WO2012014854A1 - Cu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池 - Google Patents

Cu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池 Download PDF

Info

Publication number
WO2012014854A1
WO2012014854A1 PCT/JP2011/066878 JP2011066878W WO2012014854A1 WO 2012014854 A1 WO2012014854 A1 WO 2012014854A1 JP 2011066878 W JP2011066878 W JP 2011066878W WO 2012014854 A1 WO2012014854 A1 WO 2012014854A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
glass
depth
sro
bao
Prior art date
Application number
PCT/JP2011/066878
Other languages
English (en)
French (fr)
Inventor
裕 黒岩
雄一 山本
朋美 関根
中島 哲也
川本 泰
仁木 栄
尚吾 石塚
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2012526496A priority Critical patent/JP5757473B2/ja
Priority to KR1020127033531A priority patent/KR20130100244A/ko
Publication of WO2012014854A1 publication Critical patent/WO2012014854A1/ja
Priority to US13/751,764 priority patent/US8895463B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/008Other surface treatment of glass not in the form of fibres or filaments comprising a lixiviation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0488Double glass encapsulation, e.g. photovoltaic cells arranged between front and rear glass sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Definitions

  • the present invention relates to a glass substrate for a solar cell in which a photoelectric conversion layer is formed between glass plates and a solar cell using the same. More specifically, the glass plate typically has a glass substrate and a cover glass, and a photoelectric conversion layer mainly composed of an element of Group 11, 13, or 16 is formed between the glass substrate and the cover glass.
  • the present invention relates to a glass substrate for a Cu—In—Ga—Se solar cell and a solar cell using the same.
  • Group 11-13, 11-16 compound semiconductors having a chalcopyrite crystal structure and cubic or hexagonal 12-16 group compound semiconductors have a large absorption coefficient for light in the visible to near-infrared wavelength range. have. Therefore, it is expected as a material for high-efficiency thin film solar cells.
  • Typical examples include Cu (In, Ga) Se 2 (hereinafter also referred to as “CIGS” or “Cu—In—Ga—Se”) and CdTe.
  • CIGS thin film solar cells are inexpensive and have a thermal expansion coefficient close to that of CIGS compound semiconductors, soda lime glass is used as a substrate to obtain solar cells.
  • Patent Document 1 a glass material that can withstand a high heat treatment temperature has been proposed.
  • a CIGS photoelectric conversion layer (hereinafter also referred to as “CIGS layer”) is formed on the glass substrate.
  • CIGS layer A CIGS photoelectric conversion layer
  • heat treatment at a higher temperature is preferable to produce a solar cell with good power generation efficiency, and the glass substrate is required to withstand it.
  • Patent Document 1 proposes a glass composition having a relatively high annealing point, but the invention described in Patent Document 1 does not necessarily have high power generation efficiency.
  • the present inventors have found that the power generation efficiency can be increased by increasing the alkali of the glass substrate within a predetermined range, but there is a problem that an increase in the alkali causes a decrease in the glass transition temperature (Tg).
  • the glass substrate used in the CIGS solar cell has a problem that it is difficult to achieve both high power generation efficiency and high glass transition temperature.
  • An object of the present invention is to provide a glass substrate for a Cu—In—Ga—Se solar cell that achieves both particularly high power generation efficiency and high glass transition temperature.
  • the gist of the present invention is as follows. (1) The average total amount (atomic%) of Ca, Sr, and Ba at a depth of 10 to 40 nm from the surface of the glass substrate, and the total amount (atom) of Ca, Sr, and Ba at a depth of 5000 nm from the glass substrate surface. %) And the ratio is 0.35 or less, The ratio of before and after heat treatment at 600 ° C.
  • the present invention is suitably used for a solar cell having a glass substrate, a cover glass, and a Cu—In—Ga—Se photoelectric conversion layer deposited between the glass substrate and the cover glass.
  • a glass substrate for a solar cell, and at least the glass substrate of the glass substrate and the cover glass can be used as a glass substrate for a Cu—In—Ga—Se solar cell of the present invention.
  • the glass substrate for a Cu—In—Ga—Se solar cell of the present invention can achieve both high power generation efficiency and high glass transition temperature.
  • CIGS solar cell glass substrate of the present invention a low-cost and high-efficiency solar cell can be provided.
  • the disclosure of the present application is related to the subject matter described in Japanese Patent Application No. 2010-167026 filed on July 26, 2010, the disclosure of which is incorporated herein by reference.
  • FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of the solar cell of the present invention.
  • the glass substrate for a Cu—In—Ga—Se solar cell of the present invention has an average total amount (atomic%) of Ca, Sr and Ba at a depth of 10 to 40 nm from the surface of the glass substrate (hereinafter referred to as “glass substrate surface layer”). And the total amount (atomic%) of Ca, Sr and Ba at a depth of 5000 nm from the surface of the glass substrate (hereinafter also referred to as “amount of Ca + Sr + Ba in the glass substrate”) (Hereinafter also referred to as “the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside”) is 0.35 or less, and N 2 is an average amount of Na (atomic%) in a depth of 10 to 40 nm from the glass substrate surface.
  • the ratio before and after the heat treatment at 600 ° C. for 1 hour in the atmosphere (hereinafter also referred to as “the ratio before and after the heat treatment of Na of the glass substrate surface layer”) is 1.5 or more, At a depth of 5000 nm or more from the surface of the glass substrate, with the following mass percentage display based on the oxide, SiO 2 53-72%, Al 2 O 3 1-15%, 0.5-9% MgO, CaO 0.1 to 11%, 0-11% SrO, BaO 0-11%, 2-11% Na 2 O, 2 to 21% of K 2 O, 0 to 10.5% of ZrO 2 MgO + CaO + SrO + BaO 4-25%, 2-23% of CaO + SrO + BaO, Na 2 O + K 2 O 8-22%, Na 2 O / (CaO + SrO + BaO) ⁇ 1.2, A glass substrate for vapor-deposition Cu—In—Ga—Se solar cells containing glass transition temperature of 580 ° C.
  • the glass substrate for a Cu—In—Ga—Se solar cell is preferably a vapor-deposited Cu—In—Ga—Se solar cell glass substrate.
  • Vapor deposition film formation Cu—In—Ga—Se refers to a film in which at least a part of a CIGS layer, which is a photoelectric conversion layer of a solar cell, is formed by an evaporation method.
  • the glass substrate for CIGS solar cell of the present invention has a Ca + Sr + Ba ratio of 0.35 or less, preferably 0.3 or less, more preferably 0.17 or less, even more preferably 0.13 or less. Especially preferably, it is 0.05 or less.
  • the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside can be compared as a relative ratio between the amount of Ca + Sr + Ba on the glass substrate surface layer and the amount of Ca + Sr + Ba inside the glass substrate. That is, when the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside is 0.35 or less, the amount of Ca + Sr + Ba in the glass substrate surface layer is smaller than the amount of Ca + Sr + Ba in the glass substrate, specifically, Ca, Sr It means that the atoms of Ba and Ba are missing from the glass substrate surface.
  • the glass substrate for CIGS solar cell according to the present invention When the glass substrate for CIGS solar cell according to the present invention is used for vapor deposition film formation CIGS solar cell due to the state in which atoms of Ca, Sr and Ba are detached from the glass substrate surface (detached state), heat treatment in the solar cell manufacturing process In the process (generally, heat treatment conditions of about 600 ° C. for 1 hour or more in an oxygen-free atmosphere), when at least a part of CIGS, which is the photoelectric conversion layer of the solar cell, is formed by vapor deposition, the glass substrate The present inventors have found that the amount of Na diffused into the photoelectric conversion layer of CIGS increases, thereby improving the power generation efficiency of the solar cell.
  • the amount of Ca + Sr + Ba or the amount of Na (atomic%) on the surface of the glass substrate is defined as “average total amount of Ca, Sr and Ba (atomic%) at a depth of 10 to 40 nm from the glass substrate surface” or “ The average Na content (atomic%) between 10 and 40 nm in depth from the surface of the glass substrate is defined as follows.
  • the average Na content (atomic%) between 10 and 40 nm in depth from the surface of the glass substrate is defined as follows.
  • each raw material component is used so that the composition of the glass substrate falls within the range specified in the present invention.
  • the melting / clarification step and the molding step are performed, and the SO 2 treatment according to the present invention is performed in the subsequent slow cooling step.
  • the composition (each raw material component) of the glass substrate for CIGS solar cell of the present invention and the SO 2 treatment according to the present invention will be described in detail later.
  • the CIGS solar cell glass substrate of the present invention requires that the ratio of Na before and after the heat treatment of the glass substrate surface layer is 1.5 or more, and preferably 2 or more.
  • the ratio before and after the heat treatment of Na on the surface of the glass substrate is more preferably 2.4 or more, further preferably 2.5 or more, and particularly preferably 2.7 or more.
  • the upper limit of the before-and-after heat treatment ratio of Na on the surface of the glass substrate is 5.
  • the ratio before and after the heat treatment of Na on the glass substrate surface is greater than 5, the amount of Na on the surface of the glass substrate before the heat treatment is reduced, and as a result, the amount of Na diffusion from the glass substrate to the photoelectric conversion layer of CIGS is reduced. May decrease.
  • it is 4.5 or less, More preferably, it is 4 or less.
  • the composition of the glass substrate is specified in the present invention, and the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside is 0.35 or less, preferably 0.3 or less, more preferably 0.17 or less, and still more preferably 0. .13 or less, particularly preferably 0.05 or less, the ratio before and after the heat treatment of Na on the surface of the glass substrate is easily 1.5 or more, preferably 2 or more, more preferably 2.4 or more, and still more preferably 2. It can be 5 or more, particularly preferably 2.7 or more.
  • the glass transition temperature (Tg) of the glass substrate for CIGS solar cell of the present invention is 580 ° C. or higher.
  • the glass transition temperature of the glass substrate for CIGS solar cells of the present invention is higher than the glass transition temperature of soda lime glass.
  • the glass transition point temperature (Tg) of the glass substrate for CIGS solar cell of the present invention is preferably 600 ° C. or higher, more preferably 610 ° C. or higher, to ensure the formation of the photoelectric conversion layer at a high temperature, 620 More preferably, it is at least 630 ° C, particularly preferably at least 630 ° C.
  • the upper limit of the glass transition temperature is 750 ° C.
  • a glass transition temperature of 750 ° C. or lower is preferable because the viscosity at the time of melting can be suppressed to a moderately low level and it is easy to produce. More preferably, it is 700 degrees C or less, More preferably, it is 680 degrees C or less.
  • the average thermal expansion coefficient at 50 to 350 ° C. of the glass substrate for CIGS solar cell of the present invention is 70 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C. If it is less than 70 ⁇ 10 ⁇ 7 / ° C. or more than 100 ⁇ 10 ⁇ 7 / ° C., the difference in thermal expansion from the CIGS layer becomes too large, and defects such as peeling tend to occur. Furthermore, when assembling a solar cell (specifically, when a glass substrate having a CIGS photoelectric conversion layer and a cover glass are heated and bonded together), the glass substrate may be easily deformed. Preferably it is 95 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 90 ⁇ 10 ⁇ 7 / ° C. or less.
  • it is preferably 73 ⁇ 10 ⁇ 7 / ° C. or more, more preferably 75 ⁇ 10 ⁇ 7 / ° C. or more, and further preferably 80 ⁇ 10 ⁇ 7 / ° C. or more.
  • each raw material component is limited to the above composition.
  • SiO 2 A component that forms a glass skeleton. If it is less than 53% by mass (hereinafter simply referred to as “%”), the heat resistance and chemical durability of the glass are lowered, and the average thermal expansion coefficient may be increased. Preferably it is 55% or more, More preferably, it is 57% or more, More preferably, it is 59% or more.
  • the high-temperature viscosity of the glass may increase, which may cause a problem of deterioration of solubility.
  • it is 69% or less, More preferably, it is 65% or less, More preferably, it is 63% or less.
