JP6399979B2 - 冷凍機システム - Google Patents

冷凍機システム Download PDF

Info

Publication number
JP6399979B2
JP6399979B2 JP2015152177A JP2015152177A JP6399979B2 JP 6399979 B2 JP6399979 B2 JP 6399979B2 JP 2015152177 A JP2015152177 A JP 2015152177A JP 2015152177 A JP2015152177 A JP 2015152177A JP 6399979 B2 JP6399979 B2 JP 6399979B2
Authority
JP
Japan
Prior art keywords
refrigerator
upstream
downstream
load factor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015152177A
Other languages
English (en)
Other versions
JP2017032199A (ja
Inventor
祐介 筈井
祐介 筈井
敏昭 大内
敏昭 大内
松尾 実
実 松尾
智 二階堂
智 二階堂
則保 前原
則保 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Thermal Systems Ltd
Original Assignee
Mitsubishi Heavy Industries Thermal Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Thermal Systems Ltd filed Critical Mitsubishi Heavy Industries Thermal Systems Ltd
Priority to JP2015152177A priority Critical patent/JP6399979B2/ja
Priority to PCT/JP2016/062645 priority patent/WO2017022282A1/ja
Priority to US15/736,559 priority patent/US11221166B2/en
Priority to CN201680035315.7A priority patent/CN107735625B/zh
Publication of JP2017032199A publication Critical patent/JP2017032199A/ja
Application granted granted Critical
Publication of JP6399979B2 publication Critical patent/JP6399979B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • F25B2400/061Several compression cycles arranged in parallel the capacity of the first system being different from the second
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/195Pressures of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21172Temperatures of an evaporator of the fluid cooled by the evaporator at the inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21171Temperatures of an evaporator of the fluid cooled by the evaporator
    • F25B2700/21173Temperatures of an evaporator of the fluid cooled by the evaporator at the outlet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Description

