WO2021149677A1 - 空調システム制御装置、空調システム、空調システム制御方法およびプログラム - Google Patents

空調システム制御装置、空調システム、空調システム制御方法およびプログラム Download PDF

Info

Publication number
WO2021149677A1
WO2021149677A1 PCT/JP2021/001659 JP2021001659W WO2021149677A1 WO 2021149677 A1 WO2021149677 A1 WO 2021149677A1 JP 2021001659 W JP2021001659 W JP 2021001659W WO 2021149677 A1 WO2021149677 A1 WO 2021149677A1
Authority
WO
WIPO (PCT)
Prior art keywords
water supply
heat source
source machine
supply temperature
power consumption
Prior art date
Application number
PCT/JP2021/001659
Other languages
English (en)
French (fr)
Inventor
小野 仁意
大谷 雄一
山口 徹
松尾 実
林日 崔
徹 星野
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Priority to CN202180008274.3A priority Critical patent/CN114930092A/zh
Priority to AU2021211287A priority patent/AU2021211287B2/en
Publication of WO2021149677A1 publication Critical patent/WO2021149677A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • F24F2110/70Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • This disclosure relates to an air conditioning system control device, an air conditioning system, an air conditioning system control method and a program.
  • the present application claims priority based on Japanese Patent Application No. 2020-09393 filed in Japan on January 23, 2020, the contents of which are incorporated herein by reference.
  • the heat source side is a heat source machine that changes according to the outside air temperature and humidity when controlling to supply cold and hot water at a temperature that matches the set value of the water supply temperature while satisfying the load amount required on the load side. Control is performed so that the total power consumption of the heat source side equipment (heat source machine, auxiliary equipment (cold water pump, cooling water pump, cooling tower)) is minimized according to the characteristics.
  • the heat source side equipment heat source machine, auxiliary equipment (cold water pump, cooling water pump, cooling tower)
  • Patent Document 1 discloses an air conditioning system that changes the water supply temperature set value based on the outside air temperature and humidity.
  • the load side performs local control according to the load required in each area, and controls the outcome according to the load status. Therefore, for example, when the power of the auxiliary machine is dominant among the load side and heat source side devices, such control is performed even when it is better to operate with the COP of the heat source machine lowered. It is not possible. That is, the optimum control is not performed by integrating the heat source side and the load side.
  • An object of the present disclosure is to provide an air conditioning system control device, an air conditioning system, an air conditioning system control method and a program capable of realizing optimum operation of a heat source machine in consideration of power consumption generated on the load side.
  • the air conditioning system control device includes a setting unit for setting the water supply temperature of the heat source unit and a first calculation unit for calculating the amount of air supplied to the room in the load-side device according to the water supply temperature.
  • the second calculation unit that calculates the water supply flow rate of the heat source machine according to the water supply temperature, and the total power consumption of the heat source machine side and the load side according to the water supply temperature, the amount of air supplied to the room, and the water supply flow rate. It is provided with an estimation unit for estimating.
  • the setting unit sets the water supply temperature at which the estimated total power consumption is minimized.
  • FIG. 1 is a diagram showing an outline of an air conditioning system according to the first embodiment.
  • the air conditioning system 1 according to the first embodiment is a central air conditioner composed of a plurality of large refrigerating machines (heat source machine 1a), an air handling unit (AHU), and a fan coil unit (FCU) (described in detail in FIG. 2). It is a system.
  • the air conditioning system 1 includes a plurality of heat source machines 1a connected in parallel, a load 2, and a cooling tower 3. Further, the air conditioning system 1 includes a heat source machine control device 10 that controls the operation of a plurality of heat source machines 1a in an integrated manner.
  • Each heat source machine 1a includes a general heat pump configuration (compressor, condenser, expansion valve and evaporator). Each heat source machine 1a takes the heat of the cold water circulating between the load 2 and the load 2 (cools the cold water), and produces cold water having a predetermined temperature.
  • the heat source machine 1a is, for example, a turbo chiller. In this case, the heat source machine 1a cools the refrigerant in the two-stage compression two-stage expansion subcool cycle, and cools the cold water with the cooled refrigerant.
  • the turbo compressor is a centrifugal two-stage compressor that compresses a gaseous refrigerant.
  • the condenser condenses and liquefies a high-temperature and high-pressure gas refrigerant compressed by a turbo compressor.
  • the subcooler is provided on the downstream side of the refrigerant flow of the condenser, and supercools the liquid refrigerant condensed by the condenser.
  • the cooling heat transfer tube is inserted into the condenser and the subcooler, and the refrigerant is cooled by the cooling water flowing in the tube. After cooling the refrigerant, the cooling water flowing through the cooling heat transfer tube is exhausted to the outside in the cooling tower and flows through the cooling heat transfer tube again.
  • the high pressure expansion valve and the low pressure expansion valve expand the liquid refrigerant from the subcooler.
  • the intercooler cools the liquid refrigerant expanded by the high-pressure expansion valve.
  • the evaporator evaporates the liquid refrigerant expanded by the low pressure expansion valve.
  • the cold water heat transfer tube is inserted into the evaporator.
  • the chilled water flowing through the chilled water heat transfer tube is cooled by absorbing the heat of vaporization when the refrigerant evaporates.
  • the heat source machine 1a cools the cold water and supplies it to the load 2.
  • the load control of the heat source machine 1a is performed by controlling the rotation speed of the turbo compressor and controlling the capacity by the inlet guide blade and the hot gas bypass pipe when the compressor is a refrigerator capable of variable speed control.
  • the electric motor drives the turbo compressor.
  • the inverter controls the rotation speed of the turbo compressor by controlling the rotation speed of the electric motor.
  • the inlet guide blade is provided at the refrigerant suction port of the turbo compressor, and controls the capacity of the heat source machine 1a by controlling the flow rate of the suction refrigerant.
  • the hot gas bypass pipe is provided between the gas phase portion of the condenser and the gas phase portion of the evaporator to bypass the refrigerant gas.
  • the hot gas bypass valve controls the flow rate of the refrigerant flowing in the hot gas bypass pipe. By adjusting the hot gas bypass flow rate by the hot gas bypass valve, more detailed capacity control can be performed than the capacity control by the inlet guide blade. If the compressor is a refrigerator with fixed speed control, load control is performed by capacity control using an inlet guide blade and a hot gas bypass pipe.
  • the pump P1 is one of the auxiliary machines on the heat source machine side in the air conditioning system 1, and is a water supply pump capable of adjusting the flow rate of cold water.
  • the flow rate of cold water by the pump P1 is controlled by the heat source machine control device 10 described later.
  • the pump P1 is provided in both the sending side flow path and the reflux side flow path of the heat source machine 1a, but is not limited to this in the other embodiments, and is provided in only one of them. It may be an embodiment.
  • Pump P2 is one of the auxiliary machines on the heat source machine side in the air conditioning system 1, and is a water supply pump that can adjust the flow rate of cooling water.
  • the flow rate of the cooling water by the pump P2 is also controlled by the heat source machine control device 10 in the same manner as the pump P1.
  • the heat source machine control device 10 comprehensively controls the operation of a plurality of heat source machines 1a connected in parallel.
  • the known heat source control device operates at an operating point where the COP (Coefficient Of Performance) of the heat source machine is maximized according to the magnitude of the load, but the heat source control device 10 according to the present embodiment is not necessarily the heat source machine 1a. It does not always operate at the operating point where the COP of is maximized.
  • the specific functions and processing contents of the heat source machine control device 10 according to the present embodiment will be described later.
  • FIG. 2 is a diagram showing a load configuration of an air conditioning system according to the first embodiment.
  • the configuration of the load 2 will be described in detail with reference to FIG.
  • the load 2 is, for example, an air-conditioned space R, which is an office room of a building, and an air handling unit 20 (hereinafter, also referred to as AHU20) that ventilates and air-conditions the air-conditioned space R.
  • the AHU controller 21 that controls the AHU 20 and various fans F1 and F2 are provided.
  • the load 2 includes a fan coil unit 30 (hereinafter, also referred to as FCU 30) that air-conditions the air-conditioned space R, an FCU controller 31 that controls the FCU 30, and a fan F11.
  • FCU 30 fan coil unit 30
  • the air-conditioned space R there are indoor loads such as people, OA equipment, and lighting.
  • the air-conditioned space R it is required that the CO2 concentration does not exceed the specified upper limit value, and the outside air introduction management is performed according to the current CO2 concentration.
  • AHU20 is equipped with a cooling coil CC inside.
  • the AHU 20 cools these air with the cooling coil CC while circulating the indoor air and introducing the outside air, and supplies the air to the air-conditioned space R.
  • Cold water cooled to a predetermined temperature by the heat source machine 1a circulates in the cooling coil CC.
  • heat exchange is performed between the air and the cold water via the cooling coil CC. As a result, cooled air is supplied to the room.
  • the AHU controller 21 appropriately introduces outside air through the AHU 20 so that the CO2 (carbon dioxide) concentration in the air-conditioned space R does not exceed the specified upper limit value. Specifically, the AHU controller 21 adjusts the outside air introduction amount by controlling the air volume and the damper opening degree of the air supply fan F1 and the return air fan F2 while monitoring the CO2 concentration in the air-conditioned space R.
