an inlet guide vane (Inlet Guide Vane; IGV) 224.
  • IGV Inlet Guide Vane
  • the refrigerator 21-1 cools the refrigerant in the two-stage compression, two-stage expansion subcool cycle, and cools the cold water with the cooled refrigerant.
  • the turbo compressor 211 is a centrifugal two-stage compressor, and compresses a gaseous refrigerant.
  • the condenser 212 condenses and liquefies the high-temperature and high-pressure gas refrigerant compressed by the turbo compressor 211.
  • the subcooler 213 is provided on the downstream side of the refrigerant flow of the condenser 212, and supercools the liquid refrigerant condensed in the condenser 212.
  • the cooling heat transfer tube 231 is inserted into the condenser 212 and the subcooler 213, and cools the refrigerant with cooling water flowing in the tube.
  • the cooling water flowing through the cooling heat transfer pipe 231 cools the refrigerant, is exhausted to the outside in the cooling tower, and flows through the cooling heat transfer pipe 231 again.
  • the high pressure expansion valve 214 and the low pressure expansion valve 215 expand the liquid refrigerant from the subcooler 213.
  • the intermediate cooler 217 cools the liquid refrigerant expanded by the high pressure expansion valve 214.
  • the evaporator 216 evaporates the liquid refrigerant expanded by the low pressure expansion valve 215.
  • the cold water heat transfer tube 232 is inserted into the evaporator 216. The cold water flowing through the cold water heat transfer tube 232 is cooled by absorbing the heat of vaporization when the refrigerant evaporates. In this way, the refrigerator 21-1 cools the cold water and supplies it to the external load 51.
  • the load control of the refrigerator 21-1 is performed by controlling the rotational speed of the turbo compressor 211 and the capacity control by the inlet guide vane 224 and the hot gas bypass pipe 233 when the compressor is a refrigerator capable of variable speed control.
  • the electric motor 222 drives the turbo compressor 211.
  • the inverter 221 controls the rotational speed of the turbo compressor 211 by controlling the rotational speed of the electric motor 222.
  • the inlet guide vane 224 is provided at the refrigerant suction port of the turbo compressor 211, and controls the capacity of the refrigerator 21-1 by controlling the suction refrigerant flow rate.
  • the hot gas bypass pipe 233 is provided between the vapor phase portion of the condenser 212 and the vapor phase portion of the evaporator 216, and bypasses the refrigerant gas.
  • the hot gas bypass valve 225 controls the flow rate of the refrigerant flowing in the hot gas bypass pipe 233. When the hot gas bypass valve 225 adjusts the hot gas bypass flow rate, more detailed volume control than that by the inlet guide vane 224 can be performed.
  • load control is performed by capacity control using the inlet guide vane 224 and the hot gas bypass pipe 233.
  • the control unit 234 controls each unit.
  • the control unit 234 operates the stopped refrigerator 21-1 or stops the operating refrigerator 21-1 based on the control signal input from the refrigerator control device 100 (FIG. 1). .
  • operating the stopped refrigerator or stopping the operating refrigerator is referred to as “changing the operating state”.
  • the control unit 234 inputs from the refrigerator control device 100.
  • the inverter 221, the inlet guide vane 224, and the hot gas bypass valve 225 are controlled to control the load on the refrigerator 21-1.
  • the control unit 234 obtains optimum load related information described later.
  • the refrigerator 21-1 supplies cold water having a rated temperature (for example, 7 ° C.) to the external load 51.
  • the cooling water flow rate is measured by the flow meter F2, the cooling water outlet temperature is measured by the temperature sensor Tcout, and the cooling water inlet temperature is measured by the temperature sensor Tcin.
  • the cold water flow rate is measured by the flow meter F1
  • the cold water outlet temperature is measured by the temperature sensor Tout
  • the cold water inlet temperature is measured by Tin.
  • FIG. 3 is a configuration diagram illustrating a schematic configuration of the refrigerator control device 100.
  • the refrigerator control device 100 includes a data acquisition unit 111, a required load determination unit 112, a required load calculation unit 113, an increase stage determination unit 121, an underload value calculation unit 122, and an operating refrigerator selection.
  • the data acquisition unit 111 communicates with the refrigerators 21-1 to 21-n, the return temperature, the main pipe flow rate, the optimum load range of the refrigerator, and the efficiency of the refrigerator when operated in the optimum load range. Send and receive information such as.
  • the required load calculation unit 113 calculates a required load indicating the amount of cold or heat to be generated by the refrigerator system 1 based on the return temperature and the main pipe flow rate acquired by the data acquisition unit 111.
  • the required load determination unit 112 compares the value obtained by summing the optimum loads for the operating refrigerator and the required load, and performs processing when increasing the stage (increasing the number of units in operation) or reducing the stage ( Decide whether to perform processing when the number of operating units is reduced).
  • the stage increase determination unit 121 determines whether or not the stage increase is actually performed when the required load determination unit 112 determines to perform the process at the stage increase.
  • the underload value calculation unit 122 calculates an underload value indicating an insufficiency of load when each operating refrigerator is operated with an optimum load. Based on the underload value calculated by the underload value calculation unit 122 and the optimum load related information of each stopped chiller, the operating refrigerator selecting unit 123 satisfies the required load, and Select a refrigerator to be started for efficient operation.
  • the step reduction determination unit 131 determines whether or not the step reduction is actually performed when the required load determination unit 112 determines to perform the process at the time of step reduction.
  • the operation pattern extraction unit 151 extracts possible combinations of refrigerators that are operated so as to satisfy the required load (hereinafter, information indicating the combinations of refrigerators that are operated is referred to as “refrigerator operation patterns”). Based on the refrigerator operation pattern extracted by the operation pattern extraction unit 151 and the optimum load related information of each refrigerator being operated, the stop refrigerator selection unit 133 satisfies the required load, and In order to operate efficiently, the refrigerator to be stopped is selected.
  • the operation command unit 141 transmits a control signal for operating the refrigerator to be started, transmits a control signal for stopping the refrigerator to be stopped, and also shares the load with the operating refrigerator. The control signal of the flow rate command for changing is transmitted.
  • the required load determination unit 112, the increase determination unit 121, and the decrease determination unit 131 constitute a number change determination unit, and whether or not to change the number of currently selected refrigerators based on the required load. Select. That is, as will be described later, first, the required load determination unit 112 determines whether to perform the process at the time of increasing or decreasing the process based on the required load. When the required load determination unit 112 determines to perform the process at the time of step increase, the step increase determination unit 121 determines whether to actually perform the step increase. On the other hand, when the required load determination unit 112 determines that the process at the time of step reduction is performed, the step reduction determination unit 131 determines whether or not the step reduction is actually performed.
  • the underload value calculation unit 122, the operation refrigerator selection unit 123, the operation pattern extraction unit 151, and the stop refrigerator selection unit 133 constitute a refrigerator determination unit, based on the determination result by the number change determination unit.
  • the refrigerator that changes the operating state is determined based on the relationship between the load of each refrigerator and the efficiency index value (COP described later) and the required load. That is, as will be described later, when the stage increase determination unit 121 determines to increase the stage, the insufficient load value calculation unit 122 calculates the shortage of the load, and the operation refrigerator selection unit 123 determines that the load is insufficient.
  • a refrigerator suitable for operation in minutes is determined based on the relationship between the load of each refrigerator and the COP.
  • the operation pattern extraction unit 151 extracts the refrigerator operation pattern corresponding to the required load, and the stop refrigerator selection unit 133 extracts the extracted refrigeration.
  • the refrigerator to be stopped is determined based on the efficient refrigerator operation pattern of the entire refrigerator system 1.
  • the number change determination unit and the refrigerator determination unit constitute a refrigerator selection unit, and a refrigerator to be operated is selected from among a plurality of refrigerators according to a load request. That is, among the refrigerators 21-1 to 21-n (FIG. 1), the refrigerator determining unit selects the refrigerator to be increased or decreased based on the determination result of the number change determination unit. Select the refrigerator to be operated.
  • FIG. 4 is a flowchart illustrating a processing procedure in which the refrigerator control device 100 selects a refrigerator whose operation state is to be changed.
  • the data acquisition unit 111 transmits information such as the cooling water inlet temperature and the cooling water flow rate to each of the stopped chillers.
  • the reachable cooling water inlet temperature is calculated based on the outside air wet bulb temperature.
  • the coolant flow rate is the rated flow rate (step S101).
  • Each refrigerator 21-1 to 21-n has an optimum load range high value, optimum load range low value, optimum load range optimum value, optimum load range high value COP, optimum load range low value COP, and optimum value.
  • the load range optimum value COP is calculated and transmitted to the data acquisition unit 111.
  • COP Coefficient Of Performance
  • COP is an efficiency index value indicating the efficiency of the refrigerator, and is calculated by dividing the load (refrigeration capacity) of the refrigerator by the consumed energy.
  • the COP differs depending on the operating environment of the refrigerator, such as the cooling water inlet temperature and the cooling water flow rate, and the load required for the refrigerator.
  • each value of the operating environment and the load and the COP at each value generated based on the COP measured in advance in various operating environments and loads in the actual machine. Is stored.
  • the refrigerators 21-1 to 21-n may store in advance an expression for deriving the COP from the values of the cooling water condition and the load according to the mechanical characteristics in the table.
  • the COP a COP based on the energy consumption of the refrigerator may be used, or a COP based on the energy consumption including the energy consumption of auxiliary equipment such as a cold water pump, a cooling water pump, and a cooling tower fan may be used. .
  • the optimum load range refers to a load range in which the refrigerator can be operated with high efficiency, for example, a load range in which the COP of the refrigerator is a predetermined value or more.
  • Each of the refrigerators 21-1 to 21-n can determine the optimum load range by using the above-described table or by applying the cooling water condition and each load value to the above-described equation.
  • the high optimum load range means the maximum load value in the optimum load range.
  • the high optimum load range value is a threshold value set as a target so that the load of the refrigerator does not exceed the value.
  • the optimum load range low value refers to the minimum load value in the optimum load range.
  • the optimum load range low value is a threshold set as a target so that the load of the refrigerator does not become less than the value.
  • the optimum load range optimum value is a load value at which the COP is maximum in the optimum load range.
  • the optimum load range high value COP is the COP when operating at the optimum load range high value
  • the optimum load range low value COP is the COP when operating at the optimum load range low value.
  • the range optimum value COP is a COP when operating at an optimum load range optimum value.
  • the operating chiller acquires information such as the cooling water inlet temperature and the cooling water flow rate as data for controlling the chiller, and calculates optimum load related information based on the acquired information.
  • the stopped refrigerator cannot measure the cooling water inlet temperature, the cooling water flow rate, or the like because the auxiliary machine is stopped. Therefore, the optimum load related information is calculated based on information such as the cooling water inlet temperature and the cooling water flow rate transmitted from the data acquisition unit 111.
  • the optimal load related information may be calculated by the data acquisition unit 111 instead of the control unit of each refrigerator. Thereby, the communication amount from the refrigerator to the refrigerator control apparatus 100 can be reduced.
  • the control unit of each refrigerator calculates the optimum load range high value and the like, since the control unit can calculate the optimum load range high value and the like in accordance with the actual control, the calculation amount of the refrigerator control device 100 can be reduced. . Further, when the control unit of each refrigerator calculates the optimum load related information, the refrigerator control device 100 does not need to store the characteristic parameters of each refrigerator. There is no need to adjust the control device 100 (step S102).
  • the required load calculation unit 113 calculates the required load Qr (value required as the total value of the refrigerator load) and outputs it to the required load determination unit 112.
  • the required load calculation unit 113 multiplies the temperature difference between the main pipe return water temperature and the main pipe water supply temperature by the main pipe flow rate, and uses the amount of cold or heat to be generated by the refrigerators 21-1 to 21-n as the required load. calculate.
  • a value preset as the initial required load is set as the required load.
  • the required load determination unit 112 determines whether or not the total load ⁇ Qopt of the optimal load range optimal value Qopt of each operating refrigerator acquired by the data acquisition unit 111 is less than the required load Qr calculated by the required load calculation unit 113.
  • step S103 When it is determined that the optimal load range optimum value total is less than the required load (step S103: YES), in steps S111 to S122, whether or not to increase the stage is determined as the process at the time of the increase, and the increase If it is decided to perform, the refrigerator to be increased is selected.
  • the stage increase determination unit 121 determines whether or not to perform stage increase based on whether or not the required load calculated by the required load calculation unit 113 is equal to or higher than the stage increase switching point.
  • the stage increase switching point is a load value set for each number of operating refrigerators.
  • the stage increase determination unit 121 uses, as the stage increase switching point, the load value set in association with the current number of operating units as the stage increase switching point (step S111). If it is determined that the required load is less than the step increase switching point, the step increase determination unit 121 determines not to change the number of operating refrigerators (step S111: NO), and ends the process of FIG.
  • step increase determination unit 121 determines to increase the refrigerator (step S111: YES), and the underload value calculation unit 122
  • the underload value ⁇ Qs is calculated based on the formula (1).
  • ⁇ Qs Qu ⁇ Qopt (1)
  • Qu represents the stage increase switching point
  • Qopt represents the optimum load range optimum value
  • ⁇ Qopt represents the optimum load range optimum value summed with the optimum load range optimum values for all the operating refrigerators.
  • the operating refrigerator selection unit 123 obtains the COP when each of the stopped refrigerators is operated with the insufficient load value ⁇ Qs. For example, the operating refrigerator selection unit 123 transmits the underload value ⁇ Qs to each stopped refrigerator, and requests and acquires the corresponding COP. Alternatively, the operation refrigerator selection unit 123 may calculate the optimum load range high value and the optimum load range high value COP, the optimum load range optimum value and the optimum load range optimum value COP, and the optimum load range low value and the optimum load range low value COP. An expression that approximates the relationship between the load and the COP may be obtained based on the three points, and the COP corresponding to the insufficient load value ⁇ Qs may be obtained based on the expression.
  • the operating refrigerator selecting unit 123 obtains a quadratic curve passing through the above-mentioned three points with the load on the X axis and the COP on the Y axis, and the COP corresponding to the insufficient load value ⁇ Qs on the quadratic curve.
  • the operation refrigerator selection unit 123 selects the obtained refrigerator having the highest COP as the refrigerator to be increased, that is, the refrigerator to be operated.
  • the operation command unit 141 transmits a control signal for operating the refrigerator.
  • the operation command unit 141 transmits a flow rate command control signal for changing the load sharing to each of the operating refrigerators, including the refrigerator that has newly started operation.
  • the operation command unit 141 distributes the required load calculated by the required load calculation unit 113 according to the number of operating refrigerators, and controls each refrigerator so that the operation is performed with the load of the distribution result. Send a signal.
  • the load for example, it is conceivable to share the load at a rate corresponding to the optimum value of the optimum load range of each refrigerator.
  • the operation refrigerator selection unit 123 replaces the COP when the refrigerator is operated with the insufficient load value ⁇ Qs, instead of the optimum load range.
  • Comparison with COPs of other refrigerators is performed using the high value COPmax. That is, the COP when the refrigerator is operated at the maximum load in the optimum load range is compared with the COPs of other refrigerators.
  • the COPs of these chillers are weighted average according to the load to be apportioned.
  • the measured value may be compared with the COP of another refrigerator.
  • the operation refrigerator selection unit 123 for the refrigerator, replaces the COP when operating with the underload value ⁇ Qs instead of the optimum load. Comparison with COPs of other refrigerators is performed using the range low value COPmin. That is, the COP when the refrigerator is operated at the minimum load in the optimum load range is compared with the COPs of other refrigerators.
  • the operating refrigerator selection unit 123 selects the refrigerator having the shortest accumulated operation time as the refrigerator to be increased. For example, each of the refrigerators 21-1 to 21-n measures the accumulated operation time of the refrigerator and transmits it to the refrigerator control device 100 as needed. When there are a plurality of refrigerators having the same COP value, the refrigerator selecting unit 123 selects the refrigerator having the shortest accumulated operation time based on the accumulated operation time transmitted from each refrigerator. Thereby, the dispersion
  • the operation refrigerator selection unit 123 only needs to select one refrigerator to be started.
  • the operation refrigerator selection unit 123 determines the operation priority order for the plurality of refrigerators, for example, when the selected refrigerator cannot be started due to a failure of the refrigerator, the refrigerator system 1 However, other refrigerators can be started (step S122). Thereafter, the refrigerator control device 100 ends the process of FIG.
  • step S131 to S152 As processing, it is determined whether or not to perform stage reduction, and if it is decided to perform stage reduction, a refrigerator to be staged is selected. Further, in steps S161 to S181, when there is one operating refrigerator, it is determined whether or not to switch to another refrigerator. Specifically, the step reduction determination unit 131 determines whether or not to perform step reduction based on whether or not the required load calculated by the required load calculation unit 113 is equal to or lower than the step reduction switching point.