本発明は、2台の冷凍機を備える冷凍機システムに関する。
冷凍機を有する冷凍機システムは、建物の空調設備、冷蔵設備、及び冷凍設備のような負荷設備に使用される。冷凍機システムにおいて、冷凍サイクルを構成する2台の冷凍機が直列で接続され、負荷設備に供給される冷水が2台の冷凍機の凝縮器によって冷却される冷凍機システムが知られている。特許文献1には、上流側冷凍機(上流側熱源機)を通過し、下流側冷凍機(下流側熱源機)に流入する冷媒(熱媒)の温度である中間温度を制御対象として、運転コストが所定値以下となるように中間温度を設定する技術が開示されている。
特開2012−141098号公報
冷凍機システムにおいて、冷凍機が効率良く運転されることにより、エネルギー消費の低減が図られる。本発明は上述した課題を解決するものであり、冷凍機を効率良く運転できる冷凍機システムを提供することを目的とする。
上述の目的を達成するために、本発明の冷凍機システムは、冷媒を圧縮する第1圧縮機、前記第1圧縮機により圧縮された冷媒を凝縮させる第1凝縮器、及び前記第1凝縮器により凝縮された冷媒を蒸発させ、冷水を冷却する第1蒸発器を有する上流側冷凍機と、冷媒を圧縮する第2圧縮機、前記第2圧縮機により圧縮された冷媒を凝縮させる第2凝縮器、及び前記第2凝縮器により凝縮された冷媒を蒸発させ、前記第1蒸発器を通過した冷水を冷却する第2蒸発器を有する下流側冷凍機と、前記上流側冷凍機及び前記下流側冷凍機の稼動、停止及び、前記上流側冷凍機及び前記下流側冷凍機の負荷を制御する上位制御装置と、を有し、前記第1圧縮機は、可変速機であり、前記第2圧縮機は、固定速機であることを特徴とする。
前記上位制御装置は、設備負荷率が第1閾値よりも小さい場合、前記上流側冷凍機を運転し、前記下流側冷凍機を停止する第1モードとし、前記上流側冷凍機を運転し、前記下流側冷凍機を停止している状態で、設備負荷率が前記第1閾値よりも高い第2閾値以上となった場合、前記上流側冷凍機及び前記下流側冷凍機の両方を運転する第2モードとし、前記上流側冷凍機及び前記下流側冷凍機の両方を運転している状態で、設備負荷率が前記第1閾値よりも低くなった場合、前記第1モードとすることが好ましい。
前記上位制御装置は、前記第1モードで設備負荷率が前記第2閾値を超え、前記第2モードでの運転を開始する場合、前記上流側冷凍機と前記下流側冷凍機との負荷を等負荷に対する差が10%以内となる負荷とすることが好ましい。
前記上位制御装置は、前記第1モードで設備負荷率が前記第2閾値を超え、前記第2モードでの運転を開始する場合、前記上流側冷凍機と前記下流側冷凍機との負荷を等負荷とすることが好ましい。
前記上位制御装置は、前記第2モードで運転し、かつ、設備負荷率が第2閾値よりも高い第3閾値を超えた場合、前記下流側冷凍機の負荷率を100%とし、設備負荷率に応じて前記上流側冷凍機の負荷率を変動させることが好ましい。
前記第2凝縮器は、供給される冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、前記第1凝縮器は、前記第2凝縮器を通過した冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、前記第2凝縮器に供給される冷却水の温度を検出する冷却水温度検出部を有し、前記上位制御装置は、前記冷却水温度検出部が検出した温度に基づいて、前記第1閾値を調整することが好ましい。
前記第1閾値は、前記冷却水温度検出部が検出した温度が低いほど低い設備負荷率となることが好ましい。
上述の目的を達成するために、本発明の冷凍機システムは、冷媒を圧縮する第1圧縮機、前記第1圧縮機により圧縮された冷媒を凝縮させる第1凝縮器、及び前記第1凝縮器により凝縮された冷媒を蒸発させ、冷水を冷却する第1蒸発器を有する上流側冷凍機と、冷媒を圧縮する第2圧縮機、前記第2圧縮機により圧縮された冷媒を凝縮させる第2凝縮器、及び前記第2凝縮器により凝縮された冷媒を蒸発させ、前記第1蒸発器を通過した冷水を冷却する第2蒸発器を有する下流側冷凍機と、前記上流側冷凍機及び前記下流側冷凍機の稼動、停止及び、前記上流側冷凍機及び前記下流側冷凍機の負荷を制御する上位制御装置と、を有し、前記第1圧縮機は、固定速機であり、前記第2圧縮機は、固定速機であり、前記上位制御装置は、設備負荷率が第1閾値よりも小さい場合、前記上流側冷凍機を運転し、前記下流側冷凍機を停止する第1モードとし、前記上流側冷凍機を運転し、前記下流側冷凍機を停止している状態で、設備負荷率が前記第1閾値よりも高い第2閾値以上となった場合、前記上流側冷凍機及び前記下流側冷凍機の両方を運転する第2モードとし、前記上流側冷凍機及び前記下流側冷凍機の両方を運転している状態で、設備負荷率が前記第1閾値よりも低くなった場合、前記第1モードとすることを特徴とする。
前記上流側冷凍機及び前記下流側冷凍機の両方を運転している状態で、かつ、設備負荷率が第2閾値よりも高い第3閾値を超えた場合、設備負荷率の上昇に対応して、前記下流側冷凍機の負荷を一定にしたまま、前記上流側冷凍機の負荷率を上昇させ、前記上流側冷凍機の負荷率が100%になった後、前記下流側冷凍機の負荷率を変動させることが好ましい。
前記第2凝縮器は、供給される冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、前記第1凝縮器は、前記第2凝縮器を通過した冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、前記第2凝縮器に供給される冷却水の温度を検出する冷却水温度検出部を有し、前記上位制御装置は、前記冷却水温度検出部が検出した温度に基づいて、前記第3閾値を調整することが好ましい。
前記第3閾値は、前記冷却水温度検出部が検出した温度が高いほど低い設備負荷率となることが好ましい。
本発明によれば、冷凍機を効率良く運転できる冷凍機システムが提供される。
図1は、冷凍機システムの概略構成を示すブロック図である。 図2は、図1に示す冷凍機の概略構成を示す説明図である。 図3は、冷凍機システムの冷凍機の組み合わせと消費電力の関係を示すグラフである。 図4は、冷凍機システムの処理動作の一例を示すフローチャートである。 図5は、設備負荷率と消費電力との関係を示すグラフである。 図6は、冷凍機システムの処理動作の一例を示すフローチャートである。 図7は、第1閾値と設備負荷率と冷却水入口温度との関係を示すグラフである。 図8は、冷凍機の組み合わせと設備負荷率と消費電力との関係を示すグラフである。 図9は、冷凍機システムの処理動作の一例を示すフローチャートである。 図10は、冷凍機の負荷率の制御を説明するための説明図である。 図11は、冷凍機の負荷率と設備負荷率と消費電力との関係を示すグラフである。 図12は、冷凍機システムの処理動作の一例を示すフローチャートである。 図13は、冷凍機の負荷率の制御を説明するための説明図である。 図14は、冷凍機の負荷率と設備負荷率と消費電力との関係を示すグラフである。 図15は、設備負荷率とCOPとの関係を示すグラフである。 図16は、冷凍機システムの処理動作の一例を示すフローチャートである。 図17は、消費電力削減率と設備負荷率との関係を示すグラフである。
以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例により本発明が限定されるものではなく、また、実施例が複数ある場合には、各実施例を組み合わせて構成するものも含むものである。また、下記実施例における構成要素には、当業者が容易に想定できるもの、あるいは実質的に同一のものが含まれる。
[第1実施形態]
図1は、冷凍機システム10の概略構成を示すブロック図である。冷凍機システム10は、上流側冷凍機12と、下流側冷凍機14と、冷却水循環系20と、冷水循環系22と、上位制御装置24と、冷水中間温度検出部26と、入口冷却水温度検出部28と、を備える。冷凍機システム10により、負荷設備18に冷水が供給される。
上流側冷凍機12は、負荷設備18に供給される冷水を冷却する。上流側冷凍機12は、冷媒を使って冷水を冷却する。上流側冷凍機12は、冷媒を圧縮する第1圧縮機101aと、第1圧縮機101aにより圧縮された冷媒を凝縮させる第1凝縮器102aと、第1凝縮器102aにより凝縮された冷媒を蒸発させて冷水を冷却する第1蒸発器103aと、第1循環経路106aと、を有する。第1圧縮機101aと第1凝縮器102aと第1蒸発器103aとは、第1循環経路106aを介して接続される。上流側冷凍機12の冷媒は、第1循環経路106aを介して、第1圧縮機101a、第1凝縮器102a、及び第1蒸発器103aを循環する。上流側冷凍機12は、制御装置109aが各部の動作を制御する。