  • the CO2 concentration in the air-conditioned space R is acquired, for example, through a CO2 concentration meter CS installed indoors.
  • the FCU controller 31 determines the amount of air supplied to the room so that the target humidity is achieved among the preset indoor target conditions (for example, 26 ° C./50%) in the air-conditioned space R. Specifically, the FCU controller 31 acquires the indoor temperature / humidity in the air-conditioned space R from the temperature / humidity sensor S1 and determines the amount of air supplied to the room so that this becomes the indoor target condition. For example, when the indoor humidity measured by the temperature / humidity sensor S1 greatly exceeds the indoor target condition, the FCU controller 31 increases the amount of air supplied to the room in order to reduce the indoor humidity. On the other hand, when the indoor humidity is close to the indoor target condition, the FCU controller 31 reduces the amount of air supplied to the room. The amount of air supplied to the room is controlled by the fan F11.
  • FIG. 3 is a diagram showing a functional configuration of the heat source machine control device according to the first embodiment.
  • the heat source machine control device 10 includes a processor such as a CPU and operates according to a predetermined program. As shown in FIG. 3, the heat source machine control device 10 operates according to a predetermined program, so that the setting unit 100, the first calculation unit 101, the second calculation unit 102, the estimation unit 103, the introduction amount acquisition unit 104, and all of them. It functions as a load acquisition unit 105.
  • the setting unit 100 sets the water supply temperature (cold water outlet temperature) of the heat source machine 1a.
  • the setting unit 100 and the estimation unit 103 (described later) change the set value of the water supply temperature, and the total power consumption generated according to the water supply temperature (the power consumption on the heat source machine side and the power consumption on the load side are combined).
  • (Power consumption) is estimated, and the water supply temperature at which the estimated value of the total power consumption is minimized is searched for. In this way, the setting unit 100 sets the water supply temperature at which the total power consumption is minimized. The method of estimating the total power consumption will be described later.
  • the first calculation unit 101 mainly acquires information necessary for estimating the power (power consumption) generated on the load side. Specifically, the first calculation unit 101 calculates the amount of air supplied to the room of the load according to the water supply temperature set by the setting unit 100.
  • the second calculation unit 102 acquires information necessary for estimating the power (power consumption) mainly generated on the heat source machine side. Specifically, the second calculation unit 102 calculates the water supply flow rate of the heat source machine according to the water supply temperature set by the setting unit 100.
  • the estimation unit 103 estimates the total power consumption on the heat source machine side and the load side according to the water supply temperature, the amount of air supplied to the room, and the water supply flow rate.
  • the introduction amount acquisition unit 104 acquires the outside air introduction amount in the load 2.
  • the total load acquisition unit 105 acquires the total load of the load 2 (the sum of the outside air introduction load and the indoor load).
  • the recording medium 106 is a large-capacity auxiliary storage device such as a so-called HDD (hard disk drive) or SSD (solid state drive), and various information necessary for processing of the heat source device control device 10 is recorded in advance. .. Specifically, the first power consumption table TB1 and the second power consumption table TB2 are recorded on the recording medium 106.
  • the first power consumption table TB1 is an information table used when estimating the power consumption generated on the load side, and is an information table showing the correspondence relationship between the amount of air supplied to the room and the power consumption generated on the load side. be.
  • the second power consumption table TB2 is an information table used when estimating the power consumption generated by the auxiliary machines (pumps P1, P2, cooling tower 3, etc.) on the heat source machine side, and is the flow rate of cold water and the heat source. This is an information table showing the correspondence with the power consumption generated by the auxiliary equipment on the machine side.
  • FIG. 4 is a diagram showing a processing flow of the heat source machine control device according to the first embodiment.
  • the processing flow shown in FIG. 4 is a processing flow for determining the optimum cold water temperature (water supply temperature set value) to be produced by the heat source machine 1a.
  • the air conditioning system 1 it is constantly and repeatedly performed at regular time intervals.
  • the introduction amount acquisition unit 104 of the heat source machine control device 10 acquires the outside air introduction amount in the load 2 (step S01).
  • the introduction amount acquisition unit 104 acquires the CO2 concentration in the air-conditioned space R through the CO2 concentration meter CS.
  • the introduction amount acquisition unit 104 acquires the outside air introduction amount according to the CO2 concentration acquired through the CO2 concentration meter CS.
  • the introduction amount acquisition unit 104 acquires the outside air introduction amount by the same method as the method in which the AHU controller 21 determines the outside air introduction amount.
  • the introduction amount acquisition unit 104 also similarly introduces the amount of outside air introduced according to the amount of change in the moving average of the CO2 concentration. To get.
  • the full load acquisition unit 105 of the heat source machine control device 10 acquires the full load in the load 2 (step S02).
  • the "total load” is a value indicating the total load amount of the load 2
  • the outside air introduction load which is a load corresponding to the temperature and humidity of the outside air and the outside air introduction amount, is described above. It is the sum of the indoor load.
  • the total load acquisition unit 105 acquires the outside air introduction amount specified in step S01 and the outside air temperature / humidity (for example, 30 ° C./70%) measured by the temperature / humidity sensor S2, and calculates the outside air introduction load. do.
  • the full load acquisition unit 105 acquires information on, for example, the number of employees in the air-conditioned space R, the OA equipment with the power supply, and the lighting device in the lit state. , Calculate the indoor load.
  • the full load acquisition unit 105 may refer to the entry / exit management information of the air-conditioned space R.
  • the setting unit 100 of the heat source machine control device 10 tentatively determines the temperature of the cold water to be sent by the heat source machine 1a (water supply temperature set value) as one of a plurality of different candidate values.
  • the first calculation unit 101 of the heat source machine control device 10 assumes that the water supply temperature set value of the heat source machine 1a is tentatively determined, and that the AHU20, the AHU controller 21, and the FCU30 are applied to the total load calculated in step S02. And the amount of air supplied to the room controlled by the FCU controller 31 is calculated (step S03).
  • the first calculation unit 101 includes an AHU heat exchange amount, which is the amount of heat exchanged by the cooling coil CC of the AHU20, an FCU heat exchange amount, which is the amount of heat exchanged by the cooling coil CC of the FCU30, and a room.
  • the target temperature condition for example, 26 ° C./50%
  • the amount of air supplied to the room to be achieved by the AHU20 and the AHU controller 21, the FCU30 and the FCU controller 31 is calculated.
  • the second calculation unit 102 of the heat source machine control device 10 when the water supply temperature set value of the heat source machine 1a is tentatively determined, the heat source machine 1a sends water to the total load calculated in step S02.
  • the flow rate to be (water supply flow rate) is calculated (step S04).
  • the second calculation unit 102 calculates the water supply flow rate of the heat source machine 1a by referring to the candidate value of the water supply temperature set value tentatively determined by the setting unit 100 and the total load.
  • the estimation unit 103 estimates the total power consumption corresponding to the candidate value of the water supply temperature set value tentatively determined.
  • the estimation unit 103 first calculates (1) an estimated value of power consumption generated on the load side and (2) an estimated value of power consumption generated on the heat source machine side.
  • the total power consumption is the sum of the above (1) and (2).
  • the estimation unit 103 uses the amount of air supplied to the room calculated in step S03 and the first power consumption table TB1 (FIG. 3). refer. As described above, in the first power consumption table TB1, various fans (air supply fan F1, air supply fan F1,) are displayed for each amount of air supplied to the room to be achieved by the load side (AHU20 and AHU controller 21, FCU30 and FCU controller 31). The total power consumption consumed by the return air fan F2 and the like (see FIG. 2) is recorded. The estimation unit 103 specifies the power consumption on the load side corresponding to the amount of air supplied to the room calculated in step S03 with reference to the first power consumption table TB1.
  • the estimation unit 103 (2a) the power consumption generated on the heat source machine 1a and (2b) the auxiliary machine (pump) on the heat source machine side.
  • the power consumption generated in P1, P2, cooling tower 3, etc.) is obtained.
  • the power consumption generated by the heat source machine 1a of (2a) is specified by the estimation unit 103 based on the water supply temperature set value tentatively determined by the setting unit 100. In general, the heat source machine 1a tends to consume more power as the water supply temperature is lower, and to decrease power consumption as the water supply temperature is higher.
  • the estimation unit 103 grasps in advance the relationship between the water supply temperature set value and the power consumption in the heat source machine 1a, and (2a) acquires the power consumption generated in the heat source machine 1a based on the relationship.
  • the estimation unit 103 refers to the water supply flow rate calculated in step S04 and the second power consumption table TB2 (FIG. 3).