  • Al 2 O 3 Raises glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and raises Young's modulus. If the content is less than 1%, the glass transition temperature may be lowered. Moreover, there exists a possibility that an average thermal expansion coefficient may increase. Preferably it is 4% or more, More preferably, it is 6% or more, More preferably, it is 8% or more.
  • the power generation efficiency may be reduced, that is, the amount of Na diffusion described later may be reduced.
  • it is 14% or less, More preferably, it is 13% or less, More preferably, it is 12% or less.
  • B 2 O 3 may be contained up to 2% in order to improve the solubility. If the content exceeds 2%, the glass transition temperature decreases or the average thermal expansion coefficient decreases, which is not preferable for the process of forming a CIGS layer. More preferably, the content is 1% or less. The content is particularly preferably 0.5% or less, more preferably substantially not contained.
  • substantially does not contain means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained.
  • MgO Since it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting, it is contained. However, if it is less than 0.5%, the high temperature viscosity of the glass is increased and the solubility may be deteriorated. Preferably it is 1.5% or more, More preferably, it is 2.5% or more, More preferably, it is 3% or more.
  • the average thermal expansion coefficient may increase.
  • the devitrification temperature may increase. Preferably it is 8% or less, More preferably, it is 7% or less, More preferably, it is 6.5% or less.
  • CaO Since there is an effect of reducing the viscosity at the time of melting the glass and promoting the melting, it can be contained at 0.1% or more. Preferably it is 2% or more, More preferably, it is 4% or more, More preferably, it is 4.5% or more. However, if it exceeds 11%, the average thermal expansion coefficient of the glass may increase. In addition, the power generation efficiency may be reduced, that is, the amount of Na diffusion described later may be reduced. Preferably it is 8% or less, More preferably, it is 7.5% or less, More preferably, it is 7% or less.
  • SrO It can be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. However, if the content exceeds 11%, the power generation efficiency decreases, that is, the amount of Na diffusion described later decreases, and the average thermal expansion coefficient of the glass substrate may increase. It is preferably 8% or less, more preferably 6% or less, and further preferably 3% or less. Moreover, Preferably it is 0.5% or more, More preferably, it is 1% or more.
  • BaO Since it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting, it can be contained. However, if the content exceeds 11%, the power generation efficiency decreases, that is, the amount of Na diffusion described later decreases, and the average thermal expansion coefficient of the glass substrate may increase.
  • the specific gravity also increases. It is preferably 5% or less, more preferably 3% or less, still more preferably 0.5% or less, and particularly preferably substantially no content.
  • ZrO 2 Since there is an effect of lowering the viscosity at the time of melting the glass, promoting the melting, and increasing the Tg, it may be contained. Preferably, it is contained at 0.5% or more. More preferably, it is 1% or more, further preferably 1.5% or more, and particularly preferably 2% or more. However, if the content exceeds 10.5%, the power generation efficiency decreases, that is, the amount of Na diffusion described later decreases, the devitrification temperature increases, and the average thermal expansion coefficient of the glass substrate may increase. It is preferably 8% or less, and more preferably 5% or less.
  • MgO, CaO, SrO and BaO are contained in a total amount of 4 to 25% from the viewpoint of reducing the viscosity at the time of melting the glass and promoting the melting. However, if the total amount exceeds 25%, the average thermal expansion coefficient increases, and the devitrification temperature may increase. 6% or more is preferable, and 9% or more is more preferable. Moreover, 21% or less is preferable, 20% or less is more preferable, 18% or less is further more preferable, and 15% or less is especially preferable.
  • CaO, SrO, and BaO are contained in an amount of 2% or more from the point that the ratio of Ca + Sr + Ba between the surface layer of the glass substrate after SO 2 treatment and the inside is 0.35 or less. Preferably it contains 4% or more, more preferably 6% or more. If the total amount of CaO, SrO and BaO is less than 2%, a large amount of MgO must be added to lower the viscosity during glass melting and increase the glass transition temperature, which may increase the devitrification temperature. There is. However, if it exceeds 23%, the amount of Na diffusion after heat treatment may decrease.
  • Ca has an ion radius close to that of Na, it is likely to compete with the movement of Na in the glass, and the amount of Na diffusion is likely to be reduced.
  • Ba has a large ionic radius, it is likely that Na movement is hindered and the amount of Na diffusion is likely to be reduced.
  • Sr is considered to have both the properties of Ca and Ba. Therefore, 19% or less is preferable, 15% or less is more preferable, and 10% or less is more preferable.
  • the total amount of SrO and BaO is preferably 10% or less, more preferably 8% or less, further preferably 6% or less, and particularly preferably 4% or less.
  • Na 2 O is a component that contributes to improving the power generation efficiency of CIGS solar cells, and is an essential component. Further, since it has the effect of lowering the viscosity at the glass melting temperature and facilitating melting, it is contained in an amount of 2 to 11%. Na diffuses into the CIGS photoelectric conversion layer formed on the glass to increase power generation efficiency, but if the content is less than 2%, the amount of Na diffusion into the CIGS photoelectric conversion layer on the glass substrate becomes insufficient, The power generation efficiency may also be insufficient.
  • the content is preferably 2.5% or more, and more preferably 3% or more.
  • the content is particularly preferably 3.5% or more.
  • the content is preferably 10% or less, more preferably 9% or less, and even more preferably 8% or less.
  • the content is particularly preferably less than 7%.
  • K 2 O Since it has the same effect as Na 2 O, 2 to 21% is contained. However, if it exceeds 21%, the power generation efficiency decreases, that is, the diffusion of Na is inhibited, the amount of Na diffusion described later decreases, the glass transition temperature decreases, and the average thermal expansion coefficient may increase. It is preferably 4% or more, more preferably 5% or more, still more preferably 6% or more, and particularly preferably 8% or more. It is preferably 16% or less, and more preferably 12% or less.
  • Na 2 O and K 2 O In order to sufficiently reduce the viscosity at the glass melting temperature and to improve the power generation efficiency of the CIGS solar cell, the total content of Na 2 O and K 2 O is 8 to 22%. Preferably it is 10% or more, More preferably, it is 12% or more.
  • Tg is too low and the average thermal expansion coefficient may be too high.
  • Na 2 O / (CaO + SrO + BaO) When Na 2 O / (CaO + SrO + BaO) exceeds 1.2, the precipitation reaction of Na 2 SO 4 proceeds during the SO 2 treatment, while CaSO 4 , SrSO 4 , BaSO 4. As a result, the separation of Ca, Sr, and Ba on the surface of the glass substrate hardly occurs. Preferably it is 1.0 or less, More preferably, it is 0.9 or less, More preferably, it is 0.8 or less.
  • the lower limit of Na 2 O / (CaO + SrO + BaO) is 0.1. If Na 2 O / (CaO + SrO + BaO) is smaller than 0.1, the amount of Na 2 O becomes too small and the battery efficiency may be lowered. Preferably it is 0.15 or more, More preferably, it is 2 or more.
  • the glass substrate for the CIGS solar cell of the present invention is essentially composed of a matrix composition based on the following oxide-based mass percentage, SiO 2 53-72%, Al 2 O 3 1-15%, 0.5-9% MgO, CaO 0.1 to 11%, 0-11% SrO, BaO 0-11%, 2-11% Na 2 O, 2 to 21% of K 2 O, 0 to 10.5% of ZrO 2 MgO + CaO + SrO + BaO 4-25%, 2-23% of CaO + SrO + BaO, Na 2 O + K 2 O 8-22%, Na 2 O / (CaO + SrO + BaO) ⁇ 1.2, In Although, Above all, in the mass percentage display of the following oxide standards, 2-15% of CaO + SrO + BaO SrO + BaO 0-10%, Or a combination of 4 to 21% K 2 O 0.5 to 10.5% of ZrO 2 , 4-23% of CaO + SrO + BaO Or a combination of 4
  • the glass substrate for CIGS solar cell of the present invention consists essentially of the above mother composition, but may contain other components typically within 5% in total within the range not impairing the object of the present invention.
  • B 2 O 3 , ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, etc.
  • MoO 3 may contain P 2 O 5 or the like.
  • these raw materials may be added to the matrix composition raw material so that the glass contains SO 3 , F, Cl, SnO 2 in a total amount of 2% or less. Good.
  • the glass may contain ZrO 2 , Y 2 O 3 , La 2 O 3 , TiO 2 , SnO 2 in a total amount of 5% or less.
  • ZrO 2 , Y 2 O 3 , La 2 O 3 and TiO 2 contribute to the improvement of the Young's modulus of the glass.
  • the glass may contain a colorant such as Fe 2 O 3 in the glass.
  • the total content of such colorants is preferably 1% or less.
  • the glass substrate for a CIGS solar cell of the present invention considering the environmental burden, it is preferred not to contain As 2 O 3, Sb 2 O 3 substantially. In consideration of stable float forming, it is preferable that ZnO is not substantially contained.
  • the glass substrate for CIGS solar cell of the present invention is not limited to being formed by the float method, and may be manufactured by forming by the fusion method.
  • the glass substrate for CIGS solar cell of the present invention is used so that each raw material component of the glass substrate has the above composition, and similarly to the case of manufacturing a conventional glass substrate for solar cell, a melting / clarifying step and a molding step are performed. It is obtained by performing the SO 2 treatment shown below in the subsequent slow cooling step.
  • the method of manufacturing a glass substrate for a CIGS solar cell of the present invention in annealing step, it is important to perform SO 2 processing according to the present invention.
  • the composition of the glass substrate is specified in the present invention and the following SO 2 treatment is performed, the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside is 0.35 or less, and the heat treatment of Na on the glass substrate surface layer A CIGS solar cell glass substrate having a front-to-back ratio of 1.5 or more is obtained.
  • the conventional glass substrate manufacturing method in order to prevent glass surface scratches during glass conveyance in the slow cooling step, it is known to form a protective film by sulfate by blowing SO 2 gas.
  • the conventional SO 2 gas spraying conditions are the minimum required sulfate in consideration of the prevention of yellow coloration when the silver electrode for the display substrate is provided, the ease of washing the sulfate film, the prevention of corrosion of the equipment, etc. It was preferred to provide a membrane, that is, to perform the SO 2 treatment as mild as possible.
  • the glass surface temperature is 500 to 700 ° C.
  • the SO 2 concentration is 0.05 to 5 (volume)%
  • the treatment time is 1 so that the ratio of Ca + Sr + Ba between the surface layer of the glass substrate and the inside is 0.35 or less. It is preferable to perform the SO 2 treatment under a condition of ⁇ 10 minutes.
  • the glass substrate for CIGS solar cells of the present invention is an alkali glass substrate containing an alkali metal oxide (Na 2 O, K 2 O), SO 3 can be effectively used as a fining agent, Suitable for the float method and fusion method (down draw method) as the molding method.
  • an alkali metal oxide Na 2 O, K 2 O
  • a float method capable of easily and stably forming a large-area glass substrate with the enlargement of the solar cell is used. preferable.
  • molten glass obtained by melting raw materials is formed into a plate shape.
  • raw materials are prepared so that the obtained glass substrate has the above composition, the raw materials are continuously charged into a melting furnace, and heated to about 1450 to 1650 ° C. to obtain molten glass.
  • the molten glass is formed into a ribbon-like glass plate by applying, for example, a float process.
  • the washing method is not particularly limited, and examples include washing with water, washing with a detergent, and rubbing with a brush or the like while spraying a slurry containing cerium oxide.
  • an acidic detergent such as hydrochloric acid or sulfuric acid.
  • the glass substrate surface after washing is free from dirt and irregularities on the glass substrate surface due to deposits such as cerium oxide. If there are irregularities, irregularities on the surface of the film, film thickness deviations, pinholes in the film, and the like may occur during film formation of the electrode film and its underlying layer, and power generation efficiency may be reduced.
  • the unevenness is preferably 20 nm or less with a height difference.