下流側冷凍機14は、負荷設備18に供給される冷水を冷却する。下流側冷凍機14は、冷媒を使って冷水を冷却する。下流側冷凍機14は、冷媒を圧縮する第2圧縮機101bと、第2圧縮機101bにより圧縮された冷媒を凝縮させる第2凝縮器102bと、第2凝縮器102bにより凝縮された冷媒を蒸発させて第1蒸発器103aを通過した冷水を冷却する第2蒸発器103bと、第2循環経路106bと、を有する。第2圧縮機101bと第2凝縮器102bと第2蒸発器103bとは、第2循環経路106bを介して接続される。下流側冷凍機14の冷媒は、第2循環経路106bを介して、第2圧縮機101b、第2凝縮器102b、及び第2蒸発器103bを循環する。下流側冷凍機14は、制御装置109bが各部の動作を制御する。
負荷設備18は、例えばビル又は工場のような建物に設置される空調設備である。負荷設備18は、上流側冷凍機12及び下流側冷凍機14から供給された冷水を使って、対象物を冷却する。例えば、負荷設備18は、供給された冷水と空気とを熱交換し、冷水で冷却された空気を建物に供給する。これにより、建物の温度又は湿度が調整される。
なお、負荷設備18は、冷蔵設備でもよいし、冷凍設備でもよい。また、負荷設備18は、供給された冷水と液体とを熱交換し、冷水で冷却された液体を対象物に供給してもよい。
冷却水循環系20は、上流側冷凍機12及び下流側冷凍機14に冷却水を供給して、上流側冷凍機12の冷媒及び下流側冷凍機14の冷媒を冷却する。冷却水は、上流側冷却機12の第1凝縮器102aを流れる冷媒、及び下流側冷凍機14の第2凝縮器102bを流れる冷媒を冷却する。
第2凝縮器102bは、冷却水供給部123から供給される冷却水と冷媒との間で熱交換を行って、下流側冷凍機14の冷媒を冷却する。第1凝縮器102aは、第2凝縮器102bを通過した冷却水と冷媒との間で熱交換を行って、上流側冷凍機12の冷媒を冷却する。
冷却水循環系20は、冷却水配管121と、ポンプ122と、冷却水供給部123とを有する。冷却水配管121は、冷却水が流れる管路である。ポンプ122は、冷却水供給部123と第2凝縮器102bとの間の冷却水配管121に配置される。冷却水供給部123は、冷却水配管121に冷却水を供給し、冷媒と熱交換した冷却水を回収する。
冷却水配管121は、上流側冷凍機12の第1凝縮器102a、下流側冷凍機14の第2凝縮器102b、ポンプ122、及び冷却水供給部123のそれぞれと接続される。冷却水は、ポンプ122の作動により、冷却水配管121を介して、第1凝縮器102a、第2凝縮器102b、及び冷却水供給部123を循環する。
冷却水循環系20において、冷却水供給部123から供給された冷却水は、第2凝縮器102bを流れ、第1凝縮器102aを流れた後、冷却水供給部123に戻る。これにより、第2凝縮器102bを流れる冷媒及び第1凝縮器102aを流れる冷媒が、冷却水で冷却される。
冷水循環系22は、上流側冷凍機12の冷媒及び下流側冷凍機14の冷媒で冷却された冷水を負荷設備18に供給する。また、冷水循環系22は、負荷設備18で空気と熱交換した冷水を上流側冷凍機12及び下流側冷凍機14に供給する。
冷水循環系22は、冷水配管131と、ポンプ132とを有する。冷水配管131は、冷水が流れる管路である。ポンプ132は、負荷設備18と第2蒸発器103bとの間の冷水配管131に配置される。
冷水配管131は、上流側冷凍機12の第1蒸発器103a、下流側冷凍機14の第2蒸発器103b、ポンプ132、及び負荷設備18のそれぞれと接続される。冷水は、ポンプ132の作動により、冷水配管131を介して、第1蒸発器103a、第2蒸発器103b、及び負荷設備18を循環する。
冷水循環系22において、負荷設備18で熱交換された冷水は、第1蒸発器103aを流れ、第2蒸発器103bを流れた後、負荷設備18に供給される。冷水は、第1蒸発器103a及び第2蒸発器103bで冷却された後、負荷設備18に供給される。
上位制御装置24は、CPUのようなプロセッサを含む演算部と、ROM又はRAMのようなメモリを含む記憶部とを有する。上位制御装置24は、上流側冷凍機12及び下流側冷凍機14の稼動、停止及び、上流側冷凍機12及び下流側冷凍機14の負荷(または負荷率)を制御する。上位制御装置24は、運転台数決定部24aと、負荷配分決定部24bと、を有する。
運転台数決定部24aは、負荷設備18に必要とされる設備負荷率に基づいて、上流側冷凍機12及び下流側冷凍機14の2台の冷凍機のうち、運転(稼動)する冷凍機の台数を決定する。負荷配分決定部24bは、運転(稼動)される冷凍機の負荷率又は負荷を設定する。負荷率とは、定格負荷を100%としたときの現在の負荷の割合である。負荷率が0%の場合、対象の冷凍機は停止している状態となる。また、負荷とは、冷凍機の出力の実数である。負荷配分決定部24bは、負荷設備の要求負荷に基づいて、運転(稼動)される冷凍機の負荷率又は負荷を設定する。また、負荷配分決定部24bは、上流側冷凍機12、下流側冷凍機14の運転状態や、冷水、冷却水の状態に基づいて、上流側冷凍機12と下流側冷凍機14の負荷を調整する。負荷配分決定部24bは、例えば、冷水中間温度検出部26の検出結果に基づいて、上流側冷凍機12及び下流側冷凍機14のそれぞれが設定された負荷率となるように、上流側冷凍機12の負荷率または負荷及び下流側冷凍機14の負荷率または負荷を調整する。
冷水中間温度検出部26は、冷水配管131を流れる冷水の温度を検出する。冷水中間温度検出部26は、第1蒸発器103aと第2蒸発器103bとの間の冷水配管131の冷水の温度を検出する。冷水中間温度検出部26は、第2蒸発器103bに供給される冷水の温度を検出する。
入口冷却水温度検出部28は、冷却水配管121を流れる冷却水の温度を検出する。入口冷却水温度検出部28は、第2凝縮器102bの入口において、第2凝縮器102bに供給される冷却水の温度を検出する。
図2は、本実施形態に係る上流側冷凍機12の概略構成を示す図である。下流側冷凍機14は、上流側冷凍機12と同等の構造であるため、説明を省略する。以下の説明では、第1圧縮機101a、第1凝縮器102a、第1蒸発器103a、第1循環経路106a及び制御装置109aのそれぞれを、圧縮機101、凝縮器102、蒸発器103、循環経路106及び制御装置109と称する。
図2に示すように、上流側冷凍機12は、圧縮機101と、凝縮器102と、蒸発器103と、中間冷却器104と、制御装置109と、を有する。圧縮機101と凝縮器102とは冷媒配管136aを介して接続される。凝縮器102と蒸発器103とは、冷媒配管136bを介して接続される。蒸発器103と圧縮機101とは、冷媒配管136cを介して接続される。中間冷却器104は、冷媒配管136bに配置される。冷媒は、冷媒配管136a、136b、136cを流れる。循環経路106は、冷媒配管136a、136b、136cを含む。
圧縮機101、凝縮器102、蒸発器103、及び中間冷却器104は、冷媒配管136a、136b、136cを含む循環経路106を介して接続される。冷媒は、循環経路106を介して、圧縮機101、凝縮器102、蒸発器103、及び中間冷却器104を循環する。
また、上流側冷凍機12は、中間冷却器104の上流側の冷媒配管136bに設けられた膨張弁(高段膨張弁)107と、中間冷却器104の下流側の冷媒配管136bに設けられた膨張弁(低段膨張弁)108とを有する。
圧縮機101は、羽根車の回転によって冷媒を圧縮するターボ圧縮機である。圧縮機101は、電動機111と、電動機111によって駆動される羽根車を含む圧縮部112を有する。電動機111は、インバータ制御により単位時間当たりの回転数を変更可能であり変更された回転数で圧縮部112を回転させる可変速機と、一定の回転数で圧縮部112を回転させる固定速機とを含む。
圧縮部112は、電動機111により回転する羽根車を同軸上に2つ備えた2段圧縮方式の圧縮部でもよいし、電動機111により回転する羽根車を1つ備えた単段圧縮方式の圧縮部でもよい。圧縮部112が2段圧縮方式である場合、蒸発器103から圧縮機101に供給される気相の冷媒は、1段目の羽根車で圧縮された後、2段目の羽根車でさらに圧縮され、圧力及び温度を上昇させつつ冷媒配管136aを介して凝縮器102に供給される。圧縮部112が単段圧縮方式である場合、蒸発器103から圧縮機101に供給される気相の冷媒は、羽根車で圧縮された後、圧力及び温度を上昇させつつ冷媒配管136aを介して凝縮器102に供給される。
凝縮器102は、冷却水が供給される冷却水配管121と接続される。圧縮機101から凝縮器102に供給される気相の冷媒は、冷却水配管121に供給された冷却水と熱交換して凝縮し液化する。液化された液相の冷媒は、冷媒配管136bを介して蒸発器103に供給される。