  • the second power consumption table TB2 is consumed by various pumps (pumps P1, P2, etc. (see FIG. 1)) and the cooling tower 3 for each water flow rate to be achieved by the auxiliary machine on the heat source machine side. The total power consumption is recorded.
  • the estimation unit 103 specifies the power consumption of the auxiliary machine on the heat source machine side corresponding to the water supply flow rate calculated in step S04 with reference to the second power consumption table TB2.
  • the estimation unit 103 calculates (2a) the total power consumption generated by the heat source machine 1a and (2b) the total power consumption generated by the auxiliary machine on the heat source machine side, and (2) the power consumption generated on the heat source machine side. Get an estimate.
  • the estimation unit 103 calculates the sum of (1) the estimated value of the power consumption generated on the load side and (2) the estimated value of the power consumption generated on the heat source machine side calculated as described above. The estimated value of the total power consumption corresponding to the tentatively determined candidate value of the water supply temperature set value is calculated.
  • the setting unit 100 performs the processes of steps S03 to S05 for each candidate value of a plurality of different water supply temperature set values, and calculates an estimated value of the total power consumption. Then, the setting unit 100 determines the candidate value of the water supply temperature setting value for which the smallest total power consumption is obtained from these plurality of candidate values as the optimum water supply temperature setting value (step S06).
  • the heat source machine control according to the present embodiment. According to the device 10, even if the power consumption generated by the heat source machine 1a increases slightly, the water supply temperature setting value is determined so that the total power consumption of the entire system is minimized.
  • the heat source machine control device 10 As described above, according to the heat source machine control device 10 according to the first embodiment, it is possible to realize the optimum operation of the heat source machine in consideration of the power consumption generated on the load side.
  • the second calculation unit 102 of the heat source machine control device 10 calculates the water supply flow rate of the heat source machine 1a according to the water supply temperature based on the total load including the amount of outside air introduced on the load side. do. By doing so, it is possible to accurately estimate the total load amount including the amount of outside air introduced in the air-conditioned space R.
  • the estimation unit 103 of the heat source device control device 10 calculates the power consumption of the fans F1, F2, F11, etc. according to at least the amount of air supplied to the room as the power consumption on the load side.
  • the power consumption of the auxiliary equipment umps P1, P2, cooling tower 3, etc.
  • the water flow rate is calculated.
  • the introduction amount acquisition unit 104 according to the first embodiment has been described as acquiring the outside air introduction amount according to the change amount of the moving average of the CO2 concentration, but the other embodiments are not limited to this embodiment. ..
  • the introduction amount acquisition unit 104 according to another embodiment may calculate the outside air introduction amount based on the change tendency of the deviation from the control target value of the CO2 concentration. By doing so, when there is a margin in the deviation between the current CO2 concentration and the control target value, it is possible to prolong the operation time with the load reduced by reducing the amount of outside air introduced.
  • the heat source device control device 10 has been described as acquiring the CO2 concentration of the air-conditioned space R through the CO2 concentration meter CS installed in the air-conditioned space R, another embodiment has been described. Is not limited to this aspect.
  • the heat source device control device 10 according to another embodiment may, for example, estimate the CO2 concentration based on the number of people in the room instead of measuring the CO2 concentration. By doing so, when the CO2 concentration meter is expensive, the same can be achieved by using the number of people in the room separately managed by the building management system or the like.
  • the amount of outside air introduced may be tabulated in advance instead of being calculated sequentially to avoid a situation in which it takes time to calculate the solution. By doing so, even if the calculation time becomes a bottleneck or the calculation result has multiple peaks, it is possible to perform the intended operation in advance.
  • a minimum amount of outside air introduced may be set so as not to deviate from the management target value even in an unmanned situation. By doing so, it is possible to avoid a situation in which the management target value is significantly exceeded even at the time of change from "no occupants" to "with occupants" at the start of business in an office building. ..
  • the change tendency of the CO2 concentration may be learned, and the amount of outside air introduced may be determined based on the predicted value.
  • the amount of outside air introduced may increase sharply only by a mere change tendency, but by controlling the ventilation amount according to the pattern of the change tendency, it is not necessary to increase the ventilation amount unnecessarily.
  • the heat source machine control device 10 does not estimate each of the indoor load and the outside air introduction load and calculate the total, but the chilled water outlet temperature and the chilled water in the heat source machine 1a.
  • the total load may be estimated based on the product of the temperature difference of the inlet temperature and the chilled water flow rate.
  • the cold water supply in the heat source side equipment is not performed only by the plurality of heat source machines 1a, but the heat storage tank 4 is installed as shown in FIG. 5, and the heat storage tank 4 and the heat source machine 1a share the supply of cold water. May be performed.
  • the running cost can be reduced even when the power consumption is the same.
  • the processes of various processes of the heat source machine control device 10 are stored in a computer-readable recording medium in the form of a program, and the various processes are performed by the computer reading and executing this program. Will be done.
  • the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • this computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
  • the above program may be for realizing a part of the above-mentioned functions. Further, a so-called difference file (difference program) may be used, which can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • difference file difference program
  • the air conditioning system control device includes a setting unit 100 for setting the water supply temperature of the heat source unit 1a and a first calculation unit for calculating the amount of air supplied to the room of the load 2 according to the water supply temperature. 101, the second calculation unit 102 that calculates the water supply flow rate of the heat source machine 1a according to the water supply temperature, and the total power consumption on the heat source machine side and the load side according to the water supply temperature, the amount of air supplied to the room, and the water supply flow rate.
  • An estimation unit 103 for estimating is provided.
  • the setting unit 100 sets the water supply temperature at which the estimated total power consumption is minimized.
  • the first calculation unit 101 calculates the amount of air supplied to the room within a range in which the CO2 concentration does not exceed the specified upper limit value.
  • the first calculation unit 101 calculates the amount of air supplied to the room within a range in which the relative humidity of the room air does not exceed the specified upper limit value.
  • the second calculation unit 102 sets the water flow rate of the heat source machine according to the water supply temperature based on the total load including the amount of outside air introduced on the load side. calculate.
  • the estimation unit 103 uses fans (air supply fan F1, return air fan F2) according to at least the amount of air supplied to the room as power consumption on the load side. Etc.), and calculate the power consumption of the auxiliary equipment (pumps P1, P2, cooling tower 3, etc.) according to at least the water supply flow rate as the power consumption of the heat source machine side.
  • the air conditioning system 1 according to the sixth aspect is provided with the air conditioning system control device according to any one of (1) to (5) above, and is a heat storage tank in addition to the heat source machine 1a as a device constituting the heat source machine side. Including 4.
  • a step of setting the water supply temperature of the heat source unit 1a a step of calculating the amount of air supplied to the room of the load 2 according to the water supply temperature, and water supply. It has a step of calculating the water supply flow rate of the heat source machine 1a according to the temperature, and a step of estimating the total power consumption of the heat source machine side and the load side according to the water supply temperature, the amount of air supplied to the room, and the water supply flow rate.
  • the step of setting the water supply temperature of the heat source machine 1a the water supply temperature at which the estimated total power consumption is minimized is set.
  • the step of setting the water supply temperature of the heat source unit 1a and the amount of air supplied to the room of the load 2 according to the water supply temperature are calculated in the computer of the air conditioning system control device. Steps to calculate the water supply flow rate of the heat source machine 1a according to the water supply temperature, and a step to estimate the total power consumption on the heat source machine side and the load side according to the water supply temperature, the amount of air supplied to the room, and the water supply flow rate. And to execute. In the step of setting the water supply temperature of the heat source machine 1a, the water supply temperature at which the estimated total power consumption is minimized is set.
  • Air conditioning system 10 Heat source unit control device (air conditioning system control device) 100 Setting unit 101 1st calculation unit 102 2nd calculation unit 103 Estimating unit 104 Introduction amount acquisition unit 105 Total load acquisition unit 106 Recording medium 2 Load 20 Air handling unit (AHU) 21 AHU controller 30 Fan coil unit (FCU) 31 FCU controller 4 Heat storage tank TB1 1st power consumption table TB2 2nd power consumption table