  • the amount (atomic%) of Na in the surface layer of the glass substrate is preferably uniform throughout the glass substrate for CIGS solar cells. This is because if the amount of Na on the surface of the glass substrate is not uniform, a portion with low power generation efficiency is generated, and the power generation efficiency of the solar cell may be affected by the portion.
  • the glass substrate for CIGS solar cell of the present invention is also suitable as a glass substrate for CIGS solar cell and a cover glass.
  • the thickness of the glass substrate is preferably 3 mm or less, more preferably 2 mm or less.
  • the method for applying the CIGS photoelectric conversion layer to the glass substrate is not particularly limited.
  • the heating temperature when forming the photoelectric conversion layer can be set to 500 to 650 ° C.
  • the cover glass or the like is not particularly limited.
  • Other examples of the composition of the cover glass include soda lime glass.
  • the thickness of the cover glass is preferably 3 mm or less, more preferably 2 mm or less.
  • the method for assembling the cover glass on the glass substrate having the photoelectric conversion layer is not particularly limited. By using the glass substrate for CIGS solar cell of the present invention, when assembled by heating, the heating temperature can be 500 to 650 ° C.
  • the CIGS solar cell glass substrate of the present invention is used in combination with a CIGS solar cell glass substrate and a cover glass because the thermal expansion and the like during solar cell assembly do not occur because the average thermal expansion coefficients are equivalent.
  • the solar cell according to the present invention has a glass substrate, a cover glass, and a Cu—In—Ga—Se photoelectric conversion layer deposited between the glass substrate and the cover glass by vapor deposition, Of the glass substrate and the cover glass, at least the glass substrate is the glass substrate for a Cu—In—Ga—Se solar cell of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an example of an embodiment of a solar cell according to the present invention.
  • a solar cell (CIGS solar cell) 1 includes a glass substrate 5, a cover glass 19, and a CIGS layer 9 between the glass substrate 5 and the cover glass 19. It is preferable that the glass substrate 5 consists of the glass substrate for CIGS solar cells of this invention demonstrated above.
  • the solar cell 1 has the back electrode layer of Mo film which is the plus electrode 7 on the glass substrate 5, and has the photoelectric converting layer which is the CIGS layer 9 on it.
  • the composition of the CIGS layer can be exemplified by Cu (In 1-X Ga x ) Se 2 .
  • x represents the composition ratio of In and Ga, and 0 ⁇ x ⁇ 1.
  • a transparent conductive film 13 of ZnO or ITO is provided via a CdS (cadmium sulfide) or ZnS (zinc sulfide) layer as the buffer layer 11, and a negative electrode 15 is further provided thereon.
  • An extraction electrode such as an Al electrode (aluminum electrode) is provided.
  • An antireflection film may be provided at a necessary place between these layers.
  • an antireflection film 17 is provided between the transparent conductive film 13 and the negative electrode 15.
  • a cover glass 19 may be provided on the minus electrode 15, and if necessary, the minus electrode and the cover glass are sealed with resin or bonded with a transparent resin for adhesion.
  • the cover glass the glass substrate for CIGS solar cell of the present invention may be used.
  • the end portion of the photoelectric conversion layer or the end portion of the solar cell may be sealed.
  • a material for sealing the same material as the glass substrate for CIGS solar cells of this invention, other glass, and resin are mentioned, for example.
  • the raw materials of each component were prepared so that the compositions shown in Tables 1 to 5 were obtained.
  • sulfate was added to 0.4 parts by mass of the raw material in terms of SO 3 , and a platinum crucible was used. It melt
  • Tg glass transition temperature
  • Ca + Sr + Ba the glass transition temperature
  • Tg is a value measured using TMA, and was determined according to JIS R3103-3 (fiscal 2001).
  • Ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside The amount (atomic%) of Ca, Sr, and Ba at depths of 10, 20, 30, 40, and 5000 nm from the surface of the glass substrate was measured with an X-ray photoelectron spectrometer (ESCA5500, manufactured by ULVAC-PHI). Grinding from the glass substrate surface to 10 to 40 nm is sputter-etched with a C 60 ion beam, and grinding from the glass substrate surface to 5000 nm is ground to 4000 nm with a cerium oxide water slurry and then sputter-etched with a C 60 ion beam. did.
  • ESA5500 X-ray photoelectron spectrometer
  • Ratio before and after heat treatment of Na on glass substrate surface layer The amount of Na (atomic%) at depths of 10, 20, 30, and 40 from the surface of the glass substrate was measured with an X-ray photoelectron spectrometer (manufactured by ULVAC-PHI, ESCA5500). For grinding from the surface of the glass substrate to 10 to 40 nm, sputter etching was performed with a C 60 ion beam.
  • the glass substrate is heated to 600 ° C. at 10 ° C./min in an N 2 atmosphere (simulating anoxic state) in an electric furnace, held at 600 ° C. for 60 minutes, and then cooled to 2 ° C./min to room temperature. Slowly cooled.
  • the amount (atomic%) of Na at depths of 10, 20, 30, and 40 from the surface of the glass substrate was measured by the method described above.
  • the ratio of before and after heat treatment at 600 ° C. for 1 hour in an N 2 atmosphere with an average amount of Na (atomic%) between a depth of 10 to 40 nm from the surface of the glass substrate was determined.
  • Amount of Na diffused into the photoelectric conversion layer of CIGS The concentration of Na in the CIGS photoelectric conversion layer of the CIGS solar cell produced by the procedure described later was quantified by secondary ion mass spectrometry (SIMS).
  • a molybdenum film was formed on the glass substrate by sputtering.
  • the deposition conditions were a molybdenum film having a thickness of 500 to 1000 nm with the substrate temperature set to room temperature. Thereafter, a glass substrate with a molybdenum film was heated at 200 ° C. for 30 minutes using a multi-source deposition apparatus, and then a CIGS layer was formed by a three-stage method.
  • the film forming conditions were a substrate temperature of 400 to 600 ° C. and a film thickness of 1.8 ⁇ m or more. Specifically, the CIGS layer was formed by the three-step method according to the following procedure.
  • the substrate temperature was heated to about 400 ° C., and In, Ga, and Se were deposited at the same time. Thereafter, in the second stage, the substrate temperature was raised to 500 to 600 ° C., and Cu and Se were simultaneously deposited until the composition of the entire film became Cu excess. Further, as a third stage, In, Ga, and Se are co-deposited again so that the composition of the CIGS layer is finally In, Ga excess (Cu / (In + Ga) ratio ⁇ 1), and the film thickness is 1.8 ⁇ m or more. A film was formed.
  • a CdS layer was formed on the CIGS layer by a CBD (Chemical Bath Deposition) method.
  • the CdS layer was formed to a thickness of 50 to 100 nm using 0.015M cadmium sulfate, 1.5M thiourea, and 15M aqueous ammonia solution.
  • a ZnO and AZO layer was formed on the CdS layer by sputtering using a ZnO target and an AZO target (ZnO target containing 1.5 wt% Al 2 O 3 ).
  • a ZnO film having a thickness of about 100 nm and an AZO film having a thickness of about 200 nm were formed.
  • an aluminum electrode was formed on the AZO layer by a heating vapor deposition method. After that, using a pointed metal plate, the CIGS layer is scraped off, the molybdenum film is left, the cell is formed, and the lower electrode is manufactured.
  • the cell with a certain effective area (the area excluding the aluminum electrode is about 0.5 cm 2 ) Produced a CIGS solar cell sample in which four cells were arranged on both sides, for a total of eight cells.
  • the temperature of the battery was stabilized by holding for 60 seconds. Thereafter, the voltage was changed from ⁇ 1 V to +1 V at an interval of 0.015 V when the xenon lamp was not irradiated and when it was irradiated, and the current value was measured. The power generation efficiency was calculated from the current and voltage characteristics during irradiation.
  • the power generation efficiency was determined by the following formula (1) from the open circuit voltage (Voc), the short circuit current density (Jsc), and the fill factor (FF). The average value of power generation efficiency of 8 cells is shown in each table.
  • the open circuit voltage (Voc) is an output when the terminal is opened, and the short circuit current density (Jsc) is obtained by dividing the short circuit current (Isc), which is a current when the terminal is shorted, by the effective area.
  • the fill factor (FF) is the product of the voltage at the maximum output point (maximum voltage value (Vmax)) and the current at the maximum output point (maximum current value (Imax)), which is the point that gives the maximum output. (Voc) divided by the product of the short circuit current (Isc).
  • the residual amount of SO 3 in the glass was 100 to 500 ppm.
  • Tables 1 to 5 are calculated values. Specific calculation of power generation efficiency and Na diffusion amount was obtained as follows. The power generation efficiency was determined from a regression equation in which the ratio before and after heat treatment of Na on the surface of the glass substrate and the power generation efficiency were plotted. Further, the amount of Na diffusion was determined from a regression equation in which the ratio before and after heat treatment of Na and the power generation efficiency were plotted.
  • the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside is 0.35 or less, and Na of the glass substrate surface layer
  • the ratio before and after heat treatment is 1.5 or more, and the glass transition temperature Tg is high. Accordingly, both high power generation efficiency and high glass transition temperature can be achieved.
  • the glass of the example has an average coefficient of thermal expansion of 70 ⁇ 10 ⁇ 7 to 100 ⁇ 10 ⁇ 7 / ° C., when assembling the solar cell of the present invention (specifically, a glass having a CIGS photoelectric conversion layer) When the substrate and the cover glass are heated and bonded, the glass substrate is not easily deformed and stable power generation efficiency is easily obtained.
  • the glass of the comparative example (Example 3) has a large Na 2 O / (CaO + SrO + BaO) of 1.62, so it is SO 2 treated, but the ratio of Na before and after the heat treatment of Na on the glass substrate surface is 0.98. Since it is small, it is difficult to obtain power generation efficiency. Since the glass of the comparative examples (Examples 31 and 32) has a large Na 2 O / (CaO + SrO + BaO) of 1.62, it is SO 2 treated, but the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside is 0.36.
  • the glass of Comparative Examples (Examples 3, 31, and 32) has a high Na 2 O content of 13.1%, Tg is lower than 580 ° C., and the substrate is deformed during CIGS film formation. There is a risk of hindering battery production. Further, since the glass of the comparative examples (Examples 33 and 34) has an Na 2 O amount of 0.5% and is small, it is subjected to SO 2 treatment, but the amount of Na diffusion is small and the power generation efficiency is low.
  • the glass of Comparative Examples (Examples 4 to 5, 35 to 40, 42 to 46) not subjected to SO 2 treatment had compositions of each raw material within the scope of the present invention.
  • the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside is as large as 0.90 to 1.00, and the ratio of Na before and after the heat treatment of the glass substrate surface layer is 0.78 to 1. Since it is as small as 00, it is difficult to obtain power generation efficiency.
  • Na 2 O / (CaO + SrO + BaO) is as large as 1.62, and since no SO 2 treatment is performed, the ratio of Ca + Sr + Ba between the glass substrate surface layer and the inside is as large as 0.97, Since the ratio before and after the heat treatment of Na on the surface of the glass substrate is as small as 0.67, it is difficult to obtain power generation efficiency. Further, since the content of Na 2 O is as large as 13.1%, Tg becomes lower than 580 ° C., and the substrate may be deformed during the CIGS film formation, which may hinder battery manufacture.
  • the ratio of Na before and after the heat treatment of the glass substrate surface layer is as small as 0.66, and the amount of Na 2 O is as small as 0.5%.
  • the amount of diffusion is small and the power generation efficiency is low.
  • the vapor-deposited Cu—In—Ga—Se solar cell glass substrate of the present invention is suitable as a vapor-deposited CIGS solar cell glass substrate and cover glass, but is used for other solar cell substrates and cover glasses. You can also In addition, by using the vapor deposited Cu—In—Ga—Se solar cell glass substrate of the present invention, a solar cell with high power generation efficiency can be provided. It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-167026 filed on July 26, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

 ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.17以下であって、ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN2 雰囲気下600℃1時間の熱処理前後比が1.5以上であり、ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、SiO2 53~72%、Al23 1~15%、MgO 0.5~9%、CaO 0.1~11%、SrO 0~11%、BaO 0~11%、Na2O 2~11%、K2O 4~21%、ZrO2 0.5~10.5%、MgO+CaO+SrO+BaO 4~25%、CaO+SrO+BaO 4~23%、Na2O+K2O 8~22%、Na2O/(CaO+SrO+BaO)≦1.2、含有し、ガラス転移点温度が580℃以上、平均熱膨張係数が70×10-7~100×10-7℃以下であるCIGS太陽電池用ガラス基板の提供。

Description

Cu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池
 本発明は、ガラス板の間に光電変換層が形成されている太陽電池用ガラス基板及びそれを用いた太陽電池に関する。より詳しくは、ガラス板として典型的にはガラス基板とカバーガラスとを有し、ガラス基板とカバーガラスとの間に、11族、13族、16族元素を主成分とした光電変換層が形成されているCu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池に関するものである。
 カルコパイライト結晶構造を持つ11-13族、11-16族化合物半導体や立方晶系あるいは六方晶系の12-16族化合物半導体は、可視から近赤外の波長範囲の光に対して大きな吸収係数を有している。そのために、高効率薄膜太陽電池の材料として期待されている。代表的な例としてCu(In,Ga)Se(以下、「CIGS」または「Cu-In-Ga-Se」とも記述する。)やCdTeがあげられる。
 CIGS薄膜太陽電池では、安価であることと熱膨張係数がCIGS化合物半導体のそれに近いこととから、ソーダライムガラスが基板として用いられ、太陽電池が得られている。
 また、効率の良い太陽電池を得るため、高温の熱処理温度に耐えうるガラス材料の提案もされている(特許文献1参照)。
日本特開平11-135819号公報
 ガラス基板にはCIGS光電変換層(以下、「CIGS層」ともいう)が形成される。特許文献1に開示されているように、発電効率の良い太陽電池を作製するにはより高温での熱処理が好ましく、ガラス基板にはそれに耐えうることが要求される。特許文献1では比較的徐冷点の高いガラス組成物が提案されているが、特許文献1に記載された発明が高い発電効率を有するとは必ずしもいえない。
 本発明者等はガラス基板のアルカリを所定範囲で増やすことによって発電効率を高くすることができることを発見したが、アルカリの増量はガラス転移点温度(Tg)の低下を招くという問題があった。
 このようにCIGS太陽電池に使用されるガラス基板において、高い発電効率と高いガラス転移点温度とを両立させることは困難であるという問題があった。
 本発明は、特に高い発電効率と高いガラス転移点温度とを両立させるCu-In-Ga-Se太陽電池用ガラス基板を提供することを目的とする。
 本発明は以下の構成を要旨とするものである。
(1)ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.35以下であって、
ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が1.5以上であり、
ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
SiOを53~72%、
Alを1~15%、
MgOを0.5~9%、
CaOを0.1~11%、
SrOを0~11%、
BaOを0~11%、
NaOを2~11%、
Oを2~21%、
ZrOを0~10.5%、
MgO+CaO+SrO+BaOを4~25%、
CaO+SrO+BaOを2~23%、
NaO+KOを8~22%、
NaO/(CaO+SrO+BaO)≦1.2、
含有し、ガラス転移点温度が580℃以上、平均熱膨張係数が70×10-7~100×10-7/℃である蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
(2)前記ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.17以下であって、
 ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
Oを4~21%、
ZrOを0.5~10.5%、
CaO+SrO+BaOを4~23%、
含有する上記(1)に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
(3)前記ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.05以下であって、
 前記ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が2.0以上であり、
ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
CaO+SrO+BaOを4~15%、
SrO+BaOを0~8%、
含有する上記(1)又は(2)に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
(4)前記ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が2以上である上記(1)に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
(5)前記ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.17以下であって、
前記ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が2.4以上であり、
ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
CaO+SrO+BaOを2~15%
SrO+BaOを0~10%、
含有する上記(1)又は(2)に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
(6)ガラス基板と、カバーガラスと、前記ガラス基板と前記カバーガラスとの間に配置される蒸着成膜されたCu-In-Ga-Seの光電変換層と、を有し、
 前記ガラス基板と前記カバーガラスのうち少なくとも前記ガラス基板が、上記(1)~(5)のいずれかに記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板である太陽電池。
 本発明は、ガラス基板と、カバーガラスと、上記ガラス基板とカバーガラスとの間に配置される蒸着成膜されたCu-In-Ga-Seの光電変換層を有する太陽電池に好適に用いられる太陽電池用ガラス基板であり、上記ガラス基板及び上記カバーガラスのうち、少なくともガラス基板が本発明のCu-In-Ga-Se太陽電池用ガラス基板として用いることができる。
 本発明のCu-In-Ga-Se太陽電池用ガラス基板は、高い発電効率と高いガラス転移点温度とを両立させることができる。本発明のCIGS太陽電池用ガラス基板を用いることで、低コストで高効率な太陽電池を提供できる。
 本願の開示は、2010年7月26日に出願された特願2010-167026号に記載の主題と関連しており、それらの開示内容は引用によりここに援用される。
図1は本発明の太陽電池の実施形態の一例を模式的に表す断面図である。
 以下、本発明のCu-In-Ga-Se太陽電池用ガラス基板について説明する。
 本発明のCu-In-Ga-Se太陽電池用ガラス基板は、ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)(以下、「ガラス基板表層のCa+Sr+Baの量」ともいう)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)(以下、「ガラス基板内部のCa+Sr+Baの量」ともいう)と、の比(以下、「ガラス基板表層と内部とのCa+Sr+Baの比」ともいう)が0.35以下であって、ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比(以下、「ガラス基板表層のNaの熱処理前後比」ともいう)が1.5以上であり、
ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
SiOを53~72%、
Alを1~15%、
MgOを0.5~9%、
CaOを0.1~11%、
SrOを0~11%、
BaOを0~11%、
NaOを2~11%、
Oを2~21%、
ZrOを0~10.5%、
MgO+CaO+SrO+BaOを4~25%、
CaO+SrO+BaOを2~23%、
NaO+KOを8~22%、
NaO/(CaO+SrO+BaO)≦1.2、
含有し、ガラス転移点温度が580℃以上、平均熱膨張係数が70×10-7~100×10-7/℃である蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板である。
 Cu-In-Ga-Se太陽電池用ガラス基板は、蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板であるのが好ましい。
 蒸着成膜Cu-In-Ga-Seとは、太陽電池の光電変換層であるCIGS層の少なくとも一部が蒸着法により成膜されたものをいう。
 本発明のCIGS太陽電池用ガラス基板は、上記ガラス基板表層と内部とのCa+Sr+Baの比が0.35以下、好ましくは0.3以下、より好ましくは0.17以下、さらに好ましくは0.13以下、特に好ましくは、0.05以下である。
 なお、上記ガラス基板表層と内部とのCa+Sr+Baの比は、ガラス基板表層のCa+Sr+Baの量とガラス基板内部のCa+Sr+Baの量とを相対比として比較できる。つまり、上記ガラス基板表層と内部とのCa+Sr+Baの比が0.35以下の場合、ガラス基板表層のCa+Sr+Baの量が、ガラス基板内部のCa+Sr+Baの量よりも少ない状態、具体的には、Ca、Sr及びBaの原子がガラス基板表面から抜けている状態であることを意味する。
 Ca、Sr及びBaの原子がガラス基板表面から抜けている状態(離脱状態)により、本発明のCIGS太陽電池用ガラス基板を蒸着成膜CIGS太陽電池に用いた際に、太陽電池製造工程における熱処理工程(一般的には、無酸素雰囲気下約600℃1時間以上の熱処理条件)において、太陽電池の光電変換層であるCIGSの少なくとも一部が蒸着法により成膜されるときに、ガラス基板からCIGSの光電変換層へのNa拡散量が増え、それにより太陽電池の発電効率が向上することを本発明者等は見出した。
 これは、ガラス基板表層において、Naの移動を妨げるCa、Sr及びBaの原子が離脱していると、Naがガラス基板内部から表層へ移動しやすくなり、さらにガラス基板表面にCIGS光電変換層が設けられていると、ガラス基板表層から光電変換層へNaが拡散していくものと考えられるからである。