  • the stage reduction switching point is a load value set for each number of operating units.
  • a stage reduction switching point is the load value set by a combination.
  • the step reduction determination unit 131 uses, as the step reduction switching point, the load value set in association with the current operating number as the step reduction switching point (step S131). If it is determined that the required load is larger than the stage reduction switching point, the stage reduction determination unit 131 determines not to change the number of operating refrigerators (step S131: NO), and ends the process of FIG.
  • the stage reduction determination unit 131 determines to perform stage reduction of the refrigerator (step S131: YES), and the stage reduction determination unit 131 further It is determined whether or not the number of operating refrigerators is two or more (step S141). If it is determined that the number of operating units is two or more (step S141: YES), the operation pattern extracting unit 151 selects one unit from the operating refrigerators and combines all the remaining operating refrigerators. Is extracted as a refrigerator operation pattern. The operation pattern extraction unit 151 extracts this refrigerator operation pattern for all the refrigerators in operation (step S151).
  • the stop refrigerator selection part 133 calculates
  • the operation command unit 141 transmits a flow rate command control signal for changing the load sharing to each of the remaining operating refrigerators. For example, the operation command unit 141 distributes the required load calculated by the required load calculation unit 113 according to the number of operating refrigerators, and controls each refrigerator so that the operation is performed with the load of the distribution result. Send a signal.
  • the operation pattern extraction unit 151 may further extract a combination of the remaining operating refrigerators selected from a plurality of operating refrigerators as the refrigerator operation pattern.
  • the COP of the entire refrigerator system 1 can be increased by reducing the number of refrigerators.
  • the operation pattern extraction unit 151 selects only one of the operating refrigerators and extracts the refrigerator operation pattern, only the refrigerator operation pattern that is most likely to be optimal is extracted. This can reduce the amount of calculation. That is, under the premise that the required load does not change abruptly, the required load can be accommodated by reducing the stage of one refrigerator. Therefore, by extracting only the refrigerator operation pattern for reducing the stage of one refrigerator and selecting the refrigerator, the amount of calculation can be suppressed while accommodating the required load (step S152). Thereafter, the refrigerator control device 100 ends the process of FIG.
  • step S141 determines whether the number of operating units is one (step S141: NO)
  • the stop refrigerator selecting unit 133 has a lower optimum load range value of the operating refrigerator than the required load ( It is determined whether or not Qmin> Qr) (step S161).
  • the COP when operating at the required load is the operating refrigeration among the stopped refrigerators. It is determined whether there is a refrigerator higher than the machine (step S171).
  • step S171 When it is determined that there is a chiller having a COP that is higher than that of the operating chiller among the stopped chillers (step S171: YES), the COP when operating at the required load is The highest refrigerator is selected as the refrigerator to be switched (step S181). Thereafter, the refrigerator control device 100 ends the process of FIG.
  • step S161 when it is determined in step S161 that the optimum low load range of the operating refrigerator is equal to or less than the required load (step S161: NO), and in step S141, a request is made to the stopped refrigerator.
  • step S171 When it is determined that there is no refrigerator having a COP higher than that of the operating refrigerator (NO in step S171), the refrigerator is not switched and the process of FIG.
  • the refrigerator system 1 may not perform the processing described in steps S161 to S181. That is, the operation of the operating refrigerator may be continued without switching the refrigerator regardless of whether or not the optimum load range low value of the operating refrigerator is larger than the required load. Thereby, the operation switching frequency of a refrigerator can be suppressed. Further, it is not necessary to perform the processing of steps S161 to S181, and the amount of calculation can be reduced. On the other hand, when the processing described in steps S161 to S181 is performed, the operation can be performed at a higher COP.
  • the method in which the operating refrigerator selecting unit 123 selects the refrigerator to be increased is not limited to the method described in step S122.
  • the operation pattern extraction unit (stage increase operation pattern extraction unit) 151 extracts the refrigerator operation pattern corresponding to the required load, and the operation refrigeration is performed based on the extracted refrigerator operation pattern with the optimum COP.
  • the machine selection unit 123 may select a refrigerator to be increased.
  • the operation pattern extraction unit 151 selects one of the stopped chillers and extracts the chiller operation pattern in combination with the operating chiller.
  • the operation pattern extraction unit 151 extracts this refrigerator operation pattern for all the stopped refrigerators.
  • the operation refrigerator selection unit 123 obtains the COP of the entire refrigerator system 1 for all the refrigerator operation patterns extracted by the operation pattern extraction unit 151.
  • the calculation of the COP of the entire refrigerator system 1 is performed by, for example, calculating the COP of each refrigerator when the required load is equally distributed to each refrigerator included in the refrigerator operation pattern, as described in step S152.
  • the weighted average is calculated according to the load to be prorated.
  • the operation refrigerator selection unit 123 selects a refrigerator operation pattern in which the COP of the entire refrigerator system 1 is maximized, and selects a refrigerator to be staged up according to the selected refrigerator operation pattern.
  • the operating chiller selection unit 123 selects the chiller to be staged according to the chiller operation pattern, so that the COP is calculated based on the load actually borne by each chiller after the stage numbering. Therefore, the COP can be calculated and the refrigerator to be increased can be selected more appropriately.
  • the COP may be calculated for each stopped chiller, and the chiller system based on extraction of the chiller operation pattern and weighted average with the COP of the chiller already in operation. It is not necessary to calculate the COP of one whole. In this respect, the calculation amount is small, and the refrigerator can be selected more quickly.
  • the operation pattern extraction unit 151 may further extract a refrigerator operation pattern in which a plurality of stopped refrigerators and operating refrigerators are combined. As a result, when it is not possible to operate within the optimum load range simply by adding one refrigerator, it is possible to increase the COP of the entire refrigerator system 1 by adding a plurality of refrigerators.
  • the operation pattern extraction unit 151 selects only one of the stopped chillers and extracts the chiller operation pattern, the chiller operation pattern that is highly likely to be optimal. It is possible to reduce the amount of calculation by extracting only. That is, under the premise that the required load does not change abruptly, the required load can be accommodated by adding one refrigerator. Therefore, by extracting only the refrigerator operation pattern for increasing the number of one refrigerator and selecting the refrigerator, it is possible to reduce the amount of calculation while accommodating the required load.
  • the refrigerator control device 100 may include a surplus load value calculation unit 132.
  • the surplus load value calculation unit 132 calculates a surplus load value ⁇ Qt based on Expression (2).
  • ⁇ Qt ⁇ Qopt ⁇ Qd (2)
  • Qd represents a stage reduction switching point.
  • Qopt represents the optimum load range optimum value
  • ⁇ Qopt represents the optimum load range optimum value total obtained by summing the optimum load range optimum value Qopt for all the refrigerators in operation.
  • step S152 the stop chiller selecting unit 133 obtains a COP for each of the operating chillers when the chiller is operated with the surplus load value ⁇ Qt. And the stop refrigerator selection part 133 selects the refrigerator with the lowest COP obtained as a refrigerator to reduce a stage, ie, a refrigerator to stop. By stopping the refrigerator having the lowest COP, the COP of the entire refrigerator system 1 can be increased.
  • the operation command unit 141 transmits a control signal for stopping the refrigerator. Further, the operation command unit 141 transmits a flow rate command control signal for changing the load sharing to each of the remaining operating refrigerators.
  • the stop refrigerator selection unit 133 replaces the COP when the refrigerator is operated with the surplus load value ⁇ Qt for the optimum load. Comparison with COPs of other refrigerators is performed using the range low value COPmin. That is, the COP reduction when the refrigerator operating at the minimum load in the optimum load range is stopped is compared with the COP reduction of other refrigerators. In addition, when the optimum high load range value is less than the surplus load value (Qmax ⁇ Qt), the stop refrigerator selection unit 133 replaces the COP when the refrigerator is operated with the surplus load value ⁇ Qt, instead of the optimum load range.
  • Comparison with COPs of other refrigerators is performed using the high value COPmax. That is, the COP reduction when the refrigerator operating at the maximum load in the optimum load range is stopped is compared with the COP reduction of other refrigerators.
  • the weighted average of the COPs of these refrigerators according to the load to be distributed apportioned The measured value may be compared with the COP of another refrigerator.
  • the stop refrigerator selection unit 133 selects the refrigerator having the longest accumulated operation time as the refrigerator to be stopped. Thereby, the dispersion
  • the stop chiller selection unit 133 selects the chiller to be staged down based on the surplus load value, so that the COP may be calculated for each chiller in operation, and the extraction of the chiller operation pattern is performed. In addition, it is not necessary to calculate the COP of the entire refrigerator system 1 by the weighted average of the COPs of the remaining refrigerators in operation. In this respect, the calculation amount is small, and the refrigerator can be selected more quickly.
  • the underload value calculation unit 122, the operating refrigerator selection unit 123, the surplus load value calculation unit 132, and the stop refrigerator selection unit 133 constitute a refrigerator determination unit.
  • the refrigerator control device 100 does not include the required load determination unit 112, the step increase determination unit 121 always determines whether or not the step increase is performed, and the step decrease determination unit 131 always performs the step decrease. You may make it determine whether it performs. Thereby, the apparatus configuration can be simplified.
  • the operating refrigerator selecting unit 123 may select a refrigerator that is always increased in stage. That is, since the refrigerator is selected in advance by the determination of the stage increase determination unit 121, when the stage increase determination unit 121 determines to increase the stage, the stage can be increased quickly. The same applies to the stop refrigerator selection unit 133.
  • FIG. 6 is a flowchart showing the processing procedure of the refrigerator control device 100 when determining whether or not the required flow rate is satisfied in addition to whether or not the required load is satisfied.
  • 4 are the same as steps S101 to S103 in FIG. 4
  • step S222 is the same as step S122 in FIG. 4
  • step S251 is the same as step S141 in FIG. 4
  • steps S271 to S291 is the same as steps S161 to S181 in FIG.
  • Step S203 of FIG. 6 when it is determined that the optimum load range optimum value total ⁇ Qopt of each operating refrigerator is equal to or greater than the required load Qr (Step S203: NO), the required load determination unit 112 further performs the operation. It is determined whether the optimum flow rate range optimum value sum ⁇ Fop of each refrigerator is less than the required flow rate Fr. At that time, the optimum flow rate Fopt for each operating refrigerator is obtained by the equation (3), and the total optimum flow rate Fopt is calculated for each operating refrigerator to obtain the optimal flow rate range optimum value sum ⁇ Fopt.
  • Tr_i the cold water return temperature of the refrigerator i (i is a positive integer of 1 ⁇ i ⁇ n)
  • Ts_n the cold water feed temperature of the refrigerator i.
  • Cp represents the specific heat [kJ / (kg ⁇ ° C.)] of cold water
  • represents the density [kg / m 3 ] of cold water (step S231).
  • step S211 to 222 If it is determined that the optimum flow rate range optimum value sum ⁇ Fopt is less than the required flow rate Fr (step S231: YES), in steps S211 to 222, whether or not to increase the stage is determined as the process at the time of the increase. If it is decided to increase the stage, the refrigerator to be increased is selected. On the other hand, when it is determined that the optimum flow rate range optimum value sum ⁇ Fopt is equal to or greater than the required flow rate Fr (step S231: NO), in steps S241 to S262, whether or not to perform step reduction is determined as the step reduction processing. In addition, when it is decided to reduce the stage, the refrigerator to be reduced is selected. Further, in steps S271 to S291, when there is one operating refrigerator, it is determined whether or not to switch to another refrigerator.
  • step S211 the stage increase determination unit 121 determines whether or not to increase the stage based on the required flow rate in addition to the determination of whether or not to increase the stage based on the required load described in step S111 of FIG. Specifically, the stage increase determination unit 121 determines whether or not the required load is greater than or equal to the stage increase switching point, and determines whether or not the required flow rate is greater than or equal to the stage increase switching flow rate.
  • the step increase switching flow rate is a flow rate value set for each number of operating refrigerators. The step increase determination unit 121 uses the flow rate value set as the step increase switching flow rate in association with the current number of operating units as the step increase switching flow rate (step S211 above).
  • step increase determination unit 121 determines not to change the number of operating refrigerators (step S211: NO). ), The process of FIG.
  • step increase determination unit 121 determines to increase the stage of the refrigerator (step S211: YES). ), The process proceeds to step S221.
  • step S221 instead of the step increase switching point Qu used in step S121 of FIG. 4, the step increase switching point Qu is calculated based on the equation (4).
  • Qu Fu ⁇ (Tr ⁇ Ts) ⁇ Cp ⁇ ⁇ Expression (4)
  • Fu represents the step-up switching flow rate [m 3 / h]
  • Tr represents the return water temperature [° C.]
  • Ts represents the water supply temperature [° C.]
  • Cp represents the specific heat [kJ / (kg ° C)]
  • represents the density [kg / m 3 ] of the cooling water.
  • the required load determination unit 112 calculates the insufficient load value ⁇ Qs based on the equation (1) as in step S121 of FIG.
  • step S241 determines whether or not the step reduction is necessary based on the required flow rate in addition to the necessity determination of the step reduction based on the required load described in step S131 of FIG. Specifically, the stage reduction determination unit 131 determines whether or not the required load is equal to or lower than the stage reduction switching point, and determines whether or not the required flow rate is equal to or lower than the stage reduction switching flow rate.
  • the step-down switching flow rate is a flow rate value set for each number of operating refrigerators. The step reduction determination unit 131 uses the flow rate value set as the step reduction switching flow rate in association with the current number of operating units as the step reduction switching flow rate (step S241).
  • step-down determination unit 131 determines not to change the number of operating refrigerators (step S241: NO). ), The process of FIG.
  • step S241: YES the step-down determination unit 131 determines to perform step-down of the refrigerator (step S241: YES) ), The process proceeds to step S251.
  • step S261 instead of the step-down switching point Qd used in step S151 in FIG. 4, the step-down switching point Qd is calculated based on the equation (5).
  • Qd Fd ⁇ (Tr ⁇ Ts) ⁇ Cp ⁇ ⁇ Equation (5)
  • Tr represents the return water temperature [° C.]
  • Ts represents the water supply temperature [° C.]
  • Cp represents the specific heat [kJ / (kg ° C)]
  • represents the density [kg / m 3 ] of the cooling water.
  • the required load determination unit 112 calculates the surplus load value ⁇ Qt based on the equation (2) as in step S151 in FIG.
  • the stopped chiller selecting unit 133 obtains a COP for each of the operating chillers when the chiller is operated with the surplus load value ⁇ Qt. And the stop refrigerator selection part 133 selects the refrigerator with the lowest COP obtained as a refrigerator to reduce a stage, ie, a refrigerator to stop. By stopping the refrigerator having the lowest COP, the COP of the entire refrigerator system 1 can be increased.
  • the operation command unit 141 transmits a control signal instructing to stop the selected refrigerator. Further, the operation command unit 141 transmits a flow rate command control signal for changing the load sharing to each of the remaining operating refrigerators. For example, the operation command unit 141 distributes the required load calculated by the required load calculation unit 113 according to the number of operating refrigerators, and controls each refrigerator so that the operation is performed with the load of the distribution result. Send a signal.
  • the required load determination unit 112 determines whether or not the required flow rate is satisfied in the operating refrigerator in addition to whether or not the required load is satisfied in the operating refrigerator. In addition, it is possible to cope with the case where the required flow rate is set, and it is possible to select a refrigerator that increases or decreases the stage so that the COP of the refrigerator system 1 becomes high.
  • the refrigerator control device 100 obtains the COP according to the environment of the refrigerator, and selects the refrigerator that changes the operation state based on the obtained COP, so that the entire refrigerator system is efficiently operated. Therefore, the refrigerator to be increased or decreased can be appropriately selected according to the situation. Further, the operator of the refrigerator system 1 can operate the refrigerator system 1 while keeping the optimum operation range without knowing the characteristics of the refrigerator in detail.
  • a program for realizing all or part of the functions of the refrigerator control device 100 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed. You may process each part by.
  • the “computer system” includes an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the “computer-readable recording medium” dynamically holds a program for a short time like a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory in a computer system serving as a server or a client in that case and a program that holds a program for a certain period of time are also included.
  • the program may be a program for realizing a part of the functions described above, and may be a program capable of realizing the functions described above in combination with a program already recorded in a computer system.
  • the present invention is suitable for use in a refrigerator control device that controls a refrigerator in a refrigerator system including a plurality of refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 冷凍機制御装置は、冷凍機システム全体を効率良く運転するために冷凍機を増段または減段する。冷凍機を増段する場合、不足負荷値演算部が、要求負荷に対する負荷の不足分を算出する。そして、運転冷凍機選択部は、冷凍機の運転環境に応じて求められるCOPを用いて、停止中の冷凍機のうち、不足分の負荷にて運転した場合にCOPの最も高い冷凍機を、増段する冷凍機として選択する。また、冷凍機を減段する場合、運転パターン抽出部が、要求負荷に対応して運転する冷凍機の組み合わせである運転パターンを抽出する。そして、停止冷凍機選択部は、冷凍機の運転環境に応じて求められるCOPを用いて、各運転パターンにおける冷凍機システム全体のCOPを求め、COPの最も高い運転パターンに基づいて、減段する冷凍機を選択する。