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

空調システム制御装置は、熱源機の送水温度を設定する設定部と、前記送水温度に応じた負荷の室内への供給空気量を算出する第1演算部と、前記送水温度に応じた熱源機の送水流量を算出する第2演算部と、前記送水温度、前記室内への供給空気量および前記送水流量に応じた熱源機側および負荷側の総消費電力を推定する推定部と、を備え、前記設定部は、前記推定された総消費電力が最小となる送水温度を設定する。

Description

空調システム制御装置、空調システム、空調システム制御方法およびプログラム
 本開示は、空調システム制御装置、空調システム、空調システム制御方法およびプログラムに関する。本願は、2020年1月23日に、日本に出願された特願2020-009393号に基づき優先権を主張し、その内容をここに援用する。
 従来、熱源側は負荷側で要求される負荷量を満足しつつ、送水温度設定値に合わせた温度の冷温水を供給するように制御を行うにあたって、外気温度・湿度見合いで変化する熱源機の特性に合わせて、熱源側機器(熱源機、補機(冷水ポンプ、冷却水ポンプ、冷却塔))の合計の消費電力が最小となるように制御を行っている。
 特許文献1には、外気温度・湿度に基づいて送水温度設定値を変更する空気調和システムが開示されている。
特許第6425750号公報
 負荷側はそれぞれのエリアで必要となる負荷に合わせてローカルの制御を行っており、負荷状況による成り行きの制御となっている。このため、例えば、負荷側や熱源側機器のうち補機の動力が支配的な場合に、熱源機のCOPを落とした運転を行った方がいい場合であっても、そのような制御を行うことはできない。
 即ち、熱源側、負荷側を統合して全体として最適となる制御は行われていない。
 本開示の目的は、負荷側で生じる消費電力を考慮した最適な熱源機の運転を実現可能な空調システム制御装置、空調システム、空調システム制御方法およびプログラムを提供することにある。
 本開示の一態様によれば、空調システム制御装置は、熱源機の送水温度を設定する設定部と、前記送水温度に応じた負荷側機器における室内への供給空気量を算出する第1演算部と、前記送水温度に応じた熱源機の送水流量を算出する第2演算部と、前記送水温度、前記室内への供給空気量および前記送水流量に応じた熱源機側および負荷側の総消費電力を推定する推定部と、を備える。前記設定部は、前記推定された総消費電力が最小となる送水温度を設定する。
 上述の発明の各態様によれば、負荷側で生じる消費電力を考慮した最適な熱源機の運転を実現することができる。
第1の実施形態に係る空調システムの概要を示す図である。 第1の実施形態に係る空調システムの負荷の構成を示す図である。 第1の実施形態に係る空調システムの負荷の構成を示す図である。 第1の実施形態に係る熱源機制御装置の処理フローを示す図である。 他の実施形態に係る空調システムの概要を示す図である。
<第1の実施形態>
 以下、第1の実施形態に係る熱源機制御装置(空調システム制御装置)およびこれを備える空調システムについて、図1~図4を参照しながら説明する。
(空調システムの概要)
 図1は、第1の実施形態に係る空調システムの概要を示す図である。
 第1の実施形態に係る空調システム1は、複数台の大型冷凍機(熱源機1a)及びエアハンドリングユニット(AHU)、ファンコイルユニット(FCU)(図2で詳しく説明)で構成されるセントラル空調システムである。
 図1に示すように、空調システム1は、並列接続された複数の熱源機1aと、負荷2と、冷却塔3とを有してなる。また、空調システム1は、複数の熱源機1aの運転を統括制御する熱源機制御装置10を備えている。
 各熱源機1aは、一般的なヒートポンプの構成(圧縮機、凝縮器、膨張弁および蒸発器)を備える。各熱源機1aは、負荷2との間で巡る冷水の熱を奪い(冷水を冷却し)、所定温度の冷水を作る。
 熱源機1aは、例えばターボ冷凍機である。この場合、熱源機1aは、2段圧縮2段膨張サブクールサイクルにて冷媒を冷却し、冷却された冷媒にて冷水を冷却する。
 ターボ圧縮機は遠心式の2段圧縮機であり、ガス状の冷媒を圧縮する。凝縮器は、ターボ圧縮機によって圧縮された高温高圧のガス冷媒を凝縮して液化させる。サブクーラーは、凝縮器の冷媒流れ下流側に設けられ、凝縮器にて凝縮された液冷媒に対して過冷却を与える。冷却伝熱管は、凝縮器及びサブクーラーに挿通され、管内を流れる冷却水により冷媒を冷却する。この、冷却伝熱管を流れる冷却水は、冷媒を冷却した後、冷却塔において外部へと排熱され、再び冷却伝熱管を流れる。
 高圧膨張弁および低圧膨張弁は、サブクーラーからの液冷媒を膨張させる。中間冷却器は、高圧膨張弁によって膨張させられた液冷媒を冷却する。蒸発器は、低圧膨張弁によって膨張させられた液冷媒を蒸発させる。冷水伝熱管は、蒸発器に挿通される。冷水伝熱管を流れる冷水は、冷媒が蒸発する際に気化熱を吸熱されることにより冷却される。
 このようにして、熱源機1aは冷水を冷却して負荷2に供給する。
 また、熱源機1aの負荷制御は、圧縮機が可変速制御可能な冷凍機の場合、ターボ圧縮機の回転数制御と、入口案内翼およびホットガスバイパス管による容量制御とにより行われる。
 電動モータは、ターボ圧縮機を駆動する。インバータは、電動モータの回転数を制御することによりターボ圧縮機の回転数制御を行う。
 入口案内翼は、ターボ圧縮機の冷媒吸入口に設けられ、吸入冷媒流量を制御することにより、熱源機1aの容量制御を行う。
 ホットガスバイパス管は、凝縮器の気相部と蒸発器の気相部との間に設けられ、冷媒ガスをバイパスする。ホットガスバイパス弁は、ホットガスバイパス管内を流れる冷媒の流量を制御する。ホットガスバイパス弁がホットガスバイパス流量を調整することにより、入口案内翼による容量制御よりも詳細な容量制御を行える。
 なお、圧縮機が固定速制御である冷凍機の場合、入口案内翼及びホットガスバイパス管による容量制御により負荷制御を行う。
 ポンプP1は、空調システム1における熱源機側の補機の一つであって、冷水の流量を調節可能な送水ポンプである。ポンプP1による冷水の流量は、後述する熱源機制御装置10によって制御される。本実施形態においては、ポンプP1は、熱源機1aの送出側流路及び還流側流路の両方に設けられているが、他の実施形態においてはこれに限られず、いずれか片方のみに設けられる態様であってもよい。
 ポンプP2は、空調システム1における熱源機側の補機の一つであって、冷却水の流量を調節可能な送水ポンプである。ポンプP2による冷却水の流量も、ポンプP1と同様に、熱源機制御装置10によって制御される。