 本発明において、ガラス基板表層のCa+Sr+Baの量またはNaの量(原子%)を「ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)」または「ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)」で規定したのは、この領域においてのCa、Sr、Baが離脱していると、上記熱処理後のガラス基板表層へのNaの拡散が顕著となるからである。なお、0~10nm未満は外気による組成変動の影響を考慮して測定対象外とした。
 また、ガラス基板内部のCa+Sr+Baの量を「ガラス基板表面からの深さ5000nmの合量」で規定したのは、Ca、Sr、Baの離脱がほとんど起きていない部分であるからである。
 上記ガラス基板表層と内部とのCa+Sr+Baの比が0.35以下であるガラス基板とするには、ガラス基板の組成が本発明で特定する範囲となるように各原料成分を用い、従来の太陽電池用ガラス基板を製造する際と同様に、溶解・清澄工程及び成形工程を実施し、その後の徐冷工程で本発明に係るSO処理を行う。本発明のCIGS太陽電池用ガラス基板の組成(各原料成分)及び本発明に係るSO処理について、詳しくは後述する。
 また、本発明のCIGS太陽電池用ガラス基板は、上記ガラス基板表層のNaの熱処理前後比が1.5以上であることが必要であり、2以上であることが好ましい。これにより、CIGS太陽電池製造工程における熱処理中に、ガラス基板からCIGSの光電変換層へのNa拡散量が増え、CIGS太陽電池に用いた場合、太陽電池の発電効率が高くなることを本発明者等は見出した。上記ガラス基板表層のNaの熱処理前後比は、より好ましくは2.4以上、さらに好ましくは2.5以上、特に好ましくは2.7以上である。上記ガラス基板表層のNaの熱処理前後比の上限値は5である。上記ガラス基板表層のNaの熱処理前後比が5より大きいと、前記熱処理前のガラス基板表層のNaが少なくなり、その結果ガラス基板からCIGSの光電変換層へのNa拡散量が減少するため電池効率が低下するおそれがある。好ましくは4.5以下、より好ましくは4以下である。
 ガラス基板の組成を本発明で特定したものとし、且つ上記ガラス基板表層と内部とのCa+Sr+Baの比が0.35以下、好ましくは0.3以下、より好ましくは0.17以下、さらに好ましくは0.13以下、特に好ましくは0.05以下であると、容易にガラス基板表層のNaの熱処理前後比を1.5以上、好ましくは2以上、より好ましくは2.4以上、さらに好ましくは2.5以上、特に好ましくは2.7以上とすることができる。
 本発明のCIGS太陽電池用ガラス基板のガラス転移点温度(Tg)は580℃以上である。本発明のCIGS太陽電池用ガラス基板のガラス転移点温度はソーダライムガラスのガラス転移点温度より高い。本発明のCIGS太陽電池用ガラス基板のガラス転移点温度(Tg)は、高温における光電変換層の形成を担保するため600℃以上であるのが好ましく、610℃以上であるのがより好ましく、620℃以上であるのがさらに好ましく、630℃以上であるのが特に好ましい。ガラス転移点温度の上限値は750℃である。ガラス転移点温度が750℃以下であれば、溶融時の粘性を適度に低く抑えられるため製造しやすいことから好ましい。より好ましくは700℃以下、さらに好ましくは680℃以下である。
 本発明のCIGS太陽電池用ガラス基板の50~350℃における平均熱膨張係数は70×10-7~100×10-7/℃である。70×10-7/℃未満または100×10-7/℃超ではCIGS層等との熱膨張差が大きくなりすぎ、剥がれ等の欠点が生じやすくなる。さらに、太陽電池を組立てる際(具体的にはCIGSの光電変換層を有するガラス基板とカバーガラスとを加熱して貼りあわせる際)ガラス基板が変形し易くなる恐れがある。好ましくは95×10-7/℃以下、より好ましくは90×10-7/℃以下である。
 また、好ましくは73×10-7/℃以上、より好ましくは75×10-7/℃以上、さらに好ましくは80×10-7/℃以上である。
 本発明のCIGS太陽電池用ガラス基板において、各原料成分を上記組成に限定する理由は以下のとおりである。
 SiO:ガラスの骨格を形成する成分で、53質量%(以下単に%と記載する)未満ではガラスの耐熱性及び化学的耐久性が低下し、平均熱膨張係数が増大するおそれがある。好ましくは55%以上であり、より好ましくは57%以上であり、さらに好ましくは59%以上である。
 しかし、72%超ではガラスの高温粘度が上昇し、溶解性が悪化する問題が生じるおそれがある。好ましくは69%以下であり、より好ましくは65%以下であり、さらに好ましくは63%以下である。
 Al:ガラス転移点温度を上げ、耐候性(ソラリゼーション)、耐熱性及び化学的耐久性を向上し、ヤング率を上げる。その含有量が1%未満だとガラス転移点温度が低下するおそれがある。また平均熱膨張係数が増大するおそれがある。好ましくは4%以上であり、より好ましくは6%以上であり、さらに好ましくは8%以上である。
 しかし、15%超では、ガラスの高温粘度が上昇し、溶解性が悪くなるおそれがある。また、失透温度が上昇し、成形性が悪くなるおそれがある。また発電効率が低下、すなわち後述するNa拡散量が低下するおそれがある。好ましくは14%以下であり、より好ましくは13%以下であり、さらに好ましくは12%以下である。
 Bは、溶解性を向上させる等のために2%まで含有してもよい。含有量が2%を超えるとガラス転移点温度が下がる、または平均熱膨張係数が小さくなり、CIGS層を形成するプロセスにとって好ましくない。より好ましくは含有量が1%以下である。含有量が0.5%以下であると特に好ましく、さらに好ましくは実質的に含有しない。
 なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。
 MgO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させるが、0.5%未満だとガラスの高温粘度が上昇し溶解性が悪化するおそれがある。好ましくは1.5%以上であり、より好ましくは2.5%以上であり、さらに好ましくは3%以上である。
 しかし、9%超では平均熱膨張係数が増大するおそれがある。また失透温度が上昇するおそれがある。好ましくは8%以下であり、より好ましくは7%以下であり、さらに好ましくは6.5%以下である。
 CaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので0.1%以上で含有させることができる。好ましくは2%以上であり、より好ましくは4%以上であり、さらに好ましくは4.5%以上である。しかし、11%超ではガラスの平均熱膨張係数が増大するおそれがある。また発電効率が低下、すなわち後述するNa拡散量が低下するおそれがある。好ましくは8%以下であり、より好ましくは7.5%以下であり、さらに好ましくは7%以下である。
 SrO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、11%超含有すると発電効率が低下、すなわち後述するNa拡散量が低下し、またガラス基板の平均熱膨張係数が増大するおそれがある。8%以下が好ましく、6%以下がより好ましく、3%以下であることがさらに好ましい。また、好ましくは0.5%以上、より好ましくは1%以上である。
 BaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、11%超含有すると発電効率が低下、すなわち後述するNa拡散量が低下し、またガラス基板の平均熱膨張係数が大きくなるおそれがある。また比重も大きくなる。5%以下が好ましく、3%以下であることがより好ましく、さらに好ましくは0.5%以下であり、特に好ましくは実質的に含有しない。
 ZrO:ガラスの溶解時の粘性を下げ、溶解を促進し、Tgを上げる効果があるので含有させてもよい。好ましくは0.5%以上で含有させる。より好ましくは1%以上であり、さらに好ましくは1.5%以上であり、特に好ましくは2%以上である。しかし、10.5%超含有すると発電効率が低下、すなわち後述するNa拡散量が低下し、失透温度が上昇し、またガラス基板の平均熱膨張係数が増大するおそれがある。8%以下が好ましく、5%以下であることがより好ましい。
 MgO、CaO、SrO及びBaOは、ガラスの溶解時の粘性を下げ、溶解を促進させる点から合量で4~25%含有する。しかし、合量で25%超では平均熱膨張係数が大きくなり、失透温度が上昇するおそれがある。6%以上が好ましく、9%以上がより好ましい。また、21%以下が好ましく、20%以下がより好ましく、18%以下がさらに好ましく、15%以下が特に好ましい。
 CaO、SrO及びBaOは、SO処理後のガラス基板表層と内部とのCa+Sr+Baの比を0.35以下にする点から、2%以上含有する。好ましくは4%以上含有し、より好ましくは6%以上含有する。CaO、SrO及びBaOの合量が2%より小さいと、ガラス溶解時の粘性を下げ、かつガラス転移温度を高くするためにはMgOを多く添加しなければならなくなり、失透温度が上昇するおそれがある。しかし23%超では、熱処理後のNa拡散量が低下するおそれがある。すなわちCaはNaとイオン半径が近いため、ガラス中でのNaの移動と競合しやすく、Naの拡散量を低下させやすいと考えられる。またBaはイオン半径が大きいためNaの移動を阻害しやすく、Naの拡散量を低下させやすいと考えられる。Srは、上記CaとBaの両方の性質も持つものと考えられる。従って、19%以下が好ましく、15%以下がより好ましく、10%以下がさらに好ましい。
 SrO及びBaOは、SO処理の際に、硫酸塩膜(SrSO、BaSO)を生成するが、これらは他の硫酸塩膜(MgSO、CaSO、NaSO、KSO)と比較し水に溶けにくいため、硫酸塩膜を洗浄する際に硫酸塩膜が除去されにくい。したがって、SrO及びBaOの合量は10%以下が好ましく、8%以下がより好ましく、6%以下がさらに好ましく、4%以下であることが特に好ましい。
 NaO:NaOはCIGSの太陽電池の発電効率向上に寄与するための成分であり、必須成分である。また、ガラス溶解温度での粘性を下げ、溶解しやすくする効果があるので2~11%含有させる。Naはガラス上に構成されたCIGSの光電変換層中に拡散し、発電効率を高めるが、含有量が2%未満ではガラス基板上のCIGSの光電変換層へのNa拡散量が不十分となり、発電効率も不十分となるおそれがある。含有量が2.5%以上であると好ましく、含有量が3%以上であるとより好ましい。含有量が3.5%以上であると特に好ましい。
 NaO含有量が11%を超えるとガラス転移点温度が低下し、平均熱膨張係数が大きくなり、または化学的耐久性が劣化する。含有量が10%以下であると好ましく、含有量が9%以下であるとより好ましく、8%以下であるとさらに好ましい。含有量が7%未満であると特に好ましい。
 KO:NaOと同様の効果があるため、2~21%含有させる。しかし、21%超では発電効率が低下、すなわちNaの拡散が阻害され、後述するNa拡散量が低下し、また、ガラス転移点温度が低下し、平均熱膨張係数が大きくなるおそれがある。4%以上であるのが好ましく、5%以上であるのがより好ましく、6%以上であるのがさらに好ましく、8%以上であるのが特に好ましい。16%以下が好ましく、12%以下であることがより好ましい。
 NaO及びKO:ガラス溶解温度での粘性を十分に下げるために、またCIGS太陽電池の発電効率向上のために、NaO及びKOの合量の含有量は、8~22%とする。好ましくは10%以上であり、より好ましくは12%以上である。