蒸発器103は、冷水が供給される冷水配管131と接続される。凝縮器102から蒸発器103に供給される液相の冷媒は、冷水配管131に供給された冷水と熱交換して蒸発する。冷水と冷媒との熱交換により、冷水の温度は低下する。冷水と熱交換した液相の冷媒は、蒸発し気化する。気化された気相の冷媒は、冷媒配管136cを介して圧縮機101に供給される。
中間冷却器104は、凝縮器102において液化された後、膨張弁107を通過した冷媒を液相と気相とに分離する。中間冷却器104は、凝縮器102と蒸発器103との間に一定の圧力差を維持し、液相の冷媒の一部を気化させる。中間冷却器104には、凝縮器102において凝縮し切れなかった気相の冷媒と液相の冷媒とが供給される。中間冷却器104は、供給された気相の冷媒と液相の冷媒とを分離する気液分離器として機能する。中間冷却器104で分離された気相の冷媒は圧縮機101に供給される。中間冷却器104で分離された液相の冷媒は膨張弁108に供給される。膨張弁108を通過した冷媒は蒸発器103に供給される。
膨張弁(高段膨張弁)107は、凝縮器102で液化された冷媒を膨張させる。膨張弁107は、冷媒を凝縮圧から中間圧まで減圧させる。膨張弁107で減圧された冷媒は、中間冷却器104に供給される。
膨張弁(低段膨張弁)108は、中間冷却器104を通過した液体の冷媒(飽和液冷媒)を膨張させる。膨張弁108は、冷媒を中間圧から蒸発圧まで減圧させる。膨張弁108で減圧された冷媒は、蒸発器103に供給される。
制御装置109は、制御装置24から入力される指示に基づいて、圧縮機101、凝縮器102、蒸発器103、中間冷却器104、膨張弁107、及び膨張弁108を含む上流側冷凍機12を制御する。例えば、上流側冷凍機12の制御装置109は、制御装置109は、冷水中間温度検出部26の検出結果に基づいて、上流側冷凍機12が制御装置24で設定された負荷率となるように、上流側冷凍機12の運転を調整する。例えば、上位制御装置24は、「下流側配分負荷/(冷水流量×比熱)+送水温度設定値」を中間送水温度の目標温度として、上流側冷凍機12の制御装置109に送る。上流側冷凍機12の制御装置109は、中間送水温度が目標温度となるように、上流側冷凍機12の運転を制御する。下流側冷凍機14の制御装置109は、上位制御装置24から入力される指示に基づいて、下流側冷凍機14の各部の運転を制御する。
図3は、冷凍機システム10の冷凍機の組み合わせと消費電力との関係を示すグラフである。図3に示すように、上流側冷凍機12の第1圧縮機101aを可変速機とし、下流側冷凍機14の第2圧縮機101bを固定速機とした場合、第1圧縮機101aを固定側機とし第2圧縮機101bを固定速機とする場合、及び第1圧縮機101aを固定側機とし第2圧縮機101bを可変速機とする場合に比べて、冷凍機システム10の消費電力が抑制される。
また、冷凍機システム10は、上流側冷凍機12の第1圧縮機101aを可変速機とし、下流側冷凍機14の第2圧縮機101bを固定速機とすることで、つまり、一方の冷凍機を固定速機とすることで、上流側冷凍機12の第1圧縮機101aを可変速機とし、下流側冷凍機14の第2圧縮機101bを可変速機とした場合よりも、装置コストも抑制される。
以上より、本実施形態に係る冷凍機システム10において、上流側冷凍機12の第1圧縮機101aを可変速機とし、下流側冷凍機14の第2圧縮機101bを固定速機とすることが好ましい。これにより、装置コストの増加を抑制しつつ、冷凍機システム10の消費電力が抑制できる。
冷凍機システム10は、上流側冷凍機12の送水温度が下流側冷凍機14の送水温度よりも高い。上流側冷凍機12の定格能力は、下流側冷凍機14の定格能力よりも高い。そのため、設備負荷を上流側冷凍機12と下流側冷凍機14とに配分した場合、上流側冷凍機12の負荷率が下流側冷凍機14に比べて小さくなる。このため、設備負荷を上流側冷凍機12及び下流側冷凍機14のそれぞれに等配分した場合、上流側冷凍機12は低い負荷率となり、下流側冷凍機14は高い負荷率となる。
冷凍機システム10において、部分負荷特性に優れた可変速機の冷凍機(圧縮機が可変速機の冷凍機)が上流側冷凍機12として設置され、定格負荷の効率に優れた固定速機の冷凍機(圧縮機が可変速機の冷凍機)が下流側冷凍機14として設置されることで、上流側冷凍機12及び下流側冷凍機14それぞれの効率が向上する。
次に、図4から図11を用いて、冷凍機システム10の処理動作について説明する。図4は、冷凍機システム10の処理動作の一例を示すフローチャートである。図5は、設備負荷率と消費電力との関係を示すグラフである。図6は、冷凍機システム10の処理動作の一例を示すフローチャートである。図7は、第1閾値と設備負荷率と冷却水入口温度との関係を示すグラフである。図8は、冷凍機の組み合わせと設備負荷率と消費電力との関係を示すグラフである。図9は、冷凍機システムの処理動作の一例を示すフローチャートである。図10は、冷凍機の負荷率の制御を説明するための説明図である。図11は、冷凍機の負荷率と設備負荷率と消費電力との関係を示すグラフである。図4から図11に示す例は、上流側冷凍機12の第1圧縮機101aを可変速機とし、下流側冷凍機14の第2圧縮機101bを固定速機とした場合に好適に用いることができる処理の一例である。
図4は、冷凍機システム10が停止した状態から運転を開始し、運転を停止するまでの処理を示す。上位制御装置24は、設備負荷率が低い場合、上流側冷凍機12を運転し下流側冷凍機14を停止する第1モードとする。上位制御装置24は、設備負荷率が高い場合、上流側冷凍機12及び下流側冷凍機14の両方を運転する第2モードとする。
設備負荷率は、冷凍機システム10全体の負荷率である。2台の冷凍機の両方の負荷率を100%とした場合、設備負荷率も100%となる。
上位制御装置24は、設備負荷率が第1閾値よりも低くなった場合、上流側冷凍機12及び下流側冷凍機14の両方が運転する第2モードから、上流側冷凍機12が運転し下流側冷凍機14が停止する第1モードへ切り替える。上位制御装置24は、設備負荷率が第2閾値よりも高くなった場合、上流側冷凍機12を運転し下流側冷凍機14を停止する第1モードから、上流側冷凍機12及び下流側冷凍機14の両方を運転する第2モードへ切り替える。第2閾値は、第1閾値よりも高い値である。
冷凍機システム10の運転が開始される(ステップS12)。上位制御装置24は、上流側冷凍機12を稼動させる(ステップS14)。上位制御装置24は、上流側冷凍機12の制御装置109に稼働する指示を送る。上流側冷凍機12の制御装置109は、上位制御装置24から入力される指示に基づいて、上流側冷凍機12各部を稼動させる。上位制御装置24は、負荷が低い運転開始後の期間においては、上流側冷凍機12を運転し下流側冷凍機14を停止する第1モードの状態を維持する。上位制御装置24は、負荷設備18の要求負荷率と現状の設備負荷率とに差がある場合、設定された変化率で負荷を変化させ、現状の設備負荷率を負荷設備18の要求負荷率に近付ける。
上位制御装置24は、上流側冷凍機12を運転し下流側冷凍機14を停止する第1モードの状態で、設備負荷率が第2閾値以上であるかを判定する(ステップS16)。上位制御装置24は、設備負荷率が第2閾値以上ではない(ステップS16でNo)、すなわち、設備負荷率が第2閾値未満であると判定した場合、ステップS24に進む。
上位制御装置24は、設備負荷率が第2閾値以上である(ステップS16でYes)と判定した場合、下流側冷凍機14を稼動させる(ステップS18)。すなわち、上位制御装置24は、上流側冷凍機12及び下流側冷凍機14の両方を運転する第2モードとする。上位制御装置24は、下流側冷凍機14の制御装置109に稼働する指示を送る。下流側冷凍機14の制御装置109は、上位制御装置24から入力される指示に基づいて、下流側冷凍機14の各部を稼動させる。
上位制御装置24は、上流側冷凍機12及び下流側冷凍機14の両方が運転している状態で、設備負荷率が第1閾値未満であるかを判定する(ステップS20)。上位制御装置24は、設備負荷率が第1閾値未満ではない(ステップS20でNo)、つまり設備負荷率が第1閾値以上であると判定した場合、ステップS20に戻る。
上位制御装置24は、設備負荷率が第1閾値未満である(ステップ20でYes)、つまり設備負荷率が第1閾値よりも低くなったと判定した場合、下流側冷凍機14を停止させる(ステップS22)。すなわち、上位制御装置24は、上流側冷凍機12を運転し下流側冷凍機14を停止する第1モードとする。
上位制御装置24は、ステップS16でNoと判定した場合、または、ステップS22の処理を行った場合、つまり、上流側冷凍機12が運転し下流側冷凍機14が停止した第1モードである場合、運転停止するか否かを判定する(ステップS24)。上位制御装置24は、運転停止しない(ステップS24でNo)と判定した場合、ステップS16に戻り、ステップS16の処理を行う。上位制御装置24は、運転停止する(ステップS24でYes)と判定した場合、上流側冷凍機12を停止し(ステップS26)、処理を終了する。