 熱源機制御装置10は、並列接続された複数の熱源機1aの動作を統括制御する。既知の熱源制御装置は、負荷の大きさに応じて、熱源機のCOP(Coefficient Of Performance)が最大となる動作点で運転するが、本実施形態にかかる熱源制御装置10は、必ずしも熱源機1aのCOPが最大となる動作点で運転するとは限らない。本実施形態に係る熱源機制御装置10の具体的な機能及び処理の内容については後述する。
(負荷の構成)
 図2は、第1の実施形態に係る空調システムの負荷の構成を示す図である。
 以下、図2を参照しながら、負荷2の構成について詳しく説明する。
 図2に示すように、本実施形態に係る負荷2は、例えば、ビルのオフィスルームである被空調空間Rと、被空調空間Rの換気および空調を行うエアハンドリングユニット20(以下、AHU20とも記載する。)と、このAHU20を制御するAHUコントローラ21と、各種ファンF1、F2とを備える。また、負荷2は、被空調空間Rの空調を行うファンコイルユニット30(以下、FCU30とも記載する。)と、このFCU30を制御するFCUコントローラ31と、ファンF11とを備える。
 被空調空間Rには、人、OA機器、照明などの室内負荷が存在する。また、被空調空間Rでは、CO2濃度が規定上限値を上回らないようにすることが求められており、現在のCO2濃度に応じた外気導入管理が行われている。
 AHU20は、内部に冷却コイルCCを備える。AHU20は、室内空気の循環および外気の導入を行いながら、これらの空気を冷却コイルCCで冷却し、被空調空間Rに供給する。冷却コイルCCには熱源機1aによって所定温度に冷却された冷水が循環している。AHU20が室内空気を循環させることにより、この冷却コイルCCを介して空気と冷水との間で熱交換が行われる。これにより、冷却された空気が室内に供給される。
 AHUコントローラ21は、AHU20を通じて、被空調空間RのCO2(二酸化炭素)濃度が規定上限値を上回らないように、適宜、外気導入を行う。具体的には、AHUコントローラ21は、被空調空間RのCO2濃度を監視しながら、給気ファンF1および還気ファンF2の風量とダンパ開度を制御することで外気導入量を調節する。なお、被空調空間RのCO2濃度は、例えば室内に設置されたCO2濃度計CSを通じて取得される。
 FCUコントローラ31は、被空調空間Rにおいて予め設定された室内目標条件(例えば26℃/50%)のうち、目標湿度が達成されるように、室内への供給空気量を決定する。具体的には、FCUコントローラ31は、被空調空間Rにおける室内温湿度を温湿度センサS1から取得し、これが室内目標条件となるように室内への供給空気量を決定する。例えば、温湿度センサS1で計測された室内湿度が室内目標条件を大幅に上回っているときは、FCUコントローラ31は、室内の湿度を下げるべく、室内への供給空気量を増加させる。一方、室内湿度が室内目標条件に近いときは、FCUコントローラ31は、室内への供給空気量を低減させる。なお、室内への供給空気量は、ファンF11によって制御される。
(熱源機制御装置の機能構成)
 図3は、第1の実施形態に係る熱源機制御装置の機能構成を示す図である。
 本実施形態に係る熱源機制御装置10は、CPU等のプロセッサを備え、所定のプログラムに従って動作する。図3に示すように、熱源機制御装置10は、所定のプログラムに従って動作することで、設定部100、第1演算部101、第2演算部102、推定部103、導入量取得部104および全負荷取得部105としての機能を発揮する。
 設定部100は、熱源機1aの送水温度(冷水出口温度)を設定する。ここで、設定部100及び推定部103(後述)は、送水温度の設定値を変化させながら、その送水温度に応じて生じる総消費電力(熱源機側の消費電力と負荷側の消費電力を合わせた消費電力)を推定し、当該総消費電力の推定値が最小となる送水温度を探索する。このようにして、設定部100は、総消費電力が最小となる送水温度を設定する。総消費電力の推定方法については後述する。
 第1演算部101は、主に負荷側にて生じる動力(消費電力)を推定するために必要な情報を取得する。具体的には、第1演算部101は、設定部100で設定された送水温度に応じた負荷の室内への供給空気量を算出する。
 第2演算部102は、主に熱源機側にて生じる動力(消費電力)を推定するために必要な情報を取得する。具体的には、第2演算部102は、設定部100で設定された送水温度に応じた熱源機の送水流量を算出する。
 推定部103は、送水温度、室内への供給空気量および送水流量に応じた熱源機側および負荷側の総消費電力を推定する。
 導入量取得部104は、負荷2における外気導入量を取得する。
 全負荷取得部105は、負荷2の全負荷(外気導入負荷と室内負荷との総和)を取得する。
 記録媒体106は、いわゆるHDD(ハードディスクドライブ)、或いは、SSD(ソリッドステートドライブ)などの大容量補助記憶装置であって、熱源機制御装置10の処理に必要な各種情報が事前に記録されている。
 具体的には、記録媒体106には、第1消費電力テーブルTB1と、第2消費電力テーブルTB2とが記録されている。第1消費電力テーブルTB1は、負荷側にて生じる消費電力を見積もる際に用いられる情報テーブルであって、室内への供給空気量と負荷側にて生じる消費電力との対応関係を示す情報テーブルである。また、第2消費電力テーブルTB2は、熱源機側の補機(ポンプP1、P2、冷却塔3等)にて生じる消費電力を見積もる際に用いられる情報テーブルであって、冷水の送水流量と熱源機側の補機にて生じる消費電力との対応関係を示す情報テーブルである。
(熱源機制御装置の処理フロー)
 図4は、第1の実施形態に係る熱源機制御装置の処理フローを示す図である。
 図4に示す処理フローは熱源機1aで作製すべき、最適な冷水の温度(送水温度設定値)を決定するための処理フローである。空調システム1の運転中において、一定時間間隔で定常的に繰り返し実施される。
 まず、熱源機制御装置10の導入量取得部104は、負荷2における外気導入量を取得する(ステップS01)。ここで、導入量取得部104は、CO2濃度計CSを通じて被空調空間RにおけるCO2濃度を取得する。そして、導入量取得部104は、CO2濃度計CSを通じて取得したCO2濃度に応じた外気導入量を取得する。ここで、導入量取得部104は、AHUコントローラ21が外気導入量を決定する方法と同じ方法で外気導入量を取得する。例えば、AHUコントローラ21が、CO2濃度の移動平均の変化量が大きいほどより多くの外気を導入する場合、導入量取得部104も同様に、CO2濃度の移動平均の変化量に応じた外気導入量を取得する。
 次に、熱源機制御装置10の全負荷取得部105は、負荷2における全負荷を取得する(ステップS02)。ここで、「全負荷」とは、負荷2の全負荷量を示す値であって、本実施形態においては、外気の温湿度及び外気導入量に応じた負荷である外気導入負荷と、上述した室内負荷との総和である。ここで、全負荷取得部105は、ステップS01で特定された外気導入量と、温湿度センサS2によって計測された外気温湿度(例えば30℃/70%)とを取得し、外気導入負荷を算出する。