 しかし、22%超ではTgが下がりすぎ、平均熱膨張係数が上がりすぎるおそれがある。好ましくは20%以下であり、より好ましくは17%以下である。
 NaO/(CaO+SrO+BaO):NaO/(CaO+SrO+BaO)が1.2超であると、SO処理の際に、NaSOの析出反応が進む一方、CaSO、SrSO、BaSOの析出反応が進み難くなり、その結果、ガラス基板表層のCa、Sr、Baの離脱が起こり難くなる。好ましくは1.0以下、より好ましくは0.9以下、さらに好ましくは0.8以下である。NaO/(CaO+SrO+BaO)の下限値は0.1である。NaO/(CaO+SrO+BaO)が0.1より小さいと、NaO量が少なくなりすぎて電池効率が低下するおそれがある。好ましくは0.15以上、より好ましくは2以上である。
 本発明のCIGS太陽電池用ガラス基板は本質的に母組成は、下記酸化物基準の質量百分率表示で、
SiOを53~72%、
Alを1~15%、
MgOを0.5~9%、
CaOを0.1~11%、
SrOを0~11%、
BaOを0~11%、
NaOを2~11%、
Oを2~21%、
ZrOを0~10.5%、
MgO+CaO+SrO+BaOを4~25%、
CaO+SrO+BaOを2~23%、
NaO+KOを8~22%、
NaO/(CaO+SrO+BaO)≦1.2、
であるが、
なかでも、下記酸化物基準の質量百分率表示で、
CaO+SrO+BaOを2~15%
SrO+BaOを0~10%、
の組み合わせ、または
2Oを4~21%、
ZrO2を0.5~10.5%、
CaO+SrO+BaOを4~23%
の組み合わせ、または、
CaO+SrO+BaOを4~15%、
SrO+BaOを0~8%
の組み合わせが好ましい。
 本発明のCIGS太陽電池用ガラス基板は本質的に上記母組成からなるが、本発明の目的を損なわない範囲でその他の成分を、典型的には合計で5%以下含有してもよい。たとえば、耐候性、溶解性、失透性、紫外線遮蔽等の改善を目的に、B、ZnO、Li2O、WO3、Nb25、V25、Bi23、MoO3、P25等を含有してもよい。
 また、ガラスの溶解性、清澄性を改善するため、ガラス中にSO3、F、Cl、SnO2を合量で2%以下含有するように、これらの原料を母組成原料に添加してもよい。
 また、ガラスの化学的耐久性向上のため、ガラス中にZrO2、Y23、La23、TiO2、SnO2を合量で5%以下含有させてもよい。これらのうちY23、La23及びTiO2は、ガラスのヤング率向上にも寄与する。
 また、ガラスの色調を調整するため、ガラス中にFe23等の着色剤を含有してもよい。このような着色剤の含有量は、合量で1%以下が好ましい。
 また、本発明のCIGS太陽電池用ガラス基板は、環境負荷を考慮すると、As23、Sb23を実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。しかし、本発明のCIGS太陽電池用ガラス基板は、フロート法による成形に限らず、フュージョン法による成形により製造してもよい。
 本発明のCIGS太陽電池用ガラス基板の製造方法について説明する。
 本発明のCIGS太陽電池用ガラス基板は、ガラス基板の各原料成分が上記組成となるように用いて、従来の太陽電池用ガラス基板を製造する際と同様に、溶解・清澄工程、成形工程を実施して、その後の徐冷工程において下記に示すSO処理することで、得られる。
 本発明のCIGS太陽電池用ガラス基板の製造方法において、徐冷工程で、本発明に係るSO処理を行うことが重要である。ガラス基板の組成を本発明で特定したものとし、下記SO処理を行うことにより、上記ガラス基板表層と内部とのCa+Sr+Baの比が0.35以下であって、上記ガラス基板表層のNaの熱処理前後比が1.5以上であるCIGS太陽電池用ガラス基板が得られる。
 以下、本発明に係るSO処理について説明する。
 従来のガラス基板製造方法において、徐冷工程でのガラス搬送中のガラス表面キズを防ぐために、SOガスを吹き付けて硫酸塩による保護膜を形成することが知られている。しかし、従来のSOガスの吹き付け条件は、ディスプレイ基板用銀電極を設ける際の黄色発色防止、硫酸塩膜の洗浄の容易性、設備の腐食防止等を考慮して、必要最小限の硫酸塩膜を設けること、すなわち、できるだけ軽度なSO処理を行うことが好ましかった。
 しかし、本発明では、ガラス基板表層と内部とのCa+Sr+Baの比が0.35以下となるように、ガラス表面温度500~700℃、SO濃度0.05~5(体積)%、処理時間1~10分の条件でSO処理を行うことが好ましい。
 SO処理は、ガラス表面温度が高いほど、SOガス濃度が高いほど、SO処理時間が長いほど、また、徐冷炉の密閉性が高いほど、ガラス基板表層と内部とのCa+Sr+Baの比を容易に小さくすることができる。なお、徐冷炉内でSO処理しなくても、徐冷後のガラスを再加熱してSO処理してもよい。
 なお、本発明のCIGS太陽電池用ガラス基板は、アルカリ金属酸化物(NaO、KO)を含有するアルカリガラス基板であるため、清澄剤としてSOを効果的に用いることができ、成形方法としてフロート法及びフュージョン法(ダウンドロー法)に適している。
 太陽電池用のガラス基板の製造工程において、ガラスを板状に成形する方法としては、太陽電池の大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが好ましい。
 本発明のCIGS太陽電池用ガラス基板の製造方法の好ましい態様について説明する。
 初めに、原料を溶解して得た溶融ガラスを板状に成形する。例えば、得られるガラス基板が上記組成となるように原料を調製し、上記原料を溶解炉に連続的に投入し、1450~1650℃程度に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状のガラス板に成形する。
 次に、リボン状のガラス板をフロート成形炉から引出した後に、徐冷炉において室温状態まで冷却する際にSO処理を行い、その後硫酸塩等の膜を洗浄除去し、切断後、CIGS太陽電池用ガラス基板を得る。
 太陽電池の製造工程において、ガラス基板表面にMo等の電極膜やその下地層(例えばSiO等)等を成膜する際、ガラス基板表面が汚れていると正常に成膜できないおそれがある。そのため、ガラス基板を洗浄することが好ましい。
 洗浄の方法は特には限定されないが、水による洗浄や洗浄剤による洗浄や酸化セリウムを含有したスラリーを散布しながらブラシ等でこする洗浄等が例示される。酸化セリウム含有のスラリーで洗浄した場合は、その後に塩酸や硫酸等の酸性洗浄剤等を用いて洗浄することが好ましい。
 洗浄後のガラス基板表面には、汚れや上記酸化セリウム等の付着物によるガラス基板表面の凹凸等がないことが好ましい。凹凸があると、上記電極膜やその下地層等の成膜の際に、膜表面の凹凸や膜厚偏差や膜のピンホール等が生じ、発電効率が低下するおそれがあるためである。凹凸は高低差で20nm以下が好ましい。
 ガラス基板表層のNaの量(原子%)は、CIGS太陽電池用ガラス基板の全域において均一であることが好ましい。ガラス基板表層のNaの量が均一でないと、発電効率が低い部分が生じてしまうことになり、その部分に影響されて、太陽電池の発電効率が低下してしまうおそれがあるためである。
 本発明のCIGS太陽電池用ガラス基板は、CIGS太陽電池用のガラス基板、またカバーガラスとしても好適である。
 本発明のCIGS太陽電池用ガラス基板をガラス基板に適用する場合、ガラス基板の厚さは3mm以下とするのが好ましく、より好ましくは2mm以下である。またガラス基板にCIGSの光電変換層を付与する方法は特に制限されない。本発明のCIGS太陽電池用ガラス基板を用いることで、光電変換層を形成する際の加熱温度を500~650℃とすることができる。
 本発明のCIGS太陽電池用ガラス基板をガラス基板のみに使用する場合、カバーガラス等は特に制限されない。カバーガラスの組成の他の例は、ソーダライムガラス等が挙げられる。
 本発明のCIGS太陽電池用ガラス基板をカバーガラスとして使用する場合、カバーガラスの厚さは3mm以下とするのが好ましく、より好ましくは2mm以下である。また光電変換層を有するガラス基板にカバーガラスを組立てる方法は特に制限されない。本発明のCIGS太陽電池用ガラス基板を用いることで、加熱して組立てる場合その加熱温度を500~650℃とすることができる。
 本発明のCIGS太陽電池用ガラス基板をCIGSの太陽電池用のガラス基板及びカバーガラスに併用すると、平均熱膨張係数が同等であるため太陽電池組立時の熱変形等が発生せず好ましい。
 次に、本発明に係る太陽電池について説明する。
 本発明に係る太陽電池は、ガラス基板と、カバーガラスと、上記ガラス基板と上記カバーガラスとの間に配置される蒸着成膜されたCu-In-Ga-Seの光電変換層を有し、上記ガラス基板と上記カバーガラスのうち少なくとも上記ガラス基板が、本発明のCu-In-Ga-Se太陽電池用ガラス基板である。
 以下添付の図面を使用して本発明に係る太陽電池を詳細に説明する。なお本発明は添付の図面に限定されない。
 図1は本発明に係る太陽電池の実施形態の一例を模式的に表す断面図である。
 図1において、本発明に係る太陽電池(CIGS太陽電池)1は、ガラス基板5、カバーガラス19、及びガラス基板5とカバーガラス19との間にCIGS層9を有する。ガラス基板5は、上記で説明した本発明のCIGS太陽電池用ガラス基板からなるのが好ましい。太陽電池1は、ガラス基板5上にプラス電極7であるMo膜の裏面電極層を有し、その上にCIGS層9である光電変換層を有する。CIGS層の組成はCu(In1-XGax)Se2が例示できる。xはInとGaの組成比を示すもので0<x<1である。
 CIGS層9上には、バッファ層11としてのCdS(硫化カドミウム)またはZnS(亜鉛硫化物)層を介して、ZnOまたはITOの透明導電膜13を有し、さらにその上にマイナス電極15であるAl電極(アルミニウム電極)等の取出し電極を有する。これらの層の間の必要な場所には反射防止膜を設けてもよい。図1においては、透明導電膜13とマイナス電極15との間に反射防止膜17が設けられている。
 またマイナス電極15上にカバーガラス19を設けてもよく、必要な場合はマイナス電極とカバーガラスとの間は、樹脂封止したり接着用の透明樹脂で接着される。カバーガラスは、本発明のCIGS太陽電池用ガラス基板を用いてもよい。
 本発明において、光電変換層の端部または太陽電池の端部は封止されていてもよい。封止するための材料としては、例えば本発明のCIGS太陽電池用ガラス基板と同じ材料、そのほかのガラス、樹脂が挙げられる。
 なお添付の図面に示す太陽電池の各層の厚さは図面に限定されない。
 以下、実施例及び製造例により本発明をさらに詳しく説明するが、本発明はこれら実施例及び製造例に限定されない。
 本発明のCIGS太陽電池用ガラス基板の実施例(例1、2、7~30)及び比較例(例3~6、31~46)を示す。
 表1~5で表示した組成になるように各成分の原料を調合し、該ガラス100質量部に対し、硫酸塩をSO換算で0.4質量部原料に添加し、白金坩堝を用いて1600℃の温度で3時間加熱し溶解した。溶解にあたっては、白金スターラーを挿入し1時間攪拌し、ガラスの均質化を行った。次いで溶融ガラスを流し出し、板状に成形後冷却した。その後、30×30×1.1mmに研削加工し、30×30の両面を鏡面加工し、洗浄した。