Description

冷凍機制御装置
 本発明は、複数の冷凍機を備えた冷凍機システムにおいて、冷凍機の制御を行う冷凍機制御装置に関する。
 本願は、2010年8月6日に、日本に出願された特願2010-177749号に基づき優先権を主張し、その内容をここに援用する。
 冷凍機は一般に、負荷によって効率(消費するエネルギーに対する、生成する冷熱量)が異なる。このため、冷凍機を効率良く運転するためには、冷凍機の効率を把握し、適切な負荷にて運転するよう制御する必要がある。
 そこで、特許文献1では、冷凍機の最適運転範囲(効率良く運転可能な範囲)を算出する技術、および、算出した最適運転範囲に基づいて冷凍機運転台数変更の要否を判定する技術が開示されている。
特開2009-204262号公報
 しかしながら、特許文献1には、冷凍機システム全体の効率を最適化する方法は開示されていない。したがって、特許文献1の技術を用いれば、個々の冷凍機の運転状況を評価して最適化することはできるものの、ただちに、冷凍機システム全体に対する最適制御を行うことはできない。
 複数種類の冷凍機を具備する冷凍機システムなど、特性の異なる冷凍機を具備する冷凍システムでは、運転する冷凍機によって冷凍機システム全体の効率が異なるため、どの冷凍機を運転するかの選択を状況に応じて適切に行う必要がある。例えば、可変速な冷凍機(コンプレッサを可変速制御可能な冷凍機)は、冷却水温度によって効率良く運転可能な負荷が異なるため、冷却水温度に応じた柔軟な判断が求められる。
 本発明は、このような事情を考慮してなされたものであり、その目的は、冷凍機システム全体を効率良く運転するために増段または減段するべき冷凍機を、状況に応じて適切に選択できる冷凍機制御装置を提供することにある。
 この発明は上述した課題を解決するためになされたもので、本発明の一態様による冷凍機制御装置は、複数の冷凍機を制御して、冷熱または温熱の供給を行うための冷凍機制御装置であって、要求負荷に応じて、複数の前記冷凍機のうち運転させる前記冷凍機を選択する冷凍機選択部と、該冷凍機選択部で選択された前記冷凍機に対して、前記要求負荷と対応した運転信号を出力する運転指令部とを備え、前記冷凍機選択部は、前記要求負荷に基づいて現在選択されている前記冷凍機の台数を変更するか否かを判定する台数変更判定部と、前記台数変更判定部による判定結果に基づいて前記冷凍機の台数を変更する場合に、予め取得された各冷凍機の負荷と効率指標値との関係及び要求負荷に基づいて運転状態を変更する冷凍機を決定する冷凍機決定部と、を具備する。
 また、前記冷凍機制御装置において、前記冷凍機決定部は、前記台数変更判定部で前記冷凍機の台数を増やすと判定された場合、現在運転中の全冷凍機について、許容される効率の範囲となる高負荷側の負荷の閾値として各冷凍機について設定される最適負荷範囲高値を合計した最適負荷範囲高値合計から、要求負荷を減算した不足負荷値を求める不足負荷値演算部と、前記不足負荷値演算部で求められた不足負荷値と前記負荷と効率指標値との関係に基づいて、現在停止中の冷凍機のそれぞれについて前記不足負荷値で運転させた場合の効率指標値を求めて、最も高い効率指標値を示す冷凍機を運転させる冷凍機として選択する運転冷凍機選択部と、を具備してもよい。
 また、前記冷凍機制御装置において、前記冷凍機決定部は、前記台数変更判定部で前記冷凍機の台数を増やすと判定された場合、現在停止中の冷凍機から選択して現在運転中の全冷凍機と組み合わせうる全ての冷凍機運転パターンを求める増段運転パターン抽出部と、前記増段運転パターン抽出部で求められた全ての冷凍機運転パターンについて、全体の効率指標値を求め、最も効率指標値が高くなる冷凍機運転パターンと対応する冷凍機を、運転させる冷凍機として選択する運転冷凍機選択部と、を具備してもよい。
 また、前記冷凍機制御装置において、前記運転冷凍機選択部は、前記選択可能な冷凍機が複数存在したとき、該当する冷凍機の運転時間を取得して、該運転時間の最も短い冷凍機を選択してもよい。
 また、前記冷凍機制御装置において、前記冷凍機決定部は、前記台数変更判定部で前記冷凍機の台数を減らすと判定された場合、現在運転中の冷凍機から1台を停止させることで運転を維持させる冷凍機として組み合わせうる全ての冷凍機運転パターンを求める減段運転パターン抽出部と、前記減段運転パターン抽出部で求められた全ての冷凍機運転パターンについて、全体の効率指標値を求め、最も効率指標値が高くなる冷凍機運転パターンと対応する冷凍機を停止させる冷凍機として選択する停止冷凍機選択部と、を具備してもよい。
 また、前記冷凍機制御装置において、前記冷凍機決定部は、前記台数変更判定部で冷凍機台数を減らすと判定された場合、現在運転中の全冷凍機について、要求負荷から、許容される効率の範囲となる低負荷側の負荷の閾値として各冷凍機について設定される最適負荷範囲低値を合計した最適負荷範囲低値合計を減算した余剰負荷値を求める余剰負荷値演算部と、前記余剰負荷値演算部で求められた前記余剰負荷値及び前記負荷と効率指標値との関係に基づいて、現在運転中の冷凍機のそれぞれについて前記余剰負荷値で運転させた場合の効率指標値を求めて、最も低い効率指標値を示す冷凍機を停止させる冷凍機として選択する停止冷凍機選択部と、を具備してもよい。
 また、前記冷凍機制御装置において、前記停止冷凍機選択部は、前記選択可能な冷凍機が複数存在したとき、該当する冷凍機の運転時間を取得して、該運転時間の最も長い冷凍機を選択してもよい。
 本発明によれば、冷凍機制御装置が、冷凍機システム全体を効率良く運転するために増段または減段するべき冷凍機を、状況に応じて適切に選択できる。
本発明の一実施形態における冷凍機システム1の概略構成を示す構成図である。 同実施形態における冷凍機21-1の概略構成を示す構成図である。 同実施形態における冷凍機制御装置100の概略構成を示す構成図である。 同実施形態において、冷凍機制御装置100が、運転状態を変更すべき冷凍機を選択する処理手順を示すフローチャートである。 同実施形態において、余剰負荷値演算部132を具備する冷凍機制御装置100の概略構成を示す構成図である。 同実施形態において、要求負荷を満たすか否かに加えて、要求流量を満たすか否かを判定する場合の、冷凍機制御装置100の処理手順を示すフローチャートである。
 以下、図面を参照して、本発明の実施の形態について説明する。なお、以下では、冷凍機システム1が冷熱を供給する場合について説明する。温熱を供給する場合についても、同様に本発明を適用できる。
 図1は、本発明の一実施形態における冷凍機システム1の概略構成を示す構成図である。同図において冷凍機システム1は、n(nは正の整数)台の冷凍機21-1~21-nと、冷水ポンプ31-1~31-nと、バイパス弁41と、冷凍機制御装置100とを具備する。また、冷凍機システム1は、外部負荷51に接続されている。
 冷凍機21-1~21-nは、冷水を冷却して外部負荷51に供給する。これにより、外部負荷51は、冷凍機21からの冷水にて冷却される。
 冷水ポンプ31-1~31-nは、各冷凍機に冷水を送出する。バイパス弁41は、冷凍機21-1~21-nからの冷水をバイパスする。冷凍機制御装置100は、各部の制御を行う。特に、冷凍機制御装置100は、冷凍機21-1~21-nの運転台数切換タイミングおよび運転切換を行う冷凍機を決定して、冷凍機21-1~21-nの台数制御を行う。
 図2は、冷凍機21-1の概略構成を示す構成図である。同図において、冷凍機21-1は、ターボ圧縮機211と、凝縮器212と、サブクーラー213と、高圧膨張弁214と、低圧膨張弁215と、蒸発器216と、中間冷却器217と、インバータ221と、ホットガスバイパス弁225と、冷却伝熱管231と、冷水伝熱管232と、ホットガスバイパス管233と、制御部234とを具備する。ターボ圧縮機211は、電動モータ222と、入口案内翼(Inlet Guide Vane;IGV)224とを具備する。
 冷凍機21-1は、2段圧縮2段膨張サブクールサイクルにて冷媒を冷却し、冷却された冷媒にて冷水を冷却する。
 ターボ圧縮機211は遠心式の2段圧縮機であり、ガス状の冷媒を圧縮する。凝縮器212は、ターボ圧縮機211によって圧縮された高温高圧のガス冷媒を凝縮して液化させる。サブクーラー213は、凝縮器212の冷媒流れ下流側に設けられ、凝縮器212にて凝縮された液冷媒に対して過冷却を与える。冷却伝熱管231は、凝縮器212及びサブクーラー213に挿通され、管内を流れる冷却水により冷媒を冷却する。この、冷却伝熱管231を流れる冷却水は、冷媒を冷却した後、冷却塔において外部へと排熱され、再び冷却伝熱管231を流れる。
 高圧膨張弁214および低圧膨張弁215は、サブクーラー213からの液冷媒を膨張させる。中間冷却器217は、高圧膨張弁214によって膨張させられた液冷媒を冷却する。蒸発器216は、低圧膨張弁215によって膨張させられた液冷媒を蒸発させる。冷水伝熱管232は、蒸発器216に挿通される。冷水伝熱管232を流れる冷水は、冷媒が蒸発する際に気化熱を吸熱されることにより冷却される。
 このようにして、冷凍機21-1は冷水を冷却して外部負荷51に供給する。
 また、冷凍機21-1の負荷制御は、圧縮機が可変速制御可能な冷凍機の場合、ターボ圧縮機211の回転数制御と、入口案内翼224およびホットガスバイパス管233による容量制御とにより行われる。
 電動モータ222は、ターボ圧縮機211を駆動する。インバータ221は、電動モータ222の回転数を制御することによりターボ圧縮機211の回転数制御を行う。
 入口案内翼224は、ターボ圧縮機211の冷媒吸入口に設けられ、吸入冷媒流量を制御することにより、冷凍機21-1の容量制御を行う。
 ホットガスバイパス管233は、凝縮器212の気相部と蒸発器216の気相部との間に設けられ、冷媒ガスをバイパスする。ホットガスバイパス弁225は、ホットガスバイパス管233内を流れる冷媒の流量を制御する。ホットガスバイパス弁225がホットガスバイパス流量を調整することにより、入口案内翼224による容量制御よりも詳細な容量制御を行える。
 なお、圧縮機が固定速制御である冷凍機の場合、入口案内翼224及びホットガスバイパス管233による容量制御により負荷制御を行う。
 制御部234は、各部の制御を行う。特に制御部234は、冷凍機制御装置100(図1)から入力される制御信号に基づいて、停止中の冷凍機21-1を運転させ、または、運転中の冷凍機21-1を停止させる。(以下では、停止中の冷凍機を運転させ、または、運転中の冷凍機を停止させることを、「運転状態を変更」するという。)また、制御部234は、冷凍機制御装置100から入力される制御信号に基づいて、インバータ221と入口案内翼224とホットガスバイパス弁225とを制御することにより、冷凍機21-1の負荷制御を行う。また、制御部234は、後述する最適負荷関連情報を求める。
 制御部234の行う負荷制御により、冷凍機21-1は、定格温度(例えば7℃)の冷水を外部負荷51に供給する。
 また、冷却水流量は流量計F2により、冷却水出口温度は温度センサTcoutにより、冷却水入口温度は温度センサTcinにより測定される。また、冷水流量は流量計F1により、冷水出口温度は温度センサToutにより、冷水入口温度はTinにより測定される。これらの測定値は、制御部234が各部の制御を行う際に用いられ、また、制御部234が、後述する最適負荷関連情報を求めるために用いられる。
 なお、冷凍機21-2~21-nの構成も、図2で説明したのと同様である。