上位制御装置24は、第1閾値と第2閾値を設け、冷凍機の運転台数を切り換えることで、不感帯によりハンチングが発生することを防止することができる。また、図5に示すように、可変速機の冷凍機と固定速機の冷凍機とを比較すると、可変速機の冷凍機の方が同じ設備負荷での消費電力が小さい。図5は、冷却水入口温度がA℃の場合とB℃の場合を示している。A℃とB℃とは、B℃の方がA℃よりも高い温度、つまりA<Bとなる。したがって、1台の冷凍機を運転する場合、可変速機の上流側冷凍機12を運転させることで、少ない消費電力で運転することができる。
また、上流側冷凍機12の第1圧縮機101aを固定速機とし、下流側冷凍機14の第2圧縮機101bを可変速機とした場合において、いずれか1台の冷凍機を運転させる場合、可変速機の上流側冷凍機12を運転させることで、少ない消費電力で運転することができる。
上位制御装置24は、入口冷却水温度検出部28が検出した冷却水入口温度に基づいて、第1閾値及び第2閾値を調整することが好ましい。図6に示すように、上位制御装置24は、入口冷却水温度検出部28で冷却水入口温度を検出し(ステップS32)、検出した温度に基づいて、第1閾値及び第2閾値を設定する(ステップS34)。上位制御装置24は、図7に示すような、冷却水入口温度と設備負荷率(閾値)との関係を記憶しており、冷却水入口温度に基づいて、第1閾値及び第2閾値を設定する。第1閾値及び第2閾値は、冷却水入口温度が高くなるに従って高くなる。すなわち、第1閾値及び第2閾値は、冷却水温度検出部28が検出した温度が低いほど低い設備負荷率となる。
ここで、図8は、冷却水入口温度がC℃の場合、D℃の場合、E℃の場合、F℃の場合、G℃の場合及びH℃の場合の消費電力と設備負荷率との関係を示している。C℃とD℃とE℃とF℃とG℃とH℃とは、この順で温度が高くなる、つまりC<D<E<F<G<Hとなる。図8に示すように、1台で運転している状態(可変速機1台運転)よりも2台で運転している状態(可変速機+固定速機運転)の方が消費電力が少なくなる設備負荷率は、温度が高くなるに従って高くなる。したがって、第1閾値及び第2閾値を冷却水入口温度が高くなるに従って高くすることで、効率良く運転することができる。なお、第1閾値及び第2閾値は、2台で運転している状態(可変速+固定速運転)の方が1台で運転している状態(可変速1台運転)より、消費電力が少なくなる設備負荷率を挟むように設定しても、一方が重なるように設定してもよい。
次に、図9を用いて、2台の冷凍機が運転している状態の制御の一例を説明する。上位制御装置24は、1台の冷凍機が運転している状態から2台の冷凍機が運転する状態へ切り換える場合、すなわち、第1モードにおいて設備負荷率が第2閾値を超えた場合、下流側冷凍機14の運転を開始して第2モードとする(ステップS42)。上位制御装置24は、上流側冷凍機12及び下流側冷凍機14の両方を運転させる第2モードの状態となった場合、等負荷配分で運転を行う(ステップS44)。つまり、上位制御装置24は、第1モードで設備負荷率が第2閾値を超え、第2モードでの運転を開始する場合、上流側冷凍機12と下流側冷凍機14との負荷を等負荷とする。上位制御装置24は、上流側冷凍機12の負荷と下流側冷凍機14の負荷とを等しくして、運転を行う。
次に、上位制御装置24は、等負荷配分で運転を行っている状態で、設備負荷率が第3閾値以上であるかを判定する(ステップS46)。第3閾値は、第2閾値よりも高い値である。
上位制御装置24は、設備負荷率が第3閾値以上ではない(ステップS46でNo)と判定した場合、ステップS54に進む。上位制御装置24は、設備負荷率が第3閾値以上である(ステップS46でYes)と判定した場合、下流側冷凍機14の負荷率を100%とし、上流側冷凍機12の負荷率を可変に設定する(ステップS48)。つまり、上位制御装置24は、第2モードで運転し、かつ、設備負荷率が第2閾値よりも高い第3閾値を超えた場合、下流側冷凍機14の負荷率を100%とし、設備負荷率に応じて上流側冷凍機12の負荷率を変動させる。上位制御装置24は、下流側冷凍機14を一定負荷(定格負荷)として、上流側冷凍機12の負荷率を設備負荷率に応じて変化させる。
上位制御装置24は、下流側冷凍機14の負荷率を100%とし、上流側冷凍機12の負荷率を可変に設定した状態で、負荷率が第3閾値以下であるかを判定する(ステップS50)。上位制御装置24は、負荷率が第3閾値以下ではない(ステップS50でNo)、つまり負荷率が第3閾値より高いと判定した場合、ステップS48に戻る。
上位制御装置24は、負荷率が第3閾値以下である(ステップS50でYes)と判定した場合、等負荷配分で運転を行う(ステップS52)。上位制御装置24は、等負荷配分で運転を行っている状態で、負荷率が第1閾値未満であるかを判定する(ステップS54)。上位制御装置24は、負荷率が第1閾値未満ではない(ステップS54でNo)と判定した場合、ステップS46に戻る。上位制御装置24は、負荷率が第1閾値未満である(ステップS54でYes)と判定した場合、下流側冷凍機14を停止する(ステップS56)。
上位制御装置24は、図9に示す処理を行うことで図10に示すよう設備負荷率が上昇するに従って、各冷凍機の負荷率を変化させて運転する。上位制御装置24は、設備負荷率が低い状態では、上流側冷凍機12を1台で運転させる。その状態で、設備負荷率が第2閾値以上となると、下流側冷凍機14の運転も開始される。2台での運転が開始されると、等配分負荷で運転される。上流側冷凍機12と下流側冷凍機14の100%の負荷が異なるため、同じ負荷を配分すると、異なる負荷率となる。図10では、下流側冷凍機14の負荷率が上流側冷凍機12の負荷率よりも高くなる。上位制御装置24は、設備負荷率が第3閾値以上となると、下流側冷凍機14の負荷率を100%とし、上流側冷凍機12の負荷率を調整する。
上位制御装置24は、1台で運転している状態である第1モードから2台で運転している状態である第2モードに切り換える際に、等負荷配分とすることで、図11に示すように、固定速機の下流側冷凍機14を定格負荷とし、可変速機の上流側冷凍機12に残りの負荷を配分するよりも消費電力を少なくすることができる。ここで、図11は、上流側冷凍機12の負荷と下流側冷凍機14の負荷を等負荷率とした場合、等負荷配分とした場合について計測した結果を示している。また、図11は、可変速機である上流側冷凍機12の負荷を可変とし、固定速機である下流側冷凍機14の負荷を定格負荷とした場合について計測した結果を示している。さらに、図11は、上流側冷凍機12の負荷を、等負荷に対する差が+α%となる負荷とし、下流側冷凍機14の負荷を、等負荷に対する差が−α%となる負荷とした場合、上流側冷凍機12の負荷を、等負荷に対する差が+10%となる負荷とし、下流側冷凍機14の負荷を、等負荷に対する差が−10%となる負荷とした場合、上流側冷凍機12の負荷を、等負荷に対する差が+β%となる負荷とし、下流側冷凍機14の負荷を、等負荷に対する差が−β%となる負荷とした場合について計測した結果を示している。α%と10%とβ%との関係は、α<10<βとなる。
上記実施形態では、1台で運転している状態である第1モードから2台で運転している状態である第2モードに切り換える際に、等配分負荷で運転したがこれに限定されない。上位制御装置24は、第1モードで設備負荷率が第2閾値を超え、第2モードでの運転を開始する場合、上流側冷凍機12と下流側冷凍機14との負荷を等負荷に対する差が10%以内となる負荷、つまり、上流側冷凍機12と下流側冷凍機14との負荷を等負荷とした場合を基準負荷として、上流側冷凍機12と下流側冷凍機14との負荷が基準負荷×0.9以上基準負荷×1.1以下となる負荷とすることで、図11の10%の場合、α%の場合で示すように、固定速機の下流側冷凍機14(第2圧縮機が固定速機の下流側冷凍機14)を定格負荷とし可変速機の上流側冷凍機12(第1圧縮機が可変速機の上流側冷凍機12)に残りの負荷を配分する場合よりも、消費電力を少なくすることができ、効率良く運転を行うことができる。
[第2実施形態]
図12は、冷凍機システム10の処理動作の一例を示すフローチャートである。図13は、冷凍機の負荷率の制御を説明するための説明図である。図14は、冷凍機の負荷率と設備負荷率と消費電力との関係を示すグラフである。図15は、設備負荷率とCOPとの関係を示すグラフである。ここで、図15は、冷却水入口温度がC℃の場合、D℃の場合、E℃の場合、F℃の場合及びG℃の場合の設備負荷率とCOPとの関係を示している。C℃とD℃とE℃とF℃とG℃とは、この順で温度が高くなる、つまりC<D<E<F<Gとなる。図16は、冷凍機システム10の処理動作の一例を示すフローチャートである。図17は、消費電力削減率と設備負荷率との関係を示すグラフである。