 次に、全負荷取得部105は、例えば、被空調空間Rの中にいる従業員等の人数や電源がついているOA機器、及び、点灯状態となっている照明装置等の情報を取得して、室内負荷を算出する。被空調空間Rの中にいる従業員等の人数を取得するにあたっては、例えば、全負荷取得部105は、被空調空間Rの入退室管理情報などを参照してもよい。
 次に、熱源機制御装置10の設定部100は、熱源機1aが送水すべき冷水の温度(送水温度設定値)を、複数の異なる候補値のうちの一つに仮決定する。
 熱源機制御装置10の第1演算部101は、熱源機1aの送水温度設定値を、当該仮決定したものとした場合に、ステップS02で算出した全負荷に対し、AHU20およびAHUコントローラ21、FCU30およびFCUコントローラ31によって制御される室内への供給空気量を算出する(ステップS03)。具体的には、第1演算部101は、AHU20の冷却コイルCCにて交換される熱量であるAHU熱交換量、FCU30の冷却コイルCCにて交換される熱量であるFCU熱交換量と、室内目標温度条件(例えば26℃/50%)とを参照して、AHU20およびAHUコントローラ21、FCU30およびFCUコントローラ31が達成すべき室内への供給空気量を算出する。
 更に、熱源機制御装置10の第2演算部102は、熱源機1aの送水温度設定値を、当該仮決定したものとした場合に、ステップS02で算出した全負荷に対し、熱源機1aが送水すべき流量(送水流量)を算出する(ステップS04)。ここで、第2演算部102は、設定部100によって仮決定された上記送水温度設定値の候補値と、上記全負荷とを参照することで、熱源機1aの送水流量を算出する。
 次に、推定部103は、上記仮決定した送水温度設定値の候補値に対応する総消費電力を推定する。ここで、推定部103は、まず、(1)負荷側にて生じる消費電力の推定値、(2)熱源機側にて生じる消費電力の推定値のそれぞれを算出する。総消費電力とは、上記(1)と(2)との総和である。
 推定部103は、(1)負荷側にて生じる消費電力の推定値を算出するにあたり、ステップS03にて算出された室内への供給空気量と、第1消費電力テーブルTB1(図3)とを参照する。上述したように、第1消費電力テーブルTB1には、負荷側(AHU20及びAHUコントローラ21、FCU30及びFCUコントローラ31)が達成すべき室内への供給空気量ごとに、各種ファン(給気ファンF1、還気ファンF2等(図2参照))で消費される総消費電力が記録されている。推定部103は、ステップS03にて算出された室内への供給空気量に対応する負荷側の消費電力を、第1消費電力テーブルTB1を参照して特定する。
 次に、推定部103は、(2)熱源機側にて生じる消費電力の推定値を算出するにあたり、(2a)熱源機1aにて生じる消費電力、(2b)熱源機側の補機(ポンプP1、P2、冷却塔3等)にて生じる消費電力をそれぞれ求める。
 (2a)の熱源機1aにて生じる消費電力については、推定部103は、設定部100で仮決定された送水温度設定値に基づいて特定する。一般に、熱源機1aは、送水温度が低いほど消費電力が大きくなり、送水温度が高いほど消費電力が小さくなる傾向がある。推定部103は、熱源機1aにおける、送水温度設定値と消費電力との関係を予め把握しており、当該関係に基づいて、(2a)熱源機1aにて生じる消費電力を取得する。
 (2b)の熱源機側の補機にて生じる消費電力については、推定部103は、ステップS04にて算出された送水流量と、第2消費電力テーブルTB2(図3)とを参照する。上述したように、第2消費電力テーブルTB2には、熱源機側の補機が達成すべき送水流量ごとに、各種ポンプ(ポンプP1、P2等(図1参照))及び冷却塔3で消費される総消費電力が記録されている。推定部103は、ステップS04にて算出された送水流量に対応する熱源機側の補機の消費電力を、第2消費電力テーブルTB2を参照して特定する。
 推定部103は、(2a)熱源機1aにて生じる消費電力、(2b)熱源機側の補機にて生じる消費電力の総和を算出することで(2)熱源機側にて生じる消費電力の推定値を得る。
 推定部103は、以上のようにして算出した(1)負荷側にて生じる消費電力の推定値、および、(2)熱源機側にて生じる消費電力の推定値の総和を算出することで、仮決定した送水温度設定値の候補値に対応する総消費電力の推定値を算出する。
 設定部100は、異なる複数の送水温度設定値の候補値ごとに、ステップS03~S05の処理を行い、総消費電力の推定値を算出する。そして、設定部100は、これら複数の候補値の中から、最も小さい総消費電力が得られた送水温度設定値の候補値を、最適な送水温度設定値として決定する(ステップS06)。
(作用、効果)
 上述したように、送水温度設定値を下げると熱源機1aそのものの消費電力は増える。しかし、同一の負荷(全負荷)に対しては、熱源機1aの送水温度を低下させた分だけ、熱源機側での送水流量を減らすことができる。したがって、熱源機1aの送水温度設定値を下げることで熱源機側の補機の消費電力を低減することができる。また、AHU20やFCU30では、熱源機1aの送水温度を低下させた分だけ、AHU20やFCU30での交換熱量が増加し、室内空気を冷やす能力が高まる。したがって、熱源機1aの送水温度を低下させた分だけ、負荷側での室内への供給空気量も低減され、負荷側にて生じる消費電力も低下する。
 したがって、熱源機1a自身の消費電力に対し、熱源機側の補機の消費電力および負荷側(AHU20及びFCU30)にて生じる消費電力の総和の比率が高い場合、本実施形態に係る熱源機制御装置10によれば、熱源機1aにて生じる消費電力が若干増えたとしても、システム全体としての総消費電力が最小となるように、送水温度設定値が決定される。
 以上、第1の実施形態に係る熱源機制御装置10によれば、負荷側で生じる消費電力を考慮した最適な熱源機の運転を実現することができる。
 また、第1の実施形態に係る熱源機制御装置10の第2演算部102は、負荷側での外気導入量を含む全負荷に基づいて、送水温度に応じた熱源機1aの送水流量を算出する。このようにすることで、被空調空間Rにおける外気導入量を加味した全負荷量を精度よく見積もることができる。
 また、第1の実施形態に係る熱源機制御装置10の推定部103は、負荷側の消費電力として少なくとも室内への供給空気量に応じたファンF1、F2、F11等の消費電力を算出し、熱源機側の消費電力として少なくとも送水流量に応じた補機(ポンプP1、P2、冷却塔3等)の消費電力を算出する。
 このようにすることで、送水温度設定値(複数の候補値それぞれ)に応じた、負荷側にて生じる消費電力および熱源機側にて生じる消費電力を一層精度よく推定することができる。
(その他の実施形態)