 図3は、冷凍機制御装置100の概略構成を示す構成図である。同図において、冷凍機制御装置100は、データ取得部111と、要求負荷判定部112と、要求負荷演算部113と、増段判定部121と、不足負荷値演算部122と、運転冷凍機選択部123と、減段判定部131と、停止冷凍機選択部133と、運転指令部141と、運転パターン抽出部(減段運転パターン抽出部)151とを具備する。
 データ取得部111は、冷凍機21-1~21-nとの間で、往還温度や、主管流量や、冷凍機の最適負荷範囲や、最適負荷範囲で運転を行った場合の冷凍機の効率などの情報を送受信する。
 要求負荷演算部113は、データ取得部111が取得する往還温度と主管流量とに基づいて、冷凍機システム1が生成すべき冷熱量または温熱量を示す要求負荷を算出する。
 要求負荷判定部112は、運転中の冷凍機について最適負荷を合計した値と、要求負荷とを比較して、増段(運転台数を増加させる)時の処理を行うか、あるいは、減段(運転台数を減少させる)時の処理を行うかを決定する。
 増段判定部121は、要求負荷判定部112が増段時の処理を行うと決定した場合に、実際に増段を行うか否かを決定する。
 不足負荷値演算部122は、運転中の各冷凍機が最適負荷にて運転した場合の、負荷の不足分を示す不足負荷値を算出する。
 運転冷凍機選択部123は、不足負荷値演算部122が算出する不足負荷値と、停止中の各冷凍機の最適負荷関連情報とに基づいて、冷凍機システム1が要求負荷を満たし、かつ、効率良く運転するために、起動すべき冷凍機を選択する。
 減段判定部131は、要求負荷判定部112が減段時の処理を行うと決定した場合に、実際に減段を行うか否かを決定する。
 運転パターン抽出部151は、要求負荷を満たすように運転する冷凍機の可能な組み合わせ(以下、運転する冷凍機の組み合わせを示す情報を「冷凍機運転パターン」と称する)を抽出する。停止冷凍機選択部133は、運転パターン抽出部151が抽出する冷凍機運転パターンと、運転中の各冷凍機の最適負荷関連情報とに基づいて、冷凍機システム1が要求負荷を満たし、かつ、効率良く運転するために、停止すべき冷凍機を選択する。
 運転指令部141は、起動すべき冷凍機を運転させるための制御信号を送信し、停止すべき冷凍機を停止させるための制御信号を送信し、また、運転中の冷凍機に対して負荷分担を変更するための流量指令の制御信号を送信する。
 なお、要求負荷判定部112と、増段判定部121と、減段判定部131とで台数変更判定部を構成し、要求負荷に基づいて現在選択されている冷凍機の台数を変更するか否かを選択する。
 すなわち、後述するように、まず、要求負荷判定部112が、要求負荷に基づいて増段時の処理を行うか減段時の処理を行うかを決定する。要求負荷判定部112が増段時の処理を行うと決定した場合は、増段判定部121が、実際に増段を行うか否かを判定する。
 一方、要求負荷判定部112が減段時の処理を行うと判定した場合は、減段判定部131が、実際に減段を行うか否かを判定する。
 また、不足負荷値演算部122と、運転冷凍機選択部123と、運転パターン抽出部151と、停止冷凍機選択部133とで冷凍機決定部を構成し、台数変更判定部による判定結果に基づいて冷凍機の台数を変更する場合に、各冷凍機の負荷と効率指標値(後述するCOP)との関係及び要求負荷に基づいて運転状態を変更する冷凍機を決定する。
 すなわち、後述するように、増段判定部121が増段を行うと判定した場合は、不足負荷値演算部122が、負荷の不足分を算出し、運転冷凍機選択部123が、負荷の不足分にて運転するのに適した冷凍機を、各冷凍機の負荷とCOPとの関係に基づいて決定する。
 一方、減段判定部131が減段を行うと判定した場合は、運転パターン抽出部151が、要求負荷に応じた冷凍機運転パターンを抽出し、停止冷凍機選択部133が、抽出された冷凍機運転パターンのうち、冷凍機システム1全体の効率の良い冷凍機運転パターンに基づいて、停止する冷凍機を決定する。
 また、台数変更判定部と、冷凍機決定部とで冷凍機選択部を構成し、負荷要求に応じて複数の冷凍機のうち運転させる冷凍機を選択する。すなわち、台数変更判定部の判定結果に基づいて、冷凍機決定部が増段する冷凍機または減段する冷凍機を選択することにより、冷凍機21-1~21-n(図1)のうち、運転する冷凍機を選択する。
 次に、図4を参照して、冷凍機制御装置100の動作について説明する。
 図4は、冷凍機制御装置100が、運転状態を変更すべき冷凍機を選択する処理手順を示すフローチャートである。同図において、まず、データ取得部111が、停止中の各冷凍機に対して冷却水入口温度や冷却水流量などの情報を送信する。
 なお、冷凍機が全台停止している場合は、外気湿球温度に基づいて到達可能な冷却水入口温度を算出する。また、冷却水流量は定格流量とする(以上、ステップS101)。
 そして、各冷凍機21-1~21-nは、最適負荷範囲高値と、最適負荷範囲低値と、最適負荷範囲最適値と、最適負荷範囲高値COPと、最適負荷範囲低値COPと、最適負荷範囲最適値COPとを算出してデータ取得部111に送信する。
 ここで、COP(Coefficient Of Performance、成績係数)は、冷凍機の効率を示す効率指標値であり、冷凍機の負荷(冷凍能力)を消費エネルギーで除して算出される。冷凍機は、一般的に、冷却水入口温度や冷却水流量など冷凍機の運転環境、および、当該冷凍機に要求される負荷によってCOPが異なる。
 そこで、各冷凍機21-1~21-nは、実機において、予め、様々な運転環境および負荷において測定されたCOPに基づいて生成された、運転環境および負荷の各値と当該各値におけるCOPとが対応付けられたテーブルを記憶している。あるいは、当該テーブルに冷却水条件及び負荷の各値から機械特性に従ってCOPを導出する式を、冷凍機21-1~21-nが予め記憶しておくようにしてもよい。
 なお、COPとして、冷凍機の消費エネルギーに基づくCOPを用いてもよいし、冷水ポンプや冷却水ポンプや冷却塔ファンなどの補機の消費エネルギーも含めた消費エネルギーに基づくCOPを用いてもよい。
 また、最適負荷範囲とは、冷凍機が高効率にて運転可能な負荷の範囲をいい、例えば、冷凍機のCOPが、所定の値以上となる負荷範囲をいう。各冷凍機21-1~21-nは、上述したテーブルを用いて、あるいは、冷却水条件と負荷の各値とを上述した式に適用して、最適負荷範囲を求めることができる。
 また、最適負荷範囲高値とは、最適負荷範囲のうちの最大負荷値をいう。最適負荷範囲高値は、冷凍機の負荷が当該値を超えないように目標として設定される閾値である。また、最適負荷範囲低値とは、最適負荷範囲のうちの最小負荷値をいう。最適負荷範囲低値は、冷凍機の負荷が当該値未満とならないように目標として設定される閾値である。また、最適負荷範囲最適値とは、最適負荷範囲のうち、COPが最大となる負荷値を言う。
 また、最適負荷範囲高値COPとは、最適負荷範囲高値にて運転した場合のCOPをいい、最適負荷範囲低値COPとは、最適負荷範囲低値にて運転した場合のCOPをいい、最適負荷範囲最適値COPとは、最適負荷範囲最適値にて運転した場合のCOPをいう。
 以下では、最適負荷範囲高値と、最適負荷範囲低値と、最適負荷範囲最適値と、最適負荷範囲高値COPと、最適負荷範囲低値COPと、最適負荷範囲最適値COPとを併せて「最適負荷関連情報」と称する。
 運転中の冷凍機は、当該冷凍機を制御するためのデータとして、冷却水入口温度や冷却水流量などの情報を取得しており、これらに基づいて最適負荷関連情報を算出する。一方、停止中の冷凍機は、補機が停止しているため冷却水入口温度や冷却水流量などを測定できない。そこで、データ取得部111から送信される冷却水入口温度や冷却水流量などの情報に基づいて最適負荷関連情報を算出する。
 なお、最適負荷関連情報を、各冷凍機の制御部ではなくデータ取得部111が算出するようにしてもよい。これにより、冷凍機から冷凍機制御装置100への通信量を削減できる。一方、各冷凍機の制御部が最適負荷範囲高値等を算出する場合は、制御部が実際の制御に合わせて最適負荷範囲高値等を算出できるので、冷凍機制御装置100の計算量を削減できる。また、各冷凍機の制御部が最適負荷関連情報を算出する場合、冷凍機制御装置100が各冷凍機の特性パラメータを記憶しておく必要がないので、冷凍機を交換する際に、冷凍機制御装置100に対して調整を行う必要がない(以上、ステップS102)。
 次に、要求負荷演算部113が、要求負荷Qr(冷凍機の負荷の合計値として要求される値)を算出して要求負荷判定部112に出力する。要求負荷演算部113は、主管還水温度と主管送水温度との温度差に、主管流量を乗じることにより、冷凍機21-1~21-nが生成すべき冷熱量または温熱量を要求負荷として算出する。なお、冷凍機が全台停止中の場合は、初期要求負荷として予め設定されている値を要求負荷とする。
 そして、要求負荷判定部112は、データ取得部111の取得した、運転中の各冷凍機の最適負荷範囲最適値Qoptの合計ΣQoptが、要求負荷演算部113の算出した要求負荷Qr未満か否かを判定する(以上、ステップS103)。最適負荷範囲最適値合計が要求負荷未満であると判定した場合(ステップS103:YES)、ステップS111~S122において、増段時の処理として、増段を行うか否かの決定、および、増段を行うと決定した場合には増段する冷凍機の選択を行う。
 具体的には、増段判定部121が、要求負荷演算部113の算出した要求負荷が増段切換ポイント以上か否かに基づいて、増段を行うか否かを決定する。ここで、増段切換ポイントは、冷凍機の運転台数毎に設定される負荷値である。増段判定部121は、現在の運転台数に増段切換ポイントとして対応付けて設定されている負荷値を増段切換ポイントとして用いる(以上、ステップS111)。要求負荷が増段切換ポイント未満であると判定した場合、増段判定部121は、冷凍機の運転台数を変更しないことを決定し(ステップS111:NO)、同図の処理を終了する。
 一方、要求負荷が増段切換ポイント以上であると判定した場合、増段判定部121は、冷凍機の増段を行うことを決定し(ステップS111:YES)、不足負荷値演算部122が、式(1)に基づいて不足負荷値ΔQsを算出する。
  ΔQs=Qu―ΣQopt  ・・・式(1)
 ここで、Quは、増段切り換えポイントを表し、Qoptは、最適負荷範囲最適値を表し、ΣQoptは、運転中の全冷凍機について最適負荷範囲最適値を合計した最適負荷範囲最適値合計を表す(以上、ステップS121)。
 次に、運転冷凍機選択部123は、停止中の冷凍機の各々について、不足負荷値ΔQsで運転した際のCOPを求める。例えば、運転冷凍機選択部123は、停止中の各冷凍機に対して不足負荷値ΔQsを送信し、対応するCOPを要求して取得する。
 あるいは、運転冷凍機選択部123が、最適負荷範囲高値および最適負荷範囲高値COPと、最適負荷範囲最適値および最適負荷範囲最適値COPと、最適負荷範囲低値および最適負荷範囲低値COPとの3点に基づいて、負荷とCOPとの関係を近似する式を求め、当該式に基づいて不足負荷値ΔQsに対応するCOPを求めるようにしてもよい。例えば、運転冷凍機選択部123は、負荷をX軸にとり、COPをY軸にとって、前述の3点を通る二次曲線を求め、当該二次曲線上で、不足負荷値ΔQsに対応するCOPを求める。