 その後、例1~3、7~34のガラス基板について、上記フロート成形炉からの引出し及び徐冷炉での徐冷を模擬して、電気炉内で、下記に示すSO処理条件のいずれかでSO処理後、電気炉から取出して室温まで冷却した。なお、例4~6、35~46のガラス基板は、SO処理を行っていない。
(SO処理条件A)
温度:600℃
SO濃度:2.5体積%
処理時間:5分
(SO処理条件B)
温度:580℃
SO濃度:2.5体積%
処理時間:5分
(SO処理条件C)
温度:600℃
SO濃度:0.2体積%
処理時間:10分
(SO処理条件D)
温度:650℃
SO濃度:0.5体積%
処理時間:5分
(SO処理条件E)
温度:550℃
SO濃度:2.5体積%
処理時間:5分
(SO処理条件F)
温度:600℃
SO濃度:0.5体積%
処理時間:5分
(SO処理条件G)
温度:600℃
SO濃度:0.2体積%
処理時間:5分
(SO処理条件H)
温度:600℃
SO濃度:2.5体積%
処理時間:10分
(SO処理条件I)
温度:600℃
SO濃度:2.5体積%
処理時間:5分
 こうして得られたガラス基板の平均熱膨張係数(単位:×10-7/℃)、ガラス転移点温度(Tg)(単位:℃)、ガラス基板表層と内部とのCa+Sr+Baの比、ガラス基板表層のNaの熱処理前後比を測定し、下記表1~表5に示した。以下に各物性の測定方法を示す。
(1)Tg:TgはTMAを用いて測定した値であり、JIS R3103-3(2001年度)により求めた。
(2)50~350℃の平均熱膨張係数:示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)より求めた。
(3)ガラス基板表層と内部とのCa+Sr+Baの比:
 ガラス基板表面からの深さ10、20、30、40、5000nmにおけるCa、Sr、Baの量(原子%)をX線光電子分光装置(アルバック・ファイ社製、ESCA5500)により測定した。ガラス基板表面から10~40nmまでの研削は、C60イオンビームによりスパッタエッチングし、ガラス基板表面から5000nmまでの研削は、4000nmまで酸化セリウムの水スラリーで研削した後、C60イオンビームによりスパッタエッチングした。
 ガラス基板表面からの深さ10、20、30、40におけるCa、Sr及びBaの平均合量(原子%)とガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)との比を求めた。
(4)ガラス基板表層のNaの熱処理前後比:
 ガラス基板表面からの深さ10、20、30、40におけるNaの量(原子%)をX線光電子分光装置(アルバック・ファイ社製、ESCA5500)により測定した。ガラス基板表面から10~40nmまでの研削は、C60イオンビームによりスパッタエッチングした。
 その後、ガラス基板を電気炉でN雰囲気中(無酸素状態を模擬)で毎分10℃で600℃まで昇温し、600℃で60分間保持後、毎分2℃で降温して室温まで徐冷した。
 その後、当該ガラス基板表面からの深さ10、20、30、40におけるNaの量(原子%)を上述の方法で測定した。
 ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比を求めた。
(5)発電効率:上記で得られた例1~46の太陽電池用ガラス基板を用いて、後述する手順で作製したCIGS太陽電池サンプルを、後述の手順にて測定した。
(6)CIGSの光電変換層へのNa拡散量:後述する手順で作製したCIGS太陽電池のCIGSの光電変換層中のNa濃度を、二次イオン質量分析法(SIMS)にて定量した。
[CIGS太陽電池サンプルの作製方法]
 ガラス基板上に、スパッタにてモリブデン膜を成膜した。成膜条件は基板温度を室温として、膜厚500~1000nmのモリブデン膜を成膜した。
 その後、多元蒸着装置を用い、モリブデン膜付きガラス基板を200℃にて30分間加熱後、三段階法によってCIGS層を成膜した。成膜条件は基板温度400~600℃とし、膜厚1.8μm以上となるように成膜した。
 三段階法によるCIGS層の成膜は、具体的に次の手順で行なった。一段階目に基板温度を約400℃まで加熱し、In、Ga、Seを同時に蒸着した。その後、第二段階目は基板温度を500~600℃に上昇させ、Cu、Seを膜全体の組成がCu過剰になるまで同時に蒸着した。さらに第三段階目としてIn、Ga、Seを再度同時蒸着し、最終的にCIGS層の組成がIn、Ga過剰(Cu/(In+Ga)比率<1)、膜厚1.8μm以上となるように成膜した。
 その後、CIGS層まで成膜したガラス基板を濃度10%シアン化カリウム溶液に60秒浸し洗浄し、リーク電流の原因となるCuSe層を除去した。
 そのCIGS層上にCBD(Chemical Bath Deposition)法にてCdS層を成膜した。CdS層は、0.015M硫酸カドミウム、1.5Mチオウレア、15Mアンモニア水溶液を使用し、50~100nmの厚みとなるように成膜した。
 CdS層上にスパッタにてZnOターゲット及びAZOターゲット(Al23を1.5wt%含有するZnOターゲット)を使用して、ZnO及びAZO層を成膜した。ZnOを約100nm、AZOを約200nm成膜した。
 そして、AZO層上にアルミ電極を加熱蒸着法により成膜した。
 その後、尖った金属板を用いて、CIGS層までを削り、モリブデン膜を残し、セル化及び下部電極作製を行い、一定の有効面積(アルミ電極を除いた面積が約0.5cm2)のセルが両側に各4個、合計8個のセルが並んだCIGS太陽電池サンプルを作製した。
[CIGS太陽電池サンプルの発電効率の測定]
 外部の光が内部に侵入することを遮断できる一辺約30cmの容器を準備し、その容器内を、容器内部における光の反射を抑えるため内部を黒く塗装し、上記容器内にCIGS太陽電池を設置した。
 あらかじめInGa溶剤(オーミック接触のため)を塗布したモリブデン膜にはプラス端子、8個のセル表面のアルミ上部取り出し電極にマイナス端子を、それぞれ電圧/電流発生器に接続した。容器内の温度は25℃となるように温度調節機にて制御した。容器内において外部光を遮断し、電池上部からキセノンランプを10秒間照射した。その後、60秒保持し、電池の温度を安定させた。その後、キセノンランプの未照射時と照射時にて、電圧を-1Vから+1Vまで0.015V間隔で変化させ、電流値を測定した。この照射時の電流と電圧特性から発電効率を算出した。
 発電効率は、開放電圧(Voc)、短絡電流密度(Jsc)及び曲線因子(FF)から、下記式(1)により求めた。8個のセルの発電効率の平均値を各表に示す。
電池効率[%]=Voc[V]×Jsc[A/cm2]×FF[無次元]×100/試験に用いる光源の照度[W/cm2]  式(1)
 ここで、開放電圧(Voc)は、端子を開放した時の出力であり、短絡電流密度(Jsc)は、端子を短絡した時の電流である短絡電流(Isc)を有効面積で割ったものであり、曲線因子(FF)は、最大の出力を与える点である最大出力点の電圧(最大電圧値(Vmax))と最大出力点の電流(最大電流値(Imax))との積を開放電圧(Voc)と短絡電流(Isc)との積で割ったものである。
 ガラス中のSO残存量は100~500ppmであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 なお、表1~5中のかっこは計算値である。
 発電効率とNa拡散量の具体的な計算は、下記のようにして求めた。
 発電効率は、ガラス基板表層のNaの熱処理前後比と発電効率をプロットした回帰式から求めた。また、Na拡散量は、Naの熱処理前後比と発電効率をプロットした回帰式から求めた。
 具体的な回帰式は、以下に示す式(2)、式(3)、式(4)である。
x:Na前後比
y:発電効率[%]
z:Na拡散量[1017atoms/cm
として、
<発電効率>
・SO処理を行った場合
y=1.4×ln(x)+12.5   式(2)
・SO処理を行わなかった場合
y=4.3×x+9.5   式(3)
<Na拡散量>
z=1.9×y-21.7   式(4)
 表1~4より明らかなように、実施例(例1、2、7~30)のガラスは、ガラス基板表層と内部とのCa+Sr+Baの比が0.35以下であり、ガラス基板表層のNaの熱処理前後比が1.5以上であり、且つガラス転移点温度Tgが高い。したがって高い発電効率と高いガラス転移点温度とを両立させることできる。
 また、実施例のガラスは平均熱膨張係数が70×10-7~100×10-7/℃であるので、本発明の太陽電池を組立てる際(具体的にはCIGSの光電変換層を有するガラス基板とカバーガラスとを加熱してはりあわせる際)ガラス基板が変形しにくく安定した発電効率が得られやすい。
 一方、比較例(例3)のガラスは、NaO/(CaO+SrO+BaO)が1.62と大きいため、SO処理をしているが、ガラス基板表層のNaの熱処理前後比が0.98と小さいため、発電効率が得られにくい。比較例(例31、32)のガラスは、NaO/(CaO+SrO+BaO)が1.62と大きいため、SO処理をしているが、ガラス基板表層と内部とのCa+Sr+Baの比が0.36、0.47と大きく、かつガラス基板表層のNaの熱処理前後比が1.15、0.92と小さいため、発電効率が得られにくい。さらに、比較例(例3、31、32)のガラスは、NaOの含有量が13.1%と多いため、Tgが580℃よりも低くなり、CIGS成膜時に基板が変形してしまい、電池製造に支障をきたすおそれがある。
 また、比較例(例33、34)のガラスはNaO量が0.5%で少ないため、SO処理をしているが、Na拡散量も少なく発電効率も低い。
 また、表1および5より明らかなように、SO処理をしていない比較例(例4~5、35~40、42~46)のガラスは、各原料の組成は本発明の範囲内であるが、SO処理をしていないため、ガラス基板表層と内部とのCa+Sr+Baの比が0.90~1.00と大きく、またガラス基板表層のNaの熱処理前後比が0.78~1.00と小さいため、発電効率が得られにくい。
 比較例(例6)のガラスは、NaO/(CaO+SrO+BaO)が1.62と大きく、またSO処理もしていないため、ガラス基板表層と内部とのCa+Sr+Baの比が0.97と大きく、ガラス基板表層のNaの熱処理前後比が0.67と小さいため、発電効率が得られにくい。さらに、NaOの含有量が13.1%と多いため、Tgが580℃よりも低くなり、CIGS成膜時に基板が変形してしまい電池製造に支障をきたすおそれがある。
 比較例(例41)のガラスは、SO処理をしていないため、ガラス基板表層のNaの熱処理前後比が0.66と小さく、またNaO量が0.5%で少ないため、Na拡散量も少なく発電効率も低い。
 本発明の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板は、蒸着成膜CIGS太陽電池用ガラス基板、カバーガラスとして好適であるが、他の太陽電池用基板やカバーガラスに使用することもできる。
 また、本発明の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板を用いることで、発電効率のよい太陽電池を提供できる。
 なお、2010年7月26日に出願された日本特許出願2010-167026号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
1 太陽電池
5 ガラス基板
7 プラス電極
9 CIGS層
11 バッファ層
13 透明導電膜
15 マイナス電極
17 反射防止膜
19 カバーガラス