本実施形態では、上流側冷凍機12の第1圧縮機101aを固定速機とし、下流側冷凍機14の第2圧縮機101bを固定速機とする。
上位制御装置24は、上流側冷凍機12を運転し、下流側冷凍機14を停止する第1モードとする。図12に示すように、上位制御装置24は、第1モードにおいて設備負荷率が第2閾値を超えた場合、下流側冷凍機12の運転を開始して第2モードとする(ステップS62)。すなわち、上位制御装置24は、上流側冷凍機12を運転し、下流側冷凍機14を停止している第1モードの状態で、設備負荷率が第1閾値よりも高い第2閾値以上となった場合、上流側冷凍機12及び下流側冷凍機14の両方を運転する第2モードとする。
上位制御装置24は、上流側冷凍機12及び下流側冷凍機14の両方を運転させる第2モードの状態となった場合、等負荷配分で運転を行う(ステップS64)。つまり、上位制御装置24は、第1モードで設備負荷率が第2閾値を超え、第2モードでの運転を開始する場合、上流側冷凍機12と下流側冷凍機14との負荷を等負荷とする。
次に、上位制御装置24は、等負荷配分で運転を行っている状態で、設備負荷率が第3閾値以上であるかを判定する(ステップS66)。第3閾値は、第2閾値よりも高い値である。
上位制御装置24は、設備負荷率が第3閾値以上である(ステップS66でYes)と判定した場合、下流側冷凍機14の負荷率を一定負荷とし、上流側冷凍機12の負荷率を可変に設定する(ステップS68)。つまり、上位制御装置24は、上流側冷凍機12及び下流側冷凍機14の両方を運転している状態で、かつ、設備負荷率が第2閾値よりも高い第3閾値を超えた場合、設備負荷率の上昇に対応して、下流側冷凍機14の負荷を一定にしたまま、上流側冷凍機12の負荷率を上昇させる。上位制御装置24は、下流側冷凍機14を一定負荷(定格負荷)として、上流側冷凍機12の負荷率を設備負荷率に応じて変化させる。
上位制御装置24は、下流側冷凍機14の負荷率を一定負荷とし、上流側冷凍機12の負荷率を可変に設定した状態で、上流側冷凍機12の負荷率が100%になったか否かを判定する(ステップS70)。上位制御装置24は、上流側冷凍機12の負荷率が100%になっていない(ステップS70でNo)と判定した場合、ステップS68に戻る。
上位制御装置24は、上流側冷凍機12の負荷率が100%になった(ステップS660でYes)と判定した場合、下流側冷凍機14の負荷を可変に設定する(ステップS72)。上位制御装置24は、下流側冷凍機14の負荷率を変動させる。
上位制御装置24は、下流側冷凍機14の負荷率が一定負荷以下か否かを判定する(ステップS74)。下流側冷凍機14の負荷率が一定負荷以下であると判定された場合(ステップS74でYes)、ステップS68に戻る。下流側冷凍機14の負荷率が一定負荷以下でないと判定された場合(ステップS74でNo)、ステップS74に戻る。
ステップS66において、上位制御装置24は、設備負荷率が第3閾値以上ではない(ステップS66でNo)と判定した場合、ステップS76に進む。上位制御装置24は、上流側冷凍機12及び下流側冷凍機14の両方を運転している第2モードの状態で、設備負荷率が第1閾値未満であるか否かを判定する(ステップS76)。
ステップS76において、設備負荷率が第1閾値よりも低くなったと判定された場合(ステップS76でYes)、上位制御装置24は、下流側冷凍機14を停止して、第1モードとする(ステップS78)。ステップS76において、設備負荷率が第1閾値未満でないと判定された場合(ステップS76でNo)、上位制御装置24は、ステップS66に戻る。
上位制御装置24は、図12に示す処理を行うことで図13に示すよう設備負荷率が上昇するに従って、各冷凍機の負荷率を変化させて運転する。上位制御装置24は、設備負荷率が低い状態では、上流側冷凍機12を1台で運転させる。その状態で、設備負荷率が第2閾値以上となると、下流側冷凍機14の運転も開始される。2台での運転が開始されると、等配分負荷で運転される。上流側冷凍機12と下流側冷凍機14の100%の負荷が等しいため、同じ負荷を配分した場合、等しい負荷率となる。上位制御装置24は、設備負荷率が第3閾値以上(図13に示す例では0.8以上)となると、下流側冷凍機14の負荷率を可変とし、下流側冷凍機14の負荷率を調整する。
上位制御装置24は、冷凍機が1台で運転している状態である第1モードから2台で運転している状態である第2モードに切り換える際に、等負荷配分とすることで、図14に示すように、下流側冷凍機14を定格負荷とし、上流側冷凍機12に残りの負荷を配分するよりも消費電力を少なくすることができる。ここで、図14は、上流側冷凍機12の負荷と下流側冷凍機14の負荷を等負荷率とした場合、等負荷配分とした場合について計測した結果を示している。また、図14は、下流側冷凍機14の負荷を定格負荷とし、上流側冷凍機12の負荷に残りの負荷を分配した場合について計測した結果を示している。さらに、図14は、上流側冷凍機12の負荷を、等負荷に対する差が+a%となる負荷とし、下流側冷凍機14の負荷を、等負荷に対する差が−a%となる負荷とした場合、上流側冷凍機12の負荷を、等負荷に対する差が+b%となる負荷とし、下流側冷凍機14の負荷を、等負荷に対する差が−b%となる負荷とした場合、上流側冷凍機12の負荷を、等負荷に対する差が+c%となる負荷とし、下流側冷凍機14の負荷を、等負荷に対する差が−c%となる負荷とした場合した場合、上流側冷凍機12の負荷を、等負荷に対する差が+d%となる負荷とし、下流側冷凍機14の負荷を、等負荷に対する差が−d%となる負荷とした場合した場合、について、計測した結果を示している。a%とb%とc%とd%との関係は、a<b<c<dとなる。
また、2台の冷凍機が共に固定速機の場合、所定の閾値以上の設備負荷になった場合、上流側冷凍機12へできるだけ負荷を配分することで、消費電力を抑えることができる。図15に示すように、冷凍機負荷率が第3閾値(図15に示す例では0.8)を下回ると、冷凍機負荷率に対するCOPの変化が非線形となり、冷凍機負荷率の変化に対する効率の低下が大きくなるため、2台の冷凍機が第3閾値に到達するまでは、両方の冷凍機の負荷を等負荷配分で上昇させることで、効率を向上させることができる。また、COPの変化が小さくなる第3閾値以上では、より効率のよい上流側冷凍機12を先に定格負荷に近づけることで、効率を向上させることができる。
上位制御装置24は、入口冷却水温度検出部28が検出した冷却水入口温度に基づいて、第3閾値を調整することが好ましい。図16に示すように、上位制御装置24は、入口冷却水温度検出部28で冷却水入口温度を検出し(ステップS82)、検出した温度に基づいて、第3閾値を設定する(ステップS84)。上位制御装置24は、冷却水入口温度と設備負荷率との関係を記憶しており、冷却水入口温度に基づいて、第3閾値を設定する。第3閾値は、冷却水入口温度が高くなるに従って低くなる。すなわち、第3閾値は、冷却水温度検出部28が検出した温度が高いほど低い設備負荷率となる。
図17は、上流側冷凍機12の第1圧縮機101aを固定速機とし、下流側冷凍機14の第2圧縮機101bを固定速機とした場合における、設備負荷率と消費電力削減率との関係を示す図である。ここで、図17は、冷却水入口温度がF℃の場合、G℃の場合、H℃の場合の設備負荷率と消費電力削減率との関係を示している。F℃とG℃とH℃とは、この順で温度が高くなる、つまりF<G<Hとなる。冷却水入口温度に応じて、等負荷率配分から上流側残負荷及び下流側負荷制限に負荷配分割合を変更するか否かを決定する。冷却水入口温度が高いほど、消費電力削減効果が高いため、冷却水入口温度が高い場合は、負荷配分割合を変更する。冷却水入口温度が低い場合は消費電力削減率が低いため、等負荷率配分のみで運転する。図17に示すように、設備負荷率は、冷却水温度検出部28が検出した冷却水入口温度が高いほど低い値となる。
10 冷凍機システム
12 上流側冷凍機
14 下流側冷凍機
18 負荷設備
20 冷却水循環系
22 冷水循環系
24 上位制御装置
24a 運転台数決定部
24b 負荷配分決定部
26 冷水中間温度検出部
28 入口冷却水温度検出部
101 圧縮機
101a 第1圧縮機
101b 第2圧縮機
102 凝縮器
102a 第1凝縮器
102b 第2凝縮器
103 蒸発器
103a 第1蒸発器
103b 第2蒸発器
104 中間冷却器
106 循環経路
106a 第1循環経路
106b 第2循環経路
107 膨張弁
108 膨張弁
109 制御装置
111 電動機
112 圧縮部
121 冷却水配管
122 ポンプ
123 冷却水供給部
131 冷水配管
132 ポンプ
136a 冷媒配管
136b 冷媒配管
136c 冷媒配管