 そして、運転冷凍機選択部123は、得られたCOPの最も高い冷凍機を、増段する冷凍機、すなわち運転させる冷凍機として選択する。選択された冷凍機に対して、運転指令部141は、冷凍機を運転させるための制御信号を送信する。また、運転指令部141は、新たに運転を開始した冷凍機を含め、運転中の各冷凍機に対して負荷分担を変更するための流量指令の制御信号を送信する。例えば、運転指令部141は、要求負荷演算部113が算出した要求負荷を、運転中の冷凍機の台数に応じて按分し、按分結果の負荷にて運転を行うように、各冷凍機に制御信号を送信する。負荷の按分としては、例えば、各冷凍機の最適負荷範囲最適値に応じた割合で負荷を分担させることが考えられる。
 なお、最適負荷範囲高値が不足負荷値未満(Qmax<ΔQs)の場合、運転冷凍機選択部123は、当該冷凍機については、不足負荷値ΔQsで運転した際のCOPに代えて、最適負荷範囲高値COPmaxを用いて、他の冷凍機のCOPとの比較を行う。すなわち、当該冷凍機を最適負荷範囲の最大負荷にて運転した場合のCOPを、他の冷凍機のCOPと比較する。あるいは、停止中の複数台の冷凍機に不足負荷値ΔQtを按分して負担させて最適負荷範囲内で運転可能な場合は、これらの冷凍機のCOPを、按分負担させる負荷に応じて重み付け平均した値と、他の冷凍機のCOPとを比較するようにしてもよい。
 また、最適負荷範囲低値が不足負荷値より大きい(Qmin>ΔQs)場合、運転冷凍機選択部123は、当該冷凍機については、不足負荷値ΔQsで運転した際のCOPに代えて、最適負荷範囲低値COPminを用いて、他の冷凍機のCOPとの比較を行う。すなわち、当該冷凍機を最適負荷範囲の最小負荷にて運転した場合のCOPを、他の冷凍機のCOPと比較する。
 なお、COPが同じ値の冷凍機が複数存在する場合は、運転冷凍機選択部123は、積算運転時間の最も短い冷凍機を、増段する冷凍機として選択する。例えば、冷凍機21-1~21-nの各々が当該冷凍機の積算運転時間を測定して冷凍機制御装置100に随時送信する。そして、COPが同じ値の冷凍機が複数存在する場合、冷凍機選択部123は、各冷凍機から送信される積算運転時間に基づいて、積算運転時間の最も短い冷凍機を選択する。これにより、積算運転時間の冷凍機間のばらつきを抑えることができる。
 なお、運転冷凍機選択部123が、COPの最も高い冷凍機を選択するのみならず、停止中の各冷凍機に対してCOPの高い順に運転優先順位を決定するようにしてもよい。冷凍機システム1が冷凍機の起動を1台ずつ行う場合、上記にて説明したように、運転冷凍機選択部123は起動する冷凍機を1台選択すれば足りる。一方、運転冷凍機選択部123が、複数の冷凍機に対して運転優先順位を決定しておくことにより、例えば冷凍機の故障など、選択された冷凍機を起動できない場合に、冷凍機システム1が、他の冷凍機を起動することができる(以上、ステップS122)。
 その後、冷凍機制御装置100は、同図の処理を終了する。
 一方、ステップS103で、運転中の各冷凍機の最適負荷範囲最適値Qoptの合計ΣQoptが、要求負荷以上であると判定した場合(ステップS103:NO)、ステップS131~S152において、減段時の処理として、減段を行うか否かの決定、および、減段を行うと決定した場合には減段する冷凍機の選択を行う。また、ステップS161~S181では、運転中の冷凍機が1台の場合に、他の冷凍機に切り換えるか否かを決定する。
 具体的には、減段判定部131が、要求負荷演算部113の算出した要求負荷が減段切換ポイント以下か否かに基づいて、減段を行うか否かを決定する。ここで、冷凍機が同一容量の場合、減段切換ポイントは、運転台数毎に設定される負荷値である。なお、冷凍機それぞれの容量が異なる場合、減段切換ポイントは、組合せによって設定される負荷値である。減段判定部131は、現在の運転台数に減段切換ポイントとして対応付けて設定されている負荷値を減段切換ポイントとして用いる(以上、ステップS131)。要求負荷が減段切換ポイントより大きいと判定した場合、減段判定部131は、冷凍機の運転台数を変更しないことを決定し(ステップS131:NO)、同図の処理を終了する。
 一方、要求負荷が減段切換ポイント以下であると判定した場合、減段判定部131は、冷凍機の減段を行うことを決定し(ステップS131:YES)、減段判定部131はさらに、運転中の冷凍機の台数が2台以上か否かを判定する(ステップS141)。運転台数が2台以上であると判定した場合(ステップS141:YES)、運転パターン抽出部151が、運転中の冷凍機から1台を選択し、残りの運転中の冷凍機全てを組み合わせたパターンを冷凍機運転パターンとして抽出する。運転パターン抽出部151は、運転中の全冷凍機について、この冷凍機運転パターンを抽出する(以上、ステップS151)。
 そして、停止冷凍機選択部133は、運転パターン抽出部151が抽出した全ての冷凍機運転パターンについて、冷凍機システム1全体のCOPを求める。例えば、冷凍機運転パターンに従って冷凍機を運転して要求負荷を按分負担させた場合の、各冷凍機のCOPを求め、各冷凍機のCOPを按分負担させる負荷に応じて重み付け平均した値を、冷凍機システム1全体のCOPとして算出する。
 そして、停止冷凍機選択部133は、冷凍機システム1全体のCOPが最大となる冷凍機運転パターンを選択し、選択した冷凍機運転パターンに従って減段する冷凍機を選択する。選択された冷凍機に対して、運転指令部141は、冷凍機を停止させるための制御信号を送信する。また、運転指令部141は、残りの運転中の各冷凍機に対して負荷分担を変更するための流量指令の制御信号を送信する。例えば、運転指令部141は、要求負荷演算部113が算出した要求負荷を、運転中の冷凍機の台数に応じて按分し、按分結果の負荷にて運転を行うように、各冷凍機に制御信号を送信する。
 なお、運転パターン抽出部151が、さらに、運転中の冷凍機から複数台を選択した残りの運転中の冷凍機の組み合わせも、冷凍機運転パターンとして抽出するようにしてもよい。これにより、冷凍機1台を減段したのみでは最適負荷範囲内で運転できない場合に、複数台の冷凍機を減段して、冷凍機システム1全体のCOPを高めることができる。
 一方、運転パターン抽出部151が、運転中の冷凍機の中から1台のみを選択して冷凍機運転パターンを抽出する方法によれば、最適である可能性の高い冷凍機運転パターンのみを抽出して計算量を抑えることができる。すなわち、要求負荷が急激には変化しないとの前提の下では、1台の冷凍機を減段すれば要求負荷に対応し得る。そこで、1台の冷凍機を減段する冷凍機運転パターンのみを抽出して冷凍機を選択することで、要求負荷に対応しつつ計算量を抑えることができる(以上、ステップS152)。
 その後、冷凍機制御装置100は、同図の処理を終了する。
 一方、ステップS141で、運転台数が1台であると判定した場合(ステップS141:NO)、停止冷凍機選択部133は、運転中の冷凍機の最適負荷範囲低値が要求負荷よりも大きい(Qmin>Qr)か否かを判定する(ステップS161)。運転中の冷凍機の最適負荷範囲低値が要求負荷よりも大きいと判定した場合(ステップS161:YES)、停止中の冷凍機の中に、要求負荷で運転した際のCOPが運転中の冷凍機よりも高い冷凍機があるか否かを判定する(ステップS171)。停止中の冷凍機の中に、要求負荷で運転した際のCOPが運転中の冷凍機よりも高い冷凍機があると判定した場合(ステップS171:YES)、要求負荷で運転した際のCOPが最も高い冷凍機を切換対象の冷凍機として選択する(ステップS181)。
 その後、冷凍機制御装置100は、同図の処理を終了する。
 一方、ステップS161で、運転中の冷凍機の最適負荷範囲低値が要求負荷以下であると判定した場合(ステップS161:NO)、および、ステップS141で、停止中の冷凍機の中に、要求負荷で運転した際のCOPが運転中の冷凍機よりも高い冷凍機が無いと判定した場合(ステップS171:NO)、冷凍機の切換は行わず、そのまま同図の処理を終了する。
 なお、冷凍機システム1が、ステップS161~S181で説明した処理を行わないようにしてもよい。すなわち、運転中の冷凍機の最適負荷範囲低値が要求負荷よりも大きいか否かにかかわらず、冷凍機の切換を行わずに運転中の冷凍機の運転を継続するようにしてもよい。これにより、冷凍機の運転切換頻度を抑制できる。さらに、ステップS161~S181の処理を行う必要が無くなり、演算量を削減できる。一方、ステップS161~S181で説明した処理を行う場合、より高いCOPにて運転を行い得る。
 なお、運転冷凍機選択部123が、増段する冷凍機を選択する方法は、上記ステップS122で説明した方法に限らない。
 例えば、運転パターン抽出部(増段運転パターン抽出部)151が、要求負荷に応じた冷凍機運転パターンを抽出し、抽出した冷凍機運転パターンのうちCOPが最適となるものに基づいて、運転冷凍機選択部123が、増段する冷凍機を選択するようにしてもよい。
 具体的には、運転パターン抽出部151は、停止中の冷凍機から1台を選択し、運転中の冷凍機と組み合わせて冷凍機運転パターンを抽出する。運転パターン抽出部151は、停止中の全冷凍機について、この冷凍機運転パターンを抽出する。
 そして、運転冷凍機選択部123は、運転パターン抽出部151が抽出した全ての冷凍機運転パターンについて、冷凍機システム1全体のCOPを求める。冷凍機システム1全体のCOPの算出は、例えば、ステップS152で説明したのと同様に、冷凍機運転パターンに含まれる各冷凍機に要求負荷を按分負担させた場合の、各冷凍機のCOPを按分負担させる負荷に応じて重み付け平均して算出する。
 そして、運転冷凍機選択部123は、冷凍機システム1全体のCOPが最大となる冷凍機運転パターンを選択し、選択した冷凍機運転パターンに従って増段する冷凍機を選択する。
 このように、運転冷凍機選択部123が冷凍機運転パターンに従って増段する冷凍機を選択することにより、増段後に各冷凍機が実際に負担する負荷に基づいてCOPを算出するので、より正確にCOPを算出でき、増段する冷凍機をより適切に選択できる。
 一方、ステップS122で説明した方法によれば、停止中の各冷凍機についてCOPを算出すればよく、冷凍機運転パターンの抽出や、既に運転中の冷凍機のCOPとの重み付け平均による冷凍機システム1全体のCOP算出を行う必要がない。この点で計算量が少なく、より速く冷凍機の選択を行える。
 なお、運転パターン抽出部151が、さらに、複数台の停止中の冷凍機と運転中の冷凍機とを組み合わせた冷凍機運転パターンも抽出するようにしてもよい。これにより、冷凍機1台を増段したのみでは最適負荷範囲内で運転できない場合に、複数台の冷凍機を増段して、冷凍機システム1全体のCOPを高めることができる。
 一方、上述した、運転パターン抽出部151が、停止中の冷凍機の中から1台のみを選択して冷凍機運転パターンを抽出する方法によれば、最適である可能性の高い冷凍機運転パターンのみを抽出して計算量を抑えることができる。すなわち、要求負荷が急激には変化しないとの前提の下では、1台の冷凍機を増段すれば要求負荷に対応し得る。そこで、1台の冷凍機を増段する冷凍機運転パターンのみを抽出して冷凍機を選択することで、要求負荷に対応しつつ計算量を抑えることができる。
 なお、停止冷凍機選択部133が、減段する冷凍機を選択する方法は、上記ステップS152で説明した方法に限らない。
 例えば、図5に示すように冷凍機制御装置100が、余剰負荷値演算部132を具備するようにしてもよい。
 この場合、図4のステップS151において、余剰負荷値演算部132は、式(2)に基づいて、余剰負荷値ΔQtを算出する。
  ΔQt=ΣQopt-Qd  ・・・式(2)