Claims (6)

  1.  ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.35以下であって、
    ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が1.5以上であり、
    ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
    SiOを53~72%、
    Alを1~15%、
    MgOを0.5~9%、
    CaOを0.1~11%、
    SrOを0~11%、
    BaOを0~11%、
    NaOを2~11%、
    Oを2~21%、
    ZrOを0~10.5%、
    MgO+CaO+SrO+BaOを4~25%、
    CaO+SrO+BaOを2~23%、
    NaO+KOを8~22%、
    NaO/(CaO+SrO+BaO)≦1.2、
    含有し、ガラス転移点温度が580℃以上、平均熱膨張係数が70×10-7~100×10-7/℃である蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
  2.  前記ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.17以下であって、
     ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
    Oを4~21%、
    ZrOを0.5~10.5%、
    CaO+SrO+BaOを4~23%、
    含有する請求項1に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
  3.  前記ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.05以下であって、
     前記ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が2.0以上であり、
    ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
    CaO+SrO+BaOを4~15%、
    SrO+BaOを0~8%、
    含有する請求項1又は2に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
  4.  前記ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が2以上である請求項1に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
  5.  前記ガラス基板表面からの深さ10~40nmの間におけるCa、Sr及びBaの平均合量(原子%)と、ガラス基板表面からの深さ5000nmにおけるCa、Sr及びBaの合量(原子%)と、の比が0.17以下であって、
    前記ガラス基板表面からの深さ10~40nmの間における平均Na量(原子%)のN雰囲気下600℃1時間の熱処理前後比が2.4以上であり、
    ガラス基板表面からの深さ5000nm以上において、下記酸化物基準の質量百分率表示で、
    CaO+SrO+BaOを2~15%
    SrO+BaOを0~10%、
    含有する請求項1又は2に記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板。
  6.  ガラス基板と、カバーガラスと、前記ガラス基板と前記カバーガラスとの間に配置される蒸着成膜されたCu-In-Ga-Seの光電変換層と、を有し、
     前記ガラス基板と前記カバーガラスのうち少なくとも前記ガラス基板が、請求項1~5のいずれかに記載の蒸着成膜Cu-In-Ga-Se太陽電池用ガラス基板である太陽電池。
PCT/JP2011/066878 2010-07-26 2011-07-25 Cu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池 WO2012014854A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012526496A JP5757473B2 (ja) 2010-07-26 2011-07-25 Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
KR1020127033531A KR20130100244A (ko) 2010-07-26 2011-07-25 Cu-In-Ga-Se 태양 전지용 유리 기판 및 그것을 사용한 태양 전지
US13/751,764 US8895463B2 (en) 2010-07-26 2013-01-28 Glass substrate for Cu-In-Ga-Se solar cell and solar cell using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-167026 2010-07-26
JP2010167026 2010-07-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/751,764 Continuation US8895463B2 (en) 2010-07-26 2013-01-28 Glass substrate for Cu-In-Ga-Se solar cell and solar cell using same

Publications (1)

Publication Number Publication Date
WO2012014854A1 true WO2012014854A1 (ja) 2012-02-02

Family

ID=45530062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066878 WO2012014854A1 (ja) 2010-07-26 2011-07-25 Cu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池

Country Status (5)

Country Link
US (1) US8895463B2 (ja)
JP (2) JP5757473B2 (ja)
KR (1) KR20130100244A (ja)
TW (1) TW201210974A (ja)
WO (1) WO2012014854A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102346A1 (ja) * 2011-01-28 2012-08-02 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
WO2013011860A1 (ja) * 2011-07-19 2013-01-24 日本電気硝子株式会社 ガラス基材
US20130178355A1 (en) * 2010-06-17 2013-07-11 Asahi Glass Company, Limited Glass substrate and its production process
WO2013111749A1 (ja) * 2012-01-25 2013-08-01 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池
JP2013207061A (ja) * 2012-03-28 2013-10-07 Asahi Glass Co Ltd 太陽電池の製造方法および太陽電池
JP2014075407A (ja) * 2012-10-03 2014-04-24 Asahi Glass Co Ltd Cigs型太陽電池用基板及びそれを用いたcigs型太陽電池の製造方法
JP2014097916A (ja) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd 薄膜太陽電池用ガラス板及びその製造方法
JP2014136667A (ja) * 2013-01-18 2014-07-28 Nippon Electric Glass Co Ltd 保護膜付きガラス基材
WO2014189003A1 (ja) * 2013-05-20 2014-11-27 旭硝子株式会社 ガラス基板及びcigs太陽電池
US20150068595A1 (en) * 2012-03-07 2015-03-12 Asahi Glass Company, Limited GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
WO2015072429A1 (ja) * 2013-11-13 2015-05-21 旭硝子株式会社 板ガラスの製造方法
JP2015160790A (ja) * 2014-02-28 2015-09-07 日本電気硝子株式会社 ガラス板の製造方法及びガラス板の製造装置
WO2016043287A1 (ja) * 2014-09-19 2016-03-24 旭硝子株式会社 ガラス基板、その製造方法及びcigs太陽電池
JP2016121069A (ja) * 2014-05-21 2016-07-07 旭硝子株式会社 ガラス板
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板
JP2016169155A (ja) * 2011-07-19 2016-09-23 日本電気硝子株式会社 ガラス基材

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5850392B2 (ja) * 2011-09-20 2016-02-03 日本電気硝子株式会社 ガラス板
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
CN107683268A (zh) 2015-06-08 2018-02-09 旭硝子欧洲玻璃公司 能够通过化学强化而具有受控的翘曲的玻璃板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159238A (ja) * 1986-12-04 1988-07-02 グラヴルベル 脱アルカリシートガラスおよびその製造方法
JPH11135819A (ja) * 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd 化合物薄膜太陽電池
JPH11278875A (ja) * 1998-03-26 1999-10-12 Asahi Glass Co Ltd ガラスの表面処理方法
JP2007204295A (ja) * 2006-01-31 2007-08-16 Asahi Glass Co Ltd ディスプレイ基板用ガラス板及びその製造方法
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1012355B (it) * 1973-06-20 1977-03-10 Rca Corp Corpo di vetro presentante una pellicola di ossido semicondut tore trasparente
JPH0678181B2 (ja) * 1988-10-27 1994-10-05 セントラル硝子株式会社 ガラス表面の処理方法
JP4320823B2 (ja) * 1998-02-27 2009-08-26 旭硝子株式会社 基板用ガラス組成物
CN101679105B (zh) * 2007-06-07 2015-06-17 日本电气硝子株式会社 强化玻璃基板及其制造方法
WO2009054419A1 (ja) * 2007-10-25 2009-04-30 Asahi Glass Company, Limited 基板用ガラス組成物およびその製造方法
CN101959819A (zh) * 2008-02-27 2011-01-26 旭硝子株式会社 基板用玻璃组合物
EP2346085A1 (en) * 2008-10-31 2011-07-20 Asahi Glass Company Limited Solar cell
JPWO2011049146A1 (ja) 2009-10-20 2013-03-14 旭硝子株式会社 Cu−In−Ga−Se太陽電池用ガラス板およびこれを用いた太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63159238A (ja) * 1986-12-04 1988-07-02 グラヴルベル 脱アルカリシートガラスおよびその製造方法
JPH11135819A (ja) * 1997-10-31 1999-05-21 Matsushita Electric Ind Co Ltd 化合物薄膜太陽電池
JPH11278875A (ja) * 1998-03-26 1999-10-12 Asahi Glass Co Ltd ガラスの表面処理方法
JP2007204295A (ja) * 2006-01-31 2007-08-16 Asahi Glass Co Ltd ディスプレイ基板用ガラス板及びその製造方法
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130178355A1 (en) * 2010-06-17 2013-07-11 Asahi Glass Company, Limited Glass substrate and its production process
WO2012102346A1 (ja) * 2011-01-28 2012-08-02 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
WO2013011860A1 (ja) * 2011-07-19 2013-01-24 日本電気硝子株式会社 ガラス基材
JP2013042116A (ja) * 2011-07-19 2013-02-28 Nippon Electric Glass Co Ltd ガラス基材
US9133055B2 (en) * 2011-07-19 2015-09-15 Nippon Electric Glass Co., Ltd. Glass base material
US20140144492A1 (en) * 2011-07-19 2014-05-29 Nippon Electric Glass Co., Ltd. Glass base material
JP2016169155A (ja) * 2011-07-19 2016-09-23 日本電気硝子株式会社 ガラス基材
JPWO2013111749A1 (ja) * 2012-01-25 2015-05-11 旭硝子株式会社 Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
WO2013111749A1 (ja) * 2012-01-25 2013-08-01 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス基板及びそれを用いた太陽電池
JPWO2013133273A1 (ja) * 2012-03-07 2015-07-30 旭硝子株式会社 Cu−In−Ga−Se太陽電池用ガラス基板およびそれを用いた太陽電池
US20150068595A1 (en) * 2012-03-07 2015-03-12 Asahi Glass Company, Limited GLASS SUBSTRATE FOR Cu-In-Ga-Se SOLAR CELL, AND SOLAR CELL USING SAME
JP2013207061A (ja) * 2012-03-28 2013-10-07 Asahi Glass Co Ltd 太陽電池の製造方法および太陽電池
JP2014075407A (ja) * 2012-10-03 2014-04-24 Asahi Glass Co Ltd Cigs型太陽電池用基板及びそれを用いたcigs型太陽電池の製造方法
JP2014097916A (ja) * 2012-11-16 2014-05-29 Nippon Electric Glass Co Ltd 薄膜太陽電池用ガラス板及びその製造方法
JP2014136667A (ja) * 2013-01-18 2014-07-28 Nippon Electric Glass Co Ltd 保護膜付きガラス基材
WO2014189003A1 (ja) * 2013-05-20 2014-11-27 旭硝子株式会社 ガラス基板及びcigs太陽電池
JPWO2014189003A1 (ja) * 2013-05-20 2017-02-23 旭硝子株式会社 ガラス基板及びcigs太陽電池
WO2015072429A1 (ja) * 2013-11-13 2015-05-21 旭硝子株式会社 板ガラスの製造方法
JP2015160790A (ja) * 2014-02-28 2015-09-07 日本電気硝子株式会社 ガラス板の製造方法及びガラス板の製造装置
JP2016121069A (ja) * 2014-05-21 2016-07-07 旭硝子株式会社 ガラス板
WO2016043287A1 (ja) * 2014-09-19 2016-03-24 旭硝子株式会社 ガラス基板、その製造方法及びcigs太陽電池
JPWO2016043287A1 (ja) * 2014-09-19 2017-06-29 旭硝子株式会社 ガラス基板、その製造方法及びcigs太陽電池
JP2016147792A (ja) * 2015-02-13 2016-08-18 旭硝子株式会社 ガラス基板

Also Published As

Publication number Publication date
US8895463B2 (en) 2014-11-25
TW201210974A (en) 2012-03-16
JP5757473B2 (ja) 2015-07-29
US20130160845A1 (en) 2013-06-27
KR20130100244A (ko) 2013-09-10
JP6004048B2 (ja) 2016-10-05
JPWO2012014854A1 (ja) 2013-09-12
JP2015187079A (ja) 2015-10-29

Similar Documents

Publication Publication Date Title
JP6004048B2 (ja) Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
US20120199203A1 (en) Glass sheet for cu-in-ga-se solar cells, and solar cells using same
JP6003904B2 (ja) Cu−In−Ga−Se太陽電池用ガラス基板及びそれを用いた太陽電池
US20130233386A1 (en) Glass substrate for cu-in-ga-se solar cells and solar cell using same
WO2012102346A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
JP5812487B2 (ja) 太陽電池の製造方法
KR20140142271A (ko) Cu-In-Ga-Se 태양 전지용 유리 기판 및 그것을 사용한 태양 전지
JP6156553B2 (ja) Cigs太陽電池用ガラス基板及びcigs太陽電池
JP6210136B2 (ja) ガラス基板
JP6249033B2 (ja) ガラス板
JP6673360B2 (ja) 太陽電池用ガラス基板及び太陽電池
JP2016098133A (ja) ガラス基板、cigs太陽電池、及びガラス基板の製造方法
JPWO2014189003A1 (ja) ガラス基板及びcigs太陽電池
WO2014024850A1 (ja) Cu-In-Ga-Se太陽電池用ガラス基板およびそれを用いた太陽電池
JP2016171158A (ja) Cu−In−Ga−Se太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526496

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127033531

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11812443

Country of ref document: EP

Kind code of ref document: A1