 なお、第1の実施形態に係る導入量取得部104は、CO2濃度の移動平均の変化量に応じた外気導入量を取得するものとして説明したが、他の実施形態においてはこの態様に限定されない。例えば、他の実施形態に係る導入量取得部104は、CO2濃度の管理目標値との偏差の変化傾向に基づいて外気導入量を算出してもよい。
 このようにすることで、現在のCO2濃度と管理目標値との偏差に余裕がある場合には、外気導入量を減らすことにより、負荷を下げた運転時間を長くとることができる。
 また、第1の実施形態に係る熱源機制御装置10は、被空調空間Rに設置されたCO2濃度計CSを通じて当該被空調空間RのCO2濃度を取得するものとして説明したが、他の実施形態においてはこの態様に限定されない。他の実施形態に係る熱源機制御装置10は、例えば、CO2濃度の計測の代わりに、在室人数によってCO2濃度を推定するものとしてもよい。このようにすることで、CO2濃度計が高価な場合、ビル管理システムなどで別途管理している在室人数を使って同等のことができる。
 また、外気導入量を、逐次計算するのではなく、あらかじめテーブル化しておき、解の算出に時間がかかる状況を回避するようにしてもよい。このようにすることで、計算時間がネックとなる場合や計算結果が多峰性を持つ場合であってもあらかじめ意図した動作を行うことが可能となる。
 また、完全に外気導入を止めてしまうとCO2濃度の変化傾向が捕捉できなくなるため、最低外気導入量を設けておいて、無人の状況でも管理目標値を逸脱しないようにしてもよい。このようにすることで、オフィスビルの業務開始時点などにおいて、「在室者なし」から「在室者あり」への変化時点であっても管理目標値を大幅に超える事態を避けることができる。
 また、CO2濃度の変化傾向を学習し、その予測値に基づいて外気導入量を決定するものとしてもよい。単なる変化傾向のみでは外気導入量が急激に増大する可能性があるが、変化傾向のパターンに合わせて換気量を制御することにより、無駄に換気量を増やさなくてもよくなる。
 また、他の実施形態に係る熱源機制御装置10は、全負荷を見積もるにあたり、室内負荷及び外気導入負荷のそれぞれを見積もってその総和を計算するのではなく、熱源機1aにおける冷水出口温度および冷水入口温度の温度差と、冷水流量との積に基づいて全負荷を見積もるものとしてもよい。
 また、熱源側機器における冷水供給を複数台の熱源機1aのみが行うのではなく、図5に示すように蓄熱槽4を設置して、蓄熱槽4と熱源機1aで分担して冷水の供給を行うものとしてもよい。この場合、電力料金の体系に応じて、蓄熱を行う時間帯を変更することにより、消費電力量が同等となった場合であっても、ランニングコストを低減することができる。
 上述の実施形態においては、熱源機制御装置10の各種処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって上記各種処理が行われる。また、コンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしてもよい。
 上記プログラムは、上述した機能の一部を実現するためのものであってもよい。更に、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。
 以上のとおり、本開示に係るいくつかの実施形態を説明したが、これら全ての実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これらの実施形態及びその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
<付記>
 各実施形態に記載の空調システム制御装置(熱源機制御装置10)は、例えば以下のように把握される。
(1)第1の態様に係る空調システム制御装置は、熱源機1aの送水温度を設定する設定部100と、送水温度に応じた負荷2の室内への供給空気量を算出する第1演算部101と、送水温度に応じた熱源機1aの送水流量を算出する第2演算部102と、送水温度、室内への供給空気量および送水流量に応じた熱源機側および負荷側の総消費電力を推定する推定部103と、を備える。設定部100は、推定された総消費電力が最小となる送水温度を設定する。
(2)第2の態様に係る空調システム制御装置によれば、第1演算部101は、CO2濃度が規定上限値を超えない範囲で室内への供給空気量を算出する。
(3)第3の態様に係る空調システム制御装置によれば、第1演算部101は、室内空気の相対湿度が規定上限値を超えない範囲で室内への供給空気量を算出する。
(4)第4の態様に係る空調システム制御装置によれば、第2演算部102は、負荷側での外気導入量を含む全負荷に基づいて、送水温度に応じた熱源機の送水流量を算出する。
(5)第5の態様に係る熱源機制御装置10によれば、推定部103は、負荷側の消費電力として少なくとも室内への供給空気量に応じたファン(給気ファンF1、還気ファンF2等)の消費電力を算出し、熱源機側の消費電力として少なくとも送水流量に応じた補機(ポンプP1、P2、冷却塔3等)の消費電力を算出する。
(6)第6の態様に係る空調システム1は、上記(1)~(5)のいずれかの空調システム制御装置を備え、熱源機側を構成する機器として、熱源機1aに加えて蓄熱槽4を含む。
(7)第7の態様に係る空調システム制御方法によれば、熱源機1aの送水温度を設定するステップと、送水温度に応じた負荷2の室内への供給空気量を算出するステップと、送水温度に応じた熱源機1aの送水流量を算出するステップと、送水温度、室内への供給空気量および送水流量に応じた熱源機側および負荷側の総消費電力を推定するステップと、を有する。熱源機1aの送水温度を設定するステップでは、推定された総消費電力が最小となる送水温度を設定する。
(8)第8の態様に係るプログラムによれば、空調システム制御装置のコンピュータに、熱源機1aの送水温度を設定するステップと、送水温度に応じた負荷2の室内への供給空気量を算出するステップと、送水温度に応じた熱源機1aの送水流量を算出するステップと、送水温度、室内への供給空気量および送水流量に応じた熱源機側および負荷側の総消費電力を推定するステップと、を実行させる。熱源機1aの送水温度を設定するステップでは、推定された総消費電力が最小となる送水温度を設定する。
 上述の発明の各態様によれば、負荷側で生じる消費電力を考慮した最適な熱源機の運転を実現することができる。
1 空調システム
10 熱源機制御装置(空調システム制御装置)
100 設定部
101 第1演算部
102 第2演算部
103 推定部
104 導入量取得部
105 全負荷取得部
106 記録媒体
2 負荷
20 エアハンドリングユニット(AHU)
21 AHUコントローラ
30 ファンコイルユニット(FCU)
31 FCUコントローラ
4 蓄熱漕
TB1 第1消費電力テーブル
TB2 第2消費電力テーブル