 ここで、Qdは減段切換ポイントを表す。また、Qoptは、最適負荷範囲最適値を表し、ΣQoptは、運転中の全冷凍機について最適負荷範囲最適値Qoptを合計した最適負荷範囲最適値合計を表す。
 次に、ステップS152において、停止冷凍機選択部133は、運転中の冷凍機の各々について、当該冷凍機を余剰負荷値ΔQtで運転した際のCOPを求める。
 そして、停止冷凍機選択部133は、得られたCOPの最も低い冷凍機を、減段する冷凍機、すなわち停止させる冷凍機として選択する。COPの最も低い冷凍機を停止させることにより、冷凍機システム1全体のCOPを高められる。選択された冷凍機に対して、運転指令部141は、冷凍機を停止させるための制御信号を送信する。また、運転指令部141は、残りの運転中の各冷凍機に対して負荷分担を変更するための流量指令の制御信号を送信する。
 なお、最適負荷範囲低値が余剰負荷値より大きい(Qmin>ΔQt)場合、停止冷凍機選択部133は、当該冷凍機については、余剰負荷値ΔQtで運転した際のCOPに代えて、最適負荷範囲低値COPminを用いて、他の冷凍機のCOPとの比較を行う。すなわち、最適負荷範囲の最小負荷で運転する当該冷凍機を停止した場合のCOP減少分を、他の冷凍機のCOP減少分と比較する。
 また、最適負荷範囲高値が余剰負荷値未満(Qmax<ΔQt)の場合、停止冷凍機選択部133は、当該冷凍機については、余剰負荷値ΔQtで運転した際のCOPに代えて、最適負荷範囲高値COPmaxを用いて、他の冷凍機のCOPとの比較を行う。すなわち、最適負荷範囲の最大負荷にて運転する当該冷凍機を停止した場合のCOP減少分を、他の冷凍機のCOP減少分と比較する。あるいは、運転中の複数台の冷凍機に余剰負荷値ΔQtを按分して負担させて最適負荷範囲内で運転可能な場合は、これらの冷凍機のCOPを、按分負担させる負荷に応じて重み付け平均した値と、他の冷凍機のCOPとを比較するようにしてもよい。
 なお、COPが同じ値の冷凍機が複数存在する場合は、停止冷凍機選択部133は、積算運転時間の最も長い冷凍機を、停止すべき冷凍機として選択する。これにより、積算運転時間の冷凍機間のばらつきを抑えることができる。
 なお、起動すべき冷凍機を選択する場合と同様、停止冷凍機選択部133が、運転中の各冷凍機に対して、得られたCOPの高い順に停止優先順位を決定するようにしてもよい。
 このように、停止冷凍機選択部133が、減段する冷凍機を、余剰負荷値に基づいて選択することにより、運転中の各冷凍機についてCOPを算出すればよく、冷凍機運転パターンの抽出や、残りの運転中の冷凍機のCOPの重み付け平均による冷凍機システム1全体のCOP算出を行う必要がない。この点で計算量が少なく、より速く冷凍機の選択を行える。
 一方、ステップS152で説明した方法によれば、減段後に各冷凍機が実際に負担する負荷に基づいてCOPを算出するので、より正確にCOPを算出でき、減段する冷凍機をより適切に選択できる。
 なお、図5においては、不足負荷値演算部122と、運転冷凍機選択部123と、余剰負荷値演算部132と、停止冷凍機選択部133とで冷凍機決定部を構成する。
 なお、冷凍機制御装置100が、要求負荷判定部112を具備せず、増段判定部121は、常に増段を行うか否かの判定を行い、減段判定部131は、常に減段を行うか否かの判定を行うようにしてもよい。これにより、装置構成を簡単にできる。
 なお、運転冷凍機選択部123が、常に増段する際の冷凍機を選択するようにしてもよい。すなわち、増段判定部121の判定に前もって冷凍機を選択するので、増段判定部121が増段を行うと判定した際に、速やかに増段を行える。停止冷凍機選択部133についても同様である。
 なお、要求流量が設定される場合は、要求負荷を満たすか否かに加えて、要求流量を満たすか否かを判定するようにしてもよい。
 図6は、要求負荷を満たすか否かに加えて、要求流量を満たすか否かを判定する場合の、冷凍機制御装置100の処理手順を示すフローチャートである。
 同図のステップS201~S203は、図4のステップS101~S103と同様であり、ステップS222は図4のステップS122と同様であり、ステップS251は図4のステップS141と同様であり、ステップS271~S291は、図4のステップS161~S181と同様である。
 図6のステップS203において、運転中の各冷凍機の最適負荷範囲最適値合計ΣQoptが要求負荷Qr以上であると判定した場合(ステップS203:NO)、要求負荷判定部112は、さらに、運転中の各冷凍機の最適流量範囲最適値合計ΣFopが要求流量Fr未満か否かを判定する。その際、運転中の各冷凍機について最適流量Foptを式(3)にて求め、運転中の各冷凍機について最適流量Foptの合計を算出して最適流量範囲最適値合計ΣFoptとする。
 Fopt=Qopt/Cp×ρ×(Tr_i-Ts_i)  ・・・式(3)
 ここで、Tr_iは、冷凍機i(iは1≦i≦nの正の整数)の冷水戻り温度を表し、Ts_nは、冷凍機iの冷水送り温度を表す。また、Cpは冷水の比熱[kJ/(kg・℃)]を表し、ρは冷水の密度[kg/m]を表す(以上、ステップS231)。
 そして、最適流量範囲最適値合計ΣFoptが要求流量Fr未満であると判定した場合(ステップS231:YES)、ステップS211~222において、増段時の処理として、増段を行うか否かの決定、および、増段を行うと決定した場合には増段する冷凍機の選択を行う。一方、最適流量範囲最適値合計ΣFoptが要求流量Fr以上であると判定した場合(ステップS231:NO)、ステップS241~262において、減段時の処理として、減段を行うか否かの決定、および、減段を行うと決定した場合には減段する冷凍機の選択を行う。また、ステップS271~S291では、運転中の冷凍機が1台の場合に、他の冷凍機に切り換えるか否かを決定する。
 ステップS211では、増段判定部121は、図4のステップS111にて説明した、要求負荷に基づく増段要否の判定に加えて、要求流量に基づく増段要否の判定を行う。具体的には、増段判定部121は、要求負荷が増段切換ポイント以上か否かを判定すると共に、要求流量が増段切換流量以上か否かを判定する。ここで、増段切換流量は、冷凍機の運転台数毎に設定される流量値である。増段判定部121は、現在の運転台数に対応付けて増段切換流量として設定されている流量値を増段切換流量として用いる(以上、ステップS211)。要求負荷が増段切換ポイント未満、かつ、要求流量が増段切換流量未満であると判定した場合、増段判定部121は、冷凍機の運転台数を変更しないことを決定し(ステップS211:NO)、同図の処理を終了する。
 一方、要求負荷が増段切換ポイント以上、あるいは要求流量が増段切換流量以上であると判定した場合、増段判定部121は、冷凍機の増段を行うことを決定し(ステップS211:YES)、ステップS221に進む。
 ステップS221では、図4のステップS121で用いた増段切換ポイントQuに代えて、式(4)に基づいて増段切換ポイントQuを算出する。
  Qu=Fu×(Tr-Ts)×Cp×ρ  ・・・式(4)
 ここで、Fuは増段切換流量[m/h]を表し、Trは還水温度[℃]を表し、Tsは送水温度[℃]を表し、Cpは冷却水の比熱[kJ/(kg・℃)]を表し、ρは冷却水の密度[kg/m]を表す。
 そして、要求負荷判定部112は、図4のステップS121と同様、式(1)に基づいて不足負荷値ΔQsを算出する。
 また、ステップS241では、減段判定部131は、図4のステップS131にて説明した、要求負荷に基づく減段要否の判定に加えて、要求流量に基づく減段要否の判定を行う。具体的には、減段判定部131は、要求負荷が減段切換ポイント以下か否かを判定すると共に、要求流量が減段切換流量以下か否かを判定する。ここで、減段切換流量は、冷凍機の運転台数毎に設定される流量値である。減段判定部131は、現在の運転台数に対応付けて減段切換流量として設定されている流量値を減段切換流量として用いる(以上、ステップS241)。要求負荷が減段切換ポイントより大きく、かつ、要求流量が減段切換流量より大きいと判定した場合、減段判定部131は、冷凍機の運転台数を変更しないことを決定し(ステップS241:NO)、同図の処理を終了する。
 一方、要求負荷が減段切換ポイント以下、あるいは要求流量が減段切換流量以下であると判定した場合、減段判定部131は、冷凍機の減段を行うことを決定し(ステップS241:YES)、ステップS251に進む。
 ステップS261では、図4のステップS151で用いた減段切換ポイントQdに代えて、式(5)に基づいて減段切換ポイントQdを算出する。
  Qd=Fd×(Tr-Ts)×Cp×ρ  ・・・式(5)
 ここで、Fdは減段切換流量[m/h]を表し、Trは還水温度[℃]を表し、Tsは送水温度[℃]を表し、Cpは冷却水の比熱[kJ/(kg・℃)]を表し、ρは冷却水の密度[kg/m]を表す。
 そして、要求負荷判定部112は、図4のステップS151と同様、式(2)に基づいて余剰負荷値ΔQtを算出する。
 ステップS262では、上述したのと同様に、停止冷凍機選択部133が、運転中の冷凍機の各々について、当該冷凍機を余剰負荷値ΔQtで運転した際のCOPを求める。
 そして、停止冷凍機選択部133は、得られたCOPの最も低い冷凍機を、減段する冷凍機、すなわち停止させる冷凍機として選択する。COPの最も低い冷凍機を停止させることにより、冷凍機システム1全体のCOPを高められる。選択された冷凍機に対して、運転指令部141は、停止するよう指示する制御信号を送信する。また、運転指令部141は、残りの運転中の各冷凍機に対して負荷分担を変更するための流量指令の制御信号を送信する。例えば、運転指令部141は、要求負荷演算部113が算出した要求負荷を、運転中の冷凍機の台数に応じて按分し、按分結果の負荷にて運転を行うように、各冷凍機に制御信号を送信する。
 このように、要求負荷判定部112が、運転中の冷凍機にて要求負荷を満たすか否かに加えて、運転中の冷凍機にて要求流量を満たすか否かも判定するので、要求負荷に加えて要求流量が設定された場合にも対応でき、冷凍機システム1のCOPが高くなるように、増段あるいは減段する冷凍機を選択できる。
 以上のように、冷凍機制御装置100は、冷凍機の環境に応じてCOPを求め、求めたCOPに基づいて運転状態を変更する冷凍機を選択するので、冷凍機システム全体を効率良く運転するために増段または減段するべき冷凍機を、状況に応じて適切に選択できる。
 また、冷凍機システム1の運転員は、冷凍機の特性を詳しく知らなくても、最適な運転範囲をキープしながら冷凍機システム1を運転できる。
 なお、冷凍機制御装置100の全部または一部の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより各部の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。
 また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 本発明は、複数の冷凍機を備えた冷凍機システムにおいて、冷凍機の制御を行う冷凍機制御装置に用いて好適である。
 100  冷凍機制御装置
 111  データ取得部
 112  要求負荷判定部
 113  要求負荷演算部
 121  増段判定部
 122  不足負荷値演算部
 123  運転冷凍機選択部
 131  減段判定部
 132  余剰負荷値演算部
 133  停止冷凍機選択部
 141  運転指令部
 151  運転パターン抽出部