Claims (9)

  1. 冷媒を圧縮する第1圧縮機、前記第1圧縮機により圧縮された冷媒を凝縮させる第1凝縮器、及び前記第1凝縮器により凝縮された冷媒を蒸発させて冷水を冷却する第1蒸発器を有する上流側冷凍機と、
    冷媒を圧縮する第2圧縮機、前記第2圧縮機により圧縮された冷媒を凝縮させる第2凝縮器、及び前記第2凝縮器により凝縮された冷媒を蒸発させて前記第1蒸発器を通過した冷水を冷却する第2蒸発器を有する下流側冷凍機と、
    前記上流側冷凍機及び前記下流側冷凍機の稼動、停止及び、前記上流側冷凍機及び前記下流側冷凍機の負荷を制御する上位制御装置と、を有し、
    前記第1圧縮機は、可変速機であり、
    前記第2圧縮機は、固定速機であり、
    前記上位制御装置は、設備負荷率が第1閾値よりも小さい場合、前記上流側冷凍機を運転し、前記下流側冷凍機を停止する第1モードとし、
    前記上流側冷凍機を運転し、前記下流側冷凍機を停止している状態で、設備負荷率が前記第1閾値よりも高い第2閾値以上となった場合、前記上流側冷凍機及び前記下流側冷凍機の両方を運転する第2モードとし、
    前記上流側冷凍機及び前記下流側冷凍機の両方を運転している状態で、設備負荷率が前記第1閾値よりも低くなった場合、前記第1モードとすることを特徴とする冷凍機システム。
  2. 前記上位制御装置は、前記第1モードで設備負荷率が前記第2閾値を超え、前記第2モードでの運転を開始する場合、前記上流側冷凍機と前記下流側冷凍機との負荷を等負荷に対する差が10%以内となる負荷とすることを特徴とする請求項1に記載の冷凍機システム。
  3. 前記上位制御装置は、前記第1モードで設備負荷率が前記第2閾値を超え、前記第2モードでの運転を開始する場合、前記上流側冷凍機と前記下流側冷凍機との負荷を等負荷とすることを特徴とする請求項1に記載の冷凍機システム。
  4. 前記上位制御装置は、前記第2モードで運転し、かつ、設備負荷率が第2閾値よりも高い第3閾値を超えた場合、前記下流側冷凍機の負荷率を100%とし、設備負荷率に応じて前記上流側冷凍機の負荷率を変動させることを特徴とする請求項1から3のいずれか一項に記載の冷凍機システム。
  5. 前記第2凝縮器は、供給される冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、
    前記第1凝縮器は、前記第2凝縮器を通過した冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、
    前記第2凝縮器に供給される冷却水の温度を検出する冷却水温度検出部を有し、
    前記上位制御装置は、前記冷却水温度検出部が検出した温度に基づいて、前記第1閾値を調整することを特徴とする請求項1から4のいずれか一項に記載の冷凍機システム。
  6. 前記第1閾値は、前記冷却水温度検出部が検出した温度が低いほど低い設備負荷率となることを特徴とする請求項5に記載の冷凍機システム。
  7. 冷媒を圧縮する第1圧縮機、前記第1圧縮機により圧縮された冷媒を凝縮させる第1凝縮器、及び前記第1凝縮器により凝縮された冷媒を蒸発させて冷水を冷却する第1蒸発器を有する上流側冷凍機と、
    冷媒を圧縮する第2圧縮機、前記第2圧縮機により圧縮された冷媒を凝縮させる第2凝縮器、及び前記第2凝縮器により凝縮された冷媒を蒸発させて前記第1蒸発器を通過した冷水を冷却する第2蒸発器を有する下流側冷凍機と、
    前記上流側冷凍機及び前記下流側冷凍機の稼動、停止及び、前記上流側冷凍機及び前記下流側冷凍機の負荷を制御する上位制御装置と、を有し、
    前記第1圧縮機は、固定速機であり、
    前記第2圧縮機は、固定速機であり、
    前記上位制御装置は、設備負荷率が第1閾値よりも小さい場合、前記上流側冷凍機を運転し、前記下流側冷凍機を停止する第1モードとし、
    前記上流側冷凍機を運転し、前記下流側冷凍機を停止している状態で、設備負荷率が前記第1閾値よりも高い第2閾値以上となった場合、前記上流側冷凍機及び前記下流側冷凍機の両方を運転する第2モードとし、
    前記上流側冷凍機及び前記下流側冷凍機の両方を運転している状態で、設備負荷率が前記第1閾値よりも低くなった場合、前記第1モードとし、
    前記上流側冷凍機及び前記下流側冷凍機の両方を運転している状態で、かつ、設備負荷率が第2閾値よりも高い第3閾値を超えた場合、設備負荷率の上昇に対応して、前記下流側冷凍機の負荷を一定にしたまま、前記上流側冷凍機の負荷率を上昇させ、前記上流側冷凍機の負荷率が100%になった後、前記下流側冷凍機の負荷率を変動させることを特徴とする冷凍機システム。
  8. 前記第2凝縮器は、供給される冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、
    前記第1凝縮器は、前記第2凝縮器を通過した冷却水と冷媒との間で熱交換を行い、前記冷媒を冷却し、
    前記第2凝縮器に供給される冷却水の温度を検出する冷却水温度検出部を有し、
    前記上位制御装置は、前記冷却水温度検出部が検出した温度に基づいて、前記第3閾値を調整することを特徴とする請求項に記載の冷凍機システム。
  9. 前記第3閾値は、前記冷却水温度検出部が検出した温度が高いほど低い設備負荷率となることを特徴とする請求項に記載の冷凍機システム。
JP2015152177A 2015-07-31 2015-07-31 冷凍機システム Active JP6399979B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015152177A JP6399979B2 (ja) 2015-07-31 2015-07-31 冷凍機システム
PCT/JP2016/062645 WO2017022282A1 (ja) 2015-07-31 2016-04-21 冷凍機システム
US15/736,559 US11221166B2 (en) 2015-07-31 2016-04-21 Refrigerator system
CN201680035315.7A CN107735625B (zh) 2015-07-31 2016-04-21 制冷机系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015152177A JP6399979B2 (ja) 2015-07-31 2015-07-31 冷凍機システム