Claims (8)

  1.  熱源機の送水温度を設定する設定部と、
     前記送水温度に応じた負荷の室内への供給空気量を算出する第1演算部と、
     前記送水温度に応じた熱源機の送水流量を算出する第2演算部と、
     前記送水温度、前記室内への供給空気量および前記送水流量に応じた熱源機側および負荷側の総消費電力を推定する推定部と、
     を備え、
     前記設定部は、前記推定された総消費電力が最小となる送水温度を設定する
     空調システム制御装置。
  2.  前記第1演算部は、CO2濃度が規定上限値を超えない範囲で室内への供給空気量を算出する
     請求項1に記載の空調システム制御装置。
  3.  前記第1演算部は、室内空気の相対湿度が規定上限値を超えない範囲で室内への供給空気量を算出する
     請求項1または請求項2に記載の空調システム制御装置。
  4.  前記第2演算部は、前記負荷側での外気導入量を含む全負荷に基づいて、前記送水温度に応じた熱源機の送水流量を算出する
     請求項1から請求項3のいずれかに記載の空調システム制御装置。
  5.  前記推定部は、前記負荷側の消費電力として少なくとも室内への供給空気量に応じたファンの消費電力を算出し、前記熱源機側の消費電力として少なくとも前記送水流量に応じた補機の消費電力を算出する
     請求項1から請求項4のいずれかに記載の空調システム制御装置。
  6.  請求項1から請求項5のいずれか一項に記載の空調システム制御装置を備え、
     熱源機側を構成する機器として、前記熱源機に加えて蓄熱槽を含む、
     空調システム。
  7.  熱源機の送水温度を設定するステップと、
     前記送水温度に応じた負荷の室内への供給空気量を算出するステップと、
     前記送水温度に応じた熱源機の送水流量を算出するステップと、
     前記送水温度、前記室内への供給空気量および前記送水流量に応じた熱源機側および負荷側の総消費電力を推定するステップと、
     を有し、
     前記熱源機の送水温度を設定するステップでは、前記推定された総消費電力が最小となる送水温度を設定する
     空調システム制御方法。
  8.  空著システム制御装置のコンピュータに、
     熱源機の送水温度を設定するステップと、
     前記送水温度に応じた負荷の室内への供給空気量を算出するステップと、
     前記送水温度に応じた熱源機の送水流量を算出するステップと、
     前記送水温度、前記室内への供給空気量および前記送水流量に応じた熱源機側および負荷側の総消費電力を推定するステップと、
     を実行させ、
     前記熱源機の送水温度を設定するステップでは、前記推定された総消費電力が最小となる送水温度を設定する
     プログラム。
PCT/JP2021/001659 2020-01-23 2021-01-19 空調システム制御装置、空調システム、空調システム制御方法およびプログラム WO2021149677A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180008274.3A CN114930092A (zh) 2020-01-23 2021-01-19 空调系统控制装置、空调系统、空调系统控制方法以及程序
AU2021211287A AU2021211287B2 (en) 2020-01-23 2021-01-19 Air conditioning system control device, air conditioning system, air conditioning system control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009393A JP7499577B2 (ja) 2020-01-23 2020-01-23 空調システム制御装置、空調システム、空調システム制御方法およびプログラム
JP2020-009393 2020-01-23

Publications (1)

Publication Number Publication Date
WO2021149677A1 true WO2021149677A1 (ja) 2021-07-29

Family

ID=76992392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001659 WO2021149677A1 (ja) 2020-01-23 2021-01-19 空調システム制御装置、空調システム、空調システム制御方法およびプログラム

Country Status (4)

Country Link
JP (1) JP7499577B2 (ja)
CN (1) CN114930092A (ja)
AU (1) AU2021211287B2 (ja)
WO (1) WO2021149677A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739397A (zh) * 2021-08-31 2021-12-03 广州汇电云联互联网科技有限公司 一种中央空调系统及其节能控制方法、可读存储介质
JP7474286B2 (ja) 2022-06-30 2024-04-24 株式会社えきまちエナジークリエイト 空調熱源制御装置、空調熱源制御方法、及び空調熱源制御プログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4438968A1 (en) 2021-12-28 2024-10-02 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat source system, control method therefor, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053127A (ja) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd 空調設備及びその制御方法
JP2004069134A (ja) * 2002-08-05 2004-03-04 Toshiba Corp 空調システム
JP2008256258A (ja) * 2007-04-04 2008-10-23 Toshiba Corp 空調システム制御装置
JP2013053836A (ja) * 2011-09-06 2013-03-21 Kimura Kohki Co Ltd 空調機能付外調機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5132334B2 (ja) * 2008-01-28 2013-01-30 株式会社東芝 空調制御装置およびこれを用いた空調制御システム
KR102366961B1 (ko) * 2014-10-07 2022-02-24 삼성전자 주식회사 공조기를 관리하는 방법 및 장치
US11041649B2 (en) * 2016-11-16 2021-06-22 Mitsubishi Electric Corporation Air-conditioning control device and air-conditioning control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053127A (ja) * 2002-07-19 2004-02-19 Hitachi Plant Eng & Constr Co Ltd 空調設備及びその制御方法
JP2004069134A (ja) * 2002-08-05 2004-03-04 Toshiba Corp 空調システム
JP2008256258A (ja) * 2007-04-04 2008-10-23 Toshiba Corp 空調システム制御装置
JP2013053836A (ja) * 2011-09-06 2013-03-21 Kimura Kohki Co Ltd 空調機能付外調機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739397A (zh) * 2021-08-31 2021-12-03 广州汇电云联互联网科技有限公司 一种中央空调系统及其节能控制方法、可读存储介质
CN113739397B (zh) * 2021-08-31 2022-09-02 广州汇电云联互联网科技有限公司 一种中央空调系统及其节能控制方法、可读存储介质
JP7474286B2 (ja) 2022-06-30 2024-04-24 株式会社えきまちエナジークリエイト 空調熱源制御装置、空調熱源制御方法、及び空調熱源制御プログラム

Also Published As

Publication number Publication date
JP2021116948A (ja) 2021-08-10
CN114930092A (zh) 2022-08-19
AU2021211287B2 (en) 2024-05-16
JP7499577B2 (ja) 2024-06-14
AU2021211287A1 (en) 2022-07-21

Similar Documents

Publication Publication Date Title
WO2021149677A1 (ja) 空調システム制御装置、空調システム、空調システム制御方法およびプログラム
US10184482B2 (en) Capacity control system and method for multi-stage centrifugal compressor
JP5984703B2 (ja) 熱源システム及び冷却水供給装置の制御装置並びに制御方法
CN108375170A (zh) 一种电子膨胀阀的控制方法、装置及空调器
WO2012017912A1 (ja) 冷凍機制御装置
JP5984456B2 (ja) 熱源システムの制御装置、熱源システムの制御方法、熱源システム、電力調整ネットワークシステム、及び熱源機の制御装置
JP6001375B2 (ja) 空調システム
JP7235460B2 (ja) 制御装置、熱源システム、冷却水入口温度下限値の算出方法、制御方法およびプログラム
JP7490831B2 (ja) 空調システムの制御装置、制御方法、制御プログラムおよび空調システム
JP2007298235A (ja) 熱源システムおよびその制御方法
JP6538975B2 (ja) 空気調和システム
JP2010164270A (ja) 多室型空気調和機
JP6509047B2 (ja) 空気調和装置
JP6855160B2 (ja) 熱源システムの台数制御装置及びその方法並びに熱源システム
JP2011163665A (ja) 空調システムの運転方法
JP2018071864A (ja) 空気調和機
JP2014129912A (ja) 直膨コイルを使用した空気調和機
JP6698312B2 (ja) 制御装置、制御方法、及び熱源システム
JP6586182B2 (ja) 熱源システムに使用される制御装置、および該制御装置を備えた熱源システム
JP2019168220A (ja) 空気調和システムの制御装置および制御方法ならびに空気調和システム
JP6125901B2 (ja) 冷凍機
JP6239100B2 (ja) 空気調和システム
JP2014173739A (ja) 空気調和装置
JP2003042519A (ja) 空調装置
JP2012149835A (ja) 冷凍機およびその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021211287

Country of ref document: AU

Date of ref document: 20210119

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744240

Country of ref document: EP

Kind code of ref document: A1