Claims (7)

  1.  複数の冷凍機を制御して、冷熱あるいは温熱の供給を行うための冷凍機制御装置であって、
     要求負荷に応じて、複数の前記冷凍機のうち運転させる前記冷凍機を選択する冷凍機選択部と、
     該冷凍機選択部で選択された前記冷凍機に対して、前記要求負荷と対応した運転信号を出力する運転指令部とを備え、
     前記冷凍機選択部は、前記要求負荷に基づいて現在選択されている前記冷凍機の台数を変更するか否かを判定する台数変更判定部と、
     前記台数変更判定部による判定結果に基づいて前記冷凍機の台数を変更する場合に、予め取得された各冷凍機の負荷と効率指標値との関係及び要求負荷に基づいて運転状態を変更する冷凍機を決定する冷凍機決定部と、
     を具備する冷凍機制御装置。
  2.  前記冷凍機決定部は、前記台数変更判定部で前記冷凍機の台数を増やすと判定された場合、現在運転中の全冷凍機について、許容される効率の範囲となる高負荷側の負荷の閾値として各冷凍機について設定される最適負荷範囲高値を合計した最適負荷範囲高値合計から、要求負荷を減算した不足負荷値を求める不足負荷値演算部と、
     前記不足負荷値演算部で求められた不足負荷値と前記負荷と効率指標値との関係に基づいて、現在停止中の冷凍機のそれぞれについて前記不足負荷値で運転させた場合の効率指標値を求めて、最も高い効率指標値を示す冷凍機を運転させる冷凍機として選択する運転冷凍機選択部と、
     を具備する請求項1に記載の冷凍機制御装置。
  3.  前記冷凍機決定部は、前記台数変更判定部で前記冷凍機の台数を増やすと判定された場合、現在停止中の冷凍機から選択して現在運転中の全冷凍機と組み合わせうる全ての冷凍機運転パターンを求める増段運転パターン抽出部と、
     前記増段運転パターン抽出部で求められた全ての冷凍機運転パターンについて、全体の効率指標値を求め、最も効率指標値が高くなる冷凍機運転パターンと対応する冷凍機を、運転させる冷凍機として選択する運転冷凍機選択部と、
     を具備する請求項1に記載の冷凍機制御装置。
  4.  前記運転冷凍機選択部は、前記選択可能な冷凍機が複数存在したとき、該当する冷凍機の運転時間を取得して、該運転時間の最も短い冷凍機を選択する請求項2または請求項3に記載の冷凍機制御装置。
  5.  前記冷凍機決定部は、前記台数変更判定部で前記冷凍機の台数を減らすと判定された場合、現在運転中の冷凍機から1台を停止させることで運転を維持させる冷凍機として組み合わせうる全ての冷凍機運転パターンを求める減段運転パターン抽出部と、
     前記減段運転パターン抽出部で求められた全ての冷凍機運転パターンについて、全体の効率指標値を求め、最も効率指標値が高くなる冷凍機運転パターンと対応する冷凍機を停止させる冷凍機として選択する停止冷凍機選択部とを具備する請求項1から4のいずれか一項に記載の冷凍機制御装置。
  6.  前記冷凍機決定部は、前記台数変更判定部で冷凍機台数を減らすと判定された場合、現在運転中の全冷凍機について、要求負荷から、許容される効率の範囲となる低負荷側の負荷の閾値として各冷凍機について設定される最適負荷範囲低値を合計した最適負荷範囲低値合計を減算した余剰負荷値を求める余剰負荷値演算部と、
     前記余剰負荷値演算部で求められた前記余剰負荷値及び前記負荷と効率指標値との関係に基づいて、現在運転中の冷凍機のそれぞれについて前記余剰負荷値で運転させた場合の効率指標値を求めて、最も低い効率指標値を示す冷凍機を停止させる冷凍機として選択する停止冷凍機選択部とを具備する請求項1から4のいずれか一項に記載の冷凍機制御装置。
  7.  前記停止冷凍機選択部は、前記選択可能な冷凍機が複数存在したとき、該当する冷凍機の運転時間を取得して、該運転時間の最も長い冷凍機を選択する請求項5または請求項6に記載の冷凍機制御装置。
PCT/JP2011/067266 2010-08-06 2011-07-28 冷凍機制御装置 WO2012017912A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11814539.0A EP2602565B1 (en) 2010-08-06 2011-07-28 Refrigerator controller
KR1020127030363A KR101496532B1 (ko) 2010-08-06 2011-07-28 냉동기 제어 장치
CN201180031137.8A CN102971589B (zh) 2010-08-06 2011-07-28 冷冻机控制装置
US13/806,424 US20130098084A1 (en) 2010-08-06 2011-07-28 Chiller control apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010177749A JP5511578B2 (ja) 2010-08-06 2010-08-06 冷凍機制御装置
JP2010-177749 2010-08-06