Publications (2)

Publication Number Publication Date
JP2017032199A JP2017032199A (ja) 2017-02-09
JP6399979B2 true JP6399979B2 (ja) 2018-10-03

Family

ID=57942707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015152177A Active JP6399979B2 (ja) 2015-07-31 2015-07-31 冷凍機システム

Country Status (4)

Country Link
US (1) US11221166B2 (ja)
JP (1) JP6399979B2 (ja)
CN (1) CN107735625B (ja)
WO (1) WO2017022282A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6871776B2 (ja) * 2017-03-27 2021-05-12 三菱重工サーマルシステムズ株式会社 冷凍システムおよび冷凍システムの制御方法
DE102018127175A1 (de) * 2018-10-31 2020-04-30 Klaus Scherrieble System und Verfahren zur Regelung und Überwachung der Kälteerzeugung für eine Einheit
US11920836B2 (en) * 2022-04-18 2024-03-05 Fbd Partnership, L.P. Sealed, self-cleaning, food dispensing system with advanced refrigeration features

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593550A (ja) * 1991-04-11 1993-04-16 Ebara Corp 冷凍システム
WO2003085334A1 (fr) 2002-02-28 2003-10-16 Kefang You Ameliorations apportees a un systeme de pompe a chaleur a couplages multiples
EP1548377B1 (en) 2003-12-24 2013-10-23 Sanyo Electric Co., Ltd. Refrigerating machine having refrigerant/water heat exchanger
US7287395B2 (en) * 2004-03-15 2007-10-30 Emerson Climate Technologies, Inc. Distributed cooling system
PL2153138T3 (pl) 2007-05-10 2011-07-29 Carrier Corp Układ chłodniczy i sposób sterowania zespołami sprężarek w takim układzie chłodniczym
JP2010054186A (ja) * 2008-07-31 2010-03-11 Daikin Ind Ltd 冷凍装置
JP4626714B2 (ja) * 2008-08-22 2011-02-09 ダイキン工業株式会社 冷凍装置
JP2011153734A (ja) * 2010-01-26 2011-08-11 Mitsubishi Heavy Ind Ltd 冷凍機遠隔監視システムおよび冷凍機遠隔監視方法
JP5511578B2 (ja) * 2010-08-06 2014-06-04 三菱重工業株式会社 冷凍機制御装置
JP2012141098A (ja) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd 熱源システムおよびその制御方法
CN103635763A (zh) * 2011-05-16 2014-03-12 开利公司 多压缩机制冷系统
JP6066648B2 (ja) 2012-09-27 2017-01-25 三菱重工業株式会社 熱源システム及びその制御方法

Also Published As

Publication number Publication date
CN107735625B (zh) 2020-05-08
JP2017032199A (ja) 2017-02-09
US20180187938A1 (en) 2018-07-05
WO2017022282A1 (ja) 2017-02-09
CN107735625A (zh) 2018-02-23
US11221166B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
EP2270405B1 (en) Refrigerating device
JP5639984B2 (ja) 空気調和装置
US10539343B2 (en) Heat source side unit and air-conditioning apparatus
JP2009204222A (ja) ターボ冷凍機および冷凍システムならびにこれらの制御方法
JP6399979B2 (ja) 冷凍機システム
WO2012090579A1 (ja) 熱源システムおよびその制御方法
JP5984490B2 (ja) ヒートポンプ装置
JP2012042177A (ja) ヒートポンプ式温水発生装置
WO2016001958A1 (ja) 空気調和装置
JP5872052B2 (ja) 空気調和装置
JP2011202891A (ja) 空気調和装置
JP6509047B2 (ja) 空気調和装置
JP2011007482A (ja) 空気調和装置
JP2011027314A (ja) 空気調和装置
JP6336066B2 (ja) 空気調和装置
WO2015132951A1 (ja) 冷凍装置
JP5836844B2 (ja) 冷凍装置
WO2019078138A1 (ja) 冷凍サイクルの制御装置、熱源装置、及びその制御方法
JP5340348B2 (ja) 冷凍装置
JP6300393B2 (ja) 空気調和機
JP2013113535A (ja) 二元冷凍装置
US20240133597A1 (en) Refrigeration cycle apparatus
JP2014173739A (ja) 空気調和装置
US10317120B2 (en) Air conditioning system with indoor and ventilation circuits
JP6125901B2 (ja) 冷凍機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180904

R150 Certificate of patent or registration of utility model

Ref document number: 6399979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150