Publications (1)

Publication Number Publication Date
WO2012017912A1 true WO2012017912A1 (ja) 2012-02-09

Family

ID=45559413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067266 WO2012017912A1 (ja) 2010-08-06 2011-07-28 冷凍機制御装置

Country Status (6)

Country Link
US (1) US20130098084A1 (ja)
EP (1) EP2602565B1 (ja)
JP (1) JP5511578B2 (ja)
KR (1) KR101496532B1 (ja)
CN (1) CN102971589B (ja)
WO (1) WO2012017912A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5404333B2 (ja) * 2009-11-13 2014-01-29 三菱重工業株式会社 熱源システム
JP5558400B2 (ja) * 2011-03-30 2014-07-23 三菱重工業株式会社 熱源システム及び熱源システムの台数制御方法
JP5787792B2 (ja) * 2012-02-29 2015-09-30 三菱重工業株式会社 熱源システムの台数制御装置及びその方法並びに熱源システム
JP5984490B2 (ja) * 2012-04-27 2016-09-06 三菱電機株式会社 ヒートポンプ装置
JP5500703B1 (ja) * 2013-10-21 2014-05-21 株式会社イトーレイネツ レーザ加工機用冷却設備
JP6249331B2 (ja) * 2013-11-01 2017-12-20 三菱重工サーマルシステムズ株式会社 熱源制御装置、熱源システム及び熱源制御方法
CN104456833A (zh) * 2014-10-31 2015-03-25 黄自宇 测量温度参数进行控制的节能控制方法
JP6399979B2 (ja) * 2015-07-31 2018-10-03 三菱重工サーマルシステムズ株式会社 冷凍機システム
JP6433598B2 (ja) * 2015-08-11 2018-12-05 三菱電機株式会社 空調システム
JP6477906B2 (ja) * 2015-10-07 2019-03-06 富士電機株式会社 エネルギー解析支援装置、エネルギー解析支援方法、エネルギー解析支援プログラム及びこれを記録した記録媒体
CN108885037B (zh) * 2016-01-25 2021-05-18 比泽尔制冷设备有限公司 用于控制压缩机系统的方法
US10655879B2 (en) 2016-04-19 2020-05-19 Mitsubishi Electric Corporation Air-conditioning system, air-conditioning control method, and non-transitory computer readable medium storing program
JP2018025360A (ja) * 2016-08-10 2018-02-15 三菱重工サーマルシステムズ株式会社 熱源システム及びその制御方法
JP6843571B2 (ja) * 2016-09-28 2021-03-17 東芝キヤリア株式会社 運転制御装置および熱源システム
JP6470345B2 (ja) * 2017-05-08 2019-02-13 東京ガスエンジニアリングソリューションズ株式会社 熱源機制御装置、および熱源機システム
US11333388B2 (en) * 2018-04-04 2022-05-17 Mitsubishi Electric Corporation Controller of air conditioning system, outdoor unit, relay unit, heat source apparatus, and air conditioning system
KR101952627B1 (ko) * 2018-06-07 2019-06-11 주식회사 성지공조기술 복합 일체형 냉동기 시스템 및 그 제어방법
CN110737214A (zh) 2018-07-18 2020-01-31 开利公司 基于分析的致冷器排序
US11092954B2 (en) 2019-01-10 2021-08-17 Johnson Controls Technology Company Time varying performance indication system for connected equipment
US11519620B2 (en) 2020-09-22 2022-12-06 Johnson Controls Tyco IP Holdings LLP Stability index for connected equipment
JP7186121B2 (ja) * 2019-03-28 2022-12-08 株式会社竹中工務店 熱源システム
EP3885850A1 (en) * 2020-03-28 2021-09-29 Tata Consultancy Services Limited Multi-chiller scheduling using reinforcement learning with transfer learning for power consumption prediction
US11639820B2 (en) 2020-12-22 2023-05-02 Trane International Inc. Systems and methods for modeling of chiller efficiency and determination of efficiency-based staging
US20220373206A1 (en) * 2021-05-19 2022-11-24 Tekworx, Llc Chiller controller for optimized efficiency

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144457A (ja) * 2002-08-30 2004-05-20 Ebara Refrigeration Equipment & Systems Co Ltd 連結式冷温水機の運転台数制御方法及び運転台数制御装置
JP2006177568A (ja) * 2004-12-21 2006-07-06 Hitachi Ltd 冷凍機の台数制御装置と冷熱供給システム
JP2008134013A (ja) * 2006-11-29 2008-06-12 Toyo Netsu Kogyo Kk 冷熱源機の運転制御方法及びこれを用いた冷熱源システム
JP2009204262A (ja) 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機および熱源システムならびにこれらの制御方法
JP2010177749A (ja) 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd 通信制御装置とこれを備えた路側通信機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4463574A (en) * 1982-03-15 1984-08-07 Honeywell Inc. Optimized selection of dissimilar chillers
US4483152A (en) * 1983-07-18 1984-11-20 Butler Manufacturing Company Multiple chiller control method
US4506516A (en) * 1984-04-06 1985-03-26 Carrier Corporation Refrigeration unit compressor control
JPH03291439A (ja) * 1990-03-22 1991-12-20 Mitsubishi Heavy Ind Ltd 熱源プラントの運転制御装置
US6185946B1 (en) * 1999-05-07 2001-02-13 Thomas B. Hartman System for sequencing chillers in a loop cooling plant and other systems that employ all variable-speed units
KR100353025B1 (ko) * 1999-05-14 2002-09-16 삼성전자 주식회사 공기조화기의 난방 과부하 제어방법
JP4435533B2 (ja) * 2003-10-09 2010-03-17 高砂熱学工業株式会社 熱源システム及び制御装置
CN1967076A (zh) * 2005-11-18 2007-05-23 乐金电子(天津)电器有限公司 复合式空调器的真空不良检测方法及其检测装置
ES2700466T3 (es) * 2007-02-14 2019-02-15 Carrier Corp Optimización de funcionamiento de sistema de refrigeración enfriado por aire
KR101270622B1 (ko) * 2007-12-21 2013-06-03 엘지전자 주식회사 공기조화 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004144457A (ja) * 2002-08-30 2004-05-20 Ebara Refrigeration Equipment & Systems Co Ltd 連結式冷温水機の運転台数制御方法及び運転台数制御装置
JP2006177568A (ja) * 2004-12-21 2006-07-06 Hitachi Ltd 冷凍機の台数制御装置と冷熱供給システム
JP2008134013A (ja) * 2006-11-29 2008-06-12 Toyo Netsu Kogyo Kk 冷熱源機の運転制御方法及びこれを用いた冷熱源システム
JP2009204262A (ja) 2008-02-28 2009-09-10 Mitsubishi Heavy Ind Ltd ターボ冷凍機および熱源システムならびにこれらの制御方法
JP2010177749A (ja) 2009-01-27 2010-08-12 Sumitomo Electric Ind Ltd 通信制御装置とこれを備えた路側通信機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2602565A4

Also Published As

Publication number Publication date
EP2602565A4 (en) 2018-02-28
KR101496532B1 (ko) 2015-02-26
JP5511578B2 (ja) 2014-06-04
US20130098084A1 (en) 2013-04-25
CN102971589B (zh) 2015-09-16
CN102971589A (zh) 2013-03-13
JP2012037141A (ja) 2012-02-23
KR20130020683A (ko) 2013-02-27
EP2602565B1 (en) 2019-03-13
EP2602565A1 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5511578B2 (ja) 冷凍機制御装置
RU2362096C2 (ru) Удаление мгновенно выделяющегося газа из сборника в системе охлаждения
US9644876B2 (en) Refrigeration cycle apparatus
US10181725B2 (en) Method for operating at least one distributed energy resource comprising a refrigeration system
JP5517667B2 (ja) 熱源システムおよびその制御方法
JP6618860B2 (ja) 熱源システム及びその制御方法
US10197307B2 (en) Air conditioner with oil level control for both gas and electric heat pump cycles
JP5201183B2 (ja) 空調装置および冷凍機の運転方法
KR20140108576A (ko) 열원 시스템 및 그 제어 장치 및 그 제어 방법
JP2011021855A (ja) 冷凍機の台数制御方法
JP5667956B2 (ja) 空気調和装置
JP6835651B2 (ja) 冷凍機制御装置、ターボ冷凍機、冷凍機制御方法およびプログラム
WO2002090843A1 (fr) Dispositif de refrigeration
WO2021149677A1 (ja) 空調システム制御装置、空調システム、空調システム制御方法およびプログラム
JP6301784B2 (ja) 熱源システムに使用される制御装置、および該制御装置を備えた熱源システム
JP2011007482A (ja) 空気調和装置
JP5971964B2 (ja) ターボ冷凍機
JP6509047B2 (ja) 空気調和装置
CN108613329B (zh) 一种变频空调及其控制方法
CN105190198A (zh) 用于控制连接至智能电网的蒸汽压缩系统的方法
JP5697580B2 (ja) 空気調和機
JP6586182B2 (ja) 熱源システムに使用される制御装置、および該制御装置を備えた熱源システム
JP2024501902A (ja) 極低温冷凍システム及び極低温ポンプ
CN115515373A (zh) 无负载感知的多层冷却系统
JP2014167368A (ja) 冷凍装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180031137.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11814539

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127030363

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011814539

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13806424